Sample records for expected radiation dose

  1. Acute Hematological Effects in Mice Exposed to the Expected Doses, Dose-rates, and Energies of Solar Particle Event-like Proton Radiation.

    PubMed

    Sanzari, Jenine K; Cengel, Keith A; Wan, X Steven; Rusek, Adam; Kennedy, Ann R

    2014-07-01

    NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection. The doses, dose rates, and energies of the proton radiation expected to occur during a SPE have been simulated at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, delivering total body doses to mice. Hematological values were evaluated at acute time points, up to 24 hrs. post-radiation exposure.

  2. Acute hematological effects in mice exposed to the expected doses, dose-rates, and energies of solar particle event-like proton radiation

    NASA Astrophysics Data System (ADS)

    Sanzari, Jenine K.; Cengel, Keith A.; Steven Wan, X.; Rusek, Adam; Kennedy, Ann R.

    2014-07-01

    NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection. The doses, dose rates, and energies of the proton radiation expected to occur during an SPE have been simulated at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, delivering total body doses to mice. Hematological values were evaluated at acute time points, up to 24 hours post-radiation exposure.

  3. Acute Hematological Effects in Mice Exposed to the Expected Doses, Dose-rates, and Energies of Solar Particle Event-like Proton Radiation

    PubMed Central

    Sanzari, Jenine K.; Cengel, Keith A.; Wan, X. Steven; Rusek, Adam; Kennedy, Ann R.

    2014-01-01

    NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection. The doses, dose rates, and energies of the proton radiation expected to occur during a SPE have been simulated at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, delivering total body doses to mice. Hematological values were evaluated at acute time points, up to 24 hrs. post-radiation exposure. PMID:25202654

  4. Nuclear energy and health: and the benefits of low-dose radiation hormesis.

    PubMed

    Cuttler, Jerry M; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled.

  5. Nuclear Energy and Health: And the Benefits of Low-Dose Radiation Hormesis

    PubMed Central

    Cuttler, Jerry M.; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled. PMID:19343116

  6. Radiation dose to workers due to the inhalation of dust during granite fabrication.

    PubMed

    Zwack, L M; McCarthy, W B; Stewart, J H; McCarthy, J F; Allen, J G

    2014-03-01

    There has been very little research conducted to determine internal radiation doses resulting from worker exposure to ionising radiation in granite fabrication shops. To address this issue, we estimated the effective radiation dose of granite workers in US fabrication shops who were exposed to the maximum respirable dust and silica concentrations allowed under current US regulations, and also to concentrations reported in the literature. Radiation doses were calculated using standard methods developed by the International Commission on Radiological Protection. The calculated internal doses were very low, and below both US occupational standards (50 mSv yr(-1)) and limits applicable to the general public (1 mSv yr(-1)). Workers exposed to respirable granite dust concentrations at the US Occupational Safety and Health Administration (OSHA) respirable dust permissible exposure limit (PEL) of 5 mg m(-3) over a full year had an estimated radiation dose of 0.062 mSv yr(-1). Workers exposed to respirable granite dust concentrations at the OSHA silica PEL and at the American Conference of Governmental Industrial Hygienists Threshold Limit Value for a full year had expected radiation doses of 0.007 mSv yr(-1) and 0.002 mSv yr(-1), respectively. Using data from studies of respirable granite dust and silica concentrations measured in granite fabrication shops, we calculated median expected radiation doses that ranged from <0.001 to 0.101 mSv yr(-1).

  7. The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model

    PubMed Central

    Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.

    2014-01-01

    Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435

  8. Fluoroscopically Guided Interventional Procedures: A Review of Radiation Effects on Patients’ Skin and Hair

    DTIC Science & Technology

    2010-02-01

    subsequent research has yielded additional in- sights. This review is a consensus report of current scien- tifi c data. Expected skin reactions for an...table has been cited and reproduced Essentials The minimum radiation dose n causing a specifi c type of reac- tion in the skin or hair is best...expressed in terms of a range of doses, rather than a single threshold dose. The times of onset and resolution n of specifi c radiation injuries

  9. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  10. [Methodology for an assessment of derived radiation levels for agrocenoses].

    PubMed

    Udalova, A A; Ul'ianenko, L N; Aleksakhin, R M; Geras'kin, S A; Filipas, A S

    2010-01-01

    Radiation protection of agrarian ecosystems should be considered as an integral part of a system for radiation protection of environment, with a special concern to agroecosystems' features. A methodology is proposed for an assessment of maximum permissible doses of radiation impact for agrocenoses based on an unified analysis of available data about effects of radiation in cultivated plants. It is considered as a component of radiation protection system for agricultural ecosystems. Critical doses and dose rates are estimated for crops under different exposure situations. It is shown that doses that could result in decreasing indexes of productivity and survival for main crops below 50% are unlikely up to 170-200 Gy and 15-17 Gy at an acute exposure of dormant seeds and vegetative plants, correspondingly. At chronic exposure, above 10% loss of productivity in crops is not expected at dose rates below 3-10 mGy/h.

  11. Low-energy electron effects on tensile modulus and infrared transmission properties of a polypyromellitimide film

    NASA Technical Reports Server (NTRS)

    Ferl, J. E.; Long, E. R., Jr.

    1981-01-01

    Infrared (IR) spectroscopy and tensile modulus testing were used to evaluate the importance of experimental procedure on changes in properties of pyromellitic dianhydride-p,p prime-oxydianiline film exposed to electron radiation. The radiation exposures were accelerated, approximate equivalents to the total dose expected for a 30 year mission in geosynchronous Earth orbit. The change in the tensile modulus depends more on the dose rate and the time interval between exposure and testing than on total dose. The IR data vary with both total dose and dose rate. A threshold dose rate exists below which reversible radiation effects on the IR spectra occur. Above the threshold dose rate, irreversible effects occur with the appearance of a new band. Post-irradiation and in situ IR absorption bands are significantly different. It is suggested that the electron radiation induced metastable, excites molecular states.

  12. Does the presence of an implant including expander with internal port alter radiation dose? An ex vivo model.

    PubMed

    Strang, Barbara; Murphy, Kyla; Seal, Shane; Cin, Arianna Dal

    2013-01-01

    There is a lack of literature examining the dosimetric implications of irradiating breast implants and expanders with internal ports inserted at the time of mastectomy. To determine whether the presence of breast expanders with port in saline or silicone implants affect the dose uniformity across the breast when irradiated with various photon and electron energies. One tissue-equivalent torso phantom with overlying tissue expanders in saline or silicone implants were irradiated using tangential fields with 6 MV and 18 MV photons and 9 MeV and 12 MeV electrons. All dose measurements were performed using thermoluminescent dosimeters (TLDs). The TLDs were arranged around the port and the perimeters of either the expander, or saline or silicone implant. Comparisons of measured radiation doses, and between the expected and measured doses of radiation from the TLDs on each prosthesis, were performed. Data were analyzed using two-tailed t tests. There were no differences in TLD measurements between the expander and the saline implant for all energy modalities, and for the expected versus actual measurements for the saline implant. Higher than anticipated measurements were recorded for a significant number of TLD positions around the silicone implants. Radiation doses around saline implants or expanders with internal port were unaltered, whereas dose recordings for silicone implants were higher than predicted in the present laboratory/ex vivo study.

  13. Combined injury syndrome in space-related radiation environments

    NASA Astrophysics Data System (ADS)

    Dons, R. F.; Fohlmeister, U.

    The risk of combined injury (CI) to space travelers is a function of exposure to anomalously large surges of a broad spectrum of particulate and photon radiations, conventional trauma (T), and effects of weightlessness including decreased intravascular fluid volume, and myocardial deconditioning. CI may occur even at relatively low doses of radiation which can synergistically enhance morbidity and mortality from T. Without effective countermeasures, prolonged residence in space is expected to predispose most individuals to bone fractures as a result of calcium loss in the microgravity environment. Immune dysfunction may occur from residence in space independent of radiation exposure. Thus, wound healing would be compromised if infection were to occur. Survival of the space traveler with CI would be significantly compromised if there were delays in wound closure or in the application of simple supportive medical or surgical therapies. Particulate radiation has the potential for causing greater gastrointestinal injury than photon radiation, but bone healing should not be compromised at the expected doses of either type of radiation in space.

  14. Evaluation of Radiation Doses Due to Consumption of Contaminated Food Items and Calculation of Food Class-Specific Derived Intervention Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinzelman, K M; Mansfield, W G

    This document evaluates the expected radiation dose due to the consumption of several specific food classes (dairy, meat, produce, etc.) contaminated with specific radionuclides, and relates concentration levels in food to the detection abilities of typical aboratory analysis/measurement methods. The attached charts present the limiting organ dose as a function of the radionuclide concentration in a particular food class, and allow the user to compare these concentrations and doses to typical analytical detection apabilities. The expected radiation dose depends on several factors: the age of the individual; the radionuclide present in the food; the concentration of the radionuclide in themore » food; and the amount of food consumed. Food consumption rates for individuals of various ges were taken from the 1998 United States Food and Drug Administration (FDA) document, Accidental Radioactive Contamination of HUman Food and Animal Feeds: Recommendations for State and Local Agencies. In that document, the FDA defines the erived Intervention Level (DIL), which is the concentration of a particular radionuclide in food that if consumed could result in an individual receiving a radiation dose exceeding the Protection Action Guide (PAG) thresholds for intervention. This document also resents odified, food class specific DIL, which is calculated using a somewhat modified version of the FDA's procedure. This document begins with an overview of the FDA's DIL calculation, followed by a description of the food class specific DIL calculations, and finally charts of the radiation dose per radioactivity concentration for several food class/radionuclide combinations.« less

  15. Cost-effectiveness analysis of intensity-modulated radiation therapy with normal and hypofractionated schemes for the treatment of localised prostate cancer.

    PubMed

    Zemplényi, A T; Kaló, Z; Kovács, G; Farkas, R; Beöthe, T; Bányai, D; Sebestyén, Z; Endrei, D; Boncz, I; Mangel, L

    2018-01-01

    The aim of our analysis was to compare the cost-effectiveness of high-dose intensity-modulated radiation therapy (IMRT) and hypofractionated intensity-modulated radiation therapy (HF-IMRT) versus conventional dose three-dimensional radiation therapy (3DCRT) for the treatment of localised prostate cancer. A Markov model was constructed to calculate the incremental quality-adjusted life years and costs. Transition probabilities, adverse events and utilities were derived from relevant systematic reviews. Microcosting in a large university hospital was applied to calculate cost vectors. The expected mean lifetime cost of patients undergoing 3DCRT, IMRT and HF-IMRT were 7,160 euros, 6,831 euros and 6,019 euros respectively. The expected quality-adjusted life years (QALYs) were 5.753 for 3DCRT, 5.956 for IMRT and 5.957 for HF-IMRT. Compared to 3DCRT, both IMRT and HF-IMRT resulted in more health gains at a lower cost. It can be concluded that high-dose IMRT is not only cost-effective compared to the conventional dose 3DCRT but, when used with a hypofractionation scheme, it has great cost-saving potential for the public payer and may improve access to radiation therapy for patients. © 2016 John Wiley & Sons Ltd.

  16. Commentary on Inhaled 239PuO 2 in Dogs — A Prophylaxis against Lung Cancer?

    DOE PAGES

    Cuttler, Jerry M.; Feinendegen, Ludwig E.

    2015-01-01

    Several studies on the effect of inhaled plutonium-dioxide particulates and the incidence of lung tumors in dogs reveal beneficial effects when the cumulative alpha-radiation dose is low. There is a threshold at an exposure level of about 100 cGy for excess tumor incidence and reduced lifespan. The observations conform to the expectations of the radiation hormesis dose-response model and contradict the predictions of the LNT hypothesis. These studies suggest investigating the possibility of employing low-dose alpha-radiation, such as from 239PuO 2 inhalation, as a prophylaxis against lung cancer.

  17. Commentary on Inhaled 239PuO 2 in Dogs — A Prophylaxis against Lung Cancer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuttler, Jerry M.; Feinendegen, Ludwig E.

    Several studies on the effect of inhaled plutonium-dioxide particulates and the incidence of lung tumors in dogs reveal beneficial effects when the cumulative alpha-radiation dose is low. There is a threshold at an exposure level of about 100 cGy for excess tumor incidence and reduced lifespan. The observations conform to the expectations of the radiation hormesis dose-response model and contradict the predictions of the LNT hypothesis. These studies suggest investigating the possibility of employing low-dose alpha-radiation, such as from 239PuO 2 inhalation, as a prophylaxis against lung cancer.

  18. Radioprotective effect of Rapana thomasiana hemocyanin in gamma induced acute radiation syndrome.

    PubMed

    Kindekov, Ivan; Mileva, Milka; Krastev, Dimo; Vassilieva, Vladimira; Raynova, Yuliana; Doumanova, Lyuba; Aljakov, Mitko; Idakieva, Krassimira

    2014-05-04

    The radioprotective effect of Rapana thomasiana hemocyanin (RtH) against radiation-induced injuries (stomach ulcers, survival time and endogenous haemopoiesis) and post-radiation recovery was investigated in male albino mice (C3H strain). Radiation course was in a dose of 7.5 Gy (LD 100/30 - dose that kills 100% of the mice at 30 days) from 137 Cs with a dose of 2.05 Gy/min. Radiation injuries were manifested by inducing а hematopoietic form of acute radiation syndrome. RtH was administered intraperitoneally in a single dose of 50, 100, 150 and 200 mg/kg body weight (b. w.) once a day for five consecutive days before irradiation. The results obtained showed that radiation exposure led to (1) 100% mortality rate, (2) ulceration in the stomach mucosa and (3) decrease formation of spleen colonies as a marker of endogenous haemopoiesis. Administration of RtH at a dose of 200 mg/kg provided better protection against radiation-induced stomach ulceration, mitigated the lethal effects of radiation exposure and recovered endogenous haemopoiesis versus irradiated but not supplemented mice. It could be expected that RtH will find a use in mitigating radiation induced injury and enhanced radiorecovery.

  19. Does the presence of an implant including expander with internal port alter radiation dose? An ex vivo model

    PubMed Central

    Strang, Barbara; Murphy, Kyla; Seal, Shane; Cin, Arianna Dal

    2013-01-01

    BACKGROUND: There is a lack of literature examining the dosimetric implications of irradiating breast implants and expanders with internal ports inserted at the time of mastectomy. OBJECTIVE: To determine whether the presence of breast expanders with port in saline or silicone implants affect the dose uniformity across the breast when irradiated with various photon and electron energies. METHODS: One tissue-equivalent torso phantom with overlying tissue expanders in saline or silicone implants were irradiated using tangential fields with 6 MV and 18 MV photons and 9 MeV and 12 MeV electrons. All dose measurements were performed using thermoluminescent dosimeters (TLDs). The TLDs were arranged around the port and the perimeters of either the expander, or saline or silicone implant. Comparisons of measured radiation doses, and between the expected and measured doses of radiation from the TLDs on each prosthesis, were performed. Data were analyzed using two-tailed t tests. RESULTS: There were no differences in TLD measurements between the expander and the saline implant for all energy modalities, and for the expected versus actual measurements for the saline implant. Higher than anticipated measurements were recorded for a significant number of TLD positions around the silicone implants. CONCLUSIONS: Radiation doses around saline implants or expanders with internal port were unaltered, whereas dose recordings for silicone implants were higher than predicted in the present laboratory/ex vivo study. PMID:24431935

  20. A new shielding calculation method for X-ray computed tomography regarding scattered radiation.

    PubMed

    Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto

    2017-06-01

    The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.

  1. WE-EF-BRA-08: Cell Survival in Modulated Radiation Fields and Altered DNA-Repair at Field Edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartzsch, S; Oelfke, U; Eismann, S

    2015-06-15

    Purpose: Tissue damage prognoses in radiotherapy are based on clonogenic assays that provide dose dependent cell survival rates. However, recent work has shown that apart from dose, systemic reactions and cell-cell communication crucially influence the radiation response. These effects are probably a key in understanding treatment approaches such as microbeam radiation therapy (MRT). In this study we tried to quantify the effects on a cellular level in spatially modulated radiation fields. Methods: Pancreas carcinoma cells were cultured, plated and irradiated by spatially modulated radiation fields with an X-ray tube and at a synchrotron. During and after treatment cells were ablemore » to communicate via the intercellular medium. Afterwards we stained for DNA and DNA damage and imaged with a fluorescence microscope. Results: Intriguingly we found that DNA damage does not strictly increase with dose. Two cell entities appear that have either a high or a low amount of DNA lesions, indicating that DNA damage is also a cell stress reaction. Close to radiation boundaries damage-levels became alike; they were higher than expected at low and lower than expected at high doses. Neighbouring cells reacted similarly. 6 hours after exposure around 40% of the cells resembled in their reactions neighbouring cells more than randomly chosen cells that received the same dose. We also observed that close to radiation boundaries the radiation induced cell-cycle arrest disappeared and the size of DNA repair-centres increased. Conclusion: Cell communication plays an important role in the radiation response of tissues and may be both, protective and destructive. These effects may not only have the potential to affect conventional radiotherapy but may also be exploited to spare organs at risk by intelligently designing irradiation geometries. To that end intensive work is required to shed light on the still obscure processes in cell-signalling and radiation biology.« less

  2. Radiotherapy Dose Fractionation under Parameter Uncertainty

    NASA Astrophysics Data System (ADS)

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-01

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  3. Space Radiation Organ Doses for Astronauts on Past and Future Missions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2007-01-01

    We review methods and data used for determining astronaut organ dose equivalents on past space missions including Apollo, Skylab, Space Shuttle, NASA-Mir, and International Space Station (ISS). Expectations for future lunar missions are also described. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra, or a related quantity, the lineal energy (y) spectra that is measured by a tissue equivalent proportional counter (TEPC). These data are used in conjunction with space radiation transport models to project organ specific doses used in cancer and other risk projection models. Biodosimetry data from Mir, STS, and ISS missions provide an alternative estimate of organ dose equivalents based on chromosome aberrations. The physical environments inside spacecraft are currently well understood with errors in organ dose projections estimated as less than plus or minus 15%, however understanding the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons for which there are no human data to estimate risks. The accuracy of projections of organ dose equivalents described here must be supplemented with research on the health risks of space exposure to properly assess crew safety for exploration missions.

  4. Measurement and interpretation of electron angle at MABE beam stop

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Coleman, P. D.; Poukey, J. W.

    1985-02-01

    The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, was determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15(0) + or - 2(0). A comparison of theta with that expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.

  5. Visual assessment of the radiation distribution in the ISS Lab module: visualization in the human body

    NASA Technical Reports Server (NTRS)

    Saganti, P. B.; Zapp, E. N.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    The US Lab module of the International Space Station (ISS) is a primary working area where the crewmembers are expected to spend majority of their time. Because of the directionality of radiation fields caused by the Earth shadow, trapped radiation pitch angle distribution, and inherent variations in the ISS shielding, a model is needed to account for these local variations in the radiation distribution. We present the calculated radiation dose (rem/yr) values for over 3,000 different points in the working area of the Lab module and estimated radiation dose values for over 25,000 different points in the human body for a given ambient radiation environment. These estimated radiation dose values are presented in a three dimensional animated interactive visualization format. Such interactive animated visualization of the radiation distribution can be generated in near real-time to track changes in the radiation environment during the orbit precession of the ISS.

  6. CONSULTATION ON UPDATED METHODOLOGY FOR ...

    EPA Pesticide Factsheets

    The National Academy of Sciences (NAS) expects to publish the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in calendar year 2005. The committee is expected to have analyzed the most recent epidemiology from the important exposed cohorts and to have factored in any changes resulting from the updated analysis of dosimetry for the Japanese atomic bomb survivors. To the extent practical, the Committee will also consider any relevant radiobiological data, including those from the Department of Energy's low dose effects research program. Based on their evaluation of relevant information, the Committee is then expected to propose a set of models for estimating risks from low-dose ionizing radiation. ORIA will review the BEIR VII report and consider revisions to the Agency's methodology for estimating cancer risks from exposure to ionizing radiation in light of this report and other relevant information. This will be the subject of the Consultation. This project supports a major risk management initiative to improve the basis on which radiation risk decisions are made. This project, funded by several Federal Agencies, reflects an attempt to characterize risks where there are substantial uncertainties. The outcome will improve our ability to assess risks well into the future and will strengthen EPAs overall capability for assessing and managing radiation risks. the BEIR VII report is funde

  7. Radioprotective effect of Rapana thomasiana hemocyanin in gamma induced acute radiation syndrome

    PubMed Central

    Kindekov, Ivan; Mileva, Milka; Krastev, Dimo; Vassilieva, Vladimira; Raynova, Yuliana; Doumanova, Lyuba; Aljakov, Mitko; Idakieva, Krassimira

    2014-01-01

    The radioprotective effect of Rapana thomasiana hemocyanin (RtH) against radiation-induced injuries (stomach ulcers, survival time and endogenous haemopoiesis) and post-radiation recovery was investigated in male albino mice (C3H strain). Radiation course was in a dose of 7.5 Gy (LD 100/30 – dose that kills 100% of the mice at 30 days) from 137Cs with a dose of 2.05 Gy/min. Radiation injuries were manifested by inducing а hematopoietic form of acute radiation syndrome. RtH was administered intraperitoneally in a single dose of 50, 100, 150 and 200 mg/kg body weight (b. w.) once a day for five consecutive days before irradiation. The results obtained showed that radiation exposure led to (1) 100% mortality rate, (2) ulceration in the stomach mucosa and (3) decrease formation of spleen colonies as a marker of endogenous haemopoiesis. Administration of RtH at a dose of 200 mg/kg provided better protection against radiation-induced stomach ulceration, mitigated the lethal effects of radiation exposure and recovered endogenous haemopoiesis versus irradiated but not supplemented mice. It could be expected that RtH will find a use in mitigating radiation induced injury and enhanced radiorecovery. PMID:26019540

  8. [Dose loads on and radiation risk values for cosmonauts on a mission to Mars estimated from actual Martian vehicle engineering development].

    PubMed

    Shafirkin, A V; Kolomenskiĭ, A V; Mitrikas, V G; Petrov, V M

    2010-01-01

    The current design philosophy of a Mars orbiting vehicle, takeoff and landing systems and the transport return vehicle was taken into consideration for calculating the equivalent doses imparted to cosmonaut's organs and tissues by galactic cosmic rays, solar rays and the Earth's radiation belts, values of the total radiation risk over the lifespan following the mission and over the whole career period, and possible shortening of life expectancy. There are a number of uncertainties that should be evaluated, and radiation limits specified before setting off to Mars.

  9. Effects of Solar Particle Event Proton Radiation on Parameters Related to Ferret Emesis

    PubMed Central

    Sanzari, J. K.; Wan, X. S.; Krigsfeld, G. S.; King, G. L.; Miller, A.; Mick, R.; Gridley, D. S.; Wroe, A. J.; Rightnar, S.; Dolney, D.; Kennedy, A. R.

    2013-01-01

    The effectiveness of simulated solar particle event (SPE) proton radiation to induce retching and vomiting was evaluated in the ferret experimental animal model. The endpoints measured in the study included: (1) the fraction of animals that retched or vomited, (2) the number of retches or vomits observed, (3) the latency period before the first retch or vomit and (4) the duration between the first and last retching or vomiting events. The results demonstrated that γ ray and proton irradiation delivered at a high dose rate of 0.5 Gy/min induced dose-dependent changes in the endpoints related to retching and vomiting. The minimum radiation doses required to induce statistically significant changes in retching- and vomiting-related endpoints were 0.75 and 1.0 Gy, respectively, and the relative biological effectiveness (RBE) of proton radiation at the high dose rate did not significantly differ from 1. Similar but less consistent and smaller changes in the retching- and vomiting-related endpoints were observed for groups irradiated with γ rays and protons delivered at a low dose rate of 0.5 Gy/h. Since this low dose rate is similar to a radiation dose rate expected during a SPE, these results suggest that the risk of SPE radiation-induced vomiting is low and may reach statistical significance only when the radiation dose reaches 1 Gy or higher. PMID:23883319

  10. Cancer mortality and morbidity among plutonium workers at the Sellafield plant of British Nuclear Fuels

    PubMed Central

    Omar, R Z; Barber, J A; Smith, P G

    1999-01-01

    The mortality of all 14 319 workers employed at the Sellafield plant of British Nuclear Fuels between 1947 and 1975 was studied up to the end of 1992, and cancer incidence was examined from 1971 to 1986, in relation to their exposures to plutonium and to external radiation. The cancer mortality rate was 5% lower than that of England and Wales and 3% less than that of Cumbria. The significant excesses of deaths from cancer of the pleura and thyroid found in an earlier study persist with further follow-up (14 observed, 4.0 expected for pleura; 6 observed, 2.2 expected for thyroid). All of the deaths from pleural cancer were among radiation workers. For neither site was there a significant association between the risk of the cancer and accumulated radiation dose. There were significant deficits of deaths from cancers of mouth and pharynx, liver and gall bladder, and larynx and leukaemia when compared with the national rates. Among all radiation workers, there was a significant positive association between accumulated external radiation dose and mortality from cancers of ill-defined and secondary sites (10-year lag, P = 0.04), leukaemia (no lag, P = 0.03; 2-year lag, P = 0.05), multiple myeloma (20-year lag, P = 0.02), all lymphatic and haematopoietic cancers (20-year lag, P = 0.03) and all causes of death combined (20-year lag, P = 0.008). Among plutonium workers, there were significant excesses of deaths from cancer of the breast (6 observed, 2.6 expected) and ill-defined and secondary cancers (29 observed, 20.1 expected). No significant positive trends were observed between the risk of deaths from cancers of any specific site, or all cancers combined, and cumulative plutonium and external radiation doses. For no cancer site was there a significant excess of cancer registrations compared with rates for England and Wales. Analysis of trends in cancer incidence showed significant increases in risk with cumulative plutonium plus external radiation doses for all lymphatic and haematopoietic neoplasms for 0-, 10- and 20-year lag periods. Taken as a whole, our findings do not suggest that workers at Sellafield who have been exposed to plutonium are at an overall significantly increased risk of cancer compared with other radiation workers. © 1999 Cancer Research Campaign PMID:10098774

  11. Cancer mortality and morbidity among plutonium workers at the Sellafield plant of British Nuclear Fuels.

    PubMed

    Omar, R Z; Barber, J A; Smith, P G

    1999-03-01

    The mortality of all 14 319 workers employed at the Sellafield plant of British Nuclear Fuels between 1947 and 1975 was studied up to the end of 1992, and cancer incidence was examined from 1971 to 1986, in relation to their exposures to plutonium and to external radiation. The cancer mortality rate was 5% lower than that of England and Wales and 3% less than that of Cumbria. The significant excesses of deaths from cancer of the pleura and thyroid found in an earlier study persist with further follow-up (14 observed, 4.0 expected for pleura; 6 observed, 2.2 expected for thyroid). All of the deaths from pleural cancer were among radiation workers. For neither site was there a significant association between the risk of the cancer and accumulated radiation dose. There were significant deficits of deaths from cancers of mouth and pharynx, liver and gall bladder, and larynx and leukaemia when compared with the national rates. Among all radiation workers, there was a significant positive association between accumulated external radiation dose and mortality from cancers of ill-defined and secondary sites (10-year lag, P = 0.04), leukaemia (no lag, P = 0.03; 2-year lag, P = 0.05), multiple myeloma (20-year lag, P = 0.02), all lymphatic and haematopoietic cancers (20-year lag, P= 0.03) and all causes of death combined (20-year lag, P= 0.008). Among plutonium workers, there were significant excesses of deaths from cancer of the breast (6 observed, 2.6 expected) and ill-defined and secondary cancers (29 observed, 20.1 expected). No significant positive trends were observed between the risk of deaths from cancers of any specific site, or all cancers combined, and cumulative plutonium and external radiation doses. For no cancer site was there a significant excess of cancer registrations compared with rates for England and Wales. Analysis of trends in cancer incidence showed significant increases in risk with cumulative plutonium plus external radiation doses for all lymphatic and haematopoietic neoplasms for 0-, 10- and 20-year lag periods. Taken as a whole, our findings do not suggest that workers at Sellafield who have been exposed to plutonium are at an overall significantly increased risk of cancer compared with other radiation workers.

  12. Early development and characterization of a DNA-based radiation dosimeter

    NASA Astrophysics Data System (ADS)

    Avarmaa, Kirsten A.

    It is the priority of first responders to minimize damage to persons and infrastructure in the case of a nuclear emergency due to an accident or deliberate terrorist attack -- if this emergency includes a radioactive hazard, first responders require a simple-to-use, accurate and complete dosimeter for radiation protection purposes in order to minimize the health risk to these individuals and the general population at large. This work consists of the early evaluation of the design and performance of a biologically relevant dosimeter which uses DNA material that can respond to the radiation of any particle type. The construct consists of fluorescently tagged strands of DNA. The signalling components of this dosimeter are also investigated for their sensitivity to radiation damage and light exposure. The dual-labelled dosimeter that is evaluated in this work gave a measurable response to gamma radiation at dose levels of 10 Gy for the given detector design and experimental setup. Further testing outside of this work confirmed this finding and indicated a working range of 100 mGy to 10 Gy using a custom-built fluorimeter as part of a larger CRTI initiative. Characterization of the chromatic components of the dosimeter showed that photobleaching is not expected to have an effect on dosimeter performance, but that radiation can damage the non-DNA signalling components at higher dose levels, although this damage is minimal at lower doses over the expected operating ranges. This work therefore describes the early steps in the quantification of the behaviour of the DNA dosimeter as a potential biologically-based device to measure radiation dose.

  13. Effects of crystallization interfaces on irradiated ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Brewer, S. J.; Williams, S. C.; Cress, C. D.; Bassiri-Gharb, N.

    2017-11-01

    This work investigates the role of crystallization interfaces and chemical heterogeneity in the radiation tolerance of chemical solution-deposited lead zirconate titanate (PZT) thin films. Two sets of PZT thin films were fabricated with crystallization performed at (i) every deposited layer or (ii) every three layers. The films were exposed to a range of 60Co gamma radiation doses, between 0.2 and 20 Mrad, and their functional response was compared before and after irradiation. The observed trends indicate enhancements of dielectric, ferroelectric, and piezoelectric responses at low radiation doses and degradation of the same at higher doses. Response enhancements are expected to result from low-dose (≤2 Mrad), ionizing radiation-induced charging of internal interfaces—an effect that results in neutralization of pre-existing internal bias in the samples. At higher radiation doses (>2 Mrad), accumulation and self-ordering of radiation-modified, mobile, oxygen vacancy-related defects contribute to degradation of dielectric, ferroelectric, and piezoelectric properties, exacerbated in the samples with more crystallization layers, potentially due to increased defect accumulation at these internal interfaces. These results suggest that the interaction between radiation and crystallization interfaces is multifaceted—the effects of ionization, domain wall motion, point defect mobility, and microstructure are considered.

  14. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.« less

  15. Measurement and interpretation of electron angle at MABE beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.

    1985-02-01

    The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, is determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15/sup 0/ +- 2/sup 0/. Comparing this theta with thatmore » expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.« less

  16. Exposure of airport workers to radiation from shipments of radioactive materials. A review of studies conducted at six major airports. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, J.

    1976-02-01

    The radiation exposure of airport workers handling shipments of radioactive materials was studied at six airports. Descriptions were obtained of the handling and arrangement of the packages, dose distributions were mapped around groupings of packages, and doses received by workers were evaluated both on the basis of time-motion studies and through readings of personal monitoring devices. Results of dosimeters worn over extended periods indicated that no workers were expected to receive exposures in excess of 500 millirems per year and most were expected to receive less than 100 millirems per year. No evidence was found in any of the sixmore » airport studies to suggest that members of the public received any exposure of significance relative to the natural background radiation.« less

  17. Ionizing radiation effects on ISS ePTFE jacketed cable assembly

    NASA Astrophysics Data System (ADS)

    Koontz, S. L.; Golden, J. L.; Lorenz, M. J.; Pedley, M. D.

    2003-09-01

    Polytetrafluoroethylene (PTFE), which is susceptible to embrittlement by ionizing radiation, is used as a primary material in the Mobile Transporter's (MT) Trailing Umbilical System (TUS) cable on the International Space Station (ISS). The TUS cable provides power and data service between the ISS truss and the MT. The TUS cable is normally stowed in an uptake reel and is fed out to follow the MT as it moves along rails on the ISS truss structure. For reliable electrical and mechanical performance, TUS cable polymeric materials must be capable of >3.5% elongation without cracking or breaking. The MT TUS cable operating temperature on ISS is expected to range between -100°C and +130°C. The on-orbit functional life requirement for the MT TUS cable is 10 years. Analysis and testing were performed to verify that the MT TUS cable would be able to meet full-life mechanical and electrical performance requirements, despite progressive embrittlement by the natural ionizing radiation environment. Energetic radiation belt electrons (trapped electrons) are the principal contributor to TUS cable radiation dose. TUS cable specimens were irradiated, in vacuum, with both energetic electrons and gamma rays. Electron beam energy was chosen to minimize charging effects on the non-conductive ePTFE (expanded PTFE) targets. Tensile testing was then performed, over the expected range of operating temperatures, as a function of radiation dose. When compared to the expected in-flight radiation dose/depth profile, atomic oxygen (AO) erosion of the radiation damaged TUS cable jacket surfaces is more rapid than the development of radiation induced embrittlement of the same surfaces. Additionally, the layered construction of the jacket prevents crack growth propagation, leaving the inner layer material compliant with the design elongation requirements. As a result, the TUS cable insulation design was verified to meet performance life requirements.

  18. Long-term effects of ionizing radiation after the Chernobyl accident: Possible contribution of historic dose.

    PubMed

    Omar-Nazir, Laila; Shi, Xiaopei; Moller, Anders; Mousseau, Timothy; Byun, Soohyun; Hancock, Samuel; Seymour, Colin; Mothersill, Carmel

    2018-08-01

    The impact of the Chernobyl NPP accident on the environment is documented to be greater than expected, with higher mutation rates than expected at the current, chronic low dose rate. In this paper we suggest that the historic acute exposure and resulting non-targeted effects (NTE) such as delayed mutations and genomic instability could account at least in part for currently measured mutation rates and provide an initial test of this concept. Data from Møller and Mousseau on the phenotypic mutation rates of Chernobyl birds 9-11 generations post the Chernobyl accident were used and the reconstructed dose response for mutations was compared with delayed reproductive death dose responses (as a measure of genomic instability) in cell cultures exposed to a similar range of doses. The dose to birds present during the Chernobyl NPP accident was reconstructed through the external pathway due to Cs-137 with an estimate of the uncertainty associated with such reconstruction. The percentage of Chernobyl birds several generations after the accident without mutations followed the general shape of the clonogenic survival percentage of the progeny of irradiated cells, and it plateaued at low doses. This is the expected result if NTE of radiation are involved. We suggest therefore, that NTE induced by the historic dose may play a role in generating mutations in progeny many generations following the initial disaster. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Impact of conventional fractionated RT to pelvic lymph nodes and dose-escalated hypofractionated RT to prostate gland using IMRT treatment delivery in high-risk prostate cancer

    NASA Astrophysics Data System (ADS)

    Pervez, Nadeem

    Prostate cancer is the most common cancer among Canadian men. The standard treatment in high-risk category is radical radiation, with androgen suppression treatment (AST). Significant disease progression is reported despite this approach. Radiation dose escalation has been shown to improve disease-free survival; however, it results in higher toxicities. Hypofractionated radiation schedules (larger dose each fraction in shorter overall treatment time) are expected to deliver higher biological doses. A hypofractionated scheme was used in this study to escalate radiation doses with AST. Treatment was well tolerated acutely. Early results of self-administered quality of life reported by patients shows a decrease in QOL which is comparable to other treatment schedules. Significant positional variation of the prostate was observed during treatment. Therefore, we suggest daily target verification to avoid a target miss. Initial late effects are reasonable and early treatment outcomes are promising. Longer follow-up is required for full outcomes assessments.

  20. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-06

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.

  1. Dosimetric Consistency of Co-60 Teletherapy Unit- a ten years Study.

    PubMed

    Baba, Misba H; Mohib-Ul-Haq, M; Khan, Aijaz A

    2013-01-01

    The goal of the Radiation standards and Dosimetry is to ensure that the output of the Teletherapy Unit is within ±2% of the stated one and the output of the treatment dose calculation methods are within ±5%. In the present paper, we studied the dosimetry of Cobalt-60 (Co-60) Teletherapy unit at Sher-I-Kashmir Institute of Medical Sciences (SKIMS) for last 10 years. Radioactivity is the phenomenon of disintegration of unstable nuclides called radionuclides. Among these radionuclides, Cobalt-60, incorporated in Telecobalt Unit, is commonly used in therapeutic treatment of cancer. Cobalt-60 being unstable decays continuously into Ni-60 with half life of 5.27 years thereby resulting in the decrease in its activity, hence dose rate (output). It is, therefore, mandatory to measure the dose rate of the Cobalt-60 source regularly so that the patient receives the same dose every time as prescribed by the radiation oncologist. The under dosage may lead to unsatisfactory treatment of cancer and over dosage may cause radiation hazards. Our study emphasizes the consistency between actual output and output obtained using decay method. The methodology involved in the present study is the calculations of actual dose rate of Co-60 Teletherapy Unit by two techniques i.e. Source to Surface Distance (SSD) and Source to Axis Distance (SAD), used for the External Beam Radiotherapy, of various cancers, using the standard methods. Thereby, a year wise comparison has been made between average actual dosimetric output (dose rate) and the average expected output values (obtained by using decay method for Co-60.). The present study shows that there is a consistency in the average output (dose rate) obtained by the actual dosimetry values and the expected output values obtained using decay method. The values obtained by actual dosimetry are within ±2% of the expected values. The results thus obtained in a year wise comparison of average output by actual dosimetry done regularly as a part of Quality Assurance of the Telecobalt Radiotherapy Unit and its deviation from the expected output data is within the permissible limits. Thus our study shows a trend towards uniformity and a better dose delivery.

  2. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    PubMed

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    Cosmic radiation doses to the crews of the Apollo 14, 15, and 16 missions of 142 + or - 80, 340 + or - 80, and 210 + or - 130 mR respectively were calculated from the specific activities of Na-22 and Na-24 in the postflight urine specimens of the astronauts. The specific activity of Fe-59 was higher in the urine than in the feces of the Apollo 14 and 15 astronauts, and a possible explanation is given. The concentrations of K-40, K-42, Cr-51, Co-60, and Cs-137 in the urine are also reported for these astronauts. The radiation doses received by pilots and navigators flying high altitude missions during the solar flare of March 27 to 30, 1972 were calculated from the specific activity of Na-24 in their urine. These values are compared with the expected radiation dose calculated from the known shape and intensity of the proton spectrum and demonstrate the magnitude of atmospheric shielding. The concentrations of Na, K, Rb, Cs, Fe, Co, Ag, Zn, Hg, As, Sb, Se, and Br were measured in the urine specimens from the Apollo 14 and 15 astronauts by neutron activation analysis. The mercury and arsenic levels were much higher than expected.

  4. [SUBSTANTIATION OF DOSE LIMITS FOR A NEW NORMATIVE DOCUMENT ON RADIATION SAFETY OF LONG-DURATION SPACE MISSIONS AT ORBIT ALTITUDES OF UP TO 500 KM].

    PubMed

    Ushakov, I B; Grigoriev, Yu G; Shafirkin, A V; Shurshakov, V A

    2016-01-01

    Review of the data of experimental radiobiology and epidemiological follow-up of large groups of people subjected to radiation exposures on Earth has been undertaken to substantiate dose limits for critical organs of cosmonauts in order to ensure good performance and vitality while on long-duration orbital missions. The career dose limits for cosmonauts and astronauts established earlier in the USSR and USA amounted to nothing more but banning the risk of cancer death increase to 3%. To apply more rigorous criteria of delayed radiation risks, the Russian limits for cosmonauts were revised to substantiate a 4-fold reduction of the average tissue equivalent dose maximum to 1 Sv. The total of cancer and non-cancer radiation risks over lifetime and probable reduction of mean life expectancy (MLE) were calculated using the model of radiation-induced mortality for mammals and taken as the main damage to health. The established dose limit is equal to the career dose for nuclear industry personnel set forth by Russian standard document NRB 99/2009. For better agreement of admissible threshold doses to critical human organs (bone marrow, lens and skin) in the revised radiation limits for long-duration space missions and radiation safety limits on Earth, reduction of dose limits for the critical organs were substantiated additionally; these limits comply with those for planned over-exposure on Earth in document NRB 99/2009.

  5. Clinical decision-making tools for exam selection, reporting and dose tracking.

    PubMed

    Brink, James A

    2014-10-01

    Although many efforts have been made to reduce the radiation dose associated with individual medical imaging examinations to "as low as reasonably achievable," efforts to ensure such examinations are performed only when medically indicated and appropriate are equally if not more important. Variations in the use of ionizing radiation for medical imaging are concerning, regardless of whether they occur on a local, regional or national basis. Such variations among practices can be reduced with the use of decision support tools at the time of order entry. These tools help reduce radiation exposure among practices through the appropriate use of medical imaging. Similarly, adoption of best practices among imaging facilities can be promoted through tracking the radiation exposure among imaging patients. Practices can benchmark their aggregate radiation exposures for medical imaging through the use of dose index registries. However several variables must be considered when contemplating individual patient dose tracking. The specific dose measures and the variation among them introduced by variations in body habitus must be understood. Moreover the uncertainties in risk estimation from dose metrics related to age, gender and life expectancy must also be taken into account.

  6. Status of NCRP Scientific Committee 1-23 Commentary on Guidance on Radiation Dose Limits for the Lens of the Eye.

    PubMed

    Dauer, Lawrence T; Ainsbury, Elizabeth A; Dynlacht, Joseph; Hoel, David; Klein, Barbara E K; Mayer, Don; Prescott, Christina R; Thornton, Raymond H; Vano, Eliseo; Woloschak, Gayle E; Flannery, Cynthia M; Goldstein, Lee E; Hamada, Nobuyuki; Tran, Phung K; Grissom, Michael P; Blakely, Eleanor A

    2016-02-01

    Previous National Council on Radiation Protection and Measurements (NCRP) publications have addressed the issues of risk and dose limitation in radiation protection and included guidance on specific organs and the lens of the eye. NCRP decided to prepare an updated commentary intended to enhance the previous recommendations provided in earlier reports. The NCRP Scientific Committee 1-23 (SC 1-23) is charged with preparing a commentary that will evaluate recent studies on the radiation dose response for the development of cataracts and also consider the type and severity of the cataracts as well as the dose rate; provide guidance on whether existing dose limits to the lens of the eye should be changed in the United States; and suggest research needs regarding radiation effects on and dose limits to the lens of the eye. A status of the ongoing work of SC 1-23 was presented at the Annual Meeting, "Changing Regulations and Radiation Guidance: What Does the Future Hold?" The following represents a synopsis of a few main points in the current draft commentary. It is likely that several changes will be forthcoming as SC 1-23 responds to subject matter expert review and develops a final document, expected by mid 2016.

  7. Concentration, physical state, and purity of bacterial endotoxin affect its detoxification by ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Csako, G.; Tsai, C.M.; Hochstein, H.D.

    Increasing concentrations of a highly purified bacterial lipopolysaccharide preparation, the U.S. Reference Standard Endotoxin, were exposed to increasing doses of ionizing radiation from a 60Co source. At identical radiation doses both the structural change and Limulus amebocyte lysate (LAL) reactivity were progressively smaller with increasing concentrations of the lipopolysaccharide in an aqueous medium. Under the experimental conditions used, there was a linear relationship between the endotoxin concentration and radiation dose for the structural changes. In contrast to endotoxin in aqueous medium, endotoxin irradiated in its dry state showed no decrease in LAL reactivity and rabbit pyrogenicity. Endotoxin exposed to radiationmore » in water in the presence of albumin showed a much smaller decrease in LAL and pyrogenic activities than expected. The results show that the concentration, physical state, and purity of endotoxin influence its structural and functional alteration by ionizing radiation.« less

  8. Delayed effects of proton irradiation in Macaca Mulatta (22-year summary)

    NASA Astrophysics Data System (ADS)

    Woods, D. H.; Hardy, K. A.; Cox, A. B.; Salmon, Y. L.; Yochmowitz, M. G.; Cordts, R. E.

    1989-05-01

    Lifetime observations on a group of rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be correlated with the dose and energy of radiation. The primary cause of life shortening is nonleukemic cancers. Radiation also increased the rise of endometriosis (an abnormal proliferation of the lining of the uterus in females). Other effects associated with radiation exposures are lowered glucose tolerance and increased incidence of cataracts. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total body surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of humans is, therefore, critical to the assessment of lifetime cancer risk.

  9. Analysis of dose to patient, spouse/caretaker, and staff, from an implanted trackable radioactive fiducial for use in the radiation treatment of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neustadter, David; Barnea, Gideon; Stokar, Saul

    Purpose: A fiducial tracking system based on a novel radioactive tracking technology is being developed for real-time target tracking in radiation therapy. In this study, the authors calculate the radiation dose to the patient, the spouse/caretaker, and the medical staff that would result from a 100 {mu}Ci Ir192 radioactive fiducial marker permanently implanted in the prostate of a radiation therapy patient. Methods: Local tissue dose was calculated by Monte Carlo simulation. The patient's whole body effective dose equivalent was calculated by summing the doses to the sensitive organs. Exposure of the spouse/caretaker was calculated from the NRC guidelines. Exposure ofmore » the medical staff was based on estimates of proximity to and time spent with the patient. Results: The local dose is below 40 Gy at 5 mm from the marker and below 10 Gy at 10 mm from the marker. The whole body effective dose equivalent to the patient is 64 mSv. The dose to the spouse/caretaker is 0.25 mSv. The annual exposures of the medical staff are 0.2 mSv for a doctor performing implantations and 0.34 mSv for a radiation therapist positioning patients for therapy. Conclusions: The local dose is not expected to have any clinically significant effect on the surrounding tissue which is irradiated during therapy. The dose to the patient is small in comparison to the whole body dose received from the therapy itself. The exposure of all other people is well below the recommended limits. The authors conclude that there is no radiation exposure related contraindication for use of this technology in the radiation treatment of prostate cancer.« less

  10. Ionizing radiation test results for an automotive microcontroller on board the Schiaparelli Mars lander

    NASA Astrophysics Data System (ADS)

    Tapani Nikkanen, Timo; Hieta, Maria; Schmidt, Walter; Genzer, Maria; Haukka, Harri; Harri, Ari-Matti

    2016-04-01

    The Finnish Meteorological Institute (FMI) has delivered a pressure and a humidity instrument for the ESA ExoMars 2016 Schiaparelli lander mission. Schiaparelli is scheduled to launch towards Mars with the Trace Gas Orbiter on 14th of March 2016. The DREAMS-P (pressure) and DREAMS-H (Humidity) instruments are operated utilizing a novel FMI instrument controller design based on a commercial automotive microcontroller (MCU). A custom qualification program was implemented to qualify the MCU for the relevant launch, cruise and surface operations environment of a Mars lander. Resilience to ionizing radiation is one of the most critical requirements for a digital component operated in space or at planetary bodies. Thus, the expected Total Ionizing Dose accumulated by the MCU was determined and a sample of these components was exposed to a Co-60 gamma radiation source. Part of the samples was powered during the radiation exposure to include the effect of electrical biasing. All of the samples were verified to withstand the expected total ionizing dose with margin. The irradiated test samples were then radiated until failure to determine their ultimate TID.

  11. Meeting The Joint Commission's Dose Incident Identification and External Benchmarking Requirements Using the ACR's Dose Index Registry.

    PubMed

    Bohl, Michael A; Goswami, Roopa; Strassner, Brett; Stanger, Paula

    2016-08-01

    The purpose of this investigation was to evaluate the potential of using the ACR's Dose Index Registry(®) to meet The Joint Commission's requirements to identify incidents in which the radiation dose index from diagnostic CT examinations exceeded the protocol's expected dose index range. In total, 10,970 records in the Dose Index Registry were statistically analyzed to establish both an upper and lower expected dose index for each protocol. All 2015 studies to date were then retrospectively reviewed to identify examinations whose total examination dose index exceeded the protocol's defined upper threshold. Each dose incident was then logged and reviewed per the new Joint Commission requirements. Facilities may leverage their participation in the ACR's Dose Index Registry to fully meet The Joint Commission's dose incident identification review and external benchmarking requirements. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. Cancer in populations living in regions with radioecological problems in Bulgaria.

    PubMed

    Chobanova, N; Genchev, G; Yagova, A; Georgieva, L

    2003-01-01

    To analyse the incidence and mortality of some malignant diseases among the population living in regions of past uranium extraction in Bulgaria. A retrospective study on cancer incidence and mortality in the population living around two regions with radioecological problems was conducted. According to the expected individual annual effective doses for the population, regions with expected highest radiation risk (average effective dose > 10 mSv per year) were the villages Yana, Eleshnitza and Seslavtzi (group A), and with expected relatively high radiation risk (average effective dose > 5 mSv per year) were the town of Buhovo, and the villages Dolni Bogrov and Gorni Bogrov (group B). The ecologically clean village German was chosen as a control settlement. The incidence and mortality of gastrointestinal tract cancers, bronchus and lung cancer, breast cancer, thyroid cancer, and myeloid leukaemia for the period 1995- 2001 were studied. The incidence of the gastrointestinal tract cancers in the population of German was significantly lower than those for Bulgaria and for group B. The mortality from this disease of groups A, B and Bulgaria were significantly higher than in the control settlement. Standardized mortality of lung cancer in the population of the villages with highest and relatively high radiation risk was significantly higher than in German and Bulgaria. The incidence and mortality changes of diseases studied are a consequence of the impact of many factors. Moreover, they do not characterize the impact of the radiation factor.

  13. In vivo dosimetry using Gafchromic films during pelvic intraoperative electron radiation therapy (IOERT)

    PubMed Central

    Costa, Filipa; Gomes, Dora; Magalhães, Helena; Arrais, Rosário; Moreira, Graciete; Cruz, Maria Fátima; Silva, José Pedro; Santos, Lúcio; Sousa, Olga

    2016-01-01

    Objective: To characterize in vivo dose distributions during pelvic intraoperative electron radiation therapy (IOERT) for rectal cancer and to assess the alterations introduced by irregular irradiation surfaces in the presence of bevelled applicators. Methods: In vivo measurements were performed with Gafchromic films during 32 IOERT procedures. 1 film per procedure was used for the first 20 procedures. The methodology was then optimized for the remaining 12 procedures by using a set of 3 films. Both the average dose and two-dimensional dose distributions for each film were determined. Phantom measurements were performed for comparison. Results: For flat and concave surfaces, the doses measured in vivo agree with expected values. For concave surfaces with step-like irregularities, measured doses tend to be higher than expected doses. Results obtained with three films per procedure show a large variability along the irradiated surface, with important differences from expected profiles. These results are consistent with the presence of surface hotspots, such as those observed in phantoms in the presence of step-like irregularities, as well as fluid build-up. Conclusion: Clinical dose distributions in the IOERT of rectal cancer are often different from the references used for prescription. Further studies are necessary to assess the impact of these differences on treatment outcomes. In vivo measurements are important, but need to be accompanied by accurate imaging of positioning and irradiated surfaces. Advances in knowledge: These results confirm that surface irregularities occur frequently in rectal cancer IOERT and have a measurable effect on the dose distribution. PMID:27188847

  14. What happens when spins meet for ionizing radiation dosimetry?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavoni, Juliana F.; Baffa, Oswaldo, E-mail: baffa@usp.br; Neves-Junior, Wellington F. P.

    2016-07-07

    Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom tomore » validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.« less

  15. What happens when spins meet for ionizing radiation dosimetry?

    NASA Astrophysics Data System (ADS)

    Pavoni, Juliana F.; Neves-Junior, Wellington F. P.; Baffa, Oswaldo

    2016-07-01

    Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom to validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.

  16. Update on the biological effects of ionizing radiation, relative dose factors and radiation hygiene.

    PubMed

    White, Stuart C; Mallya, S M

    2012-03-01

    Diagnostic imaging is an indispensable part of contemporary medical and dental practice. Over the last few decades there has been a dramatic increase in the use of ionizing radiation for diagnostic imaging. The carcinogenic effects of high-dose exposure are well known. Does diagnostic radiation rarely cause cancer? We don't know but we should act as if it does. Accordingly, dentists should select patients wisely - only make radiographs when there is patient-specific reason to believe there is a reasonable expectation the radiograph will offer unique information influencing diagnosis or treatment. Low-dose examinations should be made: intraoral imaging - use fast film or digital sensors, thyroid collars, rectangular collimation; panoramic and lateral cephalometric imaging - use digital systems or rare-earth film screen combinations; and cone beam computed tomography - use low-dose machines, restrict field size to region of interest, reduce mA and length of exposure arc as appropriate. © 2012 Australian Dental Association.

  17. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit

    NASA Astrophysics Data System (ADS)

    El-Jaby, Samy; Richardson, Richard B.

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit.

  18. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    PubMed

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Shared dosimetry error in epidemiological dose-response analyses

    DOE PAGES

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; ...

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less

  20. Efficacy of radiation safety glasses in interventional radiology.

    PubMed

    van Rooijen, Bart D; de Haan, Michiel W; Das, Marco; Arnoldussen, Carsten W K P; de Graaf, R; van Zwam, Wim H; Backes, Walter H; Jeukens, Cécile R L P N

    2014-10-01

    This study was designed to evaluate the reduction of the eye lens dose when wearing protective eyewear in interventional radiology and to identify conditions that optimize the efficacy of radiation safety glasses. The dose reduction provided by different models of radiation safety glasses was measured on an anthropomorphic phantom head. The influence of the orientation of the phantom head on the dose reduction was studied in detail. The dose reduction in interventional radiological practice was assessed by dose measurements on radiologists wearing either leaded or no glasses or using a ceiling suspended screen. The different models of radiation safety glasses provided a dose reduction in the range of a factor of 7.9-10.0 for frontal exposure of the phantom. The dose reduction was strongly reduced when the head is turned to the side relative to the irradiated volume. The eye closest to the tube was better protected due to side shielding and eyewear curvature. In clinical practice, the mean dose reduction was a factor of 2.1. Using a ceiling suspended lead glass shield resulted in a mean dose reduction of a factor of 5.7. The efficacy of radiation protection glasses depends on the orientation of the operator's head relative to the irradiated volume. Glasses can offer good protection to the eye under clinically relevant conditions. However, the performance in clinical practice in our study was lower than expected. This is likely related to nonoptimized room geometry and training of the staff as well as measurement methodology.

  1. Dosimetric Consistency of Co-60 Teletherapy Unit- a ten years Study

    PubMed Central

    Baba, Misba H; Mohib-ul-Haq, M.; Khan, Aijaz A.

    2013-01-01

    Objective The goal of the Radiation standards and Dosimetry is to ensure that the output of the Teletherapy Unit is within ±2% of the stated one and the output of the treatment dose calculation methods are within ±5%. In the present paper, we studied the dosimetry of Cobalt-60 (Co-60) Teletherapy unit at Sher-I-Kashmir Institute of Medical Sciences (SKIMS) for last 10 years. Radioactivity is the phenomenon of disintegration of unstable nuclides called radionuclides. Among these radionuclides, Cobalt-60, incorporated in Telecobalt Unit, is commonly used in therapeutic treatment of cancer. Cobalt-60 being unstable decays continuously into Ni-60 with half life of 5.27 years thereby resulting in the decrease in its activity, hence dose rate (output). It is, therefore, mandatory to measure the dose rate of the Cobalt-60 source regularly so that the patient receives the same dose every time as prescribed by the radiation oncologist. The under dosage may lead to unsatisfactory treatment of cancer and over dosage may cause radiation hazards. Our study emphasizes the consistency between actual output and output obtained using decay method. Methodology The methodology involved in the present study is the calculations of actual dose rate of Co-60 Teletherapy Unit by two techniques i.e. Source to Surface Distance (SSD) and Source to Axis Distance (SAD), used for the External Beam Radiotherapy, of various cancers, using the standard methods. Thereby, a year wise comparison has been made between average actual dosimetric output (dose rate) and the average expected output values (obtained by using decay method for Co-60.) Results The present study shows that there is a consistency in the average output (dose rate) obtained by the actual dosimetry values and the expected output values obtained using decay method. The values obtained by actual dosimetry are within ±2% of the expected values. Conclusion The results thus obtained in a year wise comparison of average output by actual dosimetry done regularly as a part of Quality Assurance of the Telecobalt Radiotherapy Unit and its deviation from the expected output data is within the permissible limits. Thus our study shows a trend towards uniformity and a better dose delivery. PMID:23559901

  2. Physics must join with biology in better assessing risk from low-dose irradiation.

    PubMed

    Feinendegen, L E; Neumann, R D

    2005-01-01

    This review summarises the complex response of mammalian cells and tissues to low doses of ionising radiation. This thesis encompasses induction of DNA damage, and adaptive protection against both renewed damage and against propagation of damage from the basic level of biological organisation to the clinical expression of detriment. The induction of DNA damage at low radiation doses apparently is proportional to absorbed dose at the physical/chemical level. However, any propagation of such damage to higher levels of biological organisation inherently follows a sigmoid function. Moreover, low-dose-induced inhibition of damage propagation is not linear, but instead follows a dose-effect function typical for adaptive protection, after an initial rapid rise it disappears at doses higher than approximately 0.1-0.2 Gy to cells. The particular biological response duality at low radiation doses precludes the validity of the linear-no-threshold hypothesis in the attempt to relate absorbed dose to cancer. In fact, theory and observation support not only a lower cancer incidence than expected from the linear-no-threshold hypothesis, but also a reduction of spontaneously occurring cancer, a hormetic response, in the healthy individual.

  3. Delayed effects of proton irradiation in Macaca Mulatta (22-year summary)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, D.H.; Hardy, K.A.; Cox, A.B.

    1989-05-15

    Lifetime observations on a group of rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be correlated with the dose and energy of radiation. The primary cause of life shortening is nonleukemic cancers. Radiation also increased the rise of endometriosis (an abnormal proliferation of the lining of the uterus in females). Other effects associated with radiation exposures are lowered glucose tolerance and increased incidence of cataracts. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total bodymore » surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of humans is, therefore, critical to the assessment of lifetime cancer risk.« less

  4. [Polymer Gel Dosimeter].

    PubMed

    Hayashi, Shin-Ichiro

    2017-01-01

    With rapid advances being made in radiotherapy treatment, three-dimensional (3D) dose measurement techniques of great precision are required more than ever before. It is expected that 3D polymer gel dosimeters will satisfy clinical needs for an effective detector that can measure the complex 3D dose distributions. Polymer gel dosimeters are devices that utilize the radiation-induced polymerization reactions of vinyl monomers in a gel to store information about radiation dose. The 3D absorbed dose distribution can be deduced from the resulting polymer distribution using several imaging modalities, such as MRI, X-ray and optical CTs. In this article, the fundamental characteristics of polymer gel dosimeter are reviewed and some challenging keys are also suggested for the widely spread in clinical use.

  5. Long-term mortality and cancer risk in irradiated rhesus monkeys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, D.H.

    1989-01-01

    Lifetime observations on a group of 358 rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events is influenced primarily by the dose rather than by the energy of radiation. After 24 years, life expectancy losses from similar surface doses of low-LET (138-2300 MeV) and high-LET (32-55 MeV) protons are not significantly different, but the high-LET protons are associated with more deaths in the early years, while the low-LET protons contribute more to mortality in later years. In males, the most significant cause of lifemore » shortening is nonleukemia cancers. In females, radiation increased the risk of endometriosis (an abnormal proliferation of the lining of the uterus) which resulted in significant mortality in the years before early detection and treatment methods were employed. The findings support the 1989 guidelines of the NCRP for maximum permissible radiation exposures in astronauts.« less

  6. In vivo real-time rectal wall dosimetry for prostate radiotherapy

    PubMed Central

    Hardcastle, Nicholas; Cutajar, Dean L.; Metcalfe, Peter E.; Lerch, Michael L. F.; Perevertaylo, Vladimir L.; Tomé, Wolfgang A.; Rosenfeld, Anatoly B.

    2010-01-01

    Rectal balloons are used in external beam prostate radiotherapy to provide reproducible anatomy and rectal dose reductions. This is an investigation into the combination of a MOSFET radiation detector with a rectal balloon for real time in vivo rectal wall dosimetry. The MOSFET used in the study is a radiation detector that provides a water equivalent depth of measurement of 70μm. Two MOSFETs were combined in a face-to-face orientation. The reproducibility, sensitivity and angular dependence were measured for the dual MOSFET in a 6MV photon beam. The dual MOSFET was combined with a rectal balloon and irradiated with hypothetical prostate treatments in a phantom. The anterior rectal wall dose was measured in real time and compared with the planning system calculated dose. The dual MOSFET showed angular dependence within ± 2.5% in the azimuth and +2.5%/-4% in the polar axes. When compared with an ion chamber measurement in a phantom, the dual MOSFET agreed within 2.5% for a range of radiation path lengths and incident angles. The dual MOSFET had reproducible sensitivity for fraction sizes of 2-10Gy. For the hypothetical prostate treatments the measured anterior rectal wall dose was 2.6% and 3.2% lower than the calculated dose for 3DCRT and IMRT plans. This was expected due to limitations of the dose calculation method used at the balloon cavity interface. A dual MOSFET combined with a commercial rectal balloon was shown to provide reproducible measurements of the anterior rectal wall dose in real time. The measured anterior rectal wall dose agreed with the expected dose from the treatment plan for 3DCRT and IMRT plans. The dual MOSFET could be read out in real time during the irradiation, providing capability for real time dose monitoring of the rectal wall dose during treatment. PMID:20571209

  7. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice

    NASA Astrophysics Data System (ADS)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor frequency and size was similar irrespective of energetic heavy ion radiation dose rate suggesting that carcinogenic potential of energetic heavy ions is independent of dose rate.

  8. Dose-effect relationships, epidemiological analysis and the derivation of low dose risk.

    PubMed

    Leenhouts, H P; Chadwick, K H

    2011-03-01

    This paper expands on our recent comments in a letter to this journal about the analysis of epidemiological studies and the determination of low dose RBE of low LET radiation (Chadwick and Leenhouts 2009 J. Radiol. Prot. 29 445-7). Using the assumption that radiation induced cancer arises from a somatic mutation (Chadwick and Leenhouts 2011 J. Radiol. Prot. 31 41-8) a model equation is derived to describe cancer induction as a function of dose. The model is described briefly, evidence is provided in support of it, and it is applied to a set of experimental animal data. The results are compared with a linear fit to the data as has often been done in epidemiological studies. The article presents arguments to support several related messages which are relevant to epidemiological analysis, the derivation of low dose risk and the weighting factor of sparsely ionising radiations. The messages are: (a) cancer incidence following acute exposure should, in principle, be fitted to a linear-quadratic curve with cell killing using all the data available; (b) the acute data are dominated by the quadratic component of dose; (c) the linear fit of any acute data will essentially be dependent on the quadratic component and will be unrelated to the effectiveness of the radiation at low doses; consequently, (d) the method used by ICRP to derive low dose risk from the atomic bomb survivor data means that it is unrelated to the effectiveness of the hard gamma radiation at low radiation doses; (e) the low dose risk value should, therefore, not be used as if it were representative for hard gamma rays to argue for an increased weighting factor for tritium and soft x-rays even though there are mechanistic reasons to expect this; (f) epidemiological studies of chronically exposed populations supported by appropriate cellular radiobiological studies have the best chance of revealing different RBE values for different sparsely ionising radiations.

  9. Expected radiation damage of reverse-type APDs for the Astro-H mission

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Saito, T.; Yoshino, M.; Mizoma, H.; Nakamori, T.; Yatsu, Y.; Ishikawa, Y.; Matsunaga, Y.; Tajima, H.; Kokubun, M.; Edwards, P. G.

    2012-06-01

    Scheduled for launch in 2014, Astro-H is the sixth Japanese X-ray astronomy satellite mission. More than 60 silicon avalanche photodiodes (Si-APDs; hereafter APDs) will be used to read out BGO scintillators, which are implemented to generate a veto signal to reduce background contamination for the hard X-ray imager (HXI) and a soft gamma-ray detector (SGD). To date, however, APDs have rarely been used in space experiments. Moreover, strict environmental tests are necessary to guarantee APD performance for missions expected to extend beyond five years. The radiation hardness of APDs, as for most semiconductors, is particularly crucial, since radiation in the space environment is severe. In this paper, we present the results of radiation tests conducted on reverse-type APDs (provided by Hamamatsu Photonics) irradiated by gamma rays (60Co) and 150 MeV protons. We show that, even under the same 100 Gy dose, high energy protons can cause displacement (bulk) damage in the depletion region and possibly change the activation energy, whereas gamma-ray irradiation is less prone to cause damage, because ionization damage dominates only the surface region. We also present quantitative guidance on how to estimate APD noise deterioration over a range of temperatures and radiation doses. As a practical example, we discuss the expected degradation of the BGO energy threshold for the generation of veto signals, following several years of Astro-H operation in Low Earth Orbit (LEO), and directly compare it to experimental results obtained using a small BGO crystal.

  10. SU-E-I-43: Pediatric CT Dose and Image Quality Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, G; Singh, R

    2014-06-01

    Purpose: To design an approach to optimize radiation dose and image quality for pediatric CT imaging, and to evaluate expected performance. Methods: A methodology was designed to quantify relative image quality as a function of CT image acquisition parameters. Image contrast and image noise were used to indicate expected conspicuity of objects, and a wide-cone system was used to minimize scan time for motion avoidance. A decision framework was designed to select acquisition parameters as a weighted combination of image quality and dose. Phantom tests were used to acquire images at multiple techniques to demonstrate expected contrast, noise and dose.more » Anthropomorphic phantoms with contrast inserts were imaged on a 160mm CT system with tube voltage capabilities as low as 70kVp. Previously acquired clinical images were used in conjunction with simulation tools to emulate images at different tube voltages and currents to assess human observer preferences. Results: Examination of image contrast, noise, dose and tube/generator capabilities indicates a clinical task and object-size dependent optimization. Phantom experiments confirm that system modeling can be used to achieve the desired image quality and noise performance. Observer studies indicate that clinical utilization of this optimization requires a modified approach to achieve the desired performance. Conclusion: This work indicates the potential to optimize radiation dose and image quality for pediatric CT imaging. In addition, the methodology can be used in an automated parameter selection feature that can suggest techniques given a limited number of user inputs. G Stevens and R Singh are employees of GE Healthcare.« less

  11. Dose rate effects in the radiation damage of the plastic scintillators of the CMS hadron endcap calorimeter

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2016-10-07

    We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. Here, we show that the scaling with dose rate is consistent with that expected from diffusion effects.

  12. Radiation-stability of smectite.

    PubMed

    Sorieul, Stéphanie; Allard, Thierry; Wang, Lumin M; Grambin-Lapeyre, Caroline; Lian, Jie; Calas, Georges; Ewings, Rodney C

    2008-11-15

    The safety assessment of geological repositories for high-level nuclear waste and spent nuclear fuel requires an understanding of the response of materials to high temperatures and intense radiation fields. Clays, such as smectite, have been proposed as backfill material around waste packages, but their response to intense radiation from short-lived fission products and alpha decay of sorbed actinides remains poorly understood. Cumulative doses may amorphize clays and may alter their properties of sorption, swelling, or water retention. We describe the amorphization of smectites induced by electron and heavy ion irradiations to simulate ionizing radiation and alpha recoil nuclei, respectively. A new "bell-shaped" evolution of the amorphization dose with temperature has been determined. The maximum dose for amorphization occurs at about 300-400 degrees C, showing that temperature-induced dehydroxylation enhances amorphization. The exact shape of the bell-shaped curves depends on the interlayer cation. At ambient temperature, ionizing radiation and alpha-decay events do not show the same efficiency. The former results in amorphization at doses between 10(10)-10(11) Gy which are greater than the total radiation dose expected for radioactive waste over 10(6) years. In contrast, alpha-decay events amorphize clays at doses as low as 0.13-0.16 displacements per atom, i.e. doses consistent with nuclear waste accumulated over approximately 1000 yrs. However, the limited penetration of alpha particles and recoil nuclei, in the 100 nm - 20 microm range, will minimize damage. Clays will not be amorphized unless the waste package is breached and released actinides are heavily sorbed onto the clay overpack.

  13. Cerebrovascular Diseases in Childhood Cancer Survivors: Role of the Radiation Dose to Willis Circle Arteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Fayech, Chiraz; Haddy, Nadia; Allodji, Rodrigue Sètchéou

    Background and Purpose: The aim of this study was to investigate the role of radiation dose received to the circle of Willis (WC) during radiation therapy (RT) and of potential dose-response modifiers on the risk of stroke after treatment of childhood cancer. Methods: We evaluated the risk factors for stroke in a cohort of 3172 5-year survivors of childhood cancer who were followed up for a median time of 26 years. Radiation doses to the WC and brain structures were estimated for each of the 2202 children who received RT. Results: Fifty-four patients experienced a confirmed stroke; 39 were ischemic. Patientsmore » not receiving RT had a stroke risk similar to that of the general population, whereas those who received RT had an 8.5-fold increased risk (95% confidence interval [CI]: 6.3-11.0). The excess of incidence of stroke increased yearly. The dose of radiation to the WC, rather than to other brain structures, was found to be the best predictor of stroke. The relative risk was 15.7 (95% CI: 4.9-50.2) for doses of 40 Gy or more. At 45 years of age, the cumulative stroke incidence was 11.3% (95% CI: 7.1%-17.7%) in patients who received 10 Gy or more to the WC, compared with 1% expected from general population data. Radiation doses received to the heart and neck also increased the risk. Surgery for childhood brain cancer was linked to hemorrhagic strokes in these patients. Conclusion: The WC should be considered as a major organ at risk during RT for childhood brain cancers. The incidence of radiation-induced ischemic stroke strongly increases with long-term follow-up.« less

  14. [Comparison of radiation dose reduction of prospective ECG-gated one beat scan using 320 area detector CT coronary angiography and prospective ECG-gated helical scan with high helical pitch (FlashScan) using 64 multidetector-row CT coronary angiography].

    PubMed

    Matsutani, Hideyuki; Sano, Tomonari; Kondo, Takeshi; Fujimoto, Shinichiro; Sekine, Takako; Arai, Takehiro; Morita, Hitomi; Takase, Shinichi

    2010-12-20

    A high radiation dose associated with 64 multidetector-row computed tomography (64-MDCT) is a major concern for physicians and patients alike. A new 320 row area detector computed tomography (ADCT) can obtain a view of the entire heart with one rotation (0.35 s) without requiring the helical method. As such, ADCT is expected to reduce the radiation dose. We studied image quality and radiation dose of ADCT compared to that of 64-MDCT in patients with a low heart rate (HR≤60). Three hundred eighty-five consecutive patients underwent 64-MDCT and 379 patients, ADCT. Patients with an arrhythmia were excluded. Prospective ECG-gated helical scan with high HP (FlashScan) in 64 was used for MDCT and prospective ECG-gated conventional one beat scan, for 320-ADCT. Image quality was visually evaluated by an image quality score. Radiation dose was estimated by DLP (mGy・cm) for 64-MDCT and DLP.e (mGy・cm) for 320-ADCT. Radiation dose of 320-ADCT (208±48 mGy・cm) was significantly (P<0.0001) lower than that of 64-MDCT (484±112 mGy・cm), and image quality score of 320-ADCT (3.0±0.2) was significantly (P=0.0011) higher than that of 64-MDCT (2.9±0.4). Scan time of 320-ADCT (1.4±0.1 s) was also significantly (P<0.0001) shorter than that of 64-MDCT (6.8±0.6 s). 320-ADCT can achieve not only a reduction in radiation dose but also a superior image quality and shortening of scan time compared to 64-MDCT.

  15. The influence of TRP53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells

    DOE PAGES

    Lemon, Jennifer A.; Taylor, Kristina; Verdecchia, Kyle; ...

    2014-01-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type ( Trp53+/+) and heterozygous ( Trp53+/-) mice. The dose response for Trp53+/+ mice showed highermore » initial levels of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.« less

  16. Estimation of the risk of secondary malignancy arising from whole-breast irradiation: comparison of five radiotherapy modalities, including TomoHDA.

    PubMed

    Han, Eun Young; Paudel, Nava; Sung, Jiwon; Yoon, Myonggeun; Chung, Weon Kuu; Kim, Dong Wook

    2016-04-19

    The risk of secondary cancer from radiation treatment remains a concern for long-term breast cancer survivors, especially those treated with radiation at the age younger than 45 years. Treatment modalities optimally maximize the dose delivery to the tumor while minimizing radiation doses to neighboring organs, which can lead to secondary cancers. A new TomoTherapy treatment machine, TomoHDATM, can treat an entire breast with two static but intensity-modulated beams in a slice-by-slice fashion. This feature could reduce scattered and leakage radiation doses. We compared the plan quality and lifetime attributable risk (LAR) of a second malignancy among five treatment modalities: three-dimensional conformal radiation therapy, field-in-field forward-planned intensity-modulated radiation therapy, inverse-planned intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, and TomoDirect mode on the TomoHDA system. Ten breast cancer patients were selected for retrospective analysis. Organ equivalent doses, plan characteristics, and LARs were compared. Out-of-field organ doses were measured with radio-photoluminescence glass dosimeters. Although the IMRT plan provided overall better plan quality, including the lowest probability of pneumonitis, it caused the second highest LAR. The TomoTherapy plan provided plan quality comparable to the IMRT plan and posed the lowest total LAR to neighboring organs. Therefore, it can be a better treatment modality for younger patients who have a longer life expectancy.

  17. Breast cancer induced by radiation. Relation to mammography and treatment of acne

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, N.

    1977-02-21

    A report is given of cases of 16 women in whom cancer of the breast developed after radiation therapy for acne or hirsutism, suggesting another group at higher risk than is generally expected for cancer of the breast. It is prudent to regard the carcinogenic effect of radiation on the breast as proportional to dose without a threshold. Mammography in young women should be ordered only selectively, not for screening.

  18. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose-rate dose to the bone marrow (mean = 2.5 Gy) was consistent with the measured ERR (0.62, 95% Cl =-0.2 to 1.9). Conclusions: An extended, biologically based model for leukemia that includes HSC initiation, inactivation, proliferation, and, uniquely for leukemia, long-range HSC migration predicts, %Kith reasonable accuracy, risks for radiationinduced leukemia associated with exposure to therapeutic doses of radiation.

  19. Radiation-induced second cancers: the impact of 3D-CRT and IMRT

    NASA Technical Reports Server (NTRS)

    Hall, Eric J.; Wuu, Cheng-Shie

    2003-01-01

    Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.

  20. Development of Safety Assessment Code for Decommissioning of Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Shimada, Taro; Ohshima, Soichiro; Sukegawa, Takenori

    A safety assessment code, DecDose, for decommissioning of nuclear facilities has been developed, based on the experiences of the decommissioning project of Japan Power Demonstration Reactor (JPDR) at Japan Atomic Energy Research Institute (currently JAEA). DecDose evaluates the annual exposure dose of the public and workers according to the progress of decommissioning, and also evaluates the public dose at accidental situations including fire and explosion. As for the public, both the internal and the external doses are calculated by considering inhalation, ingestion, direct radiation from radioactive aerosols and radioactive depositions, and skyshine radiation from waste containers. For external dose for workers, the dose rate from contaminated components and structures to be dismantled is calculated. Internal dose for workers is calculated by considering dismantling conditions, e.g. cutting speed, cutting length of the components and exhaust velocity. Estimation models for dose rate and staying time were verified by comparison with the actual external dose of workers which were acquired during JPDR decommissioning project. DecDose code is expected to contribute the safety assessment for decommissioning of nuclear facilities.

  1. Preliminary analysis of accelerated space flight ionizing radiation testing

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  2. Measurement of doses to the extremities of nuclear medicine staff

    NASA Astrophysics Data System (ADS)

    Shousha, Hany A.; Farag, Hamed; Hassan, Ramadan A.

    2010-01-01

    Medical uses of ionizing radiation now represent>95% of all man-made radiation exposure, and is the largest single radiation source after natural background radiation. Therefore, it is important to quantify the amount of radiation received by occupational individuals to optimize the working conditions for staff, and further, to compare doses in different departments to ensure compatibility with the recommended standards. For some groups working with unsealed sources in nuclear medicine units, the hands are more heavily exposed to ionizing radiation than the rest of the body. A personal dosimetry service runs extensively in Egypt. But doses to extremities have not been measured to a wide extent. The purpose of this study was to investigate the equivalent radiation doses to the fingers for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for (1) nuclear medicine physicians, (2) technologists, (3) nurses and (4) physicists. The fifth group contains three technicians handling 131I, while the others handled 99mTc. Each staff member working with the radioactive material wore two thermoluminescent dosimeters (TLDs) during the whole testing period, which lasted from 1 to 4 weeks. Staff performed their work on a regular basis throughout the month, and mean annual doses were calculated for these groups. Results showed that the mean equivalent doses to the fingers of technologist, nurse and physicist groups were 30.24±14.5, 30.37±17.5 and 16.3±7.7 μSv/GBq, respectively. Equivalent doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts (mSv) that accumulated in one week. Similarly, the dose to the fingers of individuals in Group 5 was estimated to be 126.13±38.2 μSv/GBq. The maximum average finger dose, in this study, was noted in the technologists who handled therapeutic 131I (2.5 mSv). In conclusion, the maximum expected annual dose to extremities is less than the annual limit (500 mSv/y).

  3. Passive radiation shielding considerations for the proposed space elevator

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Patamia, S. E.; Gassend, B.

    2007-02-01

    The Earth's natural van Allen radiation belts present a serious hazard to space travel in general, and to travel on the space elevator in particular. The average radiation level is sufficiently high that it can cause radiation sickness, and perhaps death, for humans spending more than a brief period of time in the belts without shielding. The exact dose and the level of the related hazard depends on the type or radiation, the intensity of the radiation, the length of exposure, and on any shielding introduced. For the space elevator the radiation concern is particularly critical since it passes through the most intense regions of the radiation belts. The only humans who have ever traveled through the radiation belts have been the Apollo astronauts. They received radiation doses up to approximately 1 rem over a time interval less than an hour. A vehicle climbing the space elevator travels approximately 200 times slower than the moon rockets did, which would result in an extremely high dose up to approximately 200 rem under similar conditions, in a timespan of a few days. Technological systems on the space elevator, which spend prolonged periods of time in the radiation belts, may also be affected by the high radiation levels. In this paper we will give an overview of the radiation belts in terms relevant to space elevator studies. We will then compute the expected radiation doses, and evaluate the required level of shielding. We concentrate on passive shielding using aluminum, but also look briefly at active shielding using magnetic fields. We also look at the effect of moving the space elevator anchor point and increasing the speed of the climber. Each of these mitigation mechanisms will result in a performance decrease, cost increase, and technical complications for the space elevator.

  4. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer.more » Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low-LET radiation). Such phantom risks also may arise from risk assessments conducted for combined exposure to low- and high-LET radiations when based on the LNT or other models that exclude RR < 1. Our results for high-LET radiation are consistent with the LNT hypothesis but only where there is no additional low-LET contribution (e.g., gamma rays) to the total dose. For high-LET neutron sources, gamma rays arise (especially in vivo) for large mammals such as humans from neutron interactions with tissue. The gamma rays might provide some protection from low-dose-related stochastic effects via inducing the protective bystander apoptosis effect that is considered to contribute to tissue cleansing via removal of problematic cells.« less

  5. Occupational dose constraints for the lens of the eye for interventional radiologists and interventional cardiologists in the UK.

    PubMed

    Mairs, William DA

    2016-06-01

    The International Commission on Radiological Protection (ICRP) has recommended a 20 mSv year(-1) dose limit for the lens of the eye, which has been adopted in the European Union Basic Safety Standards. Interventional radiologists (IRs) and interventional cardiologists (ICs) are likely to be affected by this. The effects of radiation in the lens are somewhat uncertain, and the ICRP explicitly recommend optimization. Occupational dose constraints are part of the optimization process and define a level of dose which ought to be achievable in a well-managed practice. This commentary calls on the professional bodies to review a need for national constraints to guide local decisions. Consideration is given to developing such constraints using maximum expected doses in high-workload facilities with good radiation protection practices and application of a factor allowing for attenuation by lead glasses (LG). Doses are based on a Public Health England survey of eye dose in the UK. Maximum expected doses for ICs are approximately 21 mSv year(-1), neglecting LG. However, the extent of IR exposure is not yet fully known, and further evidence is required before conclusions are drawn. A Health and Safety Laboratory review of LG established a conservative dose reduction factor of 3 for models available in 2012. Application of this factor provides a dose constraint of 7 mSv year(-1) to the eye for ICs. To achieve this constraint, those employers with the most exposed ICs will have to provide and ensure the correct use of a ceiling-suspended eye shield and LG.

  6. Problems and solutions in the estimation of genetic risks from radiation and chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, W. L.

    1980-01-01

    Extensive investigations with mice on the effects of various physical and biological factors, such as dose rate, sex and cell stage, on radiation-induced mutation have provided an evaluation of the genetics hazards of radiation in man. The mutational results obtained in both sexes with progressive lowering of the radiation dose rate have permitted estimation of the mutation frequency expected under the low-level radiation conditions of most human exposure. Supplementing the studies on mutation frequency are investigations on the phenotypic effects of mutations in mice, particularly anatomical disorders of the skeleton, which allow an estimation of the degree of human handicapmore » associated with the occurrence of parallel defects in man. Estimation of the genetic risk from chemical mutagens is much more difficult, and the research is much less advanced. Results on transmitted mutations in mice indicate a poor correlation with mutation induction in non-mammalian organisms.« less

  7. Stability toward High Energy Radiation of Non-Proteinogenic Amino Acids: Implications for the Origins of Life

    PubMed Central

    Cataldo, Franco; Iglesias-Groth, Susana; Angelini, Giancarlo; Hafez, Yaser

    2013-01-01

    A series of non-proteinogenic amino acids, most of them found quite commonly in the meteorites known as carbonaceous chondrites, were subjected to solid state radiolysis in vacuum to a total radiation dose of 3.2 MGy corresponding to 23% of the total dose expected to be taken by organic molecules buried in asteroids and meteorites since the beginning of the solar system 4.6 × 109 years ago. The radiolyzed amino acids were studied by FT-IR spectroscopy, Differential Scanning Calorimetry (DSC) and by polarimety and Optical Rotatory Dispersion (ORD). It is shown that an important fraction of each amino acid is able to “survive” the massive dose of radiation, while the enantiomeric excess is partially preserved. Based on the results obtained, it is concluded that it is unsurprising to find amino acids even in enantiomeric excess in carbonaceous chondrites. PMID:25369815

  8. Radiation therapy planning with photons and protons for early and advanced breast cancer: an overview

    PubMed Central

    Weber, Damien C; Ares, Carmen; Lomax, Antony J; Kurtz, John M

    2006-01-01

    Postoperative radiation therapy substantially decreases local relapse and moderately reduces breast cancer mortality, but can be associated with increased late mortality due to cardiovascular morbidity and secondary malignancies. Sophistication of breast irradiation techniques, including conformal radiotherapy and intensity modulated radiation therapy, has been shown to markedly reduce cardiac and lung irradiation. The delivery of more conformal treatment can also be achieved with particle beam therapy using protons. Protons have superior dose distributional qualities compared to photons, as dose deposition occurs in a modulated narrow zone, called the Bragg peak. As a result, further dose optimization in breast cancer treatment can be reasonably expected with protons. In this review, we outline the potential indications and benefits of breast cancer radiotherapy with protons. Comparative planning studies and preliminary clinical data are detailed and future developments are considered. PMID:16857055

  9. Assessment of human exposure doses received by activation of medical linear accelerator components

    NASA Astrophysics Data System (ADS)

    Lee, D.-Y.; Kim, J.-H.; Park, E.-T.

    2017-08-01

    This study analyzes the radiation exposure dose that an operator can receive from radioactive components during maintenance or repair of a linear accelerator. This study further aims to evaluate radiological safety. Simulations are performed on 10 MV and 15 MV photon beams, which are the most frequently used high-energy beams in clinics. The simulation analyzes components in order of activity and the human exposure dose based on the amount of neutrons received. As a result, the neutron dose, radiation dose, and human exposure dose are ranked in order of target, primary collimator, flattening filter, multi-leaf collimator, and secondary collimator, where the minimum dose is 9.34E-07 mSv/h and the maximum is 1.71E-02 mSv/h. When applying the general dose limit (radiation worker 20 mSv/year, pubic 1 mSv/year) in accordance with the Nuclear Safety Act, all components of a linear accelerator are evaluated as below the threshold value. Therefore, the results suggest that there is no serious safety issue for operators in maintaining and repairing a linear accelerator. Nevertheless, if an operator recognizes an exposure from the components of a linear accelerator during operation and considers the operating time and shielding against external exposure, exposure of the operator is expected to be minimized.

  10. Radiation exposure of German aircraft crews under the impact of solar cycle 23 and airline business factors.

    PubMed

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf

    2014-12-01

    The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again.

  11. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.

  12. Evaluation of the radiation doses in newborn patients submitted to CT examinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza Santos, William; Caldas, Linda V.E.; Belinato, Walmir

    The number of computed tomography (CT) scans available to the population is increasing, as well as the complexity of such exams. As a result, the radiation doses are increasing as well. Considering the population exposed to CT exams, pediatric patients are considerably more sensitive to radiation than adults. They have a longer life expectancy than adults, and may receive a higher radiation dose than necessary if the CT scan settings are not adjusted for their smaller body size. As a result of these considerations, the risk of developing cancer is of great concern when newborn patients are involved. The objectivemore » of this work was to study the radiation doses on radiosensitive organs of newborn patients undergoing a whole body CT examination, utilizing Monte Carlo simulations. The novelty of this work is the use of pediatric virtual anthropomorphic phantoms, developed at the Department of Nuclear Energy at the Federal University of Pernambuco (DEN/UFPE). The CT equipment utilized during the simulations was a Discovery VCT GE PET/CT system, with a tube voltage of 140 kVp. The X-ray spectrum of this CT scanner was generated by the SRS-78 software, which takes into account the X-ray beam energy used in PET/CT procedures. The absorbed organ doses were computed employing the F6 tally (MeV/g). The results were converted to dose coefficients (mGy/100 mA) for all the structures, considering all employed beams. The highest dose coefficients values were obtained for the brain and the thyroid. This work provides useful information regarding the risks involving ionizing radiation in newborn patients, employing a new and reliable technique. (authors)« less

  13. Subsequent Malignancies in Children Treated for Hodgkin's Disease: Associations With Gender and Radiation Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constine, Louis S.; Department of Pediatrics, James P. Wilmot Cancer Center at University of Rochester, Rochester, NY; Tarbell, Nancy

    2008-09-01

    Purpose: Subsequent malignant neoplasms (SMNs) are a dominant cause of morbidity and mortality in children treated for Hodgkin's disease (HD). We evaluated select demographic and therapeutic factors associated with SMNs, specifically gender and radiation dose. Methods and Materials: A total of 930 children treated for HD at five institutions between 1960 and 1990 were studied. Mean age at diagnosis was 13.6 years, and mean follow-up was 16.8 years (maximum, 39.4 years). Treatment included radiation alone (43%), chemotherapy alone (9%), or both (48%). Results: We found that SMNs occurred in 102 (11%) patients, with a 25-year actuarial rate of 19%. Withmore » 15,154 patient years of follow-up, only 7.18 cancers were expected (standardized incidence ratio [SIR] = 14.2; absolute excess risk [AER] = 63 cases/10,000 years). The SIR for female subjects, 19.93, was significantly greater than for males, 8.41 (p < 0.0001). After excluding breast cancer, the SIR for female patients was 15.4, still significantly greater than for male patients (p = 0.0012). Increasing radiation dose was associated with an increasing SIR (p = 0.0085). On univariate analysis, an increased risk was associated with female gender, increasing radiation dose, and age at treatment (12-16 years). Using logistic regression, mantle radiation dose increased risk, and this was 2.5-fold for female patients treated with more than 35 Gy primarily because of breast cancer. Conclusions: Survivors of childhood HD are at risk for SMNs, and this risk is greater for female individuals even after accounting for breast cancer. Although SMNs occur in the absence of radiation therapy, the risk increases with RT dose.« less

  14. Risk of second bone sarcoma following childhood cancer: role of radiation therapy treatment.

    PubMed

    Schwartz, Boris; Benadjaoud, Mohamed Amine; Cléro, Enora; Haddy, Nadia; El-Fayech, Chiraz; Guibout, Catherine; Teinturier, Cécile; Oberlin, Odile; Veres, Cristina; Pacquement, Hélène; Munzer, Martine; N'guyen, Tan Dat; Bondiau, Pierre-Yves; Berchery, Delphine; Laprie, Anne; Hawkins, Mike; Winter, David; Lefkopoulos, Dimitri; Chavaudra, Jean; Rubino, Carole; Diallo, Ibrahima; Bénichou, Jacques; de Vathaire, Florent

    2014-05-01

    Bone sarcoma as a second malignancy is rare but highly fatal. The present knowledge about radiation-absorbed organ dose-response is insufficient to predict the risks induced by radiation therapy techniques. The objective of the present study was to assess the treatment-induced risk for bone sarcoma following a childhood cancer and particularly the related risk of radiotherapy. Therefore, a retrospective cohort of 4,171 survivors of a solid childhood cancer treated between 1942 and 1986 in France and Britain has been followed prospectively. We collected detailed information on treatments received during childhood cancer. Additionally, an innovative methodology has been developed to evaluate the dose-response relationship between bone sarcoma and radiation dose throughout this cohort. The median follow-up was 26 years, and 39 patients had developed bone sarcoma. It was found that the overall incidence was 45-fold higher [standardized incidence ratio 44.8, 95 % confidence interval (CI) 31.0-59.8] than expected from the general population, and the absolute excess risk was 35.1 per 100,000 person-years (95 % CI 24.0-47.1). The risk of bone sarcoma increased slowly up to a cumulative radiation organ absorbed dose of 15 Gy [hazard ratio (HR) = 8.2, 95 % CI 1.6-42.9] and then strongly increased for higher radiation doses (HR for 30 Gy or more 117.9, 95 % CI 36.5-380.6), compared with patients not treated with radiotherapy. A linear model with an excess relative risk per Gy of 1.77 (95 % CI 0.6213-5.935) provided a close fit to the data. These findings have important therapeutic implications: Lowering the radiation dose to the bones should reduce the incidence of secondary bone sarcomas. Other therapeutic solutions should be preferred to radiotherapy in bone sarcoma-sensitive areas.

  15. Subsequent malignancies in children treated for Hodgkin's disease: associations with gender and radiation dose.

    PubMed

    Constine, Louis S; Tarbell, Nancy; Hudson, Melissa M; Schwartz, Cindy; Fisher, Susan G; Muhs, Ann G; Basu, Swati K; Kun, Larry E; Ng, Andrea; Mauch, Peter; Sandhu, Ajay; Culakova, Eva; Lyman, Gary; Mendenhall, Nancy

    2008-09-01

    Subsequent malignant neoplasms (SMNs) are a dominant cause of morbidity and mortality in children treated for Hodgkin's disease (HD). We evaluated select demographic and therapeutic factors associated with SMNs, specifically gender and radiation dose. A total of 930 children treated for HD at five institutions between 1960 and 1990 were studied. Mean age at diagnosis was 13.6 years, and mean follow-up was 16.8 years (maximum, 39.4 years). Treatment included radiation alone (43%), chemotherapy alone (9%), or both (48%). We found that SMNs occurred in 102 (11%) patients, with a 25-year actuarial rate of 19%. With 15,154 patient years of follow-up, only 7.18 cancers were expected (standardized incidence ratio [SIR] = 14.2; absolute excess risk [AER] = 63 cases/10,000 years). The SIR for female subjects, 19.93, was significantly greater than for males, 8.41 (p < 0.0001). After excluding breast cancer, the SIR for female patients was 15.4, still significantly greater than for male patients (p = 0.0012). Increasing radiation dose was associated with an increasing SIR (p = 0.0085). On univariate analysis, an increased risk was associated with female gender, increasing radiation dose, and age at treatment (12-16 years). Using logistic regression, mantle radiation dose increased risk, and this was 2.5-fold for female patients treated with more than 35 Gy primarily because of breast cancer. Survivors of childhood HD are at risk for SMNs, and this risk is greater for female individuals even after accounting for breast cancer. Although SMNs occur in the absence of radiation therapy, the risk increases with RT dose.

  16. Radiation-induced myelomatosis.

    PubMed

    Cuzick, J

    1981-01-22

    It is well known that radiation can cause myeloid leukemia. However, no excess of chronic lymphocytic leukemia has been observed. Myelomatosis, like chronic lymphocytic leukemia, is a tumor of B lymphocytes. To determine whether this disease has a radiogenic origin, we surveyed all cohorts of persons exposed to radiation for which data on cancer-related mortality are available. An excess of myeloma was found in most cohorts. However, a striking deficit was found in two groups irradiated intensely for uterine neoplasms (three cases observed, 10.71 expected; P = 0.012). All other groups combined had a highly significant excess (50 observed, 22.21 expected; P = 2 X 10(-7)). The largest relative risk appeared among persons receiving internal doses of alpha-particles (14 observed, 3.24 expected; P = 2 X 10(-5)), but a significant excess (13 observed, 6.33 expected; P = 0.026) was also found in patients receiving only therapeutic or diagnostic gamma-rays or x-rays. Most cases occurred 15 to 25 years after exposure.

  17. Gamma and neutrino radiation dose from gamma ray bursts and nearby supernovae.

    PubMed

    Karam, P Andrew

    2002-04-01

    Supernovae and gamma ray bursts are exceptionally powerful cosmic events that occur randomly in space and time in our galaxy. Their potential to produce very high radiation levels has been discussed, along with speculation that they may have caused mass extinctions noted from the fossil record. It is far more likely that they have produced radiation levels that, while not lethal, are genetically significant, and these events may have influenced the course of evolution and the manner in which organisms respond to radiation insult. Finally, intense gamma radiation exposure from these events may influence the ability of living organisms to travel through space. Calculations presented in this paper suggest that supernovae and gamma ray bursts are likely to produce sea-level radiation exposures of about I Gy with a mean interval of about five million years and sea-level radiation exposures of about 0.2 Gy every million years. Comets and meteors traveling through space would receive doses in excess of 10 Gy at a depth of 0.02 m at mean intervals of 4 and 156 million years, respectively. This may place some constraints on the ability of life to travel through space either between planets or between planetary systems. Calculations of radiation dose from neutrino radiation are presented and indicate that this is not a significant source of radiation exposure for even extremely close events for the expected neutrino spectrum from these events.

  18. Radiation Protection in Pediatric Radiology: Results of a Survey Among Dutch Hospitals.

    PubMed

    Bijwaard, Harmen; Valk, Doreth; de Waard-Schalkx, Ischa

    2016-10-01

    A survey about radiation protection in pediatric radiology was conducted among 22 general and seven children's hospitals in the Netherlands. Questions concerned, for example, child protocols used for CT, fluoroscopy and x-ray imaging, number of images and scans made, radiation doses and measures taken to reduce these, special tools used for children, and quality assurance issues. The answers received from 27 hospitals indicate that radiation protection practices differ considerably between general and children's hospitals but also between the respective general and children's hospitals. It is recommended that hospitals consult each other to come up with more uniform best practices. Few hospitals were able to supply doses that can be compared to the national Diagnostic Reference Levels (DRLs). The ones that could be compared exceeded the DRLs in one in five cases, which is more than was expected beforehand.

  19. Molecular and cellular profiling of acute responses to total body radiation exposure in ovariectomized female cynomolgus macaques.

    PubMed

    DeBo, Ryne J; Register, Thomas C; Caudell, David L; Sempowski, Gregory D; Dugan, Gregory; Gray, Shauna; Owzar, Kouros; Jiang, Chen; Bourland, J Daniel; Chao, Nelson J; Cline, J Mark

    2015-06-01

    The threat of radiation exposure requires a mechanistic understanding of radiation-induced immune injury and recovery. The study objective was to evaluate responses to ionizing radiation in ovariectomized (surgically post-menopausal) female cynomolgus macaques. Animals received a single total-body irradiation (TBI) exposure at doses of 0, 2 or 5 Gy with scheduled necropsies at 5 days, 8 weeks and 24 weeks post-exposure. Blood and lymphoid tissues were evaluated for morphologic, cellular, and molecular responses. Irradiated animals developed symptoms of acute hematopoietic syndrome, and reductions in thymus weight, thymopoiesis, and bone marrow cellularity. Acute, transient increases in plasma monocyte chemoattractant protein 1 (MCP-1) were observed in 5 Gy animals along with dose-dependent alterations in messenger ribonucleic acid (mRNA) signatures in thymus, spleen, and lymph node. Expression of T cell markers was lower in thymus and spleen, while expression of macrophage marker CD68 (cluster of differentiation 68) was relatively elevated in lymphoid tissues from irradiated animals. Ovariectomized female macaques exposed to moderate doses of radiation experienced increased morbidity, including acute, dose-dependent alterations in systemic and tissue-specific biomarkers, and increased macrophage/T cell ratios. The effects on mortality exceeded expectations based on previous studies in males, warranting further investigation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coruh, M; Ewell, L; Demez, N

    Purpose: To estimate the dose delivered to a moving lung tumor by proton therapy beams of different modulation types, and compare with Monte Carlo predictions. Methods: A radiology support devices (RSD) phantom was irradiated with therapeutic proton radiation beams using two different types of modulation: uniform scanning (US) and double scattered (DS). The Eclipse© dose plan was designed to deliver 1.00Gy to the isocenter of a static ∼3×3×3cm (27cc) tumor in the phantom with 100% coverage. The peak to peak amplitude of tumor motion varied from 0.0 to 2.5cm. The radiation dose was measured with an ion-chamber (CC-13) located withinmore » the tumor. The time required to deliver the radiation dose varied from an average of 65s for the DS beams to an average of 95s for the US beams. Results: The amount of radiation dose varied from 100% (both US and DS) to the static tumor down to approximately 92% for the moving tumor. The ratio of US dose to DS dose ranged from approximately 1.01 for the static tumor, down to 0.99 for the 2.5cm moving tumor. A Monte Carlo simulation using TOPAS included a lung tumor with 4.0cm of peak to peak motion. In this simulation, the dose received by the tumor varied by ∼40% as the period of this motion varied from 1s to 4s. Conclusion: The radiation dose deposited to a moving tumor was less than for a static tumor, as expected. At large (2.5cm) amplitudes, the DS proton beams gave a dose closer to the desired dose than the US beams, but equal within experimental uncertainty. TOPAS Monte Carlo simulation can give insight into the moving tumor — dose relationship. This work was supported in part by the Philips corporation.« less

  1. Genetic susceptibility: radiation effects relevant to space travel.

    PubMed

    Peng, Yuanlin; Nagasawa, Hatsumi; Warner, Christy; Bedford, Joel S

    2012-11-01

    Genetic variation in the capacity to repair radiation damage is an important factor influencing both cellular and tissue radiosensitivity variation among individuals as well as dose rate effects associated with such damage. This paper consists of two parts. The first part reviews some of the available data relating to genetic components governing such variability among individuals in susceptibility to radiation damage relevant for radiation protection and discusses the possibility and extent to which these may also apply for space radiations. The second part focuses on the importance of dose rate effects and genetic-based variations that influence them. Very few dose rate effect studies have been carried out for the kinds of radiations encountered in space. The authors present here new data on the production of chromosomal aberrations in noncycling low passage human ATM+/+ or ATM+/- cells following irradiations with protons (50 MeV or 1 GeV), 1 GeV(-1) n iron ions and gamma rays, where doses were delivered at a high dose rate of 700 mGy(-1) min, or a lower dose rate of 5 mGy min(-1). Dose responses were essentially linear over the dose ranges tested and not significantly different for the two cell strains. Values of the dose rate effectiveness factor (DREF) were expressed as the ratio of the slopes of the dose-response curves for the high versus the lower (5 mGy min(-1)) dose rate exposures. The authors refer to this as the DREF5. For the gamma ray standard, DREF5 values of approximately two were observed. Similar dose rate effects were seen for both energies of protons (DREF5 ≈ 2.2 in both cases). For 1 GeV(-1) n iron ions [linear energy transfer (LET) ≈ 150 keV μ(-1)], the DREF5 was not 1 as might have been expected on the basis of LET alone but was approximately 1.3. From these results and conditions, the authors estimate that the relative biological effectiveness for 1 GeV(-1) n iron ions for high and low dose rates, respectively, were about 10 and 15 rather than around 20 for low dose rates, as has been assumed by most recommendations from radiation protection organizations for charged particles of this LET. The authors suggest that similar studies using appropriate animal models of carcinogenesis would be valuable.

  2. Estimation of Biological Effects of Tritium.

    PubMed

    Umata, Toshiyuki

    2017-01-01

    Nuclear fusion technology is expected to create new energy in the future. However, nuclear fusion requires a large amount of tritium as a fuel, leading to concern about the exposure of radiation workers to tritium beta radiation. Furthermore, countermeasures for tritium-polluted water produced in decommissioning of the reactor at Fukushima Daiichi Nuclear Power Station may potentially cause health problems in radiation workers. Although, internal exposure to tritium at a low dose/low dose rate can be assumed, biological effect of tritium exposure is not negligible, because tritiated water (HTO) intake to the body via the mouth/inhalation/skin would lead to homogeneous distribution throughout the whole body. Furthermore, organically-bound tritium (OBT) stays in the body as parts of the molecules that comprise living organisms resulting in long-term exposure, and the chemical form of tritium should be considered. To evaluate the biological effect of tritium, the effect should be compared with that of other radiation types. Many studies have examined the relative biological effectiveness (RBE) of tritium. Hence, we report the RBE, which was obtained with radiation carcinogenesis classified as a stochastic effect, and serves as a reference for cancer risk. We also introduce the outline of the tritium experiment and the principle of a recently developed animal experimental system using transgenic mouse to detect the biological influence of radiation exposure at a low dose/low dose rate.

  3. Low dose radiation damage effects in silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  4. Apollo 14 and apollo 16 heavy-particle dosimetry experiments.

    PubMed

    Fleischer, R L; Hart, H R; Comstock, G M; Carter, M; Renshaw, A; Hardy, A

    1973-08-03

    Doses of heavy particles at positions inside the command modules of Apollo missions 8, 12, 14, and 16 correlate well with the calculated effects of solar modulation of the primary cosmic radiation. Differences in doses at different stowage positions indicate that the redistribution of mass within the spacecraft could enhance safety from the biological damage that would otherwise be expected on manned, deep-space missions.

  5. Shielding Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  6. Radiation hazards to man

    NASA Technical Reports Server (NTRS)

    Curtis, S. B.; Wilkinson, M. C.

    1971-01-01

    The secondary dose contribution expected from the heavy primaries of the galactic cosmic rays was evaluated by a calculational technique developed in this study. Improvements in the solar and galactic cosmic ray environments made possible by recent experimental and theoretical work are discussed and presented. The recommendations of the National Academy of Sciences' space radiation study panel, are used in conjunction with a shielding analysis, to evaluate the radiation status of an astronaut during the triple solar particle event of 10, 14, 16 July 1959.

  7. A Survey of Pediatric CT Protocols and Radiation Doses in South Korean Hospitals to Optimize the Radiation Dose for Pediatric CT Scanning

    PubMed Central

    Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; Koo, Hyun Jung

    2015-01-01

    Abstract Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been carried out in South Korea. The aim of the present study was to investigate the radiation dose in pediatric CT examinations performed throughout South Korea. From 512 CT (222 brain CT, 105 chest CT, and 185 abdominopelvic CT) scans that were referred to our tertiary hospital, a dose report sheet was available for retrospective analysis of CT scan protocols and dose, including the volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose, and size-specific dose estimates (SSDE). At 55.2%, multiphase CT was the most frequently performed protocol for abdominopelvic CT. Tube current modulation was applied most often in abdominopelvic CT and chest CT, accounting for 70.1% and 62.7%, respectively. Regarding the CT dose, the interquartile ranges of the CTDIvol were 11.1 to 22.5 (newborns), 16.6 to 39.1 (≤1 year), 14.6 to 41.7 (2–5 years), 23.5 to 44.1 (6–10 years), and 31.4 to 55.3 (≤15 years) for brain CT; 1.3 to 5.7 (≤1 year), 3.9 to 6.8 (2–5 years), 3.9 to 9.3 (6–10 years), and 7.7 to 13.8 (≤15 years) for chest CT; and 4.0 to 7.5 (≤1 year), 4.2 to 8.9 (2–5 years), 5.7 to 12.4 (6–10 years), and 7.6 to 16.6 (≤15 years) for abdominopelvic CT. The SSDE and CTDIvol were well correlated for patients <5 years old, whereas the CTDIvol was lower in patients ≥6 years old. Our study describes the various parameters and dosimetry metrics of pediatric CT in South Korea. The CTDIvol, DLP, and effective dose were generally lower than in German and UK surveys, except in certain age groups. PMID:26683922

  8. Prediction of error rates in dose-imprinted memories on board CRRES by two different methods. [Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Brucker, G. J.; Stassinopoulos, E. G.

    1991-01-01

    An analysis of the expected space radiation effects on the single event upset (SEU) properties of CMOS/bulk memories onboard the Combined Release and Radiation Effects Satellite (CRRES) is presented. Dose-imprint data from ground test irradiations of identical devices are applied to the predictions of cosmic-ray-induced space upset rates in the memories onboard the spacecraft. The calculations take into account the effect of total dose on the SEU sensitivity of the devices as the dose accumulates in orbit. Estimates of error rates, which involved an arbitrary selection of a single pair of threshold linear energy transfer (LET) and asymptotic cross-section values, were compared to the results of an integration over the cross-section curves versus LET. The integration gave lower upset rates than the use of the selected values of the SEU parameters. Since the integration approach is more accurate and eliminates the need for an arbitrary definition of threshold LET and asymptotic cross section, it is recommended for all error rate predictions where experimental sigma-versus-LET curves are available.

  9. Radiobiological foundation of crew radiation risk for mars mission

    NASA Astrophysics Data System (ADS)

    Shafirkin, A.

    The results of a comprehensive clinico-physiological study of 250 dogs after 22 hours per day chronic exposure to gamma -radiation throughout their life are presented. The exposure duration was 3 and 6 years. The dose rate varied between 25 and 150 cSv/year to simulate galactic cosmic ray dose of crew members during mars mission. Several groups of the dogs received an additional acute dose of 10 and 50 cSv during a day three times per year to simulate stochastic irradiation caused by solar cosmic rays. Data on the status of regulatory systems of organism, exchange processes dynamics, organism reaction on additional functional loads are also presented. Organism reaction and dynamics of kinetic relations are considered in detail for most radiosensitive and regenerating tissue systems of the organism, namely, bloodforming system and spermatogenic epithelium. The results on life span reduction of the dogs and dog race characteristics after the radiation exposure are discussed. Based on the results obtained in this study and in model experiments realized with big amount of small laboratory animals that were exposed to a wide dose range, using other published data, mathematical models were developed, e. g. a model of radiation damage forming as dependent on time with taking into account recovery processes, and a model of radiation mortality rate of mammals. Based on these models and analysis of radiation environment behind various shielding on the route to Mars, crew radiation risk was calculated for space missions of various durations. Total radiation risk values for cosmonaut lifetime after the missions were also estimated together with expected life span reduction.

  10. Radiobiological foundation of crew radiation risk for Mars mission

    NASA Astrophysics Data System (ADS)

    Aleksandr, Shafirkin; Grigoriev, Yurj

    The results of a comprehensive clinico-physiological study of 250 dogs after 22 hours per day chronic exposure to gamma-radiation throughout their life are presented. The exposure duration was 3 and 6 years. The dose rate varied between 25 and 150 cSv/year to simulate galactic cosmic ray dose of crew members during mars mission. Several groups of the dogs received an additional acute dose of 10 and 50 cSv during a day three times per year to simulate stochastic irradiation caused by solar cosmic rays. Data on the status of regulatory systems of organism, exchange processes dynamics, organism reaction on additional functional loads are also presented. Organism reaction and dynamics of kinetic relations are considered in detail for most radiosensitive and regenerating tissue systems of the organism, namely, bloodforming system and spermatogenic epithelium. The results on life span reduction of the dogs and dog race characteristics after the radiation exposure are discussed. Based on the results obtained in this study and in model experiments realized with big amount of small laboratory animals that were exposed to a wide dose range, using other published data, mathematical models were developed, e. g. a model of radiation damage forming as dependent on time with taking into account recovery processes, and a model of radiation mortality rate of mammals. Based on these models and analysis of radiation environment behind various shielding on the route to Mars, crew radiation risk was calculated for space missions of various durations. Total radiation risk values for cosmonaut lifetime after the missions were also estimated together with expected life span reduction.

  11. Dose rate prediction methodology for remote handled transuranic waste workers at the waste isolation pilot plant.

    PubMed

    Hayes, Robert

    2002-10-01

    An approach is described for estimating future dose rates to Waste Isolation Pilot Plant workers processing remote handled transuranic waste. The waste streams will come from the entire U.S. Department of Energy complex and can take on virtually any form found from the processing sequences for defense-related production, radiochemistry, activation and related work. For this reason, the average waste matrix from all generator sites is used to estimate the average radiation fields over the facility lifetime. Innovative new techniques were applied to estimate expected radiation fields. Non-linear curve fitting techniques were used to predict exposure rate profiles from cylindrical sources using closed form equations for lines and disks. This information becomes the basis for Safety Analysis Report dose rate estimates and for present and future ALARA design reviews when attempts are made to reduce worker doses.

  12. Radiation dose-response curves: cell repair mechanisms vs. ion track overlapping

    NASA Astrophysics Data System (ADS)

    Kowalska, Agata; Czerski, Konrad; Nasonova, Elena; Kutsalo, Polina; Krasavin, Eugen

    2017-12-01

    Chromosome aberrations in human lymphocytes exposed to different doses of particle radiation: 150 MeV and spread out Bragg peak proton beams, 22 MeV/u boron beam and 199 V/u carbon beam were studied. For comparison, an experiment with 60Co γ-rays was also performed. We investigated distributions of aberration frequency and the shape of dose-response curves for the total aberration yield as well as for exchange and non-exchange aberrations, separately. Applying the linear-quadratic model, we could derive a relation between the fitted parameters and the ion track radius which could explain experimentally observed curvature of the dose-response curves. The results compared with physical expectations clearly show that the biological effects of cell repair are much more important than the ion track overlapping. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  13. Dosimetry around metallic ports in tissue expanders in patients receiving postmastectomy radiation therapy: an ex vivo evaluation.

    PubMed

    Moni, Janaki; Graves-Ditman, Maria; Cederna, Paul; Griffith, Kent; Krueger, Editha A; Fraass, Benedick A; Pierce, Lori J

    2004-01-01

    Postmastectomy breast reconstruction can be accomplished utilizing tissue expanders and implants. However, in patients who require postoperative radiotherapy, the complication rate with tissue expander/implant reconstruction can exceed 50%. One potential cause of this high complication rate may be the metallic port in the tissue expander producing altered dosimetry in the region of the metallic device. The purpose of this study was to quantify the radiation dose distribution in the vicinity of the metallic port and determine its potential contribution to this extremely high complication rate. The absolute dosimetric effect of the tissue expander's metallic port was quantified using film and thermoluminescent dosimetry (TLD) studies with a single beam incident on a metallic port extracted from an expander. TLD measurements were performed at 11 reproducible positions on an intact expander irradiated with tangential fields. A computed tomography (CT)-based treatment plan without inhomogeneity corrections was used to derive expected doses for all TLD positions. Multiple irradiation experiments were performed for all TLD data. Confidence intervals for the dose at TLD sites with the metallic port in place were compared to the expected dose at the site without the metallic port. Film studies did not reveal a significant component of scatter around the metallic port. TLD studies of the extracted metallic port revealed highest doses within the casing of the metallic port and no consistent increased dose at the surface of the expander. No excess dose due to the metallic port in the expander was noted with the phantom TLD data. Based upon these results, it does not appear that the metallic port in tissue expanders significantly contributes to the high complication rate experienced in patients undergoing tissue expander breast reconstruction and receiving radiation therapy. Strategies designed to reduce the breast reconstruction complication rate in this clinical setting will need to focus on factors other than adjusting the dosimetry around the tissue expander metallic port.

  14. Characterization of light transmissions in various optical fibers with proton beam

    NASA Astrophysics Data System (ADS)

    Song, Young Beom; Kim, Hye Jin; Kim, Mingeon; Lee, Bongsoo; Shin, Sang Hun; Yoo, Wook Jae; Jang, Kyoung Won; Hwang, Sung Won

    2017-12-01

    As a feasibility study on the development of a fiber-optic radiation sensor for proton therapy dosimetry, we characterized light transmissions of various commercial optical fibers such as silica and plastic based optical fibers by the irradiation of proton beams. In this study, we measured light transmission spectra of optical fibers as a function of absorbed doses of proton beams using a deuterium & tungsten halogen lamps and a spectrometer. To be used as a fiber-optic radiation sensor, the optical fibers should have the radiation resistant characteristics and provide stable output signals during the proton beam irradiation. In this study, we could select suitable optical fibers to be used in the fiber-optic radiation sensor without quenching effects for proton therapy dosimetry. As a result, the light transmittance of the optical fibers had decreasing trends with increasing absorbed dose as expected.

  15. Application of DNA comet assay for detection of radiation treatment of grams and pulses.

    PubMed

    Khan, Hasan M; Khan, Ashfaq A; Khan, Sanaullah

    2011-12-01

    Several types of whole pulses (green lentils, red lentils, yellow lentils, chickpeas, green peas, cowpeas and yellow peas) and grams (black grams, red grams and white grams) have been investigated for the identification of radiation treatment using microgel electrophoresis of single cells (DNA comet assay). Pulses and grams were exposed to the radiation doses of 0.5, 1.0 and 5 kGy covering the legalized commercial dose range for protection from insect/pest infestations. All irradiated samples showed comet like stretching of fragmented DNA toward anode, which is expected for irradiated samples. Unirradiated samples showed many intact cells/nuclei in form of round stains or with short faint tails, which is typical for unirradiated food samples. The study shows that DNA comet assay can be used as a rapid, inexpensive and highly effective screening test for the detection of radiation treatment of foods, like pulses and grams.

  16. Stability of an optically contacted etalon to cosmic radiation. [aboard Dynamics Explorer satellite

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Dettman, D. L.; Hays, P. B.

    1980-01-01

    An investigation has been completed to determine the effects of prolonged exposure to cosmic radiation on Zerodur spacing elements used between two dielectric reflectors on silica substrates in the plane Fabry-Perot etalon selected for flight in the Dynamics Explorer satellite. The measured radiation expansion coefficient for Zerodur is approximately -4.0 x 10 to the -12th/rad. In addition to the overall change in gap dimension, test data indicate a degradation in etalon parallelism, which is ascribed to the different doses received by the three spacers due to their differing distances from a Co-60 source. The effect is considered to be of practical use in the tuning and parallelism adjustment of fixed gap etalons. The variation is small enough not to pose a problem for the satellite instrument where expected radiation doses are less than 10,000 rads.

  17. Animal studies of life shortening and cancer risk from space radiation

    NASA Astrophysics Data System (ADS)

    Wood, D. H.; Yochmowitz, M. G.; Hardy, K. A.; Salmon, Y. L.

    The U. S. Air Force study of the delayed effects of single, total body exposures to simulated space radiation in rhesus monkeys is now in its 21st year. Observations on 301 irradiated and 57 age-matched control animals indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be expressed as a logarithmic function of the dose. The primary causes of life shortening are cancer and endometriosis (an abnormal proliferation of the lining of the uterus in females). Life shortening estimates permit comparison of the risk associated with space radiation exposures to be compared with that of other occupational and environmental hazards, thereby facilitating risk/benefit decisions in the planning and operational phases of manned space missions. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total body surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of human is, therefore, critical to the assessment of life-time cancer risk.

  18. Radiation dose awareness and disclosure practice in paediatric emergency medicine: how far have we come?

    PubMed Central

    Thomas, Karen E

    2016-01-01

    The past decade has brought increasing coverage in the medical literature and lay media of the potential association between low-level radiation from diagnostic imaging and an increased lifetime cancer risk. Both physician and public opinion increasingly favour a greater discussion of benefit and risk with patients and their families when such imaging is being considered. Particular attention has been directed towards CT, its use in children and the emergency department setting. We will review the evolution of radiation dose awareness and knowledge among emergency physicians (EPs) alongside the parallel increase in public awareness. We will then discuss expectations for risk disclosure and the challenges faced by EPs and radiologists as we strive to provide this in a clinically balanced and meaningful way. PMID:26828973

  19. Radiation dose awareness and disclosure practice in paediatric emergency medicine: how far have we come?

    PubMed

    Boutis, Kathy; Thomas, Karen E

    2016-01-01

    The past decade has brought increasing coverage in the medical literature and lay media of the potential association between low-level radiation from diagnostic imaging and an increased lifetime cancer risk. Both physician and public opinion increasingly favour a greater discussion of benefit and risk with patients and their families when such imaging is being considered. Particular attention has been directed towards CT, its use in children and the emergency department setting. We will review the evolution of radiation dose awareness and knowledge among emergency physicians (EPs) alongside the parallel increase in public awareness. We will then discuss expectations for risk disclosure and the challenges faced by EPs and radiologists as we strive to provide this in a clinically balanced and meaningful way.

  20. Estimating differences in volumetric flat bone growth in pediatric patients by radiation treatment method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua Chiaho; Shukla, Hemant I.; Merchant, Thomas E.

    2007-02-01

    Purpose: To estimate potential differences in volumetric bone growth in children with sarcoma treated with intensity-modulated (IMRT) and conformal (CRT) radiation therapy using an empiric dose-effect model. Methods and Materials: A random coefficient model was used to estimate potential volumetric bone growth of 36 pelvic bones (ischiopubis and ilium) from 11 patients 4 years after radiotherapy. The model incorporated patient age, pretreatment bone volume, integral dose >35 Gy, and time since completion of radiation therapy. Three dosimetry plans were entered into the model: the actual CRT/IMRT plan, a nontreated comparable IMRT/CRT plan, and an idealized plan in which dose wasmore » delivered only to the planning target volume. The results were compared with modeled normal bone growth. Results: The model predicted that by using the idealized, IMRT, and CRT approaches, patients would maintain 93%, 87%, and 84%, respectively (p = 0.06), of their expected normal growth. Patients older than 10 years would maintain 98% of normal growth, regardless of treatment method. Those younger than 10 years would maintain 87% (idealized), 76% (IMRT), or 70% (CRT) of their expected growth (p = 0.015). Post hoc testing (Tukey) revealed that the CRT and IMRT approaches differed significantly from the idealized one but not from each other. Conclusions: Dose-effect models facilitate the comparison of treatment methods and potential interventions. Although treatment methods do not alter the growth of flat bones in older pediatric patients, they may significantly impact bone growth in children younger than age 10 years, especially as we move toward techniques with high conformity and sharper dose gradient.« less

  1. Correlation of Radiation Dose Estimates by DIC with the METREPOL Hematological Classes of Disease Severity.

    PubMed

    Port, M; Pieper, B; Dörr, H D; Hübsch, A; Majewski, M; Abend, M

    2018-05-01

    The degree of severity of hematologic acute radiation syndrome (HARS) may vary across the range of radiation doses, such that dose alone may be a less reliable predictor of clinical course. We sought to elucidate the relationship between absorbed dose and risk of clinically relevant HARS in humans. We used the database SEARCH (System for Evaluation and Archiving of Radiation Accidents based on Case Histories), which contains the histories of radiation accident victims. From 153 cases we extracted data on dose estimates using the dicentric assay to measure individual biological dosimetry. The data were analyzed according to the corresponding hematological response categories of clinical significance (H1-4). These categories are derived from the medical treatment protocols for radiation accident victims (METREPOL) and represent the clinical outcome of HARS based on severity categories ranging from 1-4. In addition, the category H0 represents a post-exposure hematological response that is within the normal range for nonexposed individuals. Age at exposure, gender and ethnicity were considered as potential confounders in unconditional cumulative logistic regression analysis. In most cases, victims were Caucasian (82.4%) and male (92.8%), who originated from either the Chernobyl (69.3%) or Goiânia (10.5%) accident, and nearly 60% were aged 20-40 years at time of exposure. All individuals were whole-body exposed (mean 3.8 Gy, stdev ±3.1), and single exposures were predominantly reported (79%). Seventy percent of victims in category H0 were exposed to ≤1 Gy, with rapidly decreasing proportions of H0 seen at doses up to 5 Gy. There were few HARS H4 cases reported at exposed dose of 1-2 Gy, while 82% of H4 cases received doses of >5 Gy. HARS H1-3 cases varied among dose ranges from 1-5 Gy. In summary, single whole-body radiation doses <1 Gy and >5 Gy corresponded in general with H0 and H3-4, respectively, and this was consistent with medical expectations. This underlines the usefulness of dose estimates for HARS prediction. However, whole-body doses between 1-5 Gy poorly corresponded to HARS H1-3. The dose range of 1-5 Gy was of limited value for medical decision-making regarding, e.g., hospitalization for H2-3, but not H1 and treatment decisions that differ between H1-3. Also, there were some H0 cases at high doses and H2-4 cases at low doses, thereby challenging an individual recommendation based solely on dose.

  2. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy.

    PubMed

    Zahnreich, Sebastian; Ebersberger, Anne; Kaina, Bernd; Schmidberger, Heinz

    2015-04-01

    The aim of this current study was to quantitatively describe radiation-induced DNA damage and its distribution in leukocytes of cancer patients after fractionated partial- or total-body radiotherapy. Specifically, the impact of exposed anatomic region and administered dose was investigated in breast and prostate cancer patients receiving partial-body radiotherapy. DNA double-strand breaks (DSBs) were quantified by γ-H2AX immunostaining. The frequency of unstable chromosomal aberrations in stimulated lymphocytes was also determined and compared with the frequency of DNA DSBs in the same samples. The frequency of radiation-induced DNA damage was converted into dose, using ex vivo generated calibration curves, and was then compared with the administered physical dose. This study showed that 0.5 h after partial-body radiotherapy the quantity of radiation-induced γ-H2AX foci increased linearly with the administered equivalent whole-body dose for both tumor entities. Foci frequencies dropped 1 day thereafter but proportionality to the equivalent whole-body dose was maintained. Conversely, the frequency of radiation-induced cytogenetic damage increased from 0.5 h to 1 day after the first partial-body exposure with a linear dependence on the administered equivalent whole-body dose, for prostate cancer patients only. Only γ-H2AX foci assessment immediately after partial-body radiotherapy was a reliable measure of the expected equivalent whole-body dose. Local tumor doses could be approximated with both assays after one day. After total-body radiotherapy satisfactory dose estimates were achieved with both assays up to 8 h after exposure. In conclusion, the quantification of radiation-induced γ-H2AX foci, but not cytogenetic damage in peripheral leukocytes was a sensitive and rapid biodosimeter after acute heterogeneous irradiation of partial body volumes that was able to primarily assess the absorbed equivalent whole-body dose.

  3. Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site.

    PubMed

    Pitonzo, B J; Amy, P S; Rudin, M

    1999-07-01

    A time-course experiment was conducted to evaluate the effects of gamma radiation on the indigenous microbiota present in rock obtained from Yucca Mountain, Nevada Test Site. Microcosms were constructed by placing pulverized Yucca Mountain rock in polystyrene cylinders. Continuous exposure (96 h) at a dose rate of 1.63 Gy/min was used to mimic the near-field environment surrounding waste canisters. The expected maximum surface dose rate from one unbreached canister designed to contain spent nuclear fuels is 0.06 Gy/min. Considering the current repository packing design, multiple canisters within one vault, the cumulative dose rate may well approach that used in this experiment. The microbial communities were characterized after receiving cumulative doses of 0, 0.098, 0. 58, 2.33, 4.67, 7.01 and 9.34 kGy. Radiation-resistant microorganisms in the pulverized rock became viable but nonculturable (VBNC) after a cumulative dose of 2.33 kGy. VBNC microorganisms lose the ability to grow on media on which they have routinely been cultured in response to the environmental stress imposed (i.e. radiation) but can be detected throughout the time course using direct fluorescence microscopy techniques. Two representative exopolysaccharide-producing isolates from Yucca Mountain were exposed to the same radiation regimen in sand microcosms. One isolate was much more radiation-resistant than the other, but both had greater resistance than the general microbial community based on culturable counts. However, when respiring cell counts (VBNC) were compared after irradiation, the results would indicate much more radiation resistance of the individual isolates and the microbial community in general. These results have significant implications for underground storage of nuclear waste as they indicate that indigenous microorganisms are capable of surviving gamma irradiation in a VBNC state.

  4. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findingsmore » remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information that will be useful in estimating human health risks due to radiation that may occur during exposures in the work environment, nuclear/radiological catastrophes, as well as radiotherapy. Several papers have been published, accepted for publication or are in preparation. A number of poster and oral presentations have been made at scientific conferences and workshops. Archived tissues of various types will continue to be evaluated via funding from other sources (the DoE Low Dose Radiation Research Program, Office of Science and this specific grant will be appropriately included in the Acknowledgements of all subsequent publications/presentations). A post-doc and several students have participated in this study. More detailed description of the accomplishments is described in attached file.« less

  5. Doses from radon 222 irradiation for workers of the granite mining industry.

    PubMed

    Сrygorieva, L; Tomilin, Yu

    2017-12-01

    determining the integral value of annual effective dose from 222Rn for workers of the granite mining industry and assessment for the expected life effective dose from 222Rn. Materials were the results of measurements of external exposure dose of radiation measurements equiv alent equilibrium volume activity of 222Rn in workrooms and workplaces of major groups of granite quarry workers Mykolaiv region, studies EROA 222Rn air premises of these workers, research content 222Rn in drinking water. Granite quarry workers receive double radiation exposure of 222Rn due to exposure in the workplace and at home. The load in the workplace due to inhalation of 222Rn the air was (2.1 ± 0.2) mSv / year (vari ation 0.9-5.9) in a residential area - (4,1 ± 0,2) mSv/year (variation 1.8-5.9). The total annual effective dose from internal exposure from air flow and working premises and drinking water was on average (6,5 ± 0,2) mSv/year, equal to a maximum value of 20 mSv/year. The expected life for the chronic exposure dose of technological naturally occurring radioactive sources for people who work in the granite quarries and, while living in high risk from radon is in the range of 0.16-1.12 Sv. The research results indicate that in assessing the effects associated with exposure due to radon 222 contingents persons such surveys must take into account all sources of this radionuclide dose. L. Сrygorieva, Yu. Tomilin.

  6. Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties.

    PubMed

    Romm, Horst; Wilkins, Ruth C; Coleman, C Norman; Lillis-Hearne, Patricia K; Pellmar, Terry C; Livingston, Gordon K; Awa, Akio A; Jenkins, Mark S; Yoshida, Mitsuaki A; Oestreicher, Ursula; Prasanna, Pataje G S

    2011-03-01

    Biological dosimetry is an essential tool for estimating radiation dose. The dicentric chromosome assay (DCA) is currently the tool of choice. Because the assay is labor-intensive and time-consuming, strategies are needed to increase throughput for use in radiation mass casualty incidents. One such strategy is to truncate metaphase spread analysis for triage dose estimates by scoring 50 or fewer metaphases, compared to a routine analysis of 500 to 1000 metaphases, and to increase throughput using a large group of scorers in a biodosimetry network. Previously, the National Institutes for Allergies and Infectious Diseases (NIAID) and the Armed Forces Radiobiology Research Institute (AFRRI) sponsored a double-blinded interlaboratory comparison among five established international cytogenetic biodosimetry laboratories to determine the variability in calibration curves and in dose measurements in unknown, irradiated samples. In the present study, we further analyzed the published data from this previous study to investigate how the number of metaphase spreads influences dose prediction accuracy and how this information could be of value in the triage and management of people at risk for the acute radiation syndrome (ARS). Although, as expected, accuracy decreased with lower numbers of metaphase spreads analyzed, predicted doses by the laboratories were in good agreement and were judged to be adequate to guide diagnosis and treatment of ARS. These results demonstrate that for rapid triage, a network of cytogenetic biodosimetry laboratories can accurately assess doses even with a lower number of scored metaphases.

  7. PRELIMINARY REPORT: EFFECTS OF IRRADIATION AND THERMAL EXPOSURE ON ELASTOMERIC SEALS FOR CASK TRANSPORTATION AND STORAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verst, C.; Skidmore, E.; Daugherty, W.

    2014-05-30

    A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading tomore » a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.« less

  8. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C.

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank dopedmore » with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications.« less

  9. SU-E-T-56: A Novel Approach to Computing Expected Value and Variance of Point Dose From Non-Gated Radiotherapy Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S; Zhu, X; Zhang, M

    Purpose: Randomness in patient internal organ motion phase at the beginning of non-gated radiotherapy delivery may introduce uncertainty to dose received by the patient. Concerns of this dose deviation from the planned one has motivated many researchers to study this phenomenon although unified theoretical framework for computing it is still missing. This study was conducted to develop such framework for analyzing the effect. Methods: Two reasonable assumptions were made: a) patient internal organ motion is stationary and periodic; b) no special arrangement is made to start a non -gated radiotherapy delivery at any specific phase of patient internal organ motion.more » A statistical ensemble was formed consisting of patient’s non-gated radiotherapy deliveries at all equally possible initial organ motion phases. To characterize the patient received dose, statistical ensemble average method is employed to derive formulae for two variables: expected value and variance of dose received by a patient internal point from a non-gated radiotherapy delivery. Fourier Series was utilized to facilitate our analysis. Results: According to our formulae, the two variables can be computed from non-gated radiotherapy generated dose rate time sequences at the point’s corresponding locations on fixed phase 3D CT images sampled evenly in time over one patient internal organ motion period. The expected value of point dose is simply the average of the doses to the point’s corresponding locations on the fixed phase CT images. The variance can be determined by time integration in terms of Fourier Series coefficients of the dose rate time sequences on the same fixed phase 3D CT images. Conclusion: Given a non-gated radiotherapy delivery plan and patient’s 4D CT study, our novel approach can predict the expected value and variance of patient radiation dose. We expect it to play a significant role in determining both quality and robustness of patient non-gated radiotherapy plan.« less

  10. Efficacy evaluation of managed population shift in Ukraine from zone of obligate (compulsory) resettlement as a measure of public radiation protection.

    PubMed

    Gunko, N V

    2015-12-01

    Evaluation of efficacy of the managed population transmigration from zone of obligate (compulsory) resettlement as a measure of civil protection after the Chernobyl NPP accident from the perspective of radiation biology. Legislative and statutory tutorial documents that regulate the managed population shift from radiologically contaminated territories of Ukraine and data from the Ukrainian State Service of Statistics on time limits and scopes of population transmigration from contaminated settlements were the informational back ground of the study. Data on retrospective and expected/anticipated radiation doses in population of settlements exposed to radiological contamination in Ukraine after the Chernobyl disaster summarized for the 1986-1997 peri od and up to 2055 were the information source for calculation of averted doses due to population shift. Battery of basic research empirical evidence review methods was applied under the calculation, systemic, and biomedical approach. Population shift from zone of obligate (compulsore) resettlement (hereafter referred to as Zone 2) to stop the radiation exposure as a tool of civil protection from emergency ionizing radiation after the Chernobyl NPP accident was scientifically substantiated and expedient from the perspective of radiation biology. Estimability of a managed population shift from "dose effect" perspective and "benefit/harm" principle is worse because of data absence on individual radiation doses to migrants in the country. Public shift in 1990 and 1991 was most effective from the viewpoint of level of averted lifetime dose. Due to transmigration the averted lifetime dose to the most vulnerable group of the Chernobyl disaster survivors i.e. children aged 0 years varied from 11.2 to 28.8 mSv (calculated for the Perejizdiv village council of Zhytomyr province). Since 2000 there was almost no public shift being not accomplished in the scheduled scope. Delay and incompleteness of transmigration have diminished the efficacy of this measure in the framework of radiological protection of population. N. V. Gunko.

  11. Glossary of Terms--Nuclear Weapon Phenomena and Effects

    DTIC Science & Technology

    1985-02-15

    w".: w~*~ combat ineffective. An individual whose injuries are of such nature that he is no longer capable of carrying out his assigned task...significantly harmful result [39]. That dose of ionizing radiation that is not expected to cause appreciable bodily injury to a person at any time during his...art and science of protecting human beings from injury by radia- tion, and promoting better health through beneficial applications of radiation [39

  12. Measurements of the radiation dose to LDEF by means of passive dosimetry

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; Imamoto, S. S.

    1992-06-01

    A very simple experiment was fielded on LDEF to measure the energetic radiation dose by means of passive dosimetry. It consisted of two identical packets of 16 LiF thermoluminescent dosimeters (TLD) arranged in planar arrays. One array was placed on the leading edge of the spacecraft, the other on the trailing edge. These arrays were installed in opaque packets of 1 mil Al foil and Kapton tape mounted behind an Al plate of 30 mils thickness. The nominal energy thresholds were 14 MeV for protons and 650 keV for electrons. In addition to the flight arrays, two control arrays were prepared which were kept with the flight arrays as long as possible during experimental integration and then stored in the lab. The flight and control arrays were read out alternating in groups of four; it was found that the control dose was negligible. The flight and control detectors were exposed to a 55 MeV proton beam in order to provide a recalibration of the detectors. It was found that the post-flight and pre-flight calibrations were in good agreement. A comparison of results with the prediction shows that the measured dose was a factor of 4 to 5 low. It is possible that there was in-flight annealing of the TLDs as a result of the long mission and perhaps temperature excursions of the sensors. The East-West effect was larger than expected. The ratio of 1.65 is approximately what was expected for the protons alone. Electrons should reduce the dose ratio since electrons add equally to the leading and trailing edge dose. A possible explanation is that the electron dose was negligible compared to the proton dose.

  13. Measurements of the radiation dose to LDEF by means of passive dosimetry

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Imamoto, S. S.

    1992-01-01

    A very simple experiment was fielded on LDEF to measure the energetic radiation dose by means of passive dosimetry. It consisted of two identical packets of 16 LiF thermoluminescent dosimeters (TLD) arranged in planar arrays. One array was placed on the leading edge of the spacecraft, the other on the trailing edge. These arrays were installed in opaque packets of 1 mil Al foil and Kapton tape mounted behind an Al plate of 30 mils thickness. The nominal energy thresholds were 14 MeV for protons and 650 keV for electrons. In addition to the flight arrays, two control arrays were prepared which were kept with the flight arrays as long as possible during experimental integration and then stored in the lab. The flight and control arrays were read out alternating in groups of four; it was found that the control dose was negligible. The flight and control detectors were exposed to a 55 MeV proton beam in order to provide a recalibration of the detectors. It was found that the post-flight and pre-flight calibrations were in good agreement. A comparison of results with the prediction shows that the measured dose was a factor of 4 to 5 low. It is possible that there was in-flight annealing of the TLDs as a result of the long mission and perhaps temperature excursions of the sensors. The East-West effect was larger than expected. The ratio of 1.65 is approximately what was expected for the protons alone. Electrons should reduce the dose ratio since electrons add equally to the leading and trailing edge dose. A possible explanation is that the electron dose was negligible compared to the proton dose.

  14. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, H; Jeon, H; Nam, J

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less

  15. Haemopoietic cell renewal in radiation fields

    NASA Astrophysics Data System (ADS)

    Fliedner, T. M.; Nothdurft, W.; Tibken, B.; Hofer, E.; Weiss, M.; Kindler, H.

    1994-10-01

    Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a ``turbulence region'' for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a ``blood stem cell bank'' might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container.

  16. Radiation Measurements in Cruise and on Mars by the MSL Radiation Assessment Detector

    NASA Astrophysics Data System (ADS)

    Zeitlin, C. J.; Hassler, D.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S.; Brinza, D.; Burmeister, S.; Cucinotta, F.; Ehresmann, B.; Guo, J.; Kohler, J.; Lohf, H.; Martin, C.; Posner, A.; Rafkin, S. C.; Reitz, G.; Team, M.

    2013-12-01

    The Radiation Assessment Detector (RAD) is one of ten science instruments on the Curiosity rover. The RAD team's science objectives include the measurement of radiation dose (a purely physical quantity) and dose equivalent (a derived quantity that can be related to cancer risk) on the surface of Mars. In addition, RAD acquired data for most of the cruise to Mars, from Dec. 2011 through July 2012, providing a measurement of the radiation environment under conditions similar to those expected on a human trip to Mars or other deep space destinations. The dose and dose equivalent measurements made during cruise have been published, but are presented in more detail here. Rates measured in cruise are compared to similar measurements made during Curiosity's first 269 sols on the surface of Mars. In the simplest picture, one expects rates to be a factor of two lower on the surface of a large airless body compared to free space, owing to the two-pi shielding geometry. The situation on Mars is complicated by the non-negligible shielding effects of the atmosphere, particularly in Gale Crater where diurnal variations in atmospheric column depth are significant. The diurnal variations - caused by the well-known thermal tides on Mars - result in reduced shielding of the surface in the afternoon as compared to the night and early morning hours. A major challenge in analyzing the surface data is the treatment of the background radiation dose coming from Curiosity's Radioisotope Thermoelectric Generator (RTG). Prior to launch, RAD acquired data in the full cruise configuration so that this background could be measured with only sea-level cosmic ray muons present - that is, almost all of what was measured was due to the RTG. Those effects could therefore be subtracted from the cruise measurements in a straightforward way. However, the situation on the surface is somewhat different than in cruise, in that the mass that was present above RAD - and caused scattering of particles into the detector - is no longer there. The RTG-induced dose rate in the surface configuration must therefore be less than it was in the cruise configuration, but there is no way to get a direct measurement of the background. Quantifying the change in RTG background is difficult but essential, as the subtraction affects every aspect of the dosimetry. Two approaches have been developed and yield roughly similar results. The differences allow us to estimate the uncertainties arising from the RTG subtraction, and propagate those into the dosimetry results.

  17. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, Virginia E.

    2011-01-01

    Radiation exposure is one of the unique physiological challenges of human spaceflight that is not encountered on earth. While radiation exposure is known to impart physiological stresses and alter normal function, it is unclear how it specifically affects drug metabolism. A major concern is that the actions of medications used in spaceflight may deviate from the expectations formed from terrestrial use. This concern was investigated at the molecular level by analyzing how gamma radiation exposure affected gene expression in the livers of mice. Three different doses of radiation were administered and after various intervals of recovery time, gene expression was measured with RT-qPCR screening arrays for drug metabolism and DNA repair. After examining the results of 192 genes total from each of 72 mice, 65 genes were found to be significantly affected by at least one of the doses of radiation. In general, the genes affected are involved in the metabolism of drugs with lipid or steroid hormone-like structures, as well as the maintenance of redox homeostasis and repair of DNA damage.

  18. [Ecological and biological characteristics of Drosophila melanogaster features depending on the dose of electromagnetic radiation of various types].

    PubMed

    Babkina, V V; Chernova, G V; Allenova, E A; Endebera, O P; Naumkina, E N

    2013-01-01

    Biological effects of exposure to red light (lambda = 660 +/- 10 nm) on the viability and morphophysiological characteristics of Drosophila melanogaster have been studied. The ability of this physical agent to modify these features is shown. The degree of expression and impact of biological effects depend on the dose, functional and genetic status of the organism. The study of the life expectancy of the exposed to EHF and white light D. melanogaster has revealed that expression of the features depends on the radiation doses, genotype, sex, the nature of the position of wings and lighting conditions. It has been found that the dark mode (24 h-night) is more favorable than the artificial lighting. Individuals with the left wing at the top are more sensitive to the external factors.

  19. Radiation Doses from the Norwegian Diet.

    PubMed

    Komperød, Mari; Skuterud, Lavrans

    2018-06-13

    Ingestion doses between and within countries are expected to vary significantly due to differences in dietary habits and geographical variations in radionuclide concentrations. This paper presents the most comprehensive assessment to date of the effective radiation dose from the Norwegian diet, from natural as well as anthropogenic radionuclides. Ingestion doses to the Norwegian public are calculated using national dietary statistics and the most relevant radionuclide concentration data for the various food products. The age-weighted average effective dose received by the Norwegian population from the diet is estimated at 0.41 mSv y from naturally occurring radionuclides and 0.010 mSv y from anthropogenic radionuclides. This is approximately 50% higher than the estimated world average. Fish and shellfish is the food group that provides the largest dose contribution from the average Norwegian diet. Although the average dose from anthropogenic radionuclides today is low, the exposure may still be significant for certain critical groups-especially persons who consume large amounts of reindeer meat from the regions that received significant radioactive fallout after the Chernobyl accident. Furthermore, persons with high Rn concentrations in their drinking water are among those receiving the highest ingestion doses in Norway.

  20. Incidence of cancer among Nordic airline pilots over five decades: occupational cohort study

    PubMed Central

    Pukkala, Eero; Aspholm, Rafael; Auvinen, Anssi; Eliasch, Harald; Gundestrup, Maryanne; Haldorsen, Tor; Hammar, Niklas; Hrafnkelsson, Jón; Kyyrönen, Pentti; Linnersjö, Anette; Rafnsson, Vilhjálmur; Storm, Hans; Tveten, Ulf

    2002-01-01

    Objective To assess the incidence of cancer among male airline pilots in the Nordic countries, with special reference to risk related to cosmic radiation. Design Retrospective cohort study, with follow up of cancer incidence through the national cancer registries. Setting Denmark, Finland, Iceland, Norway, and Sweden. Participants 10 032 male airline pilots, with an average follow up of 17 years. Main outcome measures Standardised incidence ratios, with expected numbers based on national cancer incidence rates; dose-response analysis using Poisson regression. Results 466 cases of cancer were diagnosed compared with 456 expected. The only significantly increased standardised incidence ratios were for skin cancer: melanoma 2.3 (95% confidence interval 1.7 to 3.0), non-melanoma 2.1 (1.7 to 2.8), basal cell carcinoma 2.5 (1.9 to 3.2). The relative risk of skin cancers increased with the estimated radiation dose. The relative risk of prostate cancer increased with increasing number of flight hours in long distance aircraft. Conclusions This study does not indicate a marked increase in cancer risk attributable to cosmic radiation, although some influence of cosmic radiation on skin cancer cannot be entirely excluded. The suggestion of an association between number of long distance flights (possibly related to circadian hormonal disturbances) and prostate cancer needs to be confirmed. What is already known on this topicAirline pilots are occupationally exposed to cosmic radiation and other potentially carcinogenic elementsIn the studies published so far, dose-response patterns have not been characterisedWhat this study addsNo marked risk of cancer attributable to cosmic radiation is observed in airline pilotsA threefold excess of skin cancers is seen among pilots with longer careers, but the influence of recreational exposure to ultraviolet light cannot be quantifiedA slight increase in risk of prostate cancer with increasing number of long haul flights suggests a need for more studies on the effects of circadian hormonal disturbances PMID:12228131

  1. OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN BULK TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2015-09-22

    We used our recently developed lattice based OKMC code; KSOME [1] to carryout simulations of radiation damage in bulk W. We study the effect of dimensionality of self interstitial atom (SIA) diffusion i.e. 1D versus 3D on the defect accumulation during irradiation with a primary knock-on atom (PKA) energy of 100 keV at 300 K for the dose rates of 10-5 and 10-6 dpa/s. As expected 3D SIA diffusion significantly reduces damage accumulation due to increased probability of recombination events. In addition, dose rate, over the limited range examined here, appears to have no effect in both cases of SIAmore » diffusion.« less

  2. Evaluation of internal alpha radiation exposure and subsequent infertility among a cohort of women formerly employed in the radium dial industry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schieve, L. A.; Davis, F.; Roeske, J.

    1997-02-01

    This study examined the effect of internal exposure to {alpha}-particle radiation on subsequent fertility among women employed in the radium dial industry prior to 1930, when appreciable amounts of radium were often ingested through the practice of pointing the paint brush with the lips. The analysis was limited to women for whom a radium body burden measurement had been obtained and who were married prior to age 45 (n=603). Internal radiation dose to the ovary was calculated based on initial intakes of radium-226 and radium-228, average ovarian mass, number and energy of {alpha} particles emitted, fraction of energy absorbed withmore » in the ovary, effective retention integrals and estimated photon irradiation. Time between marriage and pregnancy, number of pregnancies and number of live births served as surrogates for fertility. Radiation appeared to have no effect on fertility at estimated cumulative ovarian dose equivalents below 5 Sv; above this dose, however, statistically significant declines in both number of pregnancies and live births were observed. These trends persisted after multivariable adjustment for potential confounding variables and after exclusion of subjects contributing a potential classification or selection bias to the study. Additionally, the high-dose group experienced fewer live births than would have been expected based on population rates. There were no differences in time to first pregnancy between high- and low-dose groups. These results are consistent with earlier studies of {gamma}-ray exposures and suggest that exposure to high doses of radiation from internally deposited radium reduces fertility rather than inducing sterility.« less

  3. A reevaluation of cancer incidence near the Three Mile Island nuclear plant: the collision of evidence and assumptions.

    PubMed

    Wing, S; Richardson, D; Armstrong, D; Crawford-Brown, D

    1997-01-01

    Previous studies concluded that there was no evidence that the 1979 nuclear accident at Three Mile Island (TMI) affected cancer incidence in the surrounding area; however, there were logical and methodological problems in earlier reports that led us to reconsider data previously collected. A 10-mile area around TMI was divided into 69 study tracts, which were assigned radiation dose estimates based on radiation reading and models of atmospheric dispersion. Incident cancers from 1975 to 1985 were ascertained from hospital records and assigned to study tracts. Associations between accident doses and incidence rates of leukemia, lung cancer, and all cancer were assessed using relative dose estimates calculated by the earlier investigators. Adjustments were made for age, sex, socioeconomic characteristics, and preaccident variation in incidence. Considering a 2-year latency, the estimated percent increase per dose unit +/- standard error was 0.020 +/- 0.012 for all cancer, 0.082 +/- 0.032 for lung cancer, and 0.116 +/- 0.067 for leukemia. Adjustment for socioeconomic variables increased the estimates to 0.034 +/- 0.013, 0.103 +/- 0.035, and 0.139 +/- 0.073 for all cancer, lung cancer, and leukemia, respectively. Associations were generally larger considering a 5-year latency, but were based on smaller numbers of cases. Results support the hypothesis that radiation doses are related to increased cancer incidence around TMI. The analysis avoids medical detection bias, but suffers from inaccurate dose classification; therefore, results may underestimate the magnitude of the association between radiation and cancer incidence. These associations would not be expected, based on previous estimates of near-background levels of radiation exposure following the accident.

  4. Determination of the uncertainties in radiation doses from ingestion of strontium-90

    NASA Astrophysics Data System (ADS)

    Apostoaei, Andrei Iulian

    Quantification of the uncertainties in the internal dosimetry is important because it can impact the outcome of dose reconstruction, risk assessment or epidemiological studies. This research focused on determination of the uncertainties in the dose factors from a single ingestion of 90Sr by adults, and analyzed the changes with age and the effect of gender. The uncertainties in the estimated dose factors are a factor of 6 for the bone surface, 5 for the red bone marrow, 2.5 for bladder and stomach, 2.2 for the small intestine, 2.1 for the upper large intestine and 2.7 for the lower large intestine. For the rest of the organs the uncertainty is a factor of 3. Only four parameters of the biokinetic model showed an age-dependency within the adult age group: the fractional transfers of strontium from plasma to cortical and trabecular bone, and the removal rates from the cortical and trabecular bone, respectively. When age-dependent biokinetic parameters were used, the estimated dose-factors are very close to the dose factors obtained using age-independent kinetics (within 40%). Thus, the dose factors based on age-independent parameters should suffice for most practical purposes. The dose factors and the associated uncertainties were also calculated as a function of age-at-exposure and attained age. These age dependent curves can be used for estimating doses from continuous intakes, or doses delivered over a limited portion of time. In addition to the committed dose, an expected dose is also estimated in this work. The expected dose is calculated using the dose rate weighted by the probability of surviving up to the age when the dose-rate is delivered. For exposure at young ages the expected dose and the committed dose are similar, but the committed dose decreases to zero when exposure occurs close to age 70, while the expected dose has elevated values pass age 70. No gender differences were found for bone surface, for red bone marrow, and the large intestine. The doses to the soft tissues for females are larger by 20% than the doses for males, because of the differences in the whole-body mass between males and females.

  5. Use of PET/CT instead of CT-only when planning for radiation therapy does not notably increase life years lost in children being treated for cancer.

    PubMed

    Kornerup, Josefine S; Brodin, Patrik; Birk Christensen, Charlotte; Björk-Eriksson, Thomas; Kiil-Berthelsen, Anne; Borgwardt, Lise; Munck Af Rosenschöld, Per

    2015-04-01

    PET/CT may be more helpful than CT alone for radiation therapy planning, but the added risk due to higher doses of ionizing radiation is unknown. To estimate the risk of cancer induction and mortality attributable to the [F-18]2-fluoro-2-deoxyglucose (FDG) PET and CT scans used for radiation therapy planning in children with cancer, and compare to the risks attributable to the cancer treatment. Organ doses and effective doses were estimated for 40 children (2-18 years old) who had been scanned using PET/CT as part of radiation therapy planning. The risk of inducing secondary cancer was estimated using the models in BEIR VII. The prognosis of an induced cancer was taken into account and the reduction in life expectancy, in terms of life years lost, was estimated for the diagnostics and compared to the life years lost attributable to the therapy. Multivariate linear regression was performed to find predictors for a high contribution to life years lost from the radiation therapy planning diagnostics. The mean contribution from PET to the effective dose from one PET/CT scan was 24% (range: 7-64%). The average proportion of life years lost attributable to the nuclear medicine dose component from one PET/CT scan was 15% (range: 3-41%). The ratio of life years lost from the radiation therapy planning PET/CT scans and that of the cancer treatment was on average 0.02 (range: 0.01-0.09). Female gender was associated with increased life years lost from the scans (P < 0.001). Using FDG-PET/CT instead of CT only when defining the target volumes for radiation therapy of children with cancer does not notably increase the number of life years lost attributable to diagnostic examinations.

  6. Low-dose extrapolation of radiation health risks: some implications of uncertainty for radiation protection at low doses.

    PubMed

    Land, Charles E

    2009-11-01

    Ionizing radiation is a known and well-quantified human cancer risk factor, based on a remarkably consistent body of information from epidemiological studies of exposed populations. Typical examples of risk estimation include use of Japanese atomic bomb survivor data to estimate future risk from radiation-related cancer among American patients receiving multiple computed tomography scans, persons affected by radioactive fallout, or persons whose livelihoods involve some radiation exposure, such as x-ray technicians, interventional radiologists, or shipyard workers. Our estimates of radiation-related risk are uncertain, reflecting statistical variation and our imperfect understanding of crucial assumptions that must be made if we are to apply existing epidemiological data to particular situations. Fortunately, that uncertainty is also highly quantifiable, and can be presented concisely and transparently. Radiation protection is ultimately a political process that involves consent by stakeholders, a diverse group that includes people who might be expected to be risk-averse and concerned with plausible upper limits on risk (how bad could it be?), cost-averse and concerned with lower limits on risk (can you prove there is a nontrivial risk at current dose levels?), or combining both points of view. How radiation-related risk is viewed by individuals and population subgroups also depends very much on perception of related benefit, which might be (for example) medical, economic, altruistic, or nonexistent. The following presentation follows the lead of National Council on Radiation Protection and Measurements (NCRP) Commentary 14, NCRP Report 126, and later documents in treating radiation protection from the viewpoint of quantitative uncertainty analysis.

  7. Radiation protection during hybrid procedures: innovation creates new challenges.

    PubMed

    Sawdy, Jaclynn M; Gocha, Mark D; Olshove, Vincent; Chisolm, Joanne L; Hill, Sharon L; Phillips, Alistair; Galantowicz, Mark; Cheatham, John P; Holzer, Ralf J

    2009-09-01

    The cooperation between interventional cardiologists and cardiothoracic surgeons has expanded the spectrum of treatment modalities for patients with congenital heart disease. These hybrid techniques have created new challenges, one of which being the provision of adequate but practical radiation protection. This study evaluates the use of a lightweight radiation protection drape (RADPAD) that may be suitable for shielding during hybrid procedures. To simulate a pediatric patient, an 8.7 liter water-filled tub was placed on an X-ray table and exposed to 10-second cine acquisition runs. Radiation exposure was measured at twelve specified locations around the table using a model with three different levels of radiation protection: no shielding, shielding using a traditional 0.35 mm lead-equivalent apron, and shielding using the 0.25 mm lead-equivalent RADPAD. The traditional lead apron and the RADPAD significantly reduced the amount of radiation dose when compared with no shielding. The standard lead apron provided slightly greater radiation protection than the RADPAD (0.000064 radiation absorbed dose [rad] vs. 0.000091 rad; p = 0.012). The measured rad was significantly higher on the right side of the table, and the measured radiation dose decreased significantly with increasing distance from the table. The RADPAD has been shown to function as an efficient shielding device, even though it does not quite match the protection that can be expected from a standard lead apron. It complies with regulatory radiation protection requirements and its lightweight and sterile use make it particularly useful during hybrid procedures in the operating room.

  8. SU-D-16A-02: A Novel Methodology for Accurate, Semi-Automated Delineation of Oral Mucosa for Radiation Therapy Dose-Response Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, J; Welsh, L; Gulliford, S

    Purpose: The significant morbidity caused by radiation-induced acute oral mucositis means that studies aiming to elucidate dose-response relationships in this tissue are a high priority. However, there is currently no standardized method for delineating the mucosal structures within the oral cavity. This report describes the development of a methodology to delineate the oral mucosa accurately on CT scans in a semi-automated manner. Methods: An oral mucosa atlas for automated segmentation was constructed using the RayStation Atlas-Based Segmentation (ABS) module. A radiation oncologist manually delineated the full surface of the oral mucosa on a planning CT scan of a patient receivingmore » radiotherapy (RT) to the head and neck region. A 3mm fixed annulus was added to incorporate the mucosal wall thickness. This structure was saved as an atlas template. ABS followed by model-based segmentation was performed on four further patients sequentially, adding each patient to the atlas. Manual editing of the automatically segmented structure was performed. A dose comparison between these contours and previously used oral cavity volume contours was performed. Results: The new approach was successful in delineating the mucosa, as assessed by an experienced radiation oncologist, when applied to a new series of patients receiving head and neck RT. Reductions in the mean doses obtained when using the new delineation approach, compared with the previously used technique, were demonstrated for all patients (median: 36.0%, range: 25.6% – 39.6%) and were of a magnitude that might be expected to be clinically significant. Differences in the maximum dose that might reasonably be expected to be clinically significant were observed for two patients. Conclusion: The method developed provides a means of obtaining the dose distribution delivered to the oral mucosa more accurately than has previously been achieved. This will enable the acquisition of high quality dosimetric data for use in dose-response studies. We would like to thank the Engineering and Physical Sciences Research Council for funding. We acknowledge support from the NIHR RM/ICR Biomedical Research Centre. RayStatation was used under an evaluation agreement with RaySearch Laboratories AB.« less

  9. The Fukushima Health Management Survey: estimation of external doses to residents in Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi

    2015-08-01

    The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv 94.0%, <2 mSv 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected.

  10. The Fukushima Health Management Survey: estimation of external doses to residents in Fukushima Prefecture

    PubMed Central

    Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi

    2015-01-01

    The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv; 94.0%, <2 mSv; 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected. PMID:26239643

  11. Characteristics and Dose Levels for Spent Reactor Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, Cameron W

    2007-01-01

    Current guidance considers highly radioactive special nuclear materials to be those materials that, unshielded, emit a radiation dose [rate] measured at 1 m which exceeds 100 rem/h. Smaller, less massive fuel assemblies from research reactors can present a challenge from the point of view of self protection because of their size (lower dose, easier to handle) and the desirability of higher enrichments; however, a follow-on study to cross-compare dose trends of research reactors and power reactors was deemed useful to confirm/verify these trends. This paper summarizes the characteristics and dose levels of spent reactor fuels for both research reactors andmore » power reactors and extends previous studies aimed at quantifying expected dose rates from research reactor fuels worldwide.« less

  12. New era of radiotherapy: an update in radiation-induced lung disease

    PubMed Central

    Benveniste, M. F. K.; Welsh, J.; Godoy, M. C. B.; Betancourt, S. L.; Mawlawi, O. R; Munden, R. F.

    2014-01-01

    Over the last few decades, advances in radiotherapy (RT) technology have improved delivery of radiation therapy dramatically. Advances in treatment planning with the development of image-guided radiotherapy and in techniques such as proton therapy, allows the radiation therapist to direct high doses of radiation to the tumour. These advancements result in improved local regional control while reducing potentially damaging dosage to surrounding normal tissues. It is important for radiologists to be aware of the radiological findings from these advances in order to differentiate expected radiation-induced lung injury (RILD) from recurrence, infection, and other lung diseases. In order to understand these changes and correlate them with imaging, the radiologist should have access to the radiation therapy treatment plans. PMID:23473474

  13. SRT and SBRT: Current practices for QA dosimetry and 3D

    NASA Astrophysics Data System (ADS)

    Benedict, S. H.; Cai, J.; Libby, B.; Lovelock, M.; Schlesinger, D.; Sheng, K.; Yang, W.

    2010-11-01

    The major feature that separates stereotactic radiation therapy (cranial SRT) and stereotactic body radiation therapy (SBRT) from conventional radiation treatment is the delivery of large doses in a few fractions which results in a high biological effective dose (BED). In order to minimize the normal tissue toxicity, quality assurance of the conformation of high doses to the target and rapid fall off doses away from the target is critical. The practice of SRT and SBRT therefore requires a high-level of confidence in the accuracy of the entire treatment delivery process. In SRT and SBRT confidence in this accuracy is accomplished by the integration of modern imaging, simulation, treatment planning and delivery technologies into all phases of the treatment process; from treatment simulation and planning and continuing throughout beam delivery. In this report some of the findings of Task group 101 of the AAPM will be presented which outlines the best-practice guidelines for SBRT. The task group report includes a review of the literature to identify reported clinical findings and expected outcomes for this treatment modality. Information in this task group is provided for establishing an SBRT program, including protocols, equipment, resources, and QA procedures.

  14. Developing patient-specific dose protocols for a CT scanner and exam using diagnostic reference levels.

    PubMed

    Strauss, Keith J

    2014-10-01

    The management of image quality and radiation dose during pediatric CT scanning is dependent on how well one manages the radiographic techniques as a function of the type of exam, type of CT scanner, and patient size. The CT scanner's display of expected CT dose index volume (CTDIvol) after the projection scan provides the operator with a powerful tool prior to the patient scan to identify and manage appropriate CT techniques, provided the department has established appropriate diagnostic reference levels (DRLs). This paper provides a step-by-step process that allows the development of DRLs as a function of type of exam, of actual patient size and of the individual radiation output of each CT scanner in a department. Abdomen, pelvis, thorax and head scans are addressed. Patient sizes from newborns to large adults are discussed. The method addresses every CT scanner regardless of vendor, model or vintage. We cover adjustments to techniques to manage the impact of iterative reconstruction and provide a method to handle all available voltages other than 120 kV. This level of management of CT techniques is necessary to properly monitor radiation dose and image quality during pediatric CT scans.

  15. Some comments on space flight and radiation limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, W E

    Setting limits on human exposure to space-related radiation involves two very different processes - the appropriate hard science, and certain emotional aspects and expectations of the groups involved. These groups include the general public and their elected politicians, the astronauts and flight crews, and NASA managers, each group with different expectations and concerns. Public and political views of human space flight and human radiation exposures are often poorly informed and are often based on emotional reactions to current events which may be distorted by {open_quotes}experts{close_quotes} and the media. Career astronauts` and cosmonauts` views are much more realistic about the risksmore » involved and there is a willingness on their part to accept increased necessary risks. However, there is a concern on their part about career-threatening dose limits, the potential for overexposures, and the health effects from all sources of radiation. There is special concern over radiation from medical studies. This last concern continues to raise the question of {open_quotes}voluntary{close_quotes} participation in studies involving radiation exposure. There is greatly diversity in spaceflight crews and their expectations; and {open_quotes}official{close_quotes} Astronaut Office positions will reflect strong management direction. NASA management has its own priorities and concerns and this fact will be reflected in their crucial influence on radiation limits. NASA, and especially spaceflight crews, might be best served by exposure limits which address all sources of spaceflight radiation and all potential effects from such exposure.« less

  16. Effects of urban agglomeration on surface-UV doses: a comparison of Brewer measurements in Warsaw and Belsk, Poland, for the period 2013-2015

    NASA Astrophysics Data System (ADS)

    Czerwińska, Agnieszka E.; Krzyścin, Janusz W.; Jarosławski, Janusz; Posyniak, Michał

    2016-11-01

    Specific aerosols and cloud properties over large urban regions seem to generate an island, similar to the well-known urban heat island, leading to lower ultraviolet (UV) radiation intensity compared to the surrounding less polluted areas, thus creating a shield against excessive human exposure to UV radiation. The present study focuses on differences between erythemal and UVA (324 nm) doses measured by the Brewer spectrophotometers in Warsaw (52.3° N, 21.0° E) and Belsk (51.8° N, 20.8° E). The latter is a rural region located about 60 km south-west of the city. Ratios between erythemal and UVA partly daily doses, obtained during all-sky and cloudless-sky conditions for the period May 2013-December 2015, were analysed to infer a specific cloud and aerosol forcing on the surface UV doses over Warsaw. Radiative model simulations were carried out to find sources of the observed differences between the sites. It was found that Warsaw urban agglomeration induced 8 and 6 % attenuation of the erythemal and UVA doses respectively. This is mostly due to the lower sun elevation in Warsaw during the near-noon measurements and the larger optical depth of the city aerosols and increased cloudiness. It could be hypothesised that the expected stronger absorption of the solar UV radiation by urban aerosols is compensated for here by a higher surface reflectivity over the city.

  17. Evidence Report: Risk of Acute Radiation Syndromes Due to Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Carnell, Lisa; Blattnig, Steve; Hu, Shaowen; Huff, Janice; Kim, Myung-Hee; Norman, Ryan; Patel, Zarana; Simonsen, Lisa; Wu, Honglu

    2016-01-01

    Crew health and performance may be impacted by a major solar particle event (SPE), multiple SPEs, or the cumulative effect of galactic cosmic rays (GCR) and SPEs. Beyond low-Earth orbit, the protection of the Earth's magnetosphere is no longer available, such that increased shielding and protective mechanisms are necessary in order to prevent acute radiation sickness and impacts to mission success or crew survival. While operational monitoring and shielding are expected to minimize radiation exposures, there are EVA scenarios outside of low-Earth orbit where the risk of prodromal effects, including nausea, vomiting, anorexia, and fatigue, as well as skin injury and depletion of the blood-forming organs (BFO), may occur. There is a reasonable concern that a compromised immune system due to high skin doses from a SPE or due to synergistic space flight factors (e.g., microgravity) may lead to increased risk to the BFO. The primary data available at present are derived from analyses of medical patients and persons accidentally exposed to acute, high doses of low-linear energy transfer (LET) (or terrestrial) radiation. Data more specific to the space flight environment must be compiled to quantify the magnitude of increase of this risk and to develop appropriate protection strategies. In particular, information addressing the distinct differences between solar proton exposures and terrestrial exposure scenarios, including radiation quality, dose-rate effects, and non-uniform dose distributions, is required for accurate risk estimation.

  18. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  19. Evaluation and Mitigation of Secondary Dose Delivered to Electronic Systems in Proton Therapy.

    PubMed

    Wroe, Andrew J

    2016-02-01

    To evaluate the scattered and secondary radiation fields present in and around a passive proton treatment nozzle. In addition, based on these initial tests and system reliability analysis, to develop, install, and evaluate a radiation shielding structure to protect sensitive electronics against single-event effects (SEE) and improve system reliability. Landauer Luxel+ dosimeters were used to evaluate the radiation field around one of the gantry-mounted passive proton delivery nozzles at Loma Linda University Medical Center's James M Slater, MD Proton Treatment and Research Center. These detectors use optically stimulated luminescence technology in conjunction with CR-39 to measure doses from X-ray, gamma, proton, beta, fast neutron, and thermal neutron radiation. The dosimeters were stationed at various positions around the gantry pit and attached to racks on the gantry itself to evaluate the dose to electronics. Wax shielding was also employed on some detectors to evaluate the usefulness of this material as a dose moderator. To create the scattered and secondary radiation field in the gantry enclosure, a polystyrene phantom was placed at isocenter and irradiated with 250 MeV protons to a dose of 1.3 kGy over 16 hours. Using the collected data as a baseline, a composite shielding structure was created and installed to shield electronics associated with the precision patient positioner. The effectiveness of this shielding structure was evaluated with Landauer Luxel+ dosimeters and the results correlated against system uptime. The measured dose equivalent ranged from 1 to 60 mSv, with proton/photon, thermal neutron, fast neutron, and overall dose equivalent evaluated. The position of the detector/electronics relative to both isocenter and also neutron-producing devices, such as the collimators and first and second scatterers, definitely had a bearing on the dose received. The addition of 1-inch-thick wax shielding decreased the fast neutron component by almost 50%, yet this yielded a corresponding average increase in thermal neutron dose of 150% as there was no Boron-10 component to capture thermal neutrons. Using these data as a reference, a shielding structure was designed and installed to minimize radiation to electronics associated with the patient positioner. The installed shielding reduced the total dose experienced by these electronics by a factor of 5 while additionally reducing the fast and thermal neutron doses by a factor of 7 and 14, respectively. The reduction in radiation dose corresponded with a reduction of SEE-related downtime of this equipment from 16.5 hours to 2.5 hours over a 6-month reporting period. The data obtained in this study provided a baseline for radiation exposures experienced by gantry- and pit-mounted electronic systems. It also demonstrated and evaluated a shielding structure design that can be retrofitted to existing electronic system installations. It is expected that this study will benefit future upgrades and facility designs by identifying mechanisms that may minimize radiation dose to installed electronics, thus improving facility uptime. © The Author(s) 2015.

  20. Effects of dexpanthenol with or without Aloe vera extract on radiation-induced oral mucositis: preclinical studies.

    PubMed

    Dörr, W; Schlichting, S; Bray, M A; Flockhart, I R; Hopewell, J W

    2005-03-01

    To define the effect of dexpanthenol with or without Aloe vera extract on radiation-induced oral mucositis. Mouse tongue mucosal ulceration was analysed as the clinically relevant endpoint. Graded single or fractionated dose irradiation (10 x 3 Gy/2 weeks, graded test doses on day 14) were combined with topical administration of dexpanthenol or a base, with or without Aloe vera extract. The formulations were applied for 14 days (single dose) or 24 days after the first fraction. Single dose irradiation resulted in an ED50 (dose at which a positive mucosal response was expected in 50% of the animals irradiated) of 11.9+/-1.2 Gy. None of the formulations yielded a significant change in incidence or time course of ulceration. Test irradiation after 10 x 3 Gy gave an ED50 of 9.0+/-0.1 Gy. Base treatment increased the ED50-values to 10.5+/-0.8 Gy (p = 0.0095) and 9.9+/-0.7 Gy (p = 0.0445) without or with Aloe vera. Dexpanthenol resulted in ED50 values of 9.5+/-0.1 Gy without Aloe vera (p > 0.05), and of 10.9+/-0.9 Gy (p = 0.0035) with Aloe vera. The latent time to ulceration was prolonged, compared to the control (6.3 days) without Aloe vera (8.0-8.2 days, p < 0.001) and with dexpanthenol and Aloe vera (7.3 days, p = 0.0239). With single dose irradiation, neither dexpanthenol nor Aloe vera extract significantly changed the oral mucosal radiation response. With fractionated irradiation, drug administration significantly increased the isoeffective radiation doses, independent of dexpanthenol or Aloe vera content. Neither dexpanthenol nor Aloe vera display a prophylactic potential.

  1. Reducing intraoperative duration and ionising radiation exposure during the insertion of distal locking screws of intramedullary nails: a small-scale study comparing the current fluoroscopic method against radiation-free, electromagnetic navigation.

    PubMed

    Grimwood, Darren; Harvey-Lloyd, Jane

    2016-12-01

    Intramedullary nailing is the standard surgical treatment for mid-diaphyseal fractures of long bones; however, it is also a high radiation dose procedure. Distal locking is regularly cited as a demanding element of the procedure, and there remains a reliance on X-ray fluoroscopy to locate the distal holes. A recently developed electromagnetic navigation (EMN) system allows radiation-free distal locking, with a virtual on-screen image. To compare operative duration, fluoroscopy time and radiation dose when using EMN over fluoroscopy, for the distal locking of intramedullary nails. Consecutive patients with mid-diaphyseal fractures of the tibia and femur, treatable with intramedullary nails, were prospectively enrolled during a 9-month period. The sample consisted of 29 individuals, 19 under fluoroscopic guidance and 10 utilising EMN. Participants were allocated depending on the type of intramedullary nail used and surgeon's preference. These were further divided into tibial and femoral subcategories, relative to the fracture site. EMN reduced fluoroscopy time by 49 (p = 0.038) and 28 s during tibial and femoral nailings, respectively. Radiation dose was reduced by 18 cGy/cm 2 (p = 0.046) during tibial and 181 cGy/cm 2 during femoral nailings when utilising EMN. Operative duration was 11 min slower during tibial nailings using EMN, but 38 min faster in respect of femoral nailings. This study has evidenced statistically significant reductions in both fluoroscopy time and radiation dose when using EMN for the distal locking of intramedullary nails. It is expected that overall operative duration would also decrease in line with similar studies, with increased usage and a larger sample.

  2. The Radiation Environment on the Martian Surface and during MSL's Cruise to Mars

    NASA Astrophysics Data System (ADS)

    Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Ehresmann, Bent; Rafkin, Scot; Martin, Cesar; Boettcher, Stephan; Koehler, Jan; Guo, Jingnan; Brinza, David E.; Reitz, Guenther; Posner, Arik; the MSL Science Team

    2013-04-01

    An important part of assessing present and past habitability of Mars is to understand and characterize "life limiting factors" on the surface, such as the radiation environment. Radiation exposure is also a major concern for future human missions and characterizing the radiation environment, both on the surface of Mars and inside the spacecraft during the cruise to Mars, provides critical information to aid in the planning for future human exploration of Mars. RAD was the first MSL instrument to start collecting data, beginning its science investigation during cruise (10 days after launch) and making the first ever measurements of the radiation environment on another planet. RAD is an energetic particle analyzer designed to characterize a broad spectrum of energetic particle radiation including galactic cosmic rays, solar energetic particles, and secondary neutrons created both in the Mars atmosphere and regolith. RAD observations consist of a time series of periodic (typically hourly) measurements of charged particles from protons (Z=1) up to iron (Z=26) for energies above >10 MeV/nucleon, as well as neutrons from 10 to ~ 100 MeV. These synoptic observations are designed to characterize both the short term variability associated with the onset of solar energetic particle events as well as the long term variability of galactic cosmic rays over the solar cycle. RAD measurements will also be used to quantify the flux of biologically hazardous radiation at the surface of Mars today, and determine how these fluxes vary on diurnal, seasonal, solar cycle and episodic (flare, storm) timescales. These measurements will allow calculations of the depth in rock or soil to which this flux, when integrated over long timescales, provides a lethal dose for known terrestrial organisms. Through such measurements, we can learn how deep below the surface life would have to be, or have been in the past, to be protected. This talk will discuss the results obtained during the ~7 months of cruise observations, which included good characterization of the radiation dose inside MSL. The radiation environment inside the MSL spacecraft is not unlike that expected inside a future manned spacecraft in deep space. Modeling of the effective shielding inside the MSL spacecraft (backshell, heat shield, descent stage, etc.) shows that the average shielding provided by MSL is similar to that of the International Space Station, as well as that being assumed for future manned vehicles. During the 221 days of cruise observations, RAD measured the charged particle flux and dose from galactic cosmic rays as well as significant dose enhancements from 5 solar energetic particle events observed during this period. Even with the level of shielding inside MSL, these solar energetic particle events contributed significantly to the cumulative dose and dose equivalent. Finally, we will present the first-ever measurements of the radiation environment on the surface of Mars. With increased solar activity as we approach the next solar maximum (expected in 2013), direct measurements of the contribution from solar energetic particle events to the total effective dose on the surface of Mars, as well as the contribution from atmospheric and albedo neutrons, will be increasingly important. RAD is supported by NASA (HEOMD) under JPL subcontract #1273039 to SwRI, and by DLR in Germany under contract with Christian-Albrechts-Universitat (CAU).

  3. The Radiation Environment on the Martian Surface and during MSL's Cruise to Mars

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Zeitlin, C.; Wimmer-Schweingruber, R. F.

    2012-12-01

    An important part of assessing present and past habitability of Mars is to understand and characterize "life limiting factors" on the surface, such as the radiation environment. Radiation exposure is also a major concern for future human missions and characterizing the radiation environment, both on the surface of Mars and inside the spacecraft during the cruise to Mars, provides critical information to aid in the planning for future human exploration of Mars. RAD was the first MSL instrument to start collecting data, beginning its science investigation during cruise (10 days after launch) and making the first ever measurements of the radiation environment on another planet. RAD is an energetic particle analyzer designed to characterize a broad spectrum of energetic particle radiation including galactic cosmic rays, solar energetic particles, and secondary neutrons created both in the Mars atmosphere and regolith. RAD observations consist of a time series of periodic (typically hourly) measurements of charged particles from protons (Z=1) up to iron (Z=26) for energies above >10 MeV/nucleon, as well as neutrons from 10 to ~ 100 MeV. These synoptic observations are designed to characterize both the short term variability associated with the onset of solar energetic particle events as well as the long term variability of galactic cosmic rays over the solar cycle. RAD measurements will also be used to quantify the flux of biologically hazardous radiation at the surface of Mars today, and determine how these fluxes vary on diurnal, seasonal, solar cycle and episodic (flare, storm) timescales. These measurements will allow calculations of the depth in rock or soil to which this flux, when integrated over long timescales, provides a lethal dose for known terrestrial organisms. Through such measurements, we can learn how deep below the surface life would have to be, or have been in the past, to be protected. This talk will discuss the results obtained during the ~7 months of cruise observations, which included good characterization of the radiation dose inside MSL. The radiation environment inside the MSL spacecraft is not unlike that expected inside a future manned spacecraft in deep space. Modeling of the effective shielding inside the MSL spacecraft (backshell, heat shield, descent stage, etc.) shows that the average shielding provided by MSL is similar to that of the International Space Station, as well as that being assumed for future manned vehicles. During the 221 days of cruise observations, RAD measured the charged particle flux and dose from galactic cosmic rays as well as significant dose enhancements from 5 solar energetic particle events observed during this period. Even with the level of shielding inside MSL, these solar energetic particle events contributed significantly to the cumulative dose and dose equivalent. Finally, we will present the first-ever measurements of the radiation environment on the surface of Mars. With increased solar activity as we approach the next solar maximum (expected in 2013), direct measurements of the contribution from solar energetic particle events to the total effective dose on the surface of Mars, as well as the contribution from atmospheric and albedo neutrons, will be increasingly important. RAD is supported by NASA (HEOMD) under JPL subcontract #1273039 to SwRI, and by DLR in Germany under contract with Christian-Albrechts-Universitat (CAU).

  4. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable out of low earth orbit (LEO) missions by using these tested material concepts as shielding for sensitive components and new spaceflight hardware

  5. Analytical probabilistic modeling of RBE-weighted dose for ion therapy.

    PubMed

    Wieser, H P; Hennig, P; Wahl, N; Bangert, M

    2017-11-10

    Particle therapy is especially prone to uncertainties. This issue is usually addressed with uncertainty quantification and minimization techniques based on scenario sampling. For proton therapy, however, it was recently shown that it is also possible to use closed-form computations based on analytical probabilistic modeling (APM) for this purpose. APM yields unique features compared to sampling-based approaches, motivating further research in this context. This paper demonstrates the application of APM for intensity-modulated carbon ion therapy to quantify the influence of setup and range uncertainties on the RBE-weighted dose. In particular, we derive analytical forms for the nonlinear computations of the expectation value and variance of the RBE-weighted dose by propagating linearly correlated Gaussian input uncertainties through a pencil beam dose calculation algorithm. Both exact and approximation formulas are presented for the expectation value and variance of the RBE-weighted dose and are subsequently studied in-depth for a one-dimensional carbon ion spread-out Bragg peak. With V and B being the number of voxels and pencil beams, respectively, the proposed approximations induce only a marginal loss of accuracy while lowering the computational complexity from order [Formula: see text] to [Formula: see text] for the expectation value and from [Formula: see text] to [Formula: see text] for the variance of the RBE-weighted dose. Moreover, we evaluated the approximated calculation of the expectation value and standard deviation of the RBE-weighted dose in combination with a probabilistic effect-based optimization on three patient cases considering carbon ions as radiation modality against sampled references. The resulting global γ-pass rates (2 mm,2%) are [Formula: see text]99.15% for the expectation value and [Formula: see text]94.95% for the standard deviation of the RBE-weighted dose, respectively. We applied the derived analytical model to carbon ion treatment planning, although the concept is in general applicable to other ion species considering a variable RBE.

  6. Analytical probabilistic modeling of RBE-weighted dose for ion therapy

    NASA Astrophysics Data System (ADS)

    Wieser, H. P.; Hennig, P.; Wahl, N.; Bangert, M.

    2017-12-01

    Particle therapy is especially prone to uncertainties. This issue is usually addressed with uncertainty quantification and minimization techniques based on scenario sampling. For proton therapy, however, it was recently shown that it is also possible to use closed-form computations based on analytical probabilistic modeling (APM) for this purpose. APM yields unique features compared to sampling-based approaches, motivating further research in this context. This paper demonstrates the application of APM for intensity-modulated carbon ion therapy to quantify the influence of setup and range uncertainties on the RBE-weighted dose. In particular, we derive analytical forms for the nonlinear computations of the expectation value and variance of the RBE-weighted dose by propagating linearly correlated Gaussian input uncertainties through a pencil beam dose calculation algorithm. Both exact and approximation formulas are presented for the expectation value and variance of the RBE-weighted dose and are subsequently studied in-depth for a one-dimensional carbon ion spread-out Bragg peak. With V and B being the number of voxels and pencil beams, respectively, the proposed approximations induce only a marginal loss of accuracy while lowering the computational complexity from order O(V × B^2) to O(V × B) for the expectation value and from O(V × B^4) to O(V × B^2) for the variance of the RBE-weighted dose. Moreover, we evaluated the approximated calculation of the expectation value and standard deviation of the RBE-weighted dose in combination with a probabilistic effect-based optimization on three patient cases considering carbon ions as radiation modality against sampled references. The resulting global γ-pass rates (2 mm,2%) are > 99.15% for the expectation value and > 94.95% for the standard deviation of the RBE-weighted dose, respectively. We applied the derived analytical model to carbon ion treatment planning, although the concept is in general applicable to other ion species considering a variable RBE.

  7. TH-C-17A-03: Dynamic Visualization and Dosimetry of IMRT and VMAT Treatment Plans by Video-Rate Imaging of Cherenkov Radiation in Pure Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaser, A; Andreozzi, J; Davis, S

    Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a watermore » tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559.« less

  8. Defining the upper age limit of luminescence dating: A case study using long lacustrine records from Chew Bahir, Ethiopia

    NASA Astrophysics Data System (ADS)

    Chapot, Melissa S.; Roberts, Helen M.; Lamb, Henry F.; Schäbitz, Frank; Asrat, Asfawossen; Trauth, Martin H.

    2017-04-01

    Optically stimulated luminescence (OSL) dating is a family of numerical chronometric techniques applied to quartz or feldspar mineral grains to assess the time since these grains were last exposed to sunlight (i.e. deposited), based on the amount of energy they absorbed from ambient radiation during burial. The maximum limit of any OSL dating technique is not defined by a fixed upper age limit, but instead by the maximum radiation dose the sample can accurately record before the OSL signal saturates. The challenge is to assess this upper limit of accurate age determination without necessitating comparison to independent age control. Laboratory saturation of OSL signals can be observed using a dose response curve (DRC) plotting OSL signal intensity against absorbed laboratory radiation dose. When a DRC is fitted with a single saturating exponential, one of the equation's parameters can be used to define a pragmatic upper limit beyond which uncertainties become large and asymmetric (Wintle and Murray, 2006). However, many sub-samples demonstrate DRCs that are best defined by double saturating exponential equations, which cannot be used to define this upper limit. To investigate the reliability of luminescence ages approaching saturation, Chapot et al. (2012) developed the Natural DRC concept, which uses expected ages derived from independent age control, combined with sample-specific measurements of ambient radioactivity, to calculate expected doses of absorbed radiation during burial. Natural OSL signal intensity is then plotted against these expected doses and compared to laboratory-generated DRCs. Using this approach, discrepancies between natural and laboratory DRCs have been observed for the same mineral material as natural OSL signal intensities saturate at absorbed radiation doses lower than the pragmatic upper limit defined by laboratory DRCs, leading to increasing age underestimation with depth without a metric for questioning the age reliability. The present study explores a means of defining the upper limit for reliable luminescence ages for sedimentary records without an established chronologic framework, using a long ( 280m; Cohen et al., 2016) lacustrine record from Chew Bahir, Ethiopia, drilled as part of the Hominin Sites and Paleolakes Drilling Project (HSPDP) of the International Continental Scientific Drilling Programme (ICDP) and CRC806 "Our way to Europe". Natural saturation of OSL signals is explored by plotting natural signal intensity against depth, creating a pseudo-Natural DRC that can be compared to laboratory DRCs. Unlike the homogenous deposits of the Chinese Loess Plateau where the Natural DRC concept was developed, the 280m composite core from Chew Bahir shows significant variation in lithology enabling investigation of the effects of sample to sample variability on Natural DRC construction, and facilitating comparison between signals from fine-quartz, fine-polymineral, and coarse-potassium feldspar grains. This work demonstrates how the concepts of Natural DRCs can be used to define the upper dating limit of sample suites without independent age control, providing valuable information for long sedimentary sequences such as the lacustrine deposits from Chew Bahir. Chapot M.S., et al. (2012), Radiation Measurements 47: 1045-1052. Cohen A, et al. (2016), Scientific Drilling 21: 1-16. Wintle, A.G., Murray, A.S. (2006) Radiation Measurements 41: 369-391.

  9. Leukemia and brain tumors among children after radiation exposure from CT scans: design and methodological opportunities of the Dutch Pediatric CT Study.

    PubMed

    Meulepas, Johanna M; Ronckers, Cécile M; Smets, Anne M J B; Nievelstein, Rutger A J; Jahnen, Andreas; Lee, Choonsik; Kieft, Mariëtte; Laméris, Johan S; van Herk, Marcel; Greuter, Marcel J W; Jeukens, Cécile R L P N; van Straten, Marcel; Visser, Otto; van Leeuwen, Flora E; Hauptmann, Michael

    2014-04-01

    Computed tomography (CT) scans are indispensable in modern medicine; however, the spectacular rise in global use coupled with relatively high doses of ionizing radiation per examination have raised radiation protection concerns. Children are of particular concern because they are more sensitive to radiation-induced cancer compared with adults and have a long lifespan to express harmful effects which may offset clinical benefits of performing a scan. This paper describes the design and methodology of a nationwide study, the Dutch Pediatric CT Study, regarding risk of leukemia and brain tumors in children after radiation exposure from CT scans. It is a retrospective record-linkage cohort study with an expected number of 100,000 children who received at least one electronically archived CT scan covering the calendar period since the introduction of digital archiving until 2012. Information on all archived CT scans of these children will be obtained, including date of examination, scanned body part and radiologist's report, as well as the machine settings required for organ dose estimation. We will obtain cancer incidence by record linkage with external databases. In this article, we describe several approaches to the collection of data on archived CT scans, the estimation of radiation doses and the assessment of confounding. The proposed approaches provide useful strategies for data collection and confounder assessment for general retrospective record-linkage studies, particular those using hospital databases on radiological procedures for the assessment of exposure to ionizing or non-ionizing radiation.

  10. Probabilistic Assessment of Radiation Risk for Astronauts in Space Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; DeAngelis, Giovanni; Cucinotta, Francis A.

    2009-01-01

    Accurate predictions of the health risks to astronauts from space radiation exposure are necessary for enabling future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons, (less than 100 MeV); and galactic cosmic rays (GCR), which include protons and heavy ions of higher energies. While the expected frequency of SPEs is strongly influenced by the solar activity cycle, SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, phi. The risk of radiation exposure from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection, including determining the shielding and operational requirements for astronauts and hardware. To support the probabilistic risk assessment for EVAs, which would be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of time within a solar cycle using a nonhomogeneous Poisson model to fit the historical database of measurements of protons with energy > 30 MeV, (phi)30. The resultant organ doses and dose equivalents, as well as effective whole body doses for acute and cancer risk estimations are analyzed for a conceptual habitat module and a lunar rover during defined space mission periods. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning to manage radiation risks for space exploration.

  11. Revisions to US EPA Superfund Risk and Dose Assessment Models and Guidance - 13403

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Stuart A.

    2013-07-01

    The U.S. Environmental Protection Agency (EPA) Superfund program's six Preliminary Remediation Goal (PRG) and Dose Compliance Concentration (DCC) internet based calculators for risk and dose assessment at Superfund sites are being revised to reflect better science, revisions to existing exposure scenarios and new scenarios, and changes to match up more closely with the EPA chemical regional screening level calculator. A revised version of the 1999 guidance document that provides an overview for the Superfund risk assessment process at radioactively contaminated sites, 'Radiation Risk Assessment At CERCLA Sites: Q and A', is being completed that will reflect Superfund recommended guidance andmore » other technical documents issued over the past 13 years. EPA is also issuing a series of fact sheets in the document 'Superfund Radiation Risk Assessment: A Community Tool-kit'. This presentation would go over those changes that are expected to be finished by this spring. (authors)« less

  12. Impact of Breathing 100% Oxygen on Radiation-Induced Cognitive Impairment

    PubMed Central

    Wheeler, Kenneth T.; Payne, Valerie; D’Agostino, Ralph B.; Walb, Matthew C.; Munley, Michael T.; Metheny-Barlow, Linda J.; Robbins, Mike E.

    2015-01-01

    Future space missions are expected to include increased extravehicular activities (EVAs) during which astronauts are exposed to high-energy space radiation while breathing 100% oxygen. Given that brain irradiation can lead to cognitive impairment, and that oxygen is a potent radiosensitizer, there is a concern that astronauts may be at greater risk of developing cognitive impairment when exposed to space radiation while breathing 100% O2 during an EVA. To address this concern, unanesthetized, unrestrained, young adult male Fischer 344 × Brown Norway rats were allowed to breathe 100% O2 for 30 min prior to, during and 2 h after whole-body irradiation with 0, 1, 3, 5 or 7 Gy doses of 18 MV X rays delivered from a medical linear accelerator at a dose rate of ~425 mGy/min. Irradiated and unirradiated rats breathing air (~21% O2) served as controls. Cognitive function was assessed 9 months postirradiation using the perirhinal cortex-dependent novel object recognition task. Cognitive function was not impaired until the rats breathing either air or 100% O2 received a whole-body dose of 7 Gy. However, at all doses, cognitive function of the irradiated rats breathing 100% O2 was improved over that of the irradiated rats breathing air. These data suggest that astronauts are not at greater risk of developing cognitive impairment when exposed to space radiation while breathing 100% O2 during an EVA. PMID:25338095

  13. Comparison of CREME (cosmic-ray effects on microelectronics) model LET (linear energy transfer) spaceflight dosimetry data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letaw, J.R.; Adams, J.H.

    The galactic cosmic radiation (GCR) component of space radiation is the dominant cause of single-event phenomena in microelectronic circuits when Earth's magnetic shielding is low. Spaceflights outside the magnetosphere and in high inclination orbits are examples of such circumstances. In high-inclination orbits, low-energy (high LET) particles are transmitted through the field only at extreme latitudes, but can dominate the orbit-averaged dose. GCR is an important part of the radiation dose to astronauts under the same conditions. As a test of the CREME environmental model and particle transport codes used to estimate single event upsets, we have compiled existing measurements ofmore » HZE doses were compiled where GCR is expected to be important: Apollo 16 and 17, Skylab, Apollo Soyuz Test Project, and Kosmos 782. The LET spectra, due to direct ionization from GCR, for each of these missions has been estimated. The resulting comparisons with data validate the CREME model predictions of high-LET galactic cosmic-ray fluxes to within a factor of two. Some systematic differences between the model and data are identified.« less

  14. Medical Management of Acute Radiation Syndromes : Immunoprophylaxis by Antiradiation Vaccine

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael; Kedar, Prasad

    Introduction: Traditionally, the treatment of Acute Radiation Syndrome (ARS) includes supportive therapy, cytokine therapy, blood component transfusions and even stem cell transplantation. Recommendations for ARS treatment are based on clinical symptoms, laboratory results, radiation exposure doses and information received from medical examinations. However, the current medical management of ARS does not include immune prophylaxis based on antiradiation vaccines or immune therapy with hyperimmune antiradiation serum. Immuneprophylaxis of ARS could result from stimulating the immune system via immunization with small doses of radiation toxins (Specific Radiation Determinants-SRD) that possess significant immuno-stimulatory properties. Methods: Principles of immuno-toxicology were used to derive this method of immune prophylaxis. An antiradiation vaccine containing a mixture of Hematotoxic, Neurotoxic and Non-bacterial (GI) radiation toxins, underwent modification into a toxoid forms of the original SRD radiation toxins. The vaccine was administered to animals at different times prior to irradiation. The animals were subjected to lethal doses of radiation that induced different forms of ARS at LD 100/30. Survival rates and clinical symptoms were observed in both control and vaccine-treated animals. Results: Vaccination with non-toxic doses of Radiation toxoids induced immunity from the elaborated Specific Radiation Determinant (SRD) toxins. Neutralization of radiation toxins by specific antiradiation antibodies resulted in significantly improved clinical symptoms in the severe forms of ARS and observed survival rates of 60-80% in animals subjected to lethal doses of radiation expected to induce different forms of ARS at LD 100/30. The most effective vaccination schedule for the antiradiation vaccine consisted of repeated injections 24 and 34 days before irradiation. The vaccine remained effective for the next two years, although the specific immune memory probably persists for a much longer time period. Conclusion: The medical management of ARS by the application of an ARS-specific antiradiation vaccine resulted in significant increases of post-radiation survival rates, even in the absence of traditional ARS therapeutic treatments. The decreased mortality and improved clinical symptoms observed in animals treated with the antiradiation vaccine may lessen the burden of medical therapy and pharmaceuticals required for treatment. However, we hypothesize that a combination of the traditional treatment methods and specific immune prophylaxis by an antiradiation vaccine will potentially be even more effective than either alone.

  15. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer.

    PubMed

    Freytag, Svend O; Stricker, Hans; Pegg, Jan; Paielli, Dell; Pradhan, Deepak G; Peabody, James; DePeralta-Venturina, Mariza; Xia, Xueqing; Brown, Steve; Lu, Mei; Kim, Jae Ho

    2003-11-01

    The primary study objective was to determine the safety of intraprostatic administration of a replication-competent, oncolytic adenovirus containing a cytosine deaminase (CD)/herpes simplex virus thymidine kinase (HSV-1 TK) fusion gene concomitant with increasing durations of 5-fluorocytosine and valganciclovir prodrug therapy and conventional-dose three-dimensional conformal radiation therapy (3D-CRT) in patients with newly diagnosed, intermediate- to high-risk prostate cancer. Secondary objectives were to determine the persistence of therapeutic transgene expression in the prostate and to examine early posttreatment response. Fifteen patients in five cohorts received a single intraprostatic injection of 10(12) viral particles of the replication-competent Ad5-CD/TKrep adenovirus on day 1. Two days later, patients were administered 5-fluorocytosine and valganciclovir prodrug therapy for 1 (cohorts 1-3), 2 (cohort 4), or 3 (cohort 5) weeks along with 70-74 Gy 3D-CRT. Sextant needle biopsy of the prostate was obtained at 2 (cohort 1), 3 (cohort 2), and 4 (cohort 3) weeks for determination of the persistence of transgene expression. There were no dose-limiting toxicities and no significant treatment-related adverse events. Ninety-four percent of the adverse events observed were mild to moderate and self-limiting. Acute urinary and gastrointestinal toxicities were similar to those expected for conventional-dose 3D-CRT. Therapeutic transgene expression was found to persist in the prostate for up to 3 weeks after the adenovirus injection. As expected for patients receiving definitive radiation therapy, all patients experienced significant declines in prostate-specific antigen (PSA). The mean PSA half-life in patients administered more than 1 week of prodrug therapy was significantly shorter than that of patients receiving prodrugs for only 1 week (0.6 versus 2.0 months; P < 0.02) and markedly shorter than that reported previously for patients treated with conventional-dose 3D-CRT alone (2.4 months). With a median follow-up of only 9 months, 5 of 10 (50%) patients not treated with androgen-deprivation therapy achieved a serum PSA < or = 0.5 ng/ml. The results demonstrate that replication-competent adenovirus-mediated double-suicide gene therapy can be combined safely with conventional-dose 3D-CRT in patients with intermediate- to high-risk prostate cancer. The shorter than expected PSA half-life in patients receiving more than 1 week of prodrug therapy may suggest a possible interaction between the oncolytic adenovirus and/or double-suicide gene therapies and radiation therapy.

  16. SU-C-BRD-05: Non-Invasive in Vivo Biodosimetry in Radiotherapy Patients Using Electron Paramagnetic Resonance (EPR) Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahar, N; Roberts, K; Stabile, F

    Purpose: Medical intervention following a major, unplanned radiation event can elevate the human whole body exposure LD50 from 3 to 7 Gy. On a large scale, intervention cannot be achieved effectively without accurate and efficient triage. Current methods of retrospective biodosimetry are restricted in capability and applicability; published human data is limited. We aim to further develop, validate, and optimize an automated field-deployable in vivo electron paramagnetic resonance (EPR) instrument that can fill this need. Methods: Ionizing radiation creates highly-stable, carbonate-based free radicals within tooth enamel. Using a process similar to nuclear magnetic resonance, EPR directly measures the presence ofmore » radiation-induced free radicals. We performed baseline EPR measurements on one of the upper central incisors of total body irradiation (TBI) and head and neck (H&N) radiotherapy patients before their first treatment. Additional measurements were performed between subsequent fractions to examine the EPR response with increasing radiation dose. Independent dosimetry measurements were performed with optically-stimulated luminescent dosimeters (OSLDs) and diodes to more accurately establish the relationship between EPR signal and delivered radiation dose. Results: 36 EPR measurements were performed over the course of four months on two TBI and four H & N radiotherapy patients. We observe a linear increase in EPR signal with increasing dose across the entirety of the tested range. A linear least squares-weighted fit of delivered dose versus measured signal amplitude yields an adjusted R-square of 0.966. The standard error of inverse prediction (SEIP) is 1.77 Gy. For doses up to 7 Gy, the range most relevant to triage, we calculate an SEIP of 1.29 Gy. Conclusion: EPR spectroscopy provides a promising method of retrospective, non-invasive, in vivo biodosimetry. Our preliminary data show an excellent correlation between predicted signal amplitude and delivered dose. With further development, a robust means of predicting delivered radiation dose from EPR measurements is expected. This project was funded by the Biomedical Advanced Research and Development Authority (BARDA) within the U.S. Department of Health and Human Services subcontracted through the Geisel School of Medicine at Dartmouth and by the Dartmouth Physically-Based Biodosimetry Center for Medical Countermeasures Against Radiation (Dart-Dose CMCR) Pilot Program.« less

  17. Damage threshold of platinum coating used for optics for self-seeding of soft x-ray free electron laser

    DOE PAGES

    Krzywinski, Jacek; Cocco, Daniele; Moeller, Stefan; ...

    2015-02-23

    We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2.1 deg. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. Wemore » have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm 2. The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm 2 and 0.75 J/cm 2 respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.« less

  18. A summary of evidence on radiation exposures received near to the Semipalatinsk nuclear weapons test site in Kazakhstan.

    PubMed

    Simon, Steven L; Baverstock, Keith F; Lindholm, Carita

    2003-06-01

    The presently available evidence about the magnitude of doses received by members of the public living in villages in the vicinity of Semipalatinsk nuclear test in Kazakhstan, particularly with respect to external radiation, while preliminary, is conflicting. The village of Dolon, in particular, has been identified for many years as the most highly exposed location in the vicinity of the test site. Previous publications cited external doses of more than 2 Gy to residents of Dolon while an expert group assembled by the WHO in 1997 estimated that external doses were likely to have been less than 0.5 Gy. In 2001, a larger expert group workshop was held in Helsinki jointly by the WHO, the National Cancer Institute of the United States, and the Radiation and Nuclear Safety Authority of Finland, with the expressed purpose to acquire data to evaluate the state of knowledge concerning doses received in Kazakhstan. This paper summarizes evidence presented at that workshop. External dose estimates from calculations based on sparse physical measurements and bio-dosimetric estimates based on chromosome abnormalities and electron paramagnetic resonance from a relatively small sample of teeth do not agree well. The physical dose estimates are generally higher than the biodosimetric estimates (1 Gy or more compared to 0.5 Gy or less). When viewed in its entirety, the present body of evidence does not appear to support external doses greater than 0.5 Gy; however, research is continuing to try and resolve the difference in dose estimates from the different methods. Thyroid doses from internal irradiation, which can only be estimated via calculation, are expected to have been several times greater than the doses from external irradiation, especially where received by small children.

  19. Radiation Resistance and Life Time Estimates at Cryogenic Temperatures of Series Produced By-Pass Diodes for the LHC Magnet Protection

    NASA Astrophysics Data System (ADS)

    Denz, R.; Gharib, A.; Hagedorn, D.

    2004-06-01

    For the protection of the LHC superconducting magnets about 2100 specially developed by-pass diodes have been manufactured in industry and more than one thousand of these diodes have been mounted into stacks and tested in liquid helium. By-pass diode samples, taken from the series production, have been submitted to irradiation tests at cryogenic temperatures together with some prototype diodes up to an accumulated dose of about 2 kGy and neutron fluences up to about 3.0 1013 n cm-2 with and without intermediate warm up to 300 K. The device characteristics of the diodes under forward bias and reverse bias have been measured at 77 K and ambient versus dose and the results are presented. Using a thermo-electrical model and new estimates for the expected dose in the LHC, the expected lifetime of the by-pass diodes has been estimated for various positions in the LHC arcs. It turns out that for all of the by-pass diodes across the arc elements the radiation resistance is largely sufficient. In the dispersion suppresser regions of the LHC, on a few diodes annual annealing during the shut down of the LHC must be applied or those diodes may need to be replaced after some time.

  20. SU-F-T-683: Cancer Stem Cell Hypothesis and Radiation Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourkal, E

    Purpose: The tumor control probability in radiation therapy allows comparing different radiation treatments to each other by means of calculating the probability that a prescribed dose of radiation eradicates or controls the tumor. In the conventional approach, all cancer cells can divide unlimited number of times and the tumor control often means eradicating every malignant cell by the radiation. In recent years however, there is a mounting consensus that in a given tumor volume there is a sub-population of cells, known as cancer stem cells (CSCs) that are responsible for tumor initiation and growth. Other or progenitor cancer cells canmore » only divide limited number of times. This entails that only cancer stem cells may nned to be eliminated in order to control the tumor. Thus one may define TCP as the probability of eliminating CSCs for the given dose of radiation. Methods: Using stochastic methods, specifically the birth-and-death Markov processes, an infinite system of equations is set for probabilities of having m cancer stem cells at time t after the start of radiation. The TCP is calculated as the probability of no cancer stem cells surviving the radiation. Two scenarios are studied. In the first situation, the TCP is calculated for a unidirectional case when CSC gives birth to another CSC or a progenitor cell. In the second scenario, a bidirectional model is studied where the progenitor cell gives rise to CSC. Results: The proposed calculations show that the calculated TCP for CSC depends on whether one adopts unidirectional or bidirectional conversion models. The bidirectional model shows significantly lower TCP values for the given dose delivered to the tumor. Conclusion: Incorporating CSC hypothesis into the TCP modeling may notably influence the dose prescription as well as the concept of the expected TCP after the radiation treatments.« less

  1. Distribution of Chromosome Breakpoints in Human Epithelial Cells Exposed to Low- and High-LET Radiations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is not only its ability to identify simultaneously both inter- and intrachromosome exchanges, but also the ability to measure the breakpoint location along the length of the chromosome in a precision that is unmatched with other traditional banding techniques. Breakpoints on specific regions of a chromosome have been known to associate with specific cancers. The breakpoint distribution in cells after low- and high-LET radiation exposures will also provide the data for biophysical modeling of the chromatin structure, as well as the data for the modeling the formation of radiation-induced chromosome aberrations. In a series of experiments, we studied low- and high-LET radiation-induced chromosome aberrations using the mBAND technique with chromosome 3 painted in 23 different colored bands. Human epithelial cells (CH1 84B5F5/M10) were exposed in vitro to Cs- 137 rays at both low and high dose rates, secondary neutrons with a broad energy spectrum at a low dose rate and 600 MeV/u Fe ions at a high dose rate. The data of both inter- and intrachromosome aberrations involving the painted chromosome have been reported previously. Here we present data of the location of the chromosome breaks along the length of chromosome 3 in the cells after exposures to each of the four radiation scenarios. In comparison to the expected breakpoint distribution based on the length of the bands, the observed distribution appeared to be non-random for both the low- and high-LET radiations. In particular, hot spots towards both ends of the chromosome were found after low-LET irradiations of either low or high dose rates. For both high-LET radiation types (Fe ions and neutrons), the breakpoint distributions were similar, and were much smoother than that for low-LET radiation. The dependence of the breakpoint distribution on the radiation quality requires further investigations.

  2. Effects of radiation on the leach rates of vitrified radioactive waste

    NASA Astrophysics Data System (ADS)

    Burns, W. G.; Hughes, A. E.; Marples, J. A. C.; Nelson, R. S.; Stoneham, A. M.

    1982-06-01

    This report reviews the possible effects of both radiation damage to the glass and of radiolysis of the leachant on the leaching behaviour of vitrified radioactive waste. It has been stimulated particularly by recent papers, which have suggested that the leach rates of glasses will be enhanced by large factors after a 'critical' dose of radiation from alpha decays. These experiments have been conducted at highly accelerated rates using ion beams. The relationship between these experiments and the situation in vitrified waste has been assessed, taking into account the fact that experiments using alpha emitters incorporated in the glass have failed to find significantly enhanced leach rates after doses about five times larger than those equivalent to this 'critical' dose. It is concluded that these differences are observed partly because the ion beam experiments are carried out at such high dose rates that some recovery effects important at lower rates do not come into play. In the case of experiments with 2 keV argon ions, surface effects other than genuine radiation damage must be taken into account. In practice, if water has penetrated the canister, vitrified waste will be irradiated in the presence of the leaching solution. Enhancements of the leach rate due to the transient effects of radiation in the solid are shown to be completely negligible. The effects of radiolysis of the leaching solution and of any air in contact with the solution have also been considered in some detail and related to recent experiments by McVay and Pederson. It is shown that these radiolysis effects will not lead to any situations requiring special precautions in practice, although changes in surface leach rate by small factors can be expected under some circumstances. Any effect of irradiation on leach rates must be seen in the context of a waste repository. Along with other studies we hold the view that the rate of loss of material will be limited by the access of water to the repository, and will therefore depend on the effective saturation solubility of the glass in the leachant, not on the leach rate as usually determined in laboratory tests. Radiation damage is not expected to change the saturation solubility by more than a factor of two or three.

  3. Accelerator-based tests of radiation shielding properties of materials used in human space infrastructures.

    PubMed

    Lobascio, C; Briccarello, M; Destefanis, R; Faraud, M; Gialanella, G; Grossi, G; Guarnieri, V; Manti, L; Pugliese, M; Rusek, A; Scampoli, P; Durante, M

    2008-03-01

    Shielding is the only practical countermeasure for the exposure to cosmic radiation during space travel. It is well known that light, hydrogenated materials, such as water and polyethylene, provide the best shielding against space radiation. Kevlar and Nextel are two materials of great interest for spacecraft shielding because of their known ability to protect human space infrastructures from meteoroids and debris. We measured the response to simulated heavy-ion cosmic radiation of these shielding materials and compared it to polyethylene, Lucite (PMMA), and aluminum. As proxy to galactic nuclei we used 1 GeV n iron or titanium ions. Both physics and biology tests were performed. The results show that Kevlar, which is rich in carbon atoms (about 50% in number), is an excellent space radiation shielding material. Physics tests show that its effectiveness is close (80-90%) to that of polyethylene, and biology data suggest that it can reduce the chromosomal damage more efficiently than PMMA. Nextel is less efficient as a radiation shield, and the expected reduction on dose is roughly half that provided by the same mass of polyethylene. Both Kevlar and Nextel are more effective than aluminum in the attenuation of heavy-ion dose.

  4. SU-E-I-29: Care KV: Dose It Influence Radiation Dose in Non-Contrast Examination of CT Abdomen/pelvis?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Ganesh, H; Weir, V

    Purpose: CARE kV is a tool that automatically recommends optimal kV setting for individual patient for specific CT examination. The use of CARE kV depends on topogram and the user-selected contrast behavior. CARE kV is expected to reduce radiation dose while improving image quality. However, this may work only for certain groups of patients and/or certain CT examinations. This study is to investigate the effects of CARE kV on radiation dose of non-contrast examination of CT abdomen/pelvis. Methods: Radiation dose (CTDIvol and DLP) from patients who underwent abdomen/pelvis non-contrast examination with and without CARE kV were retrospectively reviewed. All patientsmore » were scanned in the same scanner (Siemens Somatom AS64). To mitigate any possible influences due to technologists’ unfamiliarity with the CARE kV, the data with CARE kV were retrieved 1.5 years after the start of CARE kV usage. T-test was used for significant difference in radiation dose. Results: Volume CTDIs and DLPs from 18 patients before and 24 patients after the use of CARE kV were obtained in a duration of one month. There is a slight increase in both average CTDIvol and average DLP with CARE kV compared to those without CARE kV (25.52 mGy vs. 22.65 mGy for CTDIvol; 1265.81 mGy-cm vs. 1199.19 mGy-cm). Statistically there was no significant difference. Without CARE kV, 140 kV was used in 9 of 18 patients, while with CARE KV, 140 kV was used in 15 of 24 patients. 80kV was not used in either group. Conclusion: The use of CARE kV may save time for protocol optimization and minimize variability among technologists. Radiation dose reduction was not observed in non-contrast examinations of CT abdomen/pelvis. This was partially because our CT protocols were tailored according to patient size before CARE kV and partially because of large size patients.« less

  5. Effective Dose of CT- and Fluoroscopy-Guided Perineural/Epidural Injections of the Lumbar Spine: A Comparative Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Gebhard; Schmitz, Alexander; Borchardt, Dieter

    The objective of this study was to compare the effective radiation dose of perineural and epidural injections of the lumbar spine under computed tomography (CT) or fluoroscopic guidance with respect to dose-reduced protocols. We assessed the radiation dose with an Alderson Rando phantom at the lumbar segment L4/5 using 29 thermoluminescence dosimeters. Based on our clinical experience, 4-10 CT scans and 1-min fluoroscopy are appropriate. Effective doses were calculated for CT for a routine lumbar spine protocol and for maximum dose reduction; as well as for fluoroscopy in a continuous and a pulsed mode (3-15 pulses/s). Effective doses under CTmore » guidance were 1.51 mSv for 4 scans and 3.53 mSv for 10 scans using a standard protocol and 0.22 mSv and 0.43 mSv for the low-dose protocol. In continuous mode, the effective doses ranged from 0.43 to 1.25 mSv for 1-3 min of fluoroscopy. Using 1 min of pulsed fluoroscopy, the effective dose was less than 0.1 mSv for 3 pulses/s. A consequent low-dose CT protocol reduces the effective dose compared to a standard lumbar spine protocol by more than 85%. The latter dose might be expected when applying about 1 min of continuous fluoroscopy for guidance. A pulsed mode further reduces the effective dose of fluoroscopy by 80-90%.« less

  6. 10 CFR 960.5-2-1 - Population density and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-1... repository operation and closure, (1) the expected average radiation dose to members of the public within any...) Disqualifying conditions. A site shall be disqualified if— (1) Any surface facility of a repository would be...

  7. Dose- and Ion-Dependent Effects in the Oxidative Stress Response to Space-Like Radiation Exposure in the Skeletal System

    PubMed Central

    Alwood, Joshua S.; Tran, Luan H.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Kumar, Akhilesh; Hilton, Diane; Tahimic, Candice G. T.; Globus, Ruth K.

    2017-01-01

    Space radiation may pose a risk to skeletal health during subsequent aging. Irradiation acutely stimulates bone remodeling in mice, although the long-term influence of space radiation on bone-forming potential (osteoblastogenesis) and possible adaptive mechanisms are not well understood. We hypothesized that ionizing radiation impairs osteoblastogenesis in an ion-type specific manner, with low doses capable of modulating expression of redox-related genes. 16-weeks old, male, C57BL6/J mice were exposed to low linear-energy-transfer (LET) protons (150 MeV/n) or high-LET 56Fe ions (600 MeV/n) using either low (5 or 10 cGy) or high (50 or 200 cGy) doses at NASA’s Space Radiation Lab. Five weeks or one year after irradiation, tissues were harvested and analyzed by microcomputed tomography for cancellous microarchitecture and cortical geometry. Marrow-derived, adherent cells were grown under osteoblastogenic culture conditions. Cell lysates were analyzed by RT-PCR during the proliferative or mineralizing phase of growth, and differentiation was analyzed by imaging mineralized nodules. As expected, a high dose (200 cGy), but not lower doses, of either 56Fe or protons caused a loss of cancellous bone volume/total volume. Marrow cells produced mineralized nodules ex vivo regardless of radiation type or dose; 56Fe (200 cGy) inhibited osteoblastogenesis by more than 90% (5 weeks and 1 year post-IR). After 5 weeks, irradiation (protons or 56Fe) caused few changes in gene expression levels during osteoblastogenesis, although a high dose 56Fe (200 cGy) increased Catalase and Gadd45. The addition of exogenous superoxide dismutase (SOD) protected marrow-derived osteoprogenitors from the damaging effects of exposure to low-LET (137Cs γ) when irradiated in vitro, but had limited protective effects on high-LET 56Fe-exposed cells. In sum, either protons or 56Fe at a relatively high dose (200 cGy) caused persistent bone loss, whereas only high-LET 56Fe increased redox-related gene expression, albeit to a limited extent, and inhibited osteoblastogenesis. Doses below 50 cGy did not elicit widespread responses in any parameter measured. We conclude that high-LET irradiation at 200 cGy impaired osteoblastogenesis and regulated steady-state gene expression of select redox-related genes during osteoblastogenesis, which may contribute to persistent bone loss. PMID:28994728

  8. Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: a concise review.

    PubMed

    Hofer, Michal; Pospíšil, Milan; Komůrková, Denisa; Hoferová, Zuzana

    2014-04-16

    This article concisely summarizes data on the action of one of the principal and best known growth factors, the granulocyte colony-stimulating factor (G-CSF), in a mammalian organism exposed to radiation doses inducing acute radiation syndrome. Highlighted are the topics of its real or anticipated use in radiation accident victims, the timing of its administration, the possibilities of combining G-CSF with other drugs, the ability of other agents to stimulate endogenous G-CSF production, as well as of the capability of this growth factor to ameliorate not only the bone marrow radiation syndrome but also the gastrointestinal radiation syndrome. G-CSF is one of the pivotal drugs in the treatment of radiation accident victims and its employment in this indication can be expected to remain or even grow in the future.

  9. Health Risk Evaluations for Ingestion Exposure of Humans to Polonium-210

    PubMed Central

    Scott, Bobby R.

    2007-01-01

    The incident in London during November 2006 involving a lethal intake by Mr. Alexander Litvinenko of the highly-radioactive, alpha-particles-emitting polonium-210 (Po-210) isotope, presumably via ingestion, sparked renewed interest in the area of Po-210 toxicity to humans. This paper is the result of assembling and interpreting existing Po-210 data within the context of what is considered a reliable risk model (hazard-function [HF] model) for characterizing the risk of death from deterministic effects of high alpha radiation doses and dose rates to body organs. The HF model was developed to address radiation exposure scenarios involving combined exposures to alpha, beta, and gamma radiations and can be used in circumstances where only one type of radiation is involved. Under a plausible but not yet validated set of assumptions and using available megabecquerel (Po-210) to gray dose-conversion factors, acute lethality risk vs. dose curves were developed for circumstances of ingestion exposure to Po-210 by humans. Initial risk calculations were carried out for a reference adult male human (a hypothetical 70-kg person). Results were then modified for application to all ages (except the in utero child) via the use of systemic Po-210 burden. Because of the unavailability of acute lethality data derived from human ingestions of high levels of Po-210, plausibility of risk calculations were evaluated based on data from studies of Po-210 injections in animals. The animal data, although limited, were found to be consistent with the theoretical risk calculations. Key findings are as follows: (1) ingestion (or inhalation) of a few tents of a milligram of Po-210 will likely be fatal to all exposed persons. (2) Lethal intakes are expected to involve fatal damage to the bone marrow which is likely to be compounded by damage caused by higher doses to other organs including the kidneys and liver. (3) Lethal intakes are expected to cause severe damage to the kidney, spleen, stomach, small and large intestines, lymph nodes, skin, and testes (males) in addition to the fatal damage to bone marrow. (4) The time distribution of deaths is expected to depend on the level of radioactivity ingested or inhaled, with deaths occurring within about a month after very high levels of radioactivity intake (e.g., systemic burdens > 1 MBq/kg-body-mass) and occurring over longer periods, possibly up to or exceeding a year for lower but lethal intakes (systemic burdens from 0.1 to 1.0 MBq/kg-body-mass). Below a systemic burden estimate of 0.02 MBq/kg-body-mass, deaths from deterministic effects are not expected to occur but the risk of cancer and for life shortening could be significant. New, funded experimental and modeling/theoretical research is needed to improve on these estimates. PMID:18648599

  10. A prospective study on radiation-induced changes in hearing function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Franziska; Doerr, Wolfgang; Experimental Center, Medical Faculty Carl Gustav Carus, University of Technology-Dresden, Dresden

    Purpose: To quantitate changes in hearing function after radiotherapy for head-and-neck tumors. Methods and Materials: At the Department of Radiotherapy and Radiation Oncology, 32 patients were irradiated for head-and-neck tumors. Three-dimensional treatment planning was applied. Total tumor doses were 30.0-77.6 Gy, local doses to the inner ear (n = 64) ranged from 1.7 to 64.3 Gy. Audiometry was performed before the onset of radiotherapy (RT), at a tumor dose of 40 Gy or at the end of palliative treatment, at the end of curative RT, and 2-6 months post-RT. Assays applied were frequency-specific threshold measurements for air and bone conduction,more » measurements according to Weber and Rinne, tympanometry and assessment of the stapedius reflex. Results: Age and prior disease significantly decreased, whereas previous or concurrent alcohol consumption significantly increased hearing ability. A significant reduction in hearing ability during RT was found for high frequencies (at 40 Gy) and low frequencies (at end of RT), which persisted after RT. No differences were observed for air or bone conduction. None of the other assays displayed time- or dose-dependent changes. Dose-effect analyses revealed an ED50 (dose at which a 50% incidence is expected) for significant changes in hearing thresholds (15 dB) in the range of 20-25 Gy, with large confidence limits. Conclusions: Radiation effects on hearing ability were confined to threshold audiogram values, which started during the treatment without reversibility during 6 months postradiotherapy.« less

  11. Application of dosimetry systems and cytogenetic status of the child population exposed to diagnostic X-rays by use of the cytokinesis-block micronucleus cytome assay.

    PubMed

    Gajski, Goran; Milković, Durđica; Ranogajec-Komor, Mária; Miljanić, Saveta; Garaj-Vrhovac, Vera

    2011-10-01

    Low-dose ionizing radiation used for medical purposes is one of the definite risk factors for cancer development, and children exposed to ionizing radiation are at a relatively greater cancer risk as they have more rapidly dividing cells than adults and have longer life expectancy. Since cytokinesis-block micronucleus cytome (CBMN Cyt) assay has become one of the standard endpoints for radiation biological dosimetry, we used that assay in the present work for the assessment of different types of chromosomal damage in children exposed to diagnostic X-ray procedures. Twenty children all with pulmonary diseases between the ages of 4 and 14 years (11.30 ± 2.74) were evaluated. Absorbed dose measurements were conducted for posterior-anterior projection on the forehead, thyroid gland, gonads, chest and back. Doses were measured using thermoluminescence and radiophotoluminescent dosimetry systems. It was shown that, after diagnostic X-rays, the mean total number of CBMN Cyt assay parameters (micronucleus, nucleoplasmic bridges and nuclear buds) was significantly higher than prior to diagnostic procedure and that interindividual differences existed for each monitored child. For the nuclear division index counted prior and after examination, no significant differences were noted among mean group values. These data suggest that even low-dose diagnostic X-ray exposure may induce damaging effect in the somatic DNA of exposed children, indicating that immense care should be given in both minimizing and optimizing radiation exposure to diminish the radiation burden, especially in the youngest population. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module crew quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M.; Zapp, N.; Barber, R.; Wilson, J.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F.

    With 5 to 7-month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through an dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (Cn Hn ), is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in dose equivalent to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  14. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  15. Optical dosimetry of radiotherapy beams using Cherenkov radiation: the relationship between light emission and dose.

    PubMed

    Glaser, Adam K; Zhang, Rongxiao; Gladstone, David J; Pogue, Brian W

    2014-07-21

    Recent studies have proposed that light emitted by the Cherenkov effect may be used for a number of radiation therapy dosimetry applications. There is a correlation between the captured light and expected dose under certain conditions, yet discrepancies have also been observed and a complete examination of the theoretical differences has not been done. In this study, a fundamental comparison between the Cherenkov emission and absorbed dose was explored for x-ray photons, electrons, and protons using both a theoretical and Monte Carlo-based analysis. Based on the findings of where dose correlates with Cherenkov emission, it was concluded that for x-ray photons the light emission would be optimally suited for narrow beam stereotactic radiation therapy and surgery validation studies, for verification of dynamic intensity-modulated and volumetric modulated arc therapy treatment plans in water tanks, near monoenergetic sources (e.g., Co-60 and brachy therapy sources) and also for entrance and exit surface imaging dosimetry of both narrow and broad beams. For electron use, Cherenkov emission was found to be only suitable for surface dosimetry applications. Finally, for proton dosimetry, there exists a fundamental lack of Cherenkov emission at the Bragg peak, making the technique of little use, although post-irradiation detection of light emission from radioisotopes could prove to be useful.

  16. An evaluation of NCRP report 151--radiation shielding design for radiotherapy facilities, and a feasibility study for 6 MV open-door treatments in an existing high-energy radiation therapy bunker

    NASA Astrophysics Data System (ADS)

    Kildea, John

    This thesis describes a study of shielding design techniques used for radiation therapy facilities that employ megavoltage linear accelerators. Specifically, an evaluation of the shielding design formalism described in NCRP report 151 was undertaken and a feasibility study for open-door 6 MV radiation therapy treatments in existing 6 MV, 18 MV treatment rooms at the Montreal General Hospital (MGH) was conducted. To evaluate the shielding design formalism of NCRP 151, barrier-attenuated equivalent doses were measured for several of the treatment rooms at the MGH and compared with expectations from NCRP 151 calculations. It was found that, while the insight and recommendations of NCRP 151 are very valuable, its dose predictions are not always correct. As such, the NCRP 151 methodology is best used in conjunction with physical measurements. The feasibility study for 6 MV open-door treatments made use of the NCRP 151 formalism, together with physical measurements for realistic 6 MV workloads. The results suggest that, dosimetrically, 6 MV open door treatments are feasible. A conservative estimate for the increased dose at the door arising from such treatments is 0.1 mSv, with a 1/8 occupancy factor, as recommended in NCRP 151, included.

  17. Comparison of three and four-field radiotherapy technique and the effect of laryngeal shield on vocal and spinal cord radiation dose in radiotherapy of non-laryngeal head and neck tumors

    NASA Astrophysics Data System (ADS)

    Pour, Noushin Hassan; Farajollahi, Alireza; Jamali, Masoud; Zeinali, Ahad; Jangjou, Amir Ghasemi

    2018-03-01

    Introduction: Due to the effect of radiation on both the tumor and the surrounding normal tissues, the side effects of radiation in normal tissues are expected. One of the important complications in the head and neck radiotherapy is the doses reached to the larynx and spinal cord of patients with non-laryngeal head and neck tumors. Materials and Methods: In this study, CT scan images of 25 patients with non-laryngeal tumors including; lymph nodes, tongue, oropharynx and nasopharynx were used. A three-field and a four-field treatment planning with and without laryngeal shield in 3D CRT technique were planned for each patient. Subsequently, the values of Dmin, Dmean, Dmax and Dose Volume Histogram from the treatment planning system and NTCP values of spinal cord and larynx were calculated with BIOPLAN and MATLAB software for all patients. Results: Statistical results showed that mean values of doses of larynx in both three and four-field methods were significantly different between with and without shield groups. Comparison of absorbed dose didn't show any difference between the three and four field methods (P>0.05). Using Shield, just the mean and minimum doses of spinal cord decreased in both three and four fields. The NTCP of the spinal cord and larynx by three and four-field methods with shield in the LKB and EUD models significantly are less than that of the three and four fields without shields, and in the four-field method NTCP of larynx is less than three radiation field. Conclusion: The results of this study indicate that there is no significant difference in doses reached to larynx and spinal cord between the treatments techniques, but laryngeal shield reduce dose and NTCP values in larynx considerably.

  18. On-line data collection platform for national dose surveys in diagnostic and interventional radiology.

    PubMed

    Vassileva, J; Simeonov, F; Avramova-Cholakova, S

    2015-07-01

    According to the Bulgarian regulation for radiation protection at medical exposure, the National Centre of Radiobiology and Radiation Protection (NCRRP) is responsible for performing national dose surveys in diagnostic and interventional radiology and nuclear medicine and for establishing of national diagnostic reference levels (DRLs). The next national dose survey is under preparation to be performed in the period of 2015-16, with the aim to cover conventional radiography, mammography, conventional fluoroscopy, interventional and fluoroscopy guided procedures and CT. It will be performed electronically using centralised on-line data collection platform established by the NCRRP. The aim is to increase the response rate and to improve the accuracy by reducing human errors. The concept of the on-line dose data collection platform is presented. Radiological facilities are provided with a tool to determine local typical patient doses, and the NCRRP to establish national DRLs. Future work will include automatic retrieval of dose data from hospital picture archival and communicating system. The on-line data collection platform is expected to facilitate the process of dose audit and optimisation of radiological procedures in Bulgarian hospitals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts.

    PubMed

    Elgart, S Robin; Little, Mark P; Chappell, Lori J; Milder, Caitlin M; Shavers, Mark R; Huff, Janice L; Patel, Zarana S

    2018-05-31

    Understanding space radiation health effects is critical due to potential increased morbidity and mortality following spaceflight. We evaluated whether there is evidence for excess cardiovascular disease or cancer mortality in early NASA astronauts and if a correlation exists between space radiation exposure and mortality. Astronauts selected from 1959-1969 were included and followed until death or February 2017, with 39 of 73 individuals still alive at that time. Calculated standardized mortality rates for tested outcomes were significantly below U.S. white male population rates, including all-cardiovascular disease (n = 7, SMR = 33; 95% CI, 14-65) and all-cancer (n = 7, SMR = 43; 95% CI, 18-83), as anticipated in a healthy worker population. Space radiation doses for cohort members ranged from 0-78 mGy. No significant associations between space radiation dose and mortality were found using logistic regression with an internal reference group, adjusting for medical radiation. Statistical power of the logistic regression was <6%, remaining <12% even when expected risk level or observed deaths were assumed to be 10 times higher than currently reported. While no excess radiation-associated cardiovascular or cancer mortality risk was observed, findings must be tempered by the statistical limitations of this cohort; notwithstanding, this small unique cohort provides a foundation for assessment of astronaut health.

  20. Spinal radiosurgery: a neurosurgical perspective

    PubMed Central

    Angelov, Lilyana; Rock, Jack; Weaver, Jason; Sheehan, Jason; Rhines, Laurence; Azeem, Syed; Gerszten, Peter

    2011-01-01

    Spine stereotactic radiosurgery (SSRS) is proving to be one of the most significant advances in the treatment of both metastatic and primary spine tumors. High-dose hypofractionated and single fraction radiation appear to convey better local tumor control than conventional radiation for tumors considered radioresistant, such as renal cell carcinoma and melanoma. Multiple series have demonstrated control rates greater than 85% which appears to be histology independent. The markedly improved local control rates compared to conventional radiation techniques are beginning to change the treatment paradigms for spine tumors. Recent evidence in the literature reflects the integration of SSRS in the treatment of metastatic and primary malignant and benign spine tumors as the principle treatment or as a neoadjuvant or postoperative adjuvant therapy. For instance, as confidence grows with the use of SSRS as a postoperative adjuvant, surgical resection of metastatic disease has become less aggressive with the expectation that radiation can control residual disease. Despite high dose radiation delivery within millimeters of the spinal cord, toxicity has been limited with rare cases of radiation-induced myelopathy. The establishment of spinal cord and other critical structure tolerances is essential to the continued evolution of SSRS, as radiation oncologists begin to use this modality to treat spinal cord compression. This paper reviews the neurosurgical integration of SRS into spine practice. PMID:29296297

  1. Genetic Correlation with the DNA Repair Assay in Mice Exposed to High-LET

    NASA Technical Reports Server (NTRS)

    Penninckx, Sebastien; Ray, Shayoni; Degorre, Charlotte; Guiet, Elodie; Viger, Louise; Pluth, Janice; Snijders, Antoine; Mao, Jian-Hua; Costes, Sylvain V.

    2017-01-01

    We hypothesize that DNA damage induced by high local energy deposition, occurring when cells are traversed by high-LET (Linear Energy Transfer) particles, can be experimentally modeled by exposing cells to high doses of low-LET. In this work, we validate such hypothesis by characterizing and correlating the time dependence of 53BP1 radiation-induced foci (RIF) for various doses and LET across 72 primary skin fibroblast from mice. This genetically diverse population allows us to understand how genetic may modulate the dose and LET relationship. The cohort was made on average from 3 males and 3 females belonging to 15 different strains of mice with various genetic backgrounds, including the collaborative cross (CC) genetic model (10 strains) and 5 reference mice strains. Cells were exposed to two fluences of three HZE (High Atomic Energy) particles (Si 350 megaelectronvolts per nucleon, Ar 350 megaelectronvolts per nucleon and Fe 600 megaelectronvolts per nucleon) and to 0.1, 1 and 4 grays from a 160 kilovolt X-ray. Individual radiation sensitivity was investigated by high throughput measurements of DNA repair kinetics for different doses of each radiation type. The 53BP1 RIF dose response to high-LET particles showed a linear dependency that matched the expected number of tracks per cell, clearly illustrating the fact that close-by DNA double strand breaks along tracks cluster within one single RIF. By comparing the slope of the high-LET dose curve to the expected number of tracks per cell we computed the number of remaining unrepaired tracks as a function of time post-irradiation. Results show that the percentage of unrepaired track over a 48 hours follow-up is higher as the LET increases across all strains. We also observe a strong correlation between the high dose repair kinetics following exposure to 160 kilovolts X-ray and the repair kinetics of high-LET tracks, with higher correlation with higher LET. At the in-vivo level for the 10-CC strains, we observe that drops in the number of T-cells and B-cells found in the blood of mice 24 hours after exposure to 0.1 gray of 320 kilovolts X-ray correlate well with slower DNA repair kinetics in skin cells exposed to X-ray. Overall, our results suggest that repair kinetics found in skin is a surrogate marker for in-vivo radiation sensitivity in other tissue, such as blood cells, and that such response is modulated by genetic variability.

  2. Finger doses for staff handling radiopharmaceuticals in nuclear medicine.

    PubMed

    Pant, Gauri S; Sharma, Sanjay K; Rath, Gaura K

    2006-09-01

    Radiation doses to the fingers of occupational workers handling 99mTc-labeled compounds and 131I for diagnostic and therapeutic procedures in nuclear medicine were measured by thermoluminescence dosimetry. The doses were measured at the base of the ring finger and the index finger of both hands in 2 groups of workers. Group 1 (7 workers) handled 99mTc-labeled radiopharmaceuticals, and group 2 (6 workers) handled 131I for diagnosis and therapy. Radiation doses to the fingertips of 3 workers also were measured. Two were from group 1, and 1 was from group 2. The doses to the base of the fingers for the radiopharmacy staff and physicians from group 1 were observed to be 17+/-7.5 (mean+/-SD) and 13.4+/-6.5 microSv/GBq, respectively. Similarly, the dose to the base of the fingers for the 3 physicians in group 2 was estimated to be 82.0+/-13.8 microSv/GBq. Finger doses for the technologists in both groups could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts that accumulated in 1 wk. The doses to the fingertips of the radiopharmacy worker and the physician in group 1 were 74.3+/-19.8 and 53.5+/-21.9 microSv/GBq, respectively. The dose to the fingertips of the physician in group 2 was 469.9+/-267 microSv/GBq. The radiation doses to the fingers of nuclear medicine staff at our center were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y), except for a physician who handled large quantities of 131I for treatment. Because all of these workers are on rotation and do not constantly handle radioactivity throughout the year, the doses to the base of the fingers or the fingertips should not exceed the prescribed annual limit of 500 mSv.

  3. SU-F-I-32: Organ Doses from Pediatric Head CT Scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Liu, Q; Qiu, J

    Purpose: To evaluate the organ doses of pediatric patients who undergoing head CT scan using Monte Carlo (MC) simulation and compare it with measurements in anthropomorphic child phantom.. Methods: A ten years old children voxel phantom was developed from CT images, the voxel size of the phantom was 2mm*2mm*2mm. Organ doses from head CT scan were simulated using MCNPX software, 180 detectors were placed in the voxel phantom to tally the doses of the represented tissues or organs. When performing the simulation, 120 kVp and 88 mA were selected as the scan parameters. The scan range covered from the topmore » of the head to the end of the chain, this protocol was used at CT simulator for radiotherapy. To validate the simulated results, organ doses were measured with radiophotoluminescence (RPL) detectors, placed in the 28 organs of the 10 years old CIRS ATOM phantom. Results: The organ doses results matched well between MC simulation and phantom measurements. The eyes dose was showed to be as expected the highest organ dose: 28.11 mGy by simulation and 27.34 mGy by measurement respectively. Doses for organs not included in the scan volume were much lower than those included in the scan volume, thymus doses were observed more than 10 mGy due the CT protocol for radiotherapy covered more body part than routine head CT scan. Conclusion: As the eyes are superficial organs, they may receive the highest radiation dose during the CT scan. Considering the relatively high radio sensitivity, using shielding material or organ based tube current modulation technique should be encouraged to reduce the eye radiation risks. Scan range was one of the most important factors that affects the organ doses during the CT scan. Use as short as reasonably possible scan range should be helpful to reduce the patient radiation dose. This work was supported by the National Natural Science Foundation of China(11475047)« less

  4. Effect of gamma-ray irradiation on the surface states of MOS tunnel junctions

    NASA Technical Reports Server (NTRS)

    Ma, T. P.; Barker, R. C.

    1974-01-01

    Gamma-ray irradiation with doses up to 8 megarad produces no significant change on either the C(V) or the G(V) characteristics of MOS tunnel junctions with intermediate oxide thicknesses (40-60 A), whereas the expected flat-band shift toward negative electrode voltages occurs in control thick oxide capacitors. A simple tunneling model would explain the results if the radiation-generated hole traps are assumed to lie below the valence band of the silicon. The experiments also suggest that the observed radiation-generated interface states in conventional MOS devices are not due to the radiation damage of the silicon surface.

  5. Detection of DNA Damage by Space Radiation in Human Fibroblasts Flown on the International Space Station

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; hide

    2017-01-01

    Space radiation consists of energetic charged particles of varying charges and energies. Exposure of astronauts to space radiation on future long duration missions to Mars, or missions back to the Moon, is expected to result in deleterious consequences such as cancer and comprised central nervous system (CNS) functions. Space radiation can also cause mutation in microorganisms, and potentially influence the evolution of life in space. Measurement of the space radiation environment has been conducted since the very beginning of the space program. Compared to the quantification of the space radiation environment using physical detectors, reports on the direct measurement of biological consequences of space radiation exposure have been limited, due primarily to the low dose and low dose rate nature of the environment. Most of the biological assays fail to detect the radiation effects at acute doses that are lower than 5 centiSieverts. In a recent study, we flew cultured confluent human fibroblasts in mostly G1 phase of the cell cycle to the International Space Station (ISS). The cells were fixed in space after arriving on the ISS for 3 and 14 days, respectively. The fixed cells were later returned to the ground and subsequently stained with the gamma-H2AX (Histone family, member X) antibody that are commonly used as a marker for DNA damage, particularly DNA double strand breaks, induced by both low-and high-linear energy transfer radiation. In our present study, the gamma-H2AX (Histone family, member X) foci were captured with a laser confocal microscope. To confirm that some large track-like foci were from space radiation exposure, we also exposed, on the ground, the same type of cells to both low-and high-linear energy transfer protons, and high-linear energy transfer Fe ions. In addition, we exposed the cells to low dose rate gamma rays, in order to rule out the possibility that the large track-like foci can be induced by chronic low-linear energy transfer radiation.

  6. Compact Tissue-equivalent Proportional Counter for Deep Space Human Missions.

    PubMed

    Straume, T; Braby, L A; Borak, T B; Lusby, T; Warner, D W; Perez-Nunez, D

    2015-10-01

    Effects on human health from the complex radiation environment in deep space have not been measured and can only be simulated here on Earth using experimental systems and beams of radiations produced by accelerators, usually one beam at a time. This makes it particularly important to develop instruments that can be used on deep-space missions to measure quantities that are known to be relatable to the biological effectiveness of space radiation. Tissue-equivalent proportional counters (TEPCs) are such instruments. Unfortunately, present TEPCs are too large and power intensive to be used beyond low Earth orbit (LEO). Here, the authors describe a prototype of a compact TEPC designed for deep space applications with the capability to detect both ambient galactic cosmic rays and intense solar particle event radiation. The device employs an approach that permits real-time determination of yD (and thus quality factor) using a single detector. This was accomplished by assigning sequential sampling intervals as detectors “1” and “2” and requiring the intervals to be brief compared to the change in dose rate. Tests with g rays show that the prototype instrument maintains linear response over the wide dose-rate range expected in space with an accuracy of better than 5% for dose rates above 3 mGy h(-1). Measurements of yD for 200 MeV n(-1) carbon ions were better than 10%. Limited tests with fission spectrum neutrons show absorbed dose-rate accuracy better than 15%.

  7. Compact Tissue-equivalent Proportional Counter for Deep Space Human Missions

    PubMed Central

    Straume, T.; Braby, L.A.; Borak, T.B.; Lusby, T.; Warner, D.W.; Perez-Nunez, D.

    2015-01-01

    Abstract Effects on human health from the complex radiation environment in deep space have not been measured and can only be simulated here on Earth using experimental systems and beams of radiations produced by accelerators, usually one beam at a time. This makes it particularly important to develop instruments that can be used on deep-space missions to measure quantities that are known to be relatable to the biological effectiveness of space radiation. Tissue-equivalent proportional counters (TEPCs) are such instruments. Unfortunately, present TEPCs are too large and power intensive to be used beyond low Earth orbit (LEO). Here, the authors describe a prototype of a compact TEPC designed for deep space applications with the capability to detect both ambient galactic cosmic rays and intense solar particle event radiation. The device employs an approach that permits real-time determination of (and thus quality factor) using a single detector. This was accomplished by assigning sequential sampling intervals as detectors “1” and “2” and requiring the intervals to be brief compared to the change in dose rate. Tests with γ rays show that the prototype instrument maintains linear response over the wide dose-rate range expected in space with an accuracy of better than 5% for dose rates above 3 mGy h−1. Measurements of for 200 MeV n−1 carbon ions were better than 10%. Limited tests with fission spectrum neutrons show absorbed dose-rate accuracy better than 15%. PMID:26313585

  8. Analytical probabilistic proton dose calculation and range uncertainties

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Hennig, P.; Oelfke, U.

    2014-03-01

    We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.

  9. Organ dose assessment in pediatric fluoroscopy and CT via a tomographic computational phantom of the newborn patient

    NASA Astrophysics Data System (ADS)

    Staton, Robert J.

    Of the various types of imaging modalities used in pediatric radiology, fluoroscopy and computed tomography (CT) have the highest associated radiation dose. While these examinations are commonly used for pediatric patients, little data exists on the magnitude of the organ and effective dose values for these procedures. Calculation of these dose values is necessary because of children's increased sensitivity to radiation and their long life expectancy for which to express radiation's latent effects. In this study, a newborn tomographic phantom has been implemented in a radiation transport code to evaluate organ and effective doses for newborn patients in commonly performed fluoroscopy and CT examinations. Organ doses were evaluated for voiding cystourethrogram (VCUG) fluoroscopy studies of infant patients. Time-sequence analysis was performed for videotaped VCUG studies of five different patients. Organ dose values were then estimated for each patient through Monte Carlo (MC) simulations. The effective dose values of the VCUG examination for five patients ranged from 0.6 mSv to 3.2 mSv, with a mean of 1.8 +/- 0.9 mSv. Organ doses were also assessed for infant upper gastrointestinal (UGI) fluoroscopy exams. The effective dose values of the UGI examinations for five patients ranged from 1.05 mSv to 5.92 mSv, with a mean of 2.90 +/- 1.97 mSv. MC simulations of helical multislice CT (MSCT) exams were also completed using, the newborn tomographic phantom and a stylized newborn phantom. The helical path of the source, beam shaping filter, beam profile, patient table, were all included in the MC simulations of the helical MSCT scanner. Organ doses and effective doses and their dependence on scan parameters were evaluated for newborn patients. For all CT scans, the effective dose was found to range approximately 1-13 mSv, with the largest values occurring for CAP scans. Tube current modulation strategies to reduce patient dose were also evaluated for newborn patients. Overall, utilization of the newborn tomographic phantom in MC simulations has shown the need for and usefulness of pediatric tomographic phantoms. The newborn tomographic model has shown more versatility and realistic anatomical modeling when compared to the existing stylized newborn phantom. This work has provided important organ dose data for infant patients in common examinations in pediatric radiology.

  10. Meta-analysis of cranial CT scans in children. A mathematical model to predict radiation-induced tumors.

    PubMed

    Stein, Sherman C; Hurst, Robert W; Sonnad, Seema S

    2008-01-01

    We aimed to estimate the risks of radiation exposure from a single head CT scan to children of different ages. We constructed a multistate time-dependent Markov model to simulate the course of children exposed to a head CT. The relevant literature was reviewed for probabilities, which were used to calculate tumor types, latencies after exposure and outcomes in the model. Where multiple approximations of the same probability had been reported, meta-analytic techniques were employed to compute pooled estimates. The model was then used to calculate the effect of the radiation exposure on life expectancy and quality of life for children following head CT at different ages. The tumors likely to be induced by low-level cranial irradiation include thyroid carcinoma (47%), meningioma (34%) and glioma (19%). According to the model, a single head CT is likely to cause one of these tumors in 0.22% of 1-year-olds, 30% of whom will consequently die. The exposure will shorten the life expectancy of all exposed 1-year-olds by an average of 0.04 years and their expected quality of life by 0.02 quality-adjusted life years. The risks of radiation exposure diminish for older children. The model predicts that the effective radiation dose from a single head CT is capable of inducing a thyroid or brain tumor in an infant or child. These tumors can severely impact both quality of life and life expectancy. Care should be taken before ordering CT scans in children, particularly in infants and toddlers. Copyright 2008 S. Karger AG, Basel.

  11. Radiation induced vertebral osteosarcoma following treatment of an intradural extramedullary spinal cord tumor in a dog.

    PubMed

    Dickinson, P J; McEntee, M C; Lipsitz, D; Keel, K; LeCouteur, R A

    2001-01-01

    A 2-year-old neutered female Rottweiler diagnosed with an intradural extramedullary spinal cord tumor at T12-T13 was successfully treated with cytoreductive surgery followed by Cobalt 60 teletherapy. The dog was euthanised 5-and-a-half years later following diagnosis of an osteosarcoma involving the L1 and L2 vertebrae. Evidence of the initial tumor was not present at necropsy. The vertebral neoplasm fulfilled all of the accepted criteria for a radiation induced tumor. It was concluded that adjunctive irradiation should be considered for treatment of intradural extramedullary tumors of young dogs when total surgical resection is not possible. Although tumor induction is a rare late effect of radiation therapy, the risk of this occurrence should be considered when irradiating young animals. Radiation induced tumors in dogs have been associated with coarse fractionation schemes, or when large intraoperative doses have been administered. A lower dose per fraction, e.g., 3 Gy/fraction or less, is advisable when irradiating young dogs or any dog in which the life expectancy is 3-5 or more years after irradiation.

  12. Effects of Cobalt-60 Exposure on Health of Taiwan Residents Suggest New Approach Needed in Radiation Protection

    PubMed Central

    Chen, W.L.; Luan, Y.C.; Shieh, M.C.; Chen, S.T.; Kung, H.T.; Soong, K.L; Yeh, Y.C.; Chou, T.S.; Mong, S.H.; Wu, J.T.; Sun, C.P.; Deng, W.P.; Wu, M.F.; Shen, M.L.

    2007-01-01

    The conventional approach for radiation protection is based on the ICRP's linear, no threshold (LNT) model of radiation carcinogenesis, which implies that ionizing radiation is always harmful, no matter how small the dose. But a different approach can be derived from the observed health effects of the serendipitous contamination of 1700 apartments in Taiwan with cobalt-60 (T1/2 = 5.3 y). This experience indicates that chronic exposure of the whole body to low-dose-rate radiation, even accumulated to a high annual dose, may be beneficial to human health. Approximately 10,000 people occupied these buildings and received an average radiation dose of 0.4 Sv, unknowingly, during a 9–20 year period. They did not suffer a higher incidence of cancer mortality, as the LNT theory would predict. On the contrary, the incidence of cancer deaths in this population was greatly reduced—to about 3 per cent of the incidence of spontaneous cancer death in the general Taiwan public. In addition, the incidence of congenital malformations was also reduced—to about 7 per cent of the incidence in the general public. These observations appear to be compatible with the radiation hormesis model. Information about this Taiwan experience should be communicated to the public worldwide to help allay its fear of radiation and create a positive impression about important radiation applications. Expenditures of many billions of dollars in nuclear reactor operation could be saved and expansion of nuclear electricity generation could be facilitated. In addition, this knowledge would encourage further investigation and implementation of very important applications of total-body, low-dose irradiation to treat and cure many illnesses, including cancer. The findings of this study are such a departure from expectations, based on ICRP criteria, that we believe that they ought to be carefully reviewed by other, independent organizations and that population data not available to the authors be provided, so that a fully qualified epidemiologically-valid analysis can be made. Many of the confounding factors that limit other studies used to date, such as the A-bomb survivors, the Mayak workers and the Chernobyl evacuees, are not present in this population exposure. It should be one of the most important events on which to base radiation protection standards. PMID:18648557

  13. Integrated protection of humans and the environment: a view from Japan.

    PubMed

    Sakai, K

    2018-01-01

    Six and a half years after the accident at Fukushima Daiichi nuclear power plant, an area of existing exposure situation remains. One of the main concerns of people is the higher level of ionising radiation than before the accident, although this is not expected to have any discernible health effect. Since the accident, several 'abnormalities' in environmental organisms have been reported. It is still not clear if these abnormalities were induced by radiation. It appears that the impact of the released radioactivity has not been sufficient to threaten the maintenance of biological diversity, the conservation of species, or the health and status of natural habitats, which are the focus in environmental protection. This highlights a difference between the protection of humans and protection of the environment (individuals for humans and populations/species for the environment). The system for protection of the environment has been developed with a similar approach as the system for protection of humans. Reference Animals and Plants (RAPs) were introduced to connect exposure and doses in a way similar to that for Reference Male and Reference Female. RAPs can also be used as a tool to associate the level of radiation (dose rate) with the biological effects on an organism. A difference between the protection of humans and that of the environment was identified: an effect on humans is measured in terms of dose, and an effect on the environment is measured in terms of dose rate. In other words, protection criteria for humans are expressed in term of dose (as dose limits, dose constraints, and reference levels), whereas those for the environment are expressed in terms of dose rate (as derived consideration reference levels).

  14. Imaging Radiation Doses and Associated Risks and Benefits in Subjects Participating in Breast Cancer Clinical Trials

    PubMed Central

    Spera, Gonzalo; Meyer, Carlos; Cabral, Pablo; Mackey, John R.

    2015-01-01

    Background. Medical imaging is commonly required in breast cancer (BC) clinical trials to assess the efficacy and/or safety of study interventions. Despite the lack of definitive epidemiological data linking imaging radiation with cancer development in adults, concerns exist about the risks of imaging radiation-induced malignancies (IRIMs) in subjects exposed to repetitive imaging. We estimated the imaging radiation dose and IRIM risk in subjects participating in BC trials. Materials and Methods. The imaging protocol requirements in 10 phase III trials in the adjuvant and advanced settings were assessed to estimate the effective radiation dose received by a typical and fully compliant subject in each trial. For each study, the excess lifetime attributable cancer risk (LAR) was calculated using the National Cancer Institute’s Radiation Risk Assessment Tool, version 3.7.1. Dose and risk calculations were performed for both imaging intensive and nonintensive approaches to reflect the variability in imaging performed within the studies. Results. The total effective imaging radiation dose was 0.4–262.2 mSv in adjuvant trials and 26–241.3 mSv in metastatic studies. The dose variability resulted from differing protocol requirements and imaging intensity approaches, with computed tomography, multigated acquisition scans, and bone scans as the major contributors. The mean LAR was 1.87–2,410/100,000 in adjuvant trials (IRIM: 0.0002%–2.41% of randomized subjects) and 6.9–67.3/100,000 in metastatic studies (IRIM: 0.007%–0.067% of subjects). Conclusion. IRIMs are infrequent events. In adjuvant trials, aligning the protocol requirements with the clinical guidelines’ surveillance recommendations and substituting radiating procedures with equivalent nonradiating ones would reduce IRIM risk. No significant risk has been observed in metastatic trials, and potential concerns on IRIMs are not justified. Implications for Practice: Medical imaging is key in breast cancer (BC) clinical trials. Most of these procedures expose patients to ionizing radiation, and the risk of second cancer development after imaging has prompted recent concerns and controversy. Using accepted calculation models, the number of malignancies were estimated that were potentially attributable to the imaging procedures performed during a patient’s participation in BC clinical trials. The results show that for patients participating in metastatic trials, the risk of imaging radiation-induced malignancies is negligible. In adjuvant trials, some second cancers due to imaging could be expected, and measures can be taken to reduce their risk. PMID:26025934

  15. Evaluation of SPE and GCR Radiation Effects in Inflatable, Space Suit and Composite Habitat Materials Project

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Nichols, Charles

    2016-01-01

    The radiation resistance of polymeric and composite materials to space radiation is currently based on irradiating materials with Co-60 gamma-radiation to the equivalent total ionizing dose (TID) expected during mission. This is an approximation since gamma-radiation is not truly representative of the particle species; namely, Solar Particle Event (SPE) protons and Galactic Cosmic Ray (GCR) nucleons, encountered in space. In general, the SPE and GCR particle energies are much higher than Co-60 gamma-ray photons, and since the particles have mass, there is a displacement effect due to nuclear collisions between the particle species and the target material. This effort specifically bridges the gap between estimated service lifetimes based on decades old Co-60 gamma-radiation data, and newer assessments of what the service lifetimes actually are based on irradiation with particle species that are more representative of the space radiation environment.

  16. Nonvolatile Memory Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  17. Dose-Rate Dependence of High-Dose Health Effects in Humans from Photon Radiation with Application to Radiological Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.

    2005-01-14

    In 1981, as part of a symposium entitled ''The Control of Exposure of the Public to Ionizing Radiation in the Event of Accident or Attack,'' Lushbaugh, H?bner, and Fry published a paper examining ''radiation tolerance'' of various human health endpoints as a function of dose rate. This paper may not have received the notice it warrants. The health endpoints examined by Lushbaugh et al. were the lethal dose that will kill 50% of people within 60 days of exposure without medical care (LD50/60); severe bone marrow damage in healthy men; severe bone marrow damage in leukemia patients; temporary sterility (azoospermia);more » reduced male fertility; and late effects such as cancer. Their analysis was grounded in extensive clinical experience and anchored to a few selected data points, and based on the 1968 dose-rate dependence theory of J.L. Bateman. The Lushbaugh et al. paper did not give predictive equations for the relationships, although they were implied in the text, and the relationships were presented in a non-intuitive way. This work derives the parameters needed in Bateman's equation for each health endpoint, tabulates the results, and plots them in a more conventional manner on logarithmic scales. The results give a quantitative indication of how the human organism can tolerate more radiation dose when it is delivered at lower dose rates. For example, the LD50/60 increases from about 3 grays (300 rads) when given at very high dose rates to over 10 grays (1,000 rads) when given at much lower dose rates over periods of several months. The latter figure is borne out by the case of an individual who survived for at least 19 years after receiving doses in the range of 9 to 17 grays (900-1700 rads) over 106 days. The Lushbaugh et al. work shows the importance of sheltering when confronted with long-term exposure to radiological contamination such as would be expected from a radiological dispersion event, reactor accident, or ground-level nuclear explosion.« less

  18. Occupational Radiation Exposure to the Extremities of Medical Staff during Hysterosalpingography and Radionuclide Bone Scan Procedures in Several Nigerian Hospitals.

    PubMed

    Jibiri, Nnamdi Norbert; Akintunde, Tawakalitu Oluwatoyin; Dambele, Musa Yusuf; Olowookere, Christopher Jimoh

    2016-10-05

    The practice of regular dose measurement helps to ascertain the level of occupational dose delivered to the staff involved in diagnostic procedures. This study was carried out to evaluate the dose exposed to the hands of radiologists and a radiologic technologist carrying out HSG and radionuclide bone scan examinations in several hospitals in Nigeria. Radiation doses exposed to the hands of radiologists and a technician carrying out hysterosalpingography (HSG) and bone scan procedures were measured using calibrated thermo-luminescent dosimeters. Five radiologists and a radiologic technologist were included in the study for dose measurement. The study indicates that each radiologist carried out approximately 2 examinations per week with the mean dose ranging between 0.49-0.62 mSv per week, resulting in an annual dose of 191 mSv. Similarly, the occupational dose delivered to both the left and right hands of a radiologic technologist administering 99mTc-methylene diphosphonate (MDP) without cannula and with cannula were 10.68 (720.2) and 13.82 (556.4) mSv per week (and per annum), respectively. It was determined that the left hand of the personnel received higher doses than their right hand. The estimated annual dose during HSG is far below the annual dose limit for deterministic effects, however, it is greater than 10% of the applicable annual dose limit. Hence, routine monitoring is required to ensure adequate protection of the personnel. The total annual dose received during the bone scan exceeds the annual dose limit for both hands, and the dose to either left or right hand is greater than the dose limit of 500 mSv/yr. The radiologists monitored are not expected to incur any deterministic effects during HSG examinations, however, accumulated doses arising from the scattered radiation to the eyes, legs, and neck could be substantial and might lead to certain effects. More staff are required to administer 99mTc-MDP in Nigerian institutions to prevent excessive doses to personnel.

  19. Occupational Radiation Exposure to the Extremities of Medical Staff during Hysterosalpingography and Radionuclide Bone Scan Procedures in Several Nigerian Hospitals

    PubMed Central

    Jibiri, Nnamdi Norbert; Akintunde, Tawakalitu Oluwatoyin; Dambele, Musa Yusuf; Olowookere, Christopher Jimoh

    2016-01-01

    Objective: The practice of regular dose measurement helps to ascertain the level of occupational dose delivered to the staff involved in diagnostic procedures. This study was carried out to evaluate the dose exposed to the hands of radiologists and a radiologic technologist carrying out HSG and radionuclide bone scan examinations in several hospitals in Nigeria. Methods: Radiation doses exposed to the hands of radiologists and a technician carrying out hysterosalpingography (HSG) and bone scan procedures were measured using calibrated thermo-luminescent dosimeters. Five radiologists and a radiologic technologist were included in the study for dose measurement. Results: The study indicates that each radiologist carried out approximately 2 examinations per week with the mean dose ranging between 0.49-0.62 mSv per week, resulting in an annual dose of 191 mSv. Similarly, the occupational dose delivered to both the left and right hands of a radiologic technologist administering 99mTc-methylene diphosphonate (MDP) without cannula and with cannula were 10.68 (720.2) and 13.82 (556.4) mSv per week (and per annum), respectively. It was determined that the left hand of the personnel received higher doses than their right hand. Conclusion: The estimated annual dose during HSG is far below the annual dose limit for deterministic effects, however, it is greater than 10% of the applicable annual dose limit. Hence, routine monitoring is required to ensure adequate protection of the personnel. The total annual dose received during the bone scan exceeds the annual dose limit for both hands, and the dose to either left or right hand is greater than the dose limit of 500 mSv/yr. The radiologists monitored are not expected to incur any deterministic effects during HSG examinations, however, accumulated doses arising from the scattered radiation to the eyes, legs, and neck could be substantial and might lead to certain effects. More staff are required to administer 99mTc-MDP in Nigerian institutions to prevent excessive doses to personnel. PMID:27751973

  20. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  1. Environmental consequences of postulated plutonium releases from Westinghouse PFDL, Cheswick, Pennsylvania, as a result of severe natural phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, R.B.; Watson, E.C.

    1979-06-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated accidents due to earthquakes, tornadoes, high straight-line winds, and floods. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays except Earthquake No. 4 and the 260-mph tornado. The most likely maximum residual plutonium contamination estimated to be deposited offsite following Earthquake No. 4, and themore » 200-mph and 260-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the other severe natural phenomena are below the EPA proposed guideline.« less

  2. Internet-based computer technology on radiotherapy.

    PubMed

    Chow, James C L

    2017-01-01

    Recent rapid development of Internet-based computer technologies has made possible many novel applications in radiation dose delivery. However, translational speed of applying these new technologies in radiotherapy could hardly catch up due to the complex commissioning process and quality assurance protocol. Implementing novel Internet-based technology in radiotherapy requires corresponding design of algorithm and infrastructure of the application, set up of related clinical policies, purchase and development of software and hardware, computer programming and debugging, and national to international collaboration. Although such implementation processes are time consuming, some recent computer advancements in the radiation dose delivery are still noticeable. In this review, we will present the background and concept of some recent Internet-based computer technologies such as cloud computing, big data processing and machine learning, followed by their potential applications in radiotherapy, such as treatment planning and dose delivery. We will also discuss the current progress of these applications and their impacts on radiotherapy. We will explore and evaluate the expected benefits and challenges in implementation as well.

  3. Recent Radiation Test Results for Trench Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan C.; Wilcox, Edward P.; Phan, Anthony M.; Kim, Hak S.; Topper, Alyson D.; Ladbury, Raymond L.; Label, Kenneth A.

    2017-01-01

    Single-event effect (SEE) radiation test results are presented for various trench-gate power MOSFETs. The heavy-ion response of the first (and only) radiation-hardened trench-gate power MOSFET is evaluated: the manufacturer SEE response curve is verified and importantly, no localized dosing effects are measured, distinguishing it from other, non-hardened trench-gate power MOSFETs. Evaluations are made of n-type commercial and both n- and p-type automotive grade trench-gate device using ions comparable to of those on the low linear energy transfer (LET) side of the iron knee of the galactic cosmic ray spectrum, to explore suitability of these parts for missions with higher risk tolerance and shorter duration, such as CubeSats. Part-to-part variability of SEE threshold suggests testing with larger sample sizes and applying more aggressive derating to avoid on-orbit failures. The n-type devices yielded expected localized dosing effects including when irradiated in an unbiased (0-V) configuration, adding to the challenge of inserting these parts into space flight missions.

  4. Neutron-energy-dependent cell survival and oncogenic transformation.

    PubMed

    Miller, R C; Marino, S A; Martin, S G; Komatsu, K; Geard, C R; Brenner, D J; Hall, E J

    1999-12-01

    Both cell lethality and neoplastic transformation were assessed for C3H10T1/2 cells exposed to neutrons with energies from 0.040 to 13.7 MeV. Monoenergetic neutrons with energies from 0.23 to 13.7 MeV and two neutron energy spectra with average energies of 0.040 and 0.070 MeV were produced with a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) in the Center for Radiological Research of Columbia University. For determination of relative biological effectiveness (RBE), cells were exposed to 250 kVp X rays. With exposures to 250 kVp X rays, both cell survival and radiation-induced oncogenic transformation were curvilinear. Irradiation of cells with neutrons at all energies resulted in linear responses as a function of dose for both biological endpoints. Results indicate a complex relationship between RBEm and neutron energy. For both survival and transformation, RBEm was greatest for cells exposed to 0.35 MeV neutrons. RBEm was significantly less at energies above or below 0.35 MeV. These results are consistent with microdosimetric expectation. These results are also compatible with current assessments of neutron radiation weighting factors for radiation protection purposes. Based on calculations of dose-averaged LET, 0.35 MeV neutrons have the greatest LET and therefore would be expected to be more biologically effective than neutrons of greater or lesser energies.

  5. Real-time in vivo Cherenkoscopy imaging during external beam radiation therapy.

    PubMed

    Zhang, Rongxiao; Gladstone, David J; Jarvis, Lesley A; Strawbridge, Rendall R; Jack Hoopes, P; Friedman, Oscar D; Glaser, Adam K; Pogue, Brian W

    2013-11-01

    Cherenkov radiation is induced when charged particles travel through dielectric media (such as biological tissue) faster than the speed of light through that medium. Detection of this radiation or excited luminescence during megavoltage external beam radiotherapy (EBRT) can allow emergence of a new approach to superficial dose estimation, functional imaging, and quality assurance for radiation therapy dosimetry. In this letter, the first in vivo Cherenkov images of a real-time Cherenkoscopy during EBRT are presented. The imaging system consisted of a time-gated intensified charge coupled device (ICCD) coupled with a commercial lens. The ICCD was synchronized to the linear accelerator to detect Cherenkov photons only during the 3.25-μs radiation bursts. Images of a tissue phantom under irradiation show that the intensity of Cherenkov emission is directly proportional to radiation dose, and images can be acquired at 4.7 frames/s with SNR>30. Cherenkoscopy was obtained from the superficial regions of a canine oral tumor during planned, Institutional Animal Care and Use Committee approved, conventional (therapeutically appropriate) EBRT irradiation. Coregistration between photography and Cherenkoscopy validated that Cherenkov photons were detected from the planned treatment region. Real-time images correctly monitored the beam field changes corresponding to the planned dynamic wedge movement, with accurate extent of overall beam field, and expected cold and hot regions.

  6. Radiation Tests of the Extravehicular Mobility Unit Space Suit for the International Space Station Using Energetic Protons. Chapter 3

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Heilbronn, L.; Miller, J.; Shavers, M.

    2003-01-01

    Measurements using silicon detectors to characterize the radiation transmitted through the EMU space suit and a human phantom have been performed using 155 and 250 MeV proton beams at LLUMC. The beams simulate radiation encountered in space, where trapped protons having kinetic energies on the order of 100 MeV are copious. Protons with 100 MeV kinetic energy and above can penetrate many centimeters of water or other light materials, so that astronauts exposed to such energetic particles will receive doses to their internal organs. This dose can be enhanced or reduced by shielding - either from the space suit or the self-shielding of the body - but minimization of the risk depends on details of the incident particle flux (in particular the energy spectrum) and on the dose responses of the various critical organs. Data were taken to characterize the beams and to calibrate the detectors using the beam in a treatment room at LLUPTF, in preparation for an experiment with the same beams incident on detectors placed in a human phantom within the EMU suit. Nuclear interactions of high-energy protons in various materials produce a small flux of highly ionizing, low-energy secondary radiation. Secondaries are of interest for their biological effects, since they cause doses and especially dose-equivalents to increase relative to the values expected simply from ionization energy loss along the Bragg curve. Because many secondaries have very short ranges, they are best measured in passive track detectors such as CR-39. The silicon detector data presented here are intended to supplement the CR-39 data in regions where silicon has greater sensitivity, in particular the portion of the LET spectrum below 5 keV/micron. The results obtained in this study suggest that optimizing the radiation shielding properties of space suits is a formidable task. The naive assumption that adding mass can reduce risk is not supported by the data, which show that reducing the dose delivered at or near the skin by low-energy particles may increase the dose delivered by energetic particles to points deeper in the body.

  7. SU-C-204-06: Monte Carlo Dose Calculation for Kilovoltage X-Ray-Psoralen Activated Cancer Therapy (X-PACT): Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mein, S; Gunasingha, R; Nolan, M

    Purpose: X-PACT is an experimental cancer therapy where kV x-rays are used to photo-activate anti-cancer therapeutics through phosphor intermediaries (phosphors that absorb x-rays and re-radiate as UV light). Clinical trials in pet dogs are currently underway (NC State College of Veterinary Medicine) and an essential component is the ability to model the kV dose in these dogs. Here we report the commissioning and characterization of a Monte Carlo (MC) treatment planning simulation tool to calculate X-PACT radiation doses in canine trials. Methods: FLUKA multi-particle MC simulation package was used to simulate a standard X-PACT radiation treatment beam of 80kVp withmore » the Varian OBI x-ray source geometry. The beam quality was verified by comparing measured and simulated attenuation of the beam by various thicknesses of aluminum (2–4.6 mm) under narrow beam conditions (HVL). The beam parameters at commissioning were then corroborated using MC, characterized and verified with empirically collected commissioning data, including: percent depth dose curves (PDD), back-scatter factors (BSF), collimator scatter factor(s), and heel effect, etc. All simulations were conducted for N=30M histories at M=100 iterations. Results: HVL and PDD simulation data agreed with an average percent error of 2.42%±0.33 and 6.03%±1.58, respectively. The mean square error (MSE) values for HVL and PDD (0.07% and 0.50%) were low, as expected; however, longer simulations are required to validate convergence to the expected values. Qualitatively, pre- and post-filtration source spectra matched well with 80kVp references generated via SPEKTR software. Further validation of commissioning data simulation is underway in preparation for first-time 3D dose calculations with canine CBCT data. Conclusion: We have prepared a Monte Carlo simulation capable of accurate dose calculation for use with ongoing X-PACT canine clinical trials. Preliminary results show good agreement with measured data and hold promise for accurate quantification of dose for this novel psoralen X-ray therapy. Funding Support, Disclosures, & Conflict of Interest: The Monte Carlo simulation work was not funded; Drs. Adamson & Oldham have received funding from Immunolight LLC for X-PACT research.« less

  8. MO-F-16A-04: Case Study: Estimation of Peak Skin Dose Following a Physician Reported “High Dose” Case and Sentinel Event Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, M; Chu, J; Wehmeyer, A

    2014-06-15

    Purpose: This work offers as a teaching example a reported high dose fluoroscopy case and the workflow the institution followed to self-report a radiation overdose sentinel event to the Joint Commission. Methods: Following the completion of a clinical case in a hybrid OR room with a reported air kerma of >18 Gy at the Interventional Reference Point (IRP) the physicians involved in the case referred study to the institution's Radiation Safety Committee (RSC) for review. The RSC assigned a Diagnostic Medical Physicist (DMP) to estimate the patient's Peak Skin Dose (PSD) and analyze the case. Following the DMP's analysis andmore » estimate of a PSD of >15 Gy the institution's adverse event committee was convened to discuss the case and to self-report the case as a radiation overdose sentinel event to the Joint Commission. The committee assigned a subgroup to perform the root cause analysis and develop institutional responses to the event. Results: The self-reporting of the sentinel event and the associated root cause analysis resulted in several institutional action items that are designed to improve process and safety. A formal reporting and analysis mechanism was adopted to review fluoroscopy cases with air kerma greater than 6 Gy at the IRP. An improved and formalized radiation safety training program for physicians using fluoroscopy equipment was implemented. Additionally efforts already under way to monitor radiation exposure in the Radiology department were expanded to include all fluoroscopy equipment capable of automated dose reporting. Conclusion: The adverse event review process and the root cause analysis following the self-reporting of the sentinel event resulted in policies and procedures that are expected to improve the quality and safe usage of fluoroscopy throughout the institution.« less

  9. Incidence of cerebral infarction after radiotherapy for pituitary adenoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flickinger, J.C.; Nelson, P.B.; Taylor, F.H.

    1989-06-15

    The incidence of cerebral infarction was studied in 156 patients irradiated for treatment of pituitary adenomas. Seven patients experienced strokes at intervals of 3.2 to 14.6 years after irradiation. The observed incidence was not significantly greater than the expected value of 3.5 strokes (P = 0.078). Six strokes occurred in patients receiving equivalent doses (ED) of 1070 ret or more (observed to expected ratio 3.87, significantly elevated; P less than 0.001). Univariate log-rank analysis showed that the risk of stroke was significantly higher (P = 0.010) in patients receiving an ED of 1070 ret or more (4180 cGy/22 fractions) thanmore » those receiving lower doses. Multivariate analysis, however, demonstrated that the increased risk of stroke was associated only with increasing age (P less than 0.0001), not ED (P = 0.148). Due to these inconsistent statistical results, no definitive conclusions could be reached about the relationship between radiation dose to the pituitary and subsequent cerebral infarction.« less

  10. Cancer mortality following radium treatment for uterine bleeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inskip, P.D.; Monson, R.R.; Wagoner, J.K.

    1990-09-01

    Cancer mortality in relation to radiation dose was evaluated among 4153 women treated with intrauterine radium (226Ra) capsules for benign gynecologic bleeding disorders between 1925 and 1965. Average follow up was 26.5 years (maximum = 59.9 years). Overall, 2763 deaths were observed versus 2687 expected based on U.S. mortality rates (standardized mortality ratio (SMR) = 1.03). Deaths due to cancer, however, were increased (SMR = 1.30), especially cancers of organs close to the radiation source. For organs receiving greater than 5 Gy, excess mortality of 100 to 110% was noted for cancers of the uterus and bladder 10 or moremore » years following irradiation, while a deficit was seen for cancer of the cervix, one of the few malignancies not previously shown to be caused by ionizing radiation. Part of the excess of uterine cancer, however, may have been due to the underlying gynecologic disorders being treated. Among cancers of organs receiving average or local doses of 1 to 4 Gy, excesses of 30 to 100% were found for leukemia and cancers of the colon and genital organs other than uterus; no excess was seen for rectal or bone cancer. Among organs typically receiving 0.1 to 0.3 Gy, a deficit was recorded for cancers of the liver, gall bladder, and bile ducts combined, death due to stomach cancer occurred at close to the expected rate, a 30% excess was noted for kidney cancer (based on eight deaths), and there was a 60% excess of pancreatic cancer among 10-year survivors, but little evidence of dose-response. Estimates of the excess relative risk per Gray were 0.006 for uterus, 0.4 for other genital organs, 0.5 for colon, 0.2 for bladder, and 1.9 for leukemia. Contrary to findings for other populations treated by pelvic irradiation, a deficit of breast cancer was not observed (SMR = 1.0). Dose to the ovaries may have been insufficient to protect against breast cancer.« less

  11. A novel method for the evaluation of uncertainty in dose-volume histogram computation.

    PubMed

    Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

    2008-03-15

    Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.

  12. Effects of simulated space radiation on immunoassay components for life-detection experiments in planetary exploration missions.

    PubMed

    Derveni, Mariliza; Hands, Alex; Allen, Marjorie; Sims, Mark R; Cullen, David C

    2012-08-01

    The Life Marker Chip (LMC) instrument is part of the proposed payload on the ESA ExoMars rover that is scheduled for launch in 2018. The LMC will use antibody-based assays to detect molecular signatures of life in samples obtained from the shallow subsurface of Mars. For the LMC antibodies, the ability to resist inactivation due to space particle radiation (both in transit and on the surface of Mars) will therefore be a prerequisite. The proton and neutron components of the mission radiation environment are those that are expected to have the dominant effect on the operation of the LMC. Modeling of the radiation environment for a mission to Mars led to the calculation of nominal mission fluences for proton and neutron radiation. Various combinations and multiples of these values were used to demonstrate the effects of radiation on antibody activity, primarily at the radiation levels envisaged for the ExoMars mission as well as at much higher levels. Five antibodies were freeze-dried in a variety of protective molecular matrices and were exposed to various radiation conditions generated at a cyclotron facility. After exposure, the antibodies' ability to bind to their respective antigens was assessed and found to be unaffected by ExoMars mission level radiation doses. These experiments indicated that the expected radiation environment of a Mars mission does not pose a significant risk to antibodies packaged in the form anticipated for the LMC instrument.

  13. Temporal Lobe Reactions After Radiotherapy With Carbon Ions: Incidence and Estimation of the Relative Biological Effectiveness by the Local Effect Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlampp, Ingmar; Karger, Christian P.; Jaekel, Oliver

    2011-07-01

    Purpose: To identify predictors for the development of temporal lobe reactions (TLR) after carbon ion radiation therapy (RT) for radiation-resistant tumors in the central nervous system and to evaluate the predictions of the local effect model (LEM) used for calculation of the biologically effective dose. Methods and Materials: This retrospective study reports the TLR rates in patients with skull base chordomas and chondrosarcomas irradiated with carbon ions at GSI, Darmstadt, Germany, in the years 2002 and 2003. Calculation of the relative biological effectiveness and dose optimization of treatment plans were performed on the basis of the LEM. Clinical examinations andmore » magnetic resonance imaging (MRI) were performed at 3, 6, and 12 months after RT and annually thereafter. Local contrast medium enhancement in temporal lobes, as detected on MRI, was regarded as radiation-induced TLR. Dose-volume histograms of 118 temporal lobes in 59 patients were analyzed, and 16 therapy-associated and 2 patient-associated factors were statistically evaluated for their predictive value for the occurrence of TLR. Results: Median follow-up was 2.5 years (range, 0.3--6.6 years). Age and maximum dose applied to at least 1 cm{sup 3} of the temporal lobe (D{sub max,V-1cm}3, maximum dose in the remaining temporal lobe volume, excluding the volume 1 cm{sup 3} with the highest dose) were found to be the most important predictors for TLR. Dose response curves of D{sub max,V-1cm}3 were calculated. The biologically equivalent tolerance doses for the 5% and 50% probabilities to develop TLR were 68.8 {+-} 3.3 Gy equivalents (GyE) and 87.3 {+-} 2.8 GyE, respectively. Conclusions: D{sub max,V-1cm}3 is predictive for radiation-induced TLR. The tolerance doses obtained seem to be consistent with published data for highly conformal photon and proton irradiations. We could not detect any clinically relevant deviations between clinical findings and expectations based on predictions of the LEM.« less

  14. Predicted Rate of Secondary Malignancies Following Adjuvant Proton Versus Photon Radiation Therapy for Thymoma.

    PubMed

    Vogel, J; Lin, L; Litzky, L A; Berman, A T; Simone, C B

    2017-10-01

    Thymic malignancies are the most common tumors of the anterior mediastinum. The benefit of adjuvant radiation therapy for stage II disease remains controversial, and patients treated with adjuvant radiation therapy are at risk of late complications, including radiation-induced secondary malignant neoplasms (SMNs), that may reduce the overall benefit of treatment. We assess the risk of predicted SMNs following adjuvant proton radiation therapy compared with photon radiation therapy after resection of stage II thymic malignancies to determine whether proton therapy improves the risk-benefit ratio. Ten consecutive patients treated with double-scattered proton beam radiation therapy (DS-PBT) were prospectively enrolled in an institutional review board-approved proton registry study. All patients were treated with DS-PBT. Intensity modulated radiation therapy (IMRT) plans for comparison were generated. SMN risk was calculated based on organ equivalent dose. Patients had a median age of 65 years (range, 25-77 years), and 60% were men. All patients had stage II disease, and many had close or positive margins (60%). The median dose was 50.4 Gy (range, 50.4-54.0 Gy) in 1.8-Gy relative biological effectiveness daily fractions. No differences in target coverage were seen with DS-PBT compared with IMRT plans. Significant reductions were seen in mean and volumetric lung, heart, and esophageal doses with DS-PBT compared with IMRT plans (all P≤.01). Significant reductions in SMNs in the lung, breast, esophagus, skin, and stomach were seen with DS-PBT compared with IMRT. For patients with thymoma diagnosed at the median national age, 5 excess secondary malignancies per 100 patients would be avoided by treating them with protons instead of photons. Treatment with proton therapy can achieve comparable target coverage but significantly reduced doses to critical normal structures, which can lead to fewer predicted SMNs compared with IMRT. By decreasing expected late complications, proton therapy may improve the therapeutic ratio of adjuvant radiation therapy for patients with stage II thymic malignancies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Shuttle radiation dose measurements in the International Space Station orbits

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  16. Mortality among workers monitored for radiation exposure at the French nuclear fuel company.

    PubMed

    Metz-Flamant, C; Rogel, A; Caër, S; Samson, E; Laurier, D; Acker, A; Tirmarche, M

    2009-01-01

    A cohort of 9,285 nuclear workers employed at the French company AREVA NC specializing in the nuclear fuel cycle was established. Vital status, causes of death, employment characteristics and annual exposure to ionizing radiation were reconstructed for each individual over the time period 1977-2004. Standardized mortality ratios (SMRs) were computed using national mortality rates as an external reference. Tests for trends in mortality with duration of employment and cumulative external dose were performed. The all-cause and all-cancer mortality was significantly lower than expected from the French population. No significant excess among cancer sites studied was observed. Significant positive trends with cumulative dose were observed for colon and liver cancer and for respiratory diseases. Isolated significant trends should be carefully interpreted and considered in line with the large number of trend tests performed.

  17. TH-EF-204-00: AAPM-AMPR (Russia)-SEFM (Spain) Joint Course On Challenges and Advantages of Small Field Radiation Treatment Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  18. TH-EF-204-02: Small Field Radiation Therapy: Physics and Recent Recommendations From IAEA and ICRU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuntjens, J.

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  19. A CORRELATION BETWEEN RADIATION TOLERANCE AND NUCLEAR SURFACE AREA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, S.

    1962-09-22

    Sparrow and Miksche (Science, 134:282) determined the dose (r/day) required to produce severe growth inhibition in 23 species of plants and found a linear relationship between log nuclear volume and log dose. The following equations hold for 6 species: log nuclear volume - 4.42 -0.82 log dose and log nuclear volume = 1.66 + 0.66 log (DNA content). If all the nuclear DNA is distributed in two peripheral zones, the equations also hold: 2(log nuclear surface area) - 1.33(log nuclear volume) - 2.21 + 0.88 log(DNA content) and 5.88-- 1.09 log dose. For the 23 species, the equation was obtained:more » 2(log nuclear surface area) = 5.41 -- 0.97 log dose. All the slopes are close to the expected value of 1.00. (D.L.C.)« less

  20. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials

    DOE PAGES

    Du, Ming; Jacobsen, Chris

    2017-10-07

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less

  1. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Ming; Jacobsen, Chris

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less

  2. Do Intermediate Radiation Doses Contribute to Late Rectal Toxicity? An Analysis of Data From Radiation Therapy Oncology Group Protocol 94-06

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Susan L., E-mail: sltucker@mdanderson.org; Dong, Lei; Michalski, Jeff M.

    2012-10-01

    Purpose: To investigate whether the volumes of rectum exposed to intermediate doses, from 30 to 50 Gy, contribute to the risk of Grade {>=}2 late rectal toxicity among patients with prostate cancer receiving radiotherapy. Methods and Materials: Data from 1009 patients treated on Radiation Therapy Oncology Group protocol 94-06 were analyzed using three approaches. First, the contribution of intermediate doses to a previously published fit of the Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) model was determined. Next, the extent to which intermediate doses provide additional risk information, after taking the LKB model into account, was investigated. Third, the proportionmore » of rectum receiving doses higher than a threshold, VDose, was computed for doses ranging from 5 to 85 Gy, and a multivariate Cox proportional hazards model was used to determine which of these parameters were significantly associated with time to Grade {>=}2 late rectal toxicity. Results: Doses <60 Gy had no detectable impact on the fit of the LKB model, as expected on the basis of the small estimate of the volume parameter (n = 0.077). Furthermore, there was no detectable difference in late rectal toxicity among cohorts with similar risk estimates from the LKB model but with different volumes of rectum exposed to intermediate doses. The multivariate Cox proportional hazards model selected V75 as the only value of VDose significantly associated with late rectal toxicity. Conclusions: There is no evidence from these data that intermediate doses influence the risk of Grade {>=}2 late rectal toxicity. Instead, the critical doses for this endpoint seem to be {>=}75 Gy. It is hypothesized that cases of Grade {>=}2 late rectal toxicity occurring among patients with V75 less than approximately 12% may be due to a 'background' level of risk, likely due mainly to biological factors.« less

  3. Low-dose chest computed tomography for lung cancer screening among Hodgkin lymphoma survivors: a cost-effectiveness analysis.

    PubMed

    Wattson, Daniel A; Hunink, M G Myriam; DiPiro, Pamela J; Das, Prajnan; Hodgson, David C; Mauch, Peter M; Ng, Andrea K

    2014-10-01

    Hodgkin lymphoma (HL) survivors face an increased risk of treatment-related lung cancer. Screening with low-dose computed tomography (LDCT) may allow detection of early stage, resectable cancers. We developed a Markov decision-analytic and cost-effectiveness model to estimate the merits of annual LDCT screening among HL survivors. Population databases and HL-specific literature informed key model parameters, including lung cancer rates and stage distribution, cause-specific survival estimates, and utilities. Relative risks accounted for radiation therapy (RT) technique, smoking status (>10 pack-years or current smokers vs not), age at HL diagnosis, time from HL treatment, and excess radiation from LDCTs. LDCT assumptions, including expected stage-shift, false-positive rates, and likely additional workup were derived from the National Lung Screening Trial and preliminary results from an internal phase 2 protocol that performed annual LDCTs in 53 HL survivors. We assumed a 3% discount rate and a willingness-to-pay (WTP) threshold of $50,000 per quality-adjusted life year (QALY). Annual LDCT screening was cost effective for all smokers. A male smoker treated with mantle RT at age 25 achieved maximum QALYs by initiating screening 12 years post-HL, with a life expectancy benefit of 2.1 months and an incremental cost of $34,841/QALY. Among nonsmokers, annual screening produced a QALY benefit in some cases, but the incremental cost was not below the WTP threshold for any patient subsets. As age at HL diagnosis increased, earlier initiation of screening improved outcomes. Sensitivity analyses revealed that the model was most sensitive to the lung cancer incidence and mortality rates and expected stage-shift from screening. HL survivors are an important high-risk population that may benefit from screening, especially those treated in the past with large radiation fields including mantle or involved-field RT. Screening may be cost effective for all smokers but possibly not for nonsmokers despite a small life expectancy benefit. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. WE-A-BRC-00: The Quality Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less

  5. An Experiment in Radiation Measurement Using the Depron Instrument

    NASA Astrophysics Data System (ADS)

    Benghin, Victor V.; Nechaev, Oleg Y.; Zolotarev, Ivan A.; Amelyushkin, Alexander M.; Petrov, Vasiliy L.; Panasyuk, Milhail I.; Yashin, Ivan V.

    2018-02-01

    Most of the radiation measurements have been made onboard spacecraft flying along orbits with an inclination of up to 51.6 degrees. Due to the prospect of manned missions at orbits with larger inclinations, it is advisable to conduct preliminary detailed dosimetry measurements at a high-inclination orbit; due to its polar orbit, the Lomonosov satellite provides good opportunities for such study. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. This method is widely used onboard spacecraft, including full-time radiation monitoring onboard the International Space Station (ISS). It should be noted that not only did the charged particles contribute significantly in the dose equivalent, but also did the neutrons. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. We add a thermal neutron counter to the proposed device in order to provide an opportunity for estimation of neutron flux variations along the satellite trajectory. Thus, the design of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal neutrons. The present paper provides a brief description of the DEPRON instrument. Its calibration results and the first mission results of background radiation measurements are also presented.

  6. Ten years after Chernobyl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, K.

    1996-12-31

    As was amply demonstrated during the EU/IAEA/WHO Summing-up-Conference in Vienna, Austria, April 8-12, 1996, the radiological consequences of the Chernobyl accident were, fortunately, not as serious as frequently presented in the media: 28 people died from acute radiation syndrome in 1986, 14 more of possibly radiation-related causes since. Of the <1000 thyroid cancers in children, 90 to 95% are curable. There have so far been no other demonstrable increases in the former Soviet Union, as well as in Western Europe, of leukemias, solid cancers, or genetic defects, nor are any to be expected in the future. Even among the {open_quotes}liquidators{close_quotes}more » with doses {approximately}100 mSv, of the {approximately}150 additional expected leukemias during the 10 yr after the accident, none have been observed. The economical, social, and political consequences, however, both in the former Soviet Union and in Western Europe, have been very substantial. Whole countries developed an hysterical `radiation sickness.` As A. Merkel, the German Minister of Environment and Reactor Safety, who chaired the conference, pointed out, `the radiation sensitivity of societies far exceeds that of individuals.` It is obvious that important groups in Ukraine, Belaurus, and Russia try to blame a large fraction of all economic, social, and health problems during the last decade, which are substantial ({approx} 6 yr less life expectancy, twice the homicides and traffic deaths, increased alcoholism, and so forth), on radiation of the Chernobyl accident in an effort to attract more support. Western scientists refute such claims but admit large non-radiation-related problems caused by the accident.« less

  7. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    DOE PAGES

    Howells, M. R.; Beetz, T.; Chapman, H. N.; ...

    2008-11-17

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper wemore » address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.« less

  8. Longitudinal study of astronaut health: Mortality in the years 1959-1991

    NASA Technical Reports Server (NTRS)

    Peterson, Leif E.

    1993-01-01

    We conducted a historical cohort study of mortality among 195 astronauts who were exposed to space and medical sources of radiation between 1959 and 1991. Cumulative occupational and medical radiation exposures were obtained from the astronaut radiation exposure history data base. Causes of death were obtained from obligatory death certificates and autopsy reports that were on file in the medical records. A total of 18 deaths occurred during the 32-year follow-up period for which the all-cause standardized mortality ratio (SMR) was 142 (95 percent confidence interval 84 225). There was one cancer death in the buccal cavity and pharynegeal ICD-9 rubric whose occurrence was significantly beyond expectation. Mortality for coronary disease was 59 percent lower than expected (2 deaths; SMR = 41; 95 percent confidence limit 5 147). The crude death rate for 10 occupationally related accidents was 400 deaths per 100,000 person-years, which is an order of magnitude greater than accidental death rates in mining industries. The SMR of 1027 for fatal accidents was significantly beyond expectation (14 deaths; 95 percent confidence limit 561 1723) and was similar to SMRs for accidents among aerial pesticide applications. The 10-year cumulative risk of occupational fatalities based on the exponential, Weibull, Gompertz, and linear-exponential distributions was 10 percent. Mortality from motor vehicle accidents was slightly higher than expected but was not significant (1 death; SMR = 145; 95 percent confidence limit 2 808). Radiation exposures from medical procedures accounted for a majority of cumulative dose when compared with space radiation exposures. The results of the study do not confirm the impression that astronauts are at increased risk of cancer, but this does not obviate the need for further study. Overall, it was found that astronauts are at a health disadvantage as a result of catastrophic accidents.

  9. Development of a patient-specific 3D dose evaluation program for QA in radiation therapy

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong

    2015-03-01

    We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose distributions. Further applications of the system utility are expected to result from future studies.

  10. SU-E-QI-15: Single Point Dosimetry by Means of Cerenkov Radiation Energy Transfer (CRET)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volotskova, O; Jenkins, C; Xing, L

    2014-06-15

    Purpose: Cerenkov light is generated when a charged particles with energy greater then 250 keV, moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons during the static megavoltage linear accelerator (LINAC) operational mode. Recently, Cerenkov radiation gained considerable interest as possible candidate as a new imaging modality. Optical signals generated by Cerenkov radiation may act as a surrogate for the absorbed superficial radiation dose. We demonstrated a novel single point dosimetry method for megavoltage photon and electron therapy utilizing down conversion of Cerenkov photons. Methods: The custom build signalmore » characterization system was used: a sample holder (probe) with adjacent light tight compartments was connected via fiber-optic cables to a photon counting photomultiplier tube (PMT). One compartment contains a medium only while the other contains medium and red-shifting nano-particles (Q-dots, nanoclusters). By taking the difference between the two signals (Cerenkov photons and CRET photons) we obtain a measure of the down-converted light, which we expect to be proportional to dose as measured with an adjacent ion chamber. Experimental results are compared to Monte Carlo simulations performed using the GEANT4 code. Results: The signal correlation between CR signal, CRET readings and dose produced by LINAC at a single point were investigated. The experimental results were compared with simulations. The dose linearity, signal to noise ratio and dose rate dependence were tested with custom build CRET based probe. Conclusion: Performance characteristics of the proposed single point CRET based probe were evaluated. The direct use of the induced Cerenkov emission and CRET in an irradiated single point volume as an indirect surrogate for the imparted dose was investigated. We conclude that CRET is a promising optical based dosimetry method that offers advantages over those already proposed.« less

  11. The maximal cumulative solar UVB dose allowed to maintain healthy and young skin and prevent premature photoaging.

    PubMed

    Ichihashi, Masamitsu; Ando, Hideya

    2014-10-01

    The young facial skin of children with a smooth healthy appearance changes over time to photoaged skin having mottled pigmentation, solar lentigines, wrinkles, dry and rough skin, leathery texture, and benign and malignant tumors after exposure to chronic, repeated solar radiation. The first sign of photoaging in Japanese subjects is usually solar lentigines appearing around 20 years of age on the face. Fine wrinkles can then appear after 30 years of age, and benign skin tumors, seborrhoeic keratoses, can occur after 35 years of age in sun-exposed skin. We theoretically calculated the maximal daily exposure time to solar radiation, which could prevent the development of photoaged skin until 60 and 80 years of age, based on published data of personal solar UVB doses in sun-exposed skin. One MED (minimal erythema dose) was determined to be 20 mJ/cm(2) , and 200 MED was used as the average yearly dose of Japanese children. Further, we hypothesized that the annual dose of Japanese adults is the same as that of the children. The cumulative UVB dose at 20 years of age was thus calculated to be 4000 MED, and 22 MED was used as the maximal daily UVB dose based on data measured in Kobe, located in the central area of Japan. We used the solar UVB dose from 10:00 a.m. to 14:00 p.m. which occupies 60% of the total daily UV dose, to obtain the maximal UVB per hour in a day, and calculated the maximal daily UV exposure time that would delay the onset of solar lentigines until 60 or 80 years of age. The mean daily sun exposure time to maintain healthy skin until 80 years of age in the summer was calculated to be 2.54 min (0.14 MED) for unprotected skin and 127 min with the use of a sunscreen of SPF (sun protection factor) of 50. In this study, we did not evaluate the photoaging effect of UVA radiation, but findings of the adverse effects of UVA radiation on the skin have accumulated in the last decade. Therefore, it will be important to estimate the maximal dose of solar UV radiation to retard the onset of photoaging based on an evaluation of both solar UVB and UVA in the future. Finally, we expect that this study may contribute to keeping Japanese and other types of skin young and healthy by limiting the exposure of the skin to solar radiation outdoors during the day. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Adjuvant radiation therapy for bladder cancer: A dosimetric comparison of techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, Brian C.; Noa, Kate; Wileyto, E. Paul

    Trials of adjuvant radiation after cystectomy are under development. There are no studies comparing radiation techniques to inform trial design. This study assesses the effect on bowel and rectal dose of 3 different modalities treating 2 proposed alternative clinical target volumes (CTVs). Contours of the bowel, rectum, CTV-pelvic sidewall (common/internal/external iliac and obturator nodes), and CTV-comprehensive (CTV-pelvic sidewall plus cystectomy bed and presacral regions) were drawn on simulation images of 7 post-cystectomy patients. We optimized 3-dimensional conformal radiation (3-D), intensity-modulated radiation (IMRT), and single-field uniform dose (SFUD) scanning proton plans for each CTV. Mixed models regression was used to comparemore » plans for bowel and rectal volumes exposed to 35% (V{sub 35%}), 65% (V{sub 65%}), and 95% (V{sub 95%}) of the prescribed dose. For any given treatment modality, treating the larger CTV-comprehensive volume compared with treating only the CTV-pelvic sidewall nodes significantly increased rectal dose (V{sub 35%} {sub rectum}, V{sub 65%} {sub rectum}, and V{sub 95%} {sub rectum}; p < 0.001 for all comparisons), but it did not produce significant differences in bowel dose (V{sub 95%} {sub bowel}, V{sub 65%} {sub bowel}, or V{sub 35%} {sub bowel}). The 3-D plans, compared with both the IMRT and the SFUD plans, had a significantly greater V{sub 65%} {sub bowel} and V{sub 95%} {sub bowel} for each proposed CTV (p < 0.001 for all comparisons). The effect of treatment modality on rectal dosimetry differed by CTV, but it generally favored the IMRT and the SFUD plans over the 3-D plans. Comparison of the IMRT plan vs the SFUD plan yielded mixed results with no consistent advantage for the SFUD plan over the IMRT plan. Targeting a CTV that spares the cystectomy bed and presacral region may marginally improve rectal toxicity but would not be expected to improve the bowel toxicity associated with any given modality of adjuvant radiation. Using the IMRT or the SFUD plans instead of the 3-D conformal plan may improve both bowel and rectal toxicity.« less

  13. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Lena, E-mail: lena.specht@regionh.dk; Yahalom, Joachim; Illidge, Tim

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solelymore » on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the use of ISRT has not yet been validated in a formal study, it is more conservative than INRT, accounting for suboptimal information and appropriately designed for safe local disease control. The goal of modern smaller field radiation therapy is to reduce both treatment volume and treatment dose while maintaining efficacy and minimizing acute and late sequelae. This review is a consensus of the International Lymphoma Radiation Oncology Group (ILROG) Steering Committee regarding the modern approach to RT in the treatment of HL, outlining a new concept of ISRT in which reduced treatment volumes are planned for the effective control of involved sites of HL. Nodal and extranodal non-Hodgkin lymphomas (NHL) are covered separately by ILROG guidelines.« less

  14. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG).

    PubMed

    Specht, Lena; Yahalom, Joachim; Illidge, Tim; Berthelsen, Anne Kiil; Constine, Louis S; Eich, Hans Theodor; Girinsky, Theodore; Hoppe, Richard T; Mauch, Peter; Mikhaeel, N George; Ng, Andrea

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the use of ISRT has not yet been validated in a formal study, it is more conservative than INRT, accounting for suboptimal information and appropriately designed for safe local disease control. The goal of modern smaller field radiation therapy is to reduce both treatment volume and treatment dose while maintaining efficacy and minimizing acute and late sequelae. This review is a consensus of the International Lymphoma Radiation Oncology Group (ILROG) Steering Committee regarding the modern approach to RT in the treatment of HL, outlining a new concept of ISRT in which reduced treatment volumes are planned for the effective control of involved sites of HL. Nodal and extranodal non-Hodgkin lymphomas (NHL) are covered separately by ILROG guidelines. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, V. E.

    2012-01-01

    Increased exposure to radiation is one physiological stressor associated with spaceflight. While known to alter normal physiological function, how radiation affects metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. Three different doses of gamma radiation (50 mGy - 6.05 Gy) and a sham were administered to groups of 6 mice each, and after various intervals of recovery time, liver gene expression was measured with RT-qPCR arrays for drug metabolism and DNA repair enzymes. Results indicated approx.65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post-treatment. With 6 Gy exposure, metallothionein expression was 132-fold more than control at the 4 hr time point, and fell at each later time point (11-fold at 24 hrs, and 8-fold at 7 days). In contrast, Cyp17a1 showed a 4-fold elevation at 4 hrs after exposure and remained constant for 7 days.

  16. Treatment of Irradiated Mice with High-Dose Ascorbic Acid Reduced Lethality

    PubMed Central

    Sato, Tomohito; Kinoshita, Manabu; Yamamoto, Tetsuo; Ito, Masataka; Nishida, Takafumi; Takeuchi, Masaru; Saitoh, Daizoh; Seki, Shuhji; Mukai, Yasuo

    2015-01-01

    Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure. PMID:25651298

  17. Scintillating Fiber Technology for a High Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Evgeny; Adams, James, Jr.; Christl, Mark; Norwood, Joseph; Watts, John

    2014-01-01

    Develop a compact low-power neutron spectrometer that uniquely identifies neutrons in the mixed radiation field expected on crewed deep-space missions. Secondary neutrons are generated by cosmic rays striking heavy crewed spacecraft as well as lunar and planetary surfaces1,2. It has been shown that secondary neutrons can account for up to 50% if the total dose-equivalent received by the crew.

  18. Statistical Prediction of Solar Particle Event Frequency based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    NASA Astrophysics Data System (ADS)

    Kim, M. Y.; Hu, S.; Cucinotta, F. A.

    2009-12-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth’s magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA’s short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 -23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (ΦE) with energy (E) >30 MeV during a defined space mission period. Corresponding ΦE (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Φ100, than at lower energies such as Φ30 or Φ60, because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons (50-300 MeV) in real-time is shown to be a crucial issue for crew protection.

  19. Statistical Prediction of Solar Particle Event Frequency Based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    NASA Technical Reports Server (NTRS)

    Myung-Hee, Y. Kim; Shaowen, Hu; Cucinotta, Francis A.

    2009-01-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth's magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA's short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 - 23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (Phi(sub E)) with energy (E) >30 MeV during a defined space mission period. Corresponding Phi(sub E) (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Phi(sub 100), than at lower energies such as Phi(sub 30) or Phi(sub 60), because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons (50-300 MeV) in real-time is shown to be a crucial issue for crew protection.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S; Zhu, X; Zhang, M

    Purpose Half-beam block is a field matching technique frequently used in radiotherapy. With no setup error, a well calibrated linac, and no internal organ motion, two photon fields can be matched seamlessly dosimetry-wise with their central axes passing the match line. However, in actual clinical situations, internal organ motion is often inevitable. This study was conducted to investigate its influence on radiation dose to patient internal points directly under the matching line. Methods A clinical setting is modeled as two half-space (x<0 and x<0) radiation fields that are turned on sequentially with a time gap of integer times of themore » patient internal organ motion period (T{sub 0}). Our point of interest moves with patient internal organs periodically and evenly in and out of the radiation fields, resulting in an average location at x=0. When the fields are delivered without any motion management, the initial phase of the point’s movement is unknown. Statistical methods are used to compute the expected value () and variance (σ) of the point dose given the uncertainty. Results Analytical solutions are obtained for and s of dose received by a point directly under the match line. is proportional to the total beam-on time (T1), and σ demonstrates previously unknown periodic behavior. /« less

  1. Mortality in the Children of Atomic Bomb Survivors and Controls

    PubMed Central

    Neel, James V.; Kato, Hiroo; Schull, William J.

    1974-01-01

    A continuing study of mortality rates among children born to survivors of the atomic bombings and a suitable group of controls has been updated; the average interval between birth and verification of death or survival is 17 years. The mortality experience is now based on 18,946 children liveborn to parents one or both of whom were proximally exposed, receiving jointly an estimated dose of 117 rem; 16,516 children born to distally exposed parents receiving essentially no radiation; and 17,263 children born to parents not in Hiroshima or Nagasaki at the time of the bombings. No clearly significant effect of parental exposure on child's survival can be demonstrated either by a contingency χ2 type of analysis or regression analysis. On the basis of the regression data, the minimal gametic doubling dose of radiation of this type for mutations resulting in death during (on the average) the first 17 years of life among liveborn infants conceived 0–13 years after parental exposure is estimated at 46 rem for fathers and 125 rem for mothers. On the basis of experimental data, the gametic doubling dose for chronic, low-level radiation would be expected to be three to four times this value for males and as much as 1000 rem for females. PMID:4822470

  2. Electrical properties study under radiation of the 3D-open-shell-electrode detector

    NASA Astrophysics Data System (ADS)

    Liu, Manwen; Li, Zheng

    2018-05-01

    Since the 3D-Open-Shell-Electrode Detector (3DOSED) is proposed and the structure is optimized, it is important to study 3DOSED's electrical properties to determine the detector's working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC) and it's upgrade, the High Luminosity (HL-LHC) at CERN. In this work, full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V) characteristics, capacitance-voltage (C-V) characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED's electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.

  3. A secretome analysis reveals that PPARα is upregulated by fractionated-dose γ-irradiation in three-dimensional keratinocyte cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeeyong; Kim, Hyun-Ji; Yi, Jae Youn, E-mail: yjy_71@kcch.re.kr

    Studies have shown that γ-irradiation induces various biological responses, including oxidative stress and apoptosis, as well as cellular repair and immune system responses. However, most such studies have been performed using traditional two-dimensional cell culture systems, which are limited in their ability to faithfully represent in vivo conditions. A three-dimensional (3D) environment composed of properly interconnected and differentiated cells that allow communication and cooperation among cells via secreted molecules would be expected to more accurately reflect cellular responses. Here, we investigated γ-irradiation–induced changes in the secretome of 3D-cultured keratinocytes. An analysis of keratinocyte secretome profiles following fractionated-dose γ-irradiation revealed changes inmore » genes involved in cell adhesion, angiogenesis, and the immune system. Notably, peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. This upregulation was associated with an increase in the transcription of known PPARα target genes in secretome, including angiopoietin-like protein 4, dermokine and kallikrein-related peptide 12, which were differentially regulated by fractionated-dose γ-irradiation. Collectively, our data imply a mechanism linking γ-irradiation and secretome changes, and suggest that these changes could play a significant role in the coordinated cellular responses to harmful ionizing radiation, such as those associated with radiation therapy. This extension of our understanding of γ-irradiation-induced secretome changes has the potential to improve radiation therapy strategies. - Highlights: • γ-irradiation induced changes of cell adhesion, angiogenesis, and immune system in secretome of 3D-cultured keratinocytes. • Peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. • The known PPARα target genes were differentially regulated by fractionated-dose γ-irradiation.« less

  4. Persistence of Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry; Cucinotta, Francis A.

    2008-01-01

    Cytogenetic damage in astronaut's peripheral blood lymphocytes is a useful in vivo marker of space radiation induced damage. Moreover, if radiation induced chromosome translocations persist in peripheral blood lymphocytes for many years, as has been assumed, they could potentially be used to measure retrospective doses or prolonged low dose rate exposures. However, as more data becomes available, evidence suggests that the yield of translocations may decline with time after exposure, at least in the case of space radiation exposures. We present our latest follow-up measurements of chromosome aberrations in astronauts blood lymphocytes assessed by FISH painting and collected a various times beginning directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Since the level of stable aberrations depends on the interplay between natural loss of circulating T-lymphocytes and replenishment from the stem or progenitor cells, the differences in the rates of decay could be explained by inter-individual variation in lymphocyte turn over. Biodosimetry estimates derived from cytogenetic analysis of samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember who has participated in two separate long-duration space missions and has been followed up for over 10 years provides limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  5. Recent Advances in Understanding Radiation Damage in Reactor Cavity Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosseel, Thomas M; Field, Kevin G; Le Pape, Yann

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has resulted in a renewed focus on long-term aging of materials at nuclear power plants (NPPs) including concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Nuclear Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete (Graves et al., (2014)). Much of the historical mechanical performance data of irradiated concrete (Hilsdorf et al., (1978)) does not accurately reflectmore » typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure (Kontani et al., (2011)). To address these potential gaps in the knowledge base, the Electric Power Research Institute and Oak Ridge National Laboratory, are working to better understand radiation damage as a degradation mechanism. This paper outlines recent progress toward: 1) assessing the radiation environment in concrete biological shields and defining the upper bound of the neutron and gamma dose levels expected in the biological shield for extended operation, and estimating adsorbed dose, 2) evaluating opportunities to harvest and test irradiated concrete from international NPPs, 3) evaluating opportunities to irradiate prototypical concrete and its components under accelerated neutron and gamma dose levels to establish conservative bounds and inform damage models, 4) developing improved models to enhance the understanding of the effects of radiation on concrete and 5) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge including developing cooperative test programs to improve confidence in data obtained from various concretes and from accelerated irradiation experiments.« less

  6. A unique dosing system for the production of OH under high vacuum for the study of environmental heterogeneous reactions.

    PubMed

    Brown, Matthew A; Johánek, Viktor; Hemminger, John C

    2008-02-01

    A unique dosing system for the production of hydroxyl radicals under high vacuum for the study of environmental heterogeneous reactions is described. Hydroxyl radicals are produced by the photodissociation of a hydrogen peroxide aqueous gas mixture with 254 nm radiation according to the reaction H2O2+hnu (254 nm)-->OH+OH. Under the conditions of the current design, 0.6% conversion of hydrogen peroxide is expected yielding a hydroxyl number density on the order of 10(10) molecules/cm3. The flux distribution of the dosing system is calculated using a Monte Carlo simulation method and compared with the experimentally determined results. The performance of this unique hydroxyl dosing system is demonstrated for the heterogeneous reaction with a solid surface of potassium iodide. Coupling of the hydroxyl radical dosing system to a quantitative surface analysis system should help provide molecular level insight into detailed reaction mechanisms.

  7. Molecular and Histopathological Changes in Mouse Intestinal Tissue After Proton Exposure

    NASA Technical Reports Server (NTRS)

    Purgason, A.; Zhang, Y.; Wu, H.

    2010-01-01

    Radiation in space, including types from solar particle events (SPE's), poses serious health risks to astronauts and is especially dangerous for long duration missions. Protons are the most abundant particles in deep space and to date there is little known about the details of the negative consequences crew members will face upon exposure to them. This ongoing project involves a mouse model subjected to several minutes of proton radiation at an energy of 250 MeV and doses of 0 Gy, 0.1 Gy, 1 Gy, and 2 Gy. The gastrointestinal tract of each animal was dissected four hours post-irradiation and the small intestine was isolated and flash-frozen. Three specimens per dose were studied. Tissue was homogenized and RNA was isolated in order for cDNA synthesis and real-time PCR to be performed. Gene expression changes are currently being analyzed specific to mouse apoptosis. Immunohistochemistry will be used to confirm any significant changes found in the analyses. Immunohistochemistry is also being used to observe gamma H2AX staining to learn of any DNA damage that occurred as a result of proton exposure. We expect to see increased DNA damage due to proton exposure. Finally, histopathologic observation of the tissue will be completed using standard H&E staining methods to screen for morphologic changes. Increased apoptosis is expected to be seen in the tissues which is typical of radiation damage. Observations will be confirmed by a pathologist.

  8. Radiation Protection

    MedlinePlus

    ... Offices Regional Offices Labs and Research Centers Radiation Protection Contact Us Share Dose Calculator Use the Radiation ... the Office of Air and Radiation (OAR) Radiation Protection Radiation Sources and Doses Calculate Your Radiation Dose ...

  9. Radiation treatment in older patients: a framework for clinical decision making.

    PubMed

    Smith, Grace L; Smith, Benjamin D

    2014-08-20

    In older patients, radiation treatment plays a vital role in curative and palliative cancer therapy. Radiation treatment recommendations should be informed by a comprehensive, personalized risk-benefit assessment that evaluates treatment efficacy and toxicity. We review several clinical factors that distinctly affect efficacy and toxicity of radiation treatment in older patients. First, locoregional tumor behavior may be more indolent in older patients for some disease sites but more aggressive for other sites. Assessment of expected locoregional relapse risk informs the magnitude and timeframe of expected radiation treatment benefits. Second, assessment of the competing cancer versus noncancer mortality and morbidity risks contextualizes cancer treatment priorities holistically within patients' entire spectrum and time course of health needs. Third, assessment of functional reserve helps predict patients' acute treatment tolerance, differentiating those patients who are unlikely to benefit from treatment or who are at high risk for treatment complications. Potential radiation treatment options include immediate curative treatment, delayed curative treatment, and no treatment, with additional consideration given to altered radiation target, dose, or sequencing with chemotherapy and/or surgery. Finally, when cure is not feasible, palliative radiation therapy remains valuable for managing symptoms and achieving meaningful quality-of-life improvements. Our proposed decision-making framework integrates these factors to help radiation oncologists formulate strategic treatment recommendations within a multidisciplinary context. Future research is still needed to identify how advanced technologies can be judiciously applied in curative and palliative settings to enhance risk-benefit profiles of radiation treatment in older patients and more accurately quantify treatment efficacy in this group. © 2014 by American Society of Clinical Oncology.

  10. TH-EF-204-04: Experience of IMRT and Other Conformal Techniques in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krylova, T.

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  11. TH-EF-204-06: Closing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borras, C.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  12. TH-EF-204-01: Introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cygler, J.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  13. TH-EF-204-03: Determination of Small Field Output Factors, Advantages and Limitations of Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaque, J. Puxeu

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  14. TH-EF-204-05: Application of Small-Field Treatment: The Promises and Pitfalls of SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, E.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  15. Nodal Clearance Rate and Long-Term Efficacy of Individualized Sentinel Node–Based Pelvic Intensity Modulated Radiation Therapy for High-Risk Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Arndt-Christian, E-mail: arndt-christian.mueller@med.uni-tuebingen.de; Eckert, Franziska; Paulsen, Frank

    2016-02-01

    Purpose: To assess the efficacy of individual sentinel node (SN)-guided pelvic intensity modulated radiation therapy (IMRT) by determining nodal clearance rate [(n expected nodal involvement − n observed regional recurrences)/n expected nodal involvement] in comparison with surgically staged patients. Methods and Materials: Data on 475 high-risk prostate cancer patients were examined. Sixty-one consecutive patients received pelvic SN-based IMRT (5 × 1.8 Gy/wk to 50.4 Gy [pelvic nodes + individual SN] and an integrated boost with 5 × 2.0 Gy/wk to 70.0 Gy to prostate + [base of] seminal vesicles) and neo-/adjuvant long-term androgen deprivation therapy; 414 patients after SN–pelvic lymph node dissection were used to calculate the expected nodal involvement rate for the radiation therapymore » sample. Biochemical control and overall survival were estimated for the SN-IMRT patients using the Kaplan-Meier method. The expected frequency of nodal involvement in the radiation therapy group was estimated by imputing frequencies of node-positive patients in the surgical sample to the pattern of Gleason, prostate-specific antigen, and T category in the radiation therapy sample. Results: After a median follow-up of 61 months, 5-year OS after SN-guided IMRT reached 84.4%. Biochemical control according to the Phoenix definition was 73.8%. The nodal clearance rate of SN-IMRT reached 94%. Retrospective follow-up evaluation is the main limitation. Conclusions: Radiation treatment of pelvic nodes individualized by inclusion of SNs is an effective regional treatment modality in high-risk prostate cancer patients. The pattern of relapse indicates that the SN-based target volume concept correctly covers individual pelvic nodes. Thus, this SN-based approach justifies further evaluation, including current dose-escalation strategies to the prostate in a larger prospective series.« less

  16. Impact on the Japanese atomic bomb survivors of radiation received from the bombs.

    PubMed

    Cullings, Harry M

    2014-02-01

    The Radiation Effects Research Foundation (RERF) studies various cohorts of Japanese atomic bomb survivors, the largest being the Life Span Study (LSS), which includes 93,741 persons who were in Hiroshima or Nagasaki at the times of the bombings; there are also cohorts of persons who were exposed in utero and survivors' children. This presentation attempts to summarize the total impact of the radiation from the bombs on the survivors from both an individual perspective (both age-specific and integrated lifetime risk, along with a measure of life expectancy that describes how the risk affects the individual given age at exposure) and a group perspective (estimated numbers of excess occurrences in the cohort), including both early and late effects. As survivors' doses ranged well into the acutely lethal range at closer distances, some of them experienced acute signs and symptoms of radiation exposure in addition to being at risk of late effects. Although cancer has always been a primary concern among late effects, estimated numbers of excess cancers and hematopoietic malignancies in the LSS are a small fraction of the total due to the highly skewed dose distribution, with most survivors receiving small doses. For example, in the latest report on cancer incidence, 853 of 17,448 incident solid cancers were estimated to be attributable to radiation from the bombs. RERF research indicates that risk of radiation-associated cancer varies among sites and that some benign tumors such as uterine myoma are also associated with radiation. Noncancer late effects appear to be in excess in proportion to radiation dose but with an excess relative risk about one-third that of solid cancer and a correspondingly small overall fraction of cases attributable to radiation. Specific risks were found for some subcategories, particularly circulatory disease, including stroke and precedent conditions such as hypertension. Radiation-related cataract in the atomic bomb survivors is well known, with evidence in recent years of risk at lower dose levels than previously appreciated. In addition to somatic effects, survivors experienced psychosocial effects such as uncertainty, social stigma, or rejection, and other social pressures. Developmental deficits associated with in utero exposure, notably cognitive impairment, have also been described. Interaction of radiation with other risk factors has been demonstrated in relation to both cancer and noncancer diseases. Current research interests include whether radiation increases risk of diabetes or conditions of the eye apart from cataract, and there continues to be keen interest as to whether there are heritable effects in survivors' children, despite negative findings to date. Introduction of Impact on the Japanese Atomic- Bomb Survivors (Video 1:52, http://links.lww.com/HP/A29).

  17. Normal Tissue Complication Probability Modeling of Acute Hematologic Toxicity in Patients Treated With Intensity-Modulated Radiation Therapy for Squamous Cell Carcinoma of the Anal Canal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazan, Jose G.; Luxton, Gary; Mok, Edward C.

    2012-11-01

    Purpose: To identify dosimetric parameters that correlate with acute hematologic toxicity (HT) in patients with squamous cell carcinoma of the anal canal treated with definitive chemoradiotherapy (CRT). Methods and Materials: We analyzed 33 patients receiving CRT. Pelvic bone (PBM) was contoured for each patient and divided into subsites: ilium, lower pelvis (LP), and lumbosacral spine (LSS). The volume of each region receiving at least 5, 10, 15, 20, 30, and 40 Gy was calculated. Endpoints included grade {>=}3 HT (HT3+) and hematologic event (HE), defined as any grade {>=}2 HT with a modification in chemotherapy dose. Normal tissue complication probabilitymore » (NTCP) was evaluated with the Lyman-Kutcher-Burman (LKB) model. Logistic regression was used to test associations between HT and dosimetric/clinical parameters. Results: Nine patients experienced HT3+ and 15 patients experienced HE. Constrained optimization of the LKB model for HT3+ yielded the parameters m = 0.175, n = 1, and TD{sub 50} = 32 Gy. With this model, mean PBM doses of 25 Gy, 27.5 Gy, and 31 Gy result in a 10%, 20%, and 40% risk of HT3+, respectively. Compared with patients with mean PBM dose of <30 Gy, patients with mean PBM dose {>=}30 Gy had a 14-fold increase in the odds of developing HT3+ (p = 0.005). Several low-dose radiation parameters (i.e., PBM-V10) were associated with the development of HT3+ and HE. No association was found with the ilium, LP, or clinical factors. Conclusions: LKB modeling confirms the expectation that PBM acts like a parallel organ, implying that the mean dose to the organ is a useful predictor for toxicity. Low-dose radiation to the PBM was also associated with clinically significant HT. Keeping the mean PBM dose <22.5 Gy and <25 Gy is associated with a 5% and 10% risk of HT, respectively.« less

  18. Tolerance of the Brachial Plexus to High-Dose Reirradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Allen M., E-mail: achen5@kumc.edu; Yoshizaki, Taeko; Velez, Maria A.

    Purpose: To study the tolerance of the brachial plexus to high doses of radiation exceeding historically accepted limits by analyzing human subjects treated with reirradiation for recurrent tumors of the head and neck. Methods and Materials: Data from 43 patients who were confirmed to have received overlapping dose to the brachial plexus after review of radiation treatment plans from the initial and reirradiation courses were used to model the tolerance of this normal tissue structure. A standardized instrument for symptoms of neuropathy believed to be related to brachial plexus injury was utilized to screen for toxicity. Cumulative dose was calculatedmore » by fusing the initial dose distributions onto the reirradiation plan, thereby creating a composite plan via deformable image registration. The median elapsed time from the initial course of radiation therapy to reirradiation was 24 months (range, 3-144 months). Results: The dominant complaints among patients with symptoms were ipsilateral pain (54%), numbness/tingling (31%), and motor weakness and/or difficulty with manual dexterity (15%). The cumulative maximum dose (Dmax) received by the brachial plexus ranged from 60.5 Gy to 150.1 Gy (median, 95.0 Gy). The cumulative mean (Dmean) dose ranged from 20.2 Gy to 111.5 Gy (median, 63.8 Gy). The 1-year freedom from brachial plexus–related neuropathy was 67% and 86% for subjects with a cumulative Dmax greater than and less than 95.0 Gy, respectively (P=.05). The 1-year complication-free rate was 66% and 87%, for those reirradiated within and after 2 years from the initial course, respectively (P=.06). Conclusion: The development of brachial plexus–related symptoms was less than expected owing to repair kinetics and to the relatively short survival of the subject population. Time-dose factors were demonstrated to be predictive of complications.« less

  19. Occupational external exposure to ionising radiation in France (2005-2011).

    PubMed

    Feuardent, J; Scanff, P; Crescini, D; Rannou, A

    2013-12-01

    The Institute for Radiological Protection and Nuclear Safety (IRSN) produces the French annual report on occupational exposure to ionising radiation, collecting all national data and aggregating the results according to a unique activity classification expected to be shared by all involved in personal dosimetric monitoring (employers, external dosimetry services and IRSN). Nearly 344,000 monitored workers were counted in France in 2011, with a collective dose of 64.24 man.Sv. The average annual dose (as calculated over the number of measurably exposed workers) differed among the main activity fields: 0.54 mSv in medical and veterinary activities, 1.18 mSv in the nuclear field, 1.60 mSv in non-nuclear industry and 0.47 mSv in research activities. Because of improved knowledge about worker activities, the results for year 2011 are detailed per activity sectors in each field. Lasting limitations prevent from having complete and reliable worker activity information. Solutions are considered to reduce the inaccuracy in the annually published statistics. The evolution of occupational external exposure to ionising radiation from 2005 to 2011 in France is then presented for the main activity fields.

  20. Radiation Dosimetry of Whole-Body Dual-Tracer 18F-FDG and 11C-Acetate PET/CT for Hepatocellular Carcinoma.

    PubMed

    Liu, Dan; Khong, Pek-Lan; Gao, Yiming; Mahmood, Usman; Quinn, Brian; St Germain, Jean; Xu, X George; Dauer, Lawrence T

    2016-06-01

    Combined whole-body dual-tracer ((18)F-FDG and (11)C-acetate) PET/CT is increasingly used for staging hepatocellular carcinoma, with only limited studies investigating the radiation dosimetry data of these scans. The aim of the study was to characterize the radiation dosimetry of combined whole-body dual-tracer PET/CT protocols. Consecutive adult patients with hepatocellular carcinoma who underwent whole-body dual-tracer PET/CT scans were retrospectively reviewed with institutional review board approval. OLINDA/EXM 1.1 was used to estimate patient-specific internal dose exposure in each organ. Biokinetic models for (18)F-FDG and (11)C-acetate as provided by ICRP (International Commission on Radiological Protection) publication 106 were used. Standard reference phantoms were modified to more closely represent patient-specific organ mass. With patient-specific parameters, organ equivalent doses from each CT series were estimated using VirtualDose. Dosimetry capabilities for tube current modulation protocols were applied by integrating with the latest anatomic realistic models. Effective dose was calculated using ICRP publication 103 tissue-weighting coefficients for adult male and female, respectively. Fourteen scans were evaluated (12 men, 2 women; mean age ± SD, 60 ± 19.48 y). The patient-specific effective dose from (18)F-FDG and (11)C-acetate was 6.08 ± 1.49 and 1.56 ± 0.47 mSv, respectively, for male patients and 6.62 ± 1.38 and 1.79 ± 0.12 mSV, respectively, for female patients. The patient-specific effective dose of the CT component, which comprised 2 noncontrast whole-body scans, to male and female patients was 21.20 ± 8.94 and 14.79 ± 3.35 mSv, respectively. Thus, the total effective doses of the combined whole-body dual-tracer PET/CT studies for male and female patients were 28.84 ± 10.18 and 23.19 ± 4.61 mSv, respectively. Patient-specific parameters allow for more accurate estimation of organ equivalent doses. Considering the substantial radiation dose incurred, judicious medical justification is required with every whole-body dual-tracer PET/CT referral. Although radiation risks may have less impact for the population with cancer because of their reduced life expectancy, the information is of interest and relevant for both justification, to evaluate risk/benefit, and protocol optimization. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. Role of particle radiotherapy in the management of head and neck cancer.

    PubMed

    Laramore, George E

    2009-05-01

    Modern imaging techniques and powerful computers allow a radiation oncologist to design treatments delivering higher doses of radiation than previously possible. Dose distributions imposed by the physics of 'standard' photon and electron beams limit further dose escalation. Hadron radiotherapy offers advantages in either dose distribution and/or improved radiobiology that may significantly improve the treatment of certain head and neck malignancies. Clinical studies support the effectiveness of fast-neutron radiotherapy in the treatment of major and minor salivary gland tumors. Data show highly favorable outcomes with proton radiotherapy for skull-base malignancies and tumors near highly critical normal tissues compared with that expected with standard radiotherapy. Heavy-ion radiotherapy clinical studies are mainly being conducted with fully stripped carbon ions, and limited data seem to indicate a possible improvement over proton radiotherapy for the same subset of radioresistant tumors where neutrons show a benefit over photons. Fast-neutron radiotherapy has different radiobiological properties compared with standard radiotherapy but similar depth dose distributions. Its role in the treatment of head and neck cancer is currently limited to salivary gland malignancies and certain radioresistant tumors such as sarcomas. Protons have the same radiobiological properties as standard radiotherapy beams but more optimal depth dose distributions, making it particularly advantageous when treating tumors adjacent to highly critical structures. Heavy ions combine the radiobiological properties of fast neutrons with the physical dose distributions of protons, and preliminary data indicate their utility for radioresistant tumors adjacent to highly critical structures.

  2. DEPRON dosimeter for ``Lomonosov'' satellite

    NASA Astrophysics Data System (ADS)

    Brilkov, Ivan; Vedenkin, Nikolay; Panasyuk, Mikhail; Amelyushkin, Aleksandr; Petrov, Vasily; Nechayev, Oleg; Benghin, Victor

    It is commonly known, that cosmic radiation generates negative impact on the human body during space flight. The structure of the radiation fields in the near-Earth space was studied during intensive research of recent decades. Huge number of dosimetry studies was conducted on manned and unmanned space vehicles in order to solve the problem of radiation safety humans during space flights. It should be noted that most of the measurements was made onboard the spacecrafts, flying along the orbits with inclination of up to 51.6 degrees. Due to the prospect of manned missions at the orbits with larger inclination it seems advisable to conduct preliminary detailed dosimetry measurements at high-altitude orbit, for which the "Lomonosov" satellite provides good opportunities. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. Proposed in the late 70's this method is widely used onboard spacecraft, including full-time radiation monitoring onboard the ISS. Recently it has been improved, providing an opportunity to register not only the absorbed dose of charged particles radiation, but also range of their ionization losses. It allowed assessment of equivalent dose. Appropriate procedure based on using of a telescope consisting of two semiconductor detectors provided a basis of the developed unit. It should be noted that not only the charged particles contribute significantly in the equivalent dose, but also neutrons do. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. It was therefore decided to add thermal neutrons counter to the developed device in order to provide an opportunity of estimation of neutron flux variations along the satellite trajectory. A gas-discharge counter SI-13N, operated in a mode of corona discharge was chosen as a neutron detector. This method of neutron detection is well-proven and used many times in SINP MSU experiments. Thus, the appearance of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal and slow neutrons. The experiment based on DEPRON instrument is aimed at the studies of the distribution of space radiation dose rate at high latitude paths in order to study the flight paths of perspective manned spacecraft. Present work provides a brief description of the DEPRON instrument, its calibration results and the structure of the output data.

  3. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  4. WE-A-BRC-01: Introduction to the Certificate Course

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palta, J.

    Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less

  5. WE-A-BRC-03: Lessons Learned: IROC Audits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Followill, D.

    Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less

  6. WE-A-BRC-02: Lessons Learned: Clinical Trials and Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, S.

    Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less

  7. Special cases for proton beam radiotherapy: re-irradiation, lymphoma, and breast cancer.

    PubMed

    Plastaras, John P; Berman, Abigail T; Freedman, Gary M

    2014-12-01

    The dose distributions that can be achieved with protons are usually superior to those of conventional photon external-beam radiation. There are special cases where proton therapy may offer a substantial potential benefit compared to photon treatments where toxicity concerns dominate. Re-irradiation may theoretically be made safer with proton therapy due to lower cumulative lifetime doses to sensitive tissues, such as the spinal cord. Proton therapy has been used in a limited number of patients with rectal, pancreatic, esophageal, and lung cancers. Chordomas and soft tissue sarcomas require particularly high radiation doses, posing additional challenges for re-irradiation. Lymphoma is another special case where proton therapy may be advantageous. Late toxicities from even relatively low radiation doses, including cardiac complications and second cancers, are of concern in lymphoma patients with high cure rates and long life expectancies. Proton therapy has begun to be used for consolidation after chemotherapy in patients with Hodgkin and non-Hodgkin lymphoma. Breast cancer is another emerging area of proton therapy development and use. Proton therapy may offer advantages compared to other techniques in the setting of breast boosts, accelerated partial breast irradiation, and post-mastectomy radiotherapy. In these settings, proton therapy may decrease toxicity associated with breast radiotherapy. As techniques are refined in proton therapy, we may be able to improve the therapeutic ratio by maintaining the benefits of radiotherapy while better minimizing the risks. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Modern Radiation Therapy for Nodal Non-Hodgkin Lymphoma—Target Definition and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illidge, Tim, E-mail: Tim.Illidge@ics.manchester.ac.uk; Specht, Lena; Yahalom, Joachim

    2014-05-01

    Radiation therapy (RT) is the most effective single modality for local control of non-Hodgkin lymphoma (NHL) and is an important component of therapy for many patients. Many of the historic concepts of dose and volume have recently been challenged by the advent of modern imaging and RT planning tools. The International Lymphoma Radiation Oncology Group (ILROG) has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the ILROG steering committee on the use of RT in NHL in the modern era. The roles of reduced volume and reduced doses aremore » addressed, integrating modern imaging with 3-dimensional planning and advanced techniques of RT delivery. In the modern era, in which combined-modality treatment with systemic therapy is appropriate, the previously applied extended-field and involved-field RT techniques that targeted nodal regions have now been replaced by limiting the RT to smaller volumes based solely on detectable nodal involvement at presentation. A new concept, involved-site RT, defines the clinical target volume. For indolent NHL, often treated with RT alone, larger fields should be considered. Newer treatment techniques, including intensity modulated RT, breath holding, image guided RT, and 4-dimensional imaging, should be implemented, and their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control.« less

  9. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials.

    PubMed

    Du, Ming; Jacobsen, Chris

    2018-01-01

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cosmic Ray Modulation and Radiation Dose of Aircrews During Possible Grand Minimum

    NASA Astrophysics Data System (ADS)

    Miyake, S.; Kataoka, R.; Sato, T.; Imada, S.; Miyahara, H.; Shiota, D.; Matsumoto, T.; Ueno, H.

    2017-12-01

    The Sun is exhibiting low solar activity levels since the descending phase of the last solar cycle, and it is likely to be continued as well as in the case of the past grand solar minima. The cosmic-ray modulation, which is the variation of the galactic cosmic ray (GCR) spectrum caused by the heliospheric environmental change, is basically anti-correlated with the solar activity. In the recent weak solar cycle, we thus expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude, we have developed the time-dependent and three-dimensional model of the cosmic-ray modulation. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind speed, the strength of the heliospheric magnetic field (HMF), and its tilt angle. We solve the gradient-curvature drift motion of GCRs in the HMF, and therefore reproduce the 22-year variation of the cosmic-ray modulation. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In our previous study [1], we calculated the radiation dose at a flight altitude during the coming solar cycle by assuming the variation of the solar wind speed and the strength of the HMF expressed by sinusoidal curve, and obtained that an annual radiation dose of aircrews in 5 years around the next solar minimum will be up to 19% higher than that at the last cycle. In this study, we predict the new model of the heliospheric environmental change on the basis of a prediction model for the sunspot number. The quantitative predictions of the cosmic-ray modulation and the radiation dose at a flight altitude during possible Grand Minimum considering the new model for the heliospheric environmental change will be presented at the meeting. [1] S. Miyake, R. Kataoka, and T. Sato, Space Weather, 15, 589-605, 2017.

  11. Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment

    PubMed Central

    Vaiserman, Alexander M.

    2010-01-01

    Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444

  12. Status of LDEF ionizing radiation measurements and analysis

    NASA Technical Reports Server (NTRS)

    Parnell, Thomas A.

    1993-01-01

    At this symposium significant new data and analyses were reported in cosmic ray research, radiation dosimetry, induced radioactivity, and radiation environment modeling. Measurements of induced radioactivity and absorbed dose are nearly complete, but much analysis and modeling remains. Measurements and analyses of passive nuclear track detectors (PNTD), used to derive the cosmic ray composition and spectra, and linear energy transfer (LET) spectra, are only a few percent complete, but important results have already emerged. As one might expect at this stage of the research, some of the new information has produced questions rather than answers. Low-energy heavy nuclei detected by two experiments are not compatible with known solar or cosmic components. Various data sets on absorbed dose are not consistent, and a new trapped proton environment model does not match the absorbed dose data. A search for cosmogenic nuclei other than Be-7 on Long Duration Exposure Facility (LDEF) surfaces has produced an unexpected result, and some activation data relating to neutrons is not yet understood. Most of these issues will be resolved by the analysis of further experiment data, calibrations, or the application of the large LDEF data set that offers alternate data or analysis techniques bearing on the same problem. The scope of the papers at this symposium defy a compact technical summary. I have attempted to group the new information that I noted into the following groups: induced radioactivity; absorbed dose measurements; LET spectra and heavy ion dosimetry; environment modeling and three dimensional shielding effects; cosmogenic nuclei; and cosmic rays and other heavy ions. The papers generally are expository and have excellent illustrations, and I refer to their figures rather than reproduce them here. The general program and objectives of ionizing radiation measurements and analyses on LDEF has been described previously.

  13. Passive dosimetry aboard the Mir Orbital Station: internal measurements.

    PubMed

    Benton, E R; Benton, E V; Frank, A L

    2002-10-01

    Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET infinity H2O > or = 5 keV/micrometers. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment secondaries, not primary galactic cosmic rays, were found to dominate the LET spectrum above 100 keV/micrometers. This indicates that in low earth orbit, trapped protons in the South Atlantic Anomaly are responsible for the major fraction of the total dose equivalent. c2002 Elsevier Science Ltd. All rights reserved.

  14. Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.

    2006-03-01

    According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses.more » While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizingradiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation.« less

  15. A new Gamma Knife radiosurgery paradigm: Tomosurgery

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoliang

    The Leksell (Elekta, Stockholm, Sweden) Gamma Knife(TM) (LGK) is the worldwide standard-of-care for the radiosurgical treatment of a wide variety of intracranial lesions. The current LGK utilizes a step-and-shoot dose delivery mechanism where the centroid of each conformal radiation dose (i.e., the shot isocenter) requires repositioning the patient outside of the irradiation field. Perhaps the greatest challenge the LGK treatment team faces is planning the treatment of large and/or complexly shaped lesions that may be in close proximity to critical neural or vascular structures. The standard manual treatment planning approach is a time consuming procedure where additional time spent does not guarantee the identification of an increasingly optimal treatment plan. I propose a new radiosurgery paradigm which I refer to as "Tomosurgery". The Tomosurgery paradigm begins with the division of the target volume into a series of adjacent treatment slices, each with a carefully determined optimal thickness. The use of a continuously moving disk-shaped radiation shot that moves through the lesion in a raster-scanning pattern is expected to improve overall radiation dose conformality and homogeneity. The Tomosurgery treatment planning algorithm recruits a two-stage optimization strategy, which first plans each treatment slice as a simplified 2D problem and secondly optimally assembles the 2D treatment plans into the final 3D treatment plan. Tested on 11 clinical LGK cases, the automated inversely-generated Tomosurgery treatment plans performed as well or better than the neurosurgeon's manually created treatment plans across all criteria: (a) dose volume histograms, (b) dose homogeneity, (c) dose conformality, and (d) critical structure damage, where applicable. LGK Tomosurgery inverse treatment planning required much less time than standard of care, manual (i.e., forward) LGK treatment planning procedures. These results suggest that Tomosurgery might provide an improvement over the current LGK radiosurgery treatment planning software. As regards treatment delivery, a Tomosurgery Investigational Platform (TIP) is proposed to perform the physical validation of radiation dose delivery. The TIP should facilitate translation of the Tomosurgery paradigm to several other radiosurgery and/or radiotherapy devices without the need for expensive modification of commercial devices until the feasibility of delivering Tomosurgical treatment plans has been well established.

  16. RBE, reference RBE and clinical RBE: applications of these concepts in hadron therapy.

    PubMed

    Wambersie, A

    1999-06-01

    Introduction of heavy particles (hadrons) into radiation therapy aims at improving the physical selectivity of the irradiation (e.g. proton beams), or the radiobiological differential effect (e.g. fast neutrons), or both (e.g. heavy-ion beams). Each of these new therapy modalities requires several types of information before prescribing safely the doses to patients, as well as for recording and reporting the treatments: (i) absorbed dose measured in a homogeneous phantom in reference conditions; (ii) dose distribution computed at the level of the target volume(s) and the normal tissues at risk; (iii) radiation quality from which a RBE evaluation could be predicted and (iv) RBE measured on biological systems or derived from clinical observation. In hadron therapy, the RBE of the different beams raises specific problems. For fast neutrons, the RBE varies within wide limits (about 2 to 5) depending on the neutron energy spectrum, dose, and biological system. For protons, the RBE values range between smaller limits (about 1.0 to 1.2). A clinical benefit can thus not be expected from RBE differences. However, the proton RBE problem cannot be ignored since dose differences of about 5% can be detected clinically in some cases. The situation is most complex with heavy ions since RBE variations are at least as large as for fast neutrons, as a function of particle type and energy, dose and biological system. In addition, RBE varies with depth. Radiation quality thus has to be taken into account when prescribing and reporting a treatment. This can be done in different ways: (a) description of the method of beam production; (b) computed LET spectra and/or measured microdosimetric spectra at the points clinically relevant; (c) RBE determination. The most relevant RBE data are those obtained for late tolerance of normal tissues at 2 Gy per fraction ("reference RBE"). The "clinical RBE" selected by the radiation oncologist when prescribing the treatment will be close to the reference RBE, but other factors (such as heterogeneity in dose distribution) may influence the selection of the clinical RBE. Combination of microdosimetric data and experimental RBE values improves the confidence in both sets of data.

  17. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    NASA Astrophysics Data System (ADS)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence correction factors for the MOSFET organ dose measurements in the following studies. Minor angular dependence (< +/-20% at all angles tested, < +/-10% at clinically relevant angles in cardiac catheterization) was observed. Second, the cardiac dose for common fluoroscopic imaging techniques for pediatric patients in the two age groups was measured. Imaging technique settings with variations of individual key imaging parameters were tested to observe the quantitative effect of imaging optimization or lack thereof. Along with each measurement, the two standard system output indices, the Air Kerma (AK) and Dose-Area Product (DAP), were also recorded and compared to the measured cardiac and skin doses -- the lack of correlation between the indices and the organ doses shed light to the substantial limitation of the indices in representing patient radiation dose, at least within the scope of this dissertation. Third, the effective dose (ED) for Posterior-Anterior and Lateral fluoroscopic imaging techniques for pediatric patients in the two age groups was determined. In addition, the dosimetric effect of removing the anti-scatter grid was studied, for which a factor-of-two ED rate reduction was observed for the imaging techniques. The Clinical Component involved analytical research to develop a validated retrospective cardiac dose reconstruction formulation and to propose the new Optimization Index which evaluates the level of optimization of the clinician's imaging usage during a procedure; and small sample group of actual procedures were used to demonstrate applicability of these formulations. In its entirety, the research represents a first-of-its-kind comprehensive approach in radiation dosimetry for pediatric cardiac catheterization; and separately, it is also modular enough that each individual section can serve as study templates for small-scale dosimetric studies of similar purposes. The data collected and algorithmic formulations developed can be of use in areas of personalized patient dosimetry, clinician training, image quality studies and radiation-associated health effect research.

  18. Phosphoprotein profiles of candidate markers for early cellular responses to low-dose γ-radiation in normal human fibroblast cells

    PubMed Central

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Lee, In Kyung; Nam, Seon Young

    2017-01-01

    Abstract Ionizing radiation causes biological damage that leads to severe health effects. However, the effects and subsequent health implications caused by exposure to low-dose radiation are unclear. The objective of this study was to determine phosphoprotein profiles in normal human fibroblast cell lines in response to low-dose and high-dose γ-radiation. We examined the cellular response in MRC-5 cells 0.5 h after exposure to 0.05 or 2 Gy. Using 1318 antibodies by antibody array, we observed ≥1.3-fold increases in a number of identified phosphoproteins in cells subjected to low-dose (0.05 Gy) and high-dose (2 Gy) radiation, suggesting that both radiation levels stimulate distinct signaling pathways. Low-dose radiation induced nucleic acid–binding transcription factor activity, developmental processes, and multicellular organismal processes. By contrast, high-dose radiation stimulated apoptotic processes, cell adhesion and regulation, and cellular organization and biogenesis. We found that phospho-BTK (Tyr550) and phospho-Gab2 (Tyr643) protein levels at 0.5 h after treatment were higher in cells subjected to low-dose radiation than in cells treated with high-dose radiation. We also determined that the phosphorylation of BTK and Gab2 in response to ionizing radiation was regulated in a dose-dependent manner in MRC-5 and NHDF cells. Our study provides new insights into the biological responses to low-dose γ-radiation and identifies potential candidate markers for monitoring exposure to low-dose ionizing radiation. PMID:28122968

  19. Design, Implementation, and Characterization of a Dedicated Breast Computed MammoTomography System for Enhanced Lesion Imaging

    DTIC Science & Technology

    2008-03-01

    dual view mammography with anticipated increased image contrast ; and (4) expectedly improved positive predictive value, especially for...ray source allows for reduced radiation dose as compared to standard dual-view mammography and additionally improves image contrast between soft...clear signal enhancing ~2cm diameter, detailed volume of tracer anterior to the chest wall which corresponded to that seen in the contrast enhanced

  20. Acute Biological Effects of Simulating the Whole-Body Radiation Dose Distribution from a Solar Particle Event Using a Porcine Model

    PubMed Central

    Wilson, Jolaine M.; Sanzari, Jenine K.; Diffenderfer, Eric S.; Yee, Stephanie S.; Seykora, John T.; Maks, Casey; Ware, Jeffrey H.; Litt, Harold I.; Reetz, Jennifer A.; McDonough, James; Weissman, Drew; Kennedy, Ann R.; Cengel, Keith A.

    2011-01-01

    In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses. PMID:21859326

  1. Modeling estimates of the effect of acid rain on background radiation dose.

    PubMed Central

    Sheppard, S C; Sheppard, M I

    1988-01-01

    Acid rain causes accelerated mobilization of many materials in soils. Natural and anthropogenic radionuclides, especially 226Ra and 137Cs, are among these materials. Okamoto is apparently the only researcher to date who has attempted to quantify the effect of acid rain on the "background" radiation dose to man. He estimated an increase in dose by a factor of 1.3 following a decrease in soil pH of 1 unit. We reviewed literature that described the effects of changes in pH on mobility and plant uptake of Ra and Cs. Generally, a decrease in soil pH by 1 unit will increase mobility and plant uptake by factors of 2 to 7. Thus, Okamoto's dose estimate may be too low. We applied several simulation models to confirm Okamoto's ideas, with most emphasis on an atmospherically driven soil model that predicts water and nuclide flow through a soil profile. We modeled a typical, acid-rain sensitive soil using meteorological data from Geraldton, Ontario. The results, within the range of effects on the soil expected from acidification, showed essentially direct proportionality between the mobility of the nuclides and dose. This supports some of the assumptions invoked by Okamoto. We conclude that a decrease in pH of 1 unit may increase the mobility of Ra and Cs by a factor of 2 or more. Our models predict that this will lead to similar increases in plant uptake and radiological dose to man. Although health effects following such a small increase in dose have not been statistically demonstrated, any increase in dose is probably undesirable. PMID:3203639

  2. Mortality among mound workers exposed to polonium-210 and other sources of radiation, 1944-1979.

    PubMed

    Boice, John D; Cohen, Sarah S; Mumma, Michael T; Ellis, Elizabeth Dupree; Cragle, Donna L; Eckerman, Keith F; Wallace, Phillip W; Chadda, Bandana; Sonderman, Jennifer S; Wiggs, Laurie D; Richter, Bonnie S; Leggett, Richard W

    2014-02-01

    Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. Cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944-1972) in combination with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88-0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79-0.93), lung cancer (SMR 0.85; 95% CI 0.74-0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15-2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23-1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97-1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63-1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95-1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Larger combined studies of U.S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes.

  3. Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944–1979

    DOE PAGES

    Boice, John D.; Cohen, Sarah S.; Mumma, Michael T.; ...

    2014-02-14

    Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. In this paper, cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944–1972) in combinationmore » with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88–0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79–0.93), lung cancer (SMR 0.85; 95% CI 0.74–0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15–2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23–1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97–1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63–1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95–1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Finally, larger combined studies of U.S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes.« less

  4. Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944–1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boice, John D.; Cohen, Sarah S.; Mumma, Michael T.

    Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. In this paper, cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944–1972) in combinationmore » with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88–0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79–0.93), lung cancer (SMR 0.85; 95% CI 0.74–0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15–2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23–1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97–1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63–1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95–1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Finally, larger combined studies of U.S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes.« less

  5. Total Dose Effects in Conventional Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Swift, G. W.; Rax, B. G.

    1994-01-01

    This paper examines various factors in bipolar device construction and design, and discusses their impact on radiation hardness. The intent of the paper is to improve understanding of the underlying mechanisms for practical devices without special test structures, and to provide (1) guidance in ways to select transistor designs that are more resistant to radiation damage, and (2) methods to estimate the maximum amount of damage that might be expected from a basic transistor design. The latter factor is extremely important in assessing the risk that future lots of devices will be substantially below design limits, which are usually based on test data for older devices.

  6. SU-E-T-651: Quantification of Dosimetric Accuracy of Respiratory Gated Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiyagarajan, Rajesh; Vikraman, S; Maragathaveni, S

    2015-06-15

    Purpose: To quantify the dosimetric accuracy of respiratory gated stereotactic body radiation therapy delivery using dynamic thorax phantom. Methods: Three patients with mobile target (2 lung, 1liver) were chosen. Retrospective 4DCT image sets were acquired for using Varian RPM system. An in-house MATLAB program was designed for MIP, MinIP and AvgIP generation. ITV was contoured on MIP image set for lung patients and on MinIP for liver patient. Dynamic IMRT plans were generated on selected phase bin image set in Eclipse (v10.0) planning system. CIRS dynamic thorax phantom was used to perform the dosimetric quality assurance. Patient breathing pattern filemore » from RPM system was converted to phantom compatible file by an in-house MATLAB program. This respiratory pattern fed to the CIRS dynamic thorax phantom. 4DCT image set was acquired for this phantom using patient breathing pattern. Verification plans were generated using patient gating window and delivered on the phantom. Measurements were carried out using with ion chamber and EBT2 film. Exposed films were analyzed and evaluated in FilmQA software. Results: The stability of gated output in comparison with un-gated output was within 0.5%. The Ion chamber measured and TPS calculated dose compared for all the patients. The difference observed was 0.45%, −0.52% and −0.54 for Patient 1, Patient2 and Patient 3 respectively.Gamma value evaluated from EBT film shows pass rates from 92.41% to 99.93% for 3% dose difference and 3mm distance to agreement criteria. Conclusion: Dosimetric accuracy of respiratory gated SBRT delivery for lung and liver was dosimetrically acceptable. The Ion chamber measured dose was within 0.203±0.5659% of the expected dose. Gamma pass rates were within 96.63±3.84% of the expected dose.« less

  7. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    NASA Technical Reports Server (NTRS)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable microcancers, arresting preneoplastic lesions, or correcting abnormal environments which predispose to high risk of malignant transformation.

  8. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.

  9. Numerical simulation of the radiation environment on Martian surface

    NASA Astrophysics Data System (ADS)

    Zhao, L.

    2015-12-01

    The radiation environment on the Martian surface is significantly different from that on earth. Existing observation and studies reveal that the radiation environment on the Martian surface is highly variable regarding to both short- and long-term time scales. For example, its dose rate presents diurnal and seasonal variations associated with atmospheric pressure changes. Moreover, dose rate is also strongly influenced by the modulation from GCR flux. Numerical simulation and theoretical explanations are required to understand the mechanisms behind these features, and to predict the time variation of radiation environment on the Martian surface if aircraft is supposed to land on it in near future. The high energy galactic cosmic rays (GCRs) which are ubiquitous throughout the solar system are highly penetrating and extremely difficult to shield against beyond the Earth's protective atmosphere and magnetosphere. The goal of this article is to evaluate the long term radiation risk on the Martian surface. Therefore, we need to develop a realistic time-dependent GCR model, which will be integrated with Geant4 transport code subsequently to reproduce the observed variation of surface dose rate associated with the changing heliospheric conditions. In general, the propagation of cosmic rays in the interplanetary medium can be described by a Fokker-Planck equation (or Parker equation). In last decade,we witnessed a fast development of GCR transport models within the heliosphere based on accurate gas-dynamic and MHD backgrounds from global models of the heliosphere. The global MHD simulation produces a more realistic pattern of the 3-D heliospheric structure, as well as the interface between the solar system and the surrounding interstellar space. As a consequence, integrating plasma background obtained from global-dependent 3-D MHD simulation and stochastic Parker transport simulation, we expect to produce an accurate global physical-based GCR modulation model. Combined with the Geant4 transport code, this GCR model will provide valuable insight into the long-term dose rates variation on the Martian surface.

  10. Scattered radiation doses absorbed by technicians at different distances from X-ray exposure: Experiments on prosthesis.

    PubMed

    Chiang, Hsien-Wen; Liu, Ya-Ling; Chen, Tou-Rong; Chen, Chun-Lon; Chiang, Hsien-Jen; Chao, Shin-Yu

    2015-01-01

    This work aimed to investigate the spatial distribution of scattered radiation doses induced by exposure to the portable X-ray, the C-arm machine, and to simulate the radiologist without a shield of lead clothing, radiation doses absorbed by medical staff at 2 m from the central exposure point. With the adoption of the Rando Phantom, several frequently X-rayed body parts were exposed to X-ray radiation, and the scattered radiation doses were measured by ionization chamber dosimeters at various angles from the patient. Assuming that the central point of the X-ray was located at the belly button, five detection points were distributed in the operation room at 1 m above the ground and 1-2 m from the central point horizontally. The radiation dose measured at point B was the lowest, and the scattered radiation dose absorbed by the prosthesis from the X-ray's vertical projection was 0.07 ±0.03 μGy, which was less than the background radiation levels. The Fluke biomedical model 660-5DE (400 cc) and 660-3DE (4 cc) ion chambers were used to detect air dose at a distance of approximately two meters from the central point. The AP projection radiation doses at point B was the lowest (0.07±0.03 μGy) and the radiation doses at point D was the highest (0.26±0.08 μGy) .Only taking the vertical projection into account, the radiation doses at point B was the lowest (0.52 μGy), and the radiation doses at point E was the highest (4 μGy).The PA projection radiation at point B was the lowest (0.36 μGy) and the radiation doses at point E was the highest(2.77 μGy), occupying 10-32% of the maximum doses. The maximum dose in five directions was nine times to the minimum dose. When the PX and the C-arm machine were used, the radiation doses at a distance of 2 m were attenuated to the background radiation level. The radiologist without a lead shield should stand at point B of patient's feet. Accordingly, teaching materials on radiation safety for radiological interns and clinical technicians were formulated.

  11. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...

  12. 10 CFR 20.1301 - Dose limits for individual members of the public.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...

  13. 10 CFR 20.1301 - Dose limits for individual members of the public.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...

  14. 10 CFR 20.1301 - Dose limits for individual members of the public.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...

  15. 10 CFR 20.1301 - Dose limits for individual members of the public.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...

  16. 10 CFR 20.1301 - Dose limits for individual members of the public.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...

  17. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...

  18. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...

  19. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...

  20. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...

  1. SU-E-T-638: Evaluation and Comparison of Landauer Microstar (OSLD) Readers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souri, S; Ahmed, Y; Cao, Y

    2014-06-15

    Purpose: To evaluate and compare characteristic performance of a new Landauer nanodot Reader with the previous model. Methods: In order to calibrate and test the reader, a set of nanodots were irradiated using a Varian Truebeam Linac. Solid water slabs and bolus were used in the process of irradiation. Calibration sets of nanodots were irradiated for radiation dose ranges: 0 to 10 and 20 to 1000 cGy, using 6MV photons. Additionally, three sets of nanodots were each irradiated using 6MV, 10MV and 15MV beams. For each beam energy, and selected dose in the range of 3 to 1000 cGy, amore » pair of nanodots was irradiated and three readings were obtained with both readers. Results: The analysis shows that for 3 photon beam energies and selected ranges of dose, the calculated absorbed dose agrees well with the expected value. The results illustrate that the new Microstar II reader is a highly consistent system and that the repeated readings provide results with a reasonably small standard deviation. For all practical purposes, the response of system is linear for all radiation beam energies. Conclusion: The Microstar II nanodot reader is consistent, accurate, and reliable. The new hardware design and corresponding software contain several advantages over the previous model. The automatic repeat reading mechanism, that helps improve reproducibility and reduce processing time, and the smaller unit size that renders ease of transport, are two of such features. Present study shows that for high dose ranges a polynomial calibration equation provides more consistent results. A 3rd order polynomial calibration curve was used to analyze the readings of dosimeters exposed to high dose range radiation. It was observed that the results show less error compared to those calculated by using linear calibration curves, as provided by Landauer system software for all dose ranges.« less

  2. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.

    PubMed

    Yang, Feng; Waters, Katrina M; Miller, John H; Gritsenko, Marina A; Zhao, Rui; Du, Xiuxia; Livesay, Eric A; Purvine, Samuel O; Monroe, Matthew E; Wang, Yingchun; Camp, David G; Smith, Richard D; Stenoien, David L

    2010-11-30

    High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.

  3. Phosphoproteomics Profiling of Human Skin Fibroblast Cells Reveals Pathways and Proteins Affected by Low Doses of Ionizing Radiation

    PubMed Central

    Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2010-01-01

    Background High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. Principal Findings We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conclusions Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health. PMID:21152398

  4. Real-time colour pictorial radiation monitoring during coronary angiography: effect on patient peak skin and total dose during coronary angiography.

    PubMed

    Wilson, Sharon M; Prasan, Ananth M; Virdi, Amy; Lassere, Marissa; Ison, Glenn; Ramsay, David R; Weaver, James C

    2016-10-10

    The aim of this study was to evaluate whether a real-time (RT) colour pictorial radiation dose monitoring system reduces patient skin and total radiation dose during coronary angiography and intervention. Patient demographics, procedural variables and radiation parameters were recorded before and after institution of the RT skin dose recording system. Peak skin dose as well as traditionally available measures of procedural radiation dose were compared. A total of 1,077 consecutive patients underwent coronary angiography, of whom 460 also had PCI. Institution of the RT skin dose recording system resulted in a 22% reduction in peak skin dose after accounting for confounding variables. Radiation dose reduction was most pronounced in those having PCI but was also seen over a range of subgroups including those with prior coronary artery bypass surgery, high BMI, and with radial arterial access. This was associated with a significant reduction in the number of patients placed at risk of skin damage. Similar reductions in parameters reflective of total radiation dose were also demonstrated after institution of RT radiation monitoring. Institution of an RT skin dose recording reduced patient peak skin and total radiation dose during coronary angiography and intervention. Consideration should be given to widespread adoption of this technology.

  5. DOSE RECONSTRUCTION FOR THE MILLION WORKER STUDY: STATUS AND GUIDELINES

    PubMed Central

    Bouville, André; Toohey, Richard E.; Boice, John D.; Beck, Harold L.; Dauer, Larry T.; Eckerman, Keith F.; Hagemeyer, Derek; Leggett, Richard W.; Mumma, Michael T.; Napier, Bruce; Pryor, Kathy H.; Rosenstein, Marvin; Schauer, David A.; Sherbini, Sami; Stram, Daniel O.; Thompson, James L.; Till, John E.; Yoder, Craig; Zeitlin, Cary

    2016-01-01

    The primary aim of the epidemiologic study of one million U.S. radiation workers and veterans [the Million Worker Study (MWS)] is to provide scientifically valid information on the level of radiation risk when exposures are received gradually over time, and not within seconds as was the case for Japanese atomic-bomb survivors. The primary outcome of the epidemiologic study is cancer mortality but other causes of death such as cardiovascular disease and cerebrovascular disease will be evaluated. The success of the study is tied to the validity of the dose reconstruction approaches to provide realistic estimates of organ-specific radiation absorbed doses that are as accurate and precise as possible and to properly evaluate their accompanying uncertainties. The dosimetry aspects for the MWS are challenging in that they address diverse exposure scenarios for diverse occupational groups being studied over a period of up to 70 y. The dosimetric issues differ among the varied exposed populations that are considered: atomic veterans, U.S. Department of Energy workers exposed to both penetrating radiation and intakes of radionuclides, nuclear power plant workers, medical radiation workers, and industrial radiographers. While a major source of radiation exposure to the study population comes from external gamma- or x-ray sources, for some of the study groups there is a meaningful component of radionuclide intakes that require internal radiation dosimetry assessments. Scientific Committee 6–9 has been established by the National Council on Radiation Protection and Measurements (NCRP) to produce a report on the comprehensive organ dose assessment (including uncertainty analysis) for the MWS. The NCRP dosimetry report will cover the specifics of practical dose reconstruction for the ongoing epidemiologic studies with uncertainty analysis discussions and will be a specific application of the guidance provided in NCRP Report Nos. 158, 163, 164, and 171. The main role of the Committee is to provide guidelines to the various groups of dosimetrists involved in the MWS to ensure that certain dosimetry criteria are considered: calculation of annual absorbed doses in the organs of interest, separation of low and high linear-energy transfer components, evaluation of uncertainties, and quality assurance and quality control. It is recognized that the MWS and its approaches to dosimetry are a work in progress and that there will be flexibility and changes in direction as new information is obtained, both with regard to dosimetry and with regard to the epidemiologic features of the study components. This manuscript focuses on the description of the various components of the MWS, on the available dosimetry results, and on the challenges that have been encountered. It is expected that the Committee will complete its report in 2016. PMID:25551504

  6. Radiation tolerant passive and active optical fiber products for use in space environments

    NASA Astrophysics Data System (ADS)

    Hill, Mark; Hankey, Judith; Gray, Rebecca

    2017-11-01

    This paper reports the radiation performance results of several new product types designed for high radiation environments. The products tested include radiation hardened highly birefringent (HiBi) passive products for polarised applications and radiation tolerant active erbium doped fiber products for amplifiers. Radiation hardened, short beatlength HiBi fiber products have been developed for high accuracy polarisation maintaining (PM) gyros and sensors at both 1310nm and 1550nm operation in the space environment. The fibers have been tested up to 5kGy (500krad) - levels which could be expected in extreme, extra-terrestrial space environments. Results show a consistently low Radiation Induced Attenuation (RIA) of <7dB/km at 5kGy, giving a RIA value of 1.37×10-2 dB/km/krad at 1550nm for this product range. Radiation tolerant EDF AstroGain™ fibers are intended for use in multichannel amplifiers in optical intersatellite communications. The structure of the fibers have been designed to deliver an accelerated recovery of radiation damage through photo-annealing using only the residual energy already available in an amplifier using a 980nm pumping regime. These products have been tested up to 200Gy (20krad) - levels which can be expected in Earth orbit environments over a 20-30 mission lifetime. Results show up to 100% recovery under continuous use for dose rates of 0.11rad/hr. It has also been demonstrated through analysis of the optical spectral output that this effect reverses the gain tilt, or spectral narrowing, induced by radiation damage through the C and L band. These combined fiber characteristics allow performance stability of the amplifier over the lifetime of the space mission.

  7. Is it useful to assess annual effective doses that are less than 100 mSv?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.; Cameron, John R.

    It is useful to assess annual effective doses less than 100 mSv. Beyond the''score-keeping'' needs of regulatory compliance, there are at least seven other valid reasons for performing personnel monitoring, many of which fall into the category of''no news is good news,'' or more aptly,''null news, as long as you can prove it, is good news.'' These are performance measures for contractual compliance, diagnosis of problems with radiation protection programs, health surveillance and occupational epidemiology, prevention of and support for litigation, demonstration of management commitment and safety, worker counseling, ensuring peace of mind. Furthermore, it is shown that there ismore » very reasonable expectation that detriment may be associated with doses smaller than 100 mSv per year.« less

  8. Survival of tumor cells after proton irradiation with ultra-high dose rates

    PubMed Central

    2011-01-01

    Background Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >109 Gy s-1may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. Methods The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. Results At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. Conclusions At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly. PMID:22008289

  9. Environmental consequences of postulate plutonium releases from Atomics International's Nuclear Materials Development Facility (NMDF), Santa Susana, California, as a result of severe natural phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamison, J.D.; Watson, E.C.

    1982-02-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Atomics International's Nuclear Materials Development Facility (NMDF), in the Santa Susana site, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are alsomore » given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquake, and the 150-mph and 170-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 110-mph and the 130-mph tornadoes are below the EPA proposed guideline.« less

  10. Environmental consequences of postulated plutonium releases from General Electric Company Vallecitos Nuclear Center, Vallecitos, California, as a result of severe natural phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamison, J.D.; Watson, E.C.

    1980-11-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the General Electric Company Vallecitos Nuclear Center, Vallecitos, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likelymore » calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquakes, and the 180-mph and 230-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 135-mph tornado are below the EPA proposed guidelines.« less

  11. The effect of simulated space radiation on the N-glycosylation of human immunoglobulin G1.

    PubMed

    Szarka, Mate; Szilasi, Szabolcs; Donczo, Boglarka; Sarkozy, Daniel; Rajta, Istvan; Guttman, Andras

    2018-05-18

    On a roundtrip to Mars, astronauts are expectedly exposed to an approximate amount of radiation that exceeds the lifetime limits on Earth. This elevated radiation dose is mainly due to Galactic Cosmic Rays and Solar Particle Events. Specific patterns of the N-glycosylation of human Igs have already been associated with various ailments such as autoimmune diseases, malignant transformation, chronic inflammation, and ageing. The focus of our work was to investigate the effect of low-energy proton irradiation on the IgG N-glycosylation profile with the goal if disease associated changes could be detected during space travel and not altered by space radiation. Two ionization sources were used during the experiments, a Van de Graaff generator for the irradiation of solidified hIgG samples in vacuum, and a Tandetron accelerator to irradiate hIgG samples in aqueous solution form. Structural carbohydrate analysis was accomplished by CE with laser induced fluorescent detection to determine the effects of simulated space radiation on N-glycosylation of hIgG1 samples. Our results revealed that even several thousand times higher radiation doses that of astronauts can suffer during long duration missions beyond the shielding environment of Low Earth Orbit, no changes were observed in hIgG1 N-glycosylation. Consequently, changes in N-linked carbohydrate profile of IgG1 can be used as molecular diagnostic tools in space. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Low-Dose Chest Computed Tomography for Lung Cancer Screening Among Hodgkin Lymphoma Survivors: A Cost-Effectiveness Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wattson, Daniel A., E-mail: dwattson@partners.org; Hunink, M.G. Myriam; DiPiro, Pamela J.

    2014-10-01

    Purpose: Hodgkin lymphoma (HL) survivors face an increased risk of treatment-related lung cancer. Screening with low-dose computed tomography (LDCT) may allow detection of early stage, resectable cancers. We developed a Markov decision-analytic and cost-effectiveness model to estimate the merits of annual LDCT screening among HL survivors. Methods and Materials: Population databases and HL-specific literature informed key model parameters, including lung cancer rates and stage distribution, cause-specific survival estimates, and utilities. Relative risks accounted for radiation therapy (RT) technique, smoking status (>10 pack-years or current smokers vs not), age at HL diagnosis, time from HL treatment, and excess radiation from LDCTs.more » LDCT assumptions, including expected stage-shift, false-positive rates, and likely additional workup were derived from the National Lung Screening Trial and preliminary results from an internal phase 2 protocol that performed annual LDCTs in 53 HL survivors. We assumed a 3% discount rate and a willingness-to-pay (WTP) threshold of $50,000 per quality-adjusted life year (QALY). Results: Annual LDCT screening was cost effective for all smokers. A male smoker treated with mantle RT at age 25 achieved maximum QALYs by initiating screening 12 years post-HL, with a life expectancy benefit of 2.1 months and an incremental cost of $34,841/QALY. Among nonsmokers, annual screening produced a QALY benefit in some cases, but the incremental cost was not below the WTP threshold for any patient subsets. As age at HL diagnosis increased, earlier initiation of screening improved outcomes. Sensitivity analyses revealed that the model was most sensitive to the lung cancer incidence and mortality rates and expected stage-shift from screening. Conclusions: HL survivors are an important high-risk population that may benefit from screening, especially those treated in the past with large radiation fields including mantle or involved-field RT. Screening may be cost effective for all smokers but possibly not for nonsmokers despite a small life expectancy benefit.« less

  13. Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent.

    PubMed

    Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J

    2014-02-01

    The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.

  14. Radiation dose-reduction strategies in thoracic CT.

    PubMed

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. Evaluating the risk of death via the hematopoietic syndrome mode for prolonged exposure of nuclear workers to radiation delivered at very low rates.

    PubMed

    Scott, B R; Lyzlov, A F; Osovets, S V

    1998-05-01

    During a Phase-I effort, studies were planned to evaluate deterministic (nonstochastic) effects of chronic exposure of nuclear workers at the Mayak atomic complex in the former Soviet Union to relatively high levels (> 0.25 Gy) of ionizing radiation. The Mayak complex has been used, since the late 1940's, to produce plutonium for nuclear weapons. Workers at Site A of the complex were involved in plutonium breeding using nuclear reactors, and some were exposed to relatively large doses of gamma rays plus relatively small neutron doses. The Weibull normalized-dose model, which has been set up to evaluate the risk of specific deterministic effects of combined, continuous exposure of humans to alpha, beta, and gamma radiations, is here adapted for chronic exposure to gamma rays and neutrons during repeated 6-h work shifts--as occurred for some nuclear workers at Site A. Using the adapted model, key conclusions were reached that will facilitate a Phase-II study of deterministic effects among Mayak workers. These conclusions include the following: (1) neutron doses may be more important for Mayak workers than for Japanese A-bomb victims in Hiroshima and can be accounted for using an adjusted dose (which accounts for neutron relative biological effectiveness); (2) to account for dose-rate effects, normalized dose X (a dimensionless fraction of an LD50 or ED50) can be evaluated in terms of an adjusted dose; (3) nonlinear dose-response curves for the risk of death via the hematopoietic mode can be converted to linear dose-response curves (for low levels of risk) using a newly proposed dimensionless dose, D = X(V), in units of Oklad (where D is pronounced "deh"), and V is the shape parameter in the Weibull model; (4) for X < or = Xo, where Xo is the threshold normalized dose, D = 0; (5) unlike absorbed dose, the dose D can be averaged over different Mayak workers in order to calculate the average risk of death via the hematopoietic mode for the population exposed at Site A; and (6) the expected cases of death via the hematopoietic syndrome mode for Mayak workers chronically exposed during work shifts at Site A to gamma rays and neutrons can be predicted using ln(2)B M[D]; where B (pronounced "beh") is the number of workers at risk (criticality accident victims excluded); and M[D] is the average (mean) value of D (averaged over the worker population at risk, for Site A, for the time period considered). These results can be used to facilitate a Phase II study of deterministic radiation effects among Mayak workers chronically exposed to gamma rays and neutrons.

  16. MO-D-BRF-01: Pediatric Treatment Planning II: The PENTEC Report On Normal Tissue Complications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constine, L; Hodgson, D; Bentzen, S

    With advances in multimodality therapy, childhood cancer cure rates approach 80%. However, both radiotherapy and chemotherapy may cause debilitating or even fatal ‘late effects’ that are critical to understand, mitigate, or prevent. QUANTEC identified the uncertainties relating to side-effects of adult treatments, but this is more complicated for children in whom a mosaic of tissues develops at different rates and temporal sequences. Childhood cancer survivors have long life expectancy and may develop treatmentinduced secondary cancers and severe organ/tissue injury decades after treatment. Collaborative long-term observational studies and clinical research programs for survivors of pediatric and adolescent cancer provide some dose-responsemore » data for follow-up periods exceeding 40 years. Data analysis is challenging due to the influence of both therapeutic and developmental variables. PENTEC is a group of radiation oncologists, pediatric oncologists, subsepcialty physicians, medical physicists, biomathematic modelers/statisticians, and epidemiologists charged with conducting a critical synthesis of existing literature aiming to: critically analyze radiation dose-volume effects on normal tissue tolerances as a function of age/development in pediatric cancer patients in order to inform treatment planning and improve outcomes for survivors; describe relevant physics issues specific to pediatric radiotherapy; propose dose-volumeoutcome reporting standards to improve the knowledge base to inform future treatment guidelines. PENTEC has developed guidelines for systematic literature reviews, data extraction tolls and data analysis. This education session will discuss:1. Special considerations for normal tissue radiation response of children/adolescents, e.g. the interplay between development and radiotherapy effects.2. Epidemiology of organ/tissue injuries and secondary cancers.3. Exploration of dose-response differences between children and adults4. Methodology for literature review, data mining of outcomes databases, and NTCP or longitudinal modeling of doseresponse. 5. PENTEC goals and timetable. Learning Objectives: Understand important differences between normal tissue effects of radiation therapy in pediatric and adult patients. Be able to identify situations where there is ‘interplay’ between organ development and radiation-induced complications. Identify methods to systematically extract quantitative dose-volumeresponse relationships from existing outcomes databases. Provide guidance for the medical physicist to properly understand, implement, guide and control contemporary technology and applications in pediatric radiation oncology.« less

  17. Radiation resistance of elastomeric O-rings in mixed neutron and gamma fields: Testing methodology and experimental results

    NASA Astrophysics Data System (ADS)

    Zenoni, A.; Bignotti, F.; Donzella, A.; Donzella, G.; Ferrari, M.; Pandini, S.; Andrighetto, A.; Ballan, M.; Corradetti, S.; Manzolaro, M.; Monetti, A.; Rossignoli, M.; Scarpa, D.; Alloni, D.; Prata, M.; Salvini, A.; Zelaschi, F.

    2017-11-01

    Materials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test. One EPDM is rated as radiation resistant in gamma fields, while the other elastomers are general purpose products. Particular care has been devoted to dosimetry calculations, since absorbed dose in neutron fields, unlike pure gamma fields, is strongly dependent on the material composition and, in particular, on the hydrogen content. The products have been tested up to about 2 MGy absorbed dose. The FPM based elastomer, in spite of its lower dose absorption in fast neutron fields, features the largest variations of properties, with a dramatic increase in stiffness and brittleness. Out of the three EPDM based compounds, one shows large and rapid changes in the main mechanical properties, whereas the other two feature more stable behaviors. The performance of the EPDM rated as radiation resistant in pure gamma fields does not appear significantly better than that of the standard product. The predictive capability of the accelerated irradiation tests performed as well as the applicable concepts of threshold of radiation damage is discussed in view of the use of the examined products in the selective production of exotic species facility, now under construction at the Legnaro National Laboratories of the Italian Istituto Nazionale di Fisica Nucleare. It results that a careful account of dose rate effects and oxygen penetration in the material, both during test irradiations and in operating conditions, is needed to obtain reliable predictions.

  18. Radiation resistance of elastomeric O-rings in mixed neutron and gamma fields: Testing methodology and experimental results.

    PubMed

    Zenoni, A; Bignotti, F; Donzella, A; Donzella, G; Ferrari, M; Pandini, S; Andrighetto, A; Ballan, M; Corradetti, S; Manzolaro, M; Monetti, A; Rossignoli, M; Scarpa, D; Alloni, D; Prata, M; Salvini, A; Zelaschi, F

    2017-11-01

    Materials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test. One EPDM is rated as radiation resistant in gamma fields, while the other elastomers are general purpose products. Particular care has been devoted to dosimetry calculations, since absorbed dose in neutron fields, unlike pure gamma fields, is strongly dependent on the material composition and, in particular, on the hydrogen content. The products have been tested up to about 2 MGy absorbed dose. The FPM based elastomer, in spite of its lower dose absorption in fast neutron fields, features the largest variations of properties, with a dramatic increase in stiffness and brittleness. Out of the three EPDM based compounds, one shows large and rapid changes in the main mechanical properties, whereas the other two feature more stable behaviors. The performance of the EPDM rated as radiation resistant in pure gamma fields does not appear significantly better than that of the standard product. The predictive capability of the accelerated irradiation tests performed as well as the applicable concepts of threshold of radiation damage is discussed in view of the use of the examined products in the selective production of exotic species facility, now under construction at the Legnaro National Laboratories of the Italian Istituto Nazionale di Fisica Nucleare. It results that a careful account of dose rate effects and oxygen penetration in the material, both during test irradiations and in operating conditions, is needed to obtain reliable predictions.

  19. Fukushima radionuclides in the NW Pacific, and assessment of doses for Japanese and world population from ingestion of seafood

    PubMed Central

    Povinec, Pavel P.; Hirose, Katsumi

    2015-01-01

    Variations of Fukushima-derived radionuclides (90Sr, 134Cs and 137Cs) in seawater and biota offshore Fukushima and in the NW Pacific Ocean were investigated and radiation doses to the Japanese and world population from ingestion of seafood contaminated by Fukushima radionuclides were estimated and compared with those from other sources of anthropogenic and natural radionuclides. The total effective dose commitment from ingestion of radionuclides in fish, shellfish and seaweed caught in coastal waters off Fukushima was estimated to be 0.6 ± 0.4 mSv/y. The individual effective dose commitment from consumption of radioactive-contaminated fish caught in the open Pacific Ocean was estimated to be 0.07 ± 0.05 mSv/y. These doses are comparable or much lower than doses delivered from the consumption of natural 210Po in fish and in shellfish (0.7 mSv/y). The estimated individual doses have been below the levels when any health damage of the Japanese and world population could be expected. PMID:25761420

  20. Fukushima radionuclides in the NW Pacific, and assessment of doses for Japanese and world population from ingestion of seafood.

    PubMed

    Povinec, Pavel P; Hirose, Katsumi

    2015-03-12

    Variations of Fukushima-derived radionuclides ((90)Sr, (134)Cs and (137)Cs) in seawater and biota offshore Fukushima and in the NW Pacific Ocean were investigated and radiation doses to the Japanese and world population from ingestion of seafood contaminated by Fukushima radionuclides were estimated and compared with those from other sources of anthropogenic and natural radionuclides. The total effective dose commitment from ingestion of radionuclides in fish, shellfish and seaweed caught in coastal waters off Fukushima was estimated to be 0.6 ± 0.4 mSv/y. The individual effective dose commitment from consumption of radioactive-contaminated fish caught in the open Pacific Ocean was estimated to be 0.07 ± 0.05 mSv/y. These doses are comparable or much lower than doses delivered from the consumption of natural (210)Po in fish and in shellfish (0.7 mSv/y). The estimated individual doses have been below the levels when any health damage of the Japanese and world population could be expected.

  1. Science Instrument Sensitivities to Radioisotope Power System Environment

    NASA Technical Reports Server (NTRS)

    Bairstow, Brian; Lee, Young; Smythe, William; Zakrajsek, June

    2016-01-01

    Radioisotope Power Systems (RPS) have been and will be enabling or significantly enhancing for many missions, including several concepts identified in the 2011 Planetary Science Decadal Survey. Some mission planners and science investigators might have concerns about possible impacts from RPS-induced conditions upon the scientific capabilities of their mission concepts. To alleviate these concerns, this paper looks at existing and potential future RPS designs, and examines their potential radiation, thermal, vibration, electromagnetic interference (EMI), and magnetic fields impacts on representative science instruments and science measurements. Radiation impacts from RPS on science instruments are of potential concern for instruments with optical detectors and instruments with high-voltage electronics. The two main areas of concern are noise effects on the instrument measurements, and long-term effects of instrument damage. While RPS by their nature will contribute to total radiation dose, their addition for most missions should be relatively small. For example, the gamma dose rate from one Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) would be an order of magnitude lower than the environmental dose rate at Mars, and would have a correspondingly lower contribution to instrument noise and to any permanent damage to payload sensors. Increasing the number of General Purpose Heat Source (GPHS) modules used in an RPS would be expected to increase the generated radiation proportionally; however, the effect of more GPHS modules is mitigated from a strictly linear relationship by self-shielding effects. The radiation field of an RPS is anisotropic due to the deviation of the modules from a point-source-geometry. For particularly sensitive instruments the total radiation dose could be mitigated with separation or application of spot shielding. Though a new, higher-power RPS could generate more heat per unit than current designs, thermal impact to the flight system could be mitigated with shading and pointing if required by the mission. Alternatively, excess heat could prove beneficial in providing needed heat to spacecraft components and instruments in some thermal environments. Vibration for a new higher-power Stirling Radioisotope Generator (SRG) would be expected to be similar to the recent Advanced Stirling Radioisotope Generator (ASRG) design. While vibration should be low, it must be considered and addressed during spacecraft and instrument design. EMI and magnetic fields for new RPS concepts are expected to be low as for the current RPS, but must be considered and addressed if the mission includes sensitive instruments such as magnetometers. The assessment conducted for this paper focused on orbiter instrument payloads for two representative mission concepts- a Titan Saturn System Mission (TSSM) and a Uranus Orbiter and Probe (UOP)-since both of these Decadal Survey concepts would include many diverse instruments on board. Quick-look design studies using notional new RPS concepts were carried out for these two mission concepts, and their specific instrument packages were analyzed for their interactions with new RPS designs. The original Decadal Survey TSSM and UOP concepts did not have complete instrument performance requirements so typical measurement requirements were used where needed. Then, the general RPS environments were evaluated for impacts to various types of instruments. This paper describes how the potential impacts of the RPS on science instruments and measurements were assessed, which impacts were addressed, proposed mitigation strategies against those impacts, and provides an overview of future work.

  2. [Personal dose monitoring of radiation workers in medical institutions at the municipal level and below in a city from 2011 to 2014].

    PubMed

    Wang, C; Mo, S F; Zhang, J B; Li, J R; Huang, R L; Tan, H Y

    2017-08-20

    Objective: To determine the personal dose level of radiation workers in medical institutions at the municipal level and below in a city, and to provide a scientific support for strengthening the radiation protection in the city's medical institutions. Methods: Information of the successful applicants for the "Radiation Worker Permit" from 174 medical institutions at the municipal level and below was collected from October 1, 2011 to December 31, 2014. The annual effective dose was calculated based on the personal dose monitoring report, and indicators including sex, permit application time, hospital level, type of occupational radiation, length of radiation work, blood test, and micronucleated lymphocyte rate were analyzed. Results: Of the 1 143 radiation worker permit applications submitted by medical institutions the municipal level and below in this city from 2011 to 2014, 1 123 provided at least one personal dose monitoring report. The annual effective dose of the radiation workers was 0-4.76 mSv (mean 0.31±0.40 mSv) , and the collective annual effective dose was 351.96 mSv. The annual effective dose was significantly different between radiation workers with different times of permit application, hospital levels, and types of occupational radiation ( P <0.05) . Interventional radiology workers had the highest annual effective dose (0.63 mSv) , and annual effective dose was significantly different between interventional radiology workers with different lengths of radiation work ( H =10.812, P <0.05) . Conclusion: The personal radiation dose of radiation workers in medical institutions at the municipal level and below in this city is maintained at a relatively low level, suggesting that the occupational environment is relatively safe for these workers. However, more focus should be placed on clinical interventional radiology workers.

  3. VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests

    PubMed Central

    Rowshanfarzad, Pejman; Greer, Peter B.

    2016-01-01

    In VMAT treatment delivery the ability of the linear accelerator (linac) to accurately control dose versus gantry angle is critical to delivering the plan correctly. A new VMAT test delivery was developed to specifically test the dose versus gantry angle with the full range of allowed gantry speeds and dose rates. The gantry‐mounted IBA MatriXX with attached inclinometer was used in movie mode to measure the instantaneous relative dose versus gantry angle during the plan every 0.54 s. The results were compared to the expected relative dose at each gantry angle calculated from the plan. The same dataset was also used to compare the instantaneous gantry speeds throughout the delivery compared to the expected gantry speeds from the plan. Measurements performed across four linacs generally show agreement between measurement and plan to within 1.5% in the constant dose rate regions and dose rate modulation within 0.1 s of the plan. Instantaneous gantry speed was measured to be within 0.11∘/s of the plan (1 SD). An error in one linac was detected in that the nominal gantry speed was incorrectly calibrated. This test provides a practical method to quality‐assure critical aspects of VMAT delivery including dose versus gantry angle and gantry speed control. The method can be performed with any detector that can acquire time‐resolved dosimetric information that can be synchronized with a measurement of gantry angle. The test fulfils several of the aims of the recent Netherlands Commission on Radiation Dosimetry (NCS) Report 24, which provides recommendations for comprehensive VMAT quality assurance. PACS number(s): 87.55.Qr PMID:27167282

  4. In Vivo EPR For Dosimetry

    PubMed Central

    Swartz, Harold M.; Burke, Greg; Coey, M.; Demidenko, Eugene; Dong, Ruhong; Grinberg, Oleg; Hilton, James; Iwasaki, Akinori; Lesniewski, Piotr; Kmiec, Maciej; Lo, Kai-Ming; Nicolalde, R. Javier; Ruuge, Andres; Sakata, Yasuko; Sucheta, Artur; Walczak, Tadeusz; Williams, Benjamin B.; Mitchell, Chad; Romanyukha, Alex; Schauer, David A.

    2007-01-01

    As a result of terrorism, accident, or war, populations potentially can be exposed to doses of ionizing radiation that could cause direct clinical effects within days or weeks. There is a critical need to determine the magnitude of the exposure to individuals so that those with significant risk have appropriate procedures initiated immediately, while those without a significant probability of acute effects can be reassured and removed from the need for further consideration in the medical/emergency system. In many of the plausible scenarios there is an urgent need to make the determination very soon after the event and while the subject is still present. In vivo EPR measurements of radiation-induced changes in the enamel of teeth is a method, perhaps the only such method, which can differentiate among doses sufficiently for classifying individuals into categories for treatment with sufficient accuracy to facilitate decisions on medical treatment. In its current state, the in vivo EPR dosimeter can provide estimates of absorbed dose with an error approximately ± 50 cGy over the range of interest for acute biological effects of radiation, assuming repeated measurements of the tooth in the mouth of the subject. The time required for acquisition, the lower limit, and the precision are expected to improve, with improvements in the resonator and the algorithm for acquiring and calculating the dose. The magnet system that is currently used, while potentially deployable, is somewhat large and heavy, requiring that it be mounted on a small truck or trailer. Several smaller magnets, including an intraoral magnet are under development, which would extend the ease of use of this technique. PMID:18591988

  5. Towards improved quantification of post-fire conifer mortality and recovery: Impacts of fire radiative flux on seedling and mature tree mortality, physiology, and growth

    NASA Astrophysics Data System (ADS)

    Sparks, A. M.; Kolden, C.; Smith, A. M.

    2016-12-01

    Fire activity, in terms of intensity, frequency, and total area burned, is expected to increase with changing climate. A challenge for landscape level assessment of fire effects, termed burn severity, is that current assessments provide very little information regarding vegetation physiological performance and recovery, limiting our understanding of fire effects on ecosystem services such as carbon storage/cycling. To address these limitations, we evaluated an alternative dose-response methodology for quantifying fire effects that attempts to bridge fire combustion dynamics and ecophysiology. Specifically, we conducted a highly controlled, laboratory assessment of seedling response to increasing doses of fire radiative energy applied through surface fires, for two western U.S. conifer species. Seedling physiology and spectral reflectance were acquired pre- and up to 1 year post-fire. Post-fire mortality, physiological performance, and spectral reflectance were strongly related with fire radiative energy density (FRED: J m-2) dose. To examine how these relationships change with tree size and age, we conducted small prescribed fires at the tree scale (35 m2) in a mature conifer stand. Radial growth and resin duct defenses were assessed on the mature conifer trees following the prescribed fires. Differences in dose-response relationships between seedlings and mature trees indicate the importance of fire behavior (e.g., flaming-dominated versus smoldering-dominated combustion) in characterizing these relationships. Ultimately, these results suggest that post-fire impacts on growth of surviving seedlings and mature trees require modes of heat transfer to impact tree canopies.

  6. Solid state radiolysis of amino acids in an astrochemical perspective

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Angelini, Giancarlo; Iglesias-Groth, Susana; Manchado, Arturo

    2011-01-01

    The aliphatic amino acids L-alanine and L-leucine and the aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan were irradiated in the solid state to a dose of 3.2 MGy. The degree of decomposition was measured by differential scanning calorimetry (DSC). Furthermore the degree of radioracemization was measured by optical rotatory dispersion (ORD) spectroscopy. From the DSC measurement a radiolysis rate constant k and the half life T1/2 for each amino acid have been determined and extrapolated to a dose of 14 MGy, which corresponds to the expected total dose delivered by the decay of radionuclides to the organic molecules present in comets and asteroids in 4.6×109 years, the age of the Solar System. It is shown that all the amino acids studied can survive a radiation dose of 14 MGy although they are reduced to 1/4-1/5 of their original value they had at the beginning of the history of the Solar System. Consequently, the amount of alanine or leucine found today in the meteorites known as carbonaceous chondrites is just 1/4-1/5 of the amount originally present at the epoch of the formation of the Solar System 4.6×109 years ago. Among the amino acids studied, tyrosine shows the highest radiation resistance while tryptophan does not combine its relatively high radiation resistance with an elevated level of radioracemization resistance. Apart from the exception of tryptophan, it is shown that the radiolysis rate constants k of all the amino acids studied are in reasonable agreement with the radioracemization rate constant krac.

  7. The TROPOMI surface UV algorithm

    NASA Astrophysics Data System (ADS)

    Lindfors, Anders V.; Kujanpää, Jukka; Kalakoski, Niilo; Heikkilä, Anu; Lakkala, Kaisa; Mielonen, Tero; Sneep, Maarten; Krotkov, Nickolay A.; Arola, Antti; Tamminen, Johanna

    2018-02-01

    The TROPOspheric Monitoring Instrument (TROPOMI) is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared, and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching the Earth's surface. Thus, the TROPOMI surface UV product will contribute to the monitoring of UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the Ozone Monitoring Instrument (OMI) and the Satellite Application Facility for Atmospheric Composition and UV Radiation (AC SAF) algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; and the vitamin-D weighted UV. Each of these are available as (i) daily dose or daily accumulated irradiance, (ii) overpass dose rate or irradiance, and (iii) local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, which otherwise correspond to the same conditions but assume a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and the Global Ozone Monitoring Experiment-2 (GOME-2) satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.

  8. Residual γH2AX foci after ex vivo irradiation of patient samples with known tumour-type specific differences in radio-responsiveness.

    PubMed

    Menegakis, Apostolos; De Colle, Chiara; Yaromina, Ala; Hennenlotter, Joerg; Stenzl, Arnulf; Scharpf, Marcus; Fend, Falko; Noell, Susan; Tatagiba, Marcos; Brucker, Sara; Wallwiener, Diethelm; Boeke, Simon; Ricardi, Umberto; Baumann, Michael; Zips, Daniel

    2015-09-01

    To apply our previously published residual ex vivo γH2AX foci method to patient-derived tumour specimens covering a spectrum of tumour-types with known differences in radiation response. In addition, the data were used to simulate different experimental scenarios to simplify the method. Evaluation of residual γH2AX foci in well-oxygenated tumour areas of ex vivo irradiated patient-derived tumour specimens with graded single doses was performed. Immediately after surgical resection, the samples were cultivated for 24h in culture medium prior to irradiation and fixed 24h post-irradiation for γH2AX foci evaluation. Specimens from a total of 25 patients (including 7 previously published) with 10 different tumour types were included. Linear dose response of residual γH2AX foci was observed in all specimens with highly variable slopes among different tumour types ranging from 0.69 (95% CI: 1.14-0.24) to 3.26 (95% CI: 4.13-2.62) for chondrosarcomas (radioresistant) and classical seminomas (radiosensitive) respectively. Simulations suggest that omitting dose levels might simplify the assay without compromising robustness. Here we confirm clinical feasibility of the assay. The slopes of the residual foci number are well in line with the expected differences in radio-responsiveness of different tumour types implying that intrinsic radiation sensitivity contributes to tumour radiation response. Thus, this assay has a promising potential for individualized radiation therapy and prospective validation is warranted. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. A unique dosing system for the production of OH under high vacuum for the study of environmental heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Brown, Matthew A.; Johánek, Viktor; Hemminger, John C.

    2008-02-01

    A unique dosing system for the production of hydroxyl radicals under high vacuum for the study of environmental heterogeneous reactions is described. Hydroxyl radicals are produced by the photodissociation of a hydrogen peroxide aqueous gas mixture with 254nm radiation according to the reaction H2O2+hν (254nm)→OH+OH. Under the conditions of the current design, 0.6% conversion of hydrogen peroxide is expected yielding a hydroxyl number density on the order of 1010molecules/cm3. The flux distribution of the dosing system is calculated using a Monte Carlo simulation method and compared with the experimentally determined results. The performance of this unique hydroxyl dosing system is demonstrated for the heterogeneous reaction with a solid surface of potassium iodide. Coupling of the hydroxyl radical dosing system to a quantitative surface analysis system should help provide molecular level insight into detailed reaction mechanisms.

  10. [Shielding effect of clinical X-ray protector and lead glass against annihilation radiation and gamma rays of 99mTc].

    PubMed

    Fukuda, Atsushi; Koshida, Kichiro; Yamaguchi, Ichiro; Takahashi, Masaaki; Kitabayashi, Keitarou; Matsubara, Kousuke; Noto, Kimiya; Kawabata, Chikako; Nakagawa, Hiroto

    2004-12-01

    Various pharmaceutical companies in Japan are making radioactive drugs available for positron emission tomography (PET) in hospitals without a cyclotron. With the distribution of these drugs to hospitals, medical check-ups and examinations using PET are expected to increase. However, the safety guidelines for radiation in the new deployment of PET have not been adequately improved. Therefore, we measured the shielding effect of a clinical X-ray protector and lead glass against annihilation radiation and gamma rays of (99m)Tc. We then calculated the shielding effect of a 0.25 mm lead protector, 1 mm lead, and lead glass using the EGS4 (Electron Gamma Shower Version 4) code. The shielding effects of 22-mm lead glass against annihilation radiation and gamma rays of (99m)Tc were approximately 31.5% and 93.3%, respectively. The clinical X-ray protector against annihilation radiation approximately doubled the skin-absorbed dose.

  11. Radiation effects on polymers for coatings on copper canisters used for the containment of radioactive materials

    NASA Astrophysics Data System (ADS)

    Mortley, Aba; Bonin, H. W.; Bui, V. T.

    2008-05-01

    The present work proposes applying polyurethane coatings as an additional barrier in the design of Canadian nuclear waste disposal containers. The goal of the present research is to investigate the physico-mechanical integrity of a natural castor oil-based polyurethane (COPU) to be used as a coating material in pH-radiation-temperature environments. As the first part to these inquiries, the present paper investigates the effect of a mixed radiation field supplied by a SLOWPOKE-2 nuclear research reactor on COPUs that differ only by their isocyanate structure. FTIR, DSC, DMA, WAXS, and MALDI are used to characterize the changes that occur as a result of radiation and to relate these changes to polymer structure and composition. The COPUs used in the present work have demonstrated sustained physico-mechanical properties up to accumulated doses of 2.0 MGy and are therefore suitable for end-uses in radiation environments such as those expected in the deep geological repository.

  12. In Vitro Detection of Characteristic Differences in Radiation Sensitivity of Female Genital Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUDOVICI, PETER P.; MILLER, NORMAN F.

    1962-01-01

    BS>By a standardized assay technic in which cell monolayers were irradiated at different dose levels (100 to 1200 r) on the 4th culture day and cell counts carried out 4 days later, the radiation sensitivities of 37 cell strains, derived from female patients with various genital cancers and from normal individuals, were assessed. These 37 cell strains had certain patterns of radiation sensitivity which, in general, appear to be consistent with the generally accepted radiosensitivity of the tumors from which the cell strains arose. Cell strains from squamous-cell carcinomas of the cervix as a group were at least twice asmore » sensitive as those from other squamous-cell carcinomas of the female genital tract. Cell strains derived from carcinomas of the ovary, vagina, and vulva were almost equally resistant to radiation. As expected, cell strains derived from benign tissues were the most highly resistant to radiation, normal fibroblastic strains being more resistant than normal epithelial strains. (H.H.D.)« less

  13. Radiation exposure from work-related medical X-rays at the Portsmouth Naval Shipyard.

    PubMed

    Daniels, Robert D; Kubale, Travis L; Spitz, Henry B

    2005-03-01

    Previous analyses suggest that worker radiation dose may be significantly increased by routine occupational X-ray examinations. Medical exposures are investigated for 570 civilian workers employed at the Portsmouth Naval Shipyard (PNS) at Kittery, Maine. The research objective was to determine the radiation exposure contribution of work-related chest X-rays (WRX) relative to conventional workplace radiation sources. Methods were developed to estimate absorbed doses to the active (hematopoietic) bone marrow from X-ray examinations and workplace exposures using data extracted from worker dosimetry records (8,468) and health records (2,453). Dose distributions were examined for radiation and non-radiation workers. Photofluorographic chest examinations resulted in 82% of the dose from medical sources. Radiation workers received 26% of their collective dose from WRX and received 66% more WRX exposure than non-radiation workers. WRX can result in a significant fraction of the total dose, especially for radiation workers who were more likely to be subjected to routine medical monitoring. Omission of WRX from the total dose is a likely source of bias that can lead to dose category misclassification and may skew the epidemiologic dose-response assessment for cancers induced by the workplace.

  14. Evaluation of Gamma Radiation-Induced Biochemical Changes in Skin for Dose Assesment: A Study on Small Experimental Animals.

    PubMed

    Kumar Soni, Sandeep; Basu, Mitra; Agrawal, Priyanka; Bhatnagar, Aseem; Chhillar, Neelam

    2018-05-24

    Researchers have been evaluating several approaches to assess acute radiation injury/toxicity markers owing to radiation exposure. Keeping in mind this background, we assumed that whole-body irradiation in single fraction in graded doses can affect the antioxidant profile in skin that could be used as an acute radiation injury/toxicity marker. Sprague-Dawley rats were treated with CO-60 gamma radiation (dose: 1-5 Gy; dose rate: 0.85 Gy/minute). Skin samples were collected (before and after radiation up to 72 hours) and analyzed for glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (LPx). Intra-group comparison showed significant differences in GSH, GPx, SOD, and CAT, and they declined in a dose-dependent manner from 1 to 5 Gy (P value0.05). This study suggests that skin antioxidants were sensitive toward radiation even at a low radiation dose, which can be used as a predictor of radiation injury and altered in a dose-dependent manner. These biochemical parameters may have wider application in the evaluation of radiation-induced skin injury and dose assessment. (Disaster Med Public Health Preparedness. 2018;page 1 of 6).

  15. AREA RADIATION MONITOR

    DOEpatents

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  16. Effective radiation reduction in Space Station and missions beyond the magnetosphere

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas M.; Stassinopoulos, E. G.

    1989-01-01

    This paper investigates the efficiency of low- and high-atomic number materials used as protective shields against biologically effective radiation in doses equivalent to those expected in low-earth-orbit and interplanetary manned missions. Results are presented on calculations for single-material shields from polyethylene, water, Be, Al, Fe, and Ta and multilayer shelds made from the combinations of any two or any three of these materials, for both LEO and interplanetary conditions. It is shown that, whereas for protons and Galactic cosmic rays the ordering of shield materials has a negligible effect, for electrons and secondary bremsstrahlung, both the order and the composition are important parameters. It was found that low-atomic-number materials are most effective shields against protons and galactic cosmic rays, and are most effective in decreasing bremsstrahlung production, while high-atomic-number shields are the best attenuators of both primary electrons (if the dose is dominated by primary electrons) and secondary bremsstrahlung (if this is produced).

  17. Test of 3D CT reconstructions by EM + TV algorithm from undersampled data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evseev, Ivan; Ahmann, Francielle; Silva, Hamilton P. da

    2013-05-06

    Computerized tomography (CT) plays an important role in medical imaging for diagnosis and therapy. However, CT imaging is connected with ionization radiation exposure of patients. Therefore, the dose reduction is an essential issue in CT. In 2011, the Expectation Maximization and Total Variation Based Model for CT Reconstruction (EM+TV) was proposed. This method can reconstruct a better image using less CT projections in comparison with the usual filtered back projection (FBP) technique. Thus, it could significantly reduce the overall dose of radiation in CT. This work reports the results of an independent numerical simulation for cone beam CT geometry withmore » alternative virtual phantoms. As in the original report, the 3D CT images of 128 Multiplication-Sign 128 Multiplication-Sign 128 virtual phantoms were reconstructed. It was not possible to implement phantoms with lager dimensions because of the slowness of code execution even by the CORE i7 CPU.« less

  18. Integrated molecular analysis indicates undetectable change in DNA damage in mice after continuous irradiation at ~ 400-fold natural background radiation.

    PubMed

    Olipitz, Werner; Wiktor-Brown, Dominika; Shuga, Joe; Pang, Bo; McFaline, Jose; Lonkar, Pallavi; Thomas, Aline; Mutamba, James T; Greenberger, Joel S; Samson, Leona D; Dedon, Peter C; Yanch, Jacquelyn C; Engelward, Bevin P

    2012-08-01

    In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation. DNA damage and mutations are well established for their carcinogenic effects. We assessed several key markers of DNA damage and DNA damage responses in mice exposed to low dose-rate radiation to reveal potential genotoxic effects associated with low dose-rate radiation. We studied low dose-rate radiation using a variable low dose-rate irradiator consisting of flood phantoms filled with 125Iodine-containing buffer. Mice were exposed to 0.0002 cGy/min (~ 400-fold background radiation) continuously over 5 weeks. We assessed base lesions, micronuclei, homologous recombination (HR; using fluorescent yellow direct repeat mice), and transcript levels for several radiation-sensitive genes. We did not observe any changes in the levels of the DNA nucleobase damage products hypoxanthine, 8-oxo-7,8-dihydroguanine, 1,N6-ethenoadenine, or 3,N4-ethenocytosine above background levels under low dose-rate conditions. The micronucleus assay revealed no evidence that low dose-rate radiation induced DNA fragmentation, and there was no evidence of double strand break-induced HR. Furthermore, low dose-rate radiation did not induce Cdkn1a, Gadd45a, Mdm2, Atm, or Dbd2. Importantly, the same total dose, when delivered acutely, induced micronuclei and transcriptional responses. These results demonstrate in an in vivo animal model that lowering the dose-rate suppresses the potentially deleterious impact of radiation and calls attention to the need for a deeper understanding of the biological impact of low dose-rate radiation.

  19. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bignell, L. J.; Diwan, M. V.; Hans, S.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  20. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    EPA Science Inventory

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?

    Abstract
    High doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  1. Solar Energetic Particle Event Risks for Future Human Missions within the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Over, S.; Ford, J.

    2017-12-01

    As astronauts travel beyond low-Earth orbit (LEO), space weather research will play a key role in determining risks from space radiation. Of interest are the rare, large solar energetic particle (SEP) events that can cause significant medical effects during flight. Historical SEP data were analyzed from the Geostationary Operational Environmental Satellites (GOES) program covering the time period of 1986 to 2016 for SEP events. The SEP event data were combined with a Monte Carlo approach to develop a risk model to determine maximum expected doses for missions within the inner heliosphere. Presented here are results from risk assessments for proposed Mars transits as compared to a geostationary Earth-bound mission. Overall, the greatest risk was for the return from Mars with a Venus swing-by, due to the additional transit length and decreased distance from the Sun as compared to traditional Hohmann transfers. The overall results do not indicate that the effects of SEP events alone would prohibit these missions based on current radiation limits alone, but the combination of doses from SEP events and galactic cosmic radiation may be significant, and should be considered in all phases of mission design.

  2. Monte Carlo simulation of the radiation environment encountered by a biochip during a space mission to Mars.

    PubMed

    Le Postollec, A; Incerti, S; Dobrijevic, M; Desorgher, L; Santin, G; Moretto, P; Vandenabeele-Trambouze, O; Coussot, G; Dartnell, L; Nieminen, P

    2009-04-01

    Simulations with a Monte Carlo tool kit have been performed to determine the radiation environment a specific device, called a biochip, would face if it were placed into a rover bound to explore Mars' surface. A biochip is a miniaturized device that can be used to detect organic molecules in situ. Its specific detection part is constituted of proteins whose behavior under cosmic radiation is completely unknown and must be investigated to ensure a good functioning of the device under space conditions. The aim of this study is to define particle species and energy ranges that could be relevant to investigate during experiments on irradiation beam facilities. Several primary particles have been considered for galactic cosmic ray (GCR) and solar energetic particle (SEP) contributions. Ionizing doses accumulated in the biochip and differential fluxes of protons, alphas, neutrons, gammas, and electrons have been established for both the Earth-Mars transit and the journey at Mars' surface. Neutrons and gammas appear as dominant species on martian soil, whereas protons dominate during the interplanetary travel. Depending on solar event occurrence during the mission, an ionizing dose of around a few Grays (1 Gy = 100 rad) is expected.

  3. Technology Insight: Combined external-beam radiation therapy and brachytherapy in the management of prostate cancer.

    PubMed

    Hurwitz, Mark D

    2008-11-01

    External-beam radiation therapy (EBRT) combined with brachytherapy is an attractive treatment option for selected patients with clinically localized prostate cancer. This therapeutic strategy offers dosimetric coverage if local-regional microscopic disease is present and provides a highly conformal boost of radiation to the prostate and immediate surrounding tissues. Either low-dose-rate (LDR) permanent brachytherapy or high-dose-rate (HDR) temporary brachytherapy can be combined with EBRT; such combined-modality therapy (CMT) is typically used to treat patients with intermediate-risk to high-risk, clinically localized disease. Controversy persists with regard to indications for CMT, choice of LDR or HDR boost, isotope selection for LDR, and integration of EBRT and brachytherapy. Initial findings from prospective, multicenter trials of CMT support the feasibility of this strategy. Updated results from these trials as well as those of ongoing and new phase III trials should help to define the role of CMT in the management of prostate cancer. In the meantime, long-term expectations for outcomes of CMT are based largely on the experience of single institutions, which demonstrate that CMT with EBRT and either LDR or HDR brachytherapy can provide freedom from disease recurrence with acceptable toxicity.

  4. Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorek, Daniel L.J., E-mail: dthorek1@jhmi.edu; Kramer, Robin M.; Chen, Qing

    2015-10-01

    Purpose: To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. Methods and Materials: After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by x-ray CT. With this technique we delineated the pancreas and both orthotopic xenografts and genetically engineered disease. Computed tomographic imaging was validated by comparison with magnetic resonance imaging. Therapeutic radiation was delivered via a 1-cm diameter field. Selective x-ray radiation therapy of the noninvasively defined orthotopic mass was confirmed using γH2AX staining. Micemore » could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360° arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic x-ray radiation therapy to orthotopic tumors. Results: Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times after treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. Conclusions: This advance permits evaluation of radiation planning and dosing parameters. Accurate noninvasive longitudinal imaging and monitoring of tumor progression and therapeutic response in preclinical models is now possible and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response.« less

  5. Malignant glioma--a nemesis which requires clinical and basic investigation in radiation oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, L.W.

    1989-06-01

    Malignant gliomas account for 40% of all central nervous system malignancies. These are essentially localized neoplastic tumors that have defied most treatment. In spite of improved techniques, surgery is unlikely to increase survival further since true cancer operations cannot be performed. Radiation therapy has made a significant difference in outcome. Investigation in radiation oncology is essential for further improvement in the treatment of these tumors. The pattern of failure is local tumor recurrence, but the method to overcome this resistance to treatment is not clear. Radiation therapy techniques and inherent radio-resistance have been considered as possible reasons for failure. Withmore » newer imaging procedures, the extent of tumor can be more accurately defined allowing improved treatment planning. Identifying an effective treatment program is more difficult. Studies have documented the beneficial effect of radiation therapy, but the optimal dose or fractionation schedule has not been determined. Whereas some studies have reported improved survival using higher radiation doses, others have reported no benefit. More recently, studies of multiple daily fractionation schedules have been conducted using two or three daily fractions. Equally confusing results have been reported. Histologically, these tumors have necrotic areas and may be radioresistant due to hypoxic cells. Treatment methods designed to overcome the radioprotective effect of hypoxia have yielded disappointing results. The addition of hypoxic cell sensitizers has not produced the expected improvement in outcome. Studies using neutron radiation therapy report tumor control but not improved survival. Radiobiologic information is now available which may contribute to our understanding of the response of these tumors to radiation. Further laboratory and clinical investigation is required. 83 references.« less

  6. Experimental demonstration of radiation effects on the performance of a stirling-alternator convertor and candidate materials evaluation

    NASA Astrophysics Data System (ADS)

    Mireles, Omar R.

    Free-piston Stirling power convertors are under consideration by NASA for service in the Advanced Stirling Radioisotope Generator (ASRG) and Fission Surface Power (FSP) systems to enable aggressive exploration missions by providing a reliable and constant power supply. The ASRG must withstand environmental radiation conditions, while the FSP system must tolerate a mixed neutron and gamma-ray environment resulting from self-irradiation. Stirling-alternators utilize rare earth magnets and a variety of organic materials whose radiation limits dominate service life estimates and shielding requirements. The project objective was to demonstrate the performance of the alternator, identify materials that exhibit excessive radiation sensitivity, identify radiation tolerant substitutes, establish empirical dose limits, and demonstrate the feasibility of cost effective nuclear and radiation tests by selection of the appropriate personnel and test facilities as a function of hardware maturity. The Stirling Alternator Radiation Test Article (SARTA) was constructed from linear alternator components of a Stirling convertor and underwent significant pre-exposure characterization. The SARTA was operated at the Sandia National Laboratories Gamma Irradiation Facility to a dose of over 40 Mrad. Operating performance was within nominal variation, although modestly decreasing trends occurred in later runs as well as the detection of an electrical fault after the final exposure. Post-irradiation disassembly and internal inspection revealed minimal degradation of the majority of the organic components. Radiation testing of organic material coupons was conducted since the majority of the literature was inconsistent. These inconsistencies can be attributed to testing at environmental conditions vastly different than those Stirling-alternator organics will experience during operation. Samples were irradiated at the Texas A&M TRIGA reactor to above expected FSP neutron fluence. A thorough materials evaluation followed and results indicate that the majority of material properties experienced minimal statistically significant change.

  7. Exposure of the Heart in Breast Cancer Radiation Therapy: A Systematic Review of Heart Doses Published During 2003 to 2013.

    PubMed

    Taylor, Carolyn W; Wang, Zhe; Macaulay, Elizabeth; Jagsi, Reshma; Duane, Frances; Darby, Sarah C

    2015-11-15

    Breast cancer radiation therapy cures many women, but where the heart is exposed, it can cause heart disease. We report a systematic review of heart doses from breast cancer radiation therapy that were published during 2003 to 2013. Eligible studies were those reporting whole-heart dose (ie, dose averaged over the whole heart). Analyses considered the arithmetic mean of the whole-heart doses for the CT plans for each regimen in each study. We termed this "mean heart dose." In left-sided breast cancer, mean heart dose averaged over all 398 regimens reported in 149 studies from 28 countries was 5.4 Gy (range, <0.1-28.6 Gy). In regimens that did not include the internal mammary chain (IMC), average mean heart dose was 4.2 Gy and varied with the target tissues irradiated. The lowest average mean heart doses were from tangential radiation therapy with either breathing control (1.3 Gy; range, 0.4-2.5 Gy) or treatment in the lateral decubitus position (1.2 Gy; range, 0.8-1.7 Gy), or from proton radiation therapy (0.5 Gy; range, 0.1-0.8 Gy). For intensity modulated radiation therapy mean heart dose was 5.6 Gy (range, <0.1-23.0 Gy). Where the IMC was irradiated, average mean heart dose was around 8 Gy and varied little according to which other targets were irradiated. Proton radiation therapy delivered the lowest average mean heart dose (2.6 Gy, range, 1.0-6.0 Gy), and tangential radiation therapy with a separate IMC field the highest (9.2 Gy, range, 1.9-21.0 Gy). In right-sided breast cancer, the average mean heart dose was 3.3 Gy based on 45 regimens in 23 studies. Recent estimates of typical heart doses from left breast cancer radiation therapy vary widely between studies, even for apparently similar regimens. Maneuvers to reduce heart dose in left tangential radiation therapy were successful. Proton radiation therapy delivered the lowest doses. Inclusion of the IMC doubled typical heart dose. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. No adaptive response is induced by chronic low-dose radiation from Ra-226 in the CHSE/F fish embryonic cell line and the HaCaT human epithelial cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaopei, E-mail: shix22@mcmaster.ca; Mothersi

    Purpose: To determine whether chronic low-dose α-particle radiation from Ra-226 over multiple cell generations can lead to an adaptive response in CHSE/F fish embryonic cells or HaCaT human epithelial cells receiving subsequent acute high-dose γ-ray radiation. Methods: CHSE/F and HaCaT cells were exposed to very low doses of Ra-226 in medium for multiple generations prior to being challenged by a higher dose γ-ray radiation. The clonogenic assay was used to test the clonogenic survival of cells with or without being pretreated by radiation from Ra-226. Results: In general, pretreatment with chronic radiation has no significant influence on the reaction ofmore » cells to the subsequent challenge radiation. Compared to unprimed cells, the change in clonogenic survival of primed cells after receiving challenge radiation is mainly due to the influence of the chronic exposure, and there's little adaptive response induced. However at several dose points, pretreatment of CHSE/F fish cells with chronic radiation resulted in a radiosensitive response to a challenge dose of γ-ray radiation, and pretreatment of HaCaT cells resulted in no effect except for a slightly radioresistant response to the challenge radiation which was not significant. Conclusion: The results suggest that chronic low-dose radiation is not effective enough to induce adaptive response. There was a difference between human and fish cells and it may be important to consider results from multiple species before making conclusions about effects of chronic or low doses of radiation in the environment. The term “radiosensitive” or “adaptive” make no judgment about whether such responses are ultimately beneficial or harmful. - Highlights: • No obvious adaptive response is induced by chronic low-dose radiation from Ra-226. • Priming radiation from Ra-226 sensitized CHSE/F cells to the challenge radiation. • Linear model is inconsistent with current work using chronic low-dose radiation.« less

  9. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Waters, Katrina M.; Miller, John H.

    2010-11-30

    Background: High doses of ionizing radiation result in biological damage, however the precise relationships between long term health effects, including cancer, and low dose exposures remain poorly understood and are currently extrapolated using high dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose dependent responses to radiation. Principle Findings: We have identified 6845 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts one hour post-exposure. Dual statistical analyses based on spectral counts and peakmore » intensities identified 287 phosphopeptides (from 231 proteins) and 244 phosphopeptides (from 182 proteins) that varied significantly following exposure to 2 and 50 cGy respectively. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatics analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role of MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conlcusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provides a basis for the systems level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low dose radiation exposure on human health.« less

  10. [Role of emotional stress in development of somatic injuries in liquidators of the Chernobyl power plant accident irradiated with small doses].

    PubMed

    Moroz, B B; Deshevoĭ, Iu B

    1999-01-01

    In the light of modern beliefs about emotional stress are considered available in the literature given on changing a picture of health beside persons, taken part in liquidations of consequences of damage on Chernobil atomic stations. Results of psychological, psychophysiological and endocrinological examinations point to that beside significant numbers of liquidators of damage was developed chronic emotional stress. Expected presence of feedforward between the emotional stress and development beside liquidators of psychic frustrations, cardiovascular pathology, peptic ulcer of stomach and duodenum. Is discussed problem of combining action on the organism of ionizing radiating in small doses and long emotional stress.

  11. The ST environment: Expected charged particle radiation levels

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1978-01-01

    The external (surface incident) charged particle radiation, predicted for the ST satellite at the three different mission altitudes, was determined in two ways: (1) by orbital flux-integration and (2) by geographical instantaneous flux-mapping. The latest standard models of the environment were used in this effort. Magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions were obtained from a current field model. Spatial and temporal variations or conditions affecting the static environment models were considered and accounted for, wherever possible. Limited shielding and dose evaluations were performed for a simple geometry. Results, given in tabular and graphical form, are analyzed, explained, and discussed. Conclusions are included.

  12. 42 CFR 81.4 - Definition of terms used in this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...]. (e) Equivalent dose means the absorbed dose in a tissue or organ multiplied by a radiation weighting... dose means the portion of the equivalent dose that is received from radiation sources outside of the... pattern and level of radiation exposure. (h) Internal dose means the portion of the equivalent dose that...

  13. SU-F-207-05: Excess Heat Corrections in a Prototype Calorimeter for Direct Realization of CT Absorbed Dose to Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Mayer, H; Tosh, R

    2015-06-15

    Purpose: To reconcile air kerma and calorimetry measurements in a prototype calorimeter for obtaining absorbed dose in diagnostic CT beams. While corrections for thermal artifacts are routine and generally small in calorimetry of radiotherapy beams, large differences in relative stopping powers of calorimeter materials at the lower energies typical of CT beams greatly magnify their effects. Work-to-date on the problem attempts to reconcile laboratory measurements with modeling output from Monte Carlo and finite-element analysis of heat transfer. Methods: Small thermistor beads were embedded in a polystyrene (PS) core element of 1 cm diameter, which was inserted into a cylindrical HDPEmore » phantom of 30 cm diameter and subjected to radiation in a diagnostic CT x-ray imaging system. Resistance changes in the thermistors due to radiation heating were monitored via lock-in amplifier. Multiple 3-second exposures were recorded at 8 different dose-rates from the CT system, and least-squares fits to experimental data were compared to an expected thermal response obtained by finite-element analysis incorporating source terms based on semi-empirical modeling and Monte Carlo simulation. Results: Experimental waveforms exhibited large thermal artifacts with fast time constants, associated with excess heat in wires and glass, and smaller steps attributable to radiation heating of the core material. Preliminary finite-element analysis follows the transient component of the signal qualitatively, but predicts a slower decay of temperature spikes. This was supplemented by non-linear least-squares fits incorporating semi-empirical formulae for heat transfer, which were used to obtain dose-to-PS in reasonable agreement with the output of Monte Carlo calculations that converts air kerma to absorbed dose. Conclusion: Discrepancies between the finite-element analysis and our experimental data testify to the very significant heat transfer correction required for absorbed dose calorimetry of diagnostic CT beams. The results obtained here are being used to refine both simulations and design of calorimeter core components.« less

  14. Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness

    PubMed Central

    Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095

  15. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    PubMed

    Seth, Isheeta; Schwartz, Jeffrey L; Stewart, Robert D; Emery, Robert; Joiner, Michael C; Tucker, James D

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  16. An environmental dose experiment

    NASA Astrophysics Data System (ADS)

    Peralta, Luis

    2017-11-01

    Several radiation sources worldwide contribute to the delivered dose to the human population. This radiation also acts as a natural background when detecting radiation, for instance from radioactive sources. In this work a medium-sized plastic scintillation detector is used to evaluate the dose delivered by natural radiation sources. Calibration of the detector involved the use of radioactive sources and Monte Carlo simulation of the energy deposition per disintegration. A measurement of the annual dose due to background radiation to the body was then estimated. A dose value compatible with the value reported by the United Nations Scientific Committee on the Effects of Atomic Radiation was obtained.

  17. Typical doses and dose rates in studies pertinent to radiation risk inference at low doses and low dose rates

    PubMed Central

    Rühm, Werner; Azizova, Tamara; Bouffler, Simon; Cullings, Harry M; Grosche, Bernd; Little, Mark P; Shore, Roy S; Walsh, Linda; Woloschak, Gayle E

    2018-01-01

    Abstract In order to quantify radiation risks at exposure scenarios relevant for radiation protection, often extrapolation of data obtained at high doses and high dose rates down to low doses and low dose rates is needed. Task Group TG91 on ‘Radiation Risk Inference at Low-dose and Low-dose Rate Exposure for Radiological Protection Purposes’ of the International Commission on Radiological Protection is currently reviewing the relevant cellular, animal and human studies that could be used for that purpose. This paper provides an overview of dose rates and doses typically used or present in those studies, and compares them with doses and dose rates typical of those received by the A-bomb survivors in Japan. PMID:29432579

  18. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Use of radiation dose information. 81.6 Section 81... Probability of Causation § 81.6 Use of radiation dose information. Determining probability of causation will require the use of radiation dose information provided to DOL by the National Institute for Occupational...

  19. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Use of radiation dose information. 81.6 Section 81... Probability of Causation § 81.6 Use of radiation dose information. Determining probability of causation will require the use of radiation dose information provided to DOL by the National Institute for Occupational...

  20. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Use of radiation dose information. 81.6 Section 81... Probability of Causation § 81.6 Use of radiation dose information. Determining probability of causation will require the use of radiation dose information provided to DOL by the National Institute for Occupational...

  1. 42 CFR 81.6 - Use of radiation dose information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Use of radiation dose information. 81.6 Section 81... Probability of Causation § 81.6 Use of radiation dose information. Determining probability of causation will require the use of radiation dose information provided to DOL by the National Institute for Occupational...

  2. Tolerance doses of cutaneous and mucosal tissues in ring-necked parakeets (Psittacula krameri) for external beam megavoltage radiation.

    PubMed

    Barron, Heather W; Roberts, Royce E; Latimer, Kenneth S; Hernandez-Divers, Stephen; Northrup, Nicole C

    2009-03-01

    Currently used dosages for external-beam megavoltage radiation therapy in birds have been extrapolated from mammalian patients and often appear to provide inadequate doses of radiation for effective tumor control. To determine the tolerance doses of cutaneous and mucosal tissues of normal birds in order to provide more effective radiation treatment for tumors that have been shown to be radiation responsive in other species, ingluvial mucosa and the skin over the ingluvies of 9 ring-necked parakeets (Psittacula krameri) were irradiated in 4-Gy fractions to a total dose of either 48, 60, or 72 Gy using an isocentric cobalt-60 teletherapy unit. Minimal radiation-induced epidermal changes were present in the high-dose group histologically. Neither dose-related acute nor chronic radiation effects could be detected in any group grossly in cutaneous or mucosal tissue over a 9-month period. Radiation doses of 72 Gy in 4-Gy fractions were well tolerated in the small number of ring-necked parakeets in this initial tolerance dose study.

  3. Radiation-induced swelling of stainless steel.

    PubMed

    Shewmon, P G

    1971-09-10

    Significant swelling (1 to 10 percent due to small voids have been found in stainless steel when it is exposed to fast neutron doses less than expected in commercial fast breeder reactors. The main features of this new effect are: (i) the voids are formed by the precipitation of a small fraction of the radiation-produced vacancies; (ii) the voids form primarily in the temperature range 400 degrees to 600 degrees C (750 degrees to 1100 degrees F); and (iii) the volume increases with dose (fluence) at a rate between linear and parabolic. The limited temperature range of void formation can be explained, but the effects of fluence, microstructure, and composition are determined by a competition between several kinetic processes that are not well understood. This swelling does not affect the feasibility or safety of the breeder reactor,but will have a significant impact on the core design and economics of the breeder.Preliminary results indicate that one cannot eliminate the effect,but cold-working,heat treatment, or small changes in composition can reduce the swelling by a factor of 2 or more. Testing is hampered by the fact that several years in EBR-II are required to accumulate the fluence expected in demonstration plants. Heavyion accelerators,which allow damage rates corresponding to much higher fluxes than those found in EBR-II,hold great promise for short-term tests that will indicate the relative effect of the important variables.

  4. Total Dose Effects (TDE) of heavy ionizing radiation in fungus spores and plant seeds: Preliminary investigations

    NASA Technical Reports Server (NTRS)

    Kranz, A. R.; Zimmermann, M. W.; Stadler, R.; Gartenbach, K. E.; Pickert, M.

    1992-01-01

    The opportunity to compare cosmic radiation effects caused during long and short duration exposure flights in biological objects are limited until now, and data obtained so far are very rare and insufficient. Because of the very long exposure of the experiment during the Long Duration Exposure Facility (LDEF) mission (approximately 2000 days) structural changes of the hardware material can be expected which will influence its biocompatibility and, thus, will interact with the radiobiological effects. The aim of the experiment flown on LDEF was a detailed investigation of biological effects caused by cosmic radiation especially of particles of high atomic number Z and high energy. The flight hardware consisted of standard BIOSTACK containers; in these containers a special sandwich construction consisted of visual plastic detectors with seed rsp. spore layers interlocked.

  5. Nonuniform radiation damage in permanent magnet quadrupoles.

    PubMed

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  6. Radiation Awareness for Endovascular Abdominal Aortic Aneurysm Repair in the Hybrid Operating Room. An Instant Patient Risk Chart for Daily Practice.

    PubMed

    de Ruiter, Quirina M; Gijsberts, Crystel M; Hazenberg, Constantijn E; Moll, Frans L; van Herwaarden, Joost A

    2017-06-01

    To determine which patient and C-arm characteristics are the strongest predictors of intraoperative patient radiation dose rates (DRs) during endovascular aneurysm repair (EVAR) procedures and create a patient risk chart. A retrospective analysis was performed of 74 EVAR procedures, including 16,889 X-ray runs using fixed C-arm imaging equipment. Four multivariate log-linear mixed models (with patient as a random effect) were constructed. Mean air kerma DR (DR AK , mGy/s) and the mean dose area product DR (DR DAP , mGycm 2 /s) were the outcome variables utilized for fluoroscopy as differentiated from digital subtraction angiography (DSA). These models were used to predict the maximum radiation duration allowed before a 2-Gy skin threshold (for DR AK ) or a 500-Gycm 2 threshold (for DR DAP ) was reached. The strongest predictor of DR AK and DR DAP for fluoroscopy imaging was the radiation protocol, with an increase of 200% when changing from "low" to "medium" and 410% from "low" to "normal." The strongest predictors of DR AK and DR DAP for DSA were C-arm angulation, with an increase of 47% per 30° of angulation, and body mass index (BMI), with an increase of 58% for every 5-point increase in BMI. Based on these models, a patient with a BMI of 30 kg/m 2 , combined with 45° of rotation and a field size of 800 cm 2 in the medium fluoroscopy protocol has a predicted DR AK of 0.39 mGy/s (or 85.5 minutes until the 2-Gy skin threshold is reached). While using comparable settings but switching the acquisition to a DSA with a "2 frames per second" protocol, the predicted DR AK will be 6.6 mGy/s (or 5.0 minutes until the 2-Gy threshold is reached). X-ray radiation DRs are constantly fluctuating during and between patients based on BMI, the protocols, C-arm position, and the image acquisitions that are used. An instant patient risk chart visualizes these radiation dose fluctuations and provides an overview of the expected duration of X-ray radiation, which can be used to predict when follow-up dose thresholds are reached during abdominal endovascular procedures.

  7. Oxidative Stress and Skeletal Health with Low-Dose, Low-LET (Linear Energy Transfer) Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Globus, Ruth K.

    We performed in vivo and in vitro experiments to accomplish the following specific aims of this project: 1) determine if low dose, low LET radiation affects skeletal remodeling at structural, cellular and molecular levels and 2) determine if low dose, low LET radiation modulates skeletal health during aging via oxidative mechanisms. A third aim is supported by NASA supplement to this DOE grant focusing on the influence of high LET radiation on bone. A series of experiments were conducted at the NASA Space Radiation Laboratory at Brookhaven, NSRL-BNL, using iron (56Fe) or a sequential exposure to protons / iron /more » protons, and separate experiments at NASA Ames Research Center (ARC) using 137Cs. The following provides a summary of key findings. (1) Exposure of nine-week old female mice to priming doses of gamma radiation (10cGy x 5) did not significantly affect bone volume/total volume (BV/TV) or microarchitecture as analyzed by 3D microcomputed tomography. As expected, exposure to the challenge dose of 2 Gy gamma irradiation resulted in significant decreases in BV/TV. The priming dose combined with the 2Gy challenge dose had no further effect on BV/TV compared to challenge dose alone, with the sole exception of the Structural Model Index (SMI). SMI reflects the ratio of rods-to-plates in cancellous bone tissue, such that higher SMI values indicate a tendency toward a weaker structure compared to lower SMI values. Mice treated with both priming and challenge dose had 25% higher SMI values compared to sham-irradiated controls and 7% higher values compared to mice treated with the challenge dose alone. Thus, although this priming regimen had relatively modest effects on cancellous tissue, the difference in SMI suggests this fractionated priming doses have adverse, rather than beneficial, effects on bone structure. (2) In 10-week old male mice, a single exposure to 100cGy of 137Cs reduces trabecular bone number and connectivity density by 20% and 36% respectively one month after irradiation (IR). At four months post-IR, these animals were comparable to sham-treated controls with regards to the abovementioned structural parameters. Irradation at 1 or 10 cGy did not result in any significant changes in bone structural parameters. (3) Irradiation of 16-wk old male mice with high doses of 56Fe or proton (50 or 200cGy), but not at low doses (5 or 10cGy), showed a similar loss of cancellous BV/TV and trabecular number at five weeks post-IR. (4) Age-related bone loss overtook acute radiation-induced decrements in bone structure within four months post-IR with 100 cGy gamma and 12 months post-IR with 200 cGy iron. Transgenic mice globally overexpressing human catalase gene in mitochondria did not exhibit cancellous bone loss as assessed at four month post-IR with 10 cGy proton, 50 cGy iron, or in combination. (5) The cellular and molecular mechanisms responsible for loss of bone with radiation are mediated primarily through increased osteoclastogenesis. Our data provide evidence that there are increases in gene expression of TNF alpha and MCP1 in the bone marrow cells 24 hours post-IR and of osteoclastogenic differentiation factor RANKL by day 3. These cytokines in the marrow may stimulate mature osteoclasts or drive osteoclastogenesis from precursors. (6) Osteoblastogenesis from marrow progenitors evaluated ex vivo decreased following whole body 56Fe irradiation at a dose threshold between 20 and 50 cGy whereas osteoclastogenesis ex vivo increased with doses as low as 10cGy two days post-IR of mice. However, the latter finding was not observed in more than a single experiment. (7) Gamma irradiation of cells in vitro requires relatively high doses (200cGy) to disturb normal osteoblastogenesis and osteoclastogenesis as evidenced by decrements in mineralized nodule formation, osteoclast counts, and expression of osteoblast related genes such as runx2, col1a1. (8) We also investigated the effect of antioxidants on osteoblastogenesis following low dose in vitro gamma irradiation (15cGy) on day four bone marrow stromal cell cultures. Superoxide dismutase (SOD) was added to the cell culture medium for 2 or 3 days post-irradiation and cell colonies were counted on days 7 and 10. SOD treatment increased cell growth as measured by DNA content and colony forming units (CFU) in both irradiated cells and 0 cGy control groups. However, low dose radiation of 15cGy abolished SOD stimulatory effects on cell growth and CFU number. These results suggest that exogenous SOD increases osteoblast cell growth and colony formation and that low-dose radiation (15cGy) can interfere with the antioxidant effects. In summary, our findings indicate that acute, whole body irradiation at high doses (50-200 cGy) results in prompt tissue degradation and bone loss. Lower doses (<50 cGy) do not cause bone structural deterioration but may deplete stem/progenitor cell pools in the bone marrow.« less

  8. Cone beam computed tomography radiation dose and image quality assessments.

    PubMed

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and examinations of impacted lower third molars and retained upper cuspids. It varied between 11-77 microSv. Radiation dose should be evaluated together with image quality. Images of a skull phantom were obtained with both units varying tube voltage, tube current, degree of rotation and FOVs. Seven observers assessed subjective image quality using a six-point rating scale for two diagnostic tasks: periapical diagnosis and implant planning in the posterior part of the jaws. Intra-observer agreement was good and inter-observer agreement moderate. Periapical diagnosis was found to, regardless of jaw, require higher exposure parameters compared to implant planning. Implant planning in the lower jaw required higher exposure parameters compared to upper jaw. Substantial dose reduction could be made without loss of diagnostic information by using a rotation of 180 degrees, in particular implant planning in upper jaw. CBCT with small FOVs was found to be well-suited for periapical diagnosis and implant planning. The CTDI method is not applicable estimating effective dose for these units. Based on DAP values effective dose varied between 11-77 microSv (ICRP 60, 1991) in a retrospectively selected patient material. Adaptation of exposure parameters to diagnostic task can give substantial dose reduction.

  9. MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahesh, M; Gingold, E; Jones, A

    2014-06-15

    Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panelmore » digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose.« less

  10. Late effects of radiation therapy for cancer of the uterine cervix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zippin, C.; Lum, D.; Kohn, H.I.

    1981-01-01

    This report presents follow-up information on 497 women diagnosed with cancer of the uterine cervix in Connecticut and California between 1932 and 1951 who received only radiation as their initial course of therapy. Patients entered into the study were all treated before age 55 and all were five-year-survivors following treatment in order to eliminate early deaths due to the cervical cancer. Three radiologic dosage groups (high, medium, and low) were formed with 93, 244, and 160 patients, respectively. For all dosage groups combined 108 subsequent cancers were observed more than 5 yr after cancer treatment compared with 64 expected (Pmore » less than 0.01). Sites for which subsequent cancers were significantly (P less than 0.05) in excess of expectation were rectum, ovary, lung, vulva and vagina, small intestine, oropharynx, and central nervous system excluding brain. The ratio of observed to expected cases of subsequent cancers rose only slightly with increasing radiologic dose. No significant differences in overall survival patterns for the three dosage groups were found. For all dosage groups survival was poorer than in the corresponding segment of the general population.« less

  11. Scoping estimates of the LDEF satellite induced radioactivity

    NASA Technical Reports Server (NTRS)

    Armstrong, Tony W.; Colborn, B. L.

    1990-01-01

    The Long Duration Exposure Facility (LDEF) satellite was recovered after almost six years in space. It was well-instrumented with ionizing radiation dosimeters, including thermoluminescent dosimeters, plastic nuclear track detectors, and a variety of metal foil samples for measuring nuclear activation products. The extensive LDEF radiation measurements provide the type of radiation environments and effects data needed to evaluate and help resolve uncertainties in present radiation models and calculational methods. A calculational program was established to aid in LDEF data interpretation and to utilize LDEF data for assessing the accuracy of current models. A summary of the calculational approach is presented. The purpose of the reported calculations is to obtain a general indication of: (1) the importance of different space radiation sources (trapped, galactic, and albedo protons, and albedo neutrons); (2) the importance of secondary particles; and (3) the spatial dependence of the radiation environments and effects expected within the spacecraft. The calculational method uses the High Energy Transport Code (HETC) to estimate the importance of different sources and secondary particles in terms of fluence, absorbed dose in tissue and silicon, and induced radioactivity as a function of depth in aluminum.

  12. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine.

    PubMed

    Grant, Frederick D; Gelfand, Michael J; Drubach, Laura A; Treves, S Ted; Fahey, Frederic H

    2015-04-01

    Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients were age 5 years or younger. For 12 commonly performed pediatric nuclear medicine studies, updated radiation dose estimates can guide efforts to reduce radiation exposure and provide current information for discussing radiation exposure and risk with referring physicians, patients and families. There can be substantial differences in radiation exposure for the same procedure, depending upon which of these two guidelines is followed. This discordance identifies opportunities for harmonization of the guidelines, which may lead to further reduction in nuclear medicine radiation doses in children.

  13. 77 FR 75417 - Renewal of the Veterans' Advisory Board on Dose Reconstruction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ...-discretionary federal advisory committee that shall provide review and oversight of the Radiation Dose... administration of the Radiation Dose Reconstruction Program as it considers appropriate as a result of the audits.... Conduct periodic, random audits of dose reconstructions under the Radiation Dose Reconstruction Program...

  14. Radiation-Induced Carcinogenesis: Mechanistically Based Differences between Gamma-Rays and Neutrons, and Interactions with DMBA

    PubMed Central

    Shuryak, Igor; Brenner, David J.; Ullrich, Robert L.

    2011-01-01

    Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect). Densely ionizing radiation (e.g. neutrons) often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect). These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA). The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis. PMID:22194850

  15. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetité, Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, Wagner de S.; Kelecom, Alphonse; Py Júnior, Delcy de Azevedo

    2008-08-01

    The uranium mining at Caetité (Uranium Concentrate Unit—URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5×103 μGy y-1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51×100 μGy y-1, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  16. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetite, Bahia, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse

    2008-08-07

    The uranium mining at Caetite (Uranium Concentrate Unit--URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210).more » As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5x10{sup 3} {mu}Gy y{sup -1} has been used. The derived absorbed dose rate calculated for Tilapia was 2.51x10{sup 0} {mu}Gy y{sup -1}, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.« less

  17. Dosimetric study of a brachytherapy treatment of esophagus with Brazilian 192Ir sources using an anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Santos, William S.; Gorski, Ronan; Perini, Ana P.; Maia, Ana F.; Caldas, Linda V. E.; Orengo, Gilberto

    2014-11-01

    Several radioisotopes are produced at Instituto de Pesquisas Energéticas e Nucleares for the use in medical treatments, including the activation of 192Ir sources. These sources are suitable for brachytherapy treatments, due to their low or high activity, depending on the concentration of 192Ir, easiness to manufacture, small size, stable daughter products and the possibility of re-utilization. They may be used for the treatment of prostate, cervix, head and neck, skin, breast, gallbladder, uterus, vagina, lung, rectum, and eye cancer treatment. In this work, the use of some 192Ir sources was studied for the treatment of esophagus cancer, especially the dose determination of important structures, such as those on the mediastinum. This was carried out utilizing a FASH anthropomorphic phantom and the MCNP5 Monte Carlo code to transport the radiation through matter. It was possible to observe that the doses at lungs, breast, esophagus, thyroid and heart were the highest, which was expected due to their proximity to the source. Therefore, the data are useful to assess the representative dose specific to brachytherapy treatments on the esophagus for radiation protection purposes. The use of brachytherapy sources was studied for the treatment of esophagus cancer. FASH anthropomorphic phantom and MCNP5 Monte Carlo code were employed. The doses at lungs, breast, esophagus, thyroid and heart were the highest. The data is useful to assess the representative doses of treatments on the esophagus.

  18. Radioactivity Risk Assessment of Radon and Gamma Dose at One Uranium Tailings Pond in China

    NASA Astrophysics Data System (ADS)

    Lou, Yalong; Liu, Yong; Peng, Guowen; Zhao, Guodong; Zhang, Yan; Yang, Zhu

    2018-01-01

    A year-long monitoring of gamma radiation effective dose rate and radon concentration had been done in the reservoir area of one uranium tailings pond in Hunan province (The monitoring area included indoor and outdoor area of residential buildings and workshops, tailings dam slope). Afterwards, the annual effective radiation dose of the people in that radiation environment had been calculated based on the results of monitoring, as well as a radiation risk assessment. According to the assessment, gamma radiation effective dose rate and radon concentration in the monitoring area were low, and the annual effective radiation dose was far below the international standard (30mSv), which showed that the radiation would not put the people’s health at risk. However, the annual effective radiation dose of gamma was far above that of radon in the area of uranium tailings pond; therefore, it’s advisable to take quarantine measures in in the area of uranium tailings pond to keep the surrounding residents away from unnecessary ionizing radiation.

  19. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    PubMed

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.

  20. Dose- and Ion-Dependent Effects in the Oxidative Stress Response to Space-Like Radiation Exposure in the Skeletal System

    NASA Technical Reports Server (NTRS)

    Alwood, Joshua S.; Tran, Luan H.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Kumar, Akhilesh; Hilton, Diane; Tahimic, Candice G. T.; Globus, Ruth

    2017-01-01

    Exposure to space radiation may pose a risk to skeletal health during subsequent aging. Irradiation acutely stimulates bone remodeling in mice, although the long-term influence of space radiation on bone-forming potential (osteoblastogenesis) and possible adaptive mechanisms are not well understood. We hypothesized exposure to ionizing radiation impairs osteoblastogenesis in an ion-type specific manner, with low doses capable of modulating expression of redox-related genes. 16-week old, male, C57BL6/J mice were exposed to low linear-energy-transfer (LET) protons (150 mega electron volts per nucleon) or high-LET (sup 56) Fe ions (600 mega electron volts per nucleon) using either low (5 or 10 centigrays) or high (50 or 200 centigrays) doses at NASAs Space Radiation Lab at Brookhaven National Lab (NSRL/BNL). Tissues were harvested 5 weeks or 1 year after irradiation and bones were analyzed by microcomputed tomography for cancellous microarchitecture and cortical geometry. Marrow-derived, adherent cells were grown under osteoblastogenic culture conditions. Cell lysates were analyzed for select groups by RT-PCR (Reverse Transcription-Polymerase Chain Reaction) during the proliferative phase or the mineralizing phase, and differentiation was analyzed by imaging mineralized nodules (percentage surface area). Representative genes were selected for expression analyses, including cell proliferation (PCNA, Cdk2, p21, p53), differentiation (Runx2, Alpl, Bglap), oxidative metabolism (Catalase, GPX, MnSOD, CuZnSOD, iNos, Foxo1), DNA-damage repair (Gadd45), or apoptosis (Caspase 3). As expected, a high dose (200 centigrays), but not low doses, of either (sup 56) Fe or protons caused a loss of cancellous bone volume per total volume. Marrow cells produced mineralized nodules ex vivo regardless of radiation type or dose; (sup 56) Fe (200 centigrays) inhibited median nodule area by more than 90 percent at 5 weeks and 1 year post-irradiation, compared to controls. At 5 weeks post exposure, irradiation with protons or (sup 56) Fe caused few changes in gene expression levels during osteoblastogenesis, although a high dose of (sup 56) Fe (200 centigrays) increased levels of Catalase and Gadd45. In addition, supplementing cell culture media with SOD protected marrow-derived osteoprogenitors from the damaging effects of exposure to low-LET ((sup 137) Cs gamma) if irradiated in vitro, but had limited protective effects on high-LET (sup 56) Fe-exposed cells. In sum, exposure of mice to either protons or (sup 56) Fe at a relatively high dose (200 cGy) caused persistent bone loss, whereas only high-LET (sup 56) Fe increased expression of redox-related genes and inhibited osteoblastogenesis, albeit to a limited extent. We conclude that high-LET irradiation impaired osteoblastogenesis and regulated steady-state gene expression of select redox-related genes during osteoblastogenesis, which may contribute to persistent bone loss.

  1. Visualization of a variety of possible dosimetric outcomes in radiation therapy using dose-volume histogram bands.

    PubMed

    Trofimov, Alexei; Unkelbach, Jan; DeLaney, Thomas F; Bortfeld, Thomas

    2012-01-01

    Dose-volume histograms (DVH) are the most common tool used in the appraisal of the quality of a clinical treatment plan. However, when delivery uncertainties are present, the DVH may not always accurately describe the dose distribution actually delivered to the patient. We present a method, based on DVH formalism, to visualize the variability in the expected dosimetric outcome of a treatment plan. For a case of chordoma of the cervical spine, we compared 2 intensity modulated proton therapy plans. Treatment plan A was optimized based on dosimetric objectives alone (ie, desired target coverage, normal tissue tolerance). Plan B was created employing a published probabilistic optimization method that considered the uncertainties in patient setup and proton range in tissue. Dose distributions and DVH for both plans were calculated for the nominal delivery scenario, as well as for scenarios representing deviations from the nominal setup, and a systematic error in the estimate of range in tissue. The histograms from various scenarios were combined to create DVH bands to illustrate possible deviations from the nominal plan for the expected magnitude of setup and range errors. In the nominal scenario, the DVH from plan A showed superior dose coverage, higher dose homogeneity within the target, and improved sparing of the adjacent critical structure. However, when the dose distributions and DVH from plans A and B were recalculated for different error scenarios (eg, proton range underestimation by 3 mm), the plan quality, reflected by DVH, deteriorated significantly for plan A, while plan B was only minimally affected. In the DVH-band representation, plan A produced wider bands, reflecting its higher vulnerability to delivery errors, and uncertainty in the dosimetric outcome. The results illustrate that comparison of DVH for the nominal scenario alone does not provide any information about the relative sensitivity of dosimetric outcome to delivery uncertainties. Thus, such comparison may be misleading and may result in the selection of an inferior plan for delivery to a patient. A better-informed decision can be made if additional information about possible dosimetric variability is presented; for example, in the form of DVH bands. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  2. Mortality among military participants at the 1957 PLUMBBOB nuclear weapons test series and from leukemia among participants at the SMOKY test.

    PubMed

    Caldwell, Glyn G; Zack, Matthew M; Mumma, Michael T; Falk, Henry; Heath, Clark W; Till, John E; Chen, Heidi; Boice, John D

    2016-09-01

    Health effects following low doses of ionizing radiation are uncertain. Military veterans at the Nevada test site (NTS) during the SMOKY atmospheric nuclear weapons test in 1957 were reported to be at increased risk for leukemia in 1979, but this increase was not evaluated with respect to radiation dose. The SMOKY test was one of 30 tests in 1957 within the PLUMBBOB test series. These early studies led to public laws where atomic veterans could qualify for compensation for presumptive radiogenic diseases. A retrospective cohort study was conducted of 12219 veterans at the PLUMBBOB test series, including 3020 at the SMOKY nuclear test. Mortality follow-up was through 2010 and observed causes of death were compared with expected causes based on general population rates. Radiation dose to red bone marrow was based on individual dose reconstructions, and Cox proportional hazards models were used to evaluate dose response for all leukemias other than chronic lymphocytic leukemia (non-CLL leukemia). Vital status was determined for 95.3% of the 12 219 veterans. The dose to red bone marrow was low (mean 3.2 mGy, maximum 500 mGy). Military participants at the PLUMBBOB nuclear test series remained relatively healthy after 53 years and died at a lower rate than the general population. In contrast, and in comparison with national rates, the SMOKY participants showed significant increases in all causes of death, respiratory cancer, leukemia, nephritis and nephrosis, and accidents, possibly related in part to lifestyle factors common to enlisted men who made up 81% of the SMOKY cohort. Compared with national rates, a statistically significant excess of non-CLL leukemia was observed among SMOKY participants (Standardized Mortality Ratio  =  1.89, 95% 1.24-2.75, n  =  27) but not among PLUMBBOB participants after excluding SMOKY (SMR  =  0.87, 95% 0.64-1.51, n  =  47). Leukemia risk, initially reported to be significantly increased among SMOKY participants, remained elevated, but this risk diminished over time. Despite an intense dose reconstruction, the risk for leukemia was not found to increase with increasing levels of radiation dose to the red bone marrow. Based on a linear model, the estimated excess relative risk per mGy is  -0.05 (95% CI -0.14, 0.04). An explanation for the observed excess of leukemia remains unresolved but conceivably could be related to chance due to small numbers, subtle biases in the study design and/or high tobacco use among enlisted men. Larger studies should elucidate further the possible relationship between fallout radiation, leukemia and cancer among atomic veterans.

  3. Mortality among Military Participants at the 1957 PLUMBBOB Nuclear Weapons Test Series and on Leukemia among Participants at the SMOKY Test

    PubMed Central

    Caldwell, Glyn G.; Zack, Matthew M.; Mumma, Michael T.; Falk, Henry; Heath, Clark W.; Till, John E.; Chen, Heidi; Boice, John D.

    2016-01-01

    Health effects following low doses of ionizing radiation are uncertain. Military veterans at the Nevada Test Site (NTS) during the SMOKY atmospheric nuclear weapons test in 1957 were reported to be at increased risk for leukemia in 1979, but this increase was not evaluated with respect to radiation dose. The SMOKY test was one of 30 tests in 1957 within the PLUMBBOB test series. These early studies led to public laws where atomic veterans could qualify for compensation for presumptive radiogenic diseases. A retrospective cohort study was conducted of 12,219 veterans at PLUMBBOB test series, including 3,020 at the SMOKY nuclear test. Mortality follow-up was through 2010 and observed causes of death were compared with expected causes based on general population rates. Radiation dose to red bone marrow was based on individual dose reconstructions, and Cox proportional hazards models were used to evaluate dose response for all leukemias other than chronic lymphocytic leukemia (non-CLL leukemia). Vital status was determined for 95.3% of the 12,219 veterans. The dose to red bone marrow was low (mean 3.2 mGy, maximum 500 mGy). Military participants at the PLUMBBOB nuclear test series remained relatively healthy after 53 years and died at a lower rate than the general population. In contrast, and in comparison with national rates, the SMOKY participants showed significant increases in all causes of death, respiratory cancer, leukemia, nephritis and nephrosis, and accidents, possibly related in part to lifestyle factors common to enlisted men who made up 81% of the SMOKY cohort. Compared with national rates, a statistically significant excess of non-CLL leukemia was observed among SMOKY participants (Standardized Mortality Ratio=1.89, 95% 1.24–2.75, n=27) but not among PLUMBBOB participants after excluding SMOKY (SMR=0.87, 95% 0.64–1.51, n=47). Leukemia risk, initially reported to be significantly increased among SMOKY participants, remained elevated, but this risk diminished over time. Despite an intense dose reconstruction, the risk for leukemia was not found to increase with increasing levels of radiation dose to the red bone marrow. Based on a linear model, the estimated excess relative risk per mGy is −0.05 (95% CI −0.14, 0.04). An explanation for the observed excess of leukemia remains unresolved but conceivably could be related to chance due to small numbers, subtle biases in the study design and/or high tobacco use among enlisted men. Larger studies should elucidate further the possible relationship between fallout radiation, leukemia and cancer among atomic veterans. PMID:27355245

  4. Utilization of ICU Data to Improve 30 and 60 Day HENRE Mortality Models, Revision 1

    DTIC Science & Technology

    2017-05-12

    Acute Radiation Syndrome , Mortality, Burn Combined Injury, Lethality, Small Intestine, Ordinary...a large dose of radiation in a short period of time (high dose rate) causes acute radiation syndrome (ARS). Depending on the radiation dose, an...individual may experience the hematopoietic acute radiation syndrome (H-ARS) or the gastrointestinal acute radiation syndrome (GI-ARS) (reviewed in

  5. Dose reduction potential of iterative reconstruction algorithms in neck CTA-a simulation study.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Allmendinger, Thomas; Brand, Michael; Janka, Rolf; Hammon, Matthias; Lell, Michael M; Uder, Michael; Kramer, Manuel

    2016-10-01

    This study aimed to determine the degree of radiation dose reduction in neck CT angiography (CTA) achievable with Sinogram-affirmed iterative reconstruction (SAFIRE) algorithms. 10 consecutive patients scheduled for neck CTA were included in this study. CTA images of the external carotid arteries either were reconstructed with filtered back projection (FBP) at full radiation dose level or underwent simulated dose reduction by proprietary reconstruction software. The dose-reduced images were reconstructed using either SAFIRE 3 or SAFIRE 5 and compared with full-dose FBP images in terms of vessel definition. 5 observers performed a total of 3000 pairwise comparisons. SAFIRE allowed substantial radiation dose reductions in neck CTA while maintaining vessel definition. The possible levels of radiation dose reduction ranged from approximately 34 to approximately 90% and depended on the SAFIRE algorithm strength and the size of the vessel of interest. In general, larger vessels permitted higher degrees of radiation dose reduction, especially with higher SAFIRE strength levels. With small vessels, the superiority of SAFIRE 5 over SAFIRE 3 was lost. Neck CTA can be performed with substantially less radiation dose when SAFIRE is applied. The exact degree of radiation dose reduction should be adapted to the clinical question, in particular to the smallest vessel needing excellent definition.

  6. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  7. Fluorescent nuclear track detectors for alpha radiation microdosimetry.

    PubMed

    Kouwenberg, J J M; Wolterbeek, H T; Denkova, A G; Bos, A J J

    2018-06-07

    While alpha microdosimetry dates back a couple of decades, the effects of localized energy deposition of alpha particles are often still unclear since few comparative studies have been performed. Most modern alpha microdosimetry studies rely for large parts on simulations, which negatively impacts both the simplicity of the calculations and the reliability of the results. A novel microdosimetry method based on the Fluorescent Nuclear Track Detector, a versatile tool that can measure individual alpha particles at sub-micron resolution, yielding accurate energy, fluence and dose rate measurements, was introduced to address these issues. Both the detectors and U87 glioblastoma cell cultures were irradiated using an external Am241 alpha source. The alpha particle tracks measured with a Fluorescent Nuclear Track Detector were used together with high resolution 3D cell geometries images to calculate the nucleus dose distribution in the U87 glioblastoma cells. The experimentally obtained microdosimetry parameters were thereafter applied to simulations of 3D U87 cells cultures (spheroids) with various spatial distributions of isotopes to evaluate the effect of the nucleus dose distribution on the expected cell survival. The new experimental method showed good agreement with the analytically derived nucleus dose distributions. Small differences (< 5%) in the relative effectiveness were found for isotopes in the cytoplasm and on the cell membrane versus external irradiation, while isotopes located in the nucleus or on the nuclear membrane showed a substantial increase in relative effectiveness (33 - 51%). The ease-of-use, good accuracy and use of experimentally derived characteristics of the radiation field make this method superior to conventional simulation-based microdosimetry studies. Considering the uncertainties found in alpha radionuclide carriers in-vivo and in-vitro, together with the large contributions from the relative biological effectiveness and the oxygen enhancement ratio, it is expected that only carriers penetrating or surrounding the cell nucleus will substantially benefit from microdosimetry.

  8. Transforming growth factor-beta-1 is a serum biomarker of radiation-induced pneumonitis in esophageal cancer patients treated with thoracic radiotherapy: preliminary results of a prospective study.

    PubMed

    Li, Jingxia; Mu, Shuangfeng; Mu, Lixiang; Zhang, Xiaohui; Pang, Ranran; Gao, Shegan

    2015-01-01

    To examine the relationship between cytokine levels of transforming growth factor-beta-1 (TGF-β1), interleukin-1 beta (IL-1β), and angiotensin-converting enzyme (ACE) in the plasma of esophageal carcinoma patients and radiation-induced pneumonitis (RP). Sixty-three patients with esophageal carcinoma were treated with three-dimensional conformal radiotherapy (RT) using the Elekta Precise treatment planning system with a prescribed dose of 50-70 Gy. Dose-volume histograms were collected from three-dimensional conformal RT to determine the volume percentage of the lung received V5, V10, V20, and the normal tissue complication probability. RP was diagnosed based on computed tomography imaging, respiratory symptoms, and signs. The severity of radiation-induced lung toxicity was determined using the Lent-Soma scale defined by the Radiation Therapy Oncology Group. Plasma samples obtained before RT, during RT (at 40 Gy), and at 1 day, 1 month, and 3 months after RT were assayed for TGF-β1, IL-1β, and ACE levels by enzyme-linked immunosorbent assay. From the 63 patients, 17 (27%) developed RP, and 13 (21%) had RP of grade I and four (6%) had grade II or higher. We found plasma TGF-β1 levels were elevated in the patients that had RP when compared with the other 46 patients who did not have RP. The plasma IL-1β levels were not changed. The ACE levels were significantly lower in the 17 patients with RP compared to the 46 patients without RP throughout the RT. As expected, RP is associated with a higher dose of irradiation (>60 Gy); no other factors, including dose-volume histogram, age, sex, smoking status, location of tumor, and methods of treatment, are associated with RP. Elevated plasma TGF-β1 levels can be used as a marker for RP.

  9. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle production in massive structural shielding.

  10. Novel, full 3D scintillation dosimetry using a static plenoptic camera.

    PubMed

    Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis

    2014-08-01

    Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm(3) EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle(3) was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions.

  11. Novel, full 3D scintillation dosimetry using a static plenoptic camera

    PubMed Central

    Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis

    2014-01-01

    Purpose: Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). Methods: A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm3 EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. Results: The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle3 was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Conclusions: Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions. PMID:25086549

  12. Exposure of the Heart in Breast Cancer Radiation Therapy: A Systematic Review of Heart Doses Published During 2003 to 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Carolyn W., E-mail: carolyn.taylor@ctsu.ox.ac.uk; Wang, Zhe; Macaulay, Elizabeth

    Purpose: Breast cancer radiation therapy cures many women, but where the heart is exposed, it can cause heart disease. We report a systematic review of heart doses from breast cancer radiation therapy that were published during 2003 to 2013. Methods and Materials: Eligible studies were those reporting whole-heart dose (ie, dose averaged over the whole heart). Analyses considered the arithmetic mean of the whole-heart doses for the CT plans for each regimen in each study. We termed this “mean heart dose.” Results: In left-sided breast cancer, mean heart dose averaged over all 398 regimens reported in 149 studies from 28more » countries was 5.4 Gy (range, <0.1-28.6 Gy). In regimens that did not include the internal mammary chain (IMC), average mean heart dose was 4.2 Gy and varied with the target tissues irradiated. The lowest average mean heart doses were from tangential radiation therapy with either breathing control (1.3 Gy; range, 0.4-2.5 Gy) or treatment in the lateral decubitus position (1.2 Gy; range, 0.8-1.7 Gy), or from proton radiation therapy (0.5 Gy; range, 0.1-0.8 Gy). For intensity modulated radiation therapy mean heart dose was 5.6 Gy (range, <0.1-23.0 Gy). Where the IMC was irradiated, average mean heart dose was around 8 Gy and varied little according to which other targets were irradiated. Proton radiation therapy delivered the lowest average mean heart dose (2.6 Gy, range, 1.0-6.0 Gy), and tangential radiation therapy with a separate IMC field the highest (9.2 Gy, range, 1.9-21.0 Gy). In right-sided breast cancer, the average mean heart dose was 3.3 Gy based on 45 regimens in 23 studies. Conclusions: Recent estimates of typical heart doses from left breast cancer radiation therapy vary widely between studies, even for apparently similar regimens. Maneuvers to reduce heart dose in left tangential radiation therapy were successful. Proton radiation therapy delivered the lowest doses. Inclusion of the IMC doubled typical heart dose.« less

  13. Persistence of Space Radiation-Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts and the Effects of Repeat Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Cucinotta, Francis A.

    2009-01-01

    The yield of chromosome damage in astronauts blood lymphocytes has been shown to increase after long duration space missions of a few months or more. This provides a useful in vivo measurement of space radiation induced damage that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest follow-up analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times, from directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and estimates derived from samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. Limited data on three individuals who have participated in repeat long duration space flights indicates a lack of correlation between time in space and translocation yields, and show a possible adaptive response to space radiation exposure.

  14. Thyroid Dysfunction and Autoimmune Thyroid Diseases Among Atomic Bomb Survivors Exposed in Childhood.

    PubMed

    Imaizumi, Misa; Ohishi, Waka; Nakashima, Eiji; Sera, Nobuko; Neriishi, Kazuo; Yamada, Michiko; Tatsukawa, Yoshimi; Takahashi, Ikuno; Fujiwara, Saeko; Sugino, Keizo; Ando, Takao; Usa, Toshiro; Kawakami, Atsushi; Akahoshi, Masazumi; Hida, Ayumi

    2017-07-01

    The risk of thyroid cancer increases and persists for decades among individuals exposed to ionizing radiation in childhood, although the long-term effects of childhood exposure to medium to low doses of radiation on thyroid dysfunction and autoimmune thyroid diseases have remained unclear. To evaluate radiation dose responses for the prevalence of thyroid dysfunction and autoimmune thyroid disease among atomic bomb survivors exposed in childhood. Hiroshima and Nagasaki atomic bomb survivors who were younger than 10 years old at exposure underwent thyroid examinations at the Radiation Effects Research Foundation between 2007 and 2011, which was 62 to 66 years after the bombing. Data from 2668 participants (mean age, 68.2 years; 1455 women) with known atomic bomb thyroid radiation doses (mean dose, 0.182 Gy; dose range, 0 to 4.040 Gy) were analyzed. Dose-response relationships between atomic bomb radiation dose and the prevalence of hypothyroidism, hyperthyroidism (Graves' disease), and positive for antithyroid antibodies. Prevalences were determined for hypothyroidism (129 cases, 7.8%), hyperthyroidism (32 cases of Graves' disease, 1.2%), and positive for antithyroid antibodies (573 cases, 21.5%). None of these was associated with thyroid radiation dose. Neither thyroid antibody-positive nor -negative hypothyroidism was associated with thyroid radiation dose. Additional analyses using alternative definitions of hypothyroidism and hyperthyroidism found that radiation dose responses were not significant. Radiation effects on thyroid dysfunction and autoimmune thyroid diseases were not observed among atomic bomb survivors exposed in childhood, at 62 to 66 years earlier. The cross-sectional design and survival bias were limitations of this study. Copyright © 2017 Endocrine Society

  15. Multidisciplinary European Low Dose Initiative (MELODI): strategic research agenda for low dose radiation risk research.

    PubMed

    Kreuzer, M; Auvinen, A; Cardis, E; Durante, M; Harms-Ringdahl, M; Jourdain, J R; Madas, B G; Ottolenghi, A; Pazzaglia, S; Prise, K M; Quintens, R; Sabatier, L; Bouffler, S

    2018-03-01

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website ( http://www.melodi-online.eu/sra.html ).

  16. Performance degradation of ferrofluidic feedthroughs in a mixed irradiation field

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Fernandes, S.; Mittig, Wolfgang; Pellemoine, Frederique; Avilov, M.; Kostin, M.; Mausner, L.; Ronningen, R.; Schein, M.; Bollen, G.

    2017-01-01

    Ferrofluidic feedthrough (FF) rotary seals containing either NdFeB or SmCo-type permanent magnets have been considered for use in the target and beam dump systems of the Facility for Rare Isotope Beams (FRIB). To evaluate their performance under irradiation three FF seals were irradiated in a mixed field consisting of fast neutrons, protons and γ-rays to an average absorbed dose of 0.2, 2.0, and 20.0 MGy at the Brookhaven Linac Isotope Producer facility (BLIP). The radiation types and energy profiles mimic those expected at the FRIB facility. Degradation of the operational performance of these devices due to irradiation is expected to be the result of the de-magnetization of the permanent magnets contained within the seal and the changes in the ferrofluid properties. Post-irradiation performance was evaluated by determining the ferrofluidic seal vacuum tightness and torque under static and dynamic conditions. The study revealed that the ferrofluidic feedthrough seal irradiated to a dose of 0.2 MGy maintained its vacuum tightness under both static and rotational condition while the one irradiated to a dose of 2.0 MGy exhibited signs of ferrofluid damage but no overall performance loss. At 20 MGy dose the effects of irradiation on the ferrofluid properties (viscosity and particle agglomeration) were shown to be severe. Furthermore, limited de-magnetization of the annular shaped Nd2Fe14B and Sm2Co17 magnets located within the irradiated FFs was observed for doses of 0.2 MGy and 20 MGy respectively.

  17. Large-mutation spectra induced at hemizygous loci by low-LET radiation: evidence for intrachromosomal proximity effects

    NASA Technical Reports Server (NTRS)

    Costes, S.; Sachs, R.; Hlatky, L.; Vannais, D.; Waldren, C.; Fouladi, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    A mathematical model is used to analyze mutant spectra for large mutations induced by low-LET radiation. The model equations are based mainly on two-break misrejoining that leads to deletions or translocations. It is assumed, as a working hypothesis, that the initial damage induced by low-LET radiation is located randomly in the genome. Specifically, we analyzed data for two hemizygous loci: CD59- mutants, mainly very large-scale deletions (>3 Mbp), in human-hamster hybrid cells, and data from the literature on those HPRT- mutants which involve at least deletion of the whole gene, and often of additional flanking markers (approximately 50-kbp to approximately 4.4-Mbp deletions). For five data sets, we estimated f, the probability that two given breaks on the same chromosome will misrejoin to make a deletion, as a function of the separation between the breaks. We found that f is larger for nearby breaks than for breaks that are more widely separated; i.e., there is a "proximity effect". For acute irradiation, the values of f determined from the data are consistent with the corresponding break misrejoining parameters found previously in quantitative modeling of chromosome aberrations. The value of f was somewhat smaller for protracted irradiation than for acute irradiation at a given total dose; i.e., the mutation data show a decrease that was smaller than expected for dose protraction by fractionation or low dose rate.

  18. Radiation tolerance of readout electronics for Belle II

    NASA Astrophysics Data System (ADS)

    Higuchi, T.; Nakao, M.; Nakano, E.

    2012-02-01

    We plan to start the Belle II experiment in 2015 and to continue data taking for more than ten years. Because some of the front-end electronics cards of Belle II are located inside the detector, radiation effects onto their components will be a severe problem. Using experimental exposure facilities of neutrons and γ rays, we study the radiation effects from these particles to the Virtex-5 FPGA, optical transceivers, and voltage regulators. The Virtex-5 FPGA is found to keep its operation after irradiation of more than 20-year-equivalent neutron flux of Belle II and 88-year-equivalent γ-ray dose. We observe single event upsets (SEUs) and multiple bit upsets (MBUs) in the Virtex-5 FPGA in the neutron irradiation. We also find almost doubled SEU counts in the Virtex-5 FPGA bombarded from its tail side than its head side. We extrapolate the observed SEU and MBU counts in the Virtex-5 FPGA to the entire readout system of the Belle II central drift chamber, and expect the SEU and MBU rates as one SEU per four minutes and one MBU per 11.5 hours, respectively. The optical transceivers are found to keep its operation after integration of 12-year-equivalent neutron flux, while they are killed by about 3-year-equivalent γ-ray dose, which should be solved in the future research. The voltage regulators are found to keep its operation for more than 10-year-equivalent γ-ray dose.

  19. SHIELDING CONSIDERATIONS FOR THE SMALL ANIMAL RADIATION RESEARCH PLATFORM (SARRP)

    PubMed Central

    Sayler, Elaine; Dolney, Derek; Avery, Stephen; Koch, Cameron

    2014-01-01

    The Small Animal Radiation Research Platform (SARRP) is a commercially available platform designed to deliver conformal, image-guided radiation to small animals using a dual-anode kV x-ray source. At the University of Pennsylvania, a free-standing 2 m3 enclosure was designed to shield the SARRP according to federal code regulating cabinet x-ray systems. The initial design consisted of 4.0-mm-thick lead for all secondary barriers and proved wholly inadequate. Radiation levels outside the enclosure were 15 times higher than expected. Additionally, the leakage appeared to be distributed broadly within the enclosure, so concern arose that a subject might receive significant doses outside the intended treatment field. Thus, a detailed analysis was undertaken to identify and block all sources of leakage. Leakage sources were identified by Kodak X-OmatV (XV) film placed throughout the enclosure. Radiation inside the enclosure was quantified using Gafchromic film. Outside the enclosure, radiation was measured using a survey meter. Sources of leakage included (1) an unnecessarily broad beam exiting the tube, (2) failure of the secondary collimator to confine the primary beam entirely, (3) scatter from the secondary collimator, (4) lack of beam-stop below the treatment volume, and (5) incomplete shielding of the x-ray tube. The exit window was restricted, and a new collimator was designed to address problems (1–3). A beam-stop and additional tube shielding were installed. These modifications reduced internal scatter by more than 100-fold. Radiation outside the enclosure was reduced to levels compliant with federal regulations, provided the SARRP is operated using tube potentials of 175 kV or less. In addition, these simple and relatively inexpensive modifications eliminate the possibility of exposing a larger animal (such as a rat) to significant doses outside the treatment field. PMID:23532076

  20. Online compensation for target motion with scanned particle beams: simulation environment.

    PubMed

    Li, Qiang; Groezinger, Sven Oliver; Haberer, Thomas; Rietzel, Eike; Kraft, Gerhard

    2004-07-21

    Target motion is one of the major limitations of each high precision radiation therapy. Using advanced active beam delivery techniques, such as the magnetic raster scanning system for particle irradiation, the interplay between time-dependent beam and target position heavily distorts the applied dose distribution. This paper presents a simulation environment in which the time-dependent effect of target motion on heavy-ion irradiation can be calculated with dynamically scanned ion beams. In an extension of the existing treatment planning software for ion irradiation of static targets (TRiP) at GSI, the expected dose distribution is calculated as the sum of several sub-distributions for single target motion states. To investigate active compensation for target motion by adapting the position of the therapeutic beam during irradiation, the planned beam positions can be altered during the calculation. Applying realistic parameters to the planned motion-compensation methods at GSI, the effect of target motion on the expected dose uniformity can be simulated for different target configurations and motion conditions. For the dynamic dose calculation, experimentally measured profiles of the beam extraction in time were used. Initial simulations show the feasibility and consistency of an active motion compensation with the magnetic scanning system and reveal some strategies to improve the dose homogeneity inside the moving target. The simulation environment presented here provides an effective means for evaluating the dose distribution for a moving target volume with and without motion compensation. It contributes a substantial basis for the experimental research on the irradiation of moving target volumes with scanned ion beams at GSI which will be presented in upcoming papers.

  1. The effect of radiation dose on the onset and progression of radiation-induced brain necrosis in the rat model.

    PubMed

    Hartl, Brad A; Ma, Htet S W; Hansen, Katherine S; Perks, Julian; Kent, Michael S; Fragoso, Ruben C; Marcu, Laura

    2017-07-01

    To provide a comprehensive understanding of how the selection of radiation dose affects the temporal and spatial progression of radiation-induced necrosis in the rat model. Necrosis was induced with a single fraction of radiation exposure, at doses ranging between 20 and 60 Gy, to the right hemisphere of 8-week-old Fischer rats from a linear accelerator. The development and progression of necrosis in the rats was monitored and quantified every other week with T1- and T2-weighted gadolinium contrast-enhanced MRI studies. The time to onset of necrosis was found to be dose-dependent, but after the initial onset, the necrosis progression rate and total volume generated was constant across different doses ranging between 30 and 60 Gy. Radiation doses less than 30 Gy did not develop necrosis within 33 weeks after treatment, indicating a dose threshold existing between 20 and 30 Gy. The highest dose used in this study led to the shortest time to onset of radiation-induced necrosis, while producing comparable disease progression dynamics after the onset. Therefore, for the radiation-induced necrosis rat model using a linear accelerator, the most optimum results were generated from a dose of 60 Gy.

  2. Method for inserting noise in digital mammography to simulate reduction in radiation dose

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.

    2015-03-01

    The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.

  3. Statistical analysis of radiation dose derived from ingestion of foods

    NASA Astrophysics Data System (ADS)

    Dougherty, Ward L.

    2001-09-01

    This analysis undertook the task of designing and implementing a methodology to determine an individual's probabilistic radiation dose from ingestion of foods utilizing Crystal Ball. A dietary intake model was determined by comparing previous existing models. Two principal radionuclides were considered-Lead210 (Pb-210) and Radium 226 (Ra-226). Samples from three different local grocery stores-Publix, Winn Dixie, and Albertsons-were counted on a gamma spectroscopy system with a GeLi detector. The same food samples were considered as those in the original FIPR database. A statistical analysis, utilizing the Crystal Ball program, was performed on the data to assess the most accurate distribution to use for these data. This allowed a determination of a radiation dose to an individual based on the above-information collected. Based on the analyses performed, radiation dose for grocery store samples was lower for Radium-226 than FIPR debris analyses, 2.7 vs. 5.91 mrem/yr. Lead-210 had a higher dose in the grocery store sample than the FIPR debris analyses, 21.4 vs. 518 mrem/yr. The output radiation dose was higher for all evaluations when an accurate estimation of distributions for each value was considered. Radium-226 radiation dose for FIPR and grocery rose to 9.56 and 4.38 mrem/yr. Radiation dose from ingestion of Pb-210 rose to 34.7 and 854 mrem/yr for FIPR and grocery data, respectively. Lead-210 was higher than initial doses for many reasons: Different peak examined, lower edge of detection limit, and minimum detectable concentration was considered. FIPR did not utilize grocery samples as a control because they calculated radiation dose that appeared unreasonably high. Consideration of distributions with the initial values allowed reevaluation of radiation does and showed a significant difference to original deterministic values. This work shows the value and importance of considering distributions to ensure that a person's radiation dose is accurately calculated. Probabilistic dose methodology was proved to be a more accurate and realistic method of radiation dose determination. This type of methodology provides a visual presentation of dose distribution that can be a vital aid in risk methodology.

  4. Perception of Radiation Risk by Japanese Radiation Specialists Evaluated as a Safe Dose Before the Fukushima Nuclear Accident.

    PubMed

    Miura, Miwa; Ono, Koji; Yamauchi, Motohiro; Matsuda, Naoki

    2016-06-01

    From October to December 2010, just before the radiological accident at the Fukushima Daiichi nuclear power plant, 71 radiation professionals from radiation facilities in Japan were asked what they considered as a "safe dose" of radiation for themselves, their partners, parents, children, siblings, and friends. Although the 'safe dose' they noted varied widely, from less than 1 mSv y to more than 100 mSv y, the average dose was 35.6 mSv y, which is around the middle point between the legal exposure dose limits for the annual average and for any single year. Similar results were obtained from other surveys of members of the Japan Radioisotope Association (36.9 mSv y) and of the Oita Prefectural Hospital (36.8 mSv y). Among family members and friends, the minimum average "safe" dose was 8.5 mSv y for children, for whom 50% of the responders claimed a "safe dose" of less than 1 mSv. Gender, age and specialty of the radiation professional also affected their notion of a "safe dose." These findings suggest that the perception of radiation risk varies widely even for radiation professionals and that the legal exposure dose limits derived from regulatory science may act as an anchor of safety. The different levels of risk perception for different target groups among radiation professionals appear similar to those in the general population. The gap between these characteristics of radiation professionals and the generally accepted picture of radiation professionals might have played a role in the state of confusion after the radiological accident.

  5. Gamma-radiation effects on luminescence properties of Eu3+ activated LaPO4 phosphor

    NASA Astrophysics Data System (ADS)

    Vujčić, Ivica; Gavrilović, Tamara; Sekulić, Milica; Mašić, Slobodan; Putić, Slaviša; Papan, Jelena; Dramićanin, Miroslav D.

    2018-05-01

    Eu3+ activated LaPO4 phosphors were prepared by a high-temperature solid-state method and irradiated to different high-doses gamma-radiation in the 0-4 MGy range. No effects of high-doses of high-energy radiation on phosphor's morphology and structure were observed, as documented by electron microscopy and X-ray diffraction measurements. On the other hand, photoluminescence measurements showed that emission properties of phosphor were affected by gamma-radiation; changes in radiative properties being prominent for absorbed radiation doses up to 250 kGy after which no additional changes are observed. Judd-Ofelt analysis of emission spectra is performed to thoroughly investigate radiative properties of phosphors. Analysis showed that radiative transition probability of Eu3+ emission decreases while non-radiative probability increases upon gamma-irradiation. Quantum efficiency of emission is decreased from about 46% to 35% when Eu3+ doped LaPO4 powders are exposed to gamma-radiation of 250 kGy dose, showing no additional decrease for higher gamma-radiation doses.

  6. Role of genetic background in induced instability

    NASA Technical Reports Server (NTRS)

    Kadhim, Munira A.; Nelson, G. A. (Principal Investigator)

    2003-01-01

    Genomic instability is effectively induced by ionizing radiation. Recently, evidence has accumulated supporting a relationship between genetic background and the radiation-induced genomic instability phenotype. This is possibly due to alterations in proteins responsible for maintenance of genomic integrity or altered oxidative metabolism. Studies in human cell lines, human primary cells, and mouse models have been performed predominantly using high linear energy transfer (LET) radiation, or high doses of low LET radiation. The interplay between genetics, radiation response, and genomic instability has not been fully determined at low doses of low LET radiation. However, recent studies using low doses of low LET radiation suggest that the relationship between genetic background and radiation-induced genomic instability may be more complicated than these same relationships at high LET or high doses of low LET radiation. The complexity of this relationship at low doses of low LET radiation suggests that more of the population may be at risk than previously recognized and may have implications for radiation risk assessment.

  7. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells

    PubMed Central

    Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke

    2015-01-01

    Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487

  8. COMPREHENSIVE DATA CONCERNING COSMIC RADIATION DOSES AT GROUND LEVEL AND IN-FLIGHTS FOR TURKEY.

    PubMed

    Parmaksız, A

    2016-12-01

    Cosmic radiation doses of individuals living in 81 cities in Turkey were estimated by using CARI-6 software. Annual cosmic radiation doses of individuals were found to be between 308 and 736 µSv y -1 at ground level. The population-weighted annual effective dose from cosmic radiation was determined to be 387 µSv y -1 for Turkey. Cosmic radiation doses on-board for 137 (60 domestic and 77 international) flights varied from 1.2 to 83 µSv. It was estimated that six or over long-route round-trip air travels may cause cosmic radiation dose above the permissible limit for member of the public, i.e. 1 mSv y -1 According to the assumption of flights throughout 800 h on each route, cosmic radiation doses were found to be between 1.0 and 4.8 mSv for aircrew. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Geosciences help to protect human health: estimation of the adsorbed radiation doses while flight journeys, as important step to radiation risk assessment

    NASA Astrophysics Data System (ADS)

    Chernov, Anatolii; Shabatura, Olexandr

    2016-04-01

    Estimation of the adsorbed radiation dose while flight journeys is a complex problem, which should be solved to get correct evaluation of equivalent effective doses and radiation risk assessment. Direct measurements of the adsorbed dose in the aircrafts during regional flights (3-10 hours) has shown that the radiation in the plane may increase 10-15 times (to 2-4 mSv/h) compared to the values on the surface of the Earth (0.2-0.5 mSv/h). Results of instrumental research confirmed by the other investigations. It is a fact that adsorbed doses per year while flight journeys are less than doses from medical tests. However, while flight journeys passengers get the same doses as nuclear power plant staff, people in zones of natural radiation anomalies and so should be evaluated. According to the authors' research, flight journeys are safe enough, when solar activity is normal and if we fly under altitude of 18 km (as usual, while intercontinental flights). Most of people travel by plane not so often, but if flight is lasting in dangerous periods of solar activity (powerful solar winds and magnetic field storms), passengers and flight crew can adsorb great amount of radiation doses. People, who spend more than 500 hours in flight journeys (pilots, business oriented persons', government representatives, etc.) get amount of radiation, which can negatively influence on health and provoke diseases, such as cancer. Authors consider that problem actual and researches are still going on. It is revealed, that radiation can be calculated, using special equations. Great part of radiation depends on very variable outer-space component and less variable solar. Accurate calculations of doses will be possible, when we will take into account all features of radiation distribution (time, season of year and exact time of the day, duration of flight), technical features of aircraft and logistics of flight (altitude, latitude). Results of first attempts of radiation doses modelling confirmed instrumental evaluation of doses, which passengers get while flight journeys. Further researches of radiation doses while flight journeys are going on. That example of researches shows that geoscience and social interests and problems are closely connected. Human society could not develop properly and safely without cooperation with geological science. As we see, geophysical methods can be used to count variations of natural radiation in spatial and time dimensions, which influence on level of radiation in aircrafts. As a result of such researches important conclusions to reduce radiation risks and collective doses of adsorbed radiation can be done. Geophysicists work hard on solving different problems of monitoring and analysis of natural surroundings to protect humanity and create safe, well-organized living surroundings. Key words: Solar radiation, flight journeys, dose of adsorbed radiation.

  10. Estimation of background radiation doses for the Peninsular Malaysia's population by ESR dosimetry of tooth enamel.

    PubMed

    Rodzi, Mohd; Zhumadilov, Kassym; Ohtaki, Megu; Ivannikov, Alexander; Bhattacharjee, Deborshi; Fukumura, Akifumi; Hoshi, Masaharu

    2011-08-01

    Background radiation dose is used in dosimetry for estimating occupational doses of radiation workers or determining radiation dose of an individual following accidental exposure. In the present study, the absorbed dose and the background radiation level are determined using the electron spin resonance (ESR) method on tooth samples. The effect of using different tooth surfaces and teeth exposed with single medical X-rays on the absorbed dose are also evaluated. A total of 48 molars of position 6-8 were collected from 13 district hospitals in Peninsular Malaysia. Thirty-six teeth had not been exposed to any excessive radiation, and 12 teeth had been directly exposed to a single X-ray dose during medical treatment prior to extraction. There was no significant effect of tooth surfaces and exposure with single X-rays on the measured absorbed dose of an individual. The mean measured absorbed dose of the population is 34 ± 6.2 mGy, with an average tooth enamel age of 39 years. From the slope of a regression line, the estimated annual background dose for Peninsular Malaysia is 0.6 ± 0.3 mGy y(-1). This value is slightly lower than the yearly background dose for Malaysia, and the radiation background dose is established by ESR tooth measurements on samples from India and Russia.

  11. Prediction of frequency and exposure level of solar particle events.

    PubMed

    Kim, Myung-Hee Y; Hayat, Matthew J; Feiveson, Alan H; Cucinotta, Francis A

    2009-07-01

    For future space missions outside of the Earth's magnetic field, the risk of radiation exposure from solar particle events (SPEs) during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern when designing radiation protection including determining sufficient shielding requirements for astronauts and hardware. While the expected frequency of SPEs is strongly influenced by solar modulation, SPE occurrences themselves are chaotic in nature. We report on a probabilistic modeling approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19-23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, we then estimated the expected frequency of SPEs at any given proton fluence threshold with energy >30 MeV (Phi(30)) during a defined space mission period. Analytic energy spectra of 34 large SPEs observed in the space era were fitted over broad energy ranges extending to GeV, and subsequently used to calculate the distribution of mGy equivalent (mGy-Eq) dose for a typical blood-forming organ (BFO) inside a spacecraft as a function of total Phi(30) fluence. This distribution was combined with a simulation of SPE events using the Poisson model to estimate the probability of the BFO dose exceeding the NASA 30-d limit of 250 mGy-Eq per 30 d. These results will be useful in implementing probabilistic risk assessment approaches at NASA and guidelines for protection systems for astronauts on future space exploration missions.

  12. Analysis of Chromosomal Aberrations in the Blood Lymphocytes of Astronauts after Space Flight

    NASA Technical Reports Server (NTRS)

    George, K.; Kim, M. Y.; Elliott, T.; Cucinotta, F. A.

    2007-01-01

    It is a NASA requirement that biodosimetry analysis be performed on all US astronauts who participate in long duration missions of 3 months or more onboard the International Space Station. Cytogenetic analysis of blood lymphocytes is the most sensitive and reliable biodosimetry method available at present, especially if chromosome damage is assessed before as well as after space flight. Results provide a direct measurement of space radiation damage in vivo that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present data obtained from all twenty-five of the crewmembers who have participated in the biodosimetry program so far. The yield of chromosome exchanges, measured using fluorescence in situ hybridization (FISH) technique with chromosome painting probes, increased after space flight for all these individuals. In vivo dose was derived from frequencies of chromosome exchanges using preflight calibration curves of in vitro exposed cells from the same individual, and RBE was compared with individually measured physically absorbed dose and projected organ dose equivalents. Biodosimetry estimates using samples collected within a few weeks of return from space lie within the range expected from physical dosimetry. For some of these individuals chromosome aberrations were assessed again several months after their respective missions and a temporal decline in stable exchanges was observed in some cases, suggesting that translocations are unstable with time after whole body exposure to space radiation. This may indicate complications with the use of translocations for retrospective dose reconstruction. Data from one crewmember who has participated in two separate long duration space missions and has been followed up for over 10 years provides limited data on the effect of repeat flights and shows a possible adaptive response to space radiation exposure.

  13. The assessment of ionising radiation impact on the cooling pond freshwater ecosystem non-human biota from the Ignalina NPP operation beginning to shut down and initial decommissioning.

    PubMed

    Mazeika, J; Marciulioniene, D; Nedveckaite, T; Jefanova, O

    2016-01-01

    The radiological doses to non-human biota of freshwater ecosystem in the Ignalina NPP cooling pond - Lake Druksiai were evaluated for several cases including the plant's operation period and initial decommissioning activities, using the ERICA 1.2 code with IAEA SRS-19 models integrated approach and tool. Among the Lake Druksiai freshwater ecosystem reference organisms investigated the highest exposure dose rate was determined for bottom fauna - benthic organisms (mollusc-bivalves, crustaceans, mollusc-gastropods, insect larvae), and among the other reference organisms - for vascular plants. The mean and maximum total dose rate values due to anthropogenic radionuclide ionising radiation impact in all investigated cases were lower than the ERICA screening dose rate value of 10 μGy/h. The main exposure of reference organisms as a result of Ignalina NPP former effluent to Lake Druksiai is due to ionizing radiation of radionuclides (60)Co and (137)Cs, of predicted releases to Lake Druksiai during initial decommissioning period - due to radionuclides (60)Co, (134)Cs and (137)Cs, and as a result of predicted releases to Lake Druksiai from low- and intermediate-level short-lived radioactive waste disposal site in 30-100 year period - due to radionuclides (99)Tc and (3)H. The risk quotient expected values in all investigated cases were <1, and therefore the risk to non-human biota can be considered negligible with the exception of a conservative risk quotient for insect larvae. Radiological protection of non-human biota in Lake Druksiai, the Ignalina NPP cooling pond, is both feasible and acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Stability of Radiation Induced Chromosome Damage in Human Peripheral Blood Lymphocytes

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; George, K.; Willingham, V.

    2006-01-01

    Chromosome damage in an individual's peripheral blood lymphocytes can be an indicator of radiation exposure and this data can be used to evaluate dose after accidental or occupational exposure. Evidence suggests that the yield of chromosome damage in lymphocytes is also a relevant biomarker of cancer risk in humans that reflects individual cancer susceptibility. It follows that biomonitoring studies can be used to uncover subjects who are particularly susceptible to radiation damage and therefore at higher risk of cancer. Translocations and other stable aberrations are commonly believed to persist in peripheral blood cells for many years after exposure, and it has been suggested that translocations can be used for assessing retrospective radiation doses or chronic exposures. However, recent investigations suggest that translocations might not always persist indefinitely. We measured chromosome aberrations in the blood lymphocytes of six astronauts before their respective missions of approximately 3 to 6 months onboard the international space station, and again at various intervals up to 5 years after flight. In samples collected a few days after return to earth, the yield of chromosome translocations had significantly increased compared with preflight values, and results indicate that biodosimetry estimates lie within the range expected from physical dosimetry. However, for five of the astronauts, follow up analysis revealed a temporal decline in translocations with half-lives ranging from 10 to 58 months. The yield of exchanges remained unchanged for the sixth astronaut during an observation period of 5 months post-flight. These results may indicate complications with the use of stable aberrations for retrospective dose reconstruction and could affect cancer risk predictions that are estimated from yields of chromosome damage obtained shortly after exposure.

  15. Does Chernobyl-derived radiation impact the developmental stability of Asellus aquaticus 30years on?

    PubMed

    Fuller, Neil; Smith, Jim T; Nagorskaya, Liubov L; Gudkov, Dmitri I; Ford, Alex T

    2017-01-15

    Effects of long-term, environmentally relevant doses of radiation on biota remain unclear due to a lack of studies following chronic exposure in contaminated environments. The 1986 Chernobyl accident dispersed vast amounts of radioactivity into the environment which persists to date. Despite three decades of research, impacts of the incident on non-human organisms continues to be contested within the scientific literature. The present study assessed the impact of chronic radiation exposure from Chernobyl on the developmental stability of the model aquatic isopod, Asellus aquaticus using fluctuating asymmetry (FA) as an indicator. Fluctuating asymmetry, defined as random deviations from the expected perfect bilateral symmetry of an organism, has gained prominence as an indicator of developmental stability in ecotoxicology. Organisms were collected from six lakes along a gradient of radionuclide contamination in Belarus and the Ukraine. Calculated total dose rates ranged from 0.06-27.1μGy/h. Fluctuating asymmetry was assessed in four meristic and one metrical trait. Significant differences in levels of pooled asymmetry were recorded between sample sites independent of sex and specific trait measured. However, there was no correlation of asymmetry with radiation doses, suggesting that differences in asymmetry were not attributed to radionuclide contamination and were driven by elevated asymmetry at a single site. No correlation between FA and measured environmental parameters suggested a biotic factor driving observed FA differences. This study appears to be the first to record no evident increase in developmental stability of biota from the Chernobyl region. These findings will aid in understanding the response of organisms to chronic pollutant exposure and the long term effects of large scale nuclear incidents such as Chernobyl and Fukushima. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Enhancement of Structured Reporting - an Integration Reporting Module with Radiation Dose Collection Supporting.

    PubMed

    Lee, Ming-Che; Chuang, Kei-Shih; Hsu, Tien-Cheng; Lee, Chien-Ding

    2016-11-01

    Collection of radiation dose derived from radiological examination is necessary not only for radiation protection, but also for fulfillment of structured reports. However, the material regarding of radiation dose cannot be directly utilized by the Radiological Information System (RIS) since it is generated and only stored in the Picture Archiving and Communication System (PACS). In this paper, an integration reporting module is proposed to facilitate handling of dose information and structured reporting by providing two functionalities. First, a gateway is established to automatically collect the related information from PACS for further analyzing and monitoring the accumulated radiation. Second, the designated structured reporting patterns with corresponding radiation dose measurements can be acquired by radiologists as necessary. In the design, the radiation dose collection gateway and the well-established pattern are collocated to achieve that there is no need to do manual entry for structured reporting, thus increasing productivity and medical quality.

  17. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations.

    PubMed

    Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela

    2013-08-01

    Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.

  18. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    We present that third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and rampedmore » operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. In conclusion, this made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.« less

  19. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicitymore » questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.« less

  20. Ultraviolet radiation in the Atacama Desert.

    PubMed

    Cordero, R R; Damiani, A; Jorquera, J; Sepúlveda, E; Caballero, M; Fernandez, S; Feron, S; Llanillo, P J; Carrasco, J; Laroze, D; Labbe, F

    2018-03-31

    The world's highest levels of surface ultraviolet (UV) irradiance have been measured in the Atacama Desert. This area is characterized by its high altitude, prevalent cloudless conditions, and a relatively low total ozone column. In this paper, we provide estimates of the surface UV (monthly UV index at noon and annual doses of UV-B and UV-A) for all sky conditions in the Atacama Desert. We found that the UV index at noon during the austral summer is expected to be greater than 11 in the whole desert. The annual UV-B (UV-A) doses were found to range from about 3.5 kWh/m 2 (130 kWh/m 2 ) in coastal areas to 5 kWh/m 2 (160 kWh/m 2 ) on the Andean plateau. Our results confirm significant interhemispherical differences. Typical annual UV-B doses in the Atacama Desert are about 40% greater than typical annual UV-B doses in northern Africa. Mostly due to seasonal changes in the ozone, the differences between the Atacama Desert and northern Africa are expected to be about 60% in the case of peak UV-B levels (i.e. the UV-B irradiances at noon close to the summer solstice in each hemisphere). Interhemispherical differences in the UV-A are significantly lower since the effect of the ozone in this part of the spectrum is minor.

  1. Feasibility of using glass-bead thermoluminescent dosimeters for radiotherapy treatment plan verification.

    PubMed

    Jafari, Shakardokht M; Jordan, Tom J; Distefano, Gail; Bradley, David A; Spyrou, Nicholas M; Nisbet, Andrew; Clark, Catharine H

    2015-01-01

    To investigate the feasibility of using glass beads as novel thermoluminescent dosemeters (TLDs) for radiotherapy treatment plan verification. Commercially available glass beads with a size of 1-mm thickness and 2-mm diameter were characterized as TLDs. Five clinical treatment plans including a conventional larynx, a conformal prostate, an intensity-modulated radiotherapy (IMRT) prostate and two stereotactic body radiation therapy (SBRT) lung plans were transferred onto a CT scan of a water-equivalent phantom (Solid Water(®), Gammex, Middleton, WI) and the dose distribution recalculated. The number of monitor units was maintained from the clinical plan and delivered accordingly. The doses determined by the glass beads were compared with those measured by a graphite-walled ionization chamber, and the respective expected doses were determined by the treatment-planning system (TPS) calculation. The mean percentage difference between measured dose with the glass beads and TPS was found to be 0.3%, -0.1%, 0.4%, 1.8% and 1.7% for the conventional larynx, conformal prostate, IMRT prostate and each of the SBRT delivery techniques, respectively. The percentage difference between measured dose with the ionization chamber and glass bead was found to be -1.2%, -1.4%, -0.1%, -0.9% and 2.4% for the above-mentioned plans, respectively. The results of measured doses with the glass beads and ionization chamber in comparison with expected doses from the TPS were analysed using a two-sided paired t-test, and there was no significant difference at p < 0.05. It is feasible to use glass-bead TLDs as dosemeters in a range of clinical plan verifications. Commercial glass beads are utilized as low-cost novel TLDs for treatment-plan verification.

  2. Radiation Dose to Post-Chernobyl Cleanup Workers

    Cancer.gov

    Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.

  3. Knowledge of medical imaging radiation dose and risk among doctors.

    PubMed

    Brown, Nicholas; Jones, Lee

    2013-02-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  4. The c-Abl signaling network in the radioadaptive response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi-Min, Yuan

    2014-01-28

    The radioadaptive response, or radiation hormesis, i.e. a low dose of radiation can protect cells and organisms from the effects of a subsequent higher dose, is a widely recognized phenomenon. Mechanisms underlying such radiation hormesis, however, remain largely unclear. Preliminary studies indicate an important role of c-Abl signaling in mediating the radioadaptive response. We propose to investigate how c-Abl regulates the crosstalk between p53 and NFκB in response to low doses irradiation. We found in our recent study that low dose IR induces a reciprocal p53 suppression and NFκB activation, which induces HIF-a and subsequently a metabolic reprogramming resulting inmore » a transition from oxidative phosphorylation to glycolysis. Of importance is that this glycolytic switch is essential for the radioadaptive response. This low-dose radiationinduced HIF1α activation was in sharp contrast with the high-dose IR-induced p53 activation and HIF1α inhibition. HIF1α and p53 seem to play distinct roles in mediating the radiation dose-dependent metabolic response. The induction of HIF1α-mediated glycolysis is restricted to a low dose range of radiation, which may have important implications in assessing the level of radiation exposure and its potential health risk. Our results support a dose-dependent metabolic response to IR. When IR doses are below the threshold of causing detectable DNA damage (<0.2Gy) and thus little p53 activation, HIF1α is induced resulting in induction of glycolysis and increased radiation resistance. When the radiation dose reaches levels eliciting DNA damage, p53 is activated and diminishes the activity of HIF1α and glycolysis, leading to the induction of cell death. Our work challenges the LNT model of radiation exposure risk and provides a metabolic mechanism of radioadaptive response. The study supports a need for determining the p53 and HIF1α activity as a potential reliable biological readout of radiation exposure in humans. The exquisite sensitivity of cellular metabolism to low doses of radiation could also serve as a valuable biomarker for estimating the health effects of low-level radiation exposure.« less

  5. Radiological protection issues arising during and after the Fukushima nuclear reactor accident.

    PubMed

    González, Abel J; Akashi, Makoto; Boice, John D; Chino, Masamichi; Homma, Toshimitsu; Ishigure, Nobuhito; Kai, Michiaki; Kusumi, Shizuyo; Lee, Jai-Ki; Menzel, Hans-Georg; Niwa, Ohtsura; Sakai, Kazuo; Weiss, Wolfgang; Yamashita, Shunichi; Yonekura, Yoshiharu

    2013-09-01

    Following the Fukushima accident, the International Commission on Radiological Protection (ICRP) convened a task group to compile lessons learned from the nuclear reactor accident at the Fukushima Daiichi nuclear power plant in Japan, with respect to the ICRP system of radiological protection. In this memorandum the members of the task group express their personal views on issues arising during and after the accident, without explicit endorsement of or approval by the ICRP. While the affected people were largely protected against radiation exposure and no one incurred a lethal dose of radiation (or a dose sufficiently large to cause radiation sickness), many radiological protection questions were raised. The following issues were identified: inferring radiation risks (and the misunderstanding of nominal risk coefficients); attributing radiation effects from low dose exposures; quantifying radiation exposure; assessing the importance of internal exposures; managing emergency crises; protecting rescuers and volunteers; responding with medical aid; justifying necessary but disruptive protective actions; transiting from an emergency to an existing situation; rehabilitating evacuated areas; restricting individual doses of members of the public; caring for infants and children; categorising public exposures due to an accident; considering pregnant women and their foetuses and embryos; monitoring public protection; dealing with 'contamination' of territories, rubble and residues and consumer products; recognising the importance of psychological consequences; and fostering the sharing of information. Relevant ICRP Recommendations were scrutinised, lessons were collected and suggestions were compiled. It was concluded that the radiological protection community has an ethical duty to learn from the lessons of Fukushima and resolve any identified challenges. Before another large accident occurs, it should be ensured that inter alia: radiation risk coefficients of potential health effects are properly interpreted; the limitations of epidemiological studies for attributing radiation effects following low exposures are understood; any confusion on protection quantities and units is resolved; the potential hazard from the intake of radionuclides into the body is elucidated; rescuers and volunteers are protected with an ad hoc system; clear recommendations on crisis management and medical care and on recovery and rehabilitation are available; recommendations on public protection levels (including infant, children and pregnant women and their expected offspring) and associated issues are consistent and understandable; updated recommendations on public monitoring policy are available; acceptable (or tolerable) 'contamination' levels are clearly stated and defined; strategies for mitigating the serious psychological consequences arising from radiological accidents are sought; and, last but not least, failures in fostering information sharing on radiological protection policy after an accident need to be addressed with recommendations to minimise such lapses in communication.

  6. Hyperbaric Oxygen as Radiation Sensitizer for Locally Advanced Squamous Cell Carcinoma of the Oropharynx: A Phase 1 Dose-Escalation Study.

    PubMed

    Hartford, Alan C; Davis, Thomas H; Buckey, Jay C; Foote, Robert L; Sinesi, Mark S; Williams, Benjamin B; Fariss, Anna K; Schaner, Philip E; Claus, Paul L; Okuno, Scott H; Hussey, James R; Clarke, Richard E

    2017-03-01

    To explore, in a dose-escalation study, the feasibility of hyperbaric oxygen (HBO) treatments immediately before intensity modulated radiation therapy in conjunction with cisplatinum chemotherapy for squamous cell carcinoma of the head and neck (SCCHN). Eligible patients presented with SCCHN (stage III-IV [M0]), life expectancy >6 months, and Karnofsky performance status ≥70. Enrollees received intensity modulated radiation therapy, 70 Gy in 35 fractions over 7 weeks with weekly cisplatinum. Patients received HBO-100% oxygen, 2.4 atmospheres absolute (ATA) for 30 minutes-twice per week initially. Subsequent patients were escalated to 3 and then 5 times per week. Intensity modulated radiation therapy began within 15 minutes after HBO. Patients were followed for 2 years after RT with quality-of-life questionnaires (Performance Status Scale-Head and Neck Cancer and the Functional Assessment of Cancer Therapy-Head and Neck Cancer) and for 5+ years for local recurrence, distant metastases, disease-specific survival, and overall survival. Twelve subjects enrolled from 3 centers. Two withdrew during radiation therapy and 1 within 14 weeks after radiation therapy. The remaining 9 had primary oropharyngeal disease and were stage IVA (7) or IVB (2). No dose-limiting toxicities were observed with daily HBO. Two patients (22%) required pressure equalization tubes. The average time between HBO and radiation therapy was 8.5 minutes, with 2 of 231 administrations delivered beyond 15 minutes (0.5%). Per-protocol analysis showed a clinical complete response in 7 and a pathologic complete response without tumor in salvage neck dissections in 2. With minimum follow-up of 61 months, per-protocol 5-year overall survival was 100%, local recurrence 0%, and distant metastases 11%. Patient-reported outcomes for quality of life (Functional Assessment of Cancer Therapy-Head and Neck Cancer) were comparable to published results for chemoradiotherapy without HBO. While acknowledging the study's small size and early attrition of 3 patients, our in-depth review of the acquired data indicates the feasibility of combining HBO with chemoradiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Biophysics and medical effects of enhanced radiation weapons.

    PubMed

    Reeves, Glen I

    2012-08-01

    Enhanced radiation weapons (ERW) are fission-fusion devices where the massive numbers of neutrons generated during the fusion process are intentionally allowed to escape rather than be confined to increase yield (and fallout products). As a result, the energy partition of the weapon output shifts from blast and thermal energies toward prompt radiation. The neutron/gamma output ratio is also increased. Neutrons emitted from ERW are of higher energy than the Eave of neutrons from fission weapons. These factors affect the patterns of injury distribution; delay wound healing in combined injuries; reduce the therapeutic efficacy of medical countermeasures; and increase the dose to radiation-only casualties, thus potentiating the likelihood of encountering radiation-induced incapacitation. The risk of radiation-induced carcinogenesis is also increased. Radiation exposure to first responders from activation products is increased over that expected from a fission weapon of similar yield. However, the zone of dangerous fallout is significantly reduced in area. At least four nations have developed the potential to produce such weapons. Although the probability of detonation of an ERW in the near future is very small, it is nonzero, and clinicians and medical planners should be aware of the medical effects of ERW.

  8. A METHOD TO IMPROVE DOSE ASSESSMENT BY RECONSTRUCTION OF THE COMPLETE ISOTOPES INVENTORY.

    PubMed

    Bonin, Alice; Tsilanizara, Aimé

    2017-06-01

    Radiation shielding assessments may underestimate the expected dose if some isotopes at trace level are not considered in the isotopes inventory of the shielded radioactive materials. Indeed, information about traces is not often available. Nevertheless, the activation of some minor isotopic traces may significantly contribute to the dose build-up. This paper presents a new method (Isotopes Inventory Reconstruction-IIR) estimating the concentration of the minor isotopes in the irradiated material at the beginning of the cooling period. The method requires the solution of the inverse problem describing the irradiated material's decay. In a mixture of an irradiated uranium-plutonium oxide shielded by a set-up made of stainless-steel, porous polyethylene plaster and lead methyl methacrylate, the comparison between different methods proves that the IIR-method allows better assessment of the dose than other approximate methods. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. High-Energy Electron-Induced SEUs and Jovian Environment Impact

    NASA Astrophysics Data System (ADS)

    Tali, Maris; Alía, Rubén García; Brugger, Markus; Ferlet-Cavrois, Veronique; Corsini, Roberto; Farabolini, Wilfrid; Mohammadzadeh, Ali; Santin, Giovanni; Virtanen, Ari

    2017-08-01

    We present experimental evidence of electron-induced upsets in a reference European Space Agency (ESA) single event upset (SEU) monitor, induced by a 200-MeV electron beam at the Very energetic Electronic facility for Space Planetary Exploration in harsh Radiation environments facility at CERN. Comparison of experimental cross sections and simulated cross sections is shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons, flash effects, and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. The ESA Jupiter Icy Moons Explorer mission, to be launched in 2022, presents a challenging radiation environment due to the intense high-energy electron flux in the trapped radiation belts. Insight is given to the possible contribution of electrons to the overall upset rates in the Jovian radiation environment. Relative contributions of both typical electron and proton spectra created when the environmental spectra are transported through a typical spacecraft shielding are shown and the different mission phases are discussed.

  10. Crosslinking of polysaccharides in room temperature ionic liquids by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Kimura, Atsushi; Nagasawa, Naotsugu; Shimada, Akihiko; Taguchi, Mitsumasa

    2016-07-01

    Crosslinking of polysaccharides in room temperature ionic liquids (RTILs) by ionizing radiation were investigated by the scavenging method, fluorescent and X-ray photoelectron spectroscopy (XPS) analysis. Radiation chemical yields of hydroxyl radicals inducing the crosslinking of cellulose were estimated with phenol as a scavenger, and increased with water content in 1-ethyl-3-methylimidazolium acetate (EMI-acetate). Cellulose gel was also produced in fluorescent carboxylate-based RTILs, 1,3-dibutylimidazolium acetate (DBI-acetate). Light emission from DBI-acetate in cellulose gel was observed and 20-nm red shifted at a maximum wavelength of 415 nm when excited at 323 nm. Expected elements of carbon and oxygen were detected in neat cellulose by XPS, while additional nitrogen was detected in radiation-crosslinked cellulose gel produced in EMI-acetate. These results indicate that RTILs is incorporated in the cellulose gel. Chitin gel was first obtained in 1-butyl-3-methyimidazolium chloride by γ-ray irradiations, and its gel fraction increased with the dose and reached 86% at 60 kGy.

  11. Dose and Fractionation in Radiation Therapy of Curative Intent for Non-Small Cell Lung Cancer: Meta-Analysis of Randomized Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramroth, Johanna; Cutter, David J.; Darby, Sarah C.

    Purpose: The optimum dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer remains uncertain. We undertook a published data meta-analysis of randomized trials to examine whether radiation therapy regimens with higher time-corrected biologically equivalent doses resulted in longer survival, either when given alone or when given with chemotherapy. Methods and Materials: Eligible studies were randomized comparisons of 2 or more radiation therapy regimens, with other treatments identical. Median survival ratios were calculated for each comparison and pooled. Results: 3795 patients in 25 randomized comparisons of radiation therapy dose were studied. The median survival ratio, highermore » versus lower corrected dose, was 1.13 (95% confidence interval [CI] 1.04-1.22) when radiation therapy was given alone and 0.83 (95% CI 0.71-0.97) when it was given with concurrent chemotherapy (P for difference=.001). In comparisons of radiation therapy given alone, the survival benefit increased with increasing dose difference between randomized treatment arms (P for trend=.004). The benefit increased with increasing dose in the lower-dose arm (P for trend=.01) without reaching a level beyond which no further survival benefit was achieved. The survival benefit did not differ significantly between randomized comparisons where the higher-dose arm was hyperfractionated and those where it was not. There was heterogeneity in the median survival ratio by geographic region (P<.001), average age at randomization (P<.001), and year trial started (P for trend=.004), but not for proportion of patients with squamous cell carcinoma (P=.2). Conclusions: In trials with concurrent chemotherapy, higher radiation therapy doses resulted in poorer survival, possibly caused, at least in part, by high levels of toxicity. Where radiation therapy was given without chemotherapy, progressively higher radiation therapy doses resulted in progressively longer survival, and no upper dose level was found above which there was no further benefit. These findings support the consideration of further radiation therapy dose escalation trials, making use of modern treatment methods to reduce toxicity.« less

  12. Acute Radiation Syndrome

    MedlinePlus

    ... on Specific Types of Emergencies Acute Radiation Syndrome (ARS): A Fact Sheet for the Public Language: English ( ... radiation dose. People exposed to radiation will get ARS only if: The radiation dose was high The ...

  13. Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar, and Mars Missions with Space Radiation Measurement

    NASA Technical Reports Server (NTRS)

    Kim, M.Y.; Cucinotta, F.A.

    2005-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. The Phantom Torso Experiment (PTE) of NASA s Operational Radiation Protection Program has provided the actual flight measurements of active and passive dosimeters which were placed throughout the phantom on STS-91 mission for 10 days and on ISS Increment 2 mission. For the PTE, the variation in organ doses, which is resulted by the absorption and the changes in radiation quality with tissue shielding, was considered by measuring doses at many tissue sites and at several critical body organs including brain, colon, heart, stomach, thyroid, and skins. These measurements have been compared with the organ dose calculations obtained from the transport models. Active TEPC measurements of lineal energy spectra at the surface of the PTE also provided the direct comparison of galactic cosmic ray (GCR) or trapped proton dose and dose equivalent. It is shown that orienting the phantom body as actual in ISS is needed for the direct comparison of the transport models to the ISS data. One of the most important observations for organ dose equivalent of effective dose estimates on ISS is the fractional contribution from trapped protons and GCR. We show that for most organs over 80% is from GCR. The improved estimation of effective doses for radiation cancer risks will be made with the resultant tissue weighting factors and the modified codes.

  14. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  15. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.

    PubMed

    Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U

    2014-05-21

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  16. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    PubMed

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The radiation dosimeter on-board the FY-4 Satellite

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Sun, Y.; Zhang, S.; Zhang, X.; Sun, Y.; Jing, T.

    2017-12-01

    The total radiation dose effect can lead to a decrease in the performance of satellite devices or materials. Accurately obtaining the total radiation dose during satellite operation could help to analyze the abnormality of payloads in orbit and optimize the design of radiation shielding. The radiation dosimeter is one of the space environmental monitoring devices on the "FY-4" satellite, which is a new generation of geostationary meteorological satellite. The dosimeter consists of 8 detectors, which are installed in different locations of the satellite, to obtain the total radiation dose with different shielding thickness and different orientations. To measure a total radiation dose up to 2000krad(Si), 100nm ion implantation RADFET was used. To improve the sensitivity of the dosimeter, the bias voltage of RADFET is set to 15V, and a 10V, 15-bit A/D is adopted to digitalize the RADFET's threshold voltage, which is increased as the total radiation dose grows. In addition, the temperature effect of RADFET is corrected from the measured temperature on orbit. The preliminary monitoring results show that the radiation dose is less than 35rad (Si) per day at 0.87 mm shielding thickness of equivalent aluminum in the geostationary orbit, and the dose in Y direction of the satellite is less than those in the X and Z directions. The radiation dose at the thickness of 3.87 mm equivalent aluminum is less than 1rad(Si)/day. It is found that the daily total dose measured by the dosimeter has a strong correlation with the flux of high energy electrons.

  18. Radiation dose distributions due to sudden ejection of cobalt device.

    PubMed

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. CHANGES IN LUNG PARENCHYMA WITH PREOPERATIVE Co$sup 60$-IRRADIATION OF BRONCHIAL CARCINOMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widow, W.

    1959-01-01

    Histologic studies were made of resected lung tissue of 24 patients subjected to radiotherapy. Radiation pneumonitis with incipient fibrosis was observed in 14 cases. In only five of these cases could the histologic findings be confirmed radiologically. The histologic changes included swelling of alveolar septa, interstitial edema, increase of connective tissue components, giant cell formation, exfoliation of alveolar cells, intra-alveolar edema, depositio of cellular debris in small bronchi with apparent injury to the ciliated epithelial and mucous cells, and swelling of the peribronchial and perivascular tissue and pleura. Only a sparse inflammatory cell infiltrate was noted. These responses could notmore » be closely correlated with the radiation dose. The radiation reaction was most marked in the vicinity of old tuberculous lesions. No permanent impairment of pulmonary function would be expected from the observed histologic changes. (H.H.D.)« less

  20. A step function model to evaluate the real monetary value of man-sievert with real GDP.

    PubMed

    Na, Seong H; Kim, Sun G

    2009-01-01

    For use in a cost-benefit analysis to establish optimum levels of radiation protection in Korea under the ALARA principle, we introduce a discrete step function model to evaluate man-sievert monetary value in the real economic value. The model formula, which is unique and country-specific, is composed of real GDP, the nominal risk coefficient for cancer and hereditary effects, the aversion factor against radiation exposure, and average life expectancy. Unlike previous researches on alpha-value assessment, we show different alpha values in the real term, differentiated with respect to the range of individual doses, which would be more realistic and informative for application to the radiation protection practices. GDP deflators of economy can reflect the society's situations. Finally, we suggest that the Korean model can be generalized simply to other countries without normalizing any country-specific factors.

  1. Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures

    PubMed Central

    Ron, Elaine; Brenner, Alina

    2013-01-01

    Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812

  2. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  3. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  4. Radiation treatment of pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Dám, A. M.; Gazsó, L. G.; Kaewpila, S.; Maschek, I.

    1996-03-01

    Product specific doses were calculated for pharmaceuticals to be radiation treated. Radio-pasteurization dose were determined for some heat sensitive pharmaceutical basic materials (pancreaton, neopancreatin, neopancreatin USP, duodenum extract). Using the new recommendation (ISO standards, Method 1) dose calculations were performed and radiation sterilization doses were determined for aprotinine and heparine Na.

  5. Entrance radiation doses during paediatric cardiac catheterisations performed for diagnosis or the treatment of congenital heart disease.

    PubMed

    Papadopoulou, D; Yakoumakis, Em; Sandilos, P; Thanopoulos, V; Makri, Tr; Gialousis, G; Houndas, D; Yakoumakis, N; Georgiou, Ev

    2005-01-01

    The purpose of this study was to estimate the radiation exposure of children, during cardiac catheterisations for the diagnosis or treatment of congenital heart disease. Radiation doses were estimated for 45 children aged from 1 d to 13 y old. Thermoluminescent dosemeters (TLDs) were used to estimate the posterior entrance dose (DP), the lateral entrance dose (DLAT), the thyroid dose and the gonads dose. A dose-area product (DAP) meter was also attached externally to the tube of the angiographic system and gave a direct value in mGy cm2 for each procedure. Posterior and lateral entrance dose values during cardiac catheterisations ranged from 1 to 197 mGy and from 1.1 to 250.3 mGy, respectively. Radiation exposure to the thyroid and the gonads ranged from 0.3 to 8.4 mGy to 0.1 and 0.7 mGy, respectively. Finally, the DAP meter values ranged between 360 and 33,200 mGy cm2. Radiation doses measured in this study are comparable with those reported to previous studies. Moreover, strong correlation was found between the DAP values and the entrance radiation dose measured with TLDs.

  6. Do changes in biomarkers from space radiation reflect dose or risk?

    NASA Astrophysics Data System (ADS)

    Brooks, A.

    The space environment is made up of many different kinds of radiation so that the proper use of biomarkers is essential to estimate radiation risk. This presentation will evaluate differences between biomarkers of dose and risk and demonstrate why they should not be confused following radiation exposures in deep space. Dose is a physical quantity, while risk is a biological quantity. Many examples exist w ereh dose or changes in biomarkers of dose are inappropriately used as predictors of risk. Without information on the biology of the system, the biomarkers of dose provide little help in predicting risk in tissues or radiation exposure types where no excess risk can be demonstrated. Many of these biomarkers of dose only reflect changes in radiation dose or exposure. However, these markers are often incorrectly used to predict risk. For example, exposure of the trachea or of the deep lung to high-LET alpha particles results in similar changes in the biomarker chromosome damage in these two tissues. Such an observation would predict that the risk for cancer induction would be similar in these two tissues. It has been noted , however, that there has never been a tracheal tumor observed in rats that inhaled radon, but with the same exposure, large numbers of tumors were produced in the deep lung. The biology of the different tissues is the major determinant of the risk rather than the radiation dose. Recognition of this fact has resulted in the generation of tissue weighting factors for use in radiation protection. When tissue weighting factors are used the values derived are still called "dose". It is important to recognize that tissue specific observations have been corrected to reflect risk, and therefore should no longer be viewed as dose. The relative biological effectiveness (RBE) is also used to estimate radiation risk. The use of biomarkers to derive RBE is a difficult since it involves the use of a biological response to a standard low-LET reference radiation. Following low-LET radiation exposure, the biological response often does not increase as a linear function of dose. Thus, the RBE and the subsequent risk predicted is dependent on the dose where the two radiation types are compared. To avoid this problem the standard procedure is to use the dose and dose-rate response and compare the linear components of the two r diation exposures. Important riska comparisons are often done at very low doses, where the reference radiation may either increase or decrease as a function of dose. Since the low-LET exposure often does not produce a significant change above the background level of damage, the derived RBE factors can become very large.Studies using micronuclei as biomarkers following exposure to mono-energetic neutrons, x-rays and gamma rays delivered at very low doses (up to 0.10 Gy) demonstrated the differences in the shape of each dose-response relationship and the problems associated with the RBE. These studies show that RBE may not accurately reflect the hazards or risk associated with space radiation exposure. As additional measures of biological change are developed, it may become possible to base risk on biological change and not on changes in radiation doses. Research funded through grants # DE-FG03-99ER62787 from DOE Office of Biological and Environmental Research and RO1 CA74053-01 from NIH/NASA to Washington State University Tri-Cities.

  7. Commentary 2 to Cox and Little: radiation-induced oncogenic transformation: the interplay between dose, dose protraction, and radiation quality

    NASA Technical Reports Server (NTRS)

    Brenner, D. J.; Hall, E. J.

    1992-01-01

    There is now a substantial body of evidence for end points such as oncogenic transformation in vitro, and carcinogenesis and life shortening in vivo, suggesting that dose protraction leads to an increase in effectiveness relative to a single, acute exposure--at least for radiations of medium linear energy transfer (LET) such as neutrons. Table I contains a summary of the pertinent data from studies in which the effect is seen. [table: see text] This phenomenon has come to be known as the "inverse dose rate effect," because it is in marked contrast to the situation at low LET, where protraction in delivery of a dose of radiation, either by fractionation or low dose rate, results in a decreased biological effect; additionally, at medium and high LET, for radiobiological end points such as clonogenic survival, the biological effectiveness is independent of protraction. The quantity and quality of the published reports on the "inverse dose rate effect" leaves little doubt that the effect is real, but the available evidence indicates that the magnitude of the effect is due to a complex interplay between dose, dose rate, and radiation quality. Here, we first summarize the available data on the inverse dose rate effect and suggest that it follows a consistent pattern in regard to dose, dose rate, and radiation quality; second, we describe a model that predicts these features; and, finally, we describe the significance of the effect for radiation protection.

  8. An assessment of potential health impacts on Utrok Atoll from exposure to cesium-137 (137Cs) and plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T

    2007-07-24

    Residual fallout contamination from the nuclear test program in the Marshall Islands is a concern to Marshall Islanders because of the potential health risks associated with exposure to residual fallout contamination in the environment. Scientists from Lawrence Livermore National Laboratory (LLNL) have been monitoring the amount of fallout radiation delivered to Utrok Atoll residents over the past 4 years. This briefing document gives an outline of our findings from the whole body counting and plutonium bioassay monitoring programs. Additional information can be found on the Marshall Islands web site (http://eed.lnl.gov/mi/). Cesium-137 is an important radioactive isotope produced in nuclear detonationsmore » and can be taken up from coral soils into locally grown food crop products that form an important part of the Marshallese diet. The Marshall Islands whole body counting program has clearly demonstrated that the majority of Utrok Atoll residents acquire a very small but measurable quantity of cesium-137 in their bodies (Hamilton et al., 2006; Hamilton et. al., 2007a; 2007b;). During 2006, a typical resident of Utrok Atoll received about 3 mrem of radiation from internally deposited cesium-137 (Hamilton et al., 2007a). The population-average dose contribution from cesium-137 is around 2% of the total radiation dose that people normally experience from naturally occurring radiation sources in the Marshall Islands and is thousands of times lower than the level where radiation exposure is known to produce measurable health effects. The existing dose estimates from the whole body counting and plutonium bioassay programs are also well below radiological protection standards for protection of the public as prescribed by U.S. regulators and international agencies including the Marshall Islands Nuclear Claim Tribunal (NCT). Similarly, the level of internally deposited plutonium found in Utrok Atoll residents is well within the range normally expected for people living in the Northern Hemisphere. In addition, the preliminary results of the bioassay program on Utrok Atoll (Hamilton et al., 2007b) provide clear evidence that residents of Utrok Atoll have never acquired a significant uptake of plutonium either through an acute exposure event or from long-term chronic exposure to plutonium in the environment. This information and data should provide a level of assurance to the Utrok Atoll population group and its leadership that the dose contribution from exposure to residual radioactive fallout contamination on Utrok Atoll is very low, and is not likely to have any discernible impact on human health. We also estimate that the dose contribution based on current radiological exposure conditions will not produce any additional cancer fatalities (or any other measurable health condition) above that normally expected to arise in a population group of similar size. The potential risks from any genetic illnesses caused by exposure to residual fallout contamination in the environment will be even lower still. In conclusion, the data and information developed from the radiological protection monitoring program on Utrok appear to support a consensus that it is safe to live on Utrok Atoll. The health risks from exposure to residual fallout contamination on the atoll are minimal when compared with other lifetime risks that people normally experience, and are very small when compared to the threshold where radiation health effects could be either medically diagnosed in an individual or epidemiologically discerned in a group of people.« less

  9. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.

    PubMed

    Ferrari, P; Gualdrini, G

    2005-09-21

    In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.

  10. SU-E-J-274: Responses of Medulloblastoma Cells to Radiation Dosimetric Parameters in Intensity-Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Molecular Imaging Program at Stanford, Stanford, CA; Bio-X Program, Stanford, CA

    2015-06-15

    Purpose: To evaluate radiation responses of the medulloblastoma cell line Daoy in intensity-modulated radiation therapy (IMRT), quantitative variations to variable radiation dosimetic parameters were tracked by bioluminescent images (BLIs). Methods: The luciferase and green fluorescent protein positive Daoy cells were cultured on dishes. The medulloblastoma cells irradiated to different dose rate, interval of fractionated doses, field margin and misalignment, and dose uniformity in IMRT were monitored using bioluminescent images. The cultured cells were placed into a dedicated acrylic phantom to deliver intensity-modulated fluences and calculate accurate predicted dose distribution. The radiation with dose rate from 0.5 Gy/min to 15 Gy/minmore » was irradiated by adjusting monitor unit per minute and source-to-surface distances. The intervals of fractionated dose delivery were changed considering the repair time of double strand breaks (DSB) revealed by straining of gamma-H2AX.The effect of non-uniform doses on the cells were visualized by registering dose distributions and BLIs. The viability according to dosimetric parameters was correlated with bioluminescent intensities for cross-check of radiation responses. Results: The DSB and cell responses due to the first fractionated dose delivery significantly affected final tumor control rather than other parameters. The missing tumor volumes due to the smaller field margin than the tumor periphery or field misalignment caused relapse of cell responses on BLIs. The dose rate and gradient had effect on initial responses but could not bring out the distinguishable killing effect on cancer cells. Conclusion: Visualized and quantified bioluminescent images were useful to correlate the dose distributions with spatial radiation effects on cells. This would derive the effective combination of dose delivery parameters and fractionation. Radiation responses in particular IMRT configuration could be reflected to image based-dose re-optimization.« less

  11. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  12. Patient Dose Management: Focus on Practical Actions

    PubMed Central

    2016-01-01

    Medical radiation is a very important part of modern medicine, and should be only used when needed and optimized. Justification and optimization of radiation examinations must be performed. The first step of reduction of medical exposure is to know the radiation dose in currently performed examinations. This review covers radiation units, how various imaging modalities report dose, and the current status of radiation dose reports and legislation. Also, practical tips that can be applied to clinical practice are introduced. Afterwards, the importance of radiology exposure related education is emphasized and the current status of education for medical personal and the public is explained, and appropriate education strategies are suggested. Commonly asked radiation dose related example questions and answers are provided in detail to allow medical personnel to answer patients. Lastly, we talk about computerized programs that can be used in medical facilities for managing patient dose. While patient dose monitoring and management should be used to decrease and optimize overall radiation dose, it should not be used to assess individual cancer risk. One must always remember that medically justified examinations should always be performed, and unneeded examinations should be avoided in the first place. PMID:26908988

  13. Space dosimetry with the application of a 3D silicon detector telescope: response function and inverse algorithm.

    PubMed

    Pázmándi, Tamás; Deme, Sándor; Láng, Edit

    2006-01-01

    One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher sun activity. Monitoring of the cosmic radiation on board space vehicles is carried out on the basis of wide international co-operation. Since space radiation consists mainly of charged heavy particles (protons, alpha and heavier particles), the equivalent dose differs significantly from the absorbed dose. A radiation weighting factor (w(R)) is used to convert absorbed dose (Gy) to equivalent dose (Sv). w(R) is a function of the linear energy transfer of the radiation. Recently used equipment is suitable for measuring certain radiation field parameters changing in space and over time, so a combination of different measurements and calculations is required to characterise the radiation field in terms of dose equivalent. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope, called Tritel, and to develop software for data evaluation of the measured energy deposition spectra. The device will be able to determine absorbed dose and dose equivalent of the space radiation.

  14. Incorporating uncertainty and motion in Intensity Modulated Radiation Therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Martin, Benjamin Charles

    In radiation therapy, one seeks to destroy a tumor while minimizing the damage to surrounding healthy tissue. Intensity Modulated Radiation Therapy (IMRT) uses overlapping beams of x-rays that add up to a high dose within the target and a lower dose in the surrounding healthy tissue. IMRT relies on optimization techniques to create high quality treatments. Unfortunately, the possible conformality is limited by the need to ensure coverage even if there is organ movement or deformation. Currently, margins are added around the tumor to ensure coverage based on an assumed motion range. This approach does not ensure high quality treatments. In the standard IMRT optimization problem, an objective function measures the deviation of the dose from the clinical goals. The optimization then finds the beamlet intensities that minimize the objective function. When modeling uncertainty, the dose delivered from a given set of beamlet intensities is a random variable. Thus the objective function is also a random variable. In our stochastic formulation we minimize the expected value of this objective function. We developed a problem formulation that is both flexible and fast enough for use on real clinical cases. While working on accelerating the stochastic optimization, we developed a technique of voxel sampling. Voxel sampling is a randomized algorithms approach to a steepest descent problem based on estimating the gradient by only calculating the dose to a fraction of the voxels within the patient. When combined with an automatic sampling rate adaptation technique, voxel sampling produced an order of magnitude speed up in IMRT optimization. We also develop extensions of our results to Intensity Modulated Proton Therapy (IMPT). Due to the physics of proton beams the stochastic formulation yields visibly different and better plans than normal optimization. The results of our research have been incorporated into a software package OPT4D, which is an IMRT and IMPT optimization tool that we developed.

  15. The influence of parotid gland sparing on radiation damages of dental hard tissues.

    PubMed

    Hey, Jeremias; Seidel, Johannes; Schweyen, Ramona; Paelecke-Habermann, Yvonne; Vordermark, Dirk; Gernhardt, Christian; Kuhnt, Thomas

    2013-07-01

    The aim of the present study was to evaluate whether radiation damage on dental hard tissue depends on the mean irradiation dose the spared parotid gland is subjected to or on stimulated whole salivary flow rate. Between June 2002 and October 2008, 70 patients with neck and cancer curatively irradiated were included in this study. All patients underwent dental treatment referring to the guidelines and recommendations of the German Society of Dental, Oral and Craniomandibular Sciences prior, during, and after radiotherapy (RT). During the follow-up period of 24 months, damages on dental hard tissues were classified according to the RTOG/EORTC guidelines. The mean doses (D(mean)) during spared parotid gland RT were determined. Stimulated whole saliva secretion flow rates (SFR) were measured before RT and 1, 6, 12, 24 months after RT. Thirty patients showed no carious lesions (group A), 18 patients developed sporadic carious lesions (group B), and 22 patients developed general carious lesions (group C). Group A patients received a D mean of 21.2 ± 11.04 Gy. Group B patients received a D(mean) of 26.5 ± 11.59 Gy and group C patients received a D(mean) of 33.9 ± 9.93 Gy, respectively. The D(mean) of group A was significantly lower than the D(mean) of group C (p < 0.001). Additionally, the mean SFR 6 months after RT of group A was significantly higher than the mean SFR of group C (p < 0.01). Irradiation damage on dental hard tissue correlates with increased mean irradiation doses as well as decreased salivary flow rates. Parotid gland sparing resulting in a dose below 20 Gy reduces radiation damage on dental hard tissues, and therefore, the dose may act as a predictor for the damage to be expected.

  16. Dosimetric impact of the AeroForm tissue expander in postmastectomy radiation therapy: an ex vivo analysis.

    PubMed

    Moni, Janaki; Saleeby, Jonathan; Bannon, Elizabeth; Lo, Yuan-Chyuan; Fitzgerald, Thomas J

    2015-01-01

    To evaluate the effect of the AeroForm (AirXpanders Inc, Palo Alto, CA) tissue expander on the dose distribution in a phantom from a simulated postmastectomy radiation treatment for breast cancer. Experiments were conducted to determine the effect on the dose distribution with the metallic reservoir irradiated independently and with the entire AeroForm tissue expander placed on a RANDO phantom (The Phantom Laboratory, Salem, NY). The metallic reservoir was irradiated on a block of solid water with film at various depths ranging from 0 to 8.2 cm from the surface. The intact 400 cc AeroForm was inflated to full capacity and irradiated while positioned on a RANDO phantom, with 12 optically stimulated luminescent dosimeters (OSLDs) placed at clinically relevant expander-tissue interface points. Film dosimetry with the reservoir perpendicular to film reveals 40% transmission at a depth of 0.7 cm, which increases to 60% at a depth of 8.2 cm. In the parallel position, the results vary depending on which area under the reservoir is examined, indicating that the reservoir is not a uniformly dense object. Testing of the intact expander on the phantom revealed that the average percent difference (measured vs expected dose) was 2.7%, σ = 6.2% with heterogeneity correction and 3.7%, σ = 2.4% without heterogeneity correction. The only position where the OSLD readings were consistently higher than the calculated dose by >5% was at position 1, just deep to the canister at the expander-phantom interface. At this position, the readings varied from 5.2% to 14.5%, regardless of heterogeneity correction. Film dosimetry demonstrated beam attenuation in the shadow of the metallic reservoir in the expander. This decrease in dose was not reproduced on the intact expander on the phantom designed to replicate a clinical setup. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  17. Efficacy and complications in the use of self-expanding colonic stents: an analysis of 15 years' experience.

    PubMed

    Samper Wamba, J D; Fernández Martínez, A; González Pastrana, L; López González, L; Balboa Arregui, Ó

    2015-01-01

    To analyze the efficacy and safety of the procedure for placing self-expanding stents in the colon. To evaluate the factors associated with complications. To analyze the dose of radiation delivered in the procedure. This was a retrospective descriptive study of 478 procedures done at a single center to place self-expanding metallic stents in the colon. A total of 423 nitinol stents and 79 stainless steel stents were placed. We included all colonic obstructions, of which 446 had malignant causes and 8 had benign causes. We excluded patients with intestinal perforation, severe colonic bleeding, short life expectancy, or lesions located less than 5 cm from the anus. We collected the dosimetric data and analyzed the technical success, clinical success, and complications during follow-up. The procedure was a technical success in 92.26% of cases (n=441) and a clinical success in 78.45% (n=375); complications occurred during follow-up in 18.5% of cases. Complications occurred more frequently with the stainless steel stents than with the nitinol stents (OR: 3.2; 95% CI: 1.8-5.7). The mean value of the dose area product was 35 Gy*cm(2). When instead of being done by the interventional radiologist working together with an endoscopist the procedure was done exclusively by the interventional radiologist, the time under fluoroscopy (p=0.001), dose area product (p=0.029), and kinetic energy released per unit mass (p=0.001) were greater. The procedure for placing self-expanding colonic stents is efficacious and safe with an acceptable rate of complications. The doses of radiation delivered were low, and the radiation doses and time under fluoroscopy were lower when the procedure was done together with an endoscopist. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  18. Appropriate Use of Effective Dose in Radiation Protection and Risk Assessment.

    PubMed

    Fisher, Darrell R; Fahey, Frederic H

    2017-08-01

    Effective dose was introduced by the ICRP for the single, over-arching purpose of setting limits for radiation protection. Effective dose is a derived quantity or mathematical construct and not a physical, measurable quantity. The formula for calculating effective dose to a reference model incorporates terms to account for all radiation types, organ and tissue radiosensitivities, population groups, and multiple biological endpoints. The properties and appropriate applications of effective dose are not well understood by many within and outside the health physics profession; no other quantity in radiation protection has been more confusing or misunderstood. According to ICRP Publication 103, effective dose is to be used for "prospective dose assessment for planning and optimization in radiological protection, and retrospective demonstration of compliance for regulatory purposes." In practice, effective dose has been applied incorrectly to predict cancer risk among exposed persons. The concept of effective dose applies generally to reference models only and not to individual subjects. While conceived to represent a measure of cancer risk or heritable detrimental effects, effective dose is not predictive of future cancer risk. The formula for calculating effective dose incorporates committee-selected weighting factors for radiation quality and organ sensitivity; however, the organ weighting factors are averaged across all ages and both genders and thus do not apply to any specific individual or radiosensitive subpopulations such as children and young women. Further, it is not appropriate to apply effective dose to individual medical patients because patient-specific parameters may vary substantially from the assumptions used in generalized models. Also, effective dose is not applicable to therapeutic uses of radiation, as its mathematical underpinnings pertain only to observed late (stochastic) effects of radiation exposure and do not account for short-term adverse tissue reactions. The weighting factors incorporate substantial uncertainties, and linearity of the dose-response function at low dose is uncertain and highly disputed. Since effective dose is not predictive of future cancer incidence, it follows that effective dose should never be used to estimate future cancer risk from specific sources of radiation exposure. Instead, individual assessments of potential detriment should only be based on organ or tissue radiation absorbed dose, together with best scientific understanding of the corresponding dose-response relationships.

  19. Prediction of the solar modulation of galactic cosmic rays and radiation dose of aircrews up to the solar cycle 26

    NASA Astrophysics Data System (ADS)

    Miyake, S.; Kataoka, R.; Sato, T.

    2016-12-01

    The solar modulation of galactic cosmic rays (GCRs), which is the variation of the terrestrial GCR flux caused by the heliospheric environmental change, is basically anti-correlated with the solar activity with so-called 11-year periodicity. In the current weak solar cycle 24, we expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude during the solar cycles 24, 25, and 26, we have developed the time-dependent and three-dimensional model of the solar modulation of GCRs. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind velocity, the strength of the interplanetary magnetic field, and its tilt angle. We solve the curvature and gradient drift motion of GCRs in the heliospheric magnetic field, and therefore reproduce the 22-year variation of the solar modulation of GCRs. It is quantitatively confirmed that our model reproduces the energy spectra observed by BESS and PAMELA. We then calculate the variation of the GCR energy spectra during the solar cycles 24, 25, and 26, by extrapolating the solar wind parameters and tilt angle. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In this presentation, we report the quantitative forecast values of the solar modulation of GCRs, neutron monitor counting rate, and the radiation dose at flight altitude up to the cycle 26, including the discussion of the charge sign dependence on those results.

  20. Knowledge on Irradiation, Medical Imaging Prescriptions, and Clinical Imaging Referral Guidelines among Physicians in a Sub-Saharan African Country (Cameroon)

    PubMed Central

    Tene, Ulrich; Samba Ngano, Odette; Tchemtchoua Youta, Justine; Simo, Augustin; Gonsu Fotsin, Joseph

    2017-01-01

    Background Clinical imaging guidelines (CIGs) are suitable tools to enhance justification of imaging procedures. Objective To assess physicians' knowledge on irradiation, their self-perception of imaging prescriptions, and the use of CIGs. Materials and Methods A questionnaire of 21 items was self-administered between July and August 2016 to 155 referring physicians working in seven university-affiliated hospitals in Yaoundé and Douala (Cameroon). This pretested questionnaire based on imaging referral practices, the use and the need of CIGs, knowledge on radiation doses of 11 specific radiologic procedures, and knowledge of injurious effects of radiation was completed in the presence of the investigator. Scores were allocated for each question. Results 155 questionnaires were completed out of 180 administered (86.1%). Participants were 90 (58%) females, 63 (40.64%) specialists, 53 (34.20%) residents/interns, and 39 (25.16%) general practitioners. The average professional experience was 7.4 years (1–25 years). The mean knowledge score was 11.5/59 with no influence of sex, years of experience, and professional category. CIGs users' score was better than nonusers (means 14.2 versus 10.6; p < 0.01). 80% of physicians (124/155) underrated radiation doses of routine imaging exams. Seventy-eight (50.3%) participants have knowledge on CIGs and half of them made use of them. “Impact on diagnosis” was the highest justification criteria follow by “impact on treatment decision.” Unjustified requests were mainly for “patient expectation or will” or for “research motivations.” 96% of interviewees believed that making available national CIGs will improve justification. Conclusion Most physicians did not have appropriate awareness about radiation doses for routine imaging procedures. A small number of physicians have knowledge on CIGs but they believe that making available CIGs will improve justification of imaging procedures. Continuous trainings on radiation protection and implementation of national CIGs are therefore recommended. PMID:28630770

  1. Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism and is reported to be involved in DNA repair process. Its expression sensitivity and specificity were confirmed by RT-PCR and western blot analysis, indicating its potential to be used as space radiation biomarker. Space radiations might induce epigenetic effects on rice plants, especially changes of DNA methylation. Early results suggested that there were correlations between DNA methylation polymorphic and genomic mutation rates. In addition, the 5-methylcytosine located in coding gene’s promoter and exon regions could regulate gene expressions thus influence protein expressions. So whether there is correlation between genome DNA methylation changes and protein expression profile alterations caused by space radiation is worth for further investigation. Therefore we used the same rice samples treated by carbon ion radiation with different doses (0, 10, 20,100, 200, 1000, 2000, 5000, 20000mGy) and applied methylation sensitive amplification polymorphism (MSAP) for scanning genome DNA methylation changes. Interestingly, DNA methylation polymorphism rates also presented a dose-dependent effect and showed the same changing trend as rates of differentially expressed proteins. Whether there are correlations between epigenetic and proteomic effects of space radiation is worth for further investigation.

  2. [Dose rate-dependent cellular and molecular effects of ionizing radiation].

    PubMed

    Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew

    2008-09-11

    The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.

  3. Estimation of median human lethal radiation dose computed from data on occupants of reinforced concrete structures in Nagasaki, Japan.

    PubMed

    Levin, S G; Young, R W; Stohler, R L

    1992-11-01

    This paper presents an estimate of the median lethal dose for humans exposed to total-body irradiation and not subsequently treated for radiation sickness. The median lethal dose was estimated from calculated doses to young adults who were inside two reinforced concrete buildings that remained standing in Nagasaki after the atomic detonation. The individuals in this study, none of whom have previously had calculated doses, were identified from a detailed survey done previously. Radiation dose to the bone marrow, which was taken as the critical radiation site, was calculated for each individual by the Engineering Physics and Mathematics Division of the Oak Ridge National Laboratory using a new three-dimensional discrete-ordinates radiation transport code that was developed and validated for this study using the latest site geometry, radiation yield, and spectra data. The study cohort consisted of 75 individuals who either survived > 60 d or died between the second and 60th d postirradiation due to radiation injury, without burns or other serious injury. Median lethal dose estimates were calculated using both logarithmic (2.9 Gy) and linear (3.4 Gy) dose scales. Both calculations, which met statistical validity tests, support previous estimates of the median lethal dose based solely on human data, which cluster around 3 Gy.

  4. Treatment planning systems for external whole brain radiation therapy: With and without MLC (multi leaf collimator) optimization

    NASA Astrophysics Data System (ADS)

    Budiyono, T.; Budi, W. S.; Hidayanto, E.

    2016-03-01

    Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%).

  5. New image-processing and noise-reduction software reduces radiation dose during complex endovascular procedures.

    PubMed

    Kirkwood, Melissa L; Guild, Jeffrey B; Arbique, Gary M; Tsai, Shirling; Modrall, J Gregory; Anderson, Jon A; Rectenwald, John; Timaran, Carlos

    2016-11-01

    A new proprietary image-processing system known as AlluraClarity, developed by Philips Healthcare (Best, The Netherlands) for radiation-based interventional procedures, claims to lower radiation dose while preserving image quality using noise-reduction algorithms. This study determined whether the surgeon and patient radiation dose during complex endovascular procedures (CEPs) is decreased after the implementation of this new operating system. Radiation dose to operators, procedure type, reference air kerma, kerma area product, and patient body mass index were recorded during CEPs on two Philips Allura FD 20 fluoroscopy systems with and without Clarity. Operator dose during CEPs was measured using optically stimulable, luminescent nanoDot (Landauer Inc, Glenwood, Ill) detectors placed outside the lead apron at the left upper chest position. nanoDots were read using a microStar ii (Landauer Inc) medical dosimetry system. For the CEPs in the Clarity group, the radiation dose to surgeons was also measured by the DoseAware (Philips Healthcare) personal dosimetry system. Side-by-side measurements of DoseAware and nanoDots allowed for cross-calibration between systems. Operator effective dose was determined using a modified Niklason algorithm. To control for patient size and case complexity, the average fluoroscopy dose rate and the dose per radiographic frame were adjusted for body mass index differences and then compared between the groups with and without Clarity by procedure. Additional factors, for example, physician practice patterns, that may have affected operator dose were inferred by comparing the ratio of the operator dose to procedural kerma area product with and without Clarity. A one-sided Wilcoxon rank sum test was used to compare groups for radiation doses, reference air kermas, and operating practices for each procedure type. The analysis included 234 CEPs; 95 performed without Clarity and 139 with Clarity. Practice patterns of operators during procedures with and without Clarity were not significantly different. For all cases, procedure radiation dose to the patient and the primary and assistant operators were significantly decreased in the Clarity group by 60% compared with the non-Clarity group. By procedure type, fluorography dose rates decreased from 44% for fenestrated endovascular repair and up to 70% with lower extremity interventions. Fluoroscopy dose rates also significantly decreased, from about 37% to 47%, depending on procedure type. The AlluraClarity system reduces the patient and primary operator's radiation dose by more than half during CEPs. This feature appears to be an effective tool in lowering the radiation dose while maintaining image quality. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  6. Dose evaluation of organs at risk (OAR) cervical cancer using dose volume histogram (DVH) on brachytherapy

    NASA Astrophysics Data System (ADS)

    Arif Wibowo, R.; Haris, Bambang; Inganatul Islamiyah, dan

    2017-05-01

    Brachytherapy is one way to cure cervical cancer. It works by placing a radioactive source near the tumor. However, there are some healthy tissues or organs at risk (OAR) such as bladder and rectum which received radiation also. This study aims to evaluate the radiation dose of the bladder and rectum. There were 12 total radiation dose data of the bladder and rectum obtained from patients’ brachytherapy. The dose of cervix for all patients was 6 Gy. Two-dimensional calculation of the radiation dose was based on the International Commission on Radiation Units and Measurements (ICRU) points or called DICRU while the 3-dimensional calculation derived from Dose Volume Histogram (DVH) on a volume of 2 cc (D2cc). The radiation dose of bladder and rectum from both methods were analysed using independent t test. The mean DICRU of bladder was 4.33730 Gy and its D2cc was4.78090 Gy. DICRU and D2cc bladder did not differ significantly (p = 0.144). The mean DICRU of rectum was 3.57980 Gy and 4.58670 Gy for D2cc. The mean DICRU of rectum differed significantly from D2cc of rectum (p = 0.000). The three-dimensional method radiation dose of the bladder and rectum was higher than the two-dimensional method with ratios 1.10227 for bladder and 1.28127 for rectum. The radiation dose of the bladder and rectum was still below the tolerance dose. Two-dimensional calculation of the bladder and rectum dose was lower than three-dimension which was more accurate due to its calculation at the whole volume of the organs.

  7. Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years

    NASA Astrophysics Data System (ADS)

    Čížková, Klára; Láska, Kamil; Metelka, Ladislav; Staněk, Martin

    2018-02-01

    This paper evaluates the variability of erythemal ultraviolet (EUV) radiation from Hradec Králové (Czech Republic) in the period 1964-2013. The EUV radiation time series was reconstructed using a radiative transfer model and additional empirical relationships, with the final root mean square error of 9.9 %. The reconstructed time series documented the increase in EUV radiation doses in the 1980s and the 1990s (up to 15 % per decade), which was linked to the steep decline in total ozone (10 % per decade). The changes in cloud cover were the major factor affecting the EUV radiation doses especially in the 1960s, 1970s, and at the beginning of the new millennium. The mean annual EUV radiation doses in the decade 2004-2013 declined by 5 %. The factors affecting the EUV radiation doses differed also according to the chosen integration period (daily, monthly, and annually): solar zenith angle was the most important for daily doses, cloud cover, and surface UV albedo for their monthly means, and the annual means of EUV radiation doses were most influenced by total ozone column. The number of days with very high EUV radiation doses increased by 22 % per decade, the increase was statistically significant in all seasons except autumn. The occurrence of the days with very high EUV doses was influenced mostly by low total ozone column (82 % of days), clear-sky or partly cloudy conditions (74 % of days) and by increased surface albedo (19 % of days). The principal component analysis documented that the occurrence of days with very high EUV radiation doses was much affected by the positive phase of North Atlantic Oscillation with an Azores High promontory reaching over central Europe. In the stratosphere, a strong Arctic circumpolar vortex and the meridional inflow of ozone-poor air from the southwest were favorable for the occurrence of days with very high EUV radiation doses. This is the first analysis of the relationship between the high EUV radiation doses and macroscale circulation patterns, and therefore more attention should be given also to other dynamical variables that may affect the solar UV radiation on the Earth surface.

  8. Data and methods to estimate fetal dose from fluoroscopically guided prophylactic hypogastric artery balloon occlusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomou, G.; Stratakis, J.; Perisinakis, K.

    Purpose: To provide data for estimation of fetal radiation dose (D{sub F}) from prophylactic hypogastric artery balloon occlusion (HABO) procedures. Methods: The Monte-Carlo-N-particle (MCNP) transport code and mathematical phantoms representing a pregnant patient at the ninth month of gestation were employed. PA, RAO 20° and LAO 20° fluoroscopy projections of left and right internal iliac arteries were simulated. Projection-specific normalized fetal dose (NFD) data were produced for various beam qualities. The effects of projection angle, x-ray field location relative to the fetus, field size, maternal body size, and fetal size on NFD were investigated. Presented NFD values were compared tomore » corresponding values derived using a physical anthropomorphic phantom simulating pregnancy at the third trimester and thermoluminescence dosimeters. Results: NFD did not considerably vary when projection angle was altered by ±5°, whereas it was found to markedly depend on tube voltage, filtration, x-ray field location and size, and maternal body size. Differences in NFD < 7.5% were observed for naturally expected variations in fetal size. A difference of less than 13.5% was observed between NFD values estimated by MCNP and direct measurements. Conclusions: Data and methods provided allow for reliable estimation of radiation burden to the fetus from HABO.« less

  9. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balajee, A.S.; Meador, J.A.; Su, Y.

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellularmore » mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the differences in cellular defense mechanisms between low and high doses of low LET radiation and to define the radiation doses where the cellular DNA damage signaling and repair mechanisms tend to shift. This information is critically important to address and advance some of the low dose research program objectives of DOE. The results of this proposed study will lead to a better understanding of the mechanisms for the cellular responses to low and high doses of low LET radiation. Further, systematic analysis of the role of PIKK signaling pathways as a function of radiation dose in tissue microenvironment will provide useful mechanistic information for improving the accuracy of radiation risk assessment for low doses. Knowledge of radiation responses in tissue microenvironment is important for the accurate prediction of ionizing radiation risks associated with cancer and tissue degeneration in humans.« less

  10. Learning From Trials on Radiation Dose in Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Jeffrey, E-mail: jbradley@wustl.edu; Hu, Chen

    2016-11-15

    In this issue of the International Journal of Radiation Oncology • Biology • Physics, Taylor et al present a meta-analysis of published data supporting 2 findings: (1) radiation dose escalation seems to benefit patients who receive radiation alone for non-small cell lung cancer; and (2) radiation dose escalation has a detrimental effect on overall survival in the setting of concurrent chemotherapy. The latter finding is supported by data but has perplexed the oncology community. Perhaps these findings are not perplexing at all. Perhaps it is simply another lesson in the major principle in radiation oncology, to minimize radiation dose to normalmore » tissues.« less

  11. A Commentary on: "A History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: 1998-2008".

    PubMed

    Brooks, Antone L

    2015-04-01

    This commentary provides a very brief overview of the book "A History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: 1998-2008" ( http://lowdose.energy.gov ). The book summarizes and evaluates the research progress, publications and impact of the U.S. Department of Energy Low Dose Radiation Research Program over its first 10 years. The purpose of this book was to summarize the impact of the program's research on the current thinking and low-dose paradigms associated with the radiation biology field and to help stimulate research on the potential adverse and/or protective health effects of low doses of ionizing radiation. In addition, this book provides a summary of the data generated in the low dose program and a scientific background for anyone interested in conducting future research on the effects of low-dose or low-dose-rate radiation exposure. This book's exhaustive list of publications coupled with discussions of major observations should provide a significant resource for future research in the low-dose and dose-rate region. However, because of space limitations, only a limited number of critical references are mentioned. Finally, this history book provides a list of major advancements that were accomplished by the program in the field of radiation biology, and these bulleted highlights can be found in last part of chapters 4-10.

  12. What is the optimal radiation dose for non-operable esophageal cancer? Dissecting the evidence in a meta-analysis.

    PubMed

    Chen, Yong; Zhu, Hui-Ping; Wang, Tao; Sun, Chang-Jiang; Ge, Xiao-Lin; Min, Ling-Feng; Zhang, Xian-Wen; Jia, Qing-Qing; Yu, Jie; Yang, Jian-Qi; Allgayer, Heike; Abba, Mohammed L; Zhang, Xi-Zhi; Sun, Xin-Chen

    2017-10-24

    The standard radiation dose 50.4 Gy with concurrent chemotherapy for localized inoperable esophageal cancer as supported by INT-0123 trail is now being challenged since a radiation dose above 50 Gy has been successfully administered with an observable dose-response relationship and insignificant untoward effects. Therefore, to ascertain the treatment benefits of different radiation doses, we performed a meta-analysis with 18 relative publications. According to our findings, a dose between 50 and 70 Gy appears optimal and patients who received ≥ 60 Gy radiation had a significantly better prognosis (pooled HR = 0.78, P = 0.004) as compared with < 60 Gy, especially in Asian countries (pooled HR = 0.75, P = 0.003). However, contradictory results of treatment benefit for ≥ 60 Gy were observed in two studies from Western countries, and the pooled treatment benefit of ≥ 60 Gy radiation was inconclusive (pooled HR = 0.86, P = 0.64). There was a marginal benefit in locoregional control in those treated with high dose (> 50.4/51 Gy) radiation when compared with those treated with low dose (≤ 50.4/51 Gy) radiation (pooled OR = 0.71, P = 0.06). Patients that received ≥ 60 Gy radiation had better locoregional control (OR = 0.29, P = 0.001), and for distant metastasis control, neither the > 50.4 Gy nor the ≥ 60 Gy treated group had any treatment benefit as compared to the groups that received ≤ 50.4 Gy and < 60 Gy group respectively. Taken together, a dose range of 50 to 70 Gy radiation with CCRT is recommended for non-operable EC patients. A dose of ≥ 60 Gy appears to be better in improving overall survival and locoregional control, especially in Asian countries, while the benefit of ≥ 60 Gy radiation in Western countries still remains controversial.

  13. Radiation dose-rate meter using an energy-sensitive counter

    DOEpatents

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  14. Mutational influences of low-dose and high let ionizing radiation in drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Lei, Huang; Fanjun, Kong; Sun, Yeqing

    For cosmic environment consists of a varying kinds of radiation particles including high Z and energy ions which was charactered with low-dose and high RBE, it is important to determine the possible biofuctions of high LET radiation on human beings. To analyse the possible effectes of mutational influences of low-dose and high-LET ionizing radiation, wild fruit flies drosophila melanogaster were irradiated by 12C6+ ions in two LET levels (63.3 and 30 keV/µum) with different low doses from 2mGy to 2000mGy (2, 20, 200, 2000mGy) in HIRFL (Heavy ion radiation facility laboratory, lanzhou, China).In the same LET value group, the average polymorphic frequency was elevated along with adding doses of irradation, the frequency in 2000 mGy dose samples was significantly higher than other samples (p<0.01).These results suggest that genomic DNA sequence could be effected by low-dose and high-LET ionizing radiation, the irradiation dose is an important element in genomic mutation frequency origination.

  15. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate–Dependent Manner

    PubMed Central

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR. PMID:29531508

  16. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate-Dependent Manner.

    PubMed

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

  17. Minimal and maximal incidence rates of skin cancer in Caucasians estimated by use of sigmoidal UV dose-incidence curves.

    PubMed

    Juzeniene, Asta; Grigalavicius, Mantas; Baturaite, Zivile; Moan, Johan

    2014-11-01

    Sigmoidal (S-shaped) dose-cancer incidence relationships are often observed in animal bioassays for carcinogenicity. Ultraviolet (UV) radiation is an established skin carcinogen. The aim of this study is to examine if S-shaped curves describe the relationship between solar UV doses and skin cancer incidences, and if such relationships can be used to estimate threshold levels of non-carcinogenic UV exposure, as well as maximal incidence rates. We studied the incidence rate-annual erythema-effective UV dose relationship for squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and cutaneous melanoma (CM) among different Caucasian populations in Europe, Australia and New Zealand. Our analysis indicates that S-shaped associations describe the data well (P < 0.0001). The age-adjusted incidence rates for cases expected to be due to other causes than solar UV exposure (at zero UV dose) were found to be around 0.6, 9.7 and 4.0 per 100,000 for women in 1997-2007 for SCC, BCC and CM, respectively, and around 1.2, 14.3 and 2.6 per 100,000 for men. The analysis indicates that SCC, BCC and CM have maximal incidence of 361 ± 24, 1544 ± 49 and 36 ± 4 per 100,000 for women, and 592 ± 35, 2204 ± 109 and 50 ± 4 per 100,000 for men. Between 89 and 95% of the annual CM cases, around 99.8% SCC and 99.4% BCC cases are caused by solar UV exposure. The analysis did not identify any "safe" UV dose below which the risk for skin cancer was absent. Avoidance of UV radiation has a potential to reduce the incidence of skin cancer in fair-skinned population. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. SU-E-I-82: Improving CT Image Quality for Radiation Therapy Using Iterative Reconstruction Algorithms and Slightly Increasing Imaging Doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noid, G; Chen, G; Tai, A

    2014-06-01

    Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. For CT in radiation therapy (RT), slightly increasing imaging dose to improve IQ may be justified if it can substantially enhance structure delineation. The purpose of this study is to investigate and to quantify the IQ enhancement as a result of increasing imaging doses and using IR algorithms. Methods: CT images were acquired for phantoms, built to evaluate IQ metrics including spatial resolution, contrast and noise, with a variety of imaging protocols using a CT scanner (Definition ASmore » Open, Siemens) installed inside a Linac room. Representative patients were scanned once the protocols were optimized. Both phantom and patient scans were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and the Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared. Results: IR techniques are demonstrated to preserve spatial resolution as measured by the point spread function and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is doubled by adopting the highest SAFIRE strength. As expected, increasing imaging dose reduces noise for both SAFIRE and FBP reconstructions. The contrast to noise increases from 3 to 5 by increasing the dose by a factor of 4. Similar IQ improvement was observed on the CTs for selected patients with pancreas and prostrate cancers. Conclusion: The IR techniques produce a measurable enhancement to CT IQ by reducing the noise. Increasing imaging dose further reduces noise independent of the IR techniques. The improved CT enables more accurate delineation of tumors and/or organs at risk during RT planning and delivery guidance.« less

  19. Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation.

    PubMed

    Barrett, A; Depledge, M H; Powles, R L

    1983-07-01

    Idiopathic and infective interstitial pneumonitis (IPn) is a common complication after bone marrow transplantation (BMT) in many centers and carries a high mortality. We report here a series of 107 patients with acute leukemia grafted at the Royal Marsden Hospital in which only 11 (10.3%) developed IPn and only 5 died (5%). Only one case of idiopathic IPn was seen. Factors which may account for this low incidence are discussed. Sixty of 107 patients were transplanted in first remission of acute myeloid leukemia (AML) and were therefore in good general condition. Lung radiation doses were carefully monitored and doses of 10.5 Gy were not exceeded except in a group of 16 patients in whom a study of escalating doses of TBI (up to 13 Gy) was undertaken. The dose rate used for total body irradiation (TBI) was lower than that used in other centers and as demonstrated elsewhere by ourselves and others, reduction of dose rate to less than 0.05 Gy/min may be expected to lead to substantial reduction in lung damage. Threshold doses of approximately 8 Gy for IPn have been reported, but within the dose range of 8 to 10.5 Gy we suggest that dose rate may significantly affect the incidence. Data so far available suggest a true improvement in therapeutic ratio for low dose rate single fraction TBI compared with high dose rate.

  20. Spatial interpolation of gamma dose in radioactive waste storage facility

    NASA Astrophysics Data System (ADS)

    Harun, Nazran; Fathi Sujan, Muhammad; Zaidi Ibrahim, Mohd

    2018-01-01

    External radiation measurement for a radioactive waste storage facility in Malaysian Nuclear Agency is a part of Class G License requirement under Atomic Licensing Energy Board (AELB). The objectives of this paper are to obtain the distribution of radiation dose, create dose database and generate dose map in the storage facility. The radiation dose measurement is important to fulfil the radiation protection requirement to ensure the safety of the workers. There are 118 sampling points that had been recorded in the storage facility. The highest and lowest reading for external radiation recorded is 651 microSv/hr and 0.648 microSv/hour respectively. The calculated annual dose shows the highest and lowest reading is 1302 mSv/year and 1.3 mSv/year while the highest and lowest effective dose reading is 260.4 mSv/year and 0.26 mSv/year. The result shows that the ALARA concept along time, distance and shield principles shall be adopted to ensure the dose for the workers is kept below the dose limit regulated by AELB which is 20 mSv/year for radiation workers. This study is important for the improvement of planning and the development of shielding design for the facility.

Top