Sample records for expected sea level

  1. Projecting Future Sea Level Rise for Water Resources Planning in California

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Kao, K.; Chung, F.

    2008-12-01

    Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise that account for this acceleration are needed. One such method is an empirical relationship between air temperatures and global sea levels. The air temperature-sea level rise relationship was applied to the 12 climate change projections selected by the California Climate Action Team to estimate future sea levels. The 95% confidence level developed from the historical data was extrapolated to estimate the uncertainties in the future projections. To create sea level rise trend probability distributions, a lognormal probability distribution and a generalized extreme value probability distribution are used. Parameter estimations for these distributions are subjective and inevitably involve uncertainties, which will be improved as more research is conducted in this area.

  2. Comment [on “Sea level rise shown to drive coastal erosion”

    USGS Publications Warehouse

    Pilkey, Orrin H.; Young, Robert S.; Bush, David M.

    2000-01-01

    Leatherman et al. [2000] (Eos, Trans., AGU, February 8, 2000, p.55) affirm that global eustatic sea-level rise is driving coastal erosion. Furthermore, they argue that the long-term average rate of shoreline retreat is 150 times the rate of sea-level rise. This rate, they say, is more than a magnitude greater than would be expected from a simple response to sea-level rise through inundation of the shoreline. We agree that sea-level rise is the primary factor causing shoreline retreat in stable coastal areas.This is intuitive. We also believe, however, that the Leatherman et al. [2000] study has greatly underestimated the rate of coastal recession along most low slope shorelines. Slopes along the North Carolina continental shelf/coastal plain approach 10,000:1. To us, this suggests that we should expect rates of shoreline recession 10,000 times the rate of sea-level rise through simple inundation of the shoreline.

  3. Coastal sea level rise with warming above 2 °C

    PubMed Central

    Jevrejeva, Svetlana; Jackson, Luke P.; Riva, Riccardo E. M.; Grinsted, Aslak; Moore, John C.

    2016-01-01

    Two degrees of global warming above the preindustrial level is widely suggested as an appropriate threshold beyond which climate change risks become unacceptably high. This “2 °C” threshold is likely to be reached between 2040 and 2050 for both Representative Concentration Pathway (RCP) 8.5 and 4.5. Resulting sea level rises will not be globally uniform, due to ocean dynamical processes and changes in gravity associated with water mass redistribution. Here we provide probabilistic sea level rise projections for the global coastline with warming above the 2 °C goal. By 2040, with a 2 °C warming under the RCP8.5 scenario, more than 90% of coastal areas will experience sea level rise exceeding the global estimate of 0.2 m, with up to 0.4 m expected along the Atlantic coast of North America and Norway. With a 5 °C rise by 2100, sea level will rise rapidly, reaching 0.9 m (median), and 80% of the coastline will exceed the global sea level rise at the 95th percentile upper limit of 1.8 m. Under RCP8.5, by 2100, New York may expect rises of 1.09 m, Guangzhou may expect rises of 0.91 m, and Lagos may expect rises of 0.90 m, with the 95th percentile upper limit of 2.24 m, 1.93 m, and 1.92 m, respectively. The coastal communities of rapidly expanding cities in the developing world, and vulnerable tropical coastal ecosystems, will have a very limited time after midcentury to adapt to sea level rises unprecedented since the dawn of the Bronze Age. PMID:27821743

  4. Coastal sea level rise with warming above 2 °C.

    PubMed

    Jevrejeva, Svetlana; Jackson, Luke P; Riva, Riccardo E M; Grinsted, Aslak; Moore, John C

    2016-11-22

    Two degrees of global warming above the preindustrial level is widely suggested as an appropriate threshold beyond which climate change risks become unacceptably high. This "2 °C" threshold is likely to be reached between 2040 and 2050 for both Representative Concentration Pathway (RCP) 8.5 and 4.5. Resulting sea level rises will not be globally uniform, due to ocean dynamical processes and changes in gravity associated with water mass redistribution. Here we provide probabilistic sea level rise projections for the global coastline with warming above the 2 °C goal. By 2040, with a 2 °C warming under the RCP8.5 scenario, more than 90% of coastal areas will experience sea level rise exceeding the global estimate of 0.2 m, with up to 0.4 m expected along the Atlantic coast of North America and Norway. With a 5 °C rise by 2100, sea level will rise rapidly, reaching 0.9 m (median), and 80% of the coastline will exceed the global sea level rise at the 95th percentile upper limit of 1.8 m. Under RCP8.5, by 2100, New York may expect rises of 1.09 m, Guangzhou may expect rises of 0.91 m, and Lagos may expect rises of 0.90 m, with the 95th percentile upper limit of 2.24 m, 1.93 m, and 1.92 m, respectively. The coastal communities of rapidly expanding cities in the developing world, and vulnerable tropical coastal ecosystems, will have a very limited time after midcentury to adapt to sea level rises unprecedented since the dawn of the Bronze Age.

  5. The multimillennial sea-level commitment of global warming.

    PubMed

    Levermann, Anders; Clark, Peter U; Marzeion, Ben; Milne, Glenn A; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-08-20

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.

  6. The multimillennial sea-level commitment of global warming

    PubMed Central

    Levermann, Anders; Clark, Peter U.; Marzeion, Ben; Milne, Glenn A.; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-01-01

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C−1 and 1.2 m °C−1 of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C−1 within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales. PMID:23858443

  7. Global change and relative sea level rise at Venice: what impact in term of flooding

    NASA Astrophysics Data System (ADS)

    Carbognin, Laura; Teatini, Pietro; Tomasin, Alberto; Tosi, Luigi

    2010-11-01

    Relative sea level rise (RSLR) due to climate change and geodynamics represents the main threat for the survival of Venice, emerging today only 90 cm above the Northern Adriatic mean sea level (msl). The 25 cm RSLR occurred over the 20th century, consisting of about 12 cm of land subsidence and 13 cm of sea level rise, has increased the flood frequency by more than seven times with severe damages to the urban heritage. Reasonable forecasts of the RSLR expected to the century end must be investigated to assess the suitability of the Mo.S.E. project planned for the city safeguarding, i.e., the closure of the lagoon inlets by mobile barriers. Here we consider three RSLR scenarios as resulting from the past sea level rise recorded in the Northern Adriatic Sea, the IPCC mid-range A1B scenario, and the expected land subsidence. Available sea level measurements show that more than 5 decades are required to compute a meaningful eustatic trend, due to pseudo-cyclic 7-8 year long fluctuations. The period from 1890 to 2007 is characterized by an average rate of 0.12 ± 0.01 cm/year. We demonstrate that linear regression is the most suitable model to represent the eustatic process over these 117 year. Concerning subsidence, at present Venice is sinking due to natural causes at 0.05 cm/year. The RSLR is expected to range between 17 and 53 cm by 2100, and its repercussions in terms of flooding frequency are associated here to each scenario. In particular, the frequency of tides higher than 110 cm, i.e., the value above which the gates would close the lagoon to the sea, will increase from the nowadays 4 times per year to a range between 20 and 250. These projections provide a large spread of possible conditions concerning the survival of Venice, from a moderate nuisance to an intolerable aggression. Hence, complementary solutions to Mo.S.E. may well be investigated.

  8. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise

    USGS Publications Warehouse

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2016-01-01

    In the 21st century, accelerated sea-level rise and continued coastal development are expected to greatly alter coastal landscapes across the globe. Historically, many coastal ecosystems have responded to sea-level fluctuations via horizontal and vertical movement on the landscape. However, anthropogenic activities, including urbanization and the construction of flood-prevention infrastructure, can produce barriers that impede ecosystem migration. Here we show where tidal saline wetlands have the potential to migrate landward along the northern Gulf of Mexico coast, one of the most sea-level rise sensitive and wetland-rich regions of the world. Our findings can be used to identify migration corridors and develop sea-level rise adaptation strategies to help ensure the continued availability of wetland-associated ecosystem goods and services.

  9. Separating decadal global water cycle variability from sea level rise.

    PubMed

    Hamlington, B D; Reager, J T; Lo, M-H; Karnauskas, K B; Leben, R R

    2017-04-20

    Under a warming climate, amplification of the water cycle and changes in precipitation patterns over land are expected to occur, subsequently impacting the terrestrial water balance. On global scales, such changes in terrestrial water storage (TWS) will be reflected in the water contained in the ocean and can manifest as global sea level variations. Naturally occurring climate-driven TWS variability can temporarily obscure the long-term trend in sea level rise, in addition to modulating the impacts of sea level rise through natural periodic undulation in regional and global sea level. The internal variability of the global water cycle, therefore, confounds both the detection and attribution of sea level rise. Here, we use a suite of observations to quantify and map the contribution of TWS variability to sea level variability on decadal timescales. In particular, we find that decadal sea level variability centered in the Pacific Ocean is closely tied to low frequency variability of TWS in key areas across the globe. The unambiguous identification and clean separation of this component of variability is the missing step in uncovering the anthropogenic trend in sea level and understanding the potential for low-frequency modulation of future TWS impacts including flooding and drought.

  10. USACE Extreme Sea levels

    DTIC Science & Technology

    2014-03-14

    with expected changes due to climate change. (tropicals and extra-tropicals) Ivan provided some good information on work being done on tropical...Pattiaratchi, C., Jensen, J., 2013. Estimating extreme water level probabilities: a comparison of the direct methods and recommendations for best practise ...sites: site-by-site analyses. Proudman Oceanographic Laboratory , Internal Document, No. 65, 229pp. Dixon, M.J., Tawn, J.A. (1995) Extreme sea-levels

  11. Allowances for evolving coastal flood risk under uncertain local sea-level rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Maya K.; Kopp, Robert E.; Oppenheimer, Michael

    Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections.We provide a framework of SLR allowances that employs complete probability distributions ofmore » local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. In conclusion, we illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.« less

  12. Allowances for evolving coastal flood risk under uncertain local sea-level rise

    DOE PAGES

    Buchanan, Maya K.; Kopp, Robert E.; Oppenheimer, Michael; ...

    2016-06-03

    Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections.We provide a framework of SLR allowances that employs complete probability distributions ofmore » local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. In conclusion, we illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.« less

  13. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-07-01

    Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.

  14. Doubling of coastal flooding frequency within decades due to sea-level rise

    USGS Publications Warehouse

    Vitousek, Sean; Barnard, Patrick L.; Fletcher, Charles H.; Frazer, Neil; Erikson, Li; Storlazzi, Curt D.

    2017-01-01

    Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

  15. Dtection of Sea Level Rise within the Arabian Gulf Using Space Based GNSS Measurements and Insitu Tide Gauge data

    NASA Astrophysics Data System (ADS)

    Alothman, Abdulaziz; Ayhan, Mehmet

    In the 21st century, sea level rise is expected to be about 30 cm or even more (up to 60 cm). Saudi Arabia has very long coasts of about 3400 km and hundreds of islands. Therefore, sea level monitoring may be important in particular along coastal low lands on Red Sea and Arabian Gulf coasts. Arabian Gulf is connected to Indian Ocean and lying along a parallel course in the south-west of the Zagros Trust Belt. We expect vertical land motion within the area due to both tectonic structures of the Arabian Peninsula and oil production activities. Global Navigation Satellite System (GNSS) Continues observations were used to estimate the vertical crustal motion. Bahrain International GPS Service (IGS-GPS) station is the only continuous GPS station accessible in the region, and it is close to the Mina Sulman tide gauge station in Bahrain. The weekly GPS time series of vertical component at Bahrain IGS-GPS station referring to the ITRF97 from 1999.2 to 2008.6 are used in the computation. We fitted a linear trend with an annual signal and a break to the GPS vertical time series and found a vertical land motion rate of 0.46 0.11 mm/yr. To investigate sea level variation within the west of Arabian Gulf, monthly means of sea level at 13 tide gauges along the coast of Saudi Arabia and Bahrain, available in the database of the Permanent Service for Mean Sea Level (PSMSL), are studied. We analyzed separately the monthly mean sea level measurements at each station, and estimated secular sea level rate by a robust linear trend fitting. We computed the average relative sea level rise rate of 1.96 0.21 mm/yr within the west of Arabian Gulf based on 4 stations spanning longer than 19 years. Sea level rates at the stations are first corrected for vertical land motion contamination using the ICE-5G v1.2 VM4 Glacial Isostatic Adjustment (GIA) model, and the average sea level rate is found 2.27 0.21 mm/yr. Assuming the vertical rate at Bahrain IGS-GPS station represents the vertical rate at each of the other tide gauge stations studied here in the region, we computed average sea level rise rate of 2.42 0.21 mm/yr within the west of Arabian Gulf.

  16. Sea level change: lessons from the geologic record

    USGS Publications Warehouse

    ,

    1995-01-01

    Rising sea level is potentially one of the most serious impacts of climatic change. Even a small sea level rise would have serious economic consequences because it would cause extensive damage to the world's coastal regions. Sea level can rise in the future because the ocean surface can expand due to warming and because polar ice sheets and mountain glaciers can melt, increasing the ocean's volume of water. Today, ice caps on Antarctica and Greenland contain 91 and 8 percent of the world's ice, respectively. The world's mountain glaciers together contain only about 1 percent. Melting all this ice would raise sea level about 80 meters. Although this extreme scenario is not expected, geologists know that sea level can rise and fall rapidly due to changing volume of ice on continents. For example, during the last ice age, about 18,000 years ago, continental ice sheets contained more than double the modem volume of ice. As ice sheets melted, sea level rose 2 to 3 meters per century, and possibly faster during certain times. During periods in which global climate was very warm, polar ice was reduced and sea level was higher than today.

  17. Future sea level rise constrained by observations and long-term commitment.

    PubMed

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-03-08

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.

  18. Future sea level rise constrained by observations and long-term commitment

    PubMed Central

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-01-01

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections. PMID:26903648

  19. Future probabilities of coastal floods in Finland

    NASA Astrophysics Data System (ADS)

    Pellikka, Havu; Leijala, Ulpu; Johansson, Milla M.; Leinonen, Katri; Kahma, Kimmo K.

    2018-04-01

    Coastal planning requires detailed knowledge of future flooding risks, and effective planning must consider both short-term sea level variations and the long-term trend. We calculate distributions that combine short- and long-term effects to provide estimates of flood probabilities in 2050 and 2100 on the Finnish coast in the Baltic Sea. Our distributions of short-term sea level variations are based on 46 years (1971-2016) of observations from the 13 Finnish tide gauges. The long-term scenarios of mean sea level combine postglacial land uplift, regionally adjusted scenarios of global sea level rise, and the effect of changes in the wind climate. The results predict that flooding risks will clearly increase by 2100 in the Gulf of Finland and the Bothnian Sea, while only a small increase or no change compared to present-day conditions is expected in the Bothnian Bay, where the land uplift is stronger.

  20. Sea-Level Rise and Land Subsidence in Deltas: Estimating Future Flood Risk Through Integrated Natural and Human System Modeling

    NASA Astrophysics Data System (ADS)

    Tessler, Z. D.; Vorosmarty, C. J.

    2016-12-01

    Deltas are highly sensitive to local human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. We present a new delta flood exposure and risk framework for estimating the sensitivity of deltas to relative sea-level rise. We have applied this framework to a set of global environmental, geophysical, and social indicators over 48 major river deltas to quantify how contemporary risks vary across delta systems. The risk modeling framework incorporates upstream sediment flux and coastal land subsidence models, global empirical estimates of contemporary storm surge exposure, and population distribution and growth. Future scenarios are used to test the impacts on coastal flood risk of upstream dam construction, coastal population growth, accelerated sea-level rise, and enhanced storm surge. Results suggest a wide range of outcomes across different delta systems within each scenario. Deltas in highly engineered watersheds (Mississippi, Rhine) exhibit less sensitivity to increased dams due to saturation of sediment retention effects, though planned or under-construction dams are expected to have a substantial impact in the Yangtze, Irrawaddy, and Magdalena deltas. Population growth and sea-level rise are expected to be the dominant drivers of increased human risk in most deltas, with important exceptions in several countries, particularly China, where population are forecast to contract over the next several decades.

  1. Understanding the science of climate change: Talking points - Impacts to the Pacific Islands

    Treesearch

    Amanda Schramm; Rachel Loehman

    2011-01-01

    The Pacific islands face a variety of impacts as a result of climate change. Already-observed changes include increased average temperatures, coral bleaching, sea level rise and associated coastal erosion, increased intensity of cyclones, and a trend toward drier conditions. In the next century, sea level rise and associated erosion are expected to shrink shorelines...

  2. Sea-Level Rise and Flood Potential along the California Coast

    NASA Astrophysics Data System (ADS)

    Delepine, Q.; Leung, C.

    2013-12-01

    Sea-level rise is becoming an ever-increasing problem in California. Sea-level is expected to rise significantly in the next 100 years, which will raise flood elevations in coastal communities. This will be an issue for private homeowners, businesses, and the state. One study suggests that Venice Beach could lose a total of at least $440 million in tourism spending and tax dollars from flooding and beach erosion if sea level rises 1.4 m by 2100. In addition, several airports, such as San Francisco International Airport, are located in coastal regions that have flooded in the past and will likely be flooded again in the next 30 years, but sea-level rise is expected to worsen the effects of flooding in the coming decades It is vital for coastal communities to understand the risks associated with sea-level rise so that they can plan to adapt to it. By obtaining accurate LiDAR elevation data from the NOAA Digital Coast Website (http://csc.noaa.gov/dataviewer/?keyword=lidar#), we can create flood maps to simulate sea level rise and flooding. The data are uploaded to ArcGIS and contour lines are added for different elevations that represent future coastlines during 100-year flooding. The following variables are used to create the maps: 1. High-resolution land surface elevation data - obtained from NOAA 2. Local mean high water level - from USGS 3. Local 100-year flood water level - from the Pacific Institute 4. Sea-level rise projections for different future dates (2030, 2050, and 2100) - from the National Research Council The values from the last three categories are added to represent sea-level rise plus 100-year flooding. These values are used to make the contour lines that represent the projected flood elevations, which are then exported as KML files, which can be opened in Google Earth. Once these KML files are made available to the public, coastal communities will gain an improved understanding of how flooding and sea-level rise might affect them in the future. This would allow them to plan ahead to reduce the level of risk to homes, industry, and infrastructure San Francisco International Airport will be most likely be flooded in the next 30 years. Blue lines indicate current Mean High Water Levels. Yellow lines indicate the Mean High Water level combined with flood levels for 2030. Green, 2050, and Red lines, 2100

  3. The importance of vegetation change in the prediction of future tropical cyclone flood statistics

    NASA Astrophysics Data System (ADS)

    Irish, J. L.; Resio, D.; Bilskie, M. V.; Hagen, S. C.; Weiss, R.

    2015-12-01

    Global sea level rise is a near certainty over the next century (e.g., Stocker et al. 2013 [IPCC] and references therein). With sea level rise, coastal topography and land cover (hereafter "landscape") is expected to change and tropical cyclone flood hazard is expected to accelerate (e.g., Irish et al. 2010 [Ocean Eng], Woodruff et al. 2013 [Nature], Bilskie et al. 2014 [Geophys Res Lett], Ferreira et al. 2014 [Coast Eng], Passeri et al. 2015 [Nat Hazards]). Yet, the relative importance of sea-level rise induced landscape change on future tropical cyclone flood hazard assessment is not known. In this paper, idealized scenarios are used to evaluate the relative impact of one class of landscape change on future tropical cyclone extreme-value statistics in back-barrier regions: sea level rise induced vegetation migration and loss. The joint probability method with optimal sampling (JPM-OS) (Resio et al. 2009 [Nat Hazards]) with idealized surge response functions (e.g., Irish et al. 2009 [Nat Hazards]) is used to quantify the present-day and future flood hazard under various sea level rise scenarios. Results are evaluated in terms of their impact on the flood statistics (a) when projected flood elevations are included directly in the JPM analysis (Figure 1) and (b) when represented as additional uncertainty within the JPM integral (Resio et al. 2013 [Nat Hazards]), i.e., as random error. Findings are expected to aid in determining the level of effort required to reasonably account for future landscape change in hazard assessments, namely in determining when such processes are sufficiently captured by added uncertainty and when sea level rise induced vegetation changes must be considered dynamically, via detailed modeling initiatives. Acknowledgements: This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1206271 and by the National Sea Grant College Program of the U.S. Department of Commerce's National Oceanic and Atmospheric Administration under Grant No. NA10OAR4170099. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of these organizations. The STOKES ARCC at the University of Central Florida provided computational resources for storm surge simulations.

  4. Sea level change since 2005: importance of salinity

    NASA Astrophysics Data System (ADS)

    Llovel, W.; Purkey, S.; Meyssignac, B.; Kolodziejczyk, N.; Blazquez, A.; Bamber, J. L.

    2017-12-01

    Sea level rise is one of the most important consequences of the actual global warming. Global mean sea level has been rising at a faster rate since 1993 (over the satellite altimetry era) than previous decades. This rise is expected to accelerate over the coming decades and century. At global scale, sea level rise is caused by a combination of freshwater increase from land ice melting and land water changes (mass component) and ocean warming (thermal expansion). Estimating the causes is of great interest not only to understand the past sea level changes but also to validate projections based on climate models. In this study, we investigate the global mass contribution to recent sea level changes with an alternative approach by estimating the global ocean freshening. For that purpose, we consider the unprecedented amount of salinity measurements from Argo floats for the past decade (2005-2015). We compare our results to the ocean mass inferred by GRACE data and based on a sea level budget approach. Our results bring new constrains on the global water cycle (ocean freshening) and energy budget (ocean warming) as well as on the global ocean mass directly inferred from GRACE data.

  5. Assessing risk of navigational hazard from sea-level-related datum in the South West of Java Sea, Indonesia

    NASA Astrophysics Data System (ADS)

    Poerbandono

    2017-07-01

    This paper assesses the presence of navigational hazards due to underestimation of charted depths originated from an establishment of a sea-level-related reference plane, i.e. datum. The study domain is situated in one of Indonesia's densest marine traffic, SW Java Sea, Indonesia. The assessment is based on the comparison of the authorized Chart Datum (CD), being uniformly located at 0.6 m below Mean Sea Level (MSL), and a spatially varying Lowest Astronomical Tide (LAT) generated for the purpose of this research. Hazards are considered here as the deviation of LAT from CD and quantified as the ratio of LAT -CD deviation with respect to the allowable Total Vertical Uncertainty (TVU), i.e. the international standard for accuracy of depth information on nautical charts. Underestimation of charted depth is expected for the case that LAT falls below CD. Such a risk magnifies with decreasing depths, as well as the increasing volume of traffic and draught of the vessel. It is found that most of the domain is in the interior of risk-free zone from using uniform CD. As much as 0.08 and 0.19 parts of the area are in zones where the uncertainty of CD contributes respectively to 50% and 30% of Total Vertical Uncertainty. These are zones where the hazard of navigation is expected to increase due to underestimated lowest tidal level.

  6. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves

    Treesearch

    Richard A. MacKenzie; Patra B. Foulk; J. Val Klump; Kimberly Weckerly; Joko Purbospito; Daniel Murdiyarso; Daniel C. Donato; Vien Ngoc Nam

    2016-01-01

    Increased sea level is the climate change effect expected to have the greatest impact on mangrove forest survival. Mangroves have survived extreme fluctuations in sea level in the past through sedimentation and belowground carbon (C) accumulation, yet it is unclear what factors may influence these two parameters. We measured sedimentation, vertical accretion, and...

  7. Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds

    Treesearch

    H. Galbraith; R. Jones; R. Park; J. Clough; S. Herrod-Julius; B. Harrington; G. Page

    2005-01-01

    Global warming is expected to result in an acceleration of current rates of sea level rise, inundating many low-lying coastal and intertidal areas. This could have important implications for organisms that depend on these sites, including shorebirds that rely on them for foraging habitat during their migrations and in winter. We modeled the potential changes in the...

  8. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise

    USGS Publications Warehouse

    Doyle, T.W.; Krauss, K.W.; Conner, W.H.; From, A.S.

    2010-01-01

    Tidal freshwater forests in coastal regions of the southeastern United States are undergoing dieback and retreat from increasing tidal inundation and saltwater intrusion attributed to climate variability and sea-level rise. In many areas, tidal saltwater forests (mangroves) contrastingly are expanding landward in subtropical coastal reaches succeeding freshwater marsh and forest zones. Hydrological characteristics of these low-relief coastal forests in intertidal settings are dictated by the influence of tidal and freshwater forcing. In this paper, we describe the application of the Sea Level Over Proportional Elevation (SLOPE) model to predict coastal forest retreat and migration from projected sea-level rise based on a proxy relationship of saltmarsh/mangrove area and tidal range. The SLOPE model assumes that the sum area of saltmarsh/mangrove habitat along any given coastal reach is determined by the slope of the landform and vertical tide forcing. Model results indicated that saltmarsh and mangrove migration from sea-level rise will vary by county and watershed but greater in western Gulf States than in the eastern Gulf States where millions of hectares of coastal forest will be displaced over the next century with a near meter rise in relative sea level alone. Substantial losses of coastal forests will also occur in the eastern Gulf but mangrove forests in subtropical zones of Florida are expected to replace retreating freshwater forest and affect regional biodiversity. Accelerated global eustacy from climate change will compound the degree of predicted retreat and migration of coastal forests with expected implications for ecosystem management of State and Federal lands in the absence of adaptive coastal management.

  9. Salt marsh persistence is threatened by predicted sea-level rise

    NASA Astrophysics Data System (ADS)

    Crosby, Sarah C.; Sax, Dov F.; Palmer, Megan E.; Booth, Harriet S.; Deegan, Linda A.; Bertness, Mark D.; Leslie, Heather M.

    2016-11-01

    Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local sea-level rise rates were less likely to be keeping pace. These results suggest that sea-level rise will overwhelm most salt marshes' capacity to maintain elevation. Under the most optimistic IPCC emissions pathway, 60% of the salt marshes studied will be gaining elevation at a rate insufficient to keep pace with sea-level rise by 2100. Without mitigation of greenhouse gas emissions this potential loss could exceed 90%, which will have substantial ecological, economic, and human health consequences.

  10. Sea level change in Great Britain between 1859 and the present

    NASA Astrophysics Data System (ADS)

    Woodworth, Philip L.

    2018-04-01

    Short records of sea level measurements by the Ordnance Survey at 31 locations in 1859-1860, together with recent Mean Sea Level (MSL) information from the UK tide gauge network, have been used to estimate the average rates of sea level change around the coast of Great Britain since the mid-19th century. Rates are found to be approximately 1 mm yr-1 in excess of those expected for the present day based on geological information, providing evidence for a climate-change related component of the increase in UK sea level. In turn, the rates of change of MSL for the past 60 yr are estimated to be ˜1 mm yr-1 in excess of the long-term rates since 1859, suggesting an acceleration in the rate of sea level rise between the 19th and 20th/21st centuries. Although the historical records are very short (approximately a fortnight), this exercise in `data archaeology' shows how valuable to research even the shortest records can be, as long as the measurements were made by competent people and the datums of the measurements were fully documented.

  11. Model projections of rapid sea-level rise on the northeast coast of the United States

    NASA Astrophysics Data System (ADS)

    Yin, Jianjun; Schlesinger, Michael E.; Stouffer, Ronald J.

    2009-04-01

    Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. Here we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea-level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.

  12. Model Projections of Rapid Sea-Level Rise on the Northeast Coast of the United States

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schlesinger, M.; Stouffer, R. J.

    2009-12-01

    Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. In the present study, we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21 cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.

  13. Is the detection of accelerated sea level rise imminent?

    DOE PAGES

    Fasullo, J. T.; Nerem, R. S.; Hamlington, B.

    2016-08-10

    Global mean sea level rise estimated from satellite altimetry provides a strong constraint on climate variability and change and is expected to accelerate as the rates of both ocean warming and cryospheric mass loss increase over time. In stark contrast to this expectation however, current altimeter products show the rate of sea level rise to have decreased from the first to second decades of the altimeter era. Here, a combined analysis of altimeter data and specially designed climate model simulations shows the 1991 eruption of Mt Pinatubo to likely have masked the acceleration that would have otherwise occurred. This maskingmore » arose largely from a recovery in ocean heat content through the mid to late 1990 s subsequent to major heat content reductions in the years following the eruption. As a result, a consequence of this finding is that barring another major volcanic eruption, a detectable acceleration is likely to emerge from the noise of internal climate variability in the coming decade.« less

  14. Is the detection of accelerated sea level rise imminent?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasullo, J. T.; Nerem, R. S.; Hamlington, B.

    Global mean sea level rise estimated from satellite altimetry provides a strong constraint on climate variability and change and is expected to accelerate as the rates of both ocean warming and cryospheric mass loss increase over time. In stark contrast to this expectation however, current altimeter products show the rate of sea level rise to have decreased from the first to second decades of the altimeter era. Here, a combined analysis of altimeter data and specially designed climate model simulations shows the 1991 eruption of Mt Pinatubo to likely have masked the acceleration that would have otherwise occurred. This maskingmore » arose largely from a recovery in ocean heat content through the mid to late 1990 s subsequent to major heat content reductions in the years following the eruption. As a result, a consequence of this finding is that barring another major volcanic eruption, a detectable acceleration is likely to emerge from the noise of internal climate variability in the coming decade.« less

  15. Increasing extreme water level flood risk as a result of future sea-level rise: A case study on a coastal city in China

    NASA Astrophysics Data System (ADS)

    Feng, A.; Wu, S.

    2016-12-01

    Extreme water levels, caused by the joint occurrence of storm surges and high tides, always lead to super floods along coastlines. In the context of climate change, this study explored the impact of future sea-level rise on the flood risk of extreme water levels. Using Rongcheng City in Shandong Province, China as a case study, flooded area, expected direct damage losses, and affected population and GDP were assessed for 2050 and 2100 under three greenhouse gas concentration Representative Concentration Pathways (RCP) scenarios, 2.6, 4.5, and 8.5. Results indicate that, as a result of sea-level rise induced by climate change, the flooded areas of Rongcheng City would increase by 3.23% to 10.64% in 2050 and by as much as 4.98% to 19.87% in 2100, compared with current recurrence periods. Residential land and farmland are at greatest risk of flooding in terms of exposure and losses than other land-use types, and under a high degree RCP 8.5 scenario, expected damage losses would be between 59.84 billion and 86.45 billion in 2050. Results show that the increase in total direct damage losses would reach an average of 60% in 2100 as a result of a 0.82 m sea-level rise. Similarly, affected population and GDP would increase by between 4.95% and 13.87% and between 3.66% and 10.95% in 2050, and by as much as 7.69% to 29.01% and 5.30% to 20.50% in 2100. This study shows that sea-level rise significantly shortens recurrence periods of extreme water levels, makes extreme flood events more frequent, and exacerbates the risk of future flooding. Our results suggest that, if there is no adaptation, sea-level rise will greatly increase the risk of flooding and severely impact human habitability along coastlines.

  16. Modeling and Analysis of Sea-level Rise Impacts on Salinity in the Lower St. Johns River

    NASA Astrophysics Data System (ADS)

    Bacopoulos, P.

    2015-12-01

    There is deliberate attention being paid to studying sea-level rise impacts on the lower St. Johns River, a drowned coastal plain-type estuary with low topographic drive, located in northeastern Florida. One area of attention is salinity in the river, which influences the entire food web, including sea and marsh grasses, juvenile crustaceans and fishes, wading birds and migratory waterfowl, marine mammals and other predator animals. It is expected that elevated ocean levels will increase the salinity of the estuarine waters, leading to deleterious effects on dependent species of the river biology. The objective of the modeling and analysis was: 1) to establish baseline conditions of salinity for the lower St. Johns River; and 2) to examine future conditions of salinity, as impacted by sea-level rise. Establishing baseline conditions entailed validation of the model for present-day salinity in the lower St. Johns River via comparison to available data. Examining future conditions entailed application of the model for sea-level rise scenarios, with comparison to the baseline conditions, for evaluation of sea-level rise impacts on salinity. While the central focus was on the physics of sea-level rise impacts on salinity, some level of salinity-biological assessment was conducted to identify sea-level rise/salinity thresholds, as related to negatively impacting different species of the river biology.

  17. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze

    USGS Publications Warehouse

    Borchert, Sinéad M.; Osland, Michael J.; Enwright, Nicholas M.; Griffith, Kereen

    2018-01-01

    Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze.We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban development is expected to prevent migration for 39 estuaries along the wetland‐rich USA Gulf of Mexico coast. We did so under three sea level rise scenarios (0.5, 1.0, and 1.5 m by 2100).Within the region, the potential for wetland migration is highest within certain estuaries in Louisiana and southern Florida (e.g. Atchafalaya/Vermilion Bays, Mermentau River, Barataria Bay, and the North and South Ten Thousand Islands estuaries).The potential for coastal squeeze is highest in estuaries containing major metropolitan areas that extend into low‐lying lands. The Charlotte Harbor, Tampa Bay, and Crystal‐Pithlachascotee estuaries (Florida) have the highest amounts of urban land expected to constrain wetland migration. Urban barriers to migration are also high in the Galveston Bay (Texas) and Atchafalaya/Vermilion Bays (Louisiana) estuaries.Synthesis and applications. Coastal wetlands provide many ecosystem services that benefit human health and well‐being, including shoreline protection and fish and wildlife habitat. As the rate of sea level rise accelerates in response to climate change, coastal wetland resources could be lost in areas that lack space for landward migration. Migration corridors are particularly important in highly urbanized estuaries where, due to low‐lying coastal development, there is not space for wetlands to move and adapt to sea level rise. Future‐focused landscape conservation plans that incorporate the protection of wetland migration corridors can increase the adaptive capacity of these valuable ecosystems and simultaneously decrease the vulnerability of coastal human communities to the harmful effects of rising seas.

  18. Sea Level History in 3D: Early results of an ultra-high resolution MCS survey across IODP Expedition 313 drillsites

    NASA Astrophysics Data System (ADS)

    Mountain, G. S.; Kucuk, H. M.; Nedimovic, M. R.; Austin, J. A., Jr.; Fulthorpe, C.; Newton, A.; Baldwin, K.; Johnson, C.; Stanley, J. N.; Bhatnagar, T.

    2015-12-01

    Although globally averaged sea level is rising at roughly 3 mm/yr (and is accelerating), rates of local sea-level change measured at coastlines may differ from this number by a factor of two or more; at some locations, sea level may even be falling. This is due to local processes that can match or even reverse the global trend, making it clear that reliable predictions of future impacts of sea-level rise require a firm understanding of processes at the local level. The history of local sea-level change and shoreline response is contained in the geologic record of shallow-water sediments. We report on a continuing study of sea-level history in sediments at the New Jersey continental margin, where compaction and glacial isostatic adjustment are currently adding 2 mm/yr to the globally averaged rise. We collected 570 sq km of ultra-high resolution 3D MCS data aboard the R/V Langseth in June-July 2015; innovative recording and preliminary results are described by Nedimovic et al. in this same session. The goal was to provide regional context to coring and logging at IODP Exp 313 sites 27-29 that were drilled 750 m into the New Jersey shelf in 2009. These sites recovered a nearly continuous record of post-Eocene sediments from non-marine soils, estuaries, shoreface, delta front, pro-delta and open marine settings. Existing seismic data are good but are 2D high-resolution profiles at line spacings too wide to enable mapping of key nearshore features. The Langseth 3D survey used shallow towing of a tuned air gun array to preserve high frequencies, and twenty-four 50-m PCables each 12.5 apart provided 6.25 x 3.125 m common-midpoint bins along seventy-seven 50-km sail lines. With this especially dense spatial resolution of a pre-stack time migrated volume we expect to map rivers, incised valleys, barrier islands, inlets and bays, pro-delta clinoforms, tidal deltas, sequence boundaries, debris flow aprons, and more. Seismic attributes linked to sedimentary facies and geochronology at Exp 313 drill sites will be extended throughout the volume to map the local response to global sea-level change. These analyses will provide an unrivaled opportunity to gauge the local expression of sea-level change for much of the last 40 Ma and lead to informed predictions regarding impacts of a global rise of sea level expected to continue well into the future.

  19. Greenhouse effect and coastal wetland policy: How Americans could abandon an area the size of Massachusetts at minimum cost

    NASA Astrophysics Data System (ADS)

    Titus, James G.

    1991-01-01

    Climatologists generally expect an anthropogenic global warming that could raise sea level 30-150 cm in the next century and more thereafter. One of the impacts would be the loss of coastal wetlands. Although the inundation of adjacent dryland would enable new wetlands to form, much of this land is or will soon be developed. If developed areas are protected, wetlands will be squeezed between an advancing sea and the land being protected, which has already happened in China and the Netherlands, where people have built dikes for centuries. Unlike those countries, the United States has enough land to accommodate the landward migration of wetlands; but governments lack the funds to purchase all the coastal lowlands that might be inundated and the legal authority to prohibit their development. We propose a third approach: allowing property owners to use coastal lowlands today as they choose, but setting up a legal mechanism to ensure that the land is abandoned if and when sea level rises enough to inundate it. Although compensation may be required, this approach would cost less than 1% as much as purchasing the land, and would be (1) economically efficient by enabling real estate markets to incorporate expectations of future sea level rise; (2) constitutional by compensating property owners; and (3) politically feasible by pleasing people who care about the long-term fate of the coastal environment without disturbing people who either are unconcerned about the distant future or do not believe sea level will rise. This article demonstrates that it would be irrational to delay policy formulation until sea level rise projections are more precise. The cost will be small if we act now but great if we wait, and sea level is already rising along most coasts. The US government should develop a strategy in the next three years.

  20. Distribution of 90Sr, 137Cs and 239,240Pu in Caspian Sea water and biota

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Froehlich, Klaus; Gastaud, Janine; Oregioni, Beniamino; Pagava, Samson V.; Pham, Mai K.; Rusetski, Vladimir

    2003-09-01

    Two sampling expeditions were carried out in the Caspian Sea in 1995 and 1996. The aim was to investigate oceanographic conditions, water dynamics of the Sea and to measure radionuclide concentrations using 90Sr, 137Cs and 239,240Pu as tracers in the water column. Of the three basins comprising the Caspian Sea, the two deep basins (the central and southern basins) appear to be rapidly ventilated on a time scale of about 30 years, as shown by the penetration of radionuclides to bottom waters. The main source of radionuclides in the Sea has been global fallout and subsequent river run-off from catchment areas. At the stations visited, there were no signs of radioactive waste dumping, although the 90Sr levels found were higher than expected from global fallout, which may be due to remobilization of 90Sr from soil and its transport by rivers to the Sea. Radionuclide concentrations in fish and caviar are within the expected ranges and are not of radiological importance for consumption of fish and caviar from the Caspian Sea.

  1. An Ongoing Shift in Pacific Ocean Sea Level

    NASA Astrophysics Data System (ADS)

    Cheon, S. H.; Hamlington, B.; Thompson, P. R.; Merrifield, M. A.; Nerem, R. S.; Leben, R. R.; Kim, K. Y.

    2016-12-01

    According to the satellite altimeter data, local sea level trends have shown considerable diversity spatially as well as temporally. In particular, dramatic changes in sea level in the Pacific have been observed throughout the altimeter record, with high trends in the western tropical Pacific (WTP) and comparatively lower trends in the eastern Pacific. In recent years, however, a shift appears to be occurring, with falling trends in the (WTP) and rising trends in the eastern tropical and northeastern Pacific (ETP and NEP). From a planning perspective, it is important to figure out whether these sharp changes are part of a short-term shift or the beginning of a longer-term change in sea level. In this study, we distinguish the origins of the recent shift in Pacific Ocean sea level. Cyclostationary empirical orthogonal function (CSEOF) analysis is applied to separate the properties of the recent sea level change in the Pacific Ocean. From the CSEOF analysis results, we point out two dominant modes of sea level shift in the Pacific Ocean. The first mode is related to the biennial oscillation associated with El Nino-Southern Oscillation (ENSO) and the other is related to lower-frequency variability with a strong signal in the northern Pacific. Considering a relatively high correlation between recent sea level change and the low-frequency mode, we suggest that the low-frequency mode has played a dominant role in the sea level shift in the Pacific Ocean. Using a reconstructed sea level dataset, we examine the variability of this low-frequency mode in the past, and find similar periods of dramatic sea level change in the Pacific. Based on the sea level record of the last five years and according to the analysis, we conclude that in the coming decades, higher sea level trends off the U.S. West Coast should be expected, while reduced trends in the WTP will likely be observed.

  2. Understanding extreme sea levels for coastal impact and adaptation analysis

    NASA Astrophysics Data System (ADS)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Hinkel, J.; Dangendorf, S.; Slangen, A.

    2016-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels, because increasing damage due to extreme events, such as storm surges and tropical cyclones, is one of the major consequences of sea level rise and climate change. In fact, the IPCC has highlighted in its AR4 report that "societal impacts of sea level change primarily occur via the extreme levels rather than as a direct consequence of mean sea level changes". Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future mean sea level; different scenarios were developed with process-based or semi-empirical models and used for coastal impact assessments at various spatial scales to guide coastal management and adaptation efforts. The uncertainties in future sea level rise are typically accounted for by analyzing the impacts associated with a range of scenarios leading to a vertical displacement of the distribution of extreme sea-levels. And indeed most regional and global studies find little or no evidence for changes in storminess with climate change, although there is still low confidence in the results. However, and much more importantly, there is still a limited understanding of present-day extreme sea-levels which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of extreme sea-levels. The bias of these models varies spatially and can reach values much larger than the expected sea level rise; but it can be accounted for in most regions making use of in-situ measurements; (2) Statistical models used for determining present-day extreme sea-level exceedance probabilities. There is no universally accepted approach to obtain such values for flood risk assessments and while substantial research has explored inter-model uncertainties for mean sea level, we explore here, for the first time, inter-model uncertainties for extreme sea-levels at large spatial scales and compare them to the uncertainties in mean sea level projections.

  3. Show Me The Data! Data Visualizations Make Climate Change & Climate Impacts Real

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Ryan, W. B. F.; Porter, D. F.

    2016-12-01

    Today's learner is technology proficient. Whether we reference K12, undergraduate, or life long learners we expect that they are not only comfortable interacting with a range of digital media, from computer, to tablet, to a smart phone, but that they expect it. Technology is a central part of how most of us spend large portions of our day; connecting, communicating, recreating and learning. So why would we expect that today's learners would prefer to read about climate change and climate impacts from plain text? As educators we must embrace cutting edge methods and materials to engage our students and learners, meeting them where they are most comfortable. `Polar Explorer: Sea Level' is an app that uses interactive data maps to engage the users in the story of changing sea level. Designed for a general audience this free app (http://www.polarexplorer.org) is a great resource for life-long learners, teachers, students and the curious public. Built around a series of questions that are structured like book chapters, users select from a range of choices like: What is sea level? Why does sea level change? Where is it changing now? What about the polar regions? What about in the past? Who is vulnerable? Each section moves the user through layers of maps that address causes, impacts, future predictions and special vulnerabilities of a rising sea level. Users can select any pathway to build a story that captures their attention as they interact with the data and move through different layers of the app. Each map is interactive and supported by information 'snippits', audio clips and a link to further information. A series of `quests' are available for the app. Each quest is a story with a main science theme at its center that leads a planned excursion through a series of map layers while revealing a story in the data. The combination of physical science in what and where is sea level changing, with human impacts in the `who is vulnerable', builds a series of stories with a personal connection for the app user. Follow a quest to learn why sea level is falling on the Scandinavian coastline, or where you would find the highest mountain peak in Greenland or Antarctica. Users are encouraged to create their own quests and submit them to a shared repository. This app was developed as part of the PoLAR partnership supported by NSF (DUE-1239783).

  4. Coastal flood damage and adaptation costs under 21st century sea-level rise.

    PubMed

    Hinkel, Jochen; Lincke, Daniel; Vafeidis, Athanasios T; Perrette, Mahé; Nicholls, Robert James; Tol, Richard S J; Marzeion, Ben; Fettweis, Xavier; Ionescu, Cezar; Levermann, Anders

    2014-03-04

    Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea-level rise. Uncertainty in global mean and regional sea level was derived from four different climate models from the Coupled Model Intercomparison Project Phase 5, each combined with three land-ice scenarios based on the published range of contributions from ice sheets and glaciers. Without adaptation, 0.2-4.6% of global population is expected to be flooded annually in 2100 under 25-123 cm of global mean sea-level rise, with expected annual losses of 0.3-9.3% of global gross domestic product. Damages of this magnitude are very unlikely to be tolerated by society and adaptation will be widespread. The global costs of protecting the coast with dikes are significant with annual investment and maintenance costs of US$ 12-71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply. Flood damages by the end of this century are much more sensitive to the applied protection strategy than to variations in climate and socioeconomic scenarios as well as in physical data sources (topography and climate model). Our results emphasize the central role of long-term coastal adaptation strategies. These should also take into account that protecting large parts of the developed coast increases the risk of catastrophic consequences in the case of defense failure.

  5. Integrating spatial data and shorebird nesting locations to predict the potential future impact of global warming on coastal habitats: A case study on Farasan Islands, Saudi Arabia.

    PubMed

    Alrashidi, Monif; Shobrak, Mohammed; Al-Eissa, Mohammed S; Székely, Tamás

    2012-07-01

    One of the expected effects of the global warming is changing coastal habitats by accelerating the rate of sea level rise. Coastal habitats support large number of marine and wetland species including shorebirds (plovers, sandpipers and allies). In this study, we investigate how coastal habitats may be impacted by sea level rise in the Farasan Islands, Kingdom of Saudi Arabia. We use Kentish plover Charadrius alexandrinus - a common coastal breeding shorebird - as an ecological model species to predict the influence of sea level rise. We found that any rise of sea level is likely to inundate 11% of Kentish plover nests. In addition, 5% of the coastal areas of Farasan Islands, which support 26% of Kentish plover nests, will be flooded, if sea level rises by one metre. Our results are constrained by the availability of data on both elevation and bird populations. Therefore, we recommend follow-up studies to model the impacts of sea level rise using different elevation scenarios, and the establishment of a monitoring programme for breeding shorebirds and seabirds in Farasan Islands to assess the impact of climate change on their populations.

  6. Amplification of flood frequencies with local sea level rise and emerging flood regimes

    NASA Astrophysics Data System (ADS)

    Buchanan, Maya K.; Oppenheimer, Michael; Kopp, Robert E.

    2017-06-01

    The amplification of flood frequencies by sea level rise (SLR) is expected to become one of the most economically damaging impacts of climate change for many coastal locations. Understanding the magnitude and pattern by which the frequency of current flood levels increase is important for developing more resilient coastal settlements, particularly since flood risk management (e.g. infrastructure, insurance, communications) is often tied to estimates of flood return periods. The Intergovernmental Panel on Climate Change’s Fifth Assessment Report characterized the multiplication factor by which the frequency of flooding of a given height increases (referred to here as an amplification factor; AF). However, this characterization neither rigorously considered uncertainty in SLR nor distinguished between the amplification of different flooding levels (such as the 10% versus 0.2% annual chance floods); therefore, it may be seriously misleading. Because both historical flood frequency and projected SLR are uncertain, we combine joint probability distributions of the two to calculate AFs and their uncertainties over time. Under probabilistic relative sea level projections, while maintaining storm frequency fixed, we estimate a median 40-fold increase (ranging from 1- to 1314-fold) in the expected annual number of local 100-year floods for tide-gauge locations along the contiguous US coastline by 2050. While some places can expect disproportionate amplification of higher frequency events and thus primarily a greater number of historically precedented floods, others face amplification of lower frequency events and thus a particularly fast growing risk of historically unprecedented flooding. For example, with 50 cm of SLR, the 10%, 1%, and 0.2% annual chance floods are expected respectively to recur 108, 335, and 814 times as often in Seattle, but 148, 16, and 4 times as often in Charleston, SC.

  7. Probabilistic Projections of Future Sea-Level Change and Their Implications for Flood Risk Management: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Kopp, R. E., III; Delgado, M.; Horton, R. M.; Houser, T.; Little, C. M.; Muir-Wood, R.; Oppenheimer, M.; Rasmussen, D. M., Jr.; Strauss, B.; Tebaldi, C.

    2014-12-01

    Global mean sea level (GMSL) rise projections are insufficient for adaptation planning; local decisions require local projections that characterize risk over a range of timeframes and tolerances. We present a global set of local sea level (LSL) projections to inform decisions on timescales ranging from the coming decades through the 22nd century. We present complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling [1]. We illustrate the application of this framework by estimating the joint distribution of future sea-level change and coastal flooding, and associated economic costs [1,2]. In much of the world in the current century, differences in median LSL projections are due primarily to varying levels of non-climatic uplift or subsidence. In the 22nd century and in the high-end tails, larger ice sheet contributions, particularly from the Antarctic ice sheet (AIS), contribute significantly to site-to-site differences. Uncertainty in GMSL and most LSL projections is dominated by the uncertain AIS component. Sea-level rise dramatically reshapes flood risk. For example, at the New York City (Battery) tide gauge, our projections indicate a likely (67% probability) 21st century LSL rise under RCP 8.5 of 65--129 cm (1-in-20 chance of exceeding 154 cm). Convolving the distribution of projected sea-level rise with the extreme value distribution of flood return periods indicates that this rise will cause the current 1.80 m `1-in-100 year' flood event to occur an expected nine times over the 21st century -- equivalent to the expected number of `1-in-11 year' floods in the absence of sea-level change. Projected sea-level rise for 2100 under RCP 8.5 would likely place 80-160 billion of current property in New York below the high tide line, with a 1-in-20 chance of losses >190 billion. Even without accounting for potential changes in storms themselves, it would likely increase average annual storm damage by 2.6-5.2 billion (1-in-20 chance of >7 billion). Projected increases in tropical cyclone intensity would further increase damages [2]. References: [1] R. E. Kopp et al. (2014), Earth's Future, doi:10.1002/2014EF000239. [2] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org.

  8. Evaluation of marsh development processes at Fire Island National Seashore: Recent and historic perspectives

    USGS Publications Warehouse

    Roman, C.T.; King, D.R.; Cahoon, D.R.; Lynch, J.C.; Appleby, P.G.

    2007-01-01

    Purpose and significance of the study: Salt marshes are dynamic environments, increasing in vertical elevation and migrating, often landward, as sea level rises. With sea level rise greater than marsh elevation increase, marshes can be submerged, marsh soils become waterlogged, and plant growth becomes stressed, often resulting in conversion of vegetation-dominated marsh to mudflat or open water habitat. Given that the rate of sea level rise is expected to accelerate over the next century and that some marshes in the northeast are becoming submerged (e.g., Jamaica Bay, NY), it is important to understand the processes that control marsh development. More specifically, the objectives of this project were to quantify vertical marsh elevation change in relation to recent rates of sea-level rise and to investigate factors or processes that are most influential in controlling the development and maintenance of Fire Island salt marshes.

  9. Sea Level Rise Impacts On Infrastructure Vulnerability

    NASA Astrophysics Data System (ADS)

    Pasqualini, D.; Mccown, A. W.; Backhaus, S.; Urban, N. M.

    2015-12-01

    Increase of global sea level is one of the potential consequences of climate change and represents a threat for the U.S.A coastal regions, which are highly populated and home of critical infrastructures. The potential danger caused by sea level rise may escalate if sea level rise is coupled with an increase in frequency and intensity of storms that may strike these regions. These coupled threats present a clear risk to population and critical infrastructure and are concerns for Federal, State, and particularly local response and recovery planners. Understanding the effect of sea level rise on the risk to critical infrastructure is crucial for long planning and for mitigating potential damages. In this work we quantify how infrastructure vulnerability to a range of storms changes due to an increase of sea level. Our study focuses on the Norfolk area of the U.S.A. We assess the direct damage of drinking water and wastewater facilities and the power sector caused by a distribution of synthetic hurricanes. In addition, our analysis estimates indirect consequences of these damages on population and economic activities accounting also for interdependencies across infrastructures. While projections unanimously indicate an increase in the rate of sea level rise, the scientific community does not agree on the size of this rate. Our risk assessment accounts for this uncertainty simulating a distribution of sea level rise for a specific climate scenario. Using our impact assessment results and assuming an increase of future hurricanes frequencies and intensities, we also estimate the expected benefits for critical infrastructure.

  10. Kara Sea radioactivity assessment.

    PubMed

    Osvath, I; Povinec, P P; Baxter, M S

    1999-09-30

    Investigations following five international expeditions to the Kara Sea have shown that no radiologically significant contamination has occurred outside of the dumping sites in Novaya Zemlya bays. Increased levels of radionuclides in sediment have only been observed in Abrosimov and Stepovoy Bays very close to dumped containers. Evaluations of radionuclide inventories in water and sediment of the open Kara Sea and Novaya Zemlya bays as well as soil from the shore of Abrosimov bay have shown that radionuclide contamination of the open Kara Sea is mainly due to global fallout, with smaller contributions from the Sellafield reprocessing plant, the Chernobyl accident run-off from the Ob and Yenisey rivers and local fallout. Computer modelling results have shown that maximum annual doses of approximately 1 mSv are expected for a hypothetical critical group subsisting on fish caught in the Novaya Zemlya bays whereas populations living on the mainland can be expected to receive doses at least three orders of magnitude lower.

  11. Sea-level rise along the Emilia-Romagna coast (Northern Italy) in 2100: scenarios and impacts

    NASA Astrophysics Data System (ADS)

    Perini, Luisa; Calabrese, Lorenzo; Luciani, Paolo; Olivieri, Marco; Galassi, Gaia; Spada, Giorgio

    2017-12-01

    As a consequence of climate change and land subsidence, coastal zones are directly impacted by sea-level rise. In some particular areas, the effects on the ecosystem and urbanisation are particularly enhanced. We focus on the Emilia-Romagna (E-R) coastal plain in Northern Italy, bounded by the Po river mouth to the north and by the Apennines to the south. The plain is ˜ 130 km long and is characterised by wide areas below mean sea level, in part made up of reclaimed wetlands. In this context, several morphodynamic factors make the shore and back shore unstable. During next decades, the combined effects of land subsidence and of the sea-level rise as a result of climate change are expected to enhance the shoreline instability, leading to further retreat. The consequent loss of beaches would impact the economy of the region, which is tightly connected with tourism infrastructures. Furthermore, the loss of wetlands and dunes would threaten the ecosystem, which is crucial for the preservation of life and the environment. These specific conditions show the importance of a precise definition of the possible local impacts of the ongoing and future climate variations. The aim of this work is the characterisation of vulnerability in different sectors of the coastal plain and the recognition of the areas in which human intervention is urgently required. The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) sea-level scenarios are merged with new high-resolution terrain models, current data for local subsidence and predictions of the flooding model in_CoastFlood in order to develop different scenarios for the impact of sea-level rise projected to year 2100. First, the potential land loss due to the combined effect of subsidence and sea-level rise is extrapolated. Second, the increase in floodable areas as a result of storm surges is quantitatively determined. The results are expected to support the regional mitigation and adaptation strategies designed in response to climate change.

  12. Observational evidence for volcanic impact on sea level and the global water cycle.

    PubMed

    Grinsted, A; Moore, J C; Jevrejeva, S

    2007-12-11

    It has previously been noted that there are drops in global sea level (GSL) after some major volcanic eruptions. However, observational evidence has not been convincing because there is substantial variability in the global sea level record over periods similar to those at which we expect volcanoes to have an impact. To quantify the impact of volcanic eruptions we average monthly GSL data from 830 tide gauge records around five major volcanic eruptions. Surprisingly, we find that the initial response to a volcanic eruption is a significant rise in sea level of 9 +/- 3 mm in the first year after the eruption. This rise is followed by a drop of 7 +/- 3 mm in the period 2-3 years after the eruption relative to preeruption sea level. These results are statistically robust and no particular volcanic eruption or ocean region dominates the signature we find. Neither the drop nor especially the rise in GSL can be explained by models of lower oceanic heat content. We suggest that the mechanism is a transient disturbance of the water cycle with a delayed response of land river runoff relative to ocean evaporation and global precipitation that affects global sea level. The volcanic impact on the water cycle and sea levels is comparable in magnitude to that of a large El Niño-La Niña cycle, amounting to approximately 5% of global land precipitation.

  13. Spatio-temporal hierarchical modeling of rates and variability of Holocene sea-level changes in the western North Atlantic and the Caribbean

    NASA Astrophysics Data System (ADS)

    Ashe, E.; Kopp, R. E.; Khan, N.; Horton, B.; Engelhart, S. E.

    2016-12-01

    Sea level varies over of both space and time. Prior to the instrumental period, the sea-level record depends upon geological reconstructions that contain vertical and temporal uncertainty. Spatio-temporal statistical models enable the interpretation of RSL and rates of change as well as the reconstruction of the entire sea-level field from such noisy data. Hierarchical models explicitly distinguish between a process level, which characterizes the spatio-temporal field, and a data level, by which sparse proxy data and its noise is recorded. A hyperparameter level depicts prior expectations about the structure of variability in the spatio-temporal field. Spatio-temporal hierarchical models are amenable to several analysis approaches, with tradeoffs regarding computational efficiency and comprehensiveness of uncertainty characterization. A fully-Bayesian hierarchical model (BHM), which places prior probability distributions upon the hyperparameters, is more computationally intensive than an empirical hierarchical model (EHM), which uses point estimates of hyperparameters, derived from the data [1]. Here, we assess the sensitivity of posterior estimates of relative sea level (RSL) and rates to different statistical approaches by varying prior assumptions about the spatial and temporal structure of sea-level variability and applying multiple analytical approaches to Holocene sea-level proxies along the Atlantic coast of North American and the Caribbean [2]. References: 1. N Cressie, Wikle CK (2011) Statistics for spatio-temporal data (John Wiley & Sons). 2. Kahn N et al. (2016). Quaternary Science Reviews (in revision).

  14. Polar ice-sheet contributions to sea level during past warm periods

    NASA Astrophysics Data System (ADS)

    Dutton, A.

    2015-12-01

    Recent sea-level rise has been dominated by thermal expansion and glacier loss, but the contribution from mass loss from the Greenland and Antarctic ice sheets is expected to exceed other contributions under future sustained warming. Due to limitations of existing ice sheet models and the lack of relevant analogues in the historical record, projecting the timing and magnitude of polar ice sheet mass loss in the future remains challenging. One approach to improving our understanding of how polar ice-sheet retreat will unfold is to integrate observations and models of sea level, ice sheets, and climate during past intervals of warmth when the polar ice sheets contributed to higher sea levels. A recent review evaluated the evidence of polar ice sheet mass loss during several warm periods, including interglacials during the mid-Pliocene warm period, Marine Isotope Stage (MIS) 11, 5e (Last Interglacial), and 1 (Holocene). Sea-level benchmarks of ice-sheet retreat during the first of these three periods, when global mean climate was ~1 to 3 deg. C warmer than preindustrial, are useful for understanding the long-term potential for future sea-level rise. Despite existing uncertainties in these reconstructions, it is clear that our present climate is warming to a level associated with significant polar ice-sheet loss in the past, resulting in a conservative estimate for a global mean sea-level rise of 6 meters above present (or more). This presentation will focus on identifying the approaches that have yielded significant advances in terms of past sea level and ice sheet reconstruction as well as outstanding challenges. A key element of recent advances in sea-level reconstructions is the ability to recognize and quantify the imprint of geophysical processes, such as glacial isostatic adjustment (GIA) and dynamic topography, that lead to significant spatial variability in sea level reconstructions. Identifying specific ice-sheet sources that contributed to higher sea levels is a challenge that is currently hindered by limited field evidence at high latitudes. Finally, I will explore the concept of how increasing the quantity and quality of paleo sea level and ice sheet reconstructions can lead to improved quantification of contemporary changes in ice sheets and sea level.

  15. Anthropogenic sea level rise and adaptation in the Yangtze estuary

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Gu, S.; Zhang, X.; Wang, H.

    2016-02-01

    Sea level rise is a major projected threat of climate change. There are regional variations in sea level changes, depending on both naturally the tectonic subsidence, geomorphology, naturally changing river inputs and anthropogenic driven forces as artificial reservoir water impoundment within the watershed and urban land subsidence driven by ground water depletion in the river delta. Little is known on regional sea level fall in response to the channel erosion due to the sediment discharge decline by reservoir interception in the upstream watershed, and water level rise driven by anthropogenic measures as the land reclamation, deep waterway regulation and fresh water reservoir construction to the sea level change in estuaries. Changing coastal cities are situated in the delta regions expected to be threatened in various degrees. Shanghai belongs to those cities. Here we show that the anthropogenic driven sea level rise in the Yangtze estuary from the point of view of the continuous hydrodynamic system consisted of river catchment, estuary and coastal sea. Land subsidence is cited as 4 mm/a (2011-2030). Scour depth of the estuarine channel by upstream engineering as Three Gauge Dam is estimated at 2-10 cm (2011-2030). The rise of water level by deep waterway and land reclamation is estimated at 8-10 cm (2011-2030). The relative sea level rise will be speculated about 10 -16 cm (2011-2030), which these anthropogenic sea level changes will be imposed into the absolute sea level rise 2 mm/a and tectonic subsidence 1 mm/a measured in 1990s. The action guideline to the sea level rise strategy in the Shanghai city have been proposed to the Shanghai government as (1) recent actions (2012-2015) to upgrade the city water supply and drainage engineering and protective engineering; (2) interim actions (2016-2020) to improve sea level monitoring and early warning system, and then the special, city, regional planning considering sea level rise; (3) long term actions (2021-2030) to implement both the safety and the transformation and development of the city.

  16. Reconstructing Mid- to Late Holocene sea-level change from coral microatolls, French Polynesia

    NASA Astrophysics Data System (ADS)

    Hallmann, Nadine; Camoin, Gilbert; Eisenhauer, Anton; Botella, Alberic; Milne, Glenn; Vella, Claude; Samankassou, Elias; Pothin, Virginie; Dussouillez, Philippe; Fleury, Jules; Fietzke, Jan

    2017-04-01

    Coral microatolls are sensitive low-tide recorders, as their vertical accretion is limited by the mean low water springs level, and can be considered therefore as high-precision recorders of sea-level change. They are of pivotal importance to resolving the rates and amplitudes of millennial-to-century scale changes during periods of relative climate stability such as the Mid- to Late Holocene, which serves as an important baseline of natural variability prior to the industrial revolution. It provides therefore a unique opportunity to study coastal response to sea-level rise, even if the rates of sea-level rise during the Mid- to Late Holocene were lower than the current rates and those expected in the near future. Mid- to Late Holocene relative sea-level change in French Polynesia was reconstructed based on the coupling between absolute U/Th dating of in situ coral microatolls and their precise positioning via GPS RTK (Real Time Kinematic) measurements. The twelve studied islands represent ideal settings for accurate sea-level studies because: 1) they can be regarded as tectonically stable during the relevant period (slow subsidence), 2) they are located far from former ice sheets (far-field), 3) they are characterized by a low tidal amplitude, and 4) they cover a wide range of latitudes which produces significantly improved constraints on GIA (Glacial Isostatic Adjustment) model parameters. A step-like sea-level rise is evidenced between 6 and 3.9 ka leading to a short sea-level highstand of about a meter in amplitude between 3.9 and 3.6 ka. A sea-level fall, at an average rate of 0.3 mm.yr-1, is recorded between 3.6 and 1.2 ka when sea level approached its present position. In addition, growth pattern analysis of coral microatolls allows the reconstruction of low-amplitude, high-frequency sea-level change on centennial to sub-decadal time scales. The reconstructed sea-level curve extends the Tahiti last deglacial sea-level curve [Deschamps et al., 2012, Nature, 483, 559-564], and is in good agreement with a geophysical model tuned to fit far-field deglacial records [Bassett et al., 2005, Science, 309, 925-928].

  17. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels: Insights from tectonically active Southern California

    USGS Publications Warehouse

    Covault, J.A.; Romans, B.W.; Graham, S.A.; Fildani, A.; Hilley, G.E.

    2011-01-01

    Sediment routing from terrestrial source areas to the deep sea influences landscapes and seascapes and supply and filling of sedimentary basins. However, a comprehensive assessment of land-to-deep-sea sediment budgets over millennia with significant climate change is lacking. We provide source to sink sediment budgets using cosmogenic radionuclide-derived terrestrial denudation rates and submarine-fan deposition rates through sea-level fluctuations since oxygen isotope stage 3 (younger than 40 ka) in tectonically active, spatially restricted sediment-routing systems of Southern California. We show that source-area denudation and deep-sea deposition are balanced during a period of generally falling and low sea level (40-13 ka), but that deep-sea deposition exceeds terrestrial denudation during the subsequent period of rising and high sea level (younger than 13 ka). This additional supply of sediment is likely owed to enhanced dispersal of sediment across the shelf caused by seacliff erosion during postglacial shoreline transgression and initiation of submarine mass wasting. During periods of both low and high sea level, land and deep-sea sediment fluxes do not show orders of magnitude imbalances that might be expected in the wake of major sea-level changes. Thus, sediment-routing processes in a globally significant class of small, tectonically active systems might be fundamentally different from those of larger systems that drain entire orogens, in which sediment storage in coastal plains and wide continental shelves can exceed millions of years. Furthermore, in such small systems, depositional changes offshore can reflect onshore changes when viewed over time scales of several thousand years to more than 10 k.y. ?? 2011 Geological Society of America.

  18. Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd centuries

    NASA Astrophysics Data System (ADS)

    Rasmussen, D. J.; Bittermann, Klaus; Buchanan, Maya K.; Kulp, Scott; Strauss, Benjamin H.; Kopp, Robert E.; Oppenheimer, Michael

    2018-03-01

    Sea-level rise (SLR) is magnifying the frequency and severity of extreme sea levels (ESLs) that can cause coastal flooding. The rate and amount of global mean sea-level (GMSL) rise is a function of the trajectory of global mean surface temperature (GMST). Therefore, temperature stabilization targets (e.g. 1.5 °C and 2.0 °C of warming above pre-industrial levels, as from the Paris Agreement) have important implications for coastal flood risk. Here, we assess, in a global network of tide gauges, the differences in the expected frequencies of ESLs between scenarios that stabilize GMST warming at 1.5 °C, 2.0 °C, and 2.5 °C above pre-industrial levels. We employ probabilistic, localized SLR projections and long-term hourly tide gauge records to estimate the expected frequencies of historical and future ESLs for the 21st and 22nd centuries. By 2100, under 1.5 °C, 2.0 °C, and 2.5 °C GMST stabilization, the median GMSL is projected to rise 48 cm (90% probability of 28-82 cm), 56 cm (28-96 cm), and 58 cm (37-93 cm), respectively. As an independent comparison, a semi-empirical sea level model calibrated to temperature and GMSL over the past two millennia estimates median GMSL rise within 7-8 cm of these projections. By 2150, relative to the 2.0 °C scenario and based on median sea level projections, GMST stabilization of 1.5 °C spares the inundation of lands currently home to about 5 million people, including 60 000 individuals currently residing in Small Island Developing States. We quantify projected changes to the expected frequency of historical 10-, 100-, and 500-year ESL events using frequency amplification factors that incorporate uncertainty in both local SLR and historical return periods of ESLs. By 2150, relative to a 2.0 °C scenario, the reduction in the frequency amplification of the historical 100 year ESL event arising from a 1.5 °C GMST stabilization is greatest in the eastern United States, with ESL event frequency amplification being reduced by about half at most tide gauges. In general, smaller reductions are projected for Small Island Developing States.

  19. Impact of sea level rise on tide gate function.

    PubMed

    Walsh, Sean; Miskewitz, Robert

    2013-01-01

    Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America.

  20. The vulnerability of Indo-Pacific mangrove forests to sea-level rise

    USGS Publications Warehouse

    Lovelock, Catherine E.; Cahoon, Donald R.; Friess, Daniel A.; Guntenspergen, Glenn R.; Krauss, Ken W.; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L.; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-01-01

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world’s mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  1. The vulnerability of Indo-Pacific mangrove forests to sea-level rise.

    PubMed

    Lovelock, Catherine E; Cahoon, Donald R; Friess, Daniel A; Guntenspergen, Glenn R; Krauss, Ken W; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-10-22

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world's mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  2. New constraints on MIS 7 and 5 relative sea-level at Bermuda: a speleothem approach

    NASA Astrophysics Data System (ADS)

    Wainer, Karine; Henderson, Gideon; Mason, Andrew; Thomas, Alexander; Williams, Bruce; Rowe, Mark; van Hengstum, Peter; Chandler, Robert

    2014-05-01

    It is now widely accepted that a sea-level rise is associated with global warming [1]. However, its rate, and the height it might reach by the end of the century remain poorly constrained. This study aims to provide better information and precision on the rates and magnitudes of past sea-level change, for periods when sea-level is close to its modern value, using speleothems from Bermudian caves. Speleothems interrupt their growth when they are submerged by sea-water, so U-Th dating periods of growth in coastal sites allows the reconstruction of past sea-level variation versus absolute time [e.g. 2,3,4]. We will present new MC-ICP-MS U-Th ages, trace elements and isotopic data from a set of speleothems (stalagmites, stalactites, flowstones) collected from -14 to +12 m versus modern sea level from several caves in this northern Atlantic archipelago. Relative sea-level (RSL) at Bermuda is of particular interest because it is at a distance from northern hemisphere ice sheets where the isostatic response to ice-unloading is uncertain. RSL reconstruction therefore provides both an indicates of possible rates of sea level change, and a test for glacial-isostatic-adjustment (GIA) models. We will present new relative sea level data for late MIS7, and the different highstands of MIS5. The RSL at Bermuda for these episodes appears to be higher than present. For MIS5a, this is significantly distinct from what is expected from the eustatic sea level. These results will be considered in the context of previous assessments of eustatic change, and of GIA models. [1] Intergovernmental Panel on Climate Change (2007) Contribution of Working Group I to the Fourth Assessment Report, Cambridge Univ. Press. [2] Harmon et al. (1981) Nature 289, 357-360. [3] Richards et al. (1994) Nature 367, 481-483. [4] Bard (2002) EPSL 196, 135-146.

  3. Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Betzler, Christian; Lüdmann, Thomas; Hübscher, Christian; Fürstenau, Jörn

    2013-05-01

    Periplatform ooze is an admixture of pelagic carbonate and sediment derived from neritic carbonate platforms. Compositional variations of periplatform ooze allow the reconstruction of past sea-level changes. Periplatform ooze formed during sea-level highstands is finer grained and richer in aragonite through the elevated input of material from the flooded platform compared to periplatform ooze formed during the episodes of lowered sea level. In many cases, however, the sea floor around carbonate platforms is subjected to bottom currents which are expected to affect sediment composition, i.e. through winnowing of the fine fraction. The interaction of sea-level driven highstand shedding and current impact on the formation of periplatform ooze has hitherto not been analyzed. To test if a sea-level driven input signal in periplatform ooze is influenced or even distorted by changing current activity, an integrated study using seismic, hydroacoustic and sedimentological data has been performed on periplatform ooze deposited in the Inner Sea of the Maldives. The Miocene to Pleistocene succession of drift deposits is subdivided into nine units; limits of seismostratigraphic units correspond to changes or turnarounds in grain size trends in cores recovered at ODP Site 716 and NEOMA Site 1143. For the Pleistocene it can be shown how changes in grain size occur in concert with sea-level changes and changes of the monsoonal system, which is thought to be a major driver of bottom currents in the Maldives. A clear highstand shedding pattern only appears in the data at a time of relaxation of monsoonal strength during the last 315 ky. Results imply (1) that drift sediments provide a potential target for analyzing past changes in oceanic currents and (2) that the ooze composition bears a mixed signal of input and physical winnowing at the sea floor.

  4. Final report for sea-level rise response modeling for San Francisco Bay estuary tidal marshes

    USGS Publications Warehouse

    Takekawa, John Y.; Thorne, Karen M.; Buffington, Kevin J.; Spragens, Kyle A.; Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Overton, Cory T.; Casazza, Michael L.

    2013-01-01

    The International Panel on Climate Change has identified coastal ecosystems as areas that will be disproportionally affected by climate change. Current sea-level rise projections range widely with 0.57 to 1.9 meters increase in mea sea level by 2100. The expected accelerated rate of sea-level rise through the 21st century will put many coastal ecosystems at risk, especially those in topographically low-gradient areas. We assessed marsh accretion and plant community state changes through 2100 at 12 tidal salt marshes around San Francisco Bay estuary with a sea-level rise response model. Detailed ground elevation, vegetation, and water level data were collected at all sites between 2008 and 2011 and used as model inputs. Sediment cores (taken by Callaway and others, 2012) at four sites around San Francisco Bay estuary were used to estimate accretion rates. A modification of the Callaway and others (1996) model, the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER), was utilized to run sea-level rise response models for all sites. With a mean sea level rise of 1.24 m by 2100, WARMER projected that the vast majority, 95.8 percent (1,942 hectares), of marsh area in our study will lose marsh plant communities by 2100 and to transition to a relative elevation range consistent with mudflat habitat. Three marshes were projected to maintain marsh vegetation to 2100, but they only composed 4.2 percent (85 hectares) of the total marsh area surveyed.

  5. Demise of reef-flat carbonate accumulation with late Holocene sea-level fall: Evidence from Molokai, Hawaii

    USGS Publications Warehouse

    Engels, M.S.; Fletcher, C.H.; Field, M.; Conger, C.L.; Bochicchio, C.

    2008-01-01

    Twelve cores from the protected reef-flat of Molokai revealed that carbonate sediment accumulation, ranging from 3 mm year-1 to less than 1 mm year-1, ended on average 2,500 years ago. Modern sediment is present as a mobile surface veneer but is not trapped within the reef framework. This finding is consistent with the arrest of deposition at the end of the mid-Holocene highstand, known locally as the "Kapapa Stand of the Sea," ???2 m above the present datum ca. 3,500 years ago in the main Hawaiian Islands. Subsequent erosion, non-deposition, and/or a lack of rigid binding were probable factors leading to the lack of reef-flat accumulation during the late Holocene sea-level fall. Given anticipated climate changes, increased sedimentation of reef-flat environments is to be expected as a consequence of higher sea level. ?? 2008 Springer-Verlag.

  6. The Wadden Sea in transition - consequences of sea level rise

    NASA Astrophysics Data System (ADS)

    Becherer, Johannes; Hofstede, Jacobus; Gräwe, Ulf; Purkiani, Kaveh; Schulz, Elisabeth; Burchard, Hans

    2018-01-01

    The impact of sea level rise (SLR) on the future morphological development of the Wadden Sea (North Sea) is investigated by means of extensive process-resolving numerical simulations. A new sediment and morphodynamic module was implemented in the well-established 3D circulation model GETM. A number of different validations are presented, ranging from an idealized 1D channel over a semi-idealized 2D Wadden Sea basin to a fully coupled realistic 40-year hindcast without morphological amplification of the Sylt-Rømøbight, a semi-enclosed subsystem of the Wadden Sea. Based on the results of the hindcast, four distinct future scenarios covering the period 2010-2100 are simulated. While these scenarios differ in the strength of SLR and wind forcing, they also account for an expected increase of tidal range over the coming century. The results of the future projections indicate a transition from a tidal-flat-dominated system toward a lagoon-like system, in which large fractions of the Sylt-Rømøbight will remain permanently covered by water. This has potentially dramatic implications for the unique ecosystem of the Wadden Sea. Although the simulations also predict an increased accumulation of sediment in the back-barrier basin, this accumulation is far too weak to compensate for the rise in mean sea level.

  7. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines

    NASA Astrophysics Data System (ADS)

    Quataert, Ellen; Storlazzi, Curt; Rooijen, Arnold; Cheriton, Olivia; Dongeren, Ap

    2015-08-01

    A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.

  8. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines

    USGS Publications Warehouse

    Quataert, Ellen; Storlazzi, Curt; van Rooijen, Arnold; van Dongeren, Ap; Cheriton, Olivia

    2015-01-01

    A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.

  9. Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses.

    PubMed

    Guo, Zixiao; Li, Xinnian; He, Ziwen; Yang, Yuchen; Wang, Wenqing; Zhong, Cairong; Greenberg, Anthony J; Wu, Chung-I; Duke, Norman C; Shi, Suhua

    2018-04-01

    The projected increases in sea levels are expected to affect coastal ecosystems. Tropical communities, anchored by mangrove trees and having experienced frequent past sea level changes, appear to be vibrant at present. However, any optimism about the resilience of these ecosystems is premature because the impact of past climate events may not be reflected in the current abundance. To assess the impact of historical sea level changes, we conducted an extensive genetic diversity survey on the Indo-Malayan coast, a hotspot with a large global mangrove distribution. A survey of 26 populations in six species reveals extremely low genome-wide nucleotide diversity and hence very small effective population sizes (N e ) in all populations. Whole-genome sequencing of three mangrove species further shows the decline in N e to be strongly associated with the speed of past changes in sea level. We also used a recent series of flooding events in Yalong Bay, southern China, to test the robustness of mangroves to sea level changes in relation to their genetic diversity. The events resulted in the death of half of the mangrove trees in this area. Significantly, less genetically diverse mangrove species suffered much greater destruction. The dieback was accompanied by a drastic reduction in local invertebrate biodiversity. We thus predict that tropical coastal communities will be seriously endangered as the global sea level rises. Well-planned coastal development near mangrove forests will be essential to avert this crisis. © 2017 John Wiley & Sons Ltd.

  10. Observational evidence for volcanic impact on sea level and the global water cycle

    PubMed Central

    Grinsted, A.; Moore, J. C.; Jevrejeva, S.

    2007-01-01

    It has previously been noted that there are drops in global sea level (GSL) after some major volcanic eruptions. However, observational evidence has not been convincing because there is substantial variability in the global sea level record over periods similar to those at which we expect volcanoes to have an impact. To quantify the impact of volcanic eruptions we average monthly GSL data from 830 tide gauge records around five major volcanic eruptions. Surprisingly, we find that the initial response to a volcanic eruption is a significant rise in sea level of 9 ± 3 mm in the first year after the eruption. This rise is followed by a drop of 7 ± 3 mm in the period 2–3 years after the eruption relative to preeruption sea level. These results are statistically robust and no particular volcanic eruption or ocean region dominates the signature we find. Neither the drop nor especially the rise in GSL can be explained by models of lower oceanic heat content. We suggest that the mechanism is a transient disturbance of the water cycle with a delayed response of land river runoff relative to ocean evaporation and global precipitation that affects global sea level. The volcanic impact on the water cycle and sea levels is comparable in magnitude to that of a large El Niño–La Niña cycle, amounting to ≈5% of global land precipitation. PMID:18056644

  11. Impact of Sea Level Rise on Storm Surge and Inundation in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Veeramony, J.

    2016-12-01

    Assessing the impact of climate change on surge and inundation due to tropical cyclones is important for coastal adaptation as well as mitigation efforts. Changes in global climate increase vulnerability of coastal environments to the threat posed by severe storms in a number of ways. Both the intensity of future storms as well as the return periods of more severe storms are expected to increase signficantly. Increasing mean sea levels lead to more areas being inundated due to storm surge and bring the threat of inundation further inland. Rainfall associated with severe storms are also expected to increase substantially, which will add to the intensity of inland flooding and coastal inundation. In this study, we will examine the effects of sea level rise and increasing rainfall intensity using Hurricane Ike as the baseline. The Delft3D modeling system will be set up in nested mode, with the outermost nest covering the Gulf of Mexico. The system will be run in a coupled mode, modeling both waves and the hydrodynamics. The baseline simulation will use the atmospheric forcing which consists of the NOAA H*Wind (Powell et all 1998) for the core hurricane characteristics blended with reanalyzed background winds to create a smooth wind field. The rainfall estimates are obtained from TRMM. From this baseline, a set of simulations will be performed to show the impact of sea level rise and increased rainfall activity on flooding and inundation along theTexas-Lousiana coast.

  12. Allowances for evolving coastal flood risk under uncertain local sea-level rise

    NASA Astrophysics Data System (ADS)

    Buchanan, M. K.; Kopp, R. E.; Oppenheimer, M.; Tebaldi, C.

    2015-12-01

    Sea-level rise (SLR) causes estimates of flood risk made under the assumption of stationary mean sea level to be biased low. However, adjustments to flood return levels made assuming fixed increases of sea level are also inaccurate when applied to sea level that is rising over time at an uncertain rate. To accommodate both the temporal dynamics of SLR and their uncertainty, we develop an Average Annual Design Life Level (AADLL) metric and associated SLR allowances [1,2]. The AADLL is the flood level corresponding to a time-integrated annual expected probability of occurrence (AEP) under uncertainty over the lifetime of an asset; AADLL allowances are the adjustment from 2000 levels that maintain current risk. Given non-stationary and uncertain SLR, AADLL flood levels and allowances provide estimates of flood protection heights and offsets for different planning horizons and different levels of confidence in SLR projections in coastal areas. Allowances are a function primarily of local SLR and are nearly independent of AEP. Here we employ probabilistic SLR projections [3] to illustrate the calculation of AADLL flood levels and allowances with a representative set of long-duration tide gauges along U.S. coastlines. [1] Rootzen et al., 2014, Water Resources Research 49: 5964-5972. [2] Hunter, 2013, Ocean Engineering 71: 17-27. [3] Kopp et al., 2014, Earth's Future 2: 383-406.

  13. Global coastal flood hazard mapping

    NASA Astrophysics Data System (ADS)

    Eilander, Dirk; Winsemius, Hessel; Ward, Philip; Diaz Loaiza, Andres; Haag, Arjen; Verlaan, Martin; Luo, Tianyi

    2017-04-01

    Over 10% of the world's population lives in low-lying coastal areas (up to 10m elevation). Many of these areas are prone to flooding from tropical storm surges or extra-tropical high sea levels in combination with high tides. A 1 in 100 year extreme sea level is estimated to expose 270 million people and 13 trillion USD worth of assets to flooding. Coastal flood risk is expected to increase due to drivers such as ground subsidence, intensification of tropical and extra-tropical storms, sea level rise and socio-economic development. For better understanding of the hazard and drivers to global coastal flood risk, a globally consistent analysis of coastal flooding is required. In this contribution we present a comprehensive global coastal flood hazard mapping study. Coastal flooding is estimated using a modular inundation routine, based on a vegetation corrected SRTM elevation model and forced by extreme sea levels. Per tile, either a simple GIS inundation routine or a hydrodynamic model can be selected. The GIS inundation method projects extreme sea levels to land, taking into account physical obstructions and dampening of the surge level land inwards. For coastlines with steep slopes or where local dynamics play a minor role in flood behavior, this fast GIS method can be applied. Extreme sea levels are derived from the Global Tide and Surge Reanalysis (GTSR) dataset. Future sea level projections are based on probabilistic sea level rise for RCP 4.5 and RCP 8.5 scenarios. The approach is validated against observed flood extents from ground and satellite observations. The results will be made available through the online Aqueduct Global Flood Risk Analyzer of the World Resources Institute.

  14. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    PubMed

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity.

  15. Reconstructing Mid- to Late Holocene Sea-Level Change from Coral Microatolls, French Polynesia

    NASA Astrophysics Data System (ADS)

    Hallmann, N.; Camoin, G.; Eisenhauer, A.; Vella, C.; Samankassou, E.; Botella, A.; Milne, G. A.; Pothin, V.; Dussouillez, P.; Fleury, J.

    2017-12-01

    Coral microatolls are sensitive low-tide recorders, as their vertical accretion is limited by the mean low water springs level, and can be considered therefore as high-precision recorders of sea-level change. They are of pivotal importance to resolving the rates and amplitudes of millennial-to-century scale changes during periods of relative climate stability such as the Mid- to Late Holocene, which serves as an important baseline of natural variability prior to the Anthropocene. It provides therefore a unique opportunity to study coastal response to sea-level rise, even if the rates of sea-level rise during the Mid- to Late Holocene were lower than the current rates and those expected in the near future. Mid- to Late Holocene relative sea-level changes in French Polynesia encompassing the last 6,000 years were reconstructed based on the coupling between absolute U/Th dating of in situ coral microatolls and their precise positioning via GPS RTK (Real Time Kinematic) measurements. The twelve studied islands represent ideal settings for accurate sea-level studies because: 1) they can be regarded as tectonically stable during the relevant period (slow subsidence), 2) they are located far from former ice sheets (far-field), 3) they are characterized by a low tidal amplitude, and 4) they cover a wide range of latitudes which produces significantly improved constraints on GIA (Glacial Isostatic Adjustment) model parameters. A sea-level rise of less than 1 m is recorded between 6 and 3-3.5 ka, and is followed by a gradual fall in sea level that started around 2.5 ka and persisted until the past few centuries. In addition, growth pattern analysis of coral microatolls allows the reconstruction of low-amplitude, high-frequency sea-level change on centennial to sub-decadal time scales. The reconstructed sea-level curve extends the Tahiti last deglacial sea-level curve [Deschamps et al., 2012, Nature, 483, 559-564], and is in good agreement with a geophysical model tuned to fit far-field deglacial records [Bassett et al., 2005, Science, 309, 925-928].

  16. Reconstructing Mid- to Late Holocene sea-level change from coral microatolls, French Polynesia

    NASA Astrophysics Data System (ADS)

    Hallmann, N.; Camoin, G.; Eisenhauer, A.; Vella, C.; Samankassou, E.; Botella, A.; Milne, G. A.; Pothin, V.; Dussouillez, P.; Fleury, J.

    2016-12-01

    Coral microatolls are sensitive low-tide recorders, as their vertical accretion is limited by the mean low water springs level, and can be considered therefore as high-precision recorders of sea-level change. They are of pivotal importance to resolving the rates and amplitudes of millennial-to-century scale changes during periods of relative climate stability such as the Mid- to Late Holocene, which serves as an important baseline of natural variability prior to the industrial revolution. It provides therefore a unique opportunity to study coastal response to sea-level rise, even if the rates of sea-level rise during the Mid- to Late Holocene were lower than the current rates and those expected in the near future. Mid- to Late Holocene relative sea-level change in French Polynesia was reconstructed based on the coupling between absolute U/Th dating of in situ coral microatolls and their precise positioning via GPS RTK (Real Time Kinematic) measurements. The twelve studied islands represent ideal settings for accurate sea-level studies because: 1) they can be regarded as tectonically stable during the relevant period (slow subsidence), 2) they are located far from former ice sheets (far-field), 3) they are characterized by a low tidal amplitude, and 4) they cover a wide range of latitudes which produces significantly improved constraints on GIA (Glacial Isostatic Adjustment) model parameters. A sea-level rise of less than 1 m is recorded between 6 and 3-3.5 ka, and is followed by a gradual fall in sea level that started around 2.5 ka and persisted until the past few centuries. In addition, growth pattern analysis of coral microatolls allows the reconstruction of low-amplitude, high-frequency sea-level change on centennial to sub-decadal time scales. The reconstructed sea-level curve extends the Tahiti last deglacial sea-level curve [Deschamps et al., 2012, Nature, 483, 559-564], and is in good agreement with a geophysical model tuned to fit far-field deglacial records [Bassett et al., 2005, Science, 309, 925-928].

  17. Dynamic and static equilibrium sea level effects of Greenland Ice Sheet melt: An assessment of partially-coupled idealized water hosing experiments (Invited)

    NASA Astrophysics Data System (ADS)

    Kopp, R. E.; Mitrovica, J. X.; Griffies, S. M.; Yin, J.; Hay, C. C.; Stouffer, R. J.

    2010-12-01

    Regional sea level can deviate from mean global sea level because of both dynamic sea level (DSL) effects, resulting from oceanic and atmospheric circulation and temperature and salinity distributions, and changes in the static equilibrium (SE) sea level configuration, produced by the gravitational, elastic, and rotational effects of mass redistribution. Both effects will contribute to future sea level change, but because they are studied by two different subdisciplines -- climate modeling and glacial rebound modeling -- projections that attempt to combine both have to date been scarce. To compare their magnitude, we simulated the effects of Greenland Ice Sheet (GIS) melt by conducting idealized North Atlantic "water-hosing" experiments in a climate model unidirectionally coupled to a SE sea level model. At current rates of GIS melt, freshwater hosing experiments in fully coupled atmosphere-ocean general circulation models (AOGCMs) do not yield clear DSL trends but do generate DSL variability; comparing that variability to expected static equilibrium "fingerprints" suggests that at least about 40 years of observations are needed to detect the "fingerprints" of ice sheet melt at current Greenland melt rates of about 0.3 mm equivalent sea level (esl)/year. Accelerated melt rates of about 2--6 mm esl/y, as may occur later in the century, should be detectable above background DSL variability within less than a decade of their onset. At these higher melt rates, AOGCMs do yield clear DSL trends. In the GFDL CM 2.1 model, DSL trends are strongest in the western North Atlantic, while SE effects come to dominate in most of the ocean when melt exceeds about 20 cm esl.

  18. Experimental investigation of channel avulsion frequency on river deltas under rising sea levels

    NASA Astrophysics Data System (ADS)

    Silvestre, J.; Chadwick, A. J.; Steele, S.; Lamb, M. P.

    2017-12-01

    River deltas are low-relief landscapes that are socioeconomically important; they are home to over half a billion people worldwide. Many deltas are built by cycles of lobe growth punctuated by abrupt channel shifts, or avulsions, which often reoccur at a similar location and with a regular frequency. Previous experimental work has investigated the effect of hydrodynamic backwater in controlling channel avulsion location and timing on deltas under constant sea level conditions, but it is unclear how sea-level rise impacts avulsion dynamics. We present results from a flume experiment designed to isolate the role of relative sea-level rise on the evolution of a backwater-influenced delta. The experiment was conducted in the river-ocean facility at Caltech, where a 7m long, 14cm wide alluvial river drains into a 6m by 3m "ocean" basin. The experimental delta grew under subcritical flow, a persistent backwater zone, and a range of sea level rise rates. Without sea level rise, lobe progradation produced in-channel aggradation and periodic avulsions every 3.6 ± 0.9 hours, which corresponded to when channels aggraded to approximately one-half of their flow depth. With a modest rate of sea-level rise (0.25 mm/hr), we observed enhanced aggradation in the backwater zone, causing channels to aggrade more quickly and avulse more frequently (every 2.1 ± 0.6 hours). In future work, we expect further increases in the rate of relative sea-level rise to cause avulsion frequency to decrease as the delta drowns and the backwater zone retreats upstream. Experimental results can serve as tests of numerical models that are needed for hazard mitigation and coastal sustainability efforts on drowning deltas.

  19. Trace element levels in fish from clean and polluted coastal marine sites in the Mediterranean Sea, Red Sea and North Sea

    NASA Astrophysics Data System (ADS)

    Kress, Nurit; Herut, Barak; Shefer, Edna; Hornung, Hava

    1999-12-01

    The bioaccumulation of Hg, Cd, Zn, Cu, Mn and Fe was evaluated in the muscle and liver tissue of four fish species (Siganus rivulatus, Diplodus sargus, Lithognatus mormyrus and Plathychtis flesus) from clean and polluted marine coastal sites in the Red Sea, Mediterranean Sea and North Sea within the framework of the MARS 1 program. Representative liver samples were screened for organic contaminants (DDE, PCBs and PAHs) which exhibited very low concentrations. The levels of Cd, Cu, Zn, Fe and Mn found in the muscle tissue in this study were similar among the four species and within the naturally occurring metal ranges. However, differences were found among the sites. In the Red Sea, Cu was higher in the muscle of S. rivulatus at Ardag and Zn at the Observatory (OBS). Cu, Zn and Mn were higher in the Red Sea than in the specimens from the Mediterranean. The differences were attributed to different diets derived from distinctively different natural environments. D. sargus from Haifa Bay (HB) had higher Cd, Cu and Mn values than specimens from Jaffa (JFA), and L. mormyrus higher Cd, Fe and Mn in HB, corresponding to the polluted environmental status of the Bay. No differences in metal levels were found among the North Sea sites, except for Fe that was lower at the Eider station. Hg was low in all the specimens, but the values varied with species and sites. The lowest Hg values were found in S. rivulatus, the herbivorous species, as expected from its trophic level. Hg in P. flesus was higher than in S. rivulatus but still low. Higher Hg values were found in the muscle tissue of L. mormyrus,with the highest values in D. sargus, both carnivorous species from the same family. Hg in D. sargus was higher in HB than in JFA, as expected, but in the larger specimens of L. mormyrus from JFA values were higher, while in the small specimens there were no differences in Hg values. The levels of all metals were higher in the liver than in the muscle, with enrichment factors ranging from 3 to 104, depending on species and sites. The lowest enrichment values were found for Hg. Based on liver values, the specimens of S. rivulatus from the OBS had the highest levels, as well as D. sargus and L. mormyrus from JFA, contrary to the known relative environmental status of the sites.

  20. Spectrophotometric Measurements of the Carbonate Ion Concentration: Aragonite Saturation States in the Mediterranean Sea and Atlantic Ocean.

    PubMed

    Fajar, Noelia M; García-Ibáñez, Maribel I; SanLeón-Bartolomé, Henar; Álvarez, Marta; Pérez, Fiz F

    2015-10-06

    Measurements of ocean pH, alkalinity, and carbonate ion concentrations ([CO3(2-)]) during three cruises in the Atlantic Ocean and one in the Mediterranean Sea were used to assess the reliability of the recent spectrophotometric [CO3(2-)] methodology and to determine aragonite saturation states. Measurements of [CO3(2-)] along the Atlantic Ocean showed high consistency with the [CO3(2-)] values calculated from pH and alkalinity, with negligible biases (0.4 ± 3.4 μmol·kg(-1)). In the warm, salty, high alkalinity and high pH Mediterranean waters, the spectrophotometric [CO3(2-)] methodology underestimates the measured [CO3(2-)] (4.0 ± 5.0 μmol·kg(-1)), with anomalies positively correlated to salinity. These waters also exhibited high in situ [CO3(2-)] compared to the expected aragonite saturation. The very high buffering capacity allows the Mediterranean Sea waters to remain over the saturation level of aragonite for long periods of time. Conversely, the relatively thick layer of undersaturated waters between 500 and 1000 m depths in the Tropical Atlantic is expected to progress to even more negative undersaturation values. Moreover, the northern North Atlantic presents [CO3(2-)] slightly above the level of aragonite saturation, and the expected anthropogenic acidification could result in reductions of the aragonite saturation levels during future decades, acting as a stressor for the large population of cold-water-coral communities.

  1. The contribution to future flood risk in the Severn Estuary from extreme sea level rise due to ice sheet mass loss

    NASA Astrophysics Data System (ADS)

    Quinn, N.; Bates, P. D.; Siddall, M.

    2013-12-01

    The rate at which sea levels will rise in the coming century is of great interest to decision makers tasked with developing mitigation policies to cope with the risk of coastal inundation. Accurate estimates of future sea levels are vital in the provision of effective policy. Recent reports from UK Climate Impacts Programme (UKCIP) suggest that mean sea levels in the UK may rise by as much as 80 cm by 2100; however, a great deal of uncertainty surrounds model predictions, particularly the contribution from ice sheets responding to climatic warming. For this reason, the application of semi-empirical modelling approaches for sea level rise predictions has increased of late, the results from which suggest that the rate of sea level rise may be greater than previously thought, exceeding 1 m by 2100. Furthermore, studies in the Red Sea indicate that rapid sea level rise beyond 1m per century has occurred in the past. In light of such research, the latest UKCIP assessment has included a H++ scenario for sea level rise in the UK of up to 1.9 m which is defined as improbable but, crucially, physically plausible. The significance of such low-probability sea level rise scenarios upon the estimation of future flood risk is assessed using the Somerset levels (UK) as a case study. A simple asymmetric probability distribution is constructed to include sea level rise scenarios of up to 1.9 m by 2100 which are added to a current 1:200 year event water level to force a two-dimensional hydrodynamic model of coastal inundation. From the resulting ensemble predictions an estimation of risk by 2100 is established. The results indicate that although the likelihood of extreme sea level rise due to rapid ice sheet mass loss is low, the resulting hazard can be large, resulting in a significant (27%) increase to the projected annual risk. Furthermore, current defence construction guidelines for the coming century in the UK are expected to account for 95% of the sea level rise distribution presented in this research, while the larger, low probability scenarios beyond this level are estimated to contribute a residual annual risk of approximately £0.45 million. These findings clearly demonstrate that uncertainty in future sea level rise is a vital component of coastal flood risk, and therefore, needs to be accounted for by decision makers when considering mitigation policies related to coastal flooding.

  2. Hookworm infection, anaemia and genetic variability of the New Zealand sea lion.

    PubMed

    Acevedo-Whitehouse, Karina; Petetti, Laura; Duignan, Padraig; Castinel, Aurelie

    2009-10-07

    Hookworms are intestinal blood-feeding nematodes that parasitize and cause high levels of mortality in a wide range of mammals, including otariid pinnipeds. Recently, an empirical study showed that inbreeding (assessed by individual measures of multi-locus heterozygosity) is associated with hookworm-related mortality of California sea lions. If inbreeding increases susceptibility to hookworms, effects would expectedly be stronger in small, fragmented populations. We tested this assumption in the New Zealand sea lion, a threatened otariid that has low levels of genetic variability and high hookworm infection rates. Using a panel of 22 microsatellites, we found that average allelic diversity (5.9) and mean heterozygosity (0.72) were higher than expected for a small population with restricted breeding, and we found no evidence of an association between genetic variability and hookworm resistance. However, similar to what was observed for the California sea lion, homozygosity at a single locus explained the occurrence of anaemia and thrombocytopenia in hookworm-infected pups (generalized linear model, F = 11.81, p < 0.001) and the effect was apparently driven by a particular allele (odds ratio = 34.95%; CI: 7.12-162.41; p < 0.00001). Our study offers further evidence that these haematophagus parasites exert selective pressure on otariid blood-clotting processes.

  3. Hookworm infection, anaemia and genetic variability of the New Zealand sea lion

    PubMed Central

    Acevedo-Whitehouse, Karina; Petetti, Laura; Duignan, Padraig; Castinel, Aurelie

    2009-01-01

    Hookworms are intestinal blood-feeding nematodes that parasitize and cause high levels of mortality in a wide range of mammals, including otariid pinnipeds. Recently, an empirical study showed that inbreeding (assessed by individual measures of multi-locus heterozygosity) is associated with hookworm-related mortality of California sea lions. If inbreeding increases susceptibility to hookworms, effects would expectedly be stronger in small, fragmented populations. We tested this assumption in the New Zealand sea lion, a threatened otariid that has low levels of genetic variability and high hookworm infection rates. Using a panel of 22 microsatellites, we found that average allelic diversity (5.9) and mean heterozygosity (0.72) were higher than expected for a small population with restricted breeding, and we found no evidence of an association between genetic variability and hookworm resistance. However, similar to what was observed for the California sea lion, homozygosity at a single locus explained the occurrence of anaemia and thrombocytopenia in hookworm-infected pups (generalized linear model, F = 11.81, p < 0.001) and the effect was apparently driven by a particular allele (odds ratio = 34.95%; CI: 7.12–162.41; p < 0.00001). Our study offers further evidence that these haematophagus parasites exert selective pressure on otariid blood-clotting processes. PMID:19605394

  4. Sensitivity analysis of sea level rise contribution depending on external forcing: A case study of Victoria Land, East Antarctica.

    NASA Astrophysics Data System (ADS)

    Park, I. W.; Lee, S. H.; Lee, W. S.; Lee, C. K.; Lee, K. K.

    2017-12-01

    As global mean temperature increases, it affects increase in polar glacier melt and thermal expansion of sea, which contributed to global sea level rise. Unlike large sea level rise contributors in Western Antarctica (e. g. Pine island glacier, Thwaites glacier), glaciers in East Antarctica shows relatively stable and slow ice velocity. However, recent calving events related to increase of supraglacier lake in Nansen ice shelf arouse the questions in regards to future evolution of ice dynamics at Victoria Land, East Antarctica. Here, using Ice Sheet System Model (ISSM), a series of numerical simulations were carried out to investigate ice dynamics evolution (grounding line migration, ice velocity) and sea level rise contribution in response to external forcing conditions (surface mass balance, floating ice melting rate, and ice front retreat). In this study, we used control method to set ice dynamic properties (ice rigidity and friction coefficient) with shallow shelf approximation model and check each external forcing conditions contributing to sea level change. Before 50-year transient simulations were conducted based on changing surface mass balance, floating ice melting rate, and ice front retreat of Drygalski ice tongue and Nansen ice shelf, relaxation was performed for 10 years to reduce non-physical undulation and it was used as initial condition. The simulation results showed that sea level rise contribution were expected to be much less compared to other fast glaciers. Floating ice melting rate was most sensitive parameter to sea level rise, while ice front retreat of Drygalski tongue was negligible. The regional model will be further updated utilizing ice radar topography and measured floating ice melting rate.

  5. Holocene sea-level changes in King George Island, West Antarctica, by virtue of geomorphological coastal evidences and diatom assemblages of sediment sections.

    NASA Astrophysics Data System (ADS)

    Poleshchuk, Ksenia; Verkulich, Sergey; Pushina, Zina; Jozhikov, Ilya

    2015-04-01

    A new curve of relative sea-level change is presented for the Fildes peninsula, King George Island, West Antarctic. This work is based on renewed paleogeography data, including coastal geomorphological evidence, diatom assemblages of lakes bottom sediments and radiocarbon datings of organics. The new data were obtained in several sections of quaternary sediments and groups of terraces, and allows us to expand and improve relevant conception about relative sea level changes in the King George Island region. The new radiocarbon datings of organics (mosses and shells) allows reconstructing Holocene conditions that maintain and cause the sea-level changes. Sea diatom assemblages of Dlinnoye lake bottom sediment core (that complies period about 8000 years B.P.) mark altitude of marine water penetrated into the lake. The altitudes of shell remains, which have certain life habits and expect specific salinity and depth conditions, coupled with their absolute datings, indicate the probable elevation of the past sea level. The Mid-Holocene marine transgression reached its maximum level of 18-20 m by 5760 years B.P. The transgression influenced the deglaciation of the Fildes peninsula and environment conditions integrally. The ratio of glacio-isostatic adjustment velocity and Holocene transgression leaded to the decrease of relative sea level during the Late Holocene excluding the short period of rising between 2000 and 1300 years B.P. Comparing this data with the curve for Bunger oasis, East Antarctica, introduced earlier gives an interesting result. Despite the maximum altitudes of relative sea-level rise in King George region were higher and occurred later than in Bunger oasis region, the short-term period of Late Holocene sea-level rising contemporizes. Besides that, this work allow to realize a correlation between regions of Antarctica and adjacent territory. That, in turn, lets answer the question of tectonic and eustatic factors ratio and their contribution to the Holocene transgression in different regions.

  6. Sensitivity analysis of hydrogeological parameters affecting groundwater storage change caused by sea level rise

    NASA Astrophysics Data System (ADS)

    Shin, J.; Kim, K.-H.; Lee, K.-K.

    2012-04-01

    Sea level rise, which is one of the representative phenomena of climate changes caused by global warming, can affect groundwater system. The rising trend of the sea level caused by the global warming is reported to be about 3 mm/year for the most recent 10 year average (IPCC, 2007). The rate of sea level rise around the Korean peninsula is reported to be 2.30±2.22 mm/yr during the 1960-1999 period (Cho, 2002) and 2.16±1.77 mm/yr (Kim et al., 2009) during the 1968-2007 period. Both of these rates are faster than the 1.8±0.5 mm/yr global average for the similar 1961-2003 period (IPCC, 2007). In this study, we analyzed changes in the groundwater environment affected by the sea level rise by using an analytical methodology. We tried to find the most effective parameters of groundwater amount change in order to estimate the change in fresh water amount in coastal groundwater. A hypothetical island model of a cylindrical shape in considered. The groundwater storage change is bi-directional as the sea level rises according to the natural and hydrogeological conditions. Analysis of the computation results shows that topographic slope and hydraulic conductivity are the most sensitive factors. The contributions of the groundwater recharge rate and the thickness of aquifer below sea level are relatively less effective. In the island with steep seashore slopes larger than 1~2 degrees or so, the storage amount of fresh water in a coastal area increases as sea level rises. On the other hand, when sea level drops, the storage amount decreases. This is because the groundwater level also rises with the rising sea level in steep seashores. For relatively flat seashores, where the slope is smaller than around 1-2 degrees, the storage amount of coastal fresh water decreases when the sea level rises because the area flooded by the rising sea water is increased. The volume of aquifer fresh water in this circumstance is greatly reduced in proportion to the flooded area with the sea level rising. Since relatively flat seashores where the slope is less than 1-2 degrees are much more common in Korea, it is expected that the quantity of fresh groundwater storage in most of the coastal region in Korea will be greatly reduced with sea level rise. Acknowledgement: This study is financially supported by BK21.

  7. Plastic scintillators in coincidence for the study of multi-particle production of sea level cosmic rays in dense medium

    NASA Technical Reports Server (NTRS)

    Chuang, L. S.; Chan, K. W.; Wada, M.

    1985-01-01

    Cosmic ray particles at sea level penetrate a thick layer of dense medium without appreciable interaction. These penetrating particles are identified with muons. The only appreciable interaction of muons are by knock on processes. A muon may have single, double or any number of knock on with atoms of the material so that one, two, three or more particles will come out from the medium in which the knock on processes occur. The probability of multiparticle production is expected to decrease with the increase of multiplicity. Measurements of the single, double, and triple particles generated in a dense medium (Fe and Al) by sea level cosmic rays at 22.42 N. Lat. and 114.20 E. Long. (Hong Kong) are presented using a detector composed of two plastic scintillators connected in coincidence.

  8. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases

    PubMed Central

    Zickfeld, Kirsten

    2017-01-01

    Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the “world avoided” by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing. PMID:28069937

  9. Effect of Climate Change on Water Temperature and ...

    EPA Pesticide Factsheets

    There is increasing evidence that our planet is warming and this warming is also resulting in rising sea levels. Estuaries which are located at the interface between land and ocean are impacted by these changes. We used CE-QUAL-W2 water quality model to predict changes in water temperature as a function of increasing air temperatures and rising sea level for the Yaquina Estuary, Oregon (USA). Annual average air temperature in the Yaquina watershed is expected to increase about 0.3 deg C per decade by 2040-2069. An air temperature increase of 3 deg C in the Yaquina watershed is likely to result in estuarine water temperature increasing by 0.7 to 1.6 deg C. Largest water temperature increases are expected in the upper portion of the estuary, while sea level rise may ameliorate some of the warming in the lower portion of the estuary. Smallest changes in water temperature are predicted to occur in the summer, and maximum changes during the winter and spring. Increases in air temperature may result in an increase in the number of days per year that the 7-day maximum average temperature exceeds 18 deg C (criterion for protection of rearing and migration of salmonids and trout) as well as other water quality concerns. In the upstream portion of the estuary, a 4 deg C increase in air temperature is predicted to cause an increase of 40 days not meeting the temperature criterion, while in the lower estuary the increase will depend upon rate of sea level rise (rang

  10. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases.

    PubMed

    Zickfeld, Kirsten; Solomon, Susan; Gilford, Daniel M

    2017-01-24

    Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the "world avoided" by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.

  11. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Irby, Isaac D.; Friedrichs, Marjorie A. M.; Da, Fei; Hinson, Kyle E.

    2018-05-01

    The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic-biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L-1) will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.

  12. Parcel-scale urban coastal flood mapping: Leveraging the multi-scale CoSMoS model for coastal flood forecasting

    NASA Astrophysics Data System (ADS)

    Gallien, T.; Barnard, P. L.; Sanders, B. F.

    2011-12-01

    California coastal sea levels are projected to rise 1-1.4 meters in the next century and evidence suggests mean tidal range, and consequently, mean high water (MHW) is increasing along portions of Southern California Bight. Furthermore, emerging research indicates wind stress patterns associated with the Pacific Decadal Oscillation (PDO) have suppressed sea level rise rates along the West Coast since 1980, and a reversal in this pattern would result in the resumption of regional sea level rise rates equivalent to or exceeding global mean sea level rise rates, thereby enhancing coastal flooding. Newport Beach is a highly developed, densely populated lowland along the Southern California coast currently subject to episodic flooding from coincident high tides and waves, and the frequency and intensity of flooding is expected to increase with projected future sea levels. Adaptation to elevated sea levels will require flood mapping and forecasting tools that are sensitive to the dominant factors affecting flooding including extreme high tides, waves and flood control infrastructure. Considerable effort has been focused on the development of nowcast and forecast systems including Scripps Institute of Oceanography's Coastal Data Information Program (CDIP) and the USGS Multi-hazard model, the Southern California Coastal Storm Modeling System (CoSMoS). However, fine scale local embayment dynamics and overtopping flows are needed to map unsteady flooding effects in coastal lowlands protected by dunes, levees and seawalls. Here, a recently developed two dimensional Godunov non-linear shallow water solver is coupled to water level and wave forecasts from the CoSMoS model to investigate the roles of tides, waves, sea level changes and flood control infrastructure in accurate flood mapping and forecasting. The results of this study highlight the important roles of topographic data, embayment hydrodynamics, water level uncertainties and critical flood processes required for meaningful prediction of sea level rise impacts and coastal flood forecasting.

  13. Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges

    NASA Astrophysics Data System (ADS)

    Cipollini, Paolo; Calafat, Francisco M.; Jevrejeva, Svetlana; Melet, Angelique; Prandi, Pierre

    2017-01-01

    We examine the issue of sustained measurements of sea level in the coastal zone, first by summarizing the long-term observations from tide gauges, then showing how those are now complemented by improved satellite altimetry products in the coastal ocean. We present some of the progresses in coastal altimetry, both from dedicated reprocessing of the radar waveforms and from the development of improved corrections for the atmospheric effects. This trend towards better altimetric data at the coast comes also from technological innovations such as Ka-band altimetry and SAR altimetry, and we discuss the advantages deriving from the AltiKa Ka-band altimeter and the SIRAL altimeter on CryoSat-2 that can be operated in SAR mode. A case study along the UK coast demonstrates the good agreement between coastal altimetry and tide gauge observations, with root mean square differences as low as 4 cm at many stations, allowing the characterization of the annual cycle of sea level along the UK coasts. Finally, we examine the evolution of the sea level trend from the open to the coastal ocean along the western coast of Africa, comparing standard and coastally improved products. Different products give different sea level trend profiles, so the recommendation is that additional efforts are needed to study sea level trends in the coastal zone from past and present satellite altimeters. Further improvements are expected from more refined processing and screening of data, but in particular from the constant improvements in the geophysical corrections.

  14. Full long-term design response analysis of a wave energy converter

    DOE PAGES

    Coe, Ryan G.; Michelen, Carlos; Eckert-Gallup, Aubrey; ...

    2017-09-21

    Efficient design of wave energy converters requires an accurate understanding of expected loads and responses during the deployment lifetime of a device. A study has been conducted to better understand best-practices for prediction of design responses in a wave energy converter. A case-study was performed in which a simplified wave energy converter was analyzed to predict several important device design responses. The application and performance of a full long-term analysis, in which numerical simulations were used to predict the device response for a large number of distinct sea states, was studied. Environmental characterization and selection of sea states for thismore » analysis at the intended deployment site were performed using principle-components analysis. The full long-term analysis applied here was shown to be stable when implemented with a relatively low number of sea states and convergent with an increasing number of sea states. As the number of sea states utilized in the analysis was increased, predicted response levels did not change appreciably. Furthermore, uncertainty in the response levels was reduced as more sea states were utilized.« less

  15. Full long-term design response analysis of a wave energy converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Ryan G.; Michelen, Carlos; Eckert-Gallup, Aubrey

    Efficient design of wave energy converters requires an accurate understanding of expected loads and responses during the deployment lifetime of a device. A study has been conducted to better understand best-practices for prediction of design responses in a wave energy converter. A case-study was performed in which a simplified wave energy converter was analyzed to predict several important device design responses. The application and performance of a full long-term analysis, in which numerical simulations were used to predict the device response for a large number of distinct sea states, was studied. Environmental characterization and selection of sea states for thismore » analysis at the intended deployment site were performed using principle-components analysis. The full long-term analysis applied here was shown to be stable when implemented with a relatively low number of sea states and convergent with an increasing number of sea states. As the number of sea states utilized in the analysis was increased, predicted response levels did not change appreciably. Furthermore, uncertainty in the response levels was reduced as more sea states were utilized.« less

  16. Modeling Anthropogenic Impact on Sediment Balance and Relative Sea-Level Rise in Contemporary and Future Deltas

    NASA Astrophysics Data System (ADS)

    Tessler, Z. D.; Vorosmarty, C. J.; Overeem, I.; Syvitski, J. P.

    2017-12-01

    Modern deltas are dependent on human-mediated freshwater and sediment fluxes. Changes to these fluxes impact delta biogeophysical functioning, and affect the long-term sustainability of these landscapes for both human and natural systems. Here we present contemporary estimates of long-term mean sediment balance and relative sea-level rise across 46 global deltas. We model ongoing development and scenarios of future water resource management and hydropower infrastructure in upstream river basins to explore how changing sediment fluxes impact relative sea-level in coastal delta systems. Model results show that contemporary sediment fluxes, anthropogenic drivers of land subsidence, and sea-level rise result in relative sea-level rise rates in deltas that average 6.8 mm/year. Currently planned or under-construction dams can be expected to increase rates of relative sea-level rise on the order of 1 mm/year. Some deltas systems, including the Magdalena, Orinoco, and Indus, are highly sensitive to future impoundment of river basins, with RSLR rates increasing up to 4 mm/year in a high-hydropower-utilization scenario. Sediment fluxes may be reduced by up to 60% in the Danube and 21% in the Ganges-Brahmaputra-Megnha if all currently planned dams are constructed. Reduced sediment retention on deltas due to increased river channelization and local flood controls increases RSLR on average by nearly 2 mm/year. Long-term delta sustainability requires a more complete understanding of how geophysical and anthropogenic change impact delta geomorphology. Strategies for sustainable delta management that focus on local and regional drivers of change, especially groundwater and hydrocarbon extraction and upstream dam construction, can be highly impactful even in the context of global climate-induced sea-level rise.

  17. Living in the Past: Phylogeography and Population Histories of Indo-Pacific Wrasses (Genus Halichoeres) in Shallow Lagoons versus Outer Reef Slopes

    PubMed Central

    Ludt, William B.; Bernal, Moisés A.; Bowen, Brian W.; Rocha, Luiz A.

    2012-01-01

    Sea level fluctuations during glacial cycles affect the distribution of shallow marine biota, exposing the continental shelf on a global scale, and displacing coral reef habitat to steep slopes on oceanic islands. In these circumstances we expect that species inhabiting lagoons should show shallow genetic architecture relative to species inhabiting more stable outer reefs. Here we test this expectation on an ocean-basin scale with four wrasses (genus Halichoeres): H. claudia (N = 194, with ocean-wide distribution) and H. ornatissimus (N = 346, a Hawaiian endemic) inhabit seaward reef slopes, whereas H. trimaculatus (N = 239) and H. margaritaceus (N = 118) inhabit lagoons and shallow habitats throughout the Pacific. Two mitochondrial markers (cytochrome oxidase I and control region) were sequenced to resolve population structure and history of each species. Haplotype and nucleotide diversity were similar among all four species. The outer reef species showed significantly less population structure, consistent with longer pelagic larval durations. Mismatch distributions and significant negative Fu’s F values indicate Pleistocene population expansion for all species, and (contrary to expectations) shallower histories in the outer slope species. We conclude that lagoonal wrasses may persist through glacial habitat disruptions, but are restricted to refugia during lower sea level stands. In contrast, outer reef slope species have homogeneous and well-connected populations through their entire ranges regardless of sea level fluctuations. These findings contradict the hypothesis that shallow species are less genetically diverse as a consequence of glacial cycles. PMID:22701597

  18. 75 FR 6616 - Endangered and Threatened Wildlife; Notice of 90-Day Finding on a Petition to List 83 Species of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... ocean acidification, increasing storm intensities, changes in precipitation, and sea-level rise. The... Indian Ocean are expected to rise above 1998 levels within a few decades (Sheppard, 2003, as cited by the... greenhouse gas concentrations to levels that do not jeopardize these species. The petition also asserts that...

  19. Informatics and computational method for inundation and land use study in Arctic Sea eastern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Boori, Mukesh Singh; Choudhary, Komal; Kupriyanov, Alexander; Sugimoto, Atsuko

    2016-11-01

    Eastern Siberia, Russia is physically and socio-economically vulnerable to accelerated Arctic sea level rise due to low topography, high ecological value, harsh climatic conditions, erosion and flooding of coastal area and destruction of harbor constructions and natural coastal hazards. A 1 to 10m inundation land loss scenarios for surface water and sea level rise (SLR) were developed using digital elevation models of study site topography through remote sensing and GIS techniques by ASTER GDEM and Landsat OLI data. Results indicate that 10.82% (8072.70km2) and 29.73% (22181.19km2) of the area will be lost by flooding at minimum and maximum inundation levels, respectively. The most severely impacted sectors are expected to be the vegetation, wetland and the natural ecosystem. Improved understanding of the extent and response of SLR will help in preparing for mitigation and adaptation.

  20. Sea level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa

    NASA Astrophysics Data System (ADS)

    Lambeck, Kurt; Purcell, Anthony; Flemming, Nicholas. C.; Vita-Finzi, Claudio; Alsharekh, Abdullah M.; Bailey, Geoffrey N.

    2011-12-01

    The history of sea level within the Red Sea basin impinges on several areas of research. For archaeology and prehistory, past sea levels of the southern sector define possible pathways of human dispersal out of Africa. For tectonics, the interglacial sea levels provide estimates of rates for vertical tectonics. For global sea level studies, the Red Sea sediments contain a significant record of changing water chemistry with implications on the mass exchange between oceans and ice sheets during glacial cycles. And, because of its geometry and location, the Red Sea provides a test laboratory for models of glacio-hydro-isostasy. The Red Sea margins contain incomplete records of sea level for the Late Holocene, for the Last Glacial Maximum, for the Last Interglacial and for earlier interglacials. These are usually interpreted in terms of tectonics and ocean volume changes but it is shown here that the glacio-hydro-isostatic process is an additional important component with characteristic spatial variability. Through an iterative analysis of the Holocene and interglacial evidence a separation of the tectonic, isostatic and eustatic contributions is possible and we present a predictive model for palaeo-shorelines and water depths for a time interval encompassing the period proposed for migrations of modern humans out of Africa. Principal conclusions include the following. (i) Late Holocene sea level signals evolve along the length of the Red Sea, with characteristic mid-Holocene highstands not developing in the central part. (ii) Last Interglacial sea level signals are also location dependent and, in the absence of tectonics, are not predicted to occur more than 1-2 m above present sea level. (iii) For both periods, Red Sea levels at 'expected far-field' elevations are not necessarily indicative of tectonic stability and the evidence points to a long-wavelength tectonic uplift component along both the African and Arabian northern and central sides of the Red Sea. (iv) The observational evidence is consistent with tectonic and isostatic processes both operating over the past 300,000 years without requiring changes in the time averaged (over a few thousand years) tectonic rates. (v) Recent bathymetric data for the Bab al Mandab region have been compiled to confirm the location and depth of the sill controlling flow in and out of the Red Sea. Throughout the last 400,000 years the Red Sea has remained open to the Gulf of Aden with cross sectional areas at times of glacial maxima about 2% of that today. (vi) The minimum channel widths connecting the Red Sea to the Gulf of Aden at times of lowstand occur south of the Hanish Sill. The channels are less than 4 km wide and remain narrow for as long as local sea levels are below -50 m. This occurs for a number of sustained periods during the last two glacial cycles and earlier. (vii) Periods suitable for crossing between Africa and Arabia without requiring seaworthy boats or seafaring skills occurred periodically throughout the Pleistocene, particularly at times of favourable environmental climatic conditions that occurred during times of sea level lowstand.

  1. Indonesian drilling maintains steady pace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-05-01

    Offshore drilling activity in Indonesia increased nominally the first quarter of 1985 to an average 29 rigs. Barring any further problems with oil prices and markets, operators are expected to maintain essentially the current general level of appraisal/development work for the rest of this year. There are still a number of prospective regions to be explored in Southeast Asia. Regional developments are described for the South China Sea area, the Java Sea, South Sumatra, Kalimantan, Irian Jaya and the Malacca Strait.

  2. Improving the Predictability of Severe Water Levels along the Coasts of Marginal Seas

    NASA Astrophysics Data System (ADS)

    Ridder, N. N.; de Vries, H.; van den Brink, H.; De Vries, H.

    2016-12-01

    Extreme water levels can lead to catastrophic consequences with severe societal and economic repercussions. Particularly vulnerable are countries that are largely situated below sea level. To support and optimize forecast models, as well as future adaptation efforts, this study assesses the modeled contribution of storm surges and astronomical tides to total water levels under different air-sea momentum transfer parameterizations in a numerical surge model (WAQUA/DCSMv5) of the North Sea. It particularly focuses on the implications for the representation of extreme and rapidly recurring severe water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5, which is currently used to forecast coastal water levels in the Netherlands, is forced with ERA Interim reanalysis data. Model results are obtained from two different methodologies to parameterize air-sea momentum transfer. The first calculates the governing wind stress forcing using a drag coefficient derived from the conventional approach of wind speed dependent Charnock constants. The other uses instantaneous wind stress from the parameterization of the quasi-linear theory applied within the ECMWF wave model which is expected to deliver a more realistic forcing. The performance of both methods is tested by validating the model output with observations, paying particular attention to their ability to reproduce rapidly succeeding high water levels and extreme events. In a second step, the common features of and connections between these events are analyzed. The results of this study will allow recommendations for the improvement of water level forecasts within marginal seas and support decisions by policy makers. Furthermore, they will strengthen the general understanding of severe and extreme water levels as a whole and help to extend the currently limited knowledge about clustering events.

  3. Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils.

    PubMed

    LeMonte, Joshua J; Stuckey, Jason W; Sanchez, Joshua Z; Tappero, Ryan; Rinklebe, Jörg; Sparks, Donald L

    2017-06-06

    Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions. We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.

  4. Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils

    DOE PAGES

    LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.; ...

    2017-05-04

    Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less

  5. Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.

    Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less

  6. Assessing economic impact of storm surge under projected sea level rise scenarios

    NASA Astrophysics Data System (ADS)

    Del Angel, D. C.; Yoskowitz, D.

    2017-12-01

    Global sea level is expected to rise 0.2-2m by the year 2100. Rising sea level is expected to have a number of impacts such as erosion, saltwater intrusion, and decline in coastal wetlands; all which have direct and indirect socio-economic impact to coastal communities. By 2050, 25% of the world's population will reside within flood-prone areas. These statistics raise a concern for the economic cost that sea level and flooding has on the growing coastal communities. Economic cost of storm surge inundation and rising seas may include loss or damage to public facilities and infrastructure that may become temporarily inaccessible, as well as disruptions to business and services. This goal of this project is to assess economic impacts of storms under four SLR scenarios including low, intermediate-low, intermediate-high, and high (0.2m, 0.5m, 1.2m and 2m, respectively) in the Northern Gulf of Mexico region. To assess flooding impact on communities from storm surge, this project utilizes HAZUS-MH software - a Geographic Information System (GIS)-based modeling tool developed by the Federal Emergency Management Agency - to estimate physical, economic, and social impacts of natural disasters such as floods, earthquakes and hurricanes. The HAZUS database comes integrated with aggregate and site specific inventory which includes: demographic data, general building stock, agricultural statistics, vehicle inventory, essential facilities, transportation systems, utility systems (among other sensitive facilities). User-defined inundation scenarios will serve to identify assets at risk and damage estimates will be generated using the Depth Damage Function included in the HAZUS software. Results will focus on 3 communities in the Gulf and highlight changes in storm flood impact. This approach not only provides a method for economic impact assessment but also begins to create a link between ecosystem services and natural and nature-based features such as wetlands, beaches and dunes. Results from this analysis can provide actionable information needed for policy development and planning for coastal communities.

  7. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River

    PubMed Central

    Tabak, Nava M.; Laba, Magdeline; Spector, Sacha

    2016-01-01

    Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE’s wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary. PMID:27043136

  8. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.

    PubMed

    Tabak, Nava M; Laba, Magdeline; Spector, Sacha

    2016-01-01

    Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE's wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.

  9. Future evolution of a tidal inlet due to changes in wave climate, Sea level and lagoon morphology (Óbidos lagoon, Portugal)

    NASA Astrophysics Data System (ADS)

    Bruneau, Nicolas; Fortunato, André B.; Dodet, Guillaume; Freire, Paula; Oliveira, Anabela; Bertin, Xavier

    2011-11-01

    Tidal inlets are extremely dynamic, as a result of an often delicate balance between the effects of tides, waves and other forcings. Since the morphology of these inlets can affect navigation, water quality and ecosystem dynamics, there is a clear need to anticipate their evolution in order to promote adequate management decisions. Over decadal time scales, the position and size of tidal inlets are expected to evolve with the conditions that affect them, for instance as a result of climate change. A process-based morphodynamic modeling system is validated and used to analyze the effects of sea level rise, an expected shift in the wave direction and the reduction of the upper lagoon surface area by sedimentation on a small tidal inlet (Óbidos lagoon, Portugal). A new approach to define yearly wave regimes is first developed, which includes a seasonal behavior, random inter-annual variability and the possibility to extrapolate trends. Once validated, this approach is used to produce yearly time series of wave spectra for the present and for the end of the 21st century, considering the local rotation trends computed using hindcast results for the past 57 years. Predictions of the mean sea level for 2100 are based on previous studies, while the bathymetry of the upper lagoon for the same year is obtained by extrapolation of past trends. Results show, and data confirm, that the Óbidos lagoon inlet has three stable configurations, largely determined by the inter-annual variations in the wave characteristics. Both sea level rise and the reduction of the lagoon surface area will promote the accretion of the inlet. In contrast, the predicted rotation of the wave regime, within foreseeable limits, will have a negligible impact on the inlet morphology.

  10. The Orinoco megadelta as a conservation target in the face of the ongoing and future sea level rise.

    PubMed

    Vegas-Vilarrúbia, T; Hernández, E; Rull, Valentí; Rull Vegas, Elisa

    2015-05-15

    Currently, risk assessments related to rising sea levels and the adoption of defensive or adaptive measures to counter these sea level increases are underway for densely populated deltas where economic losses might be important, especially in the developed world. However, many underpopulated deltas harbouring high biological and cultural diversity are also at risk but will most likely continue to be ignored as conservation targets. In this study, we explore the potential effects of erosion, inundation and salinisation on one of the world's comparatively underpopulated megadeltas, the Orinoco Delta. With a 1 m sea level rise expected to occur by 2100, several models predict a moderate erosion of the delta's shorelines, migration or loss of mangroves, general inundation of the delta with an accompanying submersion of wetlands, and an increase in the distance to which sea water intrudes into streams, resulting in harm to the freshwater biota and resources. The Warao people are the indigenous inhabitants of the Orinoco Delta and currently are subject to various socioeconomic stressors. Changes due to sea level rise will occur extremely rapidly and cause abrupt shifts in the Warao's traditional environments and resources, resulting in migrations and abandonment of their ancestral territories. However, evidence indicates that deltaic aggradation/accretion processes at the Orinoco delta due to allochthonous sediment input and vegetation growth could be elevating the surface of the land, keeping pace with the local sea level rise. Other underpopulated and large deltas of the world also may risk immeasurable biodiversity and cultural losses and should not be forgotten as important conservation targets. Copyright © 2015. Published by Elsevier B.V.

  11. Raising the Dead without a Red Sea-Dead Sea Canal? A hydro-economic-institutional analysis

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.

    2010-12-01

    Presently, just 100 million cubic meters per year (MCM/year) of the 1,000+ MCM/year that historically flowed in the lower Jordan River reach the Dead Sea. Israeli, Jordanian, and Syrian dam and extraction projects built over seven decades have principally caused the reduced flow, associated falling Dead Sea level, shrinking surface area, sink holes, salinity, and other catastrophic problems. These problems will be magnified in the face of up to 20% reductions in precipitation expected with climate change. The fix proposed by Jordan, Israel, and Palestine—and now under study by the World Bank—envisions building a $US 5 billion multipurpose canal from the Red Sea to the Dead Sea that would also generate hydropower and desalinated water. Yet alternatives to raise the Dead Sea level that could take advantage of hydrologic variability remain unstudied. Here we show system-wide hydrologic and economic impacts of and discusses institutional management for alternatives to raise the Dead Sea level. Hydro-economic model results for the inter-tied Israel-Jordan-Palestinian water systems show the desalination component of the Red Sea-Dead Sea project is economically unviable. Further, many decentralized new supply, wastewater reuse, conveyance, conservation, and leak reduction projects and programs in each country together increase economic benefits and can reliably deliver up to 900 MCM/year to the Dead Sea. In all cases, results show that net benefits fall and water scarcity rises as the flow volume delivered to the Dead Sea increases. These findings suggest that (i) each country has little individual incentive to allow water to flow to the Dead Sea, and (ii) outside institutions—such as the World Bank—that seek to raise the Dead should instead offer the countries direct incentives to deliver water rather than build them new infrastructure. The work expands the set of viable options to raise the Dead Sea level and can help the World Bank and others recommend whether to move forward with the Red Sea-Dead Sea project.

  12. Morphological response of the saltmarsh habitats of the Guadiana estuary due to flow regulation and sea-level rise

    NASA Astrophysics Data System (ADS)

    Sampath, D. M. R.; Boski, T.

    2016-12-01

    In the context of rapid sea-level rise in the 21st century, the reduction of fluvial sediment supply due to the regulation of river discharge represents a major challenge for the management of estuarine ecosystems. Therefore, the present study aims to assess the cumulative impacts of the reduction of river discharge and projected sea-level rise on the morphological evolution of the Guadiana estuary during the 21st century. The assessment was based on a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters and empirical knowledge of the system. As methods applied to estimate environmental flows do not take into consideration the fluvial discharge required to maintain saltmarsh habitats and the impact of sea-level rise, simulations were carried out for ten cases in terms of base river flow and sea-level rise so as to understand their sensitivity on the deepening of saltmarsh platforms. Results suggest saltmarsh habitats may not be affected severely in response to lower limit scenarios of sea-level rise and sedimentation. A similar behaviour can be expected even due to the upper limit scenarios until 2050, but with a significant submergence afterwards. In the case of the upper limit scenarios under scrutiny, there was a net erosion of sediment from the estuary. Multiplications of amplitudes of the base flow function by factors 1.5, 2, and 5 result in reduction of the estimated net eroded sediment volume by 25, 40, and 80%, respectively, with respect to the net eroded volume for observed river discharge. The results also indicate that defining the minimum environmental flow as a percentage of dry season flow (as done presently) should be updated to include the full spectrum of natural flows, incorporating temporal variability to better anticipate scenarios of sea-level rise during this century. As permanent submergence of intertidal habitats can be significant after 2050, due to the projected 79 cm rise of sea-level by the year 2100, a multi-dimensional approach should be adopted to mitigate the consequences of sea-level rise and strong flow regulations on the ecosystem of the Guadiana Estuary.

  13. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard.

    PubMed

    Vousdoukas, Michalis I; Mentaschi, Lorenzo; Voukouvalas, Evangelos; Verlaan, Martin; Jevrejeva, Svetlana; Jackson, Luke P; Feyen, Luc

    2018-06-18

    Global warming is expected to drive increasing extreme sea levels (ESLs) and flood risk along the world's coastlines. In this work we present probabilistic projections of ESLs for the present century taking into consideration changes in mean sea level, tides, wind-waves, and storm surges. Between the year 2000 and 2100 we project a very likely increase of the global average 100-year ESL of 34-76 cm under a moderate-emission-mitigation-policy scenario and of 58-172 cm under a business as usual scenario. Rising ESLs are mostly driven by thermal expansion, followed by contributions from ice mass-loss from glaciers, and ice-sheets in Greenland and Antarctica. Under these scenarios ESL rise would render a large part of the tropics exposed annually to the present-day 100-year event from 2050. By the end of this century this applies to most coastlines around the world, implying unprecedented flood risk levels unless timely adaptation measures are taken.

  14. Incorporating Infrastructure and Vegetation Effects on Sea Level Rise Predictions in Low-Gradient Coastal Landscapes

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Sandi Rojas, S.; Trivisonno, F.; Saco, P. M.; Riccardi, G.

    2015-12-01

    At the regional and global scales, coastal management and planning for future sea level rise scenarios is typically supported by modelling tools that predict the expected inundation extent. These tools rely on a number of simplifying assumptions that, in some cases, may result in important overestimation or underestimation of the inundation extent. One of such cases is coastal wetlands, where vegetation strongly affects both the magnitude and the timing of inundation. Many coastal wetlands display other forms of flow restrictions due to, for example, infrastructure or drainage works, which also alters the inundation patterns. In this contribution we explore the effects of flow restrictions on inundation patterns under sea level rise conditions in coastal wetlands. We use a dynamic wetland evolution model that not only incorporates the effects of flow restrictions due to culverts, bridges and weirs as well as vegetation, but also considers that vegetation changes as a consequence of increasing inundation. We apply our model to a coastal wetland in Australia and compare predictions of our model to predictions using conventional approaches. We found that some restrictions accentuate detrimental effects of sea level rise while others moderate them. We also found that some management strategies based on flow redistribution that provide short term solution may result more damaging in the long term if sea level rise is considered.

  15. Can sea level rise cause large submarine landslides on continental slopes?

    NASA Astrophysics Data System (ADS)

    Urlaub, Morelia

    2014-05-01

    Submarine landslides are one of the volumetrically most important sediment transport processes at continental margins. Moreover, these landslides are a major geohazard as they can cause damaging tsunamis and destroy seabed infrastructure. Due to their inaccessibility our understanding of what causes these landslides is limited and based on hypotheses that are difficult to test. Some of the largest submarine landslides, such as the Storegga Slide off Norway, occurred during times of eustatic sea level rise. It has been suggested that this global sea level rise was implicated in triggering of the landslides by causing an increase in excess pore pressure in the subseafloor. However, in a homogeneous slope a change in the thickness of the overlying water mass is not expected to affect its stability, as only the hydrostatic pressure component will change, whereas pore pressures in excess of hydrostatic will remain unaltered. Whether sufficiently rapid sea level rise, aided by rather impermeable sediment and complex layering, could cause excess pore pressures that may destabilise a continental slope is more difficult to answer and has not yet been tested. I use Finite Element Modelling to explore and quantify the direct effect of changes in the thickness of the overlying water mass on the stability of a generic sediment column with different stratigraphic conditions and hydro-mechanical properties. The results show that the direct effect of sea level rise on continental slope stability is minimal. Nevertheless, sea level rise may foster other processes, such as lithospheric stress changes resulting in increased seismicity, that could potentially cause large submarine landslides on continental slopes.

  16. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change

    USGS Publications Warehouse

    Osland, Michael J.; Enwright, Nicholas M.; Day, Richard H.; Gabler, Christopher A.; Stagg, Camille L.; Grace, James B.

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate-change related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.

  17. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment

    PubMed Central

    Neumann, Barbara; Vafeidis, Athanasios T.; Zimmermann, Juliane; Nicholls, Robert J.

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we identify needs for further research and scope for improvement in this kind of scenario-based exposure analysis. PMID:25760037

  18. Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment.

    PubMed

    Neumann, Barbara; Vafeidis, Athanasios T; Zimmermann, Juliane; Nicholls, Robert J

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we identify needs for further research and scope for improvement in this kind of scenario-based exposure analysis.

  19. Assessing assessment: Can the expected effects of the St. Marys River sea lamprey control strategy be detected?

    USGS Publications Warehouse

    Adams, Jean V.; Bergstedt, Roger A.; Christie, Gavin C.; Cuddy, Douglas W.; Fodale, Michael F.; Heinrich, John W.; Jones, Michael L.; McDonald, Rodney B.; Mullett, Katherine M.; Young, Robert J.

    2003-01-01

    In 1997 the Great Lakes Fishery Commission approved a 5-year (1998 to 2002) control strategy to reduce sea lamprey (Petromyzon marinus) production in the St. Marys River, the primary source of parasitic sea lampreys in northern Lake Huron. An assessment plan was developed to measure the success of the control strategy and decide on subsequent control efforts. The expected effects of the St. Marys River control strategy are described, the assessments in place to measure these effects are outlined, and the ability of these assessments to detect the expected effects are quantified. Several expected changes were predicted to be detectable: abundance of parasitic-phase sea lampreys and annual mortality of lake trout (Salvelinus namaycush) by 2001, abundance of spawning-phase sea lampreys by 2002, and relative return rates of lake trout and sea lamprey wounding rates on lake trout by 2005. Designing an effective assessment program to quantify the consequences of fishery management actions is a critical, but often overlooked ingredient of sound fisheries management.

  20. Infrastructure effects on estuarine wetlands increase their vulnerability to sea level rise

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jose; Saco, Patricia; Sandi, Steven; Saintilan, Neil; Riccardi, Gerardo

    2017-04-01

    At the regional and global scales, coastal management and planning for future sea level rise scenarios is typically supported by modelling tools that predict the expected inundation extent. These tools rely on a number of simplifying assumptions that, in some cases, may result in important miscalculation of the inundation effects. One of such cases is estuarine wetlands, where vegetation strongly depends on both the magnitude and the timing of inundation. Many coastal wetlands display flow restrictions due to infrastructure or drainage works, which produce alterations to the inundation patterns that can not be captured by conventional models. In this contribution we explore the effects of flow restrictions on inundation patterns under sea level rise conditions in estuarine wetlands. We use a spatially-distributed dynamic wetland ecogeomorphological model that not only incorporates the effects of flow restrictions due to culverts, bridges and weirs as well as vegetation, but also considers that vegetation changes as a consequence of increasing inundation. We also consider the ability of vegetation to capture sediment and produce accretion. We apply our model to an estuarine wetland in Australia and show that our model predicts a much faster wetland loss due to sea level rise than conventional approaches.

  1. Preliminary investigation of the effects of sea-level rise on groundwater levels in New Haven, Connecticut

    USGS Publications Warehouse

    Bjerklie, David M.; Mullaney, John R.; Stone, Janet R.; Skinner, Brian J.; Ramlow, Matthew A.

    2012-01-01

    Global sea level rose about 0.56 feet (ft) (170 millimeters (mm)) during the 20th century. Since the 1960s, sea level has risen at Bridgeport, Connecticut, about 0.38 ft (115 mm), at a rate of 0.008 ft (2.56 mm + or - 0.58 mm) per year. With regional subsidence, and with predicted global climate change, sea level is expected to continue to rise along the northeast coast of the United States through the 21st century. Increasing sea levels will cause groundwater levels in coastal areas to rise in order to adjust to the new conditions. Some regional climate models predict wetter climate in the northeastern United States under some scenarios. Scenarios for the resulting higher groundwater levels have the potential to inundate underground infrastructure in lowlying coastal cities. New Haven is a coastal city in Connecticut surrounded and bisected by tidally affected waters. Monitoring of water levels in wells in New Haven from August 2009 to July 2010 indicates the complex effects of urban influence on groundwater levels. The response of groundwater levels to recharge and season varied considerably from well to well. Groundwater temperatures varied seasonally, but were warmer than what was typical for Connecticut, and they seem to reflect the influence of the urban setting, including the effects of conduits for underground utilities. Specific conductance was elevated in many of the wells, indicating the influence of urban activities or seawater in Long Island Sound. A preliminary steady-state model of groundwater flow for part of New Haven was constructed using MODFLOW to simulate current groundwater levels (2009-2010) and future groundwater levels based on scenarios with a rise of 3 ft (0.91 meters (m)) in sea level, which is predicted for the end of the 21st century. An additional simulation was run assuming a 3-ft rise in sea level combined with a 12-percent increase in groundwater recharge. The model was constructed from existing hydrogeologic information for the New Haven area and from new information on groundwater levels collected during October 2009-June 2010. For the scenario with a 3-ft rise in sea level and no increase in recharge, simulated groundwater levels near the coast rose 3 ft; this increased water level tapered off toward a discharge area at the only nontidal stream in the study area. Simulated stream discharge increased at the nontidal stream because of the increased gradient. Although groundwater levels rose, the simulated difference between the groundwater levels in the aquifer and the increased sea level declined, indicating that the depth to the interface between freshwater and saltwater may possibly decline. Simulated water levels were affected by rise in sea level even in areas where the water table was at 17-24 ft (5.2-7.3 m) above current (2011) sea level. For the scenario with increased recharge, simulated groundwater levels were as much as an additional foot higher at some locations in the study area. The results of this preliminary investigation indicate that groundwater levels in coastal areas can be expected to rise and may rise higher if groundwater recharge also increases. This finding has implications for the disposal of stormwater through infiltration, a low-impact development practice designed to improve water quality and reduce overland peak discharge. Other implications include increased risk of basement flooding and increased groundwater seepage into underground sewer pipes and utility corridors in some areas. These implications will present engineering challenges to New Haven and Yale University. The preliminary model developed for this study can be the starting point for further simulation of future alternative scenarios for sea-level rise and recharge. Further simulations could identify those areas of New Haven where infrastructure may be at greatest risk from rising levels of groundwater. The simulations described in this report have limitations due to the preliminary scope of the work. Approaches to improve simulations include but are not limited to incorporating: * The variable density of seawater into the model in order to understand the current and future location of the interface between freshwater and saltwater; * Collection of additional data in order to better resolve temporal and spatial patterns in water levels in the aquifer; * Improved estimates of recharge through direct and indirect measurements of freshwater discharge from the study area; and * Transient simulations for greater understanding of the amount of time required for water levels and the position of the interface between freshwater and saltwater to adjust to changes in sea level and recharge.

  2. XXI century projections of wind-wave conditions and sea-level rise in the Black sea

    NASA Astrophysics Data System (ADS)

    Polonsky, A.; Garmashov, A.; Fomin, V.; Valchev, N.; Trifonova, E.

    2012-04-01

    Projection of regional climate changes for XXI century is one of the priorities of EC environmental programme. Potential worsening of the waves' statistics, sea level rise and extreme surges are the principal negative consequences of the climate change for marine environment. That is why the main purpose of this presentation is to discuss the above issue for the Black sea region (with a strong focus to the south-west subregion because the maximum heights of waves exceeding 10 m occur just here) using output of several global coupled models (GCM) for XXI century, wave simulation, long-term observations of sea level and statistical techniques. First of all we tried to choose the best coupled model (s) simulated the Black sea climate change and variability using the control experiments for 20 century (203). The principal result is as follows. There is not one model which is simulating adequately even one atmospheric parameter for all seasons. Therefore we considered (for the climate projection) different outputs form various models. When it was possible we calculated also the ensemble mean projection for the selected model (s) and emission scenarios. To calculate the wave projection we used the output of SWAN model forced by the GCM wind projection for 2010 to 2100. To estimate the sea level rise in XXI century and future surges statistics we extrapolate the observed sea level rise tendencies, statistical relation between wave heights and sea level and wave scenarios. Results show that in general, the climate change in XXI century doesn't lead to the catastrophic change of the Black sea wind-wave statistics including the extreme waves in the S-W Black sea. The typical atmospheric pattern leading to the intense storm in the S-W Black sea is characterized by the persistent anticyclonic area to the North of the Black sea and cyclonic conditions in the Southern Black sea region. Such pressure pattern causes persistent and strong eastern or north-eastern wind which generates the high waves in the S-E Black sea. The climate projections show that the frequency of such atmospheric pattern will not principally increase. The recent probability of the extreme wave height (exceeding 8 to10 m) in the S-W Black sea (~1 occurrence per 10 years) will not be much worse in XXI century. Similar conclusion is true for the storm surges along the Bulgarian coastline. Expected sea level rise in the Black sea basin for XXI century due to regional climate changes is about 2 mm per year (±50%). However, some Black sea subregions (such as Odessa and Varna bay) are characterized by fivefold sea level rise because of the local land subsidence. So, this geomorphologic effect is the most dangerous local consequence for the sustainable development and management of the coastal zone in such subregions. This study was supported by EC project "THESEUS".

  3. Coastal-storm Inundation and Sea-level Rise in New Zealand Scott A. Stephens and Rob Bell

    NASA Astrophysics Data System (ADS)

    Stephens, S. A.; Bell, R.

    2016-12-01

    Coastal-storm inundation is a growing problem in New Zealand. It happens occasionally, when the combined forces of weather and sea line up, causing inundation of low-elevation land, coastal erosion, and rivers and stormwater systems to back up causing inland flooding. This becomes a risk where we have placed buildings and infrastructure too close to the coast. Coastal-storm inundation is not a new problem, it has happened historically, but it is becoming more frequent as the sea level continues to rise. From analyses of historic extreme sea-level events, we show how the different sea-level components, such as tide and storm surge, contribute to extreme sea-level and how these components vary around New Zealand. Recent sea-level analyses reveal some large storm surges, bigger than previously reported, and we show the type of weather patterns that drive them, and how this leads to differences in storm surge potential between the east and west coasts. Although large and damaging storm-tides have occurred historically, we show that there is potential for considerably larger elevations to be reached in the "perfect storm", and we estimate the likelihood of such extreme events occurring. Sea-level rise (SLR) will greatly increase the frequency, depth and consequences of coastal-storm inundation in the future. We show an application of a new method to determine the increasing frequency of extreme sea-levels with SLR, one which integrates the extreme tail with regularly-occurring high tides. We present spatial maps of several extreme sea-level threshold exceedance statistics for a case study at Mission Bay, Auckland, New Zealand. The maps show how the local community is likely to face decision points at various SLR thresholds, and we conclude that coastal hazard assessments should ideally use several SLR scenarios and time windows within the next 100 years or more to support the decision-making process for future coastal adaptation and when response options will be needed. In tandem, coastal hazard assessments should also provide information on SLR values linked to expected inundation frequency or depth. This can be linked to plausible timeframes for SLR thresholds to determine when critical decision points for adaptation might be reached, and we show how this might be achieved.

  4. Critical Beach Habitat for Hawaiian Green Sea Turtle Endangered Before Mid-Century

    NASA Astrophysics Data System (ADS)

    Burstein, J. T.; Fletcher, C. H., III; Dominique Tavares, K.

    2017-12-01

    Many Hawaiian beaches provide critical habitat for the Hawaiian Green Sea Turtle (Chelonia Mydas). However, sea level rise drives beaches and dunes to migrate landward where they may encounter roads and other types of developed lands. Where developed lands are threatened by coastal erosion, defined as a distance of 20 ft (6.1 m) by state rules, property owners are eligible to apply for an emergency permit. These have historically led to coastal armoring. Seawalls and revetments on chronically receding shorelines cause permanent beach loss by restricting sand supply to the beach in front of the sea wall, as well as to beaches adjacent to the restrictive structure (flanking). This study focuses on four primary beach habitats along the North Shore of Oahu, Hawai'i: Waimea, Haleiwa, Kawailoa, and Mokuleia. We utilize GIS techniques to apply spatial analysis of nesting and basking locations collected from the National Oceanic Atmospheric Administration (NOAA). We then estimate the number of homes and the length of shoreline threatened by coastal armoring for 0 m, 0.17 m, 0.32 m, 0.60 m, and 0.98 m of sea-level rise. We demonstrate that 0.17 m of sea level rise impacts 31% of all beach front homes, and 4.6 km of shoreline, or 21% of the total shoreline. An increase to 0.32 m of sea level rise impacts 42% of all beach front homes, and 5.8 km of shoreline, or 31% of the total shoreline. The upper bound of the most recent sea level rise projection by the International Panel on Climate Change (IPCC RCP 8.5) affirms that 0.17 m of sea level rise may be reached by 2030, and 0.32 m by 2050. This sea level projection is a "worst-case" under IPCC-AR5, however, Sweet et al. (2017) depicts this as an "Intermediate" scenario on the basis of faster than expected mass loss by Greenland and Antarctica ice sheets, and rapid heat uptake and thermal expansion by the world's oceans. We conclude that the impacts of sea level rise and reactive coastal armoring currently endanger critical habitat for the Hawaiian Green Sea turtle (Chelonia Mydas). The results of this study suggest that decision-makers need to act without delay in developing habitat management plans to protect and preserve Hawai'i's shorelines, and conserve critical habitats for the Hawaiian Green Sea turtle and other indigenous species.

  5. The hazard of Sea Level Rise (SLR) in Greece: from scientific knowledge towards risk awareness of main actors

    NASA Astrophysics Data System (ADS)

    Dandoulaki, Miranda; Karymbalis, Efthimios; Yorgos, Melissourgos; Skordili, Sophia; Valkanou, Kanella

    2014-05-01

    A natural hazard that is expected to affect coastal areas in the near future is Sea-Level Rise (SLR) due to climate change. According to recent reports the eustatic sea-level rise caused by global warming will reach approximately 18-59 cm by the year 2100. Potential impacts of future sea-level rise include coastal erosion, frequent and intensified cyclonic activity and associated storm surge flooding that may affect the coastal zones, saltwater intrusion into groundwater aquifers, the inundation of ecologically significant wetlands, and threats to cultural and historical resources, as well as to infrastructure. The identification of sensitive sections of coasts and the assessment of potential impacts of SLR on these is therefore a fundamental, yet initial, step towards their protection. Greece has the most extensive coastline among all Mediterranean countries with most of the socio-economic activities concentrated along the coastal zone. Almost all big urban centres are coastal ones and the same stands for a great part of infrastructure (ports, airports, roads, electricity and telecommunications network etc). As a result, the impacts of a potential rise of the sea level are expected to seriously affect the entire country. The paper examines the vulnerability to SLR of coastal zones in Greece; however its main focus is how knowledge can lead to policy making and the protection of coastal areas. The main actors in respect to protection from SLR in Greece are identified and there is an attempt to pin point how the knowledge is communicated and shared between them. Barriers, bridges and gaps are detected as regards how information and knowledge lead to risk awareness and finally to the implementation of protection policies. A main finding of the paper is that SLR risk is far from becoming a policy priority in Greece, although steps are taken for addressing impacts attributed to SLR such as coastal erosion. In order to address this risk, there are many potential adaptation options starting from communication and enhanced awareness. But in today's situation of financial crisis, adaptation to SLR becomes even less of a priority, as everyday problems seem more urgent than future, long-term, uncertain risks.

  6. Long-term effects of climate change on the hydrological system of a lowland area at the German North Sea coast

    NASA Astrophysics Data System (ADS)

    Graeff, Thomas; Baroni, Gabriele; Krause, Stefan

    2014-05-01

    Coastal areas are highly vulnerable to the impacts of climate change. In particular for the winter season, global sea level rise is expected to be combined with increased precipitation and higher storm surge frequency. During summer, due to the increase of temperature, enhanced evapotranspiration with an increase of groundwater intrusion has been observed. It is expected that the salinization of the surface will rise under drier conditions by upward seeping groundwater. Coastal water resource management requires a better understanding and predictions of these dynamic systems. Therefore, a long-term monitoring programme has been established at the German North Sea coast, located at the estuary of the River Ems. The research area is dominated by a dense canal system that is regulated by pumping stations and tidal gates. Landuse of the area is mainly dairy farming with 30 % of the area below sea level. The underlying aquifer is confined and brackish, and it is connected to the surface water by geological faults of old paleo-channels. Observations in those areas indicate a high salinity with concentrations peaking during the summer period. This study investigates the effects of climate change on water balance and salt transport by applying regional climate models (RCMs) based on the IPCC emission scenarios for the period until 2100 as drivers for a hydrological and solute transport model. To investigate the impact of different meteorological scenarios, the RCM results for the climate scenarios A1B, A2 and B1 are used to cover an increase of future temperature between 1 and 3.5 K. As changes in water level and salinity are expected to influence vegetation patterns (and water management aims to guaranty agricultural use) two alternative landuse scenarios are considered. The first scenario assumes that the technological level of the management will be adapted to rainfall and sea level but without additional drainage from the hinterland to reduce salt water concentration. A second scenario includes the adaptation to increasing precipitation and the sea level with a polder system and wetland areas designated as potential buffer for winter storm surges and inland floods and as freshwater storage for dry summer periods. The coupled groundwater - surface water model GSFLOW is used to simulate the integrated water balance. In a second step, salt transport is simulated with the solute transport model MT3DMS. Model simulations are carried out in an uncertainty framework based on the Sobol/Saltelli global sensitivity analysis in order to analyse the parameter space of the models. First results show that a polder- wetland system is capable to reduce flooding of the hinterland up to a return period of an hundred years, but consuming 20% of the arable land whereby the businesses as usual scenario would be able to manage the water balance but with strong salinization effects.

  7. Interferometric Synthetic Aperture Radar to capture spatial variability of local land-based subsidence

    NASA Astrophysics Data System (ADS)

    Bekaert, D. P.; Hamlington, B.; Buzzanga, B. A.; Jones, C. E.

    2017-12-01

    The rate of relative sea level rise results from a combination of land subsidence and rising seas associated with global warming on long timescales and exacerbated by shifts in ocean dynamics on shorter timescales. An understanding of the current-day magnitude of each component is needed to create accurate projections of future relative sea level rise upon which to base planning efforts. Current day land-based subsidence rates derived from GPS often lack the spatial resolution to capture the local spatial variability needed when assessing the impact of relative sea-level rise. Interferometric Synthetic Aperture Radar (InSAR) is an attractive technique that has the potential to provide a measurement every 20-30m when good signal coherence is maintained. In practice, coastal regions are challenging for InSAR due to variable vegetation cover and soil moisture, which can be in part mitigated by applying advanced time-series InSAR techniques. After applying time-series InSAR, derived rates need to be combined with GPS to tie relative subsidence rates into a geodetic reference frame. Given the need to make projections of relative sea-level rise it is particularly important to propagate all uncertainties during the different processing stages. Here we provide results from ALOS and Sentinel-1 over Hampton Roads area in the Chesapeake Bay region, which is experiencing one of the highest rates of relative sea level rise on the Atlantic coast of the United States. Although the current derived subsidence rates have large uncertainties, it is expected that this will improve with the decadal observations from Sentinel-1.

  8. Potential inundated coastal area estimation in Shanghai with multi-platform SAR and altimetry data

    NASA Astrophysics Data System (ADS)

    Ma, Guanyu; Yang, Tianliang; Zhao, Qing; Kubanek, Julia; Pepe, Antonio; Dong, Hongbin; Sun, Zhibin

    2017-09-01

    As global warming problem is becoming serious in recent decades, the global sea level is continuously rising. This will cause damages to the coastal deltas with the characteristics of low-lying land, dense population, and developed economy. Continuously reclamation costal intertidal and wetland areas are making Shanghai, the mega city of Yangtze River Delta, more vulnerable to sea level rise. In this paper, we investigate the land subsidence temporal evolution of patterns and processes on a stretch of muddy coast located between the Yangtze River Estuary and Hangzou Bay with differential synthetic aperture radar interferometry (DInSAR) analyses. By exploiting a set of 31 SAR images acquired by the ENVISAT/ASAR from February 2007 to May 2010 and a set of 48 SAR images acquired by the COSMO-SkyMed (CSK) sensors from December 2013 to March 2016, coherent point targets as long as land subsidence velocity maps and time series are identified by using the Small Baseline Subset (SBAS) algorithm. With the DInSAR constrained land subsidence model, we predict the land subsidence trend and the expected cumulative subsidence in 2020, 2025 and 2030. Meanwhile, we used altimetrydata and densely distributed in the coastal region are identified (EEMD) algorithm to obtain the average sea level rise rate in the East China Sea. With the land subsidence predictions, sea level rise predictions, and high-precision digital elevation model (DEM), we analyze the combined risk of land subsidence and sea level rise on the coastal areas of Shanghai. The potential inundated areas are mapped under different scenarios.

  9. Acute Exposure of College Basketball Players to Moderate Altitude: Selected Physiological Responses.

    ERIC Educational Resources Information Center

    Noble, Bruce J.; Maresh, Carl M.

    1979-01-01

    In general, basketball players with moderately high aerobic power who reside at an altitude of 1,000 m do not display the hypoxic response to an altitude of 2,200 m expected of sea level residents and aerobically trained athletes. (JD)

  10. Influence of predicted climage change elements on Z. japonica distribution in Washington State

    EPA Science Inventory

    Global climate change (GCC) is expected to have pronounced impacts on estuarine and marine habitats including sea level rise, increased storm intensity, increased air and water temperatures, changes in upwelling dynamics and ocean acidification. All of these elements are likely ...

  11. Implementation of vertical multistage centrifugal pump system for villages at an altitude of ± 1200m above sea level in Sipahutar - North Sumatera area

    NASA Astrophysics Data System (ADS)

    Parde de, Marincan; Simangunsong, Riyanto; Hedwig, Rinda

    2017-12-01

    Clean water supply is rare in most villages at an altitude of ±1200m above the sea level in North Sumatera due to the topography of the village. The idea to help villagers fulfilling their basic needs in the situation makes this research important. Many experiments had been done previously, such as implementing drilled well but none was successful until we developed a vertical multistage centrifugal pump system. The natural water spring in the area targeted was found in 86 meters depth and would be distributed as far as 500m with area of 1.5km2 from the water tank. The main problem happened was the electric supplies which was always lower than it was expected in that area. Therefore, the successful of the system was happily accepted by the villagers and this research is highly expected to be developed and implemented to other villages, not only in Sipahutar area but also in all Tarutung area.

  12. The contribution of sea-level rise to flooding in large river catchments

    NASA Astrophysics Data System (ADS)

    Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.; Simmer, C.

    2012-12-01

    Climate change is expected to both impact sea level rise as well as flooding. Our study focuses on the combined effect of climate change on upper catchment precipitation as well as on sea-level rise at the river mouths and the impact this will have on river flooding both at the coast and further upstream. We concentrate on the eight catchments of the Amazonas, Congo, Orinoco, Ganges/Brahmaputra/Meghna, Mississippi, St. Lawrence, Danube and Niger rivers. To assess the impact of climate change, upper catchment precipitation as well as monthly mean thermosteric sea-level rise at the river mouth outflow are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. Continuous daily time series for average catchment precipitation and discharge are available for each of the catchments. To arrive at a future discharge time series, we used these observations to develop a simple statistical hydrological model which can be applied to the modelled future upper catchment precipitation values. The analysis of this surrogate discharge time series alone already yields significant changes in flood return levels as well as flood duration. Using the geometry of the river channel, the backwater effect of sea-level rise is incorporated in our analysis of both flood frequencies and magnitudes by calculating the effective additional discharge due to the increase in water level at the river mouth outflow, as well as its tapering impact upstream. By combining these effects, our results focus on the merged impact of changes in extreme precipitation with increases in river height due to sea-level rise at the river mouths. Judging from our preliminary results, the increase in effective discharge due to sea-level rise cannot be neglected when discussing late 21st century flooding in the respective river basins. In particular, we find that especially in countries with low elevation gradient, flood characteristics are impacted by changes in sea-level rise as far inland as 150 kilometers. Therefore, a larger population than the coastal inhabitants alone are exposed to risks of further projected increases of sea-level rise. A prime example for a megacity greatly put at risk by this is Dhaka City in Bangladesh, with a population of roughly 14 million people.

  13. Studying the impact of climate change on flooding in 12 river basins using CCSM4 output

    NASA Astrophysics Data System (ADS)

    Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.

    2011-12-01

    The goal of this study is to analyze the impact of climate change on flood frequency changes in twelve large river basins by assessing the changes in upper catchment precipitation as well as the impact of sea-level rise at the river mouths. Using the recently released model output of the CCSM4 for upper catchment precipitation in twelve large river basins as well as the sea-level rise anomalies at the respective river mouths, we assess the impact of climate change on the return periods of flooding in the individual basins. Upper catchment precipitation, discharge as well as annual mean thermosteric sea-level rise are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. In a next step, return levels are compared from both 20th century and future model simulations for time slices at 2030, 2050, 2070 and 2090. It can be seen that what is e.g. a 20 year flood in present-day climate has a return period of ~15/10 years (RCP 2.6/8.5) in 2070. This effect strengthens as time progresses in the 21st century. Especially in low-lying countries such as Bangladesh, changes in sea-level rise can be expected to influence present-day flood characteristics. Sea-level rise anomalies for the 21st century are taken from CCSM4 model output at each of the river mouths. The backwater effect of sea-level rise can be estimated by referring to the geometry of the river channel and calculating an effective additional discharge both at the river mouth and inland. Judging from our work, the increase in effective discharge due to sea-level rise cannot be neglected when discussing flooding in the respective river basins. Impact of sea-level rise on changes in return levels will be investigated further. To blend both precipitation and sea-level effects together, we use extreme-value theory to calculate how the tails of the current river discharge distribution in both the lower and middle reaches of the river basins will be impacted by changing climate.

  14. Vulnerability of the Nile Delta coastal areas to inundation by sea level rise.

    PubMed

    Hassaan, M A; Abdrabo, M A

    2013-08-01

    Sea level changes are typically caused by several natural phenomena, including ocean thermal expansion, glacial melt from Greenland and Antarctica. Global average sea level is expected to rise, through the twenty-first century, according to the IPCC projections by between 0.18 and 0.59 cm. Such a rise in sea level will significantly impact coastal area of the Nile Delta, consisting generally of lowland and is densely populated areas and accommodates significant proportion of Egypt's economic activities and built-up areas. The Nile Delta has been examined in several previous studies, which worked under various hypothetical sea level rise (SLR) scenarios and provided different estimates of areas susceptible to inundation due to SLR. The paper intends, in this respect, to identify areas, as well as land use/land cover, susceptible to inundation by SLR based upon most recent scenarios of SLR, by the year 2100 using GIS. The results indicate that about 22.49, 42.18, and 49.22 % of the total area of coastal governorates of the Nile Delta would be susceptible to inundation under different scenarios of SLR. Also, it was found that 15.56 % of the total areas of the Nile Delta that would be vulnerable to inundation due to land subsidence only, even in the absence of any rise in sea level. Moreover, it was found that a considerable proportion of these areas (ranging between 32.32 and 53.66 %) are currently either wetland or undeveloped areas. Furthermore, natural and/or man-made structures, such as the banks of the International Coastal Highway, were found to provide unintended protection to some of these areas. This suggests that the inundation impact of SLR on the Nile Delta is less than previously reported.

  15. Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Schannwell, Clemens; Barrand, Nicholas E.; Radić, Valentina

    2016-11-01

    Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. In this paper, the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. An ice-sheet model forced by temperature output from 13 global climate models (GCMs), in response to the high greenhouse gas emission scenario (RCP8.5), projects AP contribution to SLR of 28 ± 16 to 32 ± 16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers (∼8-18 mm). In this cooler scenario, 2.4 ± 1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ∼70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11 ± 2 and 32 ± 16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR.

  16. Non-Linear Interactions Determine the Impact of Sea-Level Rise on Estuarine Benthic Biodiversity and Ecosystem Processes

    PubMed Central

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C. L.

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches. PMID:23861863

  17. Non-linear interactions determine the impact of sea-level rise on estuarine benthic biodiversity and ecosystem processes.

    PubMed

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C L

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches.

  18. Saltwater Intrusion: Climate change mitigation or just water resources management?

    NASA Astrophysics Data System (ADS)

    Ferguson, G. A.; Gleeson, T.

    2011-12-01

    Climate change and population growth are expected to substantially increase the vulnerability of global water resources throughout the 21st century. Coastal groundwater systems are a nexus of the world's changing oceanic and hydrologic systems and a critical resource for the over one billion people living in coastal areas as well as for terrestrial and offshore ecosystems. Synthesis studies and detailed simulations predict that rising sea levels could negatively impact coastal aquifers by causing saltwater to intrude landward within coastal aquifers or by saltwater inundation of coastal regions. Saltwater intrusion caused by excessive extraction is already impacting entire island nations and globally in diverse regions such as Nile River delta in Egypt, Queensland, Australia and Long Island, USA. However, the vulnerability of coastal aquifers to sea level rise and excessive extraction has not been systematically compared. Here we show that coastal aquifers are much more vulnerable to groundwater extraction than predicted sea level rise in wide-ranging hydrogeologic conditions and population densities. Low lying areas with small hydraulic gradients are more sensitive to climate change but a review of existing coastal aquifer indicates that saltwater intrusion problems are more likely to arise where water demand is high. No cases studies were found linking saltwater intrusion to sea level rise during the past century. Humans are a key driver in the hydrology of coastal aquifers and that adapting to sea level rise at the expense of better water management is misguided.

  19. Global change impacts on large-scale biogeographic patterns of marine organisms on Atlantic oceanic islands.

    PubMed

    Ávila, Sérgio P; Cordeiro, Ricardo; Madeira, Patrícia; Silva, Luís; Medeiros, António; Rebelo, Ana C; Melo, Carlos; Neto, Ana I; Haroun, Ricardo; Monteiro, António; Rijsdijk, Kenneth; Johnson, Markes E

    2018-01-01

    Past climate changes provide important clues for advancement of studies on current global change biology. We have tested large-scale biogeographic patterns through four marine groups from twelve Atlantic Ocean archipelagos and searched for patterns between species richness/endemism and littoral area, age, isolation, latitude and mean annual sea-surface temperatures. Species richness is strongly correlated with littoral area. Two reinforcing effects take place during glacial episodes: i) species richness is expected to decrease (in comparison with interglacial periods) due to the local disappearance of sandy/muddy-associated species; ii) because littoral area is minimal during glacial episodes, area per se induces a decrease on species richness (by extirpation/extinction of marine species) as well as affecting speciation rates. Maximum speciation rates are expected to occur during the interglacial periods, whereas immigration rates are expected to be higher at the LGM. Finally, sea-level changes are a paramount factor influencing marine biodiversity of animals and plants living on oceanic islands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Storm-surge flooding on the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Terenzi, John; Ely, Craig R.; Jorgenson, M. Torre

    2014-01-01

    Coastal regions of Alaska are regularly affected by intense storms of ocean origin, the frequency and intensity of which are expected to increase as a result of global climate change. The Yukon-Kuskokwim Delta (YKD), situated in western Alaska on the eastern edge of the Bering Sea, is one of the largest deltaic systems in North America. Its low relief makes it especially susceptible to storm-driven flood tides and increases in sea level. Little information exists on the extent of flooding caused by storm surges in western Alaska and its effects on salinization, shoreline erosion, permafrost thaw, vegetation, wildlife, and the subsistence-based economy. In this paper, we summarize storm flooding events in the Bering Sea region of western Alaska during 1913 – 2011 and map both the extent of inland flooding caused by autumn storms on the central YKD, using Radarsat-1 and MODIS satellite imagery, and the drift lines, using high-resolution IKONOS satellite imagery and field surveys. The largest storm surges occurred in autumn and were associated with high tides and strong (> 65 km hr-1) southwest winds. Maximum inland extent of flooding from storm surges was 30.3 km in 2005, 27.4 km in 2006, and 32.3 km in 2011, with total flood area covering 47.1%, 32.5%, and 39.4% of the 6730 km2 study area, respectively. Peak stages for the 2005 and 2011 storms were 3.1 m and 3.3 m above mean sea level, respectively—almost as high as the 3.5 m amsl elevation estimated for the largest storm observed (in November 1974). Several historically abandoned village sites lie within the area of inundation of the largest flood events. With projected sea level rise, large storms are expected to become more frequent and cover larger areas, with deleterious effects on freshwater ponds, non-saline habitats, permafrost, and landscapes used by nesting birds and local people.

  1. Late Quaternary depositional history, Holocene sea-level changes, and vertical crustal movement, southern San Francisco Bay, California

    USGS Publications Warehouse

    Atwater, Brian F.; Hedel, Charles W.; Helley, Edward J.

    1977-01-01

    Sediments collected for bridge foundation studies at southern San Francisco Bay, Calif., record estuaries that formed during Sangamon (100,000 years ago) and post-Wisconsin (less than 10,000 years ago) high stands of sea level. The estuarine deposits of Sangamon and post-Wisconsin ages are separated by alluvial and eolian deposits and by erosional unconformities and surfaces of nondeposition, features that indicate lowered base levels and oceanward migrations of the shoreline accompanying low stands of the sea. Estuarine deposits of mid-Wisconsin age appear to be absent, suggesting that sea level was not near its present height 30,000–40,000 years ago in central California. Holocene sea-level changes are measured from the elevations and apparent 14C ages of plant remains from 13 core samples. Uncertainties of ±2 to ±4 m in the elevations of the dated sea levels represent the sum of errors in determination of (1) sample elevation relative to present sea level, (2) sample elevation relative to sea level at the time of accumulation of the dated material, and (3) postdepositional subsidence of the sample due to compaction of underlying sediments. Sea level in the vicinity of southern San Francisco Bay rose about 2 cm/yr from 9,500 to 8,000 years ago. The rate of relative sea-level rise then declined about tenfold from 8,000 to 6,000 years ago, and it has averaged 0.1–0.2 cm/yr from 6,000 years ago to the present. This submergence history indicates that the rising sea entered the Golden Gate 10,000–11,000 years ago and spread across land areas as rapidly as 30 m/yr until 8,000 years ago. Subsequent shoreline changes were more gradual because of the decrease in rate of sea-level rise. Some of the sediments under southern San Francisco Bay appear to be below the level at which they initially accumulated. The vertical crustal movement suggested by these sediments may be summarized as follows: (1) Some Quaternary(?) sediments have sustained at least 100 m of tectonic subsidence in less than 1.5 million years (<0.07 mm/yr) relative to the likely elevation of the lowest Pleistocene land surface; (2) the deepest Sangamon estuarine deposits subsided tectonically about 20–40 m in about 0.1 million years (0.2±0.1–0.4±0.1 mm/yr) relative to the assumed initial elevations of the thalwegs buried by these sediments; and (3) Holocene salt-marsh deposits have undergone about 5 m of tectonic and possibly isostatic subsidence in about 6,000 years (0.8±.0.7 mm/yr) relative to elevations which might be expected from eustatic sea-level changes alone.

  2. Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Schannwell, C.; Barrand, N. E.; Radic, V.

    2016-12-01

    Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. Here the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. The British Antarctic Survey Antarctic Peninsula Ice Sheet Model (BAS-APISM), previously shown to be suitable for the unique topographic setting from the AP, is forced by temperature output from 13 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to the high greenhouse gas emission scenario (Representative Concentration Pathway (RCP)8.5), simulations project contribution to SLR of 28±16 to 32±16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers ( ˜8-18 mm). In this cooler scenario, 2.4±1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ˜70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11±2 and 32±16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR. Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. Here the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. The British Antarctic Survey Antarctic Peninsula Ice Sheet Model (BAS-APISM), previously shown to be suitable for the unique topographic setting from the AP, is forced by temperature output from 13 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to the high greenhouse gas emission scenario (Representative Concentration Pathway (RCP)8.5), simulations project contribution to SLR of 28±16 to 32±16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers ( ˜8-18 mm). In this cooler scenario, 2.4±1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ˜70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11±2 and 32±16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR.

  3. The role of the exchanges through the Strait of Gibraltar on the budget of elements in the Western Mediterranean Sea: consequences of human-induced modifications.

    PubMed

    Gómez, Fernando

    2003-06-01

    The role of the Strait of Gibraltar on the exchanges of substances between Mediterranean Sea and the Atlantic Ocean is reviewed. The previous estimations have been recalculated by using a similar water flux and compared with the river and atmospheric inputs to the Western Mediterranean Sea. The man-induced changes in the dimensions of the Strait of Gibraltar increasing (planning the sill) or reducing of the cross-section by a total or partial dam are discussed. A total dam will control the sea-level rise in the Mediterranean Sea, but an annual increase of major nutrient concentrations of 1-2% could be expected, lower than the rate of increase of the river and atmospheric inputs in the Western Mediterranean Sea. The increase of the cross-section of the Strait by increasing the depth (planning) at the sill could compensate the increase of the external nutrient inputs.

  4. The Impact of Sea Level Rise on Florida's Everglades

    NASA Astrophysics Data System (ADS)

    Senarath, S. U.

    2005-12-01

    Global warming and the resulting melting of polar ice sheets could increase global sea levels significantly. Some studies have predicted mean sea level increases in the order of six inches to one foot in the next 25 to 50 years. This could have severe irreversible impacts on low-lying areas of Florida's Everglades. The key objective of this study is to evaluate the effects of a one foot sea level rise on Cape Sable Seaside Sparrow (CSSS) nesting areas within the Everglades National Park (ENP). A regional-scale hydrologic model is used to assess the sensitivities of this sea-level rise scenario. Florida's Everglades supports a unique ecosystem. At present, about 50 percent of this unique ecosystem has been lost due to urbanization and farming. Today, the water flow in the remnant Everglades is also regulated to meet a variety of competing environmental, water-supply and flood-control needs. A 30-year, eight billion dollar (1999 estimate) project has been initiated to improve Everglades' water flows. The expected benefits of this restoration project will be short-lived if the predicted sea level rise causes severe impacts on the environmentally sensitive areas of the Everglades. Florida's Everglades is home to many threatened and endangered species of wildlife. The Cape Sable Seaside Sparrow population in the ENP is one such species that is currently listed as endangered. Since these birds build their nests close to the ground surface (the base of the nest is approximately six inches from the ground surface), they are directly affected by any sea level induced ponding depth, frequency or duration change. Therefore, the CSSS population serves as a good indicator species for evaluating the negative impacts of sea level rise on the Everglades' ecosystem. The impact of sea level rise on the CSSS habitat is evaluated using the Regional Simulation Model (RSM) developed by the South Florida Water Management District. The RSM is an implicit, finite-volume, continuous, distributed, and integrated surface-water and ground-water model. It can simulate one-dimensional canal/stream flow and two-dimensional overland and groundwater flow in arbitrarily shaped areas using a variable triangular mesh. The overland and groundwater flow components are fully coupled in the RSM for a more realistic representation of runoff generation.

  5. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change.

    PubMed

    Osland, Michael J; Enwright, Nicholas M; Day, Richard H; Gabler, Christopher A; Stagg, Camille L; Grace, James B

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  6. A Methodology for Meta-Analysis of Local Climate Change Adaptation Policies

    EPA Science Inventory

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we donot have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their ...

  7. A Meta-Analysis of Local Climate Change Adaptation Actions

    EPA Science Inventory

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we do not have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their...

  8. SeaWiFS Technical Report Series. Volume 38; SeaWiFS Calibration and Validation Quality Control Procedures

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); McClain, Charles R.; Darzi, Michael; Barnes, Robert A.; Eplee, Robert E.; Firestone, James K.; Patt, Frederick S.; Robinson, Wayne D.; Schieber, Brian D.; hide

    1996-01-01

    This document provides five brief reports that address several quality control procedures under the auspices of the Calibration and Validation Element (CVE) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 describes analyses of the 32 sensor engineering telemetry streams. Anomalies in any of the values may impact sensor performance in direct or indirect ways. The analyses are primarily examinations of parameter time series combined with statistical methods such as auto- and cross-correlation functions. Chapter 2 describes how the various onboard (solar and lunar) and vicarious (in situ) calibration data will be analyzed to quantify sensor degradation, if present. The analyses also include methods for detecting the influence of charged particles on sensor performance such as might be expected in the South Atlantic Anomaly (SAA). Chapter 3 discusses the quality control of the ancillary environmental data that are routinely received from other agencies or projects which are used in the atmospheric correction algorithm (total ozone, surface wind velocity, and surface pressure; surface relative humidity is also obtained, but is not used in the initial operational algorithm). Chapter 4 explains the procedures for screening level-, level-2, and level-3 products. These quality control operations incorporate both automated and interactive procedures which check for file format errors (all levels), navigation offsets (level-1), mask and flag performance (level-2), and product anomalies (all levels). Finally, Chapter 5 discusses the match-up data set development for comparing SeaWiFS level-2 derived products with in situ observations, as well as the subsequent outlier analyses that will be used for evaluating error sources.

  9. Spheres of public conversation: Experiences in strategic environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illsley, Barbara, E-mail: b.m.illsley@dundee.ac.uk; Jackson, Tony, E-mail: a.a.jackson@dundee.ac.uk; Deasley, Neil, E-mail: neil.deasley@sepa.org.uk

    2014-01-15

    This paper draws on earlier research, a national review of Scottish SEA practice and a survey of practitioners and stakeholders engaged in SEA and spatial planning in one Scottish city-region, to explore claims being made in the academic literature for Strategic Environmental Assessment (SEA) as a tool for deliberative plan-making. We consider whether there is evidence that Scottish SEA practice is helping create more inclusive plan-making processes in light of recent legislative changes, thereby fulfilling one of the expectations of Scottish Government. The macro analysis found that although there are opportunities for stakeholders to engage in the Scottish SEA processmore » the level in practice is extremely low, a finding which mirrors experience in England and elsewhere. The more detailed micro analysis reveals a more nuanced picture within the spatial planning system, however, suggesting the existence of two distinct spheres of public conversations, one characterised by active dialogue about the environmental effects of alternative strategies amongst public sector stakeholders and the other involving non-governmental stakeholders and community groups in a much more limited way. The paper concludes with a discussion of possible explanations for this outcome, concerning asymmetric incentive structures and the application of power, and a consideration of the implications in relation to the competing discourses of SEA. -- Highlights: • We examine the extent to which Scottish SEA is helping promote inclusive plan-making. • Low levels of stakeholder engagement generally in Scottish SEA. • Stronger SEA dialogue amongst public agencies than with the wider community. • Importance of incentive structures and power capture in framing SEA public conversations.« less

  10. Cascading Effects of Ocean Acidification in a Rocky Subtidal Community

    PubMed Central

    Asnaghi, Valentina; Chiantore, Mariachiara; Mangialajo, Luisa; Gazeau, Frédéric; Francour, Patrice; Alliouane, Samir; Gattuso, Jean-Pierre

    2013-01-01

    Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to assemblages dominated by fleshy macroalgae. PMID:23613994

  11. Cascading effects of ocean acidification in a rocky subtidal community.

    PubMed

    Asnaghi, Valentina; Chiantore, Mariachiara; Mangialajo, Luisa; Gazeau, Frédéric; Francour, Patrice; Alliouane, Samir; Gattuso, Jean-Pierre

    2013-01-01

    Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to assemblages dominated by fleshy macroalgae.

  12. Changes in size and trends of North American sea duck populations associated with North Pacific oceanic regime shifts

    USGS Publications Warehouse

    Flint, Paul L.

    2013-01-01

    Broad-scale multi-species declines in populations of North American sea ducks for unknown reasons is cause for management concern. Oceanic regime shifts have been associated with rapid changes in ecosystem structure of the North Pacific and Bering Sea. However, relatively little is known about potential effects of these changes in oceanic conditions on marine bird populations at broad scales. I examined changes in North American breeding populations of sea ducks from 1957 to 2011 in relation to potential oceanic regime shifts in the North Pacific in 1977, 1989, and 1998. There was strong support for population-level effects of regime shifts in 1977 and 1989, but little support for an effect of the 1998 shift. The continental-level effects of these regime shifts differed across species groups and time. Based on patterns of sea duck population dynamics associated with regime shifts, it is unclear if the mechanism of change relates to survival or reproduction. Results of this analysis support the hypothesis that population size and trends of North American sea ducks are strongly influenced by oceanic conditions. The perceived population declines appear to have halted >20 years ago, and populations have been relatively stable or increasing since that time. Given these results, we should reasonably expect dramatic changes in sea duck population status and trends with future oceanic regime shifts.

  13. Vulnerability of marginal seas to sea level rise

    NASA Astrophysics Data System (ADS)

    Gomis, Damia; Jordà, Gabriel

    2017-04-01

    Sea level rise (SLR) is a serious thread for coastal areas and has a potential negative impact on society and economy. SLR can lead for instance to land loss, beach reduction, increase of the damage of marine storms on coastal infrastructures and to the salinization of underground water streams. It is well acknowledged that future SLR will be inhomogeneous across the globe, with regional differences of up to 100% with respect to global mean sea level (GMSL). Several studies have addressed the projections of SLR at regional scale, but most of them are based on global climate models (GCMs) that have a relatively coarse spatial resolution (>1°). In marginal seas this has proven to be a strong limitation, as their particular configurations require spatial resolutions that are not reachable by present GCMs. A paradigmatic case is the Mediterranean Sea, connected to the global ocean through the Strait of Gibraltar, a narrow passage of 14 km width. The functioning of the Mediterranean Sea involves a variety of processes including an overturning circulation, small-scale convection and a rich mesoscale field. Moreover, the long-term evolution of Mediterranean sea level has been significantly different from the global mean during the last decades. The observations of present climate and the projections for the next decades have lead some authors to hypothesize that the particular characteristics of the basin could allow Mediterranean mean sea level to evolve differently from the global mean. Assessing this point is essential to undertake proper adaptation strategies for the largely populated Mediterranean coastal areas. In this work we apply a new approach that combines regional and global projections to analyse future SLR. In a first step we focus on the quantification of the expected departures of future Mediterranean sea level from GMSL evolution and on the contribution of different processes to these departures. As a result we find that, in spite of its particularities, Mediterranean Sea level would follow global changes with departures lower than + 5 cm. In a second step we use the same methodology to obtain SLR projections at global scale in order to assess the vulnerability of other coastal areas. Namely, we define a vulnerability index based on relating the characteristics of present day variability with SLR projections under different scenarios. Results show that the averaged vulnerability index is 0.5 for scenario RCP8.5 (projected SLR is about a half of the maximum sea level recorded in the last decades). However, in the Mediterranean, the Caribbean and the Sea of Japan the vulnerability index is much higher (2.6, 2.4 and 2.1, respectively). From this point of view, therefore, these regions could be considered the most vulnerable regions in the world.

  14. Ice-free Arctic projections under the Paris Agreement

    NASA Astrophysics Data System (ADS)

    Sigmond, Michael; Fyfe, John C.; Swart, Neil C.

    2018-05-01

    Under the Paris Agreement, emissions scenarios are pursued that would stabilize the global mean temperature at 1.5-2.0 °C above pre-industrial levels, but current emission reduction policies are expected to limit warming by 2100 to approximately 3.0 °C. Whether such emissions scenarios would prevent a summer sea-ice-free Arctic is unknown. Here we employ stabilized warming simulations with an Earth System Model to obtain sea-ice projections under stabilized global warming, and correct biases in mean sea-ice coverage by constraining with observations. Although there is some sensitivity to details in the constraining method, the observationally constrained projections suggest that the benefits of going from 2.0 °C to 1.5 °C stabilized warming are substantial; an eightfold decrease in the frequency of ice-free conditions is expected, from once in every five to once in every forty years. Under 3.0 °C global mean warming, however, permanent summer ice-free conditions are likely, which emphasizes the need for nations to increase their commitments to the Paris Agreement.

  15. Impacts of sea-level rise on the Moroccan coastal zone: Quantifying coastal erosion and flooding in the Tangier Bay

    NASA Astrophysics Data System (ADS)

    Snoussi, Maria; Ouchani, Tachfine; Khouakhi, Abdou; Niang-Diop, Isabelle

    2009-06-01

    As part of a broad assessment of climate change impacts in Morocco, an assessment of vulnerability and adaptation of coastal zones to sea-level rise was conducted. Tangier Bay which is the most important socio-economic pole in Northern Morocco represents one of the cases studies. Using a GIS-based inundation analysis and an erosion modelling approach, the potential physical vulnerability to accelerated sea-level rise was investigated, and the most vulnerable socio-economic sectors were assessed. Results indicate that 10% and 24% of the area will be at risk of flooding respectively for minimum (4 m) and maximum (11 m) inundation levels. The most severely impacted sectors are expected to be the coastal defences and the port, the urban area, tourist coastal infrastructures, the railway, and the industrial area. Shoreline erosion would affect nearly 20% and 45% of the total beach areas respectively in 2050 and 2100. Potential response strategies and adaptation options identified include: sand dune fixation, beach nourishment and building of seawalls to protect the urban and industrial areas of high value. It was also recommended that an Integrated Coastal Zone Management Plan for the region, including upgrading awareness, building regulation and urban growth planning should be the most appropriate tool to ensure a long-term sustainable development, while addressing the vulnerability of the coast to future sea-level rise.

  16. Parasites and Holocene sea-level rise: Recurrent upsurges in trematode infestation linked to repeated flooding events in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Scarponi, Daniele; Azzarone, Michele; Kowalewski, Michał; Huntley, John Warren

    2017-04-01

    The accelerating increase in global temperature and concomitant sea level rise may result in an increased prevalence (i.e. infestation frequency) of many pathogens and parasites. Using the Holocene brackish deposits of the Po Plain, we evaluate this issue from a historical perspective by documenting temporal changes in trematode infestation of mollusk hosts during high-frequency (102-103 yrs) sea-level fluctuations that took place over the most recent millennia. During that time interval, the dominant bivalve species, Abra segmentum, was frequently infested by trematodes. Median body size was significantly larger in infested individuals (p = 2.21*10-34), likely reflecting accumulation of parasites with ontogenetic age. Prevalence estimates were significantly elevated (p < 0.01) in samples of A. segmentum associated with flooding surfaces and significantly depressed (p < 0.01) in intervening samples. In contrast, temporal trends in host body size, host availability, salinity, diversity, turnover, and community structure did not correlate significantly with parasite prevalence. The results reported here reinforce the recently proposed hypothesis that increasing trematode prevalence is linked to flooding events, a pattern now documented in shallow marine and estuarine settings on two continents, in both modern and fossil taxa. Consequently, the ongoing anthropogenic warming and sea-level rise is expected to trigger a significant upsurge in trematode prevalence, resulting in suppressed fecundity of common benthic organisms and negative impacts on marine ecosystems and ecosystem services.

  17. Damping Associated with Incipient Melting in Aluminum-Indium Alloys

    DTIC Science & Technology

    1990-01-01

    aluminum. It was expected that the composite microstructure would demonstrate strain dependent damping as a result of microplasticity (dislocation...NAVSEA SEA 05M SEA 05MB SEA 05M2 SEA 05M3 SEA 05R25 SEA 08 SEA 55Y SEA 55Y1 SEA 55Y12 SEA 55Y2 SEA 55Y21 SEA 55Y22 SEA 55Y3 SEA55Y31 SEA

  18. Evaluation of the effects of sea-level change and coastal canal management on saltwater intrusion in the Biscayne aquifer of south Florida, USA

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Sifuentes, D. F.; White, J.

    2015-12-01

    Sea-level increases are expected to have an effect on the position of the freshwater-saltwater interface in the Biscayne aquifer in south Florida as a result of the low topographic relief of the area and high rates of groundwater withdrawal from the aquifer. To study the effects that future sea-level increases will have on saltwater intrusion in the Biscayne aquifer in Broward County, Florida, a three-dimensional, variable-density, groundwater-flow and transport model was developed. The model was calibrated to observed groundwater heads and chloride concentrations for a 62-year period that includes historic increases in sea level, development of a surface-water management system to control flooding, and increases in groundwater withdrawals as the area transitioned from agricultural to urban land uses. Sensitivity analyses indicate that downward leakage of saltwater from coastal canals and creeks was the primary source of saltwater to the Biscayne aquifer during the last 62-years in areas where the surface-water system is not actively managed and is tidally influenced. In areas removed from the coastal canals and creeks or under active surface-water management, historic groundwater withdrawals were the primary cause of saltwater intrusion into the aquifer. Simulation of future conditions suggests that possible increases in sea level will result in additional saltwater intrusion. Model scenarios suggest that additional saltwater intrusion will be greatest in areas where coastal canals and creeks were historically the primary source of seawater. Future saltwater intrusion in those areas, however, may be reduced by relocation of salinity-control structures.

  19. Quantitative controls on location and architecture of carbonate depositional sequences: Upper miocene, cabo de gata region, SE Spain

    USGS Publications Warehouse

    Franseen, E.K.; Goldstein, R.H.; Farr, M.R.

    1997-01-01

    Sequence stratigraphy, pinning-point relative sea-level curves, and magnetostratigraphy provide the quantitative data necessary to understand how rates of sea-level change and different substrate paleoslopes are dominant controls on accumulation rate, carbonate depositional sequence location, and internal architecture. Five third-order (1-10 my) and fourth-order (0.1-1.0 my) upper Miocene carbonate depositional sequences (DS1A, DS1B, DS2, DS3, TCC) formed with superimposed higher-frequency sea-level cycles in an archipelago setting in SE Spain. Overall, our study indicates when areas of high substrate slope (> 15??) are in shallow water, independent of climate, the location and internal architecture of carbonate deposits are not directly linked to sea-level position but, instead, are controlled by location of gently sloping substrates and processes of bypass. In contrast, if carbonate sediments are generated where substrates of low slope ( 15.6 cm/ky to ??? 2 cm/ky and overall relative sea level rose at rates of 17-21.4 cm/ky. Higher frequency sea-level rates were about 111 to more than 260 cm/ky, producing onlapping, fining- (deepening-) upward cycles. Decreasing accumulation rates resulted from decreasing surface area for shallow-water sediment production, drowning of shallow-water substrates, and complex sediment dispersal related to the archipelago setting. Typical systems tract and parasequence development should not be expected in "bypass ramp" settings; facies of onlapping strata do not track base level and are likely to be significantly different compared to onlapping strata associated with coastal onlap. Basal and upper DS2 reef megabreccias (indicating the transition from cool to warmer climatic conditions) were eroded from steep upslope positions and redeposited downslope onto areas of gentle substrate during rapid sea-level falls (> 22.7 cm/ky) of short duration. Such rapid sea-level falls and presence of steep slopes are not conducive to formation of forced regressive systems tracts composed of down-stepping reef clinoforms. The DS3 reefal platform formed where shallow water coincided with gently sloping substrates created by earlier deposition. Slow progradation (0.39-1.45 km/my) is best explained by the lack of an extensive bank top, progressively falling sea level, and low productivity resulting from siliciclastic debris and excess nutrients shed from nearby volcanic islands. Although DS3 strata were deposited during a third-order relative sea-level cycle, a typical transgressive systems tract is not recognizable, indicating that the initial relative rise in sea level was too rapid (??? 19 cm/ky). Downstepping reefs, forming a forced regressive systems tract, were deposited during the relative sea-level fall at the end of DS3, indicating that relatively slow rates of fall (10 cm/ky or less) over favorable paleoslope conditions are conducive to generation of forced regressive systems tracts consisting of downstepping reef clinoforms. The TCC sequence consists of four shallow-water sedimentary cycles that were deposited during a 400 ky to 100 ky time span. Such shallow-water cycles, typical of many platforms, form only where shallow water intersects gently sloping substrates. The relative thicknesses of cycles (< 2 m to 15 m thick), magnitudes of relative sea-level fluctuations associated with each cycle (25-30 m), high rates of relative sea-level fluctuations (minimum of 25-120 cm/ky), and the widespread distribution of similar TCC cycles in the Mediterranean and elsewhere are supportive of a glacio-eustatic

  20. Quantitative controls on location and architecture of carbonate depositional sequences: upper miocene, cabo de gata region, se Spain

    USGS Publications Warehouse

    Franseen, E.K.; Goldstein, R.H.; Farr, M.R.

    1998-01-01

    Sequence stratigraphy, pinning-point relative sea-level curves, and magnetostratigraphy provide the quantitative data necessary to understand how rates of sea-level change and different substrate paleoslopes are dominant controls on accumulation rate, carbonate depositional sequence location, and internal architecture. Five third-order (1-10 my) and fourth-order (0.1-1.0 my) upper Miocene carbonate depositional sequences (DS1A, DS1B, DS2, DS3, TCC) formed with superimposed higher-frequency sea-level cycles in an archipelago setting in SE Spain. Overall, our study indicates when areas of high substrate slope (> 15??) are in shallow water, independent of climate, the location and internal architecture of carbonate deposits are not directly linked to sea-level position but, instead, are controlled by location of gently sloping substrates and processes of bypass. In contrast, if carbonate sediments are generated where substrates of low slope ( 15.6 cm/ky to ??? 2 cm/ky and overall relative sea level rose at rates of 17-21.4 cm/ky. Higher frequency sea-level rates were about 111 to more than 260 cm/ky, producing onlapping, fining- (deepening-) upward cycles. Decreasing accumulation rates resulted from decreasing surface area for shallow-water sediment production, drowning of shallow-water substrates, and complex sediment dispersal related to the archipelago setting. Typical systems tract and parasequence development should not be expected in "bypass ramp" settings; facies of onlapping strata do not track base level and are likely to be significantly different compared to onlapping strata associated with coastal onlap. Basal and upper DS2 reef megabreccias (indicating the transition from cool to warmer climatic conditions) were eroded from steep upslope positions and redeposited downslope onto areas of gentle substrate during rapid sea-level falls (> 22.7 cm/ky) of short duration. Such rapid sea-level falls and presence of steep slopes are not conducive to formation of forced regressive systems tracts composed of downstepping reef clinoforms. The DS3 reefal platform formed where shallow water coincided with gently sloping substrates created by earlier deposition. Slow progradation (0.39-1.45 km/my) is best explained by the lack of an extensive bank top, progressively falling sea level, and low productivity resulting from siliciclastic debris and excess nutrients shed from nearby volcanic islands. Although DS3 strata were deposited during a third-order relative sea-level cycle, a typical transgresse??e systems tract is not recognizable, indicating that the initial relative rise in sea level was too rapid (??? 19 cm/ky). Downstepping reefs, forming a forced regressive systems tract, were deposited during the relative sea-level fall at the end of DS3, indicating that relatively slow rates of fall (10 cm/ky or less) over favorable paleoslope conditions are conducive to generation of forced regressive systems tracts consisting of downstepping reef clinoforms. The TCC sequence consists of four shallow -water sedimentary cycles that were deposited during a 400 ky to 100 ky time span. Such shallow-water cycles, typical of many platforms, form only where shallow water intersects gently sloping substrates. The relative thicknesses of cycles (< 2 m to 15 m thick), magnitudes of relative sea-level fluctuations associated with each cycle (25-30 m), high rates of relative sea-level fluctuations (minimum of 25-120 cm/ky), and the widespread distribution of similar TCC cycles in the Mediterranean and elsewhere are supportive of a glacio-eustati

  1. Larval transport modeling of deep-sea invertebrates can aid the search for undiscovered populations.

    PubMed

    Yearsley, Jon M; Sigwart, Julia D

    2011-01-01

    Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate 'stepping stone' populations yet to be discovered. We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.

  2. Larval Transport Modeling of Deep-Sea Invertebrates Can Aid the Search for Undiscovered Populations

    PubMed Central

    Yearsley, Jon M.; Sigwart, Julia D.

    2011-01-01

    Background Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. Principal Findings In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate ‘stepping stone’ populations yet to be discovered. Conclusions/Significance We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess. PMID:21857992

  3. Using Nitrogen Stable Isotope Tracers to Track Climate Change Impacts on Coastal Salt Marshes

    EPA Science Inventory

    Climate change impacts on coastal salt marshes are predicted to be complex and multi-faceted. In addition to rising sea level and warmer water temperatures, regional precipitation patterns are also expected to change. At least in the Northeast and Mid-Atlantic U.S., more severe s...

  4. Impacts of Natural Disasters on Children

    ERIC Educational Resources Information Center

    Kousky, Carolyn

    2016-01-01

    We can expect climate change to alter the frequency, magnitude, timing, and location of many natural hazards. For example, heat waves are likely to become more frequent, and heavy downpours and flooding more common and more intense. Hurricanes will likely grow more dangerous, rising sea levels will mean more coastal flooding, and more-frequent and…

  5. Sea-level rise and its possible impacts given a 'beyond 4°C world' in the twenty-first century.

    PubMed

    Nicholls, Robert J; Marinova, Natasha; Lowe, Jason A; Brown, Sally; Vellinga, Pier; de Gusmão, Diogo; Hinkel, Jochen; Tol, Richard S J

    2011-01-13

    The range of future climate-induced sea-level rise remains highly uncertain with continued concern that large increases in the twenty-first century cannot be ruled out. The biggest source of uncertainty is the response of the large ice sheets of Greenland and west Antarctica. Based on our analysis, a pragmatic estimate of sea-level rise by 2100, for a temperature rise of 4°C or more over the same time frame, is between 0.5 m and 2 m--the probability of rises at the high end is judged to be very low, but of unquantifiable probability. However, if realized, an indicative analysis shows that the impact potential is severe, with the real risk of the forced displacement of up to 187 million people over the century (up to 2.4% of global population). This is potentially avoidable by widespread upgrade of protection, albeit rather costly with up to 0.02 per cent of global domestic product needed, and much higher in certain nations. The likelihood of protection being successfully implemented varies between regions, and is lowest in small islands, Africa and parts of Asia, and hence these regions are the most likely to see coastal abandonment. To respond to these challenges, a multi-track approach is required, which would also be appropriate if a temperature rise of less than 4°C was expected. Firstly, we should monitor sea level to detect any significant accelerations in the rate of rise in a timely manner. Secondly, we need to improve our understanding of the climate-induced processes that could contribute to rapid sea-level rise, especially the role of the two major ice sheets, to produce better models that quantify the likely future rise more precisely. Finally, responses need to be carefully considered via a combination of climate mitigation to reduce the rise and adaptation for the residual rise in sea level. In particular, long-term strategic adaptation plans for the full range of possible sea-level rise (and other change) need to be widely developed.

  6. Evaluating the Impact of Sea Level Rise and Coastal Flooding on NASA Centers and Facilities by Implementing Terrestrial Laser Scanning Surveys to Improve Coastal Digital Elevation and Inundation Models

    NASA Astrophysics Data System (ADS)

    Bell, L. J.; Nerem, R. S.; Williams, K.; Meertens, C.; Lestak, L.; Masters, D.

    2014-12-01

    Sea level is rising in response to climate change. Currently the global mean rate is a little over 3 mm/year, but it is expected to accelerate significantly over this century. This will have a profound impact on coastal populations and infrastructure, including NASA centers and facilities. A detailed study proposed by the University of Colorado's Center for Astrodynamics Research on the impact of sea level rise on several of NASA's most vulnerable facilities was recently funded by NASA. Individual surveys at several high-risk NASA centers were conducted and used as case studies for a broader investigation that needs to be done for coastal infrastructure around the country. The first two years of this study included implementing and conducting a terrestrial laser scanning (TLS) and GPS survey at Kennedy Space Center, Cape Canaveral, Florida, Wallops Flight Facility, Wallops Island, Virginia, Langley Research Center, Hampton, Virginia, and Ames Research Center, Moffett Field, California. We are currently using airborne LiDAR (Light Detection and Ranging) data and TLS (Terrestrial Laser Scanning) data to construct detailed digital elevation models (DEMs) of the facilities that we have assessed. The TLS data acquired at each center provides a very dense point cloud that is being used to improve the detail and accuracy of the digital elevation models currently available. We are also using GPS data we acquired at each center to assess the rate of vertical land movement at the facilities and to tie the DEM to tide gauges and other reference points. With completed, detailed DEMs of the topography and facilities at each center, a series of simple inundation models will then be applied to each area. We will use satellite altimeter data from TOPEX, Jason-1, and Jason-2 to assess the sea level changes observed near these NASA facilities over the last 20 years along with sea level projections from global climate models (GCMs) and semi-empirical projections to make detailed maps of sea level inundation through and up to the years 2050 and 2100 for varying amounts of sea level rise. We will also work with other selected investigators to assess the effects of tidal variations and storm surge when coupled with changes in mean sea level, as storm surge is likely when initial damage due to sea level rise will occur.

  7. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    PubMed

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  8. Larval development and settling of Macoma balthica in a large-scale mesocosm experiment at different fCO2 levels

    NASA Astrophysics Data System (ADS)

    Jansson, A.; Lischka, S.; Boxhammer, T.; Schulz, K. G.; Norkko, J.

    2015-12-01

    Anthropogenic carbon dioxide (CO2) emissions are causing severe changes in the global inorganic carbon balance of the oceans. Associated ocean acidification is expected to impose a major threat to marine ecosystems worldwide, and it is also expected to be amplified in the Baltic Sea where the system is already at present exposed to relatively large natural seasonal and diel pH fluctuations. The response of organisms to future ocean acidification has primarily been studied in single-species experiments, whereas the knowledge of community-wide responses is still limited. To study responses of the Baltic Sea pelagic community to a range of future CO2-scenarios, six ∼ 55 m3 pelagic mesocosms were deployed in the northern Baltic Sea in June 2012. In this specific study we focused on the tolerance, development and subsequent settlement process of the larvae of the benthic key-species Macoma balthica when exposed to different levels of future CO2. We found that the settling of M. balthica was delayed along the increasing CO2 gradient of the mesocosms. Also, when exposed to increasing CO2 levels larvae settled at a larger size, indicating a developmental delay. With on-going climate change, both the frequency and extent of regularly occurring high CO2 conditions is likely to increase, and a permanent pH decrease will likely occur. The strong impact of increasing CO2 levels on early-stage bivalves is alarming as these stages are crucial for sustaining viable populations, and a failure in their recruitment would ultimately lead to negative effects on the population.

  9. Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE; Version 1.0): web-based tools to assess the impact of sea level rise in south Florida

    USGS Publications Warehouse

    Hearn, Paul; Strong, David; Swain, Eric; Decker, Jeremy

    2013-01-01

    South Florida's Greater Everglades area is particularly vulnerable to sea level rise, due to its rich endowment of animal and plant species and its heavily populated urban areas along the coast. Rising sea levels are expected to have substantial impacts on inland flooding, the depth and extent of surge from coastal storms, the degradation of water supplies by saltwater intrusion, and the integrity of plant and animal habitats. Planners and managers responsible for mitigating these impacts require advanced tools to help them more effectively identify areas at risk. The U.S. Geological Survey's (USGS) Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE) Web site has been developed to address these needs by providing more convenient access to projections from models that forecast the effects of sea level rise on surface water and groundwater, the extent of surge and resulting economic losses from coastal storms, and the distribution of habitats. IMMAGE not only provides an advanced geographic information system (GIS) interface to support decision making, but also includes topic-based modules that explain and illustrate key concepts for nontechnical users. The purpose of this report is to familiarize both technical and nontechnical users with the IMMAGE Web site and its various applications.

  10. Impacts of representing sea-level rise uncertainty on future flood risks: An example from San Francisco Bay

    PubMed Central

    Oddo, Perry C.; Keller, Klaus

    2017-01-01

    Rising sea levels increase the probability of future coastal flooding. Many decision-makers use risk analyses to inform the design of sea-level rise (SLR) adaptation strategies. These analyses are often silent on potentially relevant uncertainties. For example, some previous risk analyses use the expected, best, or large quantile (i.e., 90%) estimate of future SLR. Here, we use a case study to quantify and illustrate how neglecting SLR uncertainties can bias risk projections. Specifically, we focus on the future 100-yr (1% annual exceedance probability) coastal flood height (storm surge including SLR) in the year 2100 in the San Francisco Bay area. We find that accounting for uncertainty in future SLR increases the return level (the height associated with a probability of occurrence) by half a meter from roughly 2.2 to 2.7 m, compared to using the mean sea-level projection. Accounting for this uncertainty also changes the shape of the relationship between the return period (the inverse probability that an event of interest will occur) and the return level. For instance, incorporating uncertainties shortens the return period associated with the 2.2 m return level from a 100-yr to roughly a 7-yr return period (∼15% probability). Additionally, accounting for this uncertainty doubles the area at risk of flooding (the area to be flooded under a certain height; e.g., the 100-yr flood height) in San Francisco. These results indicate that the method of accounting for future SLR can have considerable impacts on the design of flood risk management strategies. PMID:28350884

  11. Impacts of representing sea-level rise uncertainty on future flood risks: An example from San Francisco Bay.

    PubMed

    Ruckert, Kelsey L; Oddo, Perry C; Keller, Klaus

    2017-01-01

    Rising sea levels increase the probability of future coastal flooding. Many decision-makers use risk analyses to inform the design of sea-level rise (SLR) adaptation strategies. These analyses are often silent on potentially relevant uncertainties. For example, some previous risk analyses use the expected, best, or large quantile (i.e., 90%) estimate of future SLR. Here, we use a case study to quantify and illustrate how neglecting SLR uncertainties can bias risk projections. Specifically, we focus on the future 100-yr (1% annual exceedance probability) coastal flood height (storm surge including SLR) in the year 2100 in the San Francisco Bay area. We find that accounting for uncertainty in future SLR increases the return level (the height associated with a probability of occurrence) by half a meter from roughly 2.2 to 2.7 m, compared to using the mean sea-level projection. Accounting for this uncertainty also changes the shape of the relationship between the return period (the inverse probability that an event of interest will occur) and the return level. For instance, incorporating uncertainties shortens the return period associated with the 2.2 m return level from a 100-yr to roughly a 7-yr return period (∼15% probability). Additionally, accounting for this uncertainty doubles the area at risk of flooding (the area to be flooded under a certain height; e.g., the 100-yr flood height) in San Francisco. These results indicate that the method of accounting for future SLR can have considerable impacts on the design of flood risk management strategies.

  12. Invariant polar bear habitat selection during a period of sea ice loss

    USGS Publications Warehouse

    Wilson, Ryan R.; Regehr, Eric V.; Rode, Karyn D.; St Martin, Michelle

    2016-01-01

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.

  13. Can CO2 help save Venice from the Sea?

    NASA Astrophysics Data System (ADS)

    Comerlati, Andrea; Ferronato, Massimiliano; Gambolati, Giuseppe; Putti, Mario; Teatini, Pietro

    On 14 May this year, Italian Prime Minister Silvio Berlusconi cut the ribbon on a multi-billion-dollar project named MOSE that is aimed at solving the problem of “acqua alta,” the increasingly frequent floods that jeopardize the survival of Venice. Cost is estimated (a few say conservatively) at 3 billion euros and construction time (a few say optimistically) at 8 years. MOSE involves building mobile barriers at the Venice Lagoon inlets to prevent severe Adriatic Sea storms from flooding the city. Although the Italian government and the local administrations have given their final approval, MOSE still has several opponents who believe it will cause severe threats to the lagoon ecosystem, and will soon become obsolete because of the expected sea level rise due to global warming.

  14. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathaye, Jayant; Dale, Larry; Larsen, Peter

    2011-06-22

    This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected:Expected warming will decrease gas-fired generator efficiency. The maximum statewide coincident loss is projected at 10.3 gigawatts (with current power plant infrastructure and population), an increase of 6.2 percent over current temperature-induced losses. By the end ofmore » the century, electricity demand for almost all summer days is expected to exceed the current ninetieth percentile per-capita peak load. As much as 21 percent growth is expected in ninetieth percentile peak demand (per-capita, exclusive of population growth). When generator losses are included in the demand, the ninetieth percentile peaks may increase up to 25 percent. As the climate warms, California's peak supply capacity will need to grow faster than the population.Substation capacity is projected to decrease an average of 2.7 percent. A 5C (9F) air temperature increase (the average increase predicted for hot days in August) will diminish the capacity of a fully-loaded transmission line by an average of 7.5 percent.The potential exposure of transmission lines to wildfire is expected to increase with time. We have identified some lines whose probability of exposure to fire are expected to increase by as much as 40 percent. Up to 25 coastal power plants and 86 substations are at risk of flooding (or partial flooding) due to sea level rise.« less

  15. Engaging a moving target: Adapting to rates of climate change

    NASA Astrophysics Data System (ADS)

    Shayegh, S.; Caldeira, K.; Moreno-Cruz, J.

    2015-12-01

    Climate change is affecting the planet and its human and natural systems at an increasing rate. As temperatures continue to rise, the international community has increasingly been considering adaptation measures to prepare for future climate change. However, most discussion around adaptation strategies has focused on preparedness for some expected amount of climate change impacts, e.g. 2 meters sea level rise. In this study, we discuss adaptation to rates of change as an alternative conceptual framework for thinking about adaptation. Adaptation is not only about adapting to amounts of change, but the rate at which these changes occur is also critically important. We ground our discussion with an example of optimal coastal investment in the face of ongoing sea level rise. Sea level rise threatens coastal assets. Finite resources could be devoted to building infrastructure further inland or to building coastal defense systems. A possible policy response could be to create a "no-build" coastal buffer zone that anticipates a future higher sea level. We present a quantitative model that illustrates the interplay among various important factors (rate of sea level rise, discount rate, capital depreciation rate, attractiveness of coastal land, etc). For some cases, strategies that combine periodic defensive investments (e.g. dikes) with planned retreat can maximize welfare when adapting to rates of climate change. In other cases, planned retreat may be optimal. It is important to prepare for ongoing increasing amounts of climate change. Preparing for a fixed amount of climate change can lead to a suboptimal solution. Climate is likely to continue changing throughout this century and beyond. To reduce adverse climate impacts, ecosystems and human systems will need to continuously adapt to a moving target.

  16. Dynamics of marsh-mangrove ecotone since the mid-Holocene: A palynological study of mangrove encroachment and sea level rise in the Shark River Estuary, Florida

    PubMed Central

    Liu, Kam-biu

    2017-01-01

    Sea level rise and the associated inland shift of the marsh-mangrove ecotone in south Florida have raised many scientific and management concerns in recent years. Holocene paleoecological records can provide an important baseline to shed light on the long-term dynamics of vegetation changes across this ecotone in the past, which is needed to predict the future. In this study, we present palynological, X-ray fluorescence, and loss-on ignition data from four sedimentary cores recovered from a 20-km marine-to-freshwater transect along the Shark River Estuary, southwest Everglades, to document the patterns and processes of coastal vegetation changes in response to sea level rise since the mid-Holocene. Our record indicates that freshwater marsh progressively replaced marl prairies at the Shark River Estuary between 5700 and 4400 cal yr BP. As marine transgression continued, marine influence reached the threshold necessary for mangroves to establish at the current mouth of the Shark River Slough at 3800 cal yr BP. During the next 3000 years, although sea level rise in the Western North Atlantic slowed down to 0.4 mm/yr, a spatial and temporal gradient was evident as the marsh-mangrove ecotone shifted inland by 20 km from 3800 to 800 cal yr BP, accompanied by a gradual landward replacement of freshwater marsh by mangrove forest. If sea level continues to rise at 2.33 mm/yr in the 21st century in south Florida, it is possible that marine influence will reach the threshold for mangroves to establish in the central Everglades, and we could expect a much more aggressive mangrove encroachment toward the northern and interior parts of south Florida in the next few centuries. PMID:28282415

  17. Dynamics of marsh-mangrove ecotone since the mid-Holocene: A palynological study of mangrove encroachment and sea level rise in the Shark River Estuary, Florida.

    PubMed

    Yao, Qiang; Liu, Kam-Biu

    2017-01-01

    Sea level rise and the associated inland shift of the marsh-mangrove ecotone in south Florida have raised many scientific and management concerns in recent years. Holocene paleoecological records can provide an important baseline to shed light on the long-term dynamics of vegetation changes across this ecotone in the past, which is needed to predict the future. In this study, we present palynological, X-ray fluorescence, and loss-on ignition data from four sedimentary cores recovered from a 20-km marine-to-freshwater transect along the Shark River Estuary, southwest Everglades, to document the patterns and processes of coastal vegetation changes in response to sea level rise since the mid-Holocene. Our record indicates that freshwater marsh progressively replaced marl prairies at the Shark River Estuary between 5700 and 4400 cal yr BP. As marine transgression continued, marine influence reached the threshold necessary for mangroves to establish at the current mouth of the Shark River Slough at 3800 cal yr BP. During the next 3000 years, although sea level rise in the Western North Atlantic slowed down to 0.4 mm/yr, a spatial and temporal gradient was evident as the marsh-mangrove ecotone shifted inland by 20 km from 3800 to 800 cal yr BP, accompanied by a gradual landward replacement of freshwater marsh by mangrove forest. If sea level continues to rise at 2.33 mm/yr in the 21st century in south Florida, it is possible that marine influence will reach the threshold for mangroves to establish in the central Everglades, and we could expect a much more aggressive mangrove encroachment toward the northern and interior parts of south Florida in the next few centuries.

  18. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain - southern Italy)

    NASA Astrophysics Data System (ADS)

    Ciro Aucelli, Pietro Patrizio; Di Paola, Gianluigi; Incontri, Pietro; Rizzo, Angela; Vilardo, Giuseppe; Benassai, Guido; Buonocore, Berardino; Pappone, Gerardo

    2017-11-01

    Interdisciplinary studies of the last years highlight that the Italian coasts are significantly subject to retreat and to inundation by sea ingression due to natural and anthropic causes. In this study, the effects of future relative sea level have been evaluated for the Volturno River Plain, one of the widest coastal plain in southern Italy. The plain is characterized by high economical and ecological value, for the presence of farm activities, tourist structures and wetland protected zones. The study area is potentially prone to coastal flooding due to its very low topography and because it is affected by a severe subsidence, which emphasize the local effect of sea level rise due to the ongoing climate changes. In accordance with the guidelines of the MEDFLOOD project, the areas prone to inundation in the years 2065 and 2100 have been evaluated by comparing the future topographical information and expected relative sea level scenarios. The local Vertical Ground Displacements have been derived by PS-InSAR processing data whilst the mean values of the scenarios RCP 2.6 and RCP 8.5 provided by the IPCC (2014) have been used as future sea level projections in 2065 and 2100. The PS-InSar data elaboration shows that the area affected by subsidence corresponds to 35% of the Volturno plain and that the annual rate of the phenomenon ranges between -1 and -25 mm/yr. The inundation analysis, based on the classification of the areas in four hazard classes, indicates that in 2065 the zones located below the sea level will increase approximately of 50% respect to the present conditions, while between 2065 and 2100 the increase can be at least of 60% (IPCC, RCP 8.5 scenarios). Considering the socio-economical and ecological exposure, evaluated following the EUROSION project guidelines, the coastal flooding risk maps have been produced. Almost 8.2 km2 and 14.4 km2 of the investigated area has to be considered subject to very high marine inundation risk in 2065 and 2100, respectively.

  19. Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: The case of the Mediterranean eastern zone

    NASA Astrophysics Data System (ADS)

    Snoussi, Maria; Ouchani, Tachfine; Niazi, Saïda

    2008-04-01

    The eastern part of the Mediterranean coast of Morocco is physically and socio-economically vulnerable to accelerated sea-level rise, due to its low topography and its high ecological and touristic value. Assessment of the potential land loss by inundation has been based on empirical approaches using a minimum inundation level of 2 m and a maximum inundation level of 7 m, where scenarios for future sea-level rise range from 200 to 860 mm, with a 'best estimate' of 490 mm. The socio-economic impacts have been based on two possible alternative futures: (1) a 'worst-case' scenario, obtained by combining the 'economic development first' scenario with the maximum inundation level; and (2) a 'best-case' scenario, by combining the 'sustainability first' scenario with the minimum inundation level. Inundation analysis, based on Geographical Information Systems and a modelling approach to erosion, has identified both locations and the socioeconomic sectors that are most at risk to accelerated sea-level rise. Results indicate that 24% and 59% of the area will be lost by flooding at minimum and maximum inundation levels, respectively. The most severely impacted sectors are expected to be the residential and recreational areas, agricultural land, and the natural ecosystem. Shoreline erosion will affect 50% and 70% of the total area in 2050 and 2100, respectively. Potential strategies to ameliorate the impact of seawater inundation include: wetland preservation; beach nourishment at tourist resorts; and the afforestation of dunes. As this coast is planned to become one of the most developed tourist resorts in Morocco by 2010, measures such as building regulation, urban growth planning and development of an Integrated Coastal Zone Management Plan, are recommended for the region.

  20. A New CCI ECV Release (v2.0) to Accurately Measure the Sea Level Change (1993-2015)

    NASA Astrophysics Data System (ADS)

    Legeais, J.; Cazenave, A. A.; Ablain, M.; Gilles, G.; Johannessen, J. A.; Scharffenberg, M. G.; Timms, G.; Andersen, O. B.; Cipollini, P.; Roca, M.; Rudenko, S.; Fernandes, J.; Balmaseda, M.; Quartly, G.; Fenoglio Marc, L.; Meyssignac, B.; Benveniste, J.; Ambrozio, A.; Restano, M.

    2016-12-01

    Accurate monitoring of the sea level is required to better understand its variability and changes. Sea level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing a long-term homogeneous and accurate sea level record. The needs and feedback of the climate research community have been collected and a first version of the sea level ECV product has been generated with the best algorithms and altimeter standards. This record (1993-2014) has been validated by the climate research community. Within phase II (2014-2016), the 15 partner consortium has prepared the production of a new reprocessed homogeneous and accurate altimeter sea level record which will be distributed in Autumn 2016. New level 2 altimeter standards developed and tested within the project as well as external contributions have been identified, processed and evaluated by comparison with a reference for different altimeter missions (TOPEX/Poseidon, Jason-1 & 2, ERS-1 & 2, Envisat and GFO). The main evolutions are associated with the wet troposphere correction (based on the GPD+ algorithm including inter calibration with respect to external sensors) but also to the orbit solutions (POE-E and GFZ15), the ERA-Interim based atmospheric corrections and the FES2014 ocean tide model. A new pole tide solution is used and anomalies are referenced to the MSS DTU15. The presentation will focus on the main achievements of the ESA CCI Sea Level project and on the description of the new SL_cci ECV release covering 1993-2015. The major steps required to produce the reprocessed 23 year climate time series will be described. The impacts of the selected level 2 altimeter standards on the SL_cci ECV have been assessed on different spatial scales (global, regional, mesoscale) and temporal scales (long-term, inter-annual, periodic). A significant improvement is expected compared to the current v1.1, with the main impacts observed on the long-term evolution on decadal time scale, on global and regional scales, and for mesoscale signals. The results from product validation, carried out by several groups of the ocean and climate modeling community will be also presented.

  1. Complex Challenges in the Less-Developed World

    NASA Astrophysics Data System (ADS)

    Webster, P. J.

    2016-12-01

    The developing world faces special challenges in a changing climate. The immediate impacts of possible increased precipitation, more frequent and severe hazard events and sea-level rise are compounded by lack of resources and, often, rapidly growing populations. We examine the concept that the society that learns to deal with hazards in the current climate will be best placed to deal with possibly more frequent and more intense hazards in the future. We use as an example the conundrum facing Bangladesh where global sea-level rise is exaggerated by delta subsidence of river sediment. Sedimentation is expected to increase with increased river flow. We explore how authorities may deal with these multifaceted threats and how they need to carefully thread a strategy that leads to solutions and not exaggerations of the problem.

  2. Ecophysiological response of native and exotic salt marsh vegetation to waterlogging and salinity: Implications for the effects of sea-level rise.

    PubMed

    Li, Shi-Hua; Ge, Zhen-Ming; Xie, Li-Na; Chen, Wei; Yuan, Lin; Wang, Dong-Qi; Li, Xiu-Zhen; Zhang, Li-Quan

    2018-02-05

    The ecophysiological characteristics of native Phragmites australis and exotic Spartina alterniflora grown under waterlogging and salinity were investigated to explore their adaptation potential to sea level rise. The seasonal course of phenotypic traits, photosynthetic activity and chlorophyll fluorescence parameters of P. australis did not change remarkably under shallow flooding, whereas these variables were sensitive to increasing salinity. Waterlogging exacerbated the negative effects of salinity on shoot growth and photosynthetic activity of P. australis, and the combined stresses led to an absence of tassel and reproductive organs. By contrast, S. alterniflora performed well under both stresses and showed an obvious adaptation of salt secretion with increasing salinity. Light salinity was the optimal condition for S. alterniflora, and the tassel growth, chlorophyll content and fluorescence characters under moderate stresses did not differ notably. The Na + and Cl - concentrations in leaves of both species increased, and the K + content decreased in response to salinity. Under moderate and high saline levels, the ion concentrations in S. alterniflora were maintained at relatively consistent levels with increased salt secretion. We expect the degradation of P. australis and further colonization of S. alterniflora under prolonged flooding and saltwater intrusion from sea level rise on the coastline of China.

  3. ESPC Coupled Global Prediction System - Develop and Test Coupled Physical Parameterizations: NAVGEM/CICE/HYCOM

    DTIC Science & Technology

    2013-09-30

    the Study of the Environmental Arctic Change (SEARCH) Sea Ice Outlook (SIO) effort. The SIO is an international effort to provide a community-wide...summary of the expected September arctic sea ice minimum. Monthly reports released throughout the summer synthesize community estimates of the current...state and expected minimum of sea ice . Along with the backbone components of this system (NAVGEM/HYCOM/CICE), other data models have been used to

  4. Importance of sampling design and analysis in animal population studies: a comment on Sergio et al

    USGS Publications Warehouse

    Kery, M.; Royle, J. Andrew; Schmid, Hans

    2008-01-01

    1. The use of predators as indicators and umbrellas in conservation has been criticized. In the Trentino region, Sergio et al. (2006; hereafter SEA) counted almost twice as many bird species in quadrats located in raptor territories than in controls. However, SEA detected astonishingly few species. We used contemporary Swiss Breeding Bird Survey data from an adjacent region and a novel statistical model that corrects for overlooked species to estimate the expected number of bird species per quadrat in that region. 2. There are two anomalies in SEA which render their results ambiguous. First, SEA detected on average only 6.8 species, whereas a value of 32 might be expected. Hence, they probably overlooked almost 80% of all species. Secondly, the precision of their mean species counts was greater in two-thirds of cases than in the unlikely case that all quadrats harboured exactly the same number of equally detectable species. This suggests that they detected consistently only a biased, unrepresentative subset of species. 3. Conceptually, expected species counts are the product of true species number and species detectability p. Plenty of factors may affect p, including date, hour, observer, previous knowledge of a site and mobbing behaviour of passerines in the presence of predators. Such differences in p between raptor and control quadrats could have easily created the observed effects. Without a method that corrects for such biases, or without quantitative evidence that species detectability was indeed similar between raptor and control quadrats, the meaning of SEA's counts is hard to evaluate. Therefore, the evidence presented by SEA in favour of raptors as indicator species for enhanced levels of biodiversity remains inconclusive. 4. Synthesis and application. Ecologists should pay greater attention to sampling design and analysis in animal population estimation. Species richness estimation means sampling a community. Samples should be representative for the community studied and the sampling fraction among communities compared should be the same on average, otherwise formal estimation approaches must be applied to avoid misleading inference.

  5. TOPEX/El Nino Watch - Warm Water Pool is Thinning, Feb, 5, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Feb. 5, 1998 and sea surface height is an indicator of the heat content of the ocean. The area and volume of the El Nino warm water pool that is affecting global weather patterns remains extremely large, but the pool has thinned along the equator and near the coast of South America. This 'thinning' means that the warm water is not as deep as it was a few months ago. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition that they would expect to see during the ocean's gradual transition back to normal sea level. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through the spring.

    For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.gov

  6. Physiological compensation for environmental acidification is limited in the deep-sea urchin Strongylocentrotus fragilis

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.

    2013-05-01

    Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals - particularly, calcifiers - are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of hypercapnia and hypoxia on the deep-sea urchin Strongylocentrotus fragilis, during two long-term exposure experiments (1 month and 4 month) at three levels of reduced pH at in situ O2 levels of approx. 10% saturation, and also to control pH at 100% O2 saturation. During the first experiment, internal acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by reduced pH, due in part to low non-bicarbonate extracellular fluid buffering capacity. During the second experiment, longer-term effects of hypercapnia and variable O2 on locomotion, feeding, growth, and gonadosomatic index (GSI) were investigated; results show significant mortality and correlation of all measured parameters with environmental acidification at pH 6.6. Transient adverse effects on locomotion and feeding were seen at pH 7.2, without compromise of growth or GSI. Based on the expected changes in ocean pH and oxygen, results suggest extinction of S. fragilis in the eastern North Pacific is unlikely. Rather, we expect a shoaling and contraction of its bathymetric range.

  7. The Climate Science Special Report: Summary of Findings

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.

    2017-12-01

    As a prelude to the 4th National Climate Assessment, the Climate Science Special Report (CSSR) is being developed to provide a comprehensive assessment of the science underlying the changes occurring in the Earth's climate system, with a special focus on the United States. To summarize some of the findings, the science is clear—the climate on our planet, including the United States, is changing, changing much more rapidly than occurs naturally, and it is happening primarily because of human activities, especially from our use of fossil fuels but also from land use change. Observational evidence for a changing climate abounds, from the top of the atmosphere to the depths of the oceans. Documented changes include surface, atmospheric, and oceanic temperatures; melting glaciers; disappearing snow cover; shrinking sea ice; and rising sea level. Severe weather is becoming more intense. Heatwaves have become more frequent in the United States since the 1960s, while extreme cold temperatures and cold waves are less frequent. Heavy rainfall is increasing in intensity and frequency across the United States and globally. All of these trends are expected to continue. The Earth's climate is projected to continue to change over this century and beyond. Global average sea levels are expected to continue to rise. Many lines of evidence demonstrate that it is extremely likely (95% or greater likelihood) that human activities have been the dominant cause of the observed warming since the mid-20th century. This presentation summarizes key findings from the CSSR.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, D.

    Steps to mitigate global climate change are being negotiated internationally, but it is on the local level that its effects will be felt and actions are taken. Like many midlatitude coastal cities, metropolitan New York could expect serious consequences from global warming: killing hot spells, worsened ozone pollution, uncertain water supply, and inundation of its waterfront from higher sea level and violent storms. Seen at the local level, the opportunities and limitations of measures to mitigate or adapt to climate change become explicit. Indirect local effects from changes elsewhere in the world must also be considered.

  9. Hematology of southern Beaufort Sea polar bears (2005-2007): biomarker for an Arctic ecosystem health sentinel.

    PubMed

    Kirk, Cassandra M; Amstrup, Steven; Swor, Rhonda; Holcomb, Darce; O'Hara, Todd M

    2010-09-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ≥5, than lactating adult females ages ≥5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel.

  10. Examining the potential for nutritional stress in young Steller sea lions: physiological effects of prey composition.

    PubMed

    Rosen, David A S; Trites, Andrew W

    2005-05-01

    The effects of high- and low-lipid prey on the body mass, body condition, and metabolic rates of young captive Steller sea lions (Eumetopias jubatus) were examined to better understand how changes in prey composition might impact the physiology and health of wild sea lions and contribute to their population decline. Results of three feeding experiments suggest that prey lipid content did not significantly affect body mass or relative body condition (lipid mass as a percent of total mass) when sea lions could consume sufficient prey to meet their energy needs. However, when energy intake was insufficient to meet daily requirements, sea lions lost more lipid mass (9.16+/-1.80 kg+/-SE) consuming low-lipid prey compared with eating high-lipid prey (6.52+/-1.65 kg). Similarly, the sea lions lost 2.7+/-0.9 kg of lipid mass while consuming oil-supplemented pollock at maintenance energy levels but gained 5.2+/-2.7 kg lipid mass while consuming identical energetic levels of herring. Contrary to expectations, there was a 9.7+/-1.8% increase in metabolism during mass loss on submaintenance diets. Relative body condition decreased only 3.7+/-3.8% during periods of imposed nutritional stress, despite a 10.4+/-4.8% decrease in body mass. These findings raise questions regarding the efficacy of measures of relative body condition to detect such changes in nutritional status among wild animals. The results of these three experiments suggest that prey composition can have additional effects on sea lion energy stores beyond the direct effects of insufficient energy intake.

  11. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification

    NASA Astrophysics Data System (ADS)

    Kim, Tae Won; Barry, James P.

    2016-09-01

    Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.

  12. Groundwater movement on a Low-lying Carbonate Atoll Island and its Response to Climatic and Sea-level Fluctuations: Roi Namur, Republic of the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Oberle, F. J.; Swarzenski, P. W.; Storlazzi, C. D.

    2017-12-01

    Atoll islands, most of which only average 1-2 meters above today's sea level, provide a tremendous natural laboratory in which to study and better understand the intensifying impacts of high rates of sea-level rise on tropical reef-lined islands. These islands are unique and on the frontline of negative societal impacts due to their geologic structure and limited water supply. Groundwater resources on atolls are typically minimal due to the low elevation and small surface area of the islands and are also subject to recurring droughts, and more frequent, storm-driven seawater overwash events. Although groundwater is the principal means of freshwater storage on atoll islands and is a major factor in determining the overall sustainability of island settlements, hydrological data on how an aquifer will response to changes in sea-level rise or storm-driven overwash remain limited. Here we present high-resolution time series hydrogeological and geochemical data from a 16 month study to determine the role of an atoll's carbonate geology, land use, and atmospheric and oceanographic forcing in driving coastal groundwater exchange including submarine groundwater discharge on the island of Roi-Namur on Kwajalein Atoll in the Republic of the Marshall Islands. This information can provide new estimates on the recovery and resilience of coastal groundwater resources on similar islands that are expected to experience climate change-driven perturbations.

  13. Modeling Costal Zone Responses to Sea-Level Rise Using MoCCS: A Model of Complex Coastal System

    NASA Astrophysics Data System (ADS)

    Dai, H.; Niedoroda, A. W.; Ye, M.; Saha, B.; Donoghue, J. F.; Kish, S.

    2011-12-01

    Large-scale coastal systems consisting of several morphological components (e.g. beach, surf zone, dune, inlet, shoreface, and estuary) can be expected to exhibit complex and interacting responses to changes in the rate of sea level rise and storm climate. We have developed a numerical model of complex coastal systems (MoCCS), derived from earlier morphdynamic models, to represent the large-scale time-averaged physical processes that shape each component and govern the component interactions. These control the ongoing evolution of the barrier islands, beach and dune erosion, shoal formation and sand withdrawal at tidal inlets, depth changes in the bay, and changes in storm flooding. The model has been used to study the response of an idealized coastal system with physical characteristics and storm climatology similar to Santa Rosa Island on the Florida Panhandle coast. Five SLR scenarios have been used, covering the range of recently published projections for the next century. Each scenario has been input with a constant and then a time-varying storm climate. The results indicate that substantial increases in the rate of beach erosion are largely due to increased sand transfer to inlet shoals with increased rates of sea level rise. The barrier island undergoes cycles of dune destruction and regrowth, leading to sand deposition. This largely maintains island freeboard but is progressively less effective in offsetting bayside inundation and marsh habitat loss at accelerated sea level rise rates.

  14. Ice loading model for Glacial Isostatic Adjustment in the Barents Sea constrained by GRACE gravity observations

    NASA Astrophysics Data System (ADS)

    Root, Bart; Tarasov, Lev; van der Wal, Wouter

    2014-05-01

    The global ice budget is still under discussion because the observed 120-130 m eustatic sea level equivalent since the Last Glacial Maximum (LGM) can not be explained by the current knowledge of land-ice melt after the LGM. One possible location for the missing ice is the Barents Sea Region, which was completely covered with ice during the LGM. This is deduced from relative sea level observations on Svalbard, Novaya Zemlya and the North coast of Scandinavia. However, there are no observations in the middle of the Barents Sea that capture the post-glacial uplift. With increased precision and longer time series of monthly gravity observations of the GRACE satellite mission it is possible to constrain Glacial Isostatic Adjustment in the center of the Barents Sea. This study investigates the extra constraint provided by GRACE data for modeling the past ice geometry in the Barents Sea. We use CSR release 5 data from February 2003 to July 2013. The GRACE data is corrected for the past 10 years of secular decline of glacier ice on Svalbard, Novaya Zemlya and Frans Joseph Land. With numerical GIA models for a radially symmetric Earth, we model the expected gravity changes and compare these with the GRACE observations after smoothing with a 250 km Gaussian filter. The comparisons show that for the viscosity profile VM5a, ICE-5G has too strong a gravity signal compared to GRACE. The regional calibrated ice sheet model (GLAC) of Tarasov appears to fit the amplitude of the GRACE signal. However, the GRACE data are very sensitive to the ice-melt correction, especially for Novaya Zemlya. Furthermore, the ice mass should be more concentrated to the middle of the Barents Sea. Alternative viscosity models confirm these conclusions.

  15. Glacial conditions in the Red Sea

    NASA Astrophysics Data System (ADS)

    Rohling, Eelco J.

    1994-10-01

    In this paper, results from previous studies on planktonic foraminifera, δ18O, and global sea level are combined to discuss climatic conditions in the Red Sea during the last glacial maximum (18,000 B.P.). First, the influence of 120-m sea level lowering on the exchange transport through the strait of Bab-el-Mandab is considered. This strait is the only natural connection of the Red Sea to the open ocean. Next, glacial Red Sea outflow salinity is estimated (about 48 parts per thousand) from the foraminiferal record. Combined, these results yield an estimate of the glacial net water deficit, which appears to have been quite similar to the present (about 2 m yr-1). Finally, budget calculation of δ18O fluxes suggests that the glacial δ18O value of evaporation was about 50% of the present value. This is considered to have resulted from substantially increased mean wind speeds over the glacial Red Sea, which would have caused a rapid drop in the kinematic fractionation factor for 18O. The sensitivity of the calculated values for water deficit and isotopic fractionation to the various assumptions and estimates is evaluated in the discussion. Improvents are to be expected especially through research on the glacial salinity contrast between the Red Sea and Gulf of Aden. It is argued, however, that such future improvement will likely result in a worsening of the isotopic discrepancy, thus increasing the need for an additional mechanism that influenced fractionation (such as mean wind speed). This study demonstrates the need for caution when calculating paleosalinities from δ18O records under the assumption that the modern S∶δ18O relation has remained constant through time. Previously overlooked factors, such as mean wind speed, may have significantly altered that relation in the past.

  16. Modern climate challenges and the geological record

    USGS Publications Warehouse

    Cronin, Thomas M.

    2010-01-01

    Today's changing climate poses challenges about the influence of human activity, such as greenhouse gas emissions and land use changes, the natural variability of Earth's climate, and complex feedback processes. Ice core and instrumental records show that over the last century, atmospheric carbon dioxide (CO2) concentrations have risen to 390 parts per million volume (ppmv), about 40% above pre-Industrial Age concentrations of 280 ppmv and nearly twice those of the last glacial maximum about 22,000 years ago. Similar historical increases are recorded in atmospheric methane (CH4) and nitrous oxide (N2O). There is general agreement that human activity is largely responsible for these trends. Substantial evidence also suggests that elevated greenhouse gas concentrations are responsible for much of the recent atmospheric and oceanic warming, rising sea level, declining Arctic sea-ice cover, retreating glaciers and small ice caps, decreased mass balance of the Greenland and parts of the Antarctic ice sheets, and decreasing ocean pH (ocean "acidification"). Elevated CO2 concentrations raise concern not only from observations of the climate system, but because feedbacks associated with reduced reflectivity from in land and sea ice, sea level, and land vegetation relatively slowly (centuries or longer) to elevated 2 levels. This means that additional human-induced climate change is expected even if the rate of CO2 emissions is reduced or concentrations immediately stabilized.

  17. Statistical analysis of temperature data sampled at Station-M in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Lorentzen, Torbjørn

    2014-02-01

    The paper analyzes sea temperature data sampled at Station-M in the Norwegian Sea. The data cover the period 1948-2010. The following questions are addressed: What type of stochastic process characterizes the temperature series? Are there any changes or patterns which indicate climate change? Are there any characteristics in the data which can be linked to the shrinking sea-ice in the Arctic area? Can the series be modeled consistently and applied in forecasting of the future sea temperature? The paper applies the following methods: Augmented Dickey-Fuller tests for testing of unit-root and stationarity, ARIMA-models in univariate modeling, cointegration and error-correcting models are applied in estimating short- and long-term dynamics of non-stationary series, Granger-causality tests in analyzing the interaction pattern between the deep and upper layer temperatures, and simultaneous equation systems are applied in forecasting future temperature. The paper shows that temperature at 2000 m Granger-causes temperature at 150 m, and that the 2000 m series can represent an important information carrier of the long-term development of the sea temperature in the geographical area. Descriptive statistics shows that the temperature level has been on a positive trend since the beginning of the 1980s which is also measured in most of the oceans in the North Atlantic. The analysis shows that the temperature series are cointegrated which means they share the same long-term stochastic trend and they do not diverge too far from each other. The measured long-term temperature increase is one of the factors that can explain the shrinking summer sea-ice in the Arctic region. The analysis shows that there is a significant negative correlation between the shrinking sea ice and the sea temperature at Station-M. The paper shows that the temperature forecasts are conditioned on the properties of the stochastic processes, causality pattern between the variables and specification of model, respectively. The estimated models forecast that temperature at 150 m is expected to increase by 0.018 °C per year, while deep water temperature at 2000 m is expected to increase between 0.0022 and 0.0024 °C per year.

  18. A Coupled Economic and Physical Model of Coastal Adaptation and Abandonment: Are human occupied coastlines a bubble waiting to burst?

    NASA Astrophysics Data System (ADS)

    McNamara, D.; Keeler, A.

    2011-12-01

    Policy discussions of adaptation by coastal residents to increasing rates of sea level rise and changing frequency of damaging storms have focused on community land use planning processes. This view neglects the role that market dynamics and climate change expectations play in the way coastal communities choose among risk mitigation options and manage land use decisions in an environment of escalating risks. We use a model coupling physical coastal processes with an agent-based model of behavior in real estate and mitigation markets to examine the interplay of climate-driven coastal hazards, collective mitigation decisions, and individual beliefs. The physical component model simulates barrier island processes that respond to both storms and slow scale dynamics associated with sea level rise. The economic component model is an agent-based model of economic behavior where agents are rational economic actors working off different assessments of future climate-driven events. Agents differentially update their beliefs based on a) how much emphasis they give to observed coastal changes and b) how much weight they give to scientific predictions. In essence, agents differ along a spectrum of how much they believe that the past is the best guide to the future and how quickly they react to new information. We use the coupled model to explore three questions of interest to coastal policy. First, how do the interplay of costal processes, beliefs, and mitigation choices affect the level and stability of real estate prices? Second, how does this interplay affect the incentives for community investments in shoreline protection? Third, how do expectations and reactions to observed events, as well as mitigation investments, affect the built environment in circumstances when climate risks reach very high levels? This last question relates to a key aspect of climate change adaptation on the coast - when does mitigation give way to abandonment as an optimal adaptation strategy? Results suggest that subjective expectations about climate risk and about the effectiveness of mitigation in high-risk environments are critical in determining when the market starts to reflect the possibility that property might no longer be inhabitable. Results will be presented that contrast the dynamics of abandonment over a range of sea level rise and storminess scenarios.

  19. Sexual Dysfunction Management and Expectations Assessment in Multiple Sclerosis-Female (SEA-MS-F): creation and validation of a specific questionnaire.

    PubMed

    Bisseriex, Hélène; Guinet-Lacoste, Amandine; Chevret-Méasson, Marie; Costa, Pierre; Sheikh Ismael, Samer; Rousseau, Alexandra; Amarenco, Gerard

    2014-12-01

    Until now, no questionnaire has been developed to study specific expectations concerning sexual dysfunction management and the availability of information on sexuality in the female population affected by multiple sclerosis (MS). Understanding and meeting the patient's expectations is an issue of considerable importance in the evaluation of medical care. We present the development and validation of a specific questionnaire designed for women with MS in order to assess their expectations in terms of sexual dysfunction management: the SEA-MS-F (Sexual Dysfunction Management and Expectations Assessment in Multiple Sclerosis-Female). This questionnaire was created and validated by an expert panel, using the Delphi method. The psychometric evaluation was obtained with a sample of 40 female MS patients. Cronbach's alpha index and principal component analysis were used to measure the questionnaire's internal consistency. A consensus on the questionnaire was reached with the Delphi method. The SEA-MS-F is fully compliant with the criteria for psychometric validation among female MS patients, and its internal consistency is excellent (Cronbach's alpha 0.948). The SEA-MS-F appears to be a useful tool that could be used either in routine medical situations or in prospective studies of MS in order to ascertain women's expectations concerning the management of their sexual dysfunction. © 2014 International Society for Sexual Medicine.

  20. Effects of ocean acidification on the dissolution rates of reef-coral skeletons.

    PubMed

    van Woesik, Robert; van Woesik, Kelly; van Woesik, Liana; van Woesik, Sandra

    2013-01-01

    Ocean acidification threatens the foundation of tropical coral reefs. This study investigated three aspects of ocean acidification: (i) the rates at which perforate and imperforate coral-colony skeletons passively dissolve when pH is 7.8, which is predicted to occur globally by 2100, (ii) the rates of passive dissolution of corals with respect to coral-colony surface areas, and (iii) the comparative rates of a vertical reef-growth model, incorporating passive dissolution rates, and predicted sea-level rise. By 2100, when the ocean pH is expected to be 7.8, perforate Montipora coral skeletons will lose on average 15 kg CaCO3 m(-2) y(-1), which is approximately -10.5 mm of vertical reduction of reef framework per year. This rate of passive dissolution is higher than the average rate of reef growth over the last several millennia and suggests that reefs composed of perforate Montipora coral skeletons will have trouble keeping up with sea-level rise under ocean acidification. Reefs composed of primarily imperforate coral skeletons will not likely dissolve as rapidly, but our model shows they will also have trouble keeping up with sea-level rise by 2050.

  1. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Pollard, David; Chang, Won; Haran, Murali; Applegate, Patrick; DeConto, Robert

    2016-05-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ˜ 20 000 yr. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. The analyses provide sea-level-rise envelopes with well-defined parametric uncertainty bounds, but the simple averaging method only provides robust results with full-factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree well with the more advanced techniques. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds.

  2. Kiel Canal: Past and future threats for shipping resulting from precipitation, wind surge and sea level rise

    NASA Astrophysics Data System (ADS)

    Ganske, Anette; Hüttl-Kabus, Sabine; Möller, Jens; Schade, Nils; Heinrich, Hartmut; Tinz, Birger

    2017-04-01

    The Kiel Canal is the most frequented artificial waterway in the world. It connects the North Sea and the Hamburg Harbor with the Baltic Sea and has a length of about 100 km. The Canal receives its water from the upper catchment of the river Eider. Discharge from the Canal towards the North Sea is via the sluices at Brunsbüttel (90%) into river Elbe and into the Baltic Sea via the sluices at Kiel-Holtenau. A risk of closure of the Canal occurs when high precipitation in the catchment meets high water levels in the river Elbe and/or the Baltic preventing the discharge of excess Canal water. Future sea level rise jointly with other effects such as possibly increasing wind surge and precipitation will close the gap between the inner and outer water levels, so that someday the outside levels will surmount the inner one. The German Federal Ministry of Transport and Digital Infrastructure (BMVI) tasked its internal Network of Experts to run a case study on the evolution of critical water levels in order to estimate risks and vulnerabilities for adaptation measures. First step of the investigation is a search for factors or combination of factors responsible for closures in the past. Candidates are factors such as higher water levels at low tides, high precipitation events on land, soil moisture and human factors like preventive water management measures. Second step will be the search for the natural criteria in climate projections. Here we report on the results of the first step of the case study with a focus on the exit towards the North Sea. There, discharge is possible only during low tide. Presently still sufficient difference in height exists between the levels in the Canal and the river Elbe allowing for a free flow of excess Canal water. Shipping is ceased when levels in the Canal surpass safety limits due to high precipitation events in the catchment jointly with high outer water levels. We used atmospheric data from ERA-Interim reanalysis instead of gauge data for reconstructing the history in order to provide metrics that in the second step can be searched in Atmosphere Regional Climate Model runs. Water levels at Brunsbüttel were determined with hourly resolution using atmospheric conditions and astronomical tide. Ocean Model results were and will be excluded because of the small number of runs with astronomical tides and sufficient resolution. Past inflow from the tributary rivers into the Canal was simulated via antecedent and event precipitation derived from the REGNIE data set. Finally, the potential of critical situations in the past was calculated by combining both results and compared their occurrences with the recordings of the responsible waterway authority. In the second step we will analyze the proxies elaborated in step one in regional climate projections and combine them with expected changes of the sea levels in the North and Baltic Seas.

  3. Studying the impact of climate change on flooding in large river basins

    NASA Astrophysics Data System (ADS)

    Thiele-Eich, I.; Hopson, T.; Gilleland, E.; Lamarque, J.-F.; Hu, A.; Simmer, C.

    2012-04-01

    Assessing the potential impact of global climate change on hydrological extremes becomes crucial for regions such as Bangladesh, where a high population density results in a large exposure to risks associated with extreme flooding. In addition, low-lying countries such as Bangladesh are especially vulnerable to sea-level rise and its influence on present-day flood characteristics. By combining the impact of climate change on upper catchment precipitation as well as on sea-level rise at the river mouths, we attempt to analyze the development of flood characteristics such as frequency and magnitude in large river basins. Since flood duration is also of great importance to people exposed to flooding, the development of the number of days with extreme flooding is evaluated for possible trends in the future. Data used includes historical observations from the Global Runoff Data Centre, while recently released model output for upper catchment precipitation and annual mean thermosteric sea-level rise is taken from the four CCSM4 1° 20th Century ensemble members, as well as from six CCSM4 1° ensemble members for the reference concentration pathway scenarios RCP8.5, 6.0, 4.5 and 2.6. A peak-over-threshold approach is used to quantify the expected future changes in flood return levels, where discharge exceedances over a certain threshold are fit to a Generalized Pareto Distribution. Return levels are compared from both 20th century and future model simulations for time slices at 2030, 2050, 2070 and 2090. It can be seen that return periods of flood events decrease as the 21st century progresses in all RCP scenarios, with this shift most pronounced in RCP 8.5. The evaluation of flood duration, or the number of days with discharges above a certain threshold, yields an increase. While the number of days with flooding increases in all RCP scenarios, with the largest increase seen at the end of the 21st century, this increase is only statistically significant for RCP 8.5. Finally, we study how sea-level rise governs the flooding behavior further upstream by calculating the effective additional discharge due to the backwater effect of sea-level rise. Sea-level rise anomalies for the 21st century are taken from CCSM4 model output at each of the river mouths. Judging from our work, the increase in effective discharge due to sea-level rise cannot be neglected when discussing flooding in the respective river basins. Impact of sea-level rise on changes in return levels will be investigated further by using extreme-value theory to calculate how the tails of the current river discharge distribution will be shifted by changing climate.

  4. Effects of Climate Change on Fishery Species in Florida

    NASA Astrophysics Data System (ADS)

    Shenker, Jonathan M.

    2009-07-01

    Recreational and commercial fishery species in Florida and elsewhere are under serious stress from overfishing and many types of habitat and water quality degradation. Climate change may add to that stress by affecting an array of biological processes, although the range of some subtropical and tropical species may expand northward in the state. It is expected to trigger sea level rise and changes in hurricanes and precipitation levels in Florida and elsewhere. Perhaps the most significant impacts of climate change on fishery species will also associated with changes in seagrasses and mangroves that function as Essential Nursery Habitats. Seagrasses in estuarine and coastal areas are limited by water depth and light penetration. Increases in sea level and in precipitation-induced turbidity may restrict the extent of seagrass habitats and their role in fishery production. Expanded efforts to reduce nutrient and sediment loading into seagrass habitats may help minimize the potential loss of a valuable fish nursery habitat. Mangroves have also been affected by human activities, and are the subject of restoration efforts in many areas. Potential sea level rise may cause an expansion of mangrove habitats in the Everglades, at the expense of freshwater habitats. This potential tradeoff of habitats should be considered by the water flow and habitat restoration programs in the Everglades.

  5. Effect of specific pathways to 1.5°C global warming on the contribution of Greenland to sea level rise

    NASA Astrophysics Data System (ADS)

    Humbert, A.; Rückamp, M.; Falk, U.; Frieler, K.

    2017-12-01

    Sea level rise associated with changing climate is expected to pose a major challenge for societies. Here, we estimate the future contribution of the Greenland ice sheet (GrIS) to sea level change in terms of different emission scenarios. We investigate the effect of different pathways of global warming on the dynamics and mass balance of the GrIS with a focus on scenarios in line with limiting global warming to 2.0° or even 1.5° by the end of 2100 (Paris Agreement). We particularly address the issue of peak and decline scenarios temporarily exceeding a given temperature limit. This kind of overshooting might have strong effects on the evolution of the GrIS. Furthermore, we investigate the long-term effects of different levels of climate change to estimate the threshold for stabilizing the GrIS. For modeling the flow dynamics and future evolution of the GrIS, we apply the thermo-mechanical coupled Ice Sheet System Model (ISSM). The model is forced with anomalies for temperature and surface mass balance derived from different GCM data from the CMIP5 RCP2.6 scenario provided from the ISIMIP2b project. In order to obtain these anomalies from the GCM data, a surface energy balance model is applied.

  6. Trends in Sea Ice Cover, Sea Surface Temperature, and Chlorophyll Biomass Across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    NASA Astrophysics Data System (ADS)

    Frey, K. E.; Grebmeier, J. M.; Cooper, L. W.; Wood, C.; Panday, P. K.

    2011-12-01

    The northern Bering and Chukchi Seas in the Pacific Arctic Region (PAR) are among the most productive marine ecosystems in the world and act as important carbon sinks, particularly during May and June when seasonal sea ice-associated phytoplankton blooms occur throughout the region. Recent dramatic shifts in seasonal sea ice cover across the PAR should have profound consequences for this seasonal phytoplankton production as well as the intimately linked higher trophic levels. In order to investigate ecosystem responses to these observed recent shifts in sea ice cover, the development of a prototype Distributed Biological Observatory (DBO) is now underway in the PAR. The DBO is being developed as an internationally-coordinated change detection array that allows for consistent sampling and monitoring at five spatially explicit biologically productive locations across a latitudinal gradient: (1) DBO-SLP (south of St. Lawrence Island (SLI)), (2) DBO-NBS (north of SLI), (3) DBO-SCS (southern Chukchi Sea), (4) DBO-CCS (central Chukchi Sea), and (5) DBO-BCA (Barrow Canyon Arc). Standardized measurements at many of the DBO sites were made by multiple research cruises during the 2010 and 2011 pilot years, and will be expanded with the development of the DBO in coming years. In order to provide longer-term context for the changes occurring across the PAR, we utilize multi-sensor satellite data to investigate recent trends in sea ice cover, chlorophyll biomass, and sea surface temperatures for each of the five DBO sites, as well as a sixth long-term observational site in the Bering Strait. Satellite observations show that over the past three decades, trends in sea ice cover in the PAR have been heterogeneous, with significant declines in the Chukchi Sea, slight declines in the Bering Strait region, but increases in the northern Bering Sea south of SLI. Declines in the persistence of seasonal sea ice cover in the Chukchi Sea and Bering Strait region are due to both earlier sea ice breakup and later sea ice formation. Sea surface temperatures have also shown warming, where sites show significant warming particularly during August, September, and October. Satellite-derived chlorophyll-a concentrations over the past decade have shown trends seemingly in direct response to changing sea ice conditions, with increasing trends in chlorophyll-a concentrations when sea ice declines (and vice versa). In some cases, however, satellite-derived chlorophyll-a concentrations do not show expected changes with sea ice variability, indicating that limitations on biological productivity in this region are complex and spatially heterogeneous. An understanding of these spatial and temporal complexities impacting biological productivity is needed for the accurate prediction of how overall ecosystems may be altered with further expected warming sea surface temperatures and declines in sea ice cover.

  7. Invariant polar bear habitat selection during a period of sea ice loss.

    PubMed

    Wilson, Ryan R; Regehr, Eric V; Rode, Karyn D; St Martin, Michelle

    2016-08-17

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears. © 2016 The Author(s).

  8. Temperature impacts on deep-sea biodiversity.

    PubMed

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  9. Optimizing Tsunami Forecast Model Accuracy

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Nyland, D. L.; Huang, P. Y.

    2015-12-01

    Recent tsunamis provide a means to determine the accuracy that can be expected of real-time tsunami forecast models. Forecast accuracy using two different tsunami forecast models are compared for seven events since 2006 based on both real-time application and optimized, after-the-fact "forecasts". Lessons learned by comparing the forecast accuracy determined during an event to modified applications of the models after-the-fact provide improved methods for real-time forecasting for future events. Variables such as source definition, data assimilation, and model scaling factors are examined to optimize forecast accuracy. Forecast accuracy is also compared for direct forward modeling based on earthquake source parameters versus accuracy obtained by assimilating sea level data into the forecast model. Results show that including assimilated sea level data into the models increases accuracy by approximately 15% for the events examined.

  10. Long river profiles, tectonism, and eustasy: A guide to interpreting fluvial terraces

    NASA Technical Reports Server (NTRS)

    Merritts, Dorothy J.; Vincent, Kirk R.; Wohl, Ellen E.

    1994-01-01

    Along three rivers at the Mendocino triple junction, northern California, strath, cut, and fill terraces have formed in response to tectonic and eustatic processes. Detailed surveying and radiometric dating at multiple sites indicate that lower reaches of the rivers are dominated by the effects of oscillating sea level, primarily aggradation and formation of fill terraces during sea level high stands, alternating with deep incision during low stands. A eustasy-driven depositional wedge extends tens of kilometers upstream on all rivers (tapering to zero thickness). This distance is greater than expected from studies of the effects of check dams on much smaller streams elsewhere, due in part to the large size of these rivers. However, the change in gradient is nearly identical to other base level rise studies: the depositional gradient is about half that of the original channel. Middle to upper reaches of each river are dominated by the effects of long-term uplift, primarily lateral and vertical erosion and formation of steep, unpaired strath terraces exposed only upstream of the depositional wedge. Vertical incision at a rate similar to that of uplift has occurred even during the present sea level high stand along rivers with highest uplift rates. Strath terraces have steeper gradients than the modern channel bed and do not merge with marine terraces at the river mouth; consequently, they cannot be used to determine altitudes of sea level high stands. Strath formation is a continuous process of response to long-term uplift, and its occurrence varies spatially along a river depending on stream power, and hence position, upstream. Strath terraces are found only along certain parts of a coastal stream: upstream of the aggradational effects of oscillating sea level, and far enough downstream that stream power is in excess of that needed to transport the prevailing sediment load. For a given size river, the greater the uplift rate, the greater the rate of vertical incision and, consequently, the less the likelihood of strath terrace formation and preservation.

  11. Adaptation to Sea Level Rise in Coastal Units of the National Park Service (Invited)

    NASA Astrophysics Data System (ADS)

    Beavers, R. L.

    2010-12-01

    83 National Park Service (NPS) units contain nearly 12,000 miles of coastal, estuarine and Great Lakes shoreline and their associated resources. Iconic natural features exist along active shorelines in NPS units, including, e.g., Cape Cod, Padre Island, Hawaii Volcanoes, and the Everglades. Iconic cultural resources managed by NPS include the Cape Hatteras Lighthouse, Fort Sumter, the Golden Gate, and heiaus and fish traps along the coast of Hawaii. Impacts anticipated from sea level rise include inundation and flooding of beaches and low lying marshes, shoreline erosion of coastal areas, and saltwater intrusion into the water table. These impacts and other coastal hazards will threaten park beaches, marshes, and other resources and values; alter the viability of coastal roads; and require the NPS to re-evaluate the financial, safety, and environmental implications of maintaining current projects and implementing future projects in ocean and coastal parks in the context of sea level rise. Coastal erosion will increase as sea levels rise. Barrier islands along the coast of Louisiana and North Carolina may have already passed the threshold for maintaining island integrity in any scenario of sea level rise (U.S. Climate Change Science Program Synthesis and Assessment Program Report 4.1). Consequently, sea level rise is expected to hasten the disappearance of historic coastal villages, coastal wetlands, forests, and beaches, and threaten coastal roads, homes, and businesses. While sea level is rising in most coastal parks, some parks are experiencing lower water levels due to isostatic rebound and lower lake levels. NPS funded a Coastal Vulnerability Project to evaluate the physical and geologic factors affecting 25 coastal parks. The USGS Open File Reports for each park are available at http://woodshole.er.usgs.gov/project-pages/. These reports were designed to inform park planning efforts. NPS conducted a Storm Vulnerability Project to provide ocean and coastal National Park units with Natural, Cultural and Historic Resource-based data products and management documents that will aid the parks in better managing aspects of storm-preparedness and post-storm response and recovery. These results as well as specific efforts to address vulnerability of NPS facilities and natural and cultural resources to sea level rise will be discussed. NPS is also coordinating with NOAA to fill a new position for coastal adaptation and apply the information learned from research, vulnerability studies, and work with partners to develop adaptation strategies for coastal and ocean parks. To adapt to sea level rise, NPS will develop strong policies, guidance, and interpretive materials to help parks take actions that will increase the resilience of ocean and coastal park biological and geologic resources, reduce inappropriate stressors and greenhouse gas emissions in ocean and coastal parks, and educate the public about the need for comprehensive, swift and effective measures that will help the NPS conserve ocean and coastal park resources for future generations.

  12. Implementation of Barcelona, L'estartit and Ibiza Sites for Altimeter Calibration

    NASA Astrophysics Data System (ADS)

    Martinez-Benjamin, J. J.; Gili, J.; Lopez, R.; Tapia, A.; Bosch, E.; Perez, B.; Pros, F.

    2012-12-01

    A marine campaign to compute the sea surface data along the Spanish Mediterranean coastline and Balearic Islands is being prepared for 2013. Jason-2 (period ~10 days) and Saral/AltiKa (period of 35 days and expected launch in 2012) altimetric data and on-board GPS data will be used. Many GPS Buoy sessions along the ship route will be performed.Sea height estimates (instantaneous and mean sea levels) will be compared. Recently some geodetic improvements has been made in specific coastal spanish sites in the NW Mediterranean Sea for monitoring sea level. The goal is to maintain and improve the quality of the observation of the sea level change in the three sites. The information is coming from Puertos del Estado www.puertos.es L'Estartit tide gauge has been co-located with geodetic techniques (GPS measurements of XU, Utilitary Network, and XdA, Levelling Network,) and it is tied to the SPGIC (Integrated Geodetic Positioning System of Catalonia) project of the Cartographic Institute of Catalunya (ICC). In the past three calibration campaigns for Topex/Poseidon and Jason-1 in March 1999, August 2000 and July 2002 near Cape of Begur. At Barcelona harbour there is one MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna 1202. Bathymetric campaigns inside the harbour have been made. At Ibiza site new measurements and levelling between the GPS reference station and a Radar MIROS, both from Puertos del Estado, has been made recently. A calibration campaign for Jason-1 was made in June 2003 in the Ibiza area, main calibration site. The presentation is directed to the description of the actual situation of the geodetic infrastructure of Barcelona, l'Estartit sites for sea level determination and complementing Ibiza site for a new altimeter calibration campaign of Jason-2 and Saral/AltiKa satellites to be made in 2013. Specifications of the new marine calibration campaign will be presented.

  13. Sea-level rise and refuge habitats for tidal marsh species: can artificial islands save the California Ridgway's rail?

    USGS Publications Warehouse

    Overton, Cory T.; Takekawa, John Y.; Casazza, Michael L.; Bui, Thuy-Vy D.; Holyoak, Marcel; Strong, Donald R.

    2014-01-01

    Terrestrial species living in intertidal habitats experience refuge limitation during periods of tidal inundation, which may be exacerbated by seasonal variation in vegetation structure, tidal cycles, and land-use change. Sea-level rise projections indicate the severity of refuge limitation may increase. Artificial habitats that provide escape cover during tidal inundation have been proposed as a temporary solution to alleviate these limitations. We tested for evidence of refuge habitat limitation in a population of endangered California Ridgway's rail (Rallus obsoletus obsoletus; hereafter California rail) through use of artificial floating island habitats provided during two winters. Previous studies demonstrated that California rail mortality was especially high during the winter and periods of increased tidal inundation, suggesting that tidal refuge habitat is critical to survival. In our study, California rail regularly used artificial islands during higher tides and daylight hours. When tide levels inundated the marsh plain, use of artificial islands was at least 300 times more frequent than would be expected if California rails used artificial habitats proportional to their availability (0.016%). Probability of use varied among islands, and low levels of use were observed at night. These patterns may result from anti-predator behaviors and heterogeneity in either rail density or availability of natural refuges. Endemic saltmarsh species are increasingly at risk from habitat change resulting from sea-level rise and development of adjacent uplands. Escape cover during tidal inundation may need to be supplemented if species are to survive. Artificial habitats may provide effective short-term mitigation for habitat change and sea-level rise in tidal marsh environments, particularly for conservation-reliant species such as California rails.

  14. History of bioavailable lead and iron in the Greater North Sea and Iceland during the last millennium - a bivalve sclerochronological reconstruction.

    PubMed

    Holland, Hilmar A; Schöne, Bernd R; Marali, Soraya; Jochum, Klaus P

    2014-10-15

    We present the first annually resolved record of biologically available Pb and Fe in the Greater North Sea and Iceland during 1040-2004 AD based on shells of the long-lived marine bivalve Arctica islandica. The iron content in pre-industrial shells from the North Sea largely remained below the detection limit. Only since 1830, shell Fe levels rose gradually reflecting the combined effect of increased terrestrial runoff of iron-bearing sediments and eutrophication. Although the lead gasoline peak of the 20th century was well recorded by the shells, bivalves that lived during the medieval heyday of metallurgy showed four-fold higher shell Pb levels than modern specimens. Presumably, pre-industrial bivalves were offered larger proportions of resuspended (Pb-enriched) organics, whereas modern specimens receive fresh increased amounts of (Pb-depleted) phytoplankton. As expected, metal loads in the shells from Iceland were much lower. Our study confirms that bivalve shells provide a powerful tool for retrospective environmental biomonitoring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Identifying important spatial and temporal scales and patterns of soil properties in a tidal saltmarsh situated in a mixed red alder and Douglas fir watershed

    EPA Science Inventory

    Sea level rise is expected to drive a loss in salt marsh area and a change in marsh habitat composition, potentially leading to changes in the nitrogen source/sink dynamics of these systems. Estuaries in the Pacific Northwest might be particularly vulnerable to the effect of sal...

  16. Understanding the Effects of Sea-Level Rise on Coastal Wetlands: The Human Dimension

    NASA Astrophysics Data System (ADS)

    Reed, Denise

    2010-05-01

    In the 21st century coastal systems are subject to the pressures of centuries of population growth and resource exploitation. In 2003, in the US approximately 153 million people (53 percent of the population) lived in coastal counties, an increase of 33 million people since 1980 and this is expected to increase by approximately 7 million by the year 2008. Eight of the world's top ten largest cities are located at the coast, 44 % of the world's population (more people than inhabited the entire globe in 1950) live within 150 km of the coast and in 2001 over half the world's population lived within 200 km of a coastline. . Increased population density at the coasts often brings pollution and habitat degradation - decreasing the value of many of the resources that initially attract the coastal development - and it also means the effect of sea-level rise on coastal geomorphic systems must be seen in the context of additional human pressures. For global sea-level debate centers on the magnitude and rate of the rise around most of the world; the exception being those areas still experiencing falling sea-levels due to isostatic rebound. Many coastal island states are clearly vulnerable. While the ‘lurid and misleading maps' of the 1980's used by many to indicate areas to be flooded by rising seas in the future, have been replaced by more considered discussion of the response of coastal dynamics to rising seas there is still considerable debate about the amount of sea-level rise shorelines will experience in the 21st century. For coastal wetlands four main sets of physical factors - fine sediment regime; tidal conditions; coastal configuration; and relative sea-level change - define the geomorphic context for coastal marsh development and survival during the 21st century. Each of these factors is influenced by changes in climate and human alterations to coastal and inshore environments. In turn changes in sediment dynamics are mediated by both physical forcing and biotic factors, and plant growth is an additional factor influencing the survival of more organic marshes. Salt marsh surfaces are frequently considered to be in an equilibrium relationship with local mean sea level but the projection of salt marsh sustainability under future climate scenarios is a complex issue and depends on: the relative importance of organic matter to marsh vertical development; the complexities governing organic matter accumulation during rising sea level; the importance of subsurface processes in determining surface elevation change; and the role of storm events and hydrologic changes in controlling sediment deposition, soil conditions and plant growth. The effects of global change, both climate and human induced, on coastal wetlands will be manifest differently among various geomorphic settings but their vulnerability to global change in the 21st century should be taken seriously by coastal managers and policy-makers alike.

  17. New technology and tool prepared for communication against storm surges.

    NASA Astrophysics Data System (ADS)

    Letkiewicz, Beata

    2010-05-01

    The aim of the presentation is description of the new technology and tool prepared for communication, information and issue of warnings against storm surges. The Maritime Branch of the Institute of Meteorology and Water Management is responsible for preparing the forecast as warning, where the end users are Government Officials and Public. The Maritime Branch carry out the project "Strengthening the administrative capacity in order to improve the management of Polish coastal zone environment" (supported by a grant from Norway through the Norwegian Financial Mechanism). The expected final result of the project is web site www.baltyk.pogodynka.pl. One of the activities of the project is - set up of information website www.baltyk.pogodynka.pl, giving public access to the complied data. Information on web site: - meta data - marine data (on-line measurement: sea level, water temperature, salinity, oxygen concentration); - data bases of mathematical model outputs - forecast data (sea level, currents); - ice conditions of the Baltic Sea, - instructions, information materials with information of polish coastal zone. The aim of set up of the portal is development of communication between users of the system, exchange of the knowledge of marine environment and natural hazards such as storm surges, improving the ability of the region in the scope of the data management about the sea environment and the coastal zone.

  18. Analysis of present and future potential compound flooding risk along the European coast

    NASA Astrophysics Data System (ADS)

    Bevacqua, Emanuele; Maraun, Douglas; Voukouvalas, Evangelos; Vousdoukas, Michalis I.; Widmann, Martin; Manning, Colin; Vrac, Mathieu

    2017-04-01

    The coastal zone is the natural border between the sea and the mainland, and it is constantly under the influence of marine and land-based natural and human-induced pressure. Compound floods are extreme events occurring in coastal areas where the interaction of joint high sea level and large amount of precipitation causes extreme floodings. Typically the risk of flooding in coastal areas is defined analysing either sea level or precipitation driven floodings, however compound floods should be considered to avoid an underestimation of the risk. In the future, the human pressure at the coastal zone is expected to increase, urging for a comprehensive analysis of the compound flooding risk under different climate change scenarios. In this study we introduce the concept of "potential risk" as we investigate how often large amount of precipitation and high sea level may co-occur, and not the effective impact due to the interaction of these two hazards. The effective risk of compound flooding in a specific place depends also on the local orography and on the existing protections. The estimation of the potential risk of compound flooding is useful to individuate places where an effective risk of compound flooding may exist, and where further studies would be useful to get more precise information on the local risk. We estimate the potential risk of compound flooding along the European coastal zone incorporating the ERA-Interim meteorological reanalysis for the past and present state, and the future projections from two RCP scenarios (namely the RCP4.5 and RCP8.5 scenarios) as derived from 8 CMIP5 models of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Sea level data are estimated by forcing the hydrodynamic model Delft3D-Flow with 6-hourly wind and atmospheric pressure fields. Based on sea level (storm surge and astronomical tide) and precipitation joint occurrence analysis, a map of the potential compound flooding risk along the European coast is proposed and critical places with high potential risk are identified. For these critical places, we plan to asses the potential compound flood risk driven by coinciding extreme values of sea level and river discharge. Finally, we analyse the atmospheric large scale processes that lead to compound floods and their variation under future climate change scenarios.

  19. Survival and settling of larval Macoma balthica in a large-scale mesocosm experiment at different fCO2 levels

    NASA Astrophysics Data System (ADS)

    Jansson, Anna; Lischka, Silke; Boxhammer, Tim; Schulz, Kai G.; Norkko, Joanna

    2016-06-01

    Anthropogenic carbon dioxide (CO2) emissions are causing severe changes in the global inorganic carbon balance of the oceans. Associated ocean acidification is expected to pose a major threat to marine ecosystems worldwide, and it is also expected to be amplified in the Baltic Sea where the system is already exposed to relatively large natural seasonal and diel pH fluctuations. We studied the responses of larvae of the benthic key species Macoma balthica to a range of future CO2 scenarios using six ˜ 55 m3 mesocosms encompassing the entire pelagic community. The mesocosms were deployed in the northern Baltic Sea in June 2012. We focused on the survival, growth and subsequent settlement process of Macoma balthica when exposed to different levels of future CO2. The size and time to settlement of M. balthica increased along the CO2 gradient, suggesting a developmental delay. With ongoing climate change, both the frequency and extent of regularly occurring high CO2 conditions are likely to increase, and a permanent pH decrease will likely occur. The strong impact of increasing CO2 levels on early-stage bivalves is alarming as these stages are crucial for sustaining viable populations, and a failure in their recruitment would ultimately lead to negative effects on the population.

  20. Advancing strategic environmental assessment in the offshore oil and gas sector: Lessons from Norway, Canada, and the United Kingdom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Courtney, E-mail: crfidler@gmail.com; Noble, Bram, E-mail: b.noble@usask.ca

    2012-04-15

    Abstract: Strategic environmental assessment (SEA) for offshore oil and gas planning and development is utilized in select international jurisdictions, but the sector has received limited attention in the SEA literature. While the potential benefits of and rationale for SEA are well argued, there have been few empirical studies of SEA processes for the offshore sector. Hence, little is known about the efficacy of SEA offshore, in particular its influence on planning and development decisions. This paper examines SEA practice and influence in three international offshore systems: Norway, Atlantic Canada and the United Kingdom, with the intent to identify the challenges,more » lessons and opportunities for advancing SEA in offshore planning and impact assessment. Results demonstrate that SEA can help inform and improve the efficacy and efficiency of project-based assessment in the offshore sector, however weak coordination between higher and lower tiers limit SEA's ability to influence planning and development decisions in a broad regional environmental and socioeconomic context. - Highlights: Black-Right-Pointing-Pointer SEA can inform and improve the efficacy and efficiency of project EA offshore Black-Right-Pointing-Pointer Scope and deliverables of SEA offshore often differ from stakeholder expectations Black-Right-Pointing-Pointer Considerable variability in influence of SEA output beyond licensing decisions Black-Right-Pointing-Pointer Sector-based SEA offshore is often too restrictive to generate expected benefits.« less

  1. Red Sea circulation during marine isotope stage 5e

    NASA Astrophysics Data System (ADS)

    Siccha, Michael; Biton, Eli; Gildor, Hezi

    2015-04-01

    We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red Sea to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in air temperature of more than 2°C and global sea level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red Sea region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red Sea that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red Sea circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red Sea. Such an increase significantly reduced the Red Sea salinity and exchange volume of the Red Sea with the Gulf of Aden. The Red Sea reacted to the MIS 5e insolation forcing by the expected increase in seasonal sea surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.

  2. Large-scale forcing of the European Slope Current and associated inflows to the North Sea

    NASA Astrophysics Data System (ADS)

    Marsh, Robert; Haigh, Ivan; Cunningham, Stuart; Inall, Mark; Porter, Marie; Moat, Ben

    2017-04-01

    Drifters drogued at 50 m in the European Slope Current at the Hebridean shelf break follow a wide range of pathways, indicating highly variable Atlantic inflow to the North Sea. Slope Current pathways, timescales and transports over 1988-2007 are further quantified in an eddy-resolving ocean model hindcast. Particle trajectories calculated with model currents indicate that Slope Current water is largely "recruited" from the eastern subpolar North Atlantic. Observations of absolute dynamic topography and climatological density support theoretical expectations that Slope Current transport is to first order associated with meridional density gradients in the eastern subpolar gyre, which support a geostrophic inflow towards the slope. In the model hindcast, Slope Current transport variability is dominated by abrupt 25-50% reductions of these density gradients over 1996-1998. Concurrent changes in wind forcing, expressed in terms of density gradients, act in the same sense to reduce Slope Current transport. This indicates that coordinated regional changes of buoyancy and wind forcing acted together to reduce Slope Current transport during the 1990s. Particle trajectories further show that 10-40% of Slope Current water is destined for the northern North Sea within 6 months of passing to the west of Scotland, with a clear decline in this Atlantic inflow over 1988-2007. The influence of variable Slope Current transport on the northern North Sea is also expressed in salinity variations. A proxy for Atlantic inflow may be found in sea level records. Variability of Slope Current transport is implicit in mean sea level differences between Lerwick (Shetland) and Torshavn (Faeroes), in both tide gauge records and a longer model hindcast spanning 1958-2013. Potential impacts of this variability on North Sea biogeochemistry and ecosystems, via associated changes in temperature and seasonal stratification, are discussed.

  3. Hematology of southern Beaufort Sea polar bears (2005-2007): Biomarker for an arctic ecosystem health sentinel

    USGS Publications Warehouse

    Kirk, Cassandra M.; Amstrup, Steven C.; Swor, Rhonda; Holcomb, Darce; O'Hara, T. M.

    2010-01-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ???5, than lactating adult females ages ???5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel. ?? 2010 International Association for Ecology and Health.

  4. Impacts of blending on dilution of negatively buoyant brine discharge in a shallow tidal sea.

    PubMed

    Kämpf, Jochen

    2009-07-01

    A fine-resolution three-dimensional hydrodynamic model is applied to study the dilution of desalination brine discharged into a tidal sea. Based on given inflow rate and salinity excess of discharge brine, this study explores variations in mid-field dilutions when other low-salinity wastewater is added to the discharge. Findings reveal that this blending leads to a decrease in dilution in the mixing zone and therefore to higher levels of pollutants in this zone, while, on the other hand, the mixing zone occupies a smaller area. The reason is that the discharge of brine creates a density-driven flow that operates to partially remove effluent from the discharge location. This removal is less efficient for the decrease in density excess of the discharge. Hence, in an ambient sea of moderate mixing, blending can be expected to increase the risk of marine pollution in the mixing zone.

  5. Modeling Holocene Barrier Island Morphodynamics and Potential Future Response to Sea- Level Rise, Outer Banks, North Carolina

    NASA Astrophysics Data System (ADS)

    Moore, L. J.; List, J. H.; Williams, S. J.; Stolper, D.

    2006-12-01

    A morphological-behavior model, GEOMBEST, which simulates the evolution of coastal morphology and stratigraphy resulting from changes in sea level and sediment supply provides insight into how barriers evolve over time scales ranging from decades to millenia. The model is based upon behavior rules originating from "Bruun rule" concepts, with additional parameters to allow simulation of more complex real-world scenarios. Morphological evolution in the model is driven by disequilibrium between the shoreface and a user-specified theoretical equilibrium profile that maintains its vertical position relative to sea level. As sea level continues rising to an estimated 48 cm above current MSL by AD 2100 (IPCC 2001) and hurricanes of potentially greater intensity impact the coast, barrier islands will respond either by transgressing across underlying strata or by disintegrating and ultimately submerging. Recent studies suggest that some barriers along the U.S. East Coast will break up and become submerged within decades. Other studies show that barriers in Louisiana have already submerged while others are in the process of narrowing in place and submerging. Several factors determine barrier island response to sea-level rise. These include initial topography and morphology of the barrier, underlying geologic framework, availability and supply of sediment, rate of sea-level rise, frequency and intensity of coastal storms, and anthropogenic modifications to the coast. Sensitivity analyses conducted in GEOMBEST suggest that of these factors, barrier-island response is most sensitive to the rate of sea-level rise. The Holocene evolution of the Outer Banks and potential future responses to sea-level rise are explored for a 25-km stretch of coast between Rodanthe and Cape Hatteras, NC using GEOMBEST. An 8500-year hindcast simulation for the study area reproduces closely the morphology and stratigraphy of the modern barrier with approximately 5 x 109 m3 excavated from the Pleistocene substrate, liberating a volume of material sufficient to construct Diamond Shoals. This hindcast simulation serves as the basis for forward simulations of potential future barrier island evolution. A series of model runs based on the low- (0.09 m), mid- (0.48 m) and upper- (0.88 m) range of IPCC (2001) estimates for sea-level rise by the year 2100, suggest the barrier would migrate at rates of approximately 2, 6 and 10 m/yr, respectively. The latter two results would represent an increase over modern long-term erosion rates in the study area, which serve as a proxy for migration rates. Model simulations of barrier response to 4 and 6 m of sea-level rise by AD 2100 (Overpeck et al., 2006), result in model-generated migration rates of 43 and 68 m/yr, respectively. These rates far exceed the highest average long-term barrier island erosion rates observed today along the Louisiana Coast where the Chandeleur Islands disintegrated in response to Hurricane Katrina. If observations in Louisiana can be applied to barrier islands in North Carolina, then we can expect the Outer Banks to become vulnerable to disintegration when migration rates reach approximately 15-20 m/yr. The five forward simulations for the study area suggest rates in this range may be achieved in the Outer Banks if sea-level rise by AD 2100 exceeds IPCC (2001) estimates.

  6. Sea-level rise: towards understanding local vulnerability

    NASA Astrophysics Data System (ADS)

    Rahmstorf, Stefan

    2012-06-01

    Projections of global sea-level rise into the future have become more pessimistic over the past five years or so. A global rise by more than one metre by the year 2100 is now widely accepted as a serious possibility if greenhouse gas emissions continue unabated. That is witnessed by the scientific assessments that were made since the last IPCC report was published in 2007. The Delta Commission of the Dutch government projected up to 1.10 m as a 'high-end' scenario (Vellinga et al 2009). The Scientific Committee on Antarctic Research (SCAR) projected up to 1.40 m (Scientific Committee on Antarctic Research 2009), and the Arctic Monitoring and Assessment Programme (AMAP) gives a range of 0.90-1.60 m in its 2011 report (Arctic Monitoring and Assessment Programme 2011). And recently the US Army Corps of Engineers recommends using a 'low', an 'intermediate' and a 'high' scenario for global sea-level rise when planning civil works programmes, with the high one corresponding to a 1.50 m rise by 2100 (US Army Corps of Engineers 2011). This more pessimistic view is based on a number of observations, most importantly perhaps the fact that sea level has been rising at least 50% faster in the past decades than projected by the IPCC (Rahmstorf et al 2007, IPCC 2007). Also, the rate of rise (averaged over two decades) has accelerated threefold, from around 1 mm yr-1 at the start of the 20th century to around 3 mm yr-1 over the past 20 years (Church and White 2006), and this rate increase closely correlates with global warming (Rahmstorf et al 2011). The IPCC projections, which assume almost no further acceleration in the 20th century, thus look less plausible. And finally the observed net mass loss of the two big continental ice sheets (Van den Broeke et al 2011) calls into question the assumption that ice accumulation in Antarctica would largely balance ice loss from Greenland in the course of further global warming (IPCC 2007). With such a serious sea-level rise on the horizon, experts are increasingly looking at its potential impacts on coasts to facilitate local adaptation planning. This is a more complex issue than one might think, because different stretches of coast can be affected in very different ways. First of all, the sea-level response to global warming will not be globally uniform, since factors like changes in ocean currents (Levermann et al 2005) and the changing gravitational pull of continental ice (Mitrovica et al 2001) affect the local rise. Secondly, superimposed on the climatic trend is natural variability in sea level, which regionally can be as large as the climatic signal on multi-decadal timescales. Over the past decades, sea level has dropped in sizable parts of the world ocean, although it has of course risen in global mean (IPCC 2007). Thirdly, local land uplift or subsidence affects the local sea-level change relative to the coast, both for natural reasons (post-glacial isostatic adjustment centred on regions that were covered by ice sheets during the last ice age) and artificial ones (e.g., extraction of water or oil as in the Gulf of Mexico). Finally, local vulnerability to sea-level rise depends on many factors. Two interesting new studies in this journal (Tebaldi et al 2012, Strauss et al 2012) make important steps towards understanding sea-level vulnerability along the coasts of the United States, with methods that could also be applied elsewhere. The first, by Strauss and colleagues, merges high-resolution topographic data and a newly available tidal model together with population and housing data in order to estimate what land area and population would be at risk given certain increments in sea level. The results are mapped and tabulated at county and city level. They reveal the 'hot spots' along the US coast where sea-level rise is of the highest concern because of large populations living near the high-tide line: New York City and Long Island; the New Jersey shore; the Norfolk, Virginia, area; near Charleston, South Carolina; coastal cities across Florida, especially its southeast and the Tampa area; New Orleans; the San Francisco Bay Area and San Joaquin Delta; and greater Los Angeles. Overall, 3.7 million people across the US are estimated to live within 1 m of the present high-tide line. The second paper, by Tebaldi et al, specifically looks at storm surges and how their frequency is expected to change along the US coastline in the coming four decades due to rising sea levels. They first estimate future local sea-level rise relative to the land by combining the observed local trend of the past fifty years with a future acceleration due to global warming as estimated by a semi-empirical model (Vermeer and Rahmstorf 2009). Then they use past storm surge statistics for many different locations and shift the return level curves according to the projected sea-level rise. The authors find that by mid-century, in some locations what is now a once-per-century flooding event could become an annual event. Those are exceptional places—but at about a third of the sites investigated, a century flood could become a once-per-decade flood. Of course, many of these events need not have dramatic impacts: in fact, locations where rare floods are quite small in amplitude (and hence presumably modest in their impacts) are precisely those where the return period decreases most dramatically. In a place where the once-per-century flood is only 50 cm higher than the annual flood, a typical 30 cm rise in sea level makes a bigger difference than one in a place where the century flood is 2 m higher than the annual flood. Nevertheless, the expected large changes in return periods and return levels of storm surges clearly demonstrate that accounting for accelerating sea-level rise is vital in the planning and design of coastal infrastructure. But most importantly, these studies highlight the fact that the modern world, with many millions of people living right by the coast, is highly vulnerable to even modest sea-level rise. Losing just 1% of the present continental ice would raise sea level globally by about 75 cm—a tiny amount in the perspective of palaeoclimate history, e.g. the 120 m rise at the end of the last ice age, but a large amount in terms of impacts on human society. We should do everything we can to limit global warming and thereby sea-level rise to a manageable level. References Arctic Monitoring and Assessment Programme 2011 Snow, Water, Ice and Permafrost in the Arctic (Oslo: AMAP) Church J A and White N J 2006 A 20th century acceleration in global sea-level rise Geophys. Res. Lett. 33 L01602 IPCC 2007 Climate Change 2007: The Physical Science Basis. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon et al (Cambridge: Cambridge University Press) Levermann A, Griesel A, Hofmann M, Montoya M and Rahmstorf S 2005 Dynamic sea level changes following changes in the thermohaline circulation Clim. Dyn. 24 347-54 Mitrovica J X, Tamisiea M E, Davis J L and Milne G A 2001 Recent mass balance of polar ice sheets inferred from patterns of global sea-level change Nature 409 1026-9 Rahmstorf S, Cazenave A, Church J A, Hansen J E, Keeling R F, Parker D E and Somerville C J 2007 Recent climate observations compared to projections Science 316 709 Rahmstorf S, Perrette M and Vermeer M 2011 Testing the robustness of semi-empirical sea level projections Clim. Dyn. at press (doi:10.1007/s00382-011-1226-7) Scientific Committee on Antarctic Research 2009 Antarctic Climate Change and the Environment (Cambridge: Scott Polar Research Institute) Strauss B, Ziemlinski R, Weiss J and Overpeck J T 2012 Tidally-adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States Environ. Res. Lett. 7 014033 Tebaldi C, Strauss B and Zervas C 2012 Modelling sea level rise impacts on storm surges along US coasts Environ. Res. Lett. 7 014032 US Army Corps of Engineers 2011 Sea-Level Change Considerations for Civil Works Programs (Washington, DC: Department of the Army) Van den Broeke M R, Bamber J, Lenaerts J and Rignot E 2011 Ice sheets and sea level: thinking outside the box Sur. Geophys. 32 495-505 Vellinga P, Katsman C A, Sterl A and Beersma J J 2009 Exploring high-end climate change scenarios for flood protection of the Netherlands International Scientific Assessment Carried out at the Request of the Delta Committee (De Bilt: KNMI) Vermeer M and Rahmstorf S 2009 Global sea level linked to global temperature Proc. Natl Acad. Sci. USA 106 21527-32

  7. Probabilistic 21st and 22nd Century Sea-Level Projections at a Global Network of Tide-Gauge Sites

    NASA Technical Reports Server (NTRS)

    Kopp, Robert E.; Horton, Radley M.; Little, Christopher M.; Mitrovica, Jerry X.; Oppenheimer, Michael; Rasmussen, D. J.; Strauss, Benjamin H.; Tebaldi, Claudia

    2014-01-01

    Sea-level rise due to both climate change and non-climatic factors threatens coastal settlements, infrastructure, and ecosystems. Projections of mean global sea-level (GSL) rise provide insufficient information to plan adaptive responses; local decisions require local projections that accommodate different risk tolerances and time frames and that can be linked to storm surge projections. Here we present a global set of local sea-level (LSL) projections to inform decisions on timescales ranging from the coming decades through the 22nd century. We provide complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling. Between the years 2000 and 2100, we project a very likely (90% probability) GSL rise of 0.5–1.2?m under representative concentration pathway (RCP) 8.5, 0.4–0.9?m under RCP 4.5, and 0.3–0.8?m under RCP 2.6. Site-to-site differences in LSL projections are due to varying non-climatic background uplift or subsidence, oceanographic effects, and spatially variable responses of the geoid and the lithosphere to shrinking land ice. The Antarctic ice sheet (AIS) constitutes a growing share of variance in GSL and LSL projections. In the global average and at many locations, it is the dominant source of variance in late 21st century projections, though at some sites oceanographic processes contribute the largest share throughout the century. LSL rise dramatically reshapes flood risk, greatly increasing the expected number of “1-in-10” and “1-in-100” year events.

  8. A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales

    NASA Technical Reports Server (NTRS)

    Slangen, A. B. A.; Adloff, F.; Jevrejeva, S.; Leclercq, P. W.; Marzeion, B.; Wada, Yoshihide; Winkelmann, R.

    2016-01-01

    Sea-level change (SLC) is a much-studied topic in the area of climate research, integrating a range of climate science disciplines, and is expected to impact coastal communities around the world. As a result, this field is rapidly moving, and the knowledge and understanding of processes contributing to SLC is increasing. Here, we discuss noteworthy recent developments in the projection of SLC contributions and in the global mean and regional sea-level projections. For the Greenland Ice Sheet contribution to SLC, earlier estimates have been confirmed in recent research, but part of the source of this contribution has shifted from dynamics to surface melting. New insights into dynamic discharge processes and the onset of marine ice sheet instability increase the projected range for the Antarctic contribution by the end of the century. The contribution from both ice sheets is projected to increase further in the coming centuries to millennia. Recent updates of the global glacier outline database and new global glacier models have led to slightly lower projections for the glacier contribution to SLC (7-17 cm by 2100), but still project the glaciers to be an important contribution. For global mean sea-level projections, the focus has shifted to better estimating the uncertainty distributions of the projection time series, which may not necessarily follow a normal distribution. Instead, recent studies use skewed distributions with longer tails to higher uncertainties. Regional projections have been used to study regional uncertainty distributions, and regional projections are increasingly being applied to specific regions, countries, and coastal areas.

  9. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites

    NASA Astrophysics Data System (ADS)

    Kopp, Robert E.; Horton, Radley M.; Little, Christopher M.; Mitrovica, Jerry X.; Oppenheimer, Michael; Rasmussen, D. J.; Strauss, Benjamin H.; Tebaldi, Claudia

    2014-08-01

    Sea-level rise due to both climate change and non-climatic factors threatens coastal settlements, infrastructure, and ecosystems. Projections of mean global sea-level (GSL) rise provide insufficient information to plan adaptive responses; local decisions require local projections that accommodate different risk tolerances and time frames and that can be linked to storm surge projections. Here we present a global set of local sea-level (LSL) projections to inform decisions on timescales ranging from the coming decades through the 22nd century. We provide complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling. Between the years 2000 and 2100, we project a very likely (90% probability) GSL rise of 0.5-1.2 m under representative concentration pathway (RCP) 8.5, 0.4-0.9 m under RCP 4.5, and 0.3-0.8 m under RCP 2.6. Site-to-site differences in LSL projections are due to varying non-climatic background uplift or subsidence, oceanographic effects, and spatially variable responses of the geoid and the lithosphere to shrinking land ice. The Antarctic ice sheet (AIS) constitutes a growing share of variance in GSL and LSL projections. In the global average and at many locations, it is the dominant source of variance in late 21st century projections, though at some sites oceanographic processes contribute the largest share throughout the century. LSL rise dramatically reshapes flood risk, greatly increasing the expected number of "1-in-10" and "1-in-100" year events.

  10. Can reef islands keep up with sea level? Exploring the interplay between sea-level rise, sediment supply, and overwash processes

    NASA Astrophysics Data System (ADS)

    Lorenzo-Trueba, J.

    2016-02-01

    Coral reef islands are accumulations of carbonate sediment deposited subaerially atop coral reef platforms. We hypothesize that the long-term evolution of reef islands is primarily controlled by the interplay between sea-level rise, sediment supply, and sediment overwash. Reef islands are supplied with sediment from offshore, in the form of reworked coral skeletons that originate at the reef edge and are carried onto the reef platform by waves, as well as in situ production on the reef flat itself. However, the primary mechanism that allows reef islands to keep pace with sea level is storm overwash, which enables the vertical transport of sediment from the periphery to the top of the island. Given the current lack of understanding on how production and overwash processes interact, we have constructed a morphodynamic model to elucidate and quantify how reef islands may respond to sea-level rise and changes in sediment production. Model results demonstrate that even if reef islands can remain subaerial over the coming century, this will require significant deposition of sediment atop the island and, in many cases, the island is expected to roll considerably over itself; both of these morphologic changes will negatively affect homes and infrastructure atop these islands. The model also suggests that as reef islands approach the lagoon edge of the reef platform, shoreline erosion and island drowning can be enhanced as sediment overwashes into the lagoon. Interestingly, this situation can only be avoided if either a high offshore sediment supply bulwarks the island in place or the system undergoes similar rates of overwash sedimentation from both the ocean and the lagoon sides. The model also allows us to explore the potential for increased overwash with increased storminess, increases in sediment supply due to bleaching or disturbance, or reduction of sediment supply as a result of reduced calcification rates due to ocean acidification.

  11. Optical Properties of the Red Sea

    DTIC Science & Technology

    1993-05-01

    monsoon seasons . The effect of monsoons was shown to increase signifi- cantly the optical properties in the Arabian Sea (Arnone and Oriol, 1990a). Within...the Red Sea, the monsoon influence is not as strong as in the Arabian Sea; therefore, these seasonal trends were not expected to impact significantly...objective of this report is to characterize the surface optical properties within the Red Sea and determine the seasonal significance of the monsoons

  12. Assessing and Mitigating Hurricane Storm Surge Risk in a Changing Environment

    NASA Astrophysics Data System (ADS)

    Lin, N.; Shullman, E.; Xian, S.; Feng, K.

    2017-12-01

    Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).

  13. Impact of Atmospheric Aerosols on Solar Photovoltaic Electricity Generation in China

    NASA Astrophysics Data System (ADS)

    Li, X.; Mauzerall, D. L.; Wagner, F.; Peng, W.; Yang, J.

    2016-12-01

    Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).

  14. Sea surface temperature of the coastal zones of France. Heat Capacity Mapping Mission (HCMM)

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Frouin, R.; Cassanet, G.; Verger, F. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. HCMM data analysis shows some mesoscale features which were previously expected to occur: summer coastal upwellings in the Gulf of Lions, tidal fronts bordering the English Channel, and cooler surface waters at the continental shelf break. The analysis of the spectral variance density spectra show that the interpretation of the data usually is limited by the HCMM radiometric performance (noise levels) at wavenumbers below 5 km in the oceanic areas; from this analysis it may also be concluded that a decrease of the radiometric noise level down to 0.1 k against an increase of the ground resolution up to 2 km would give a better optimum of the radiometric performances in the oceanic areas. HCMM data appear to be useful for analysis of the sea surface temperature field, particularly in the very coastal area by profiting from the ground resolution of 500 m.

  15. A model ensemble for projecting multi‐decadal coastal cliff retreat during the 21st century

    USGS Publications Warehouse

    Limber, Patrick; Barnard, Patrick; Vitousek, Sean; Erikson, Li

    2018-01-01

    Sea cliff retreat rates are expected to accelerate with rising sea levels during the 21st century. Here we develop an approach for a multi‐model ensemble that efficiently projects time‐averaged sea cliff retreat over multi‐decadal time scales and large (>50 km) spatial scales. The ensemble consists of five simple 1‐D models adapted from the literature that relate sea cliff retreat to wave impacts, sea level rise (SLR), historical cliff behavior, and cross‐shore profile geometry. Ensemble predictions are based on Monte Carlo simulations of each individual model, which account for the uncertainty of model parameters. The consensus of the individual models also weights uncertainty, such that uncertainty is greater when predictions from different models do not agree. A calibrated, but unvalidated, ensemble was applied to the 475 km‐long coastline of Southern California (USA), with 4 SLR scenarios of 0.5, 0.93, 1.5, and 2 m by 2100. Results suggest that future retreat rates could increase relative to mean historical rates by more than two‐fold for the higher SLR scenarios, causing an average total land loss of 19 – 41 m by 2100. However, model uncertainty ranges from +/‐ 5 – 15 m, reflecting the inherent difficulties of projecting cliff retreat over multiple decades. To enhance ensemble performance, future work could include weighting each model by its skill in matching observations in different morphological settings

  16. Habituation of adult sea lamprey repeatedly exposed to damage-released alarm and predator cues

    USGS Publications Warehouse

    Imre, Istvan; Di Rocco, Richard T.; Brown, Grant E.; Johnson, Nicholas

    2016-01-01

    Predation is an unforgiving selective pressure affecting the life history, morphology and behaviour of prey organisms. Selection should favour organisms that have the ability to correctly assess the information content of alarm cues. This study investigated whether adult sea lamprey Petromyzon marinus habituate to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a heterospecific damage-released alarm cue (white sucker Catostomus commersoniiextract), predator cues (Northern water snake Nerodia sipedon washing, human saliva and 2-phenylethylamine hydrochloride (PEA HCl)) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract and human saliva) after they were pre-exposed 4 times or 8 times, respectively, to a given stimulus the previous night. Consistent with our prediction, adult sea lamprey maintained an avoidance response to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a predator cue presented at high relative concentration (PEA HCl) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract plus human saliva), irrespective of previous exposure level. As expected, adult sea lamprey habituated to a sympatric heterospecific damage-released alarm cue (white sucker extract) and a predator cue presented at lower relative concentration (human saliva). Adult sea lamprey did not show any avoidance of the Northern water snake washing and the Amazon sailfin catfish extract (heterospecific control). This study suggests that conspecific damage-released alarm cues and PEA HCl present the best options as natural repellents in an integrated management program aimed at controlling the abundance of sea lamprey in the Laurentian Great Lakes.

  17. Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP)

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Brauer, Achim; Schwab, Markus J.; Waldmann, Nicolas D.; Enzel, Yehouda; Kitagawa, Hiroyuki; Torfstein, Adi; Frank, Ute; Dulski, Peter; Agnon, Amotz; Ariztegui, Daniel; Ben-Avraham, Zvi; Goldstein, Steven L.; Stein, Mordechai

    2014-10-01

    The sedimentary sections that were deposited from the Holocene Dead Sea and its Pleistocene precursors are excellent archives of the climatic, environmental and seismic history of the Levant region. Yet, most of the previous work has been carried out on sequences of lacustrine sediments exposed at the margins of the present-day Dead Sea, which were deposited only when the lake surface level rose above these terraces (e.g. during the Last Glacial period) and typically are discontinuous due to major lake level variations in the past. Continuous sedimentation can only be expected in the deepest part of the basin and, therefore, a deep drilling has been accomplished in the northern basin of the Dead Sea during winter of 2010-2011 within the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. Approximately 720 m of sediment cores have been retrieved from two deep and several short boreholes. The longest profile (5017-1), revealed at a water depth of ˜300 m, reaches 455 m below the lake floor (blf, i.e. to ˜1175 m below global mean sea level) and comprises approximately the last 220-240 ka. The record covers the upper part of the Amora (penultimate glacial), the Last Interglacial Samra, the Last Glacial Lisan and the Holocene Ze'elim Formations and, therewith, two entire glacial-interglacial cycles. Thereby, for the first time, consecutive sediments deposited during the MIS 6/5, 5/4 and 2/1 transitions were recovered from the Dead Sea basin, which are not represented in sediments outcropping on the present-day lake shores. In this paper, we present essential lithological data including continuous magnetic susceptibility and geochemical scanning data and the basic stratigraphy including first chronological data of the long profile (5017-1) from the deep basin. The results presented here (a) focus on the correlation of the deep basin deposits with main on-shore stratigraphic units, thus providing a unique comprehensive stratigraphic framework for regional paleoenvironmental reconstruction, and (b) highlight the outstanding potential of the Dead Sea deep sedimentary archive to record hydrological changes during interglacial, glacial and transitional intervals.

  18. The long-term variability of chemical structure of deep-water basins of the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Serebrennikova, Ekaterina

    2017-04-01

    The Caspian Sea is a unique water object: the biggest lake on Earth, so large that it actually functions as a sea, but totally isolated from the World Ocean and extremely responsive to the climatic changes. The Caspian Sea is characterized by periodical large-scale sea level oscillations - it is one of the manifestations of multidecadal climatic fluctuations on East European Plain. In order to monitor the environmental conditions staff of the Laboratory of Hydrochemistry of Russian Federal Research Institution of Fisheries and Oceanography (FSBSI "VNIRO") in collaboration with other russian scientific institutions conducts annual research cruises to the Caspian Sea. For the last 40 years natural and anthropogenic climatic changes caused a stable stratification of the water column in both Caspian basins and the nourishment depletion of the photic layer, created and annually aggravated by the biological pump. The data, collected in annual expeditions since 1995, shows the progressing hypoxia below the depth of 400 meters and the formation of hydrogen sulfidic contamination in bottom waters. The cumulative effect of natural variability and extremely intensive anthropogenic stress creates a very depressing environment for all the aquatics, from phytoplankton to unique commercial species. In the last 20 years the level of the Caspian Sea has lowered for 2,5 meters. This is a result of changes in the water balance of the Caspian Sea, that includes the decrease of freshwater income. In long-term perspective this leads to an increase in surface water density and in winter convection depth. However up until 2016 the stratification of the water column stayed stable, so the deep waters were isolated form the atmosphere. Annual monitoring since 1995 has shown gradual oxygen depletion and intensive accumulation of biogenic elements. In 2016 concentrations of phosphate and nitrate were the highest ever registered for the Caspian Sea. The analysis of the research conducted in last 4 years shows the increasing possibility of major change in the hydrological and chemical structure of the waters in both Caspian deep-water basins. In June 2016 oxygenated waters were registered at the bottom of the Middle Caspian Basin for the first time in the last 20 years. This allows us to conclude, that in winter 2015-2016 the environmental conditions created surface water, dense enough to reach the bottom of the basin cascading the continental slope. Based on data, collected over the last century, the sea level, critical for the major winter convection to occur, was calculated, and in 2015 the level of the Caspian Sea has reached this mark. If the sea level lowering continues we can expect an intensive convective deep-water ventilation caused by winter cascading. This can lead to fundamental shift in nourishment enriching mechanisms of the photic layer that can boost the primary production and have positive repercussions throughout all the food chains in Caspian ecosystem.

  19. Coastal groundwater exchange on a small Pacific atoll island: Roi Namur, Republic of the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Oberle, Ferdinand K. J.; Swarzenski, Peter W.; Storlazzi, Curt

    2017-04-01

    Atoll islands, most of which only average 1-2 meters above today's sea level, provide a tremendous natural laboratory in which to study and better understand the intensifying impacts of high rates of sea-level rise on tropical reef-lined islands globally due to their unique geologic structure and limited water supply. Groundwater resources of atolls are typically minimal due to the low elevation and small surface area of the islands and are also subject to recurring droughts, and more frequent, storm-driven seawater overwash events. Although groundwater is the principal means of freshwater storage on atoll islands and is a major factor in determining the overall sustainability of island communities, hydrological data on how an aquifer will response to changes in sea-level rise or storm-driven overwash remain limited. We here present high-resolution time series hydrogeological and geochemical data to determine the role of the atoll's carbonate geology, land use, and atmospheric and oceanographic forcing in driving coastal groundwater exchange on the island of Roi Namur on Kwajalein Atoll in the Republic of the Marshall Islands. This information can provide new estimates on the recovery and resilience of coastal groundwater resources on such islands to expected climate change-driven perturbations.

  20. Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

    USGS Publications Warehouse

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2015-11-02

    In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we combined these diverse tidal saline wetland ecosystems into a single grouping, “tidal saline wetland.” Collectively, our approach and findings can provide useful information for scientists and environmental planners working to develop future-focused adaptation strategies for conserving coastal landscapes and the ecosystem goods and services provided by tidal saline wetlands. The primary product of this work is a public dataset that identifies locations where landward migration of tidal saline wetlands is expected to occur under alternative future sea-level rise and urbanization scenarios. In addition to identifying areas where landward migration of tidal saline wetlands is possible because of the absence of barriers, these data also identify locations where landward migration of these wetlands could be prevented by barriers associated with current urbanization, future urbanization, and levees.

  1. Absolute spectrum and charge ratio of cosmic ray muons in the energy region from 0.2 GeV to 100 GeV at 600 m above sea level

    NASA Technical Reports Server (NTRS)

    De Pascale, M. P.; Morselli, A.; Picozza, P.; Golden, R. L.; Grimani, C.; Kimbell, B. L.; Stephens, S. A.; Stochaj, S. J.; Webber, W. R.; Basini, G.

    1993-01-01

    We have determined the momentum spectrum and charge ratio of muons in the region from 250 MeV/c to 100 GeV/c using a superconducting magnetic spectrometer. The absolute differential spectrum of muons obtained in this experiment at 600 m above sea level is in good agreement with the previous measurements at sea level. The differential spectrum can be represented by a power law with a varying index, which is consistent with zero below 450 MeV/c and steepens to a value of -2.7 +/- 0.1 between 20 and 100 GeV/c. The integral f1ux of muons measured in this experiment span a very large range of momentum and is in excellent agreement with the earlier results. The positive to negative muon ratio appears to be constant in the entire momentum range covered in this experiment within the errors and the mean value is 1.220 +/- 0.044. The absolute momentum spectrum and the charge ratio measured in this experiment are also consistent with the theoretical expectations. This is the only experiment which covers a wide range of nearly three decades in momentum from a very low momentum.

  2. Increased nuisance flooding along the coasts of the United States due to sea level rise: Past and future

    NASA Astrophysics Data System (ADS)

    Moftakhari, Hamed R.; AghaKouchak, Amir; Sanders, Brett F.; Feldman, David L.; Sweet, William; Matthew, Richard A.; Luke, Adam

    2015-11-01

    Mean sea level has risen tenfold in recent decades compared to the most recent millennia, posing a serious threat for population and assets in flood-prone coastal zones over the next century. An increase in the frequency of nuisance (minor) flooding has also been reported due to the reduced gap between high tidal datums and flood stage, and the rate of sea level rise (SLR) is expected to increase based on current trajectories of anthropogenic activities and greenhouse gases emissions. Nuisance flooding (NF), however nondestructive, causes public inconvenience, business interruption, and substantial economic losses due to impacts such as road closures and degradation of infrastructure. It also portends an increased risk in severe floods. Here we report substantial increases in NF along the coasts of United States due to SLR over the past decades. We then take projected near-term (2030) and midterm (2050) SLR under two representative concentration pathways (RCPs), 2.6 and 8.5, to estimate the increase in NF. The results suggest that on average, - 80 ± 10% local SLR causes the median of the NF distribution to increase by 55 ± 35% in 2050 under RCP8.5. The projected increase in NF will have significant socio-economic impacts and pose public health risks in coastal regions.

  3. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows

    NASA Astrophysics Data System (ADS)

    Petty, Alek A.; Stroeve, Julienne C.; Holland, Paul R.; Boisvert, Linette N.; Bliss, Angela C.; Kimura, Noriaki; Meier, Walter N.

    2018-02-01

    The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative "compactness" of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, "New Arctic", sea ice regime.

  4. Development of flood probability charts for urban drainage network in coastal areas through a simplified joint assessment approach

    NASA Astrophysics Data System (ADS)

    Archetti, R.; Bolognesi, A.; Casadio, A.; Maglionico, M.

    2011-10-01

    The operating conditions of urban drainage networks during storm events depend on the hydraulic conveying capacity of conduits and also on downstream boundary conditions. This is particularly true in coastal areas where the level of the receiving water body is directly or indirectly affected by tidal or wave effects. In such cases, not just different rainfall conditions (varying intensity and duration), but also different sea-levels and their effects on the network operation should be considered. This paper aims to study the behaviour of a seaside town storm sewer network, estimating the threshold condition for flooding and proposing a simplified method to assess the urban flooding severity as a function of climate variables. The case study is a portion of the drainage system of Rimini (Italy), implemented and numerically modelled by means of InfoWorks CS code. The hydraulic simulation of the sewerage system identified the percentage of nodes of the drainage system where flooding is expected to occur. Combining these percentages with both climate variables' values has lead to the definition of charts representing the combined degree of risk "rainfall-sea level" for the drainage system under investigation. A final comparison between such charts and the results obtained from a one-year rainfall-sea level time series has demonstrated the reliability of the analysis.

  5. Irreversible climate change due to carbon dioxide emissions.

    PubMed

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-02-10

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer.

  6. Irreversible climate change due to carbon dioxide emissions

    PubMed Central

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-01-01

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450–600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the “dust bowl” era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6–1.9 m for peak CO2 concentrations exceeding ≈1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  7. Space-time cluster analysis of sea lice infestation (Caligus clemensi and Lepeophtheirus salmonis) on wild juvenile Pacific salmon in the Broughton Archipelago of Canada.

    PubMed

    Patanasatienkul, Thitiwan; Sanchez, Javier; Rees, Erin E; Pfeiffer, Dirk; Revie, Crawford W

    2015-06-15

    Sea lice infestation levels on wild chum and pink salmon in the Broughton Archipelago region are known to vary spatially and temporally; however, the locations of areas associated with a high infestation level had not been investigated yet. In the present study, the multivariate spatial scan statistic based on a Poisson model was used to assess spatial clustering of elevated sea lice (Caligus clemensi and Lepeophtheirus salmonis) infestation levels on wild chum and pink salmon sampled between March and July of 2004 to 2012 in the Broughton Archipelago and Knight Inlet regions of British Columbia, Canada. Three covariates, seine type (beach and purse seining), fish size, and year effect, were used to provide adjustment within the analyses. The analyses were carried out across the five months/datasets and between two fish species to assess the consistency of the identified clusters. Sea lice stages were explored separately for the early life stages (non-motile) and the late life stages of sea lice (motile). Spatial patterns in fish migration were also explored using monthly plots showing the average number of each fish species captured per sampling site. The results revealed three clusters for non-motile C. clemensi, two clusters for non-motile L. salmonis, and one cluster for the motile stage in each of the sea lice species. In general, the location and timing of clusters detected for both fish species were similar. Early in the season, the clusters of elevated sea lice infestation levels on wild fish are detected in areas closer to the rivers, with decreasing relative risks as the season progresses. Clusters were detected further from the estuaries later in the season, accompanied by increasing relative risks. In addition, the plots for fish migration exhibit similar patterns for both fish species in that, as expected, the juveniles move from the rivers toward the open ocean as the season progresses The identification of space-time clustering of infestation on wild fish from this study can help in targeting investigations of factors associated with these infestations and thereby support the development of more effective sea lice control measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A preliminary evaluation of nearhore extreme sea level and wave models for fringing reef environments

    NASA Astrophysics Data System (ADS)

    Hoeke, R. K.; Reyns, J.; O'Grady, J.; Becker, J. M.; Merrifield, M. A.; Roelvink, J. A.

    2016-02-01

    Oceanic islands are widely perceived as vulnerable to sea level rise and are characterized by steep nearshore topography and fringing reefs. In such settings, near shore dynamics and (non-tidal) water level variability tends to be dominated by wind-wave processes. These processes are highly sensitive to reef morphology and roughness and to regional wave climate. Thus sea level extremes tend to be highly localized and their likelihood can be expected to change in the future (beyond simple extrapolation of sea level rise scenarios): e.g. sea level rise may increase the effective mean depth of reef crests and flats and ocean acidification and/or increased temperatures may lead to changes in reef structure. The problem is sufficiently complex that analytic or numerical approaches are necessary to estimate current hazards and explore potential future changes. In this study, we evaluate the capacity of several analytic/empirical approaches and phase-averaged and phase-resolved numerical models at sites in the insular tropical Pacific. We consider their ability to predict time-averaged wave setup and instantaneous water level exceedance probability (or dynamic wave run-up) as well as computational cost; where possible, we compare the model results with in situ observations from a number of previous studies. Preliminary results indicate analytic approaches are by far the most computationally efficient, but tend to perform poorly when alongshore straight and parallel morphology cannot be assumed. Phase-averaged models tend to perform well with respect to wave setup in such situations, but are unable to predict processes related to individual waves or wave groups, such as infragravity motions or wave run-up. Phase-resolved models tend to perform best, but come at high computational cost, an important consideration when exploring possible future scenarios. A new approach of combining an unstructured computational grid with a quasi-phase averaged approach (i.e. only phase resolving motions below a frequency cutoff) shows promise as a good compromise between computational efficiency and resolving processes such as wave runup and overtopping in more complex bathymetric situations.

  9. Genomics of Arctic cod

    USGS Publications Warehouse

    Wilson, Robert E.; Sage, George K.; Sonsthagen, Sarah A.; Gravley, Megan C.; Menning, Damian; Talbot, Sandra L.

    2017-01-01

    The Arctic cod (Boreogadus saida) is an abundant marine fish that plays a vital role in the marine food web. To better understand the population genetic structure and the role of natural selection acting on the maternally-inherited mitochondrial genome (mitogenome), a molecule often associated with adaptations to temperature, we analyzed genetic data collected from 11 biparentally-inherited nuclear microsatellite DNA loci and nucleotide sequence data from from the mitochondrial DNA (mtDNA) cytochrome b (cytb) gene and, for a subset of individuals, the entire mitogenome. In addition, due to potential of species misidentification with morphologically similar Polar cod (Arctogadus glacialis), we used ddRAD-Seq data to determine the level of divergence between species and identify species-specific markers. Based on the findings presented here, Arctic cod across the Pacific Arctic (Bering, Chukchi, and Beaufort Seas) comprise a single panmictic population with high genetic diversity compared to other gadids. High genetic diversity was indicated across all 13 protein-coding genes in the mitogenome. In addition, we found moderate levels of genetic diversity in the nuclear microsatellite loci, with highest diversity found in the Chukchi Sea. Our analyses of markers from both marker classes (nuclear microsatellite fragment data and mtDNA cytb sequence data) failed to uncover a signal of microgeographic genetic structure within Arctic cod across the three regions, within the Alaskan Beaufort Sea, or between near-shore or offshore habitats. Further, data from a subset of mitogenomes revealed no genetic differentiation between Bering, Chukchi, and Beaufort seas populations for Arctic cod, Saffron cod (Eleginus gracilis), or Walleye pollock (Gadus chalcogrammus). However, we uncovered significant differences in the distribution of microsatellite alleles between the southern Chukchi and central and eastern Beaufort Sea samples of Arctic cod. Finally, using ddRAD-Seq data, we identified species-specific markers and in conjunction with mitogenome data, identified an Arctic cod x Polar cod hybrid in western Canadian Beaufort Sea. Overall, the lack of genetic structure among Arctic cod within the Bering, Chukchi and Beaufort seas of Alaska is concordant with the absence of geographic barriers to dispersal and typical among marine fishes. Arctic cod may exhibit a genetic pattern of isolation-by-distance, whereby populations in closer geographic proximity are more genetically similar than more distant populations. As this signal is only found between our two fartherest localities, data from populations elsewhere in the species’ global range are needed to determine if this is a general characteristic. Further, tests for selection suggested a limited role for natural selection acting on the mitochondrial genome of Arctic cod, but do not exclude the possibility of selection on genes involved in nuclear-mitogenome interactions. Unlike previous genetic assessment of Arctic cod sampled from the Chukchi Sea, the high levels of genetic diversity found in Arctic cod assayed in this study, across regions, suggests that the species in the Beaufort and Chukchi seas does not suffer from low levels of genetic variation, at least at neutral genetic markers. The large census size of Arctic cod may allow this species to retain high levels of genetic diversity. In addition, we discovered the presence of hybridization between Arctic and Polar cod (although low in frequency). Hybridization is expected to occur when environmental changes modify species distributions that result in contact between species that were previously separated. In such cases, hybridization may be an evolutionary mechanism that promotes an increase in genetic diversity that may provide species occupying changing environments with locally-adapted genotypes and, therefore, phenotypes. Natural selection can only act on the standing genetic variation present within a population. Therefore, given its higher levels of genetic diversity in combination with a large population size, Arctic cod may be resilient to current and future environmental change, as high genetic diversity is expected to increase opportunities for positive selection to act on genetic variants beneficial in different environments, regardless of the source of that genetic variation.

  10. Influence of sea ice on Arctic coasts

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Kay, J. E.; Overeem, I.; Anderson, R. S.

    2017-12-01

    Coasts form the dynamic interface between the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a focal point for population, infrastructure, biodiversity, and ecosystem services. A key difference between Arctic and temperate coasts is the presence of sea ice. Changes in sea ice cover can influence the coast because (1) the length of the sea ice-free season controls the time over which nearshore water can interact with the land, and (2) the location of the sea ice edge controls the fetch over which storm winds can interact with open ocean water, which in turn governs nearshore water level and wave field. We first focus on the interaction of sea ice and ice-rich coasts. We combine satellite records of sea ice with a model for wind-driven storm surge and waves to estimate how changes in the sea ice-free season have impacted the nearshore hydrodynamic environment along Alaska's Beaufort Sea Coast for the period 1979-2012. This region has experienced some of the greatest changes in both sea ice cover and coastal erosion rates in the Arctic: the median length of the open-water season has expanded by 90 percent, while coastal erosion rates have more than doubled from 8.7 to 19 m yr-1. At Drew Point, NW winds increase shoreline water levels that control the incision of a submarine notch, the rate-limiting step of coastal retreat. The maximum water-level setup at Drew Point has increased consistently with increasing fetch. We extend our analysis to the entire Arctic using both satellite-based observations and global coupled climate model output from the Community Earth System Model Large Ensemble (CESM-LE) project. This 30-member ensemble employs a 1-degree version of the CESM-CAM5 historical forcing for the period 1920-2005, and RCP 8.5 forcing from 2005-2100. A control model run with constant pre-industrial (1850) forcing characterizes internal variability in a constant climate. Finally, we compare observations and model results to identify locations of both observed and expected rapid sea ice change. Based on satellite observations, the median length of the 2012 open-water season expanded by between 1.5 and 3-fold relative to 1979 over the Arctic Sea region. This results in open water during the stormy Arctic fall, with implications for not only coastal processes but for amplification of warming on land.

  11. A spatial age-structured model for describing sea lamprey (Petromyzon marinus) population dynamics

    USGS Publications Warehouse

    Robinson, Jason M.; Wilberg, Michael J.; Adams, Jean V.; Jones, Michael L.

    2013-01-01

    The control of invasive sea lampreys (Petromyzon marinus) presents large scale management challenges in the Laurentian Great Lakes. No modeling approach has been developed that describes spatial dynamics of lamprey populations. We developed and validated a spatial and age-structured model and applied it to a sea lamprey population in a large river in the Great Lakes basin. We considered 75 discrete spatial areas, included a stock-recruitment function, spatial recruitment patterns, natural mortality, chemical treatment mortality, and larval metamorphosis. Recruitment was variable, and an upstream shift in recruitment location was observed over time. From 1993–2011 recruitment, larval abundance, and the abundance of metamorphosing individuals decreased by 80, 84, and 86%, respectively. The model successfully identified areas of high larval abundance and showed that areas of low larval density contribute significantly to the population. Estimated treatment mortality was less than expected but had a large population-level impact. The results and general approach of this work have applications for sea lamprey control throughout the Great Lakes and for the restoration and conservation of native lamprey species globally.

  12. Release strategies for rehabilitated sea otters

    USGS Publications Warehouse

    DeGange, Anthony R.; Ballachey, Brenda E.; Bayha, Keith; Williams, Terrie M.; Davis, Randall W.

    1995-01-01

    According to the U.S. Fish and Wildlife Services’ (USFWS) Response Plan for sea otters (USFWS, in preparation), in the event of an oil spill, the decision to release sea otters from rehabilitation centers following treatment will be linked to the decision on whether to capture sea otters for treatment. Assuming a scenario similar to the Exxon Valdez oil spill (EVOS), once the decision to capture sea otters is made, the ultimate goal is to return as many sea otters to the wild as possible, even though the rescue may not be expected to produce results significant at the population level. The decision by the USFWS to proceed with capture, rehabilitation, and release will be made on a case-by-case basis (USFWS, in preparation). Many factors will influence the decision. Perhaps the most important factors in deciding when and where to release sea otters are the location and availability of suitable release sites and verification that the otters are free of diseases that might be transmitted to the wild population.Alternative release strategies for sea otters will be contained in the sea otter response portion of the USFWS’s oil spill contingency plans for Alaska and California that are being developed as required by the Oil Pollution Act of 1990. Public review of these plans before they are implemented will help to reduce public concern about the survival of rehabilitated otters, their biological effect on the release area, and the potential introduction or spread of disease into the wild sea otter population.The objective of this chapter is to review alternative strategies for the disposition of rehabilitated sea otters. Our assumption is that returning as many animals to the wild as possible, whether it be for humanitarian or biological reasons, is the ultimate goal of this effort (Figure 10.1).

  13. Tectonic imprints upon inferences of eustatic sea level history: the Pliocene warm period and the Orangeburg Scarp

    NASA Astrophysics Data System (ADS)

    Chandan, D.; Peltier, W. R.

    2013-12-01

    The issue of tectonic contamination of geological inferences of relative sea level history is an important one. The issue arises on timescales that range from the 21-26 kyrs that have passed since the Last Glacial Maximum, to the most recent time when periods as warm as the present are expected to have existed, such as the mid-Pliocene. The coral based record from Barbados, for example, is known to be contaminated by continuing tectonic uplift of the island at a rate of approximately 0.34 mm/yr. For the Pliocene warm period at ~3 Myr, records from geological sites, such as the Orangeburg Scarp in North Carolina, have played a prominent role in arguments underpinning the design of the ongoing international PlioMIP program. In connection with the latter site, Rowley et al (2013) have recently argued that this record is contaminated by a tectonic imprint sufficiently strong to suggest that the usual inferences of Pliocene eustatic sea level based upon it (eg. Miller et al, 2012) must be seen as highly suspect. Here we employ a tomographically constrained model of the mantle convection process to revisit the issue of the tectonic imprint on relative sea level at the Orangeburg site, as well as other similar locations. Our analysis is based upon the inferred time dependence of dynamic topography forced by the mantle's internal density heterogeneities delivered by the S20RTS seismic tomography model. We begin by comparing the static, present day dynamic topography predicted by the (linear) internal loading theory based on the formalism of Pari and Peltier (2000) with that predicted using using a full three dimensional version of the nonlinear time-dependent mantle convection model of Shahnas and Peltier (2010, 2011). We demonstrate first that these two methodologies produce extremely similar results for the static field. We then proceed to run the nonlinear convection model in data assimilation mode while continuously nudging the internal density field back towards the structure inferred from tomography. Following a transient shock associated with the assimilation process, the model makes rather stable predictions for the time dependence of dynamic topography at a number of important locations from which data have been selected for the purpose of inferring the mid-Pliocene eustatic sea level. At Orangeburg where the inferred rates of tectonic uplift have ranged from 0.005 to 0.02 mm/yr (Dowsett and Cronin (1990), Soller (1989)) our model predicts an uplift rate of 0.024 mm/yr. This is sufficiently high to leave little room for any significant increase in eustatic sea level beyond what is expected to have existed as a consequence of the fact that the Greenland ice sheet had yet to fully form. Dowsett and Cronin (1990), Geology, 18, 435-438 Miller et al (2012), Geology, 40, 407-410 Pari and Peltier (2000), J. Geophys. Res., 105, 5635-5662 Rowley et al (2013), Science, 340, 1560-1563 Shahnas and Peltier (2010), J. Geophys. Res., 115, B11 Shahnas and Peltier (2011), J. Geophys. Res., 116, B8 Soller (1989), USGS professional paper, 1466-A

  14. An Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation of the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Herzfeld, Ute C.; McDonald, Brian W.; Wallins, Bruce F.; Markus, Thorsten; Neumann, Thomas A.; Brenner, Anita

    2012-01-01

    The Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission has been selected by NASA as a Decadal Survey mission, to be launched in 2016. Mission objectives are to measure land ice elevation, sea ice freeboard/ thickness and changes in these variables and to collect measurements over vegetation that will facilitate determination of canopy height, with an accuracy that will allow prediction of future environmental changes and estimation of sea-level rise. The importance of the ICESat-2 project in estimation of biomass and carbon levels has increased substantially, following the recent cancellation of all other planned NASA missions with vegetation-surveying lidars. Two innovative components will characterize the ICESat-2 lidar: (1) Collection of elevation data by a multi-beam system and (2) application of micropulse lidar (photon counting) technology. A micropulse photon-counting altimeter yields clouds of discrete points, which result from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of returned points to reflectors of interest including canopy and ground in forested areas. The objective of this paper is to derive and validate an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2-type data. Data are based on airborne observations with a Sigma Space micropulse lidar and vary with respect to signal strength, noise levels, photon sampling options and other properties. A mathematical algorithm is developed, using spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors and geostatistical classification parameters and hyperparameters. Validation shows that the algorithm works very well and that ground and canopy elevation, and hence canopy height, can be expected to be observable with a high accuracy during the ICESat-2 mission. A result relevant for instrument design is that even the two weaker beam classes considered can be expected to yield useful results for vegetation measurements (93.01-99.57% correctly selected points for a beam with expected return of 0.93 mean signals per shot (msp9) and 72.85% - 98.68% for 0.48 msp (msp4)). Resampling options affect results more than noise levels. The algorithm derived here is generally applicable for analysis of micropulse lidar altimeter data collected over forested areas as well as other surfaces, including land ice, sea ice and land surfaces.

  15. Climate change impacts on U.S. coastal and marine ecosystems

    USGS Publications Warehouse

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction, invasive species, land and resource use, extreme natural events), which may lead to more significant consequences.

  16. Groundwater-saline lakes interaction - The contribution of saline groundwater circulation to solute budget of saline lakes: a lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Weinstein, Yishai; Starinsky, Abraham; Yechieli, Yoseph

    2013-04-01

    Saline lakes act as base level for both surface water and groundwater. Thus, a change in lake levels is expected to result in changes in the hydrogeological system in its vicinity, exhibited in groundwater levels, location of the fresh-saline water interface, sub-lacustrine groundwater discharge (SGD) and saline water circulation. All these processes were observed in the declining Dead Sea system, whose water level dropped by ~35 meters in the last 50 years. This work focuses mainly on the effect of circulation of Dead Sea water in the aquifer, which continues even in this very rapid base level drop. In general, seawater circulation in coastal aquifers is now recognized as a major process affecting trace element mass balances in coastal areas. Estimates of submarine groundwater discharge (SGD) vary over several orders of magnitude (1-1000000 m3/yr per meter shoreline). These estimates are sensitive to fresh-saline SGD ratios and to the temporal and spatial scales of the circulation. The Dead Sea system is an excellent natural field lab for studying seawater-groundwater interaction and large-scale circulation due to the absence of tides and to the minor role played by waves. During Dead Sea water circulation in the aquifer several geochemical reactions occur, ranging from short-term adsorption-desorption reactions and up to long-term precipitation and dissolution reactions. These processes affect the trace element distribution in the saline groundwater. Barite and celestine, which are supersaturated in the lake water, precipitate during circulation in the aquifer, reducing barium (from 5 to 1.5 mg/L), strontium (from 350 to 300 mg/L) and the long-lived 226Ra (from 145 to 60 dpm/L) in the saline groundwater. Redox-controlled reactions cause a decrease in uranium from 2.4 to 0.1 μg/L, and an increase in iron from 1 to 13 mg/L. 228Ra (t1/2=5.75 yr) activity in the Dead Sea is ~1 dpm/L and increase gradually as the saline water flows further inland until reaching steady-state activities (~27 dpm/L) with the aquifer sediments. The decrease in 226Ra and increase in 228Ra in the circulation process provide a robust method for calculating the amount of Dead Sea water circulating in the aquifer. This process can affect trace element concentrations in the Dead Sea and emphasize the potential of long-term seawater circulation in mass balances of saline water bodies.

  17. Large-scale forcing of the European Slope Current and associated inflows to the North Sea

    NASA Astrophysics Data System (ADS)

    Marsh, Robert; Haigh, Ivan D.; Cunningham, Stuart A.; Inall, Mark E.; Porter, Marie; Moat, Ben I.

    2017-04-01

    The European Slope Current provides a shelf-edge conduit for Atlantic Water, a substantial fraction of which is destined for the northern North Sea, with implications for regional hydrography and ecosystems. Drifters drogued at 50 m in the European Slope Current at the Hebridean shelf break follow a wide range of pathways, indicating highly variable Atlantic inflow to the North Sea. Slope Current pathways, timescales and transports over 1988-2007 are further quantified in an eddy-resolving ocean model hindcast. Particle trajectories calculated with model currents indicate that Slope Current water is largely recruited from the eastern subpolar North Atlantic. Observations of absolute dynamic topography and climatological density support theoretical expectations that Slope Current transport is to first order associated with meridional density gradients in the eastern subpolar gyre, which support a geostrophic inflow towards the slope. In the model hindcast, Slope Current transport variability is dominated by abrupt 25-50 % reductions of these density gradients over 1996-1998. Concurrent changes in wind forcing, expressed in terms of density gradients, act in the same sense to reduce Slope Current transport. This indicates that coordinated regional changes of buoyancy and wind forcing acted together to reduce Slope Current transport during the 1990s. Particle trajectories further show that 10-40 % of Slope Current water is destined for the northern North Sea within 6 months of passing to the west of Scotland, with a general decline in this percentage over 1988-2007. Salinities in the Slope Current correspondingly decreased, evidenced in ocean analysis data. Further to the north, in the Atlantic Water conveyed by the Slope Current through the Faroe-Shetland Channel (FSC), salinity is observed to increase over this period while declining in the hindcast. The observed trend may have broadly compensated for a decline in the Atlantic inflow, limiting salinity changes in the northern North Sea during this period. Proxies for both Slope Current transport and Atlantic inflow to the North Sea are sought in sea level height differences across the FSC and between Shetland and the Scottish mainland (Wick). Variability of Slope Current transport on a wide range of timescales, from seasonal to multi-decadal, is implicit in sea level differences between Lerwick (Shetland) and Tórshavn (Faroes), in both tide gauge records from 1957 and a longer model hindcast spanning 1958-2012. Wick-Lerwick sea level differences in tide gauge records from 1965 indicate considerable decadal variability in the Fair Isle Current transport that dominates Atlantic inflow to the northwest North Sea, while sea level differences in the hindcast are dominated by strong seasonal variability. Uncertainties in the Wick tide gauge record limit confidence in this proxy.

  18. Assimilation of TOPEX Sea Level Measurements with a Reduced-Gravity, Shallow Water Model of the Tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Fukumori, Ichiro

    1995-01-01

    Sea surface height variability measured by TOPEX is analyzed in the tropical Pacific Ocean by way of assimilation into a wind-driven, reduced-gravity, shallow water model using an approximate Kalman filter and smoother. The analysis results in an optimal fit of the dynamic model to the observations, providing it dynamically consistent interpolation of sea level and estimation of the circulation. Nearly 80% of the expected signal variance is accounted for by the model within 20 deg of the equator, and estimation uncertainty is substantially reduced by the voluminous observation. Notable features resolved by the analysis include seasonal changes associated with the North Equatorial Countercurrent and equatorial Kelvin and Rossby waves. Significant discrepancies are also found between the estimate and TOPEX measurements, especially near the eastern boundary. Improvements in the estimate made by the assimilation are validated by comparisons with independent tide gauge and current meter observations. The employed filter and smoother are based on approximately computed estimation error covariance matrices, utilizing a spatial transformation and an symptotic approximation. The analysis demonstrates the practical utility of a quasi-optimal filter and smoother.

  19. The effect of altitude on cycling performance: a challenge to traditional concepts.

    PubMed

    Hahn, A G; Gore, C J

    2001-01-01

    Acute exposure to moderate altitude is likely to enhance cycling performance on flat terrain because the benefit of reduced aerodynamic drag outweighs the decrease in maximum aerobic power [maximal oxygen uptake (VO2max)]. In contrast, when the course is mountainous, cycling performance will be reduced at moderate altitude. Living and training at altitude, or living in an hypoxic environment (approximately 2500 m) but training near sea level, are popular practices among elite cyclists seeking enhanced performance at sea level. In an attempt to confirm or refute the efficacy of these practices, we reviewed studies conducted on highly-trained athletes and, where possible, on elite cyclists. To ensure relevance of the information to the conditions likely to be encountered by cyclists, we concentrated our literature survey on studies that have used 2- to 4-week exposures to moderate altitude (1500 to 3000 m). With acclimatisation there is strong evidence of decreased production or increased clearance of lactate in the muscle, moderate evidence of enhanced muscle buffering capacity (beta m) and tenuous evidence of improved mechanical efficiency (ME) of cycling. Our analysis of the relevant literature indicates that, in contrast to the existing paradigm, adaptation to natural or simulated moderate altitude does not stimulate red cell production sufficiently to increase red cell volume (RCV) and haemoglobin mass (Hb(mass)). Hypoxia does increase serum erthyropoietin levels but the next step in the erythropoietic cascade is not clearly established; there is only weak evidence of an increase in young red blood cells (reticulocytes). Moreover, the collective evidence from studies of highly-trained athletes indicates that adaptation to hypoxia is unlikely to enhance sea level VO2max. Such enhancement would be expected if RCV and Hb(mass) were elevated. The accumulated results of 5 different research groups that have used controlled study designs indicate that continuous living and training at moderate altitude does not improve sea level performance of high level athletes. However, recent studies from 3 independent laboratories have consistently shown small improvements after living in hypoxia and training near sea level. While other research groups have attributed the improved performance to increased RCV and VO2max, we cite evidence that changes at the muscle level (beta m and ME) could be the fundamental mechanism. While living at altitude but training near sea level may be optimal for enhancing the performance of competitive cyclists, much further research is required to confirm its benefit. If this benefit does exist, it probably varies between individuals and averages little more than 1%.

  20. Behavioral responses of Atlantic cod to sea temperature changes.

    PubMed

    Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor

    2015-05-01

    Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30-80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species.

  1. Behavioral responses of Atlantic cod to sea temperature changes

    PubMed Central

    Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor

    2015-01-01

    Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30–80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species. PMID:26045957

  2. The Southwest Pacific: U.S. Interests and China’s Growing Influence

    DTIC Science & Technology

    2007-07-06

    additional $200,000 for emergency shelter, water , health, and sanitation provided through humanitarian organizations. Since 1995, USAID/OFDA has...China operates a large tuna fishing fleet in Fijian waters and has agreed to help develop a hydro power plant in the country. China, Taiwan, and the...accept Tuvalu’s entire population should rising sea levels inundate the island, which lies within five meters above water . The government of Tuvalu expects

  3. Gulf Coast vulnerability assessment: Mangrove, tidal emergent marsh, barrier islands and oyster reef

    USGS Publications Warehouse

    Watson, Amanda; Reece, Joshua; Tirpak, Blair; Edwards, Cynthia Kallio; Geselbracht, Laura; Woodrey, Mark; LaPeyre, Megan K.; Dalyander, Patricia (Soupy)

    2017-01-01

    Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates exposure and sensitivity to threats (potential impact), coupled with the adaptive capacity to mitigate those threats. Potential impact and adaptive capacity reflect natural history features of target species and ecosystems. The GCVA used an expert opinion approach to qualitatively assess the vulnerability of four ecosystems: mangrove, oyster reef, tidal emergent marsh, and barrier islands, and a suite of wildlife species that depend on them. More than 50 individuals participated in the completion of the GCVA, facilitated via Ecosystem and Species Expert Teams. Of the species assessed, Kemp’s ridley sea turtle was identified as the most vulnerable species across the Gulf Coast. Experts identified the main threats as loss of nesting habitat to sea level rise, erosion, and urbanization. Kemp’s ridley also had an overall low adaptive capacity score due to their low genetic diversity, and higher nest site fidelity as compared to other assessed species. Tidal emergent marsh was the most vulnerable ecosystem, due in part to sea level rise and erosion. In general, avian species were more vulnerable than fish because of nesting habitat loss to sea level rise, erosion, and potential increases in storm surge. Assessors commonly indicated a lack of information regarding impacts due to projected changes in the disturbance regime, biotic interactions, and synergistic effects in both the species and habitat assessments. Many of the assessors who focused on species also identified data gaps regarding genetic information, phenotypic plasticity, life history, and species responses to past climate change and sea level rise. Regardless of information gaps, the results from the GCVA can be used to inform Gulf-wide adaptation plans. Given the scale of climatic impacts, coordinated efforts to address Gulf-wide threats to species and ecosystems will enhance the effectiveness of management actions and also have the potential to maximize the efficacy of limited funding.

  4. The Gulf Coast Vulnerability Assessment: Mangrove, Tidal Emergent Marsh, Barrier Islands, and Oyster Reef

    USGS Publications Warehouse

    Watson, Amanda; Reece, Joshua S.; Tirpak, Blair; Edwards, Cynthia Kallio; Geselbracht, Laura; Woodrey, Mark; LaPeyre, Megan K.; Dalyander, P. Soupy

    2015-01-01

    Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates the aspects of exposure and sensitivity to threats, coupled with the adaptive capacity to mitigate those threats. Potential impact and adaptive capacity reflect natural history features of target species and ecosystems. The GCVA used an expert opinion approach to qualitatively assess the vulnerability of four ecosystems: mangrove, oyster reef, tidal emergent marsh, and barrier islands, and a suite of wildlife species that depend on them. More than 50 individuals participated in the completion of the GCVA, facilitated via Ecosystem and Species Expert Teams. Of the species assessed, Kemp’s ridley sea turtle was identified as the most vulnerable species across the Gulf Coast. Experts identified the main threats as loss of nesting habitat to sea level rise, erosion, and urbanization. Kemp’s ridley also had an overall low adaptive capacity score due to their low genetic diversity, and higher nest site fidelity as compared to other assessed species. Tidal emergent marsh was the most vulnerable ecosystem, due in part to sea level rise and erosion. In general, avian species were more vulnerable than fish because of nesting habitat loss to sea level rise, erosion, and potential increases in storm surge. Assessors commonly indicated a lack of information regarding impacts due to projected changes in the disturbance regime, biotic interactions, and synergistic effects in both the species and habitat assessments. Many of the assessors who focused on species also identified data gaps regarding genetic information, phenotypic plasticity, life history, and species responses to past climate change and sea level rise. Regardless of information gaps, the results from the GCVA can be used to inform Gulf-wide adaptation plans. Given the scale of climatic impacts, coordinated efforts to address Gulf-wide threats to species and ecosystems will enhance the effectiveness of management actions and also have the potential to maximize the efficacy of limited funding.

  5. The Effect of Spatial Aggregation on the Skill of Seasonal Precipitation Forecasts.

    NASA Astrophysics Data System (ADS)

    Gong, Xiaofeng; Barnston, Anthony G.; Ward, M. Neil

    2003-09-01

    Skillful forecasts of 3-month total precipitation would be useful for decision making in hydrology, agriculture, public health, and other sectors of society. However, with some exceptions, the skill of seasonal precipitation outlooks is modest, leaving uncertainty in how to best make use of them. Seasonal precipitation forecast skill is generally lower than the skill of forecasts for temperature or atmospheric circulation patterns for the same location and time. This is attributable to the smaller-scale, more complex physics of precipitation, resulting in its `noisier' and hence less predictable character. By contrast, associated temperature and circulation patterns are larger scale, in keeping with the anomalous boundary conditions (e.g., sea surface temperature) that often give rise to them.Using two atmospheric general circulation models forced by observed sea surface temperature anomalies, the skill of simulations of total seasonal precipitation is examined as a function of the size of the spatial domain over which the precipitation total is averaged. Results show that spatial aggregation increases skill and, by the skill measures used here, does so to a greater extent for precipitation than for temperature. Corroborative results are presented in an observational framework at smaller spatial scales for gauge rainfalls in northeast Brazil.The findings imply that when seasonal forecasts for precipitation are issued, the accompanying guidance on their expected skills should explicitly specify to which spatial aggregation level the skills apply. Information about skills expected at other levels of aggregation should be supplied for users who may work at such levels.

  6. A stochastic storm surge generator for the German North Sea and the multivariate statistical assessment of the simulation results

    NASA Astrophysics Data System (ADS)

    Wahl, Thomas; Jensen, Jürgen; Mudersbach, Christoph

    2010-05-01

    Storm surges along the German North Sea coastline led to major damages in the past and the risk of inundation is expected to increase in the course of an ongoing climate change. The knowledge of the characteristics of possible storm surges is essential for the performance of integrated risk analyses, e.g. based on the source-pathway-receptor concept. The latter includes the storm surge simulation/analyses (source), modelling of dike/dune breach scenarios (pathway) and the quantification of potential losses (receptor). In subproject 1b of the German joint research project XtremRisK (www.xtremrisk.de), a stochastic storm surge generator for the south-eastern North Sea area is developed. The input data for the multivariate model are high resolution sea level observations from tide gauges during extreme events. Based on 25 parameters (19 sea level parameters and 6 time parameters) observed storm surge hydrographs consisting of three tides are parameterised. Followed by the adaption of common parametric probability distributions and a large number of Monte-Carlo-Simulations, the final reconstruction leads to a set of 100.000 (default) synthetic storm surge events with a one-minute resolution. Such a data set can potentially serve as the basis for a large number of applications. For risk analyses, storm surges with peak water levels exceeding the design water levels are of special interest. The occurrence probabilities of the simulated extreme events are estimated based on multivariate statistics, considering the parameters "peak water level" and "fullness/intensity". In the past, most studies considered only the peak water levels during extreme events, which might not be the most important parameter in any cases. Here, a 2D-Archimedian copula model is used for the estimation of the joint probabilities of the selected parameters, accounting for the structures of dependence overlooking the margins. In coordination with subproject 1a, the results will be used as the input for the XtremRisK subprojects 2 to 4. The project is funded by the German Federal Ministry of Education and Research (BMBF) (Project No. 03 F 0483 B).

  7. Using a Bayesian Network to predict shore-line change vulnerability to sea-level rise for the coasts of the United States

    USGS Publications Warehouse

    Gutierrez, Benjamin T.; Plant, Nathaniel G.; Pendleton, Elizabeth A.; Thieler, E. Robert

    2014-01-01

    Sea-level rise is an ongoing phenomenon that is expected to continue and is projected to have a wide range of effects on coastal environments and infrastructure during the 21st century and beyond. Consequently, there is a need to assemble relevant datasets and to develop modeling or other analytical approaches to evaluate the likelihood of particular sea-level rise impacts, such as coastal erosion, and to inform coastal management decisions with this information. This report builds on previous work that compiled oceanographic and geomorphic data as part of the U.S. Geological Survey’s Coastal Vulnerability Index (CVI) for the U.S. Atlantic coast, and developed a Bayesian Network to predict shoreline-change rates based on sea-level rise plus variables that describe the hydrodynamic and geologic setting. This report extends the previous analysis to include the Gulf and Pacific coasts of the continental United States and Alaska and Hawaii, which required using methods applied to the USGS CVI dataset to extract data for these regions. The Bayesian Network converts inputs that include observations of local rates of relative sea-level change, mean wave height, mean tide range, a geomorphic classification, coastal slope, and observed shoreline-change rates to calculate the probability of the shoreline-erosion rate exceeding a threshold level of 1 meter per year for the coasts of the United States. The calculated probabilities were compared to the historical observations of shoreline change to evaluate the hindcast success rate of the most likely probability of shoreline change. Highest accuracy was determined for the coast of Hawaii (98 percent success rate) and lowest accuracy was determined for the Gulf of Mexico (34 percent success rate). The minimum success rate rose to nearly 80 percent (Atlantic and Gulf coasts) when success included shoreline-change outcomes that were adjacent to the most likely outcome. Additionally, the probabilistic approach determines the confidence in calculated outcomes as the probability of the most likely outcome. The confidence was highest along the Pacific coast and it was lowest along the Alaskan coast.

  8. Sequence stratigraphic principles applied to the Miocene Hawthorn Group, west-central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, V.L.; Randazzo, A.F.

    1993-03-01

    Sequence boundaries for the Miocene Hawthorn Group in the ROMP 20 drill core from Osprey, Sarasota County, FL were generally delineated by lithologic variations recognized from core slabs, thin section analysis, and geophysical logs. At least six depositional sequences representing third order sea level fluctuations were identified. Depositional environments were determined on the basis of the characteristic lithologic constituents including rip-up clasts, pellets, fossils, laminations, burrow, degree of induration, and grain sorting. The sequence boundaries appear to have formed when the rate of the eustatic fall exceeded basin subsidence rates producing a relative sea level fall at a depositional shorelinemore » break. As a result of the basinward facies shift associated with this sequence type, peritidal facies may directly overlie deeper water facies. Subaerial exposure and erosion can be expected. The sequence of facies representing progressively deeper water depositional environments, followed by a progressive shallowing, were present between bounding surfaces. Among the six sequences recognized, four were clearly delineated as representative of regression, subaerial exposure, and subsequent transgression. Two sequences were less clearly defined and probably represent transitional facies which had exposure surfaces developed. Comparison of the petrologically established sequence stratigraphy with published sea level curves resulted in a strong correlation between the number of sequences recognized and the number of coastal on-lap/off-lap cycles depicted for the early to middle Miocene. This correlation suggests that petrologic examination of core slabs, with supplemental thin section data, can provide useful information regarding the recognition of stratigraphic sequences and relative sea level fluctuations, particularly, in situations where seismic data may not be available.« less

  9. TIDE TOOL: Open-Source Sea-Level Monitoring Software for Tsunami Warning Systems

    NASA Astrophysics Data System (ADS)

    Weinstein, S. A.; Kong, L. S.; Becker, N. C.; Wang, D.

    2012-12-01

    A tsunami warning center (TWC) typically decides to issue a tsunami warning bulletin when initial estimates of earthquake source parameters suggest it may be capable of generating a tsunami. A TWC, however, relies on sea-level data to provide prima facie evidence for the existence or non-existence of destructive tsunami waves and to constrain tsunami wave height forecast models. In the aftermath of the 2004 Sumatra disaster, the International Tsunami Information Center asked the Pacific Tsunami Warning Center (PTWC) to develop a platform-independent, easy-to-use software package to give nascent TWCs the ability to process WMO Global Telecommunications System (GTS) sea-level messages and to analyze the resulting sea-level curves (marigrams). In response PTWC developed TIDE TOOL that has since steadily grown in sophistication to become PTWC's operational sea-level processing system. TIDE TOOL has two main parts: a decoder that reads GTS sea-level message logs, and a graphical user interface (GUI) written in the open-source platform-independent graphical toolkit scripting language Tcl/Tk. This GUI consists of dynamic map-based clients that allow the user to select and analyze a single station or groups of stations by displaying their marigams in strip-chart or screen-tiled forms. TIDE TOOL also includes detail maps of each station to show each station's geographical context and reverse tsunami travel time contours to each station. TIDE TOOL can also be coupled to the GEOWARE™ TTT program to plot tsunami travel times and to indicate the expected tsunami arrival time on the marigrams. Because sea-level messages are structured in a rich variety of formats TIDE TOOL includes a metadata file, COMP_META, that contains all of the information needed by TIDE TOOL to decode sea-level data as well as basic information such as the geographical coordinates of each station. TIDE TOOL can therefore continuously decode theses sea-level messages in real-time and display the time-series data in the GUI as well. This GUI also includes mouse-clickable functions such as zooming or expanding the time-series display, measuring tsunami signal characteristics (arrival time, wave period and amplitude, etc.), and removing the tide signal from the time-series data. De-tiding of the time series is necessary to obtain accurate measurements of tsunami wave parameters and to maintain accurate historical tsunami databases. With TIDE TOOL, de-tiding is accomplished with a set of tide harmonic coefficients routinely computed and updated at PTWC for many of the stations in PTWC's inventory (~570). PTWC also uses the decoded time series files (previous 3-5 days' worth) to compute on-the-fly tide coefficients. The latter is useful in cases where the station is new and a long-term stable set of tide coefficients are not available or cannot be easily obtained due to various non-astronomical effects. The international tsunami warning system is coordinated globally by the UNESCO IOC, and a number of countries in the Pacific and Indian Ocean, and Caribbean depend on Tide Tool to monitor tsunamis in real time.

  10. Forecasting petroleum discoveries in sparsely drilled areas: Nigeria and the North Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attanasi, E.D.; Root, D.H.

    1988-10-01

    Decline function methods for projecting future discoveries generally capture the crowding effects of wildcat wells on the discovery rate. However, these methods do not accommodate easily situations where exploration areas and horizons are expanding. In this paper, a method is presented that uses a mapping algorithm for separating these often countervailing influences. The method is applied to Nigeria and the North Sea. For an amount of future drilling equivalent to past drilling (825 wildcat wells), future discoveries (in resources found) for Nigeria are expected to decline by 68% per well but still amount to 8.5 billion barrels of oil equivalentmore » (BOE). Similarly, for the total North Sea for an equivalent amount and mix among areas of past drilling (1322 wildcat wells), future discoveries are expected to amount to 17.9 billion BOE, whereas the average discovery rate per well is expected to decline by 71%.« less

  11. Forecasting petroleum discoveries in sparsely drilled areas: Nigeria and the North Sea

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1988-01-01

    Decline function methods for projecting future discoveries generally capture the crowding effects of wildcat wells on the discovery rate. However, these methods do not accommodate easily situations where exploration areas and horizons are expanding. In this paper, a method is presented that uses a mapping algorithm for separating these often countervailing influences. The method is applied to Nigeria and the North Sea. For an amount of future drilling equivalent to past drilling (825 wildcat wells), future discoveries (in resources found) for Nigeria are expected to decline by 68% per well but still amount to 8.5 billion barrels of oil equivalent (BOE). Similarly, for the total North Sea for an equivalent amount and mix among areas of past drilling (1322 wildcat wells), future discoveries are expected to amount to 17.9 billion BOE, whereas the average discovery rate per well is expected to decline by 71%. ?? 1988 International Association for Mathematical Geology.

  12. Mechanism of deep-sea fish α-actin pressure tolerance investigated by molecular dynamics simulations.

    PubMed

    Wakai, Nobuhiko; Takemura, Kazuhiro; Morita, Takami; Kitao, Akio

    2014-01-01

    The pressure tolerance of monomeric α-actin proteins from the deep-sea fish Coryphaenoides armatus and C. yaquinae was compared to that of non-deep-sea fish C. acrolepis, carp, and rabbit/human/chicken actins using molecular dynamics simulations at 0.1 and 60 MPa. The amino acid sequences of actins are highly conserved across a variety of species. The actins from C. armatus and C. yaquinae have the specific substitutions Q137K/V54A and Q137K/L67P, respectively, relative to C. acrolepis, and are pressure tolerant to depths of at least 6000 m. At high pressure, we observed significant changes in the salt bridge patterns in deep-sea fish actins, and these changes are expected to stabilize ATP binding and subdomain arrangement. Salt bridges between ATP and K137, formed in deep-sea fish actins, are expected to stabilize ATP binding even at high pressure. At high pressure, deep-sea fish actins also formed a greater total number of salt bridges than non-deep-sea fish actins owing to the formation of inter-helix/strand and inter-subdomain salt bridges. Free energy analysis suggests that deep-sea fish actins are stabilized to a greater degree by the conformational energy decrease associated with pressure effect.

  13. Mechanism of Deep-Sea Fish α-Actin Pressure Tolerance Investigated by Molecular Dynamics Simulations

    PubMed Central

    Wakai, Nobuhiko; Takemura, Kazuhiro; Morita, Takami; Kitao, Akio

    2014-01-01

    The pressure tolerance of monomeric α-actin proteins from the deep-sea fish Coryphaenoides armatus and C. yaquinae was compared to that of non-deep-sea fish C. acrolepis, carp, and rabbit/human/chicken actins using molecular dynamics simulations at 0.1 and 60 MPa. The amino acid sequences of actins are highly conserved across a variety of species. The actins from C. armatus and C. yaquinae have the specific substitutions Q137K/V54A and Q137K/L67P, respectively, relative to C. acrolepis, and are pressure tolerant to depths of at least 6000 m. At high pressure, we observed significant changes in the salt bridge patterns in deep-sea fish actins, and these changes are expected to stabilize ATP binding and subdomain arrangement. Salt bridges between ATP and K137, formed in deep-sea fish actins, are expected to stabilize ATP binding even at high pressure. At high pressure, deep-sea fish actins also formed a greater total number of salt bridges than non-deep-sea fish actins owing to the formation of inter-helix/strand and inter-subdomain salt bridges. Free energy analysis suggests that deep-sea fish actins are stabilized to a greater degree by the conformational energy decrease associated with pressure effect. PMID:24465747

  14. Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Judi, David R.; Leung, L. Ruby

    Coastal populations in the global tropics and sub-tropics are vulnerable to the devastating impacts of hurricane storm surge and this risk is only expected to rise under climate change. In this study, we address this issue for the U.S. Gulf and Florida coasts. Using the framework of Potential Intensity, observations and output from coupled climate models, we show that the future large-scale thermodynamic environment may become more favorable for hurricane intensification. Under the RCP 4.5 emissions scenario and for the peak hurricane season months of August–October, we show that the mean intensities of Atlantic hurricanes may increase by 1.8–4.2 %more » and their lifetime maximum intensities may increase by 2.7–5.3 % when comparing the last two decades of the 20th and 21st centuries. We then combine our estimates of hurricane intensity changes with projections of sea-level rise to understand their relative impacts on future storm surge using simulations with the National Weather Service’s SLOSH (Sea, Lake, and Overland Surges from Hurricanes) model for five historical hurricanes that made landfall in the Gulf of Mexico and Florida. Considering uncertainty in hurricane intensity changes and sea-level rise, our results indicate a median increase in storm surge ranging between 25 and 47 %, with changes in hurricane intensity increasing future storm surge by about 10 % relative to the increase that may result from sea level rise alone, with highly non-linear response of population at risk.« less

  15. Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds.

    PubMed

    Amélineau, F; Bonnet, D; Heitz, O; Mortreux, V; Harding, A M A; Karnovsky, N; Walkusz, W; Fort, J; Grémillet, D

    2016-12-01

    Microplastics have been reported everywhere around the globe. With very limited human activities, the Arctic is distant from major sources of microplastics. However, microplastic ingestions have been found in several Arctic marine predators, confirming their presence in this region. Nonetheless, existing information for this area remains scarce, thus there is an urgent need to quantify the contamination of Arctic marine waters. In this context, we studied microplastic abundance and composition within the zooplankton community off East Greenland. For the same area, we concurrently evaluated microplastic contamination of little auks (Alle alle), an Arctic seabird feeding on zooplankton while diving between 0 and 50 m. The study took place off East Greenland in July 2005 and 2014, under strongly contrasted sea-ice conditions. Among all samples, 97.2% of the debris found were filaments. Despite the remoteness of our study area, microplastic abundances were comparable to those of other oceans, with 0.99 ± 0.62 m -3 in the presence of sea-ice (2005), and 2.38 ± 1.11 m -3 in the nearby absence of sea-ice (2014). Microplastic rise between 2005 and 2014 might be linked to an increase in plastic production worldwide or to lower sea-ice extents in 2014, as sea-ice can represent a sink for microplastic particles, which are subsequently released to the water column upon melting. Crucially, all birds had eaten plastic filaments, and they collected high levels of microplastics compared to background levels with 9.99 and 8.99 pieces per chick meal in 2005 and 2014, respectively. Importantly, we also demonstrated that little auks took more often light colored microplastics, rather than darker ones, strongly suggesting an active contamination with birds mistaking microplastics for their natural prey. Overall, our study stresses the great vulnerability of Arctic marine species to microplastic pollution in a warming Arctic, where sea-ice melting is expected to release vast volumes of trapped debris. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Tidal energetics: Studies with a barotropic model

    NASA Astrophysics Data System (ADS)

    Stewart, James Scott

    The tidal energy from luni-solar gravitational forcing is dissipated principally through the dissipation of oceanic tides. Recent estimates using disparate methods, including analysis of satellite orbits and the timing of ancient eclipses, now indicate that this dissipation totals approximately 3.5 terawatts. However, the mechanisms and spatial distribution of this dissipation is not yet fully understood. In this work, three different aspects of tidal energetics are investigated with a variable resolution barotropic tidal model. The distribution of tidal energy, dissipation and energy flux are examined using high resolution models of several marginal seas: the European shelf, the Sea of Okhotsk, the Yellow and East China Seas, the South China Sea and the Bering Sea. Most modern tide models dissipate tidal energy with a quadratic friction parameterization of bottom friction. Since such dissipation depends nonlinearly on the velocity of the tidal current, these models dissipate primarily in shallow seas where current magnitudes are high. Without assimilating observational data, such tidal models have unreasonably high levels of tidal-period averaged kinetic and potential energies. I have added a linear friction parameterization to the traditional quadratic formulation and am able to obtain realistic tidal energy levels with an unassimilated model. The resulting model is used to investigate the tidal energetics of the recent geological past when sea level was 50 meters higher and 120 meters lower than at the present time. Long-period tides are of small enough amplitude that their energetics are an almost negligible part of the total tidal energy budget. However, the behavior of these tides yields insights into the response of the ocean to large scale forcing. We have modeled the lunar fortnightly (M f) and lunar monthly (Mm) tidal components and determined that the ratio of the Mf potential-to-kinetic energy ratio to that of Mm is about 3.9, consistent with values expected for long Rossby wave dynamics. Also, we obtain quality (Q) values for the Mf and Mm tides of 5.9 and 6.2 respectively which is consistent with recent inferences of basin circulation responses of Q of about 5.5 for 5-day synoptic forcing.

  17. Role of Western Hemisphere Warm Pool in Rapid Climate Changes over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Kug, Jong-Seong; Park, Jae-Heung; An, Soon-Il

    2017-04-01

    Oceanic states over the western North Pacific (WNP), which is surrounded by heavily populated countries, are closely tied to the lives of the people in East Asia in regards to both climate and socioeconomics. As global warming continues, remarkable increases in sea surface temperature (SST) and sea surface height (SSH) have been observed in the WNP in recent decades. Here, we show that the SST increase in the western hemisphere warm pool (WHWP), which is the second largest warm pool on the globe, has contributed considerably to the rapid surface warming and sea level rise in the WNP via its remote teleconnection along the Pacific Intertropical Convergence Zone (ITCZ). State-of-the-art climate models strongly support the role of the WHWP not only on interannual time sales but also in long-term climate projections. We expect that understanding the processes initiated by the WHWP-SST could permit better forecasts of western North Pacific climate and the further development of the socioeconomics of East Asia.

  18. Historical changes of the Mediterranean Sea ecosystem: modelling the role and impact of primary productivity and fisheries changes over time

    NASA Astrophysics Data System (ADS)

    Piroddi, Chiara; Coll, Marta; Liquete, Camino; Macias, Diego; Greer, Krista; Buszowski, Joe; Steenbeek, Jeroen; Danovaro, Roberto; Christensen, Villy

    2017-03-01

    The Mediterranean Sea has been defined “under siege” because of intense pressures from multiple human activities; yet there is still insufficient information on the cumulative impact of these stressors on the ecosystem and its resources. We evaluate how the historical (1950-2011) trends of various ecosystems groups/species have been impacted by changes in primary productivity (PP) combined with fishing pressure. We investigate the whole Mediterranean Sea using a food web modelling approach. Results indicate that both changes in PP and fishing pressure played an important role in driving species dynamics. Yet, PP was the strongest driver upon the Mediterranean Sea ecosystem. This highlights the importance of bottom-up processes in controlling the biological characteristics of the region. We observe a reduction in abundance of important fish species (~34%, including commercial and non-commercial) and top predators (~41%), and increases of the organisms at the bottom of the food web (~23%). Ecological indicators, such as community biomass, trophic levels, catch and diversity indicators, reflect such changes and show overall ecosystem degradation over time. Since climate change and fishing pressure are expected to intensify in the Mediterranean Sea, this study constitutes a baseline reference for stepping forward in assessing the future management of the basin.

  19. Sea-level history during the Last Interglacial complex on San Nicolas Island, California: implications for glacial isostatic adjustment processes, paleozoogeography and tectonics

    USGS Publications Warehouse

    Muhs, Daniel R.; Simmons, Kathleen R.; Schumann, R. Randall; Groves, Lindsey T.; Mitrovica, Jerry X.; Laurel, Deanna

    2012-01-01

    San Nicolas Island, California has one of the best records of fossiliferous Quaternary marine terraces in North America, with at least fourteen terraces rising to an elevation of ~270 m above present-day sea level. In our studies of the lowest terraces, we identified platforms at 38-36 m (terrace 2a), 33-28 m (terrace 2b), and 13-8 m (terrace 1). Uranium-series dating of solitary corals from these terraces yields three clusters of ages: ~120 ka on terrace 2a (marine isotope stage [MIS] 5.5), ~120 and ~100 ka on terrace 2b (MIS 5.5 and 5.3), and ~80 ka (MIS 5.1) on terrace 1. We conclude that corals on terrace 2b that date to ~120 ka were reworked from a formerly broader terrace 2a during the ~100 ka sea stand. Fossil faunas differ on the three terraces. Isolated fragments of terrace 2a have a fauna similar to that of modern waters surrounding San Nicolas Island. A mix of extralimital southern and extralimital northern species is found on terrace 2b, and extralimital northern species are on terrace 1. On terrace 2b, with its mixed faunas, extralimital southern species, indicating warmer than present waters, are interpreted to be from the ~120 ka high sea stand, reworked from terrace 2a. The extralimital northern species on terrace 2b, indicating cooler than present waters, are interpreted to be from the ~100 ka sea stand. The abundant extralimital northern species on terrace 1 indicate cooler than present waters at ~80 ka. Using the highest elevations of the ~120 ka platform of terrace 2a, and assuming a paleo-sea level of +6 m based on previous studies, San Nicolas Island has experienced late Quaternary uplift rates of ~0.25-0.27 m/ka. These uplift rates, along with shoreline angle elevations and ages of terrace 2b (~100 ka) and terrace 1 (~80 ka) yield relative (local) paleo-sea level elevations of +2 to +6 m for the ~100 ka sea stand and -11 to -12 m for the ~80 ka sea stand. These estimates are significantly higher than those reported for the ~100 ka and ~80 ka sea stands on New Guinea and Barbados. Numerical models of the glacial isostatic adjustment (GIA) process presented here demonstrate that these differences in the high stands are expected, given the variable geographic distances between the sites and the former Laurentide and Cordilleran ice sheets. Moreover, the numerical results show that the absolute and differential elevations of the observed high stands provide a potentially important constraint on ice volumes during this time interval and on Earth structure.

  20. Absolute Sea-level Changes Derived from Integrated Geodetic Datasets (1955-2016) in the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Yang, L.; Wang, G.; Liu, H.

    2017-12-01

    Rising sea level has important direct impacts on coastal and island regions such as the Caribbean where the influence of sea-level rise is becoming more apparent. The Caribbean Sea is a semi-enclosed sea adjacent to the landmasses of South and Central America to the south and west, and the Greater Antilles and the Lesser Antilles separate it from the Atlantic Ocean to the north and east. The work focus on studying the relative and absolute sea-level changes by integrating tide gauge, GPS, and satellite altimetry datasets (1955-2016) within the Caribbean Sea. Further, the two main components of absolute sea-level change, ocean mass and steric sea-level changes, are respectively studied using GRACE, temperature, and salinity datasets (1955-2016). According to the analysis conducted, the sea-level change rates have considerable temporal and spatial variations, and estimates may be subject to the techniques used and observation periods. The average absolute sea-level rise rate is 1.8±0.3 mm/year for the period from 1955 to 2015 according to the integrated tide gauge and GPS observations; the average absolute sea-level rise rate is 3.5±0.6 mm/year for the period from 1993 to 2016 according to the satellite altimetry observations. This study shows that the absolute sea-level change budget in the Caribbean Sea is closed in the periods from 1955 to 2016, in which ocean mass change dominates the absolute sea-level rise. The absolute sea-level change budget is also closed in the periods from 2004 to 2016, in which steric sea-level rise dominates the absolute sea-level rise.

  1. Phase relations of natural 65 year SST variations, ocean sea level variations over 260 years, and Arctic sea-ice retreat of the satellite era - issues of cause and effect.

    NASA Astrophysics Data System (ADS)

    Asten, Michael

    2017-04-01

    We study sea level variations over the past 300yr in order to quantify what fraction of variations may be considered cyclic, and what phase relations exist with respect to those cycles. The 64yr cycle detected by Chambers et al (2012) is found in the 1960-2000 data set which Hamlington et al (2013) interpreted as an expression of the PDO; we show that fitting a 64yr cycle is a better fit, accounting for 92% of variance. In a 300yr GMSL tide guage record Jeverejeva et al (2008) identified a 60-65yr cycle superimposed on an upward trend from 1800CE. Using break-points and removal of centennial trends identified by Kemp et al (2015), we produce a detrended GMSL record for 1700-2000CE which emphasizes the 60-65yr oscillations. A least-square fit using a 64yr period cosine yields an amplitude 12mm and origin at year 1958.6, which accounts for 30% of the variance. A plot of the cosine against the entire length of the 300yr detrended GMSL record shows a clear phase lock for the interval 1740 to 2000CE, denoting either a very consistent timing of an internally generated natural variation, or adding to evidence for an external forcing of astronomical origin (Scafetta 2012, 2013). Barcikowska et al (2016) have identified a 65yr cyclic variation in sea surface temperature in the first multidecadal component of Multi- Channel Singular Spectrum Analysis (MSSA) on the Hadley SST data set (RC60). A plot of RC60 versus our fitted cosine shows the phase shift to be 16 yr, close to a 90 degree phase lag of GMSL relative to RC60. This is the relation to be expected for a simple low-pass or integrating filter, which suggests that cyclic natural variations in sea-surface temperature drive similar variations in GMSL. We compare the extent of Arctic sea-ice using the time interval of 1979- 2016 (window of satellite imagery). The decrease in summer ice cover has been subject of many predictions as to when summer ice will reach zero. The plot of measured ice area can be fitted with many speculative curves, and we show three such best fit curves, a parabola (zero ice cover by 2028), a linear fit (zero by 2060) and a 64yr period cosine, where the cosine is a shape chosen as a hypothesis, given the relation we observe between SST natural variations and 260 years of detrended sea level data. The cosine best fit shows a maximum ice coverage in 1985.6 and predicted minimum in 2017.6, which compares with the detrended sea level cyclic component minimum at 1990.6 and predicted maximum at 2023.6CE. Thus the sea-ice retreat lags RC60 by about 10 yr or 60deg in phase. The consistent phase of sea-level change over 260yr, and the phase lags of sea-ice retreat and sea-level change relative to the natural 65yr cyclic component of SST, have implications in the debate over internal versus external drivers of the cyclic components of change, and in hypotheses on cause and effect of the non-anthropogenic components of change.

  2. Regional sea level projections with observed gauge, altimeter and reconstructed data along China coast

    NASA Astrophysics Data System (ADS)

    Du, L.; Shi, H.; Zhang, S.

    2017-12-01

    Acting as the typical shelf seas in northwest Pacific Ocean, regional sea level along China coasts exhibits complicated and multiscale spatial-temporal characteristics under circumstance of global change. In this paper, sea level variability is investigated with tide gauges records, satellite altimetry data, reconstructed sea surface height, and CMIP simulation fields. Sea level exhibits the interannual variability imposing on a remarkable sea level rising in the China seas and coastal region, although its seasonal signals are significant as the results of global ocean. Sea level exhibits faster rising rate during the satellite altimetry era, nearly twice to the rate during the last sixty years. AVISO data and reconstructed sea surface heights illustrate good correlation coefficient, more than 0.8. Interannual sea level variation is mainly modulated by the low-frequency variability of wind fields over northern Pacific Ocean by local and remote processes. Meanwhile sea level varies obviously by the transport fluctuation and bimodality path of Kuroshio. Its variability possibly linked to internal variability of the ocean-atmosphere system influenced by ENSO oscillation. China Sea level have been rising during the 20th century, and are projected to continue to rise during this century. Sea level can reach the highest extreme level in latter half of 21st century. Modeled sea level including regional sea level projection combined with the IPCC climate scenarios play a significant role on coastal storm surge evolution. The vulnerable regions along the ECS coast will suffer from the increasing storm damage with sea level variations.

  3. Scaling violation in fragmentation region at energies above 10-15 eV based on the data on cosmic ray hadron component

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The ratio of intensity of energetic hadrons, having no visible accompaniment, to the total flux of hadrons of the same energy at 4380m above sea level is given. The ratio is much more than expected for scaling model with proton primaries. This result could not be explained by complex chemical composition of primary cosmic ray and indicates the scaling violation in fragmentation region.

  4. Erosional patterns of the Isles Dernieres, Louisiana, in relation to meteorological influences

    USGS Publications Warehouse

    Dingler, J.R.; Reiss, T.E.; Plant, N.G.

    1993-01-01

    Over the past 100 years, the Isles Dernieres, a low-lying barrier-island chain along the central Louisiana coast, has eroded extensively. This erosion has resulted in more than 1 km of northward beach-face retreat and the loss of 71% of the total island area. The primary causes for the erosion are wind and wave attack, diminished sand supply, and relative sea-level rise. Five years of detailed topographic surveys show that a beach on the central Isles Dernieres changed significantly in both shape and sediment volume; however, the pattern of change was not the same each year. In contrast to the relatively slow erosion caused by cold fronts, hurricane Gilbert, a category 5 hurricane that passed about 800 km south of the Isles Dernieres in September 1988, produced differential beach-face retreat of about 9 m at mean sea level and 40 m at an elevation of 0.5 m. Most of the sediment eroded from the beach face was deposited on the backshore, which resulted in only a small loss of sediment from the beach and a noteworthy decrease in beach-face slope. During the two years following hurricane Gilbert, the mean-sea-level contour remained stationary while the beach face slowly returned to its pre-Gilbert shape. "Cold-front' magnitude of retreat is expected to continue until another large hurricane alters the erosional pattern. -from Authors

  5. Sleep architecture changes during a trek from 1400 to 5000 m in the Nepal Himalaya.

    PubMed

    Johnson, Pamela L; Edwards, Natalie; Burgess, Keith R; Sullivan, Colin E

    2010-03-01

    The aim of this study was to examine sleep architecture at high altitude and its relationship to periodic breathing during incremental increases in altitude. Nineteen normal, sea level-dwelling volunteers were studied at sea level and five altitudes in the Nepal Himalaya. Morning arterial blood gases and overnight polysomnography were performed in 14 subjects at altitudes: 0, 1400, 3500, 3900, 4200 and 5000 m above sea level. Subjects became progressively more hypoxic, hypocapnic and alkalinic with increasing altitude. As expected, sleep architecture was affected by increasing altitude. While time spent in Stage 1 non-rapid eye movement sleep increased at 3500 m and higher (P < 0.001), time spent in slow-wave sleep (SWS) decreased as altitude increased. Time spent in rapid eye movement (REM) sleep was well preserved. In subjects who developed periodic breathing during sleep at one or more altitudes (16 of 19), arousals because of periodic breathing predominated, contributing to an increase in the total arousal index. However, there were no differences in sleep architecture or sleeping oxyhaemoglobin saturation between subjects who developed periodic breathing and those who did not. As altitude increased, sleep architecture became progressively more disturbed, with Stage 1 and SWS being affected from 3500 m, while REM sleep was well preserved. Periodic breathing was commonplace at all altitudes, and while associated with increases in arousal indices, did not have any apparent effect on sleep architecture.

  6. Rising seas and sinking coastal marshes: Implications to Atlantic waterbirds

    USGS Publications Warehouse

    Erwin, R.M.; Prosser, D.J.; Sanders, G.

    2000-01-01

    Along the mid-Atlantic U.S. coast, relative sea level rise (RSLR) is higher than the global average of 1.5-2.0 mm/yr, ranging from about 2.5 in parts of Virginia and Delaware to about 4.0 in New Jersey (Atlantic City and Sandy Hook) and near the mouth of Chesapeake Bay, Virginia. Very few data exist on marsh elevation changes, but information from some areas in Virginia, New Jersey and New York suggest that marsh islands are not 'keeping pace' with this RSLR. We began a study in 1999 that addresses changes in sea level and marsh elevation at sites from Cape Cod to s. Virginia known to be important areas for migratory waterbirds, including waterfowl, shorebirds, wading birds, and seabirds. Marsh monitoring sites have been established and data on microhabitat use by birds during all 4 seasons is being collected at these sites. Species expected to be most vulnerable to RSLR in these marshes are breeding species such as Laughing Gulls, Common, Gull-billed and Forster's terns, Clapper Rails, and American Black Ducks. Most of these species are of special concern at state, regional, or national levels. We show how important this region to these species from a flyway perspective, with> 70% of all Atlantic coast Laughing Gulls and Forster's Terns nesting from New Jersey to Virginia.

  7. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Pollard, D.; Chang, W.; Haran, M.; Applegate, P.; DeConto, R.

    2015-11-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ~ 20 000 years. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree quite well with the more advanced techniques, but only for a large ensemble with full factorial parameter sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 years into the "future" with idealized ramped climate warming. In the majority of runs with reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty bounds.

  8. Climate change adaptation under uncertainty in the developing world: A case study of sea level rise in Kiribati

    NASA Astrophysics Data System (ADS)

    Donner, S. D.; Webber, S.

    2011-12-01

    Climate change is expected to have the greatest impact in parts of the developing world. At the 2010 meeting of U.N. Framework Convention on Climate Change in Cancun, industrialized countries agreed in principle to provide US$100 billion per year by 2020 to assist the developing world respond to climate change. This "Green Climate Fund" is a critical step towards addressing the challenge of climate change. However, the policy and discourse on supporting adaptation in the developing world remains highly idealized. For example, the efficacy of "no regrets" adaptation efforts or "mainstreaming" adaptation into decision-making are rarely evaluated in the real world. In this presentation, I will discuss the gap between adaptation theory and practice using a multi-year case study of the cultural, social and scientific obstacles to adapting to sea level rise in the Pacific atoll nation of Kiribati. Our field research reveals how scientific and institutional uncertainty can limit international efforts to fund adaptation and lead to spiraling costs. Scientific uncertainty about hyper-local impacts of sea level rise, though irreducible, can at times limit decision-making about adaptation measures, contrary to the notion that "good" decision-making practices can incorporate scientific uncertainty. Efforts to improve institutional capacity must be done carefully, or they risk inadvertently slowing the implementation of adaptation measures and increasing the likelihood of "mal"-adaptation.

  9. Correlation of sea level falls interpreted from atoll stratigraphy with turbidites in adjacent basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, J.M.

    Past sea levels can be derived from any atoll subsurface sediments deposited at or near sea level by determining the ages of deposition and correcting the present depths to the sediments for subsidence of the underlying edifice since the times of deposition. A sea level curve constructed by this method consists of discontinuous segments, each corresponding to a period of rising relative sea level and deposition of a discrete sedimentary package. Discontinuities in the sea level curve derived by this method correspond to relative sea level falls and stratigraphic hiatuses in the atoll subsurface. During intervals of relative sea levelmore » fall an atoll emerges to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence without depositing sediments on top of the atoll. Furthermore, subaerial erosion may remove a substantial part of the depositional record of previous sea level fluctuations. For these reasons the authors must look to the adjacent basins to complement the incomplete record of sea level change recorded beneath atolls. During lowstands of sea level, faunas originally deposited near sea level on an atoll may be eroded and redeposited as turbidites in deep adjacent basins. Three such turbidites penetrated during deep-sea drilling at Sites 462 and 315 in the central Pacific correlate well with a late Tertiary sea level curve based on biostratigraphic ages and {sup 87}Sr/{sup 86}Sr chronostratigraphy for core from Enewetak Atoll in the northern Marshall Islands. Further drilling of the archipelagic aprons adjacent to atolls will improve the sea level history that may be inferred from atoll stratigraphy.« less

  10. Benthic foraminifera as indicators of pollution in high latitude marine environments

    NASA Astrophysics Data System (ADS)

    Dijkstra, N.; Junttila, J.; Husum, K.; Carroll, J.; Klitgaard-Kristensen, D.; Hald, M.

    2012-04-01

    An increasing number of studies demonstrate the potential of benthic foraminifera to characterize ecological status. However, the use of benthic foraminifera as bio-indicators has previously not been tested in high latitudes. This research contributes to the development of foraminifera as a bio-monitoring technique for the Arctic region, as industrial activities in this region will increase in the coming years. Surface sediments (0-1 cm) from sites close to gas fields in the SW Barents Sea were studied. In addition, to elucidate the range from less to very affected, surface sediments from the harbor of the town of Hammerfest (70° N) were studied. At least 300 living benthic foraminifera from the size fraction 100 µm-1 mm were counted and identified at species level. Pollution levels (heavy metals and persistent organic pollutants) and sediment properties (grainsize and TOC) were also analyzed. Pollution levels at the sea floor in the SW Barents Sea are of background to good level (level I-II) according to the definitions by the Water Framework Directorate (WFD). Benthic foraminiferal assemblages are influenced by natural environmental parameters such as water mass properties, water depth, nutrient availability, bottom current strength, and grain size. Surface sediments from the Hammerfest harbor are of moderate environmental status (WFD level II-III) based on heavy metal concentrations and of bad environmental status (WFD IV-V) based on persistent organic pollutant concentrations. Opportunistic benthic foraminifera are dominating the assemblages. The most polluted areas in the harbor are barren for foraminifera or have high amounts of deformed shells. In both environments the foraminiferal diversity of the samples, does not correspond to expected environmental status based on the pollution levels of the sediments. Environmental status classes, based on benthic foraminifera instead of macrofauna, would allow rapid analyses of the environmental impact of pollution.

  11. The Contribution of Mangrove Expansion to Salt Marsh Loss on the Texas Gulf Coast

    PubMed Central

    Brody, Samuel D.; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km2, a 74% increase. Concurrently, salt marsh area decreased by 77.8 km2, a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss. PMID:25946132

  12. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.

    PubMed

    Armitage, Anna R; Highfield, Wesley E; Brody, Samuel D; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km(2), a 74% increase. Concurrently, salt marsh area decreased by 77.8 km(2), a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.

  13. Mortality from circulatory diseases, especially ischaemic heart disease in sea pilots and boatmen in Sweden 1951-84: a retrospective cohort study.

    PubMed Central

    Nyström, L; Kolmodin-Hedman, B; Jönsson, E; Thomasson, L

    1990-01-01

    A cohort of 1455 sea pilots and boatmen employed after 1921 was established. Those identified and alive in 1951 (n = 1323) were linked to the Swedish cause of death register 1951-84. In 21 352 person-years 383 deaths were observed among sea pilots compared with 379.3 expected (SMR = 101;95% CI between 99 and 112) and in 12,127 person-years the observed number of deaths among boatmen was 136, expected 135.9 (SMR = 100) when Swedish men were used as a reference population. For ischaemic heart disease (IHD) (ICD-8: 410-414) the SMR was equal to 96 (obs = 131, exp = 137.2) for sea pilots and 91 (obs = 44, exp = 48.4) for boatmen. No trend over time or geographical differences could be observed. A healthy worker effect could not explain why there was no excess mortality from IHD. PMID:2310716

  14. Mass balance of the Antarctic ice sheet.

    PubMed

    Wingham, D J; Shepherd, A; Muir, A; Marshall, G J

    2006-07-15

    The Antarctic contribution to sea-level rise has long been uncertain. While regional variability in ice dynamics has been revealed, a picture of mass changes throughout the continental ice sheet is lacking. Here, we use satellite radar altimetry to measure the elevation change of 72% of the grounded ice sheet during the period 1992-2003. Depending on the density of the snow giving rise to the observed elevation fluctuations, the ice sheet mass trend falls in the range -5-+85Gtyr-1. We find that data from climate model reanalyses are not able to characterise the contemporary snowfall fluctuation with useful accuracy and our best estimate of the overall mass trend-growth of 27+/-29Gtyr-1-is based on an assessment of the expected snowfall variability. Mass gains from accumulating snow, particularly on the Antarctic Peninsula and within East Antarctica, exceed the ice dynamic mass loss from West Antarctica. The result exacerbates the difficulty of explaining twentieth century sea-level rise.

  15. The ICE-6G_C (VM5a) Global Model of the GIA Process: Antarctica at High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Peltier, W. R.; Drummond, R.; Argus, D. F.

    2016-12-01

    The ICE-6G_C (VM5a) global model of the glacial isostatic adjustment process (Argus et al., 2014 GJI 198, 537-563; Peltier et al. , 2015, JGR 119, doi:10.1002/2014JB011176) is the latest model in the ICE-nG (VMx) sequence. The model continues to be unique in that it is the only model whose properties are made freely available at each iterative step in its development. This latest version, which embodies detailed descriptions of the Laurentide , Fennoscandian/Barents Sea, Greenland and Antarctic ice sheets through the most recent glacial cycle, is a refinement based primarily upon the incorporation of the constraints being provided by GPS measurements of the vertical and horizontal motion of the crust as well as GRACE observations of the time dependent gravity field. The model has been shown to provide exceptionally accurate predictions of these space geodetic observations of the response to the most recent Late Quaternary glacial cycle. Particular attention has been paid to the Antarctic component as it is well known on the basis of analyses of the sedimentary stratigraphy off-shore and geomorphological characteristics of the continental shelf, that the Last Glacial Maximum state of the southern continent was one in which grounded ice extended out to the shelf break in most locations, including significant fractions of the Ross Sea and Weddell Sea embayments. In the latter regions especially, it is expected that grounded ice would have existed below sea level. In ICE-6G_C (VM5a) a grounding line tracking algorithm was employed (Stuhne and Peltier, 2015 JGR 120, 1841-1865) in order to describe the unloading of the solid surface by ice that was initially grounded below sea level, an apparently unique characteristic of this model. In the initially published version, in which the Sea Level Equation (SLE) was inverted on a basis of spherical harmonics truncated at degree and order 256, this led to "ringing" in the embayments when the Stokes coefficients of the model were employed to infer vertical crustal motion. Otherwise this modest level of resolution proved entirely adequate to represent both relative sea level history and modern crustal motion. We demonstrate that there is no issue with this reconstruction by simply increasing the resolution of the SLE inversion and describe the details of its predictions for both hemispheres.

  16. Sea otter health: challenging a pet hypothesis

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2015-01-01

    A recent series of studies on tagged sea otters (Enhydra lutris nereis) challenges the hypothesis that sea otters are sentinels of a dirty ocean, in particular, that pet cats are the main source of exposure to Toxoplasma gondii in central California. Counter to expectations, sea otters from unpopulated stretches of coastline are less healthy and more exposed to parasites than city-associated otters. Ironically, now it seems that spillover from wildlife, not pets, dominates spatial patterns of disease transmission.

  17. Sea-level Fingerprinting, Vertical Crustal Motion from GIA, and Projections of Relative Sea-level Change in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    James, Thomas; Simon, Karen; Forbes, Donald; Dyke, Arthur; Mazzotti, Stephane

    2010-05-01

    We present projections of relative sea-level rise in the 21st century for communities in the Canadian Arctic. First, for selected communities, we determine the sea-level fingerprinting response from Antarctica, Greenland, and mountain glaciers and ice caps. Then, for various published projections of global sea-level change in the 21st century, we determine the local amount of "absolute" sea-level change. We next determine the vertical land motion arising from glacial isostatic adjustment (GIA) and incorporate this into the estimates of absolute sea-level change to obtain projections of relative sea-level change. The sea-level fingerprinting effect is especially important in the Canadian Arctic owing to proximity to Arctic ice caps and especially to the Greenland ice sheet. Its effect is to reduce the range of projected relative sea-level change compared to the range of global sea-level projections. Vertical crustal motion is assessed through empirically derived regional isobases, the Earth's predicted response to ice-sheet loading and unloading by the ICE-5G ice sheet reconstruction, and Global Positioning System vertical velocities. Owing to the large rates of crustal uplift from glacial isostatic adjustment across a large region of central Arctic Canada, many communities are projected to experience relative sea-level fall despite projections of global sea-level rise. Where uplift rates are smaller, such as eastern Baffin Island and the western Canadian Arctic, sea-level is projected to rise.

  18. Ontogenetic, spatial and temporal variation in trophic level and diet of Chukchi Sea fishes

    NASA Astrophysics Data System (ADS)

    Marsh, Jennifer M.; Mueter, Franz J.; Iken, Katrin; Danielson, Seth

    2017-01-01

    Climate warming and increasing development are expected to alter the ecosystem of the Chukchi Sea, including its fish communities. As a component of the Arctic Ecosystem Integrated Survey, we assessed the ontogenetic, spatial and temporal variability of the trophic level and diet of key fish species in the Chukchi Sea using N and C stable isotopes. During August and September of 2012 and 2013, 16 common fish species and two primary, invertebrate consumers were collected from surface, midwater and bottom trawls within the eastern Chukchi Sea. Linear mixed-effects models were used to detect possible variation in the relationship between body length and either δ13C or δ15N values among water masses and years for 13 fish species with an emphasis on Arctic cod (Boreogadus saida). We also examined the fish community isotopic niche space, trophic redundancy, and trophic separation within each water mass as measures of resiliency of the fish food web. Ontogenetic shifts in trophic level and diet were observed for most species and these changes tended to vary by water mass. As they increased in length, most fish species relied more on benthic prey with the exception of three forage fish species (walleye pollock, Gadus chalcogrammus, capelin, Mallotus villosus, and Pacific sandlance, Ammodytes hexapterus). Species that exhibited interannual differences in diet and trophic level were feeding at lower trophic levels and consumed a more pelagic diet in 2012 when zooplankton densities were higher. Fish communities occupied different isotopic niche spaces depending on water mass association. In more northerly Arctic waters, the fish community occupied the smallest isotopic niche space and relied heavily on a limited range of intermediate δ13C prey, whereas in warmer, nutrient-rich Bering Chukchi Summer Water, pelagic prey was important. In the warmest, Pacific-derived coastal water, fish consumed both benthic and pelagic prey. Examining how spatial gradients in trophic position are linked to environmental drivers can provide insight into potential fish community shifts with a changing climate.

  19. SEAS: Student Experiments At Sea - An Education Outreach Pilot Program Sponsored by the Ridge2000 Program

    NASA Astrophysics Data System (ADS)

    Goehring, L.

    2004-12-01

    SEAS is a pilot program for middle and high school students who want to learn science by doing science. SEAS students study the deep sea hydrothermal vent environment and learn to ask questions about this exciting, relatively unexplored world, just as researchers do. SEAS students also learn how to answer their own questions through the process of scientific investigation. With the SEAS program, students have the opportunity to participate in the actual discovery process, along side deep-sea researchers. SEAS builds upon the successes of programs like Dive&Discover and Extreme2000, which demonstrated the capability deep-sea scientists have in engaging students with live research. SEAS extends this concept by inviting students to participate in deep-sea research through formal proposal and report competitions. SEAS challenges students to higher levels of achievement. A curriculum, developed by teachers expert in the translation of scientific inquiry in the classroom, prepares students to participate. SEAS was concept-tested during the 2003-2004 school year, with 14 pilot teachers and approximately 800 students. Twenty Ridge2000 scientists contributed their time and expertise to the SEAS program in its first year. Five student proposals were selected and conducted at sea in April during a Ridge2000 research cruise to the East Pacific Rise. All results were posted to the SEAS website (http://www.ridge2000.org/SEAS/) during the cruise, and students were invited to analyze data for their final reports. Final student reports, along with scientists comments were also posted. During the 2004-2005 school year, SEAS will be evaluated for its impact on student learning and attitudes toward science. The benefits of SEAS to the Ridge2000 scientific community are many. Scientists are invited to contribute in a variety of ways, all of which help satisfy the requirement of NSFs Broader Impacts Criterion. They may contribute time and expertise by answering student questions and reviewing student proposals and reports. They may choose to host the student research on their cruise. By sharing the load, no one scientist is burdened, nor expected to contribute additional funding. The Ridge2000 Program oversees the development, execution and dissemination of SEAS, helping make outreach efficient and easy for scientists.

  20. Spatial and temporal controls of atoll island inundation: implications for urbanized atolls in the Marshall Islands.

    NASA Astrophysics Data System (ADS)

    Ford, M.; Becker, J. M.; Merrifield, M. A.

    2012-12-01

    Atoll islands are highly vulnerable to a range of inundation hazards. The impacts of such hazards are expected to be magnified as a result of continued sea-level rise. Both recent and historic inundation events provide unique insights into the requisite conditions necessary to initiate island inundation. A number of recent and historic inundation events are presented in order to examine the oceanographic and meteorological conditions driving inundation of a densely populated, urbanized atoll in the central Pacific. Analysis of inundation events suggests that a number of key drivers contribute to the spatial and temporal extent of island inundation, with unique degrees of predictability and resultant impact signatures apparent on island geomorphology and local anthropogenic activities. Results indicate three distinct drivers of inundation hazards exist. Firstly, tropical storms and typhoons elevate sea level through inverse barometric setup, wind setup and a range of wave driven processes and have caused considerable impact on atolls within the Marshall Islands. Secondly, super-elevated sea level conditions resulting from the combination of seasonal high tides and quasi-cyclical La Nina conditions drive inundation of low-lying lagoon facing coastal areas. Thirdly, long period swell conditions, typically generated by distant storms, can elevate reef-flat water levels through wave setup and infragravity wave oscillations. Such wave conditions can over wash the ocean-facing island ridge, often inundating large sections of the island. Reef-flat wave conditions are tidally modulated, with inundation events typically occurring around high tide. However, the two most recent destructive swell-driven inundation events have occurred while tide levels were significantly lower than spring tide levels, suggesting high water levels are not a necessary prerequisite for wave-driven inundation. The different modes of inundation are discussed and grounded within recent and historic inundation events, as well as results of a lengthy reef flat wave observation dataset from Kwajalein and Majuro Atolls in the Republic of the Marshall Islands. Future impacts of continued sea-level rise are considered on each mode of island inundation and the implications for local response discussed within the context of urbanised atoll islands.

  1. Contemporary Arctic Sea Level

    NASA Astrophysics Data System (ADS)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic indicates a dominant mass contribution, especially in the Greenland, Norwegian, and Barents Seas sector.

  2. The Effect of Recent Decreases in Sea Ice Extent and Increases in SST on the Seasonal Availability of Arctic Cod (Boreogadus saida) to Seabirds in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Divoky, G.; Druckenmiller, M. L.

    2016-02-01

    With major decreases in pan-Arctic summer sea ice extent steadily underway, the Beaufort Sea has been nearly ice-free in five of the last eight summers. This loss of a critical arctic marine habitat and the concurrent warming of the recently ice-free waters could potentially cause major changes in the biological oceanography of the Beaufort Sea and alter the distribution, abundance and condition of the region's upper trophic level predators that formerly relied on prey associated with sea ice or cold (<2°C) surface waters. Arctic cod (Boreogadus saida), the primary forage fish for seabirds in the Beaufort Sea, is part of the cryopelagic fauna associated with sea ice and is also found in adjacent ice-free waters. In the extreme western Beaufort Sea near Cooper Island, Arctic cod availability to breeding Black Guillemots (Cepphus grylle), a diving seabird, has declined since 2002. Guillemots are a good indicator of Arctic cod availability in surface waters and the upper water column as they feed at depths of 1-20m. Currently, when sea ice is absent from the nearshore and SST exceeds 4°C, guillemots are observed to seasonally shift from Arctic cod to nearshore demersal prey, with a resulting decrease in nestling survival and quality. Arctic cod is the primary prey for many of the seabirds utilizing the Beaufort Sea as a post-breeding staging area and migratory corridor in late summer and early fall. The loss of approximately 200-300 thousand sq km of summer sea ice habitat in recent years could be expected to affect the distribution, abundance, and movements of these species as there are few alternative fish resources in the region. We examine temporal and spatial variation in August sea ice extent and SST in the Beaufort Sea to determine the regions, periods and bird species that are potentially most affected as the Beaufort Sea transitions to becoming regularly ice-free in late summer.

  3. Probabilistic assessment of sea level during the last interglacial stage.

    PubMed

    Kopp, Robert E; Simons, Frederik J; Mitrovica, Jerry X; Maloof, Adam C; Oppenheimer, Michael

    2009-12-17

    With polar temperatures approximately 3-5 degrees C warmer than today, the last interglacial stage (approximately 125 kyr ago) serves as a partial analogue for 1-2 degrees C global warming scenarios. Geological records from several sites indicate that local sea levels during the last interglacial were higher than today, but because local sea levels differ from global sea level, accurately reconstructing past global sea level requires an integrated analysis of globally distributed data sets. Here we present an extensive compilation of local sea level indicators and a statistical approach for estimating global sea level, local sea levels, ice sheet volumes and their associated uncertainties. We find a 95% probability that global sea level peaked at least 6.6 m higher than today during the last interglacial; it is likely (67% probability) to have exceeded 8.0 m but is unlikely (33% probability) to have exceeded 9.4 m. When global sea level was close to its current level (>or=-10 m), the millennial average rate of global sea level rise is very likely to have exceeded 5.6 m kyr(-1) but is unlikely to have exceeded 9.2 m kyr(-1). Our analysis extends previous last interglacial sea level studies by integrating literature observations within a probabilistic framework that accounts for the physics of sea level change. The results highlight the long-term vulnerability of ice sheets to even relatively low levels of sustained global warming.

  4. Two Sea-Level Challenges

    NASA Astrophysics Data System (ADS)

    Galvin, C.

    2008-12-01

    "No place on the sandy ocean shores of the world has been shown to be eroding because of sea level rise." This statement appeared nearly 19 years ago in bold print at the top of the page in a brief article published in Shore and Beach (Galvin,1990). The term "sea level rise" was defined in 1990 as follows: "In this statement, "sea level rise" has the meaning that the average person on the street usually attaches to that term. That is, sea level is rising; not, as in some places like the Mississippi River delta, land level is sinking." While still a subject of controversy, it is now (2008) increasingly plausible (Tornqvist et al,2008) that damage from Hurricane Katrina was significantly worse on the Mississippi River delta because floodwaters exploited wetlands and levees whose elevations had been lowered by decades of compaction in the underlying soil. (1) "Sea level" commonly appears in the literature as "relative sea level rise", occurring that way in 711 publications between 1980 and 2009 (GeoRef database on 8 Sep 08). "Relative sea level rise" does not appear in the 2005 AGI Glossary. The nearest Glossary term is "relative change in sea level", but that term occurs in only 12 publications between 1980 and 2009. The Glossary defines this term in a sequence stratigraphy sense, which infers that "relative sea level rise" is the sum of bottom subsidence and eustatic sea level rise. In plain English, "relative sea level rise" means "water depth increase". For present day coastal environments, "relative sea level rise" is commonly used where eustatic sea level rise is less than subsidence, that is, where the magnitude of actual sea level rise is smaller than the magnitude of subsidence. In that situation, "relative sea level rise" misleads both the average person and the scientist who is not a coastal geologist. Thus, the first challenge is to abandon "relative sea level rise" in favor of "water depth increase", in order that the words accurately descibe what happens. It would further clarify popular understanding if the term "actual sea level rise" were used in place of "eustatic sea level rise". (2)Geologists have approximated the the practice of paleontologists and biologists in establishing type examples of important geological features. This is a useful practice. A graduate geologist holds in mind clear conceptions of "beach cusps", "drumlin fields", "birdfoot deltas", and "igneous sills" based on seeing field examples accepted by professional geologists as representative of these features. However, although publications frequently report that sea level rise erodes a particular beach, no one identifies a type beach where that cause has been proven to produce the alleged effect. At the type beach, it is necessary to show that sea level is rising, and that the beach erodes primarily from this sea level rise, rather than from interrupted longshore transport. Thus, the second challenge is to identify a type ocean beach proven to erode because of sea level rise.

  5. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    USGS Publications Warehouse

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  6. Pressures, trends, and impacts in coastal zones: Interactions between socioeconomic and natural systems

    NASA Astrophysics Data System (ADS)

    Turner, R. K.; Subak, S.; Adger, W. N.

    1996-03-01

    This paper assesses the status of coastal zones in the context of expected climate change and its related impacts, as well as current and future socioeconomic pressures and impacts. It is argued that external stresses and shocks relating to sea-level rise and other changes will tend to exacerbate existing environmental pressures and damage in coastal zones. Coastal zones are under increasing stress because of an interrelated set of planning failures including information, economic market, and policy intervention failures. Moves towards integrated coastal zone management are urgently required to guide the coevolution of natural and human systems. Overtly technocentric claims that assessments of vulnerability undertaken to date are overestimates of likely future damages from global warming are premature. While it is the case that forecasts of sea-level rise have been scaled down, much uncertainty remains over, for example, combined storm, sea surge, and other events. In any case, within the socioeconomic analyses of the problem, resource valuations have been at best only partial and have failed to incorporate sensitivity analysis in terms of the discount rates utilized. This would indicate an underestimation of potential damage costs. Overall, a precautionary approach is justified based on the need to act ahead of adequate information acquisition, economically efficient resource pricing and proactive coastal planning.

  7. The threat from sea and land. Regional report 2: the Bay of Bengal.

    PubMed

    1994-01-01

    This article reports on the environmental threat caused by the Bay of Bengal on the economic situation in Bangladesh and India. More than four-fifths of Bangladesh amount to an extended delta at the confluence of one of the largest river systems in the world, comprising the Ganges, Brahmaputra, and Meghna. In the Brahmaputra watershed, the rate of deforestation caused soil erosion in the Himalayas is five times as much as in the geological past. This sediment loading is often considered to be a prime factor in downstream flooding. Because of this, Bangladesh agriculture products were damaged, which led to economic instability. Furthermore, as a result of the combined impacts of population growth, poverty, no land, and inadequate food supplies, many migrated into the neighboring Indian areas. Moreover, the susceptibility of the Bay of Bengal to cyclones has caused a great number of deaths leaving millions of people homeless. Cyclone episodes are expected to be more frequent as global warming continues. Furthermore, Bangladesh was estimated to be only 5 meters above sea level, which is considered vulnerable to sea level rise. On top of these problems, trouble from the other side of Bangladesh was also predicted with the combined outflow of the Ganges, Brahmaputra, and Meghna leading to more national damage.

  8. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum.

    PubMed

    Sluijs, Appy; Schouten, Stefan; Pagani, Mark; Woltering, Martijn; Brinkhuis, Henk; Sinninghe Damsté, Jaap S; Dickens, Gerald R; Huber, Matthew; Reichart, Gert-Jan; Stein, Ruediger; Matthiessen, Jens; Lourens, Lucas J; Pedentchouk, Nikolai; Backman, Jan; Moran, Kathryn

    2006-06-01

    The Palaeocene/Eocene thermal maximum, approximately 55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from 18 degrees C to over 23 degrees C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 degrees C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms--perhaps polar stratospheric clouds or hurricane-induced ocean mixing--to amplify early Palaeogene polar temperatures.

  9. Individual and molecular level effects of produced water contaminants on nauplii and adult females of Calanus finmarchicus.

    PubMed

    Jensen, Louise Kiel; Halvorsen, Elisabeth; Song, You; Hallanger, Ingeborg G; Hansen, Elisabeth Lindbo; Brooks, Steven J; Hansen, Bjørn Henrik; Tollefsen, Knut Erik

    2016-01-01

    In the Barents Sea region new petroleum fields are discovered yearly and extraction of petroleum products is expected to increase in the upcoming years. Despite enhanced technology and stricter governmental legislation, establishment of the petroleum industry in the Barents Sea may potentially introduce a new source of contamination to the area, as some discharges of produced water will be allowed. Whether the presence of produced water poses a risk to the Arctic marine life remains to be investigated. The aim of this study was to examine effects of exposure to several compounds found in produced water-a mixture of selected organic compounds (APW), radium-226 ((226)Ra), barium (Ba), and a scale inhibitor-on the copepod species Calanus finmarchicus. Experiments were performed using exposure concentrations at realistic levels based on those detected in the vicinity of known discharge points. The influence of lethal and sublethal effects on early life stages was determined and significantly lower survival in the APW exposure groups was found. In the Ba treatment the life stage development did not proceed to the same advanced stages as observed in the control (filtered sea water). The scale inhibitor and (226)Ra treatments showed no significant difference from control. In addition, adult females were exposed to APW, (226)Ra, and a mixture of the two. Both individual-level effects (egg production and feeding) and molecular-level effects (gene expression) were assessed. On the individual level endpoints, only treatments including APW produced an effect compared to control. However, on the molecular level the possibility that also (226)Ra induced toxicologically relevant effects cannot be ruled out.

  10. What Causes the North Sea Level to Rise Faster over the Last Decade ?

    NASA Astrophysics Data System (ADS)

    Karpytchev, Mikhail; Letetrel, Camille

    2013-04-01

    We combined tide gauge records (PSMSL) and satellite altimetry data (TOPEX/POSEIDON-JASON 1-2) to reconstruct the mean level of the North Sea and the Norwegian Sea Shelf (NS-NSS) over 1950-2012. The reconstructed NS-NSS mean sea level fluctuations reveal a pronounced interannual variability and a strong sea level acceleration since the mid-1990's. In order to understand the causes of this acceleration, the NS-NSS mean sea level was cross-correlated with the North Atlantic Oscillation and Arctic Oscillation indices. While the interannual variability of the mean sea level correlates well with the NAO/AO indices, the observed acceleration in the NS-NSS mean level is not linked linearly to the NAO/AO fluctuations. On the other hand, the Empirical Orthogonal Functions (EOF) analysis of steric sea level variations in the eastern North Atlantic gives a dominant EOF pattern (55% of variance explained) that varies on a decadal scale very closely to the NS-NSS mean level flcutuations. Also, the amplification in the temporal amplitude of the dominant steric sea level EOF corresponds to the acceleration observed in the NS-NSS mean sea level signal. This suggests that decadal variations in the mean level of the North Sea - the Norwegian Sea Shelf reflect changes in the Subpolar Front currents (Rossby, 1996).

  11. In-Situ and Remotely-Sensed Observations of Biomass Burning Aerosols at Doi Ang Khang, Thailand During 7-SEAS BASELInE 2015

    NASA Technical Reports Server (NTRS)

    Sayer, Andrew M.; Hsu, N. Christina; Hsiao, Ta-Chih; Pantina, Peter; Kuo, Ferret; Ou-Yang, Chang-Feng; Holben, Brent N.; Janjai, Serm; Chantara, Somporn; Wang, Sheng-Hsiang; hide

    2016-01-01

    The spring 2015 deployment of a suite of instrumentation at Doi Ang Khang (DAK) in northwestern Thailand enabled the characterization of air masses containing smoke aerosols from burning predominantly in Myanmar. Aerosol Robotic Network (AERONET) Sun photometer data were used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 "Deep Blue" aerosol optical depth (AOD) retrievals; MODIS Terra and Aqua provided results of similar quality, with correlation coefficients of 0.93-0.94 and similar agreement within expected uncertainties to global-average performance. Scattering and absorption measurements were used to compare surface and total column aerosol single scatter albedo (SSA); while the two were well-correlated, and showed consistent positive relationships with moisture (increasing SSA through the season as surface relative humidity and total columnar water vapor increased), in situ surface-level SSA was nevertheless significantly lower by 0.12-0.17. This could be related to vertical heterogeneity and/or instrumental issues. DAK is at approximately 1,500 meters above sea level in heterogeneous terrain, and the resulting strong diurnal variability in planetary boundary layer depth above the site leads to high temporal variability in both surface and column measurements, and acts as a controlling factor to the ratio between surface particulate matter (PM) levels and column AOD. In contrast, while some hygroscopic effects were observed relating to aerosol particle size and Angstrom exponent, relative humidity variations appear to be less important for this ratio here. As part of the Seven South-East Asian Studies (7-SEAS) project, the Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles and Interactions Experiment (BASELInE) was intended to probe physicochemical processes, interactions, and feedbacks related to biomass burning aerosols and clouds during the spring burning season (February-April) in southeast Asia (SEA).

  12. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: A three-dimensional modeling study.

    PubMed

    Yang, Jie; Graf, Thomas; Ptak, Thomas

    2015-01-01

    Climate change is expected to induce sea level rise in the German Bight, which is part of the North Sea, Germany. Climate change may also modify river discharge of the river Weser flowing into the German Bight, which will alter both pressure and salinity distributions in the river Weser estuary. To study the long-term interaction between sea level rise, discharge variations, a storm surge and coastal aquifer flow dynamics, a 3D seawater intrusion model was designed using the fully coupled surface-subsurface numerical model HydroGeoSphere. The model simulates the coastal aquifer as an integral system considering complexities such as variable-density flow, variably saturated flow, irregular boundary conditions, irregular land surface and anthropogenic structures (e.g., dyke, drainage canals, water gates). The simulated steady-state groundwater flow of the year 2009 is calibrated using PEST. In addition, four climate change scenarios are simulated based on the calibrated model: (i) sea level rise of 1m, (ii) the salinity of the seaside boundary increases by 4 PSU (Practical Salinity Units), (iii) the salinity of the seaside boundary decreases by 12 PSU, and (iv) a storm surge with partial dyke failure. Under scenarios (i) and (iv), the salinized area expands several kilometers further inland during several years. Natural remediation can take up to 20 years. However, sudden short-term salinity changes in the river Weser estuary do not influence the salinized area in the coastal aquifer. The obtained results are useful for coastal engineering practices and drinking water resource management. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Reconstruction of Local Sea Levels at South West Pacific Islands—A Multiple Linear Regression Approach (1988-2014)

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Melet, A.; Meyssignac, B.; Ganachaud, A.; Kessler, W. S.; Singh, A.; Aucan, J.

    2018-02-01

    Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years has been up to 3 times the global average. In this study, we aim at reconstructing sea levels at selected sites in the region (Suva, Lautoka—Fiji, and Nouméa—New Caledonia) as a multilinear regression (MLR) of atmospheric and oceanic variables. We focus on sea level variability at interannual-to-interdecadal time scales, and trend over the 1988-2014 period. Local sea levels are first expressed as a sum of steric and mass changes. Then a dynamical approach is used based on wind stress curl as a proxy for the thermosteric component, as wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. Statistically significant predictors among wind stress curl, halosteric sea level, zonal/meridional wind stress components, and sea surface temperature are used to construct a MLR model simulating local sea levels. Although we are focusing on the local scale, the global mean sea level needs to be adjusted for. Our reconstructions provide insights on key drivers of sea level variability at the selected sites, showing that while local dynamics and the global signal modulate sea level to a given extent, most of the variance is driven by regional factors. On average, the MLR model is able to reproduce 82% of the variance in island sea level, and could be used to derive local sea level projections via downscaling of climate models.

  14. Impact of the 3 °C temperature rise on bacterial growth and carbon transfer towards higher trophic levels: Empirical models for the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Šolić, Mladen; Krstulović, Nada; Šantić, Danijela; Šestanović, Stefanija; Kušpilić, Grozdan; Bojanić, Natalia; Ordulj, Marin; Jozić, Slaven; Vrdoljak, Ana

    2017-09-01

    The Mediterranean Sea (including the Adriatic Sea) has been identified as a 'hotspot' for climate change, with the prediction of the increase in water temperature of 2-4 °C over the next few decades. Being mainly oligotrophic, and strongly phosphorus limited, the Adriatic Sea is characterized by the important role of the microbial food web in production and transfer of biomass and energy towards higher trophic levels. We hypothesized that predicted 3 °C temperature rise in the near future might cause an increase of bacterial production and bacterial losses to grazers, which could significantly enlarge the trophic base for metazoans. This empirical study is based on a combined 'space-for-time substitution' analysis (which is performed on 3583 data sets) and on an experimental approach (36 in situ grazing experiments performed at different temperatures). It showed that the predicted 3 °C temperature increase (which is a result of global warming) in the near future could cause a significant increase in bacterial growth at temperatures lower than 16 °C (during the colder winter-spring period, as well as in the deeper layers). The effect of temperature on bacterial growth could be additionally doubled in conditions without phosphorus limitation. Furthermore, a 3 °C increase in temperature could double the grazing on bacteria by heterotrophic nanoflagellate (HNF) and ciliate predators and it could increase the proportion of bacterial production transferred to the metazoan food web by 42%. Therefore, it is expected that global warming may further strengthen the role of the microbial food web in a carbon cycle in the Adriatic Sea.

  15. Acceleration of Sea Level Rise Over Malaysian Seas from Satellite Altimeter

    NASA Astrophysics Data System (ADS)

    Hamid, A. I. A.; Din, A. H. M.; Khalid, N. F.; Omar, K. M.

    2016-09-01

    Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS). Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA) are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  16. Mitigation implications of an ice-free summer in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    González-Eguino, Mikel; Neumann, Marc B.; Arto, Iñaki; Capellán-Perez, Iñigo; Faria, Sérgio H.

    2017-01-01

    The rapid loss of sea ice in the Arctic is one of the most striking manifestations of climate change. As sea ice melts, more open water is exposed to solar radiation, absorbing heat and generating a sea-ice-albedo feedback that reinforces Arctic warming. Recent studies stress the significance of this feedback mechanism and suggest that ice-free summer conditions in the Arctic Ocean may occur faster than previously expected, even under low-emissions pathways. Here we use an integrated assessment model to explore the implications of a potentially rapid sea-ice-loss process. We consider a scenario leading to a full month free of sea ice in September 2050, followed by three potential trajectories afterward: partial recovery, stabilization, and continued loss of sea ice. We analyze how these scenarios affect the efforts to keep global temperature increase below 2°C. Our results show that sea-ice melting in the Arctic requires more stringent mitigation efforts globally. We find that global CO2 emissions would need to reach zero levels 5-15 years earlier and that the carbon budget would need to be reduced by 20%-51% to offset this additional source of warming. The extra mitigation effort would imply an 18%-59% higher mitigation cost to society. Our results also show that to achieve the 1.5°C target in the presence of ice-free summers negative emissions would be needed. This study highlights the need for a better understanding of how the rapid changes observed in the Arctic may impact our society.

  17. A New Study of Sea Spray Optical Properties from Multi-Sensor Spaceborne Observations

    NASA Technical Reports Server (NTRS)

    Dawson, K. W.; Meskhidze, N.; Josset, D.; Gasso, S.

    2014-01-01

    Retrievals of aerosol optical depth (AOD) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite sensor require the assumption of an extinction-to-backscatter ratio, also known as the lidar ratio. This paper evaluates a new method to calculate lidar ratio of sea spray aerosol using two independent sources: the AOD from Synergized Optical Depth of Aerosols (SODA) and the integrated attenuated backscatter from CALIOP. The method applied in this study allows particulate lidar ratio to be calculated for individual CALIOP retrievals of single aerosol layer columns over the ocean. Analyses are carried out using CALIOP level 2, 5km sea spray aerosol layer products and collocated SODA nighttime data from December 2007 to December 2009. The global mean lidar ratio for sea spray aerosols was found to be 26 sr, roughly 30 higher than the one prescribed by CALIOP. Data analysis also showed considerable spatiotemporal variability in calculated lidar ratio over different parts of the remote oceans. The calculated aerosol lidar ratios are shown to be inversely related to the mean ocean surface wind speed: increase in ocean surface wind speed (U10) from 0 to 15 ms-1 reduces the mean lidar ratios for sea spray particles from 32 sr (for 0 U10 4 ms-1) to 22 sr (for U10 15 ms-1). Such changes in the lidar ratio are expected to have a corresponding effect on sea spray AOD. The outcomes of this study are relevant for future improvements of the SODA and CALIOP operational product and could lead to more accurate retrievals of sea spray AOD.

  18. Sea otter health: Challenging a pet hypothesis

    PubMed Central

    Lafferty, Kevin D.

    2015-01-01

    A recent series of studies on tagged sea otters (Enhydra lutris nereis) challenges the hypothesis that sea otters are sentinels of a dirty ocean, in particular, that pet cats are the main source of exposure to Toxoplasma gondii in central California. Counter to expectations, sea otters from unpopulated stretches of coastline are less healthy and more exposed to parasites than city-associated otters. Ironically, now it seems that spillover from wildlife, not pets, dominates spatial patterns of disease transmission. PMID:26155464

  19. Temporal variations of natural and anthropogenic radionuclides in sea otter skull tissue in the North Pacific Ocean

    USGS Publications Warehouse

    Baskaran, M.; Hong, G.-H.; Dayton, S.; Bodkin, James L.; Kelley, J.J.

    2002-01-01

    Marine mammals being among the top predators in the food web tend to accumulate organic and inorganic contaminants from the environment. The body burden of contaminants in these species could reflect their foods and thus contaminant levels could serve as proxies on the changes of ecosystem. A pilot study was carried out to investigate the possibility of radionuclide leakage at Amchitka using a suite of sea otter (Enhydra lutris) skulls collected near Amchitka nuclear test-sites before (1950s) and after the testing (1990s), and at Adak, another Aleutian Island, about 300 km from Amchitka, where the potential impact of radionuclide leakage from Amchitka is expected to be negligible. In addition, the naturally occurring and anthropogenic radionuclide content on the sea otter skull was also utilized to investigate if there was any significant ecosystem changes in the environment.Concentration of 210Pb in sea otter bones collected during the 1950s was significantly higher than those collected in the 1990s. We propose that among the various factors that could cause this higher enrichment in 210Pb, changes in the sea otter prey is the most likely one. Comparison of the 137Cs, 90Sr, 239,240Pu concentrations appear not to be significantly higher in sea otter skulls collected in 1990s from Amchitka where the underground tests in 1965–71 than those from Adak, although significant differences were detected among different groups collected at various times.

  20. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology

    NASA Astrophysics Data System (ADS)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2015-06-01

    Studies of coastal seas in Europe have noted the high variability of the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been characterized in as much detail as in the open oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, we used the SOMLO (self-organizing multiple linear output; Sasse et al., 2013) methodology, which combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and mixed-layer depth. The outputs of this research have a horizontal resolution of 4 km and cover the 1998-2011 period. These outputs give a monthly map of the Baltic Sea at a very fine spatial resolution. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in situ measurements and a root mean square error of 36 μatm. Removing any of the satellite parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using statistical imputation. The pCO2 maps produced using this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data, and we expect to be able to produce even more accurate reconstructions in coming years, given the predicted acquisition of new data.

  1. A search for scale in sea-level studies

    USGS Publications Warehouse

    Larsen, C.E.; Clark, I.

    2006-01-01

    Many researchers assume a proportional relationship among the atmospheric CO2 concentration, temperature, and sea level. Thus, the rate of sea-level rise should increase in concert with the documented exponential increase in CO2. Although sea surface temperature has increased in places over the past century and short-term sea level rose abruptly during the 1990s, it is difficult to demonstrate a proportional relationship using existing geologic or historic records. Tide gauge records in the United States cover too short a time interval to verify acceleration in the rate of sea-level rise, although multicentury tide gauge and staff records from the Netherlands and Sweden suggest a mid-19th-century acceleration in sea-level rise. Reconstructions of sea-level changes for the past 1000 years derived using benthic foraminifer data from salt marshes along the East Coast of the United States suggest an increased rate of relative sea-level rise beginning in the 1600s. Geologic records of relative sea-level rise for the past 6000 years are available for several sites along the US East Coast from 14C-dated basal peat below salt marshes and estuarine sediments. When these three scales of sea-level variation are integrated, adjusted for postglacial isostatic movement, and replotted, the range of variation in sea level suggested by basal peat ages is within ??1 meter of the long-term trend. The reconstruction from Long Island Sound data shows a linear rise in sea level beginning in the mid-1600s at a rate consistent with the historic record of mean high water. Long-term tide gauge records from Europe and North America show similar trends since the mid-19th century. There is no clear proportional exponential increase in the rate of sea-level rise. If proportionality exists among sea level, atmospheric CO2, and temperature, there may be a significant time lag before an anthropogenic increase in the rate of sea-level rise occurs.

  2. Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era

    NASA Astrophysics Data System (ADS)

    Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2017-03-01

    Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.

  3. New Challenges, New Mindsets, New Disciplines: Transforming the SEA into a Modern Performance Organization. Solutions. Issue No. 1

    ERIC Educational Resources Information Center

    Gross, Betheny; Jochim, Ashley; Nafziger, Dean

    2013-01-01

    State education agencies (SEAs) are under fire and face new expectations from all sides. The federal government, state legislatures and governors, and citizens themselves are calling upon the SEA to do "more"--more to improve outcomes for students, more to close the achievement gap, and more to meet the diverse instructional needs of students.…

  4. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  5. Robustness of observation-based decadal sea level variability in the Indo-Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nidheesh, A. G.; Lengaigne, M.; Vialard, J.; Izumo, T.; Unnikrishnan, A. S.; Meyssignac, B.; Hamlington, B.; de Boyer Montegut, C.

    2017-07-01

    We examine the consistency of Indo-Pacific decadal sea level variability in 10 gridded, observation-based sea level products for the 1960-2010 period. Decadal sea level variations are robust in the Pacific, with more than 50% of variance explained by decadal modulation of two flavors of El Niño-Southern Oscillation (classical ENSO and Modoki). Amplitude of decadal sea level variability is weaker in the Indian Ocean than in the Pacific. All data sets indicate a transmission of decadal sea level signals from the western Pacific to the northwest Australian coast through the Indonesian throughflow. The southern tropical Indian Ocean sea level variability is associated with decadal modulations of ENSO in reconstructions but not in reanalyses or in situ data set. The Pacific-independent Indian Ocean decadal sea level variability is not robust but tends to be maximum in the southwestern tropical Indian Ocean. The inconsistency of Indian Ocean decadal variability across the sea level products calls for caution in making definitive conclusions on decadal sea level variability in this basin.

  6. Evaluating the status of individuals and populations: Advantages of multiple approaches and time scales: Chapter 6

    USGS Publications Warehouse

    Monson, Daniel H.; Bowen, Lizabeth

    2015-01-01

    Overall, a variety of indices used to measure population status throughout the sea otter’s range have provided insights for understanding the mechanisms driving the trajectory of various sea otter populations, which a single index could not, and we suggest using multiple methods to measure a population’s status at multiple spatial and temporal scales. The work described here also illustrates the usefulness of long-term data sets and/or approaches that can be used to assess population status retrospectively, providing information otherwise not available. While not all systems will be as amenable to using all the approaches presented here, we expect innovative researchers could adapt analogous multi-scale methods to a broad range of habitats and species including apex predators occupying the top trophic levels, which are often of conservation concern.

  7. Venezuelan Caribbean Sea under the threat of TBT.

    PubMed

    Paz-Villarraga, César Augusto; Castro, Ítalo B; Miloslavich, Patricia; Fillmann, Gilberto

    2015-01-01

    Although environmental tributyltin (TBT) contamination is considered a solved problem, imposex occurrence in Plicopurpura patula as well as butyltins (BTs) contamination in sediments and tissues were detected along 700 km of the Caribbean coastal shore. Areas under the influence of five main ports of Venezuela were covered, as well as large marinas and sites located away from expected sources. Marinas were the most contaminated areas, whilst imposex incidence and TBT levels were relatively low in areas nearby commercial harbors. Thus, it is evident that marinas have become the main source of fresh TBT to the region. This might explain why imposex incidence seems to be widely distributed along the Venezuelan coast, since leisure boats are circulating along the whole coastal region. In fact, this could be the pattern for other areas of the Caribbean Sea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Assessing overland sediment transport to the Apalachicola River/Bay in Florida

    NASA Astrophysics Data System (ADS)

    Smar, D. E.; Hagen, S.; Daranpob, A.; Passeri, D.

    2011-12-01

    An ongoing study in Franklin County, Florida is focused on classifying the mechanisms of sediment transport from the overland areas to eventual deposition in the Apalachicola River and surrounding estuaries. Sediment cores and water column samples were collected at various locations along the Apalachicola River, its tributaries, and distributaries over a two-week period during the wet season. A preliminary particle size distribution analysis of the sediment cores and water column samples demonstrates decreasing particle sizes as the river and wetlands progress toward the ocean. Daily water samples from the mouth of the Apalachicola River and two distributaries reveal fluctuating total suspended solid (TSS) concentrations. To understand these deviations, flow rate and water level at each location is inspected. Because the nearest USGS gage is approximately 16 miles upstream from these sites, investigation of the hydrodynamic influences of sediment transport is conducted by developing a hydrodynamic model simulating river flow and tides in the Apalachicola River and bay system. With spatially accurate flow rates and water levels, an attempt can be made to correlate flow rate with fluctuating TSS concentrations. Precipitation events during the sampling period also support spikes in the TSS concentrations as expected. Assessing sediment transport to the river/bay system will lead to a better understanding of the regression or accretion of the river's alluvial fan and the marsh platform. High flow periods following extreme rain events (which are expected to intensify under global climate change) transport more sediment downstream, however, the interaction with tidal and sea level effects are still being analyzed. With rising sea levels, it is expected that the alluvial fan will recede and wetland areas may migrate inland gradually transforming existing dry lands such as pine forests into new wetland regions. Future work will include an analysis of the tidal cycle during the sampling period to more accurately classify fluctuation of TSS concentration in the downstream samples. The data collection process and laboratory analysis will also be repeated in the dry season, and subsequent years to observe temporal trends.

  9. New evidence for "far-field" Holocene sea level oscillations and links to global climate records

    NASA Astrophysics Data System (ADS)

    Leonard, N. D.; Welsh, K. J.; Clark, T. R.; Feng, Y.-x.; Pandolfi, J. M.; Zhao, J.-x.

    2018-04-01

    Rising sea level in the coming century is of significant concern, yet predicting relative sea level change in response to eustatic sea level variability is complex. Potential analogues are provided by the recent geological past but, until recently, many sea level reconstructions have been limited to millennial scale interpretations due to age uncertainties and paucity in proxy derived records. Here we present a sea level history for the tectonically stable "far-field" Great Barrier Reef, Australia, derived from 94 high precision uranium-thorium dates of sub-fossil coral microatolls. Our results provide evidence for at least two periods of relative sea level instability during the Holocene. These sea level oscillations are broadly synchronous with Indo-Pacific negative sea surface temperature anomalies, rapid global cooling events and glacial advances. We propose that the pace and magnitude of these oscillations are suggestive of eustatic/thermosteric processes operating in conjunction with regional climatic controls.

  10. New developments in spatial interpolation methods of Sea-Level Anomalies in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Troupin, Charles; Barth, Alexander; Beckers, Jean-Marie; Pascual, Ananda

    2014-05-01

    The gridding of along-track Sea-Level Anomalies (SLA) measured by a constellation of satellites has numerous applications in oceanography, such as model validation, data assimilation or eddy tracking. Optimal Interpolation (OI) is often the preferred method for this task, as it leads to the lowest expected error and provides an error field associated to the analysed field. However, the numerical cost of the method may limit its utilization in situations where the number of data points is significant. Furthermore, the separation of non-adjacent regions with OI requires adaptation of the code, leading to a further increase of the numerical cost. To solve these issues, the Data-Interpolating Variational Analysis (DIVA), a technique designed to produce gridded from sparse in situ measurements, is applied on SLA data in the Mediterranean Sea. DIVA and OI have been shown to be equivalent (provided some assumptions on the covariances are made). The main difference lies in the covariance function, which is not explicitly formulated in DIVA. The particular spatial and temporal distributions of measurements required adaptation in the Software tool (data format, parameter determinations, ...). These adaptation are presented in the poster. The daily analysed and error fields obtained with this technique are compared with available products such as the gridded field from the Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO) data server. The comparison reveals an overall good agreement between the products. The time evolution of the mean error field evidences the need of a large number of simultaneous altimetry satellites: in period during which 4 satellites are available, the mean error is on the order of 17.5%, while when only 2 satellites are available, the error exceeds 25%. Finally, we propose the use sea currents to improve the results of the interpolation, especially in the coastal area. These currents can be constructed from the bathymetry or extracted from a HF radar located in the Balearic Sea.

  11. Residual circulation and suspended sediment transport in the Dutch Wadden Sea

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Sassi, Maximiliano; de Boer, Gerben; Grawë, Ulf; Gerkema, Theo; van Kessel, Thijs; Cronin, Katherine

    2014-05-01

    The Dutch Wadden Sea (DWS), situated between continental Europe and the Dutch Wadden Islands, is a semi enclosed basin connected to the North Sea by a series of tidal inlets and composed mainly of tidal flats and sea gullies. The DWS is of high ecological importance due to its biodiversity and has been declared a World Heritage site by UNESCO. It is a dynamic area subject to regional relative sea level rise due to global sea level rise, postglacial rebound and gas exploitation. For intertidal areas to continue to serve as feeding ground for migratory birds, a net import of sediment is required. Observations are crucial but provide only scarce information in space and time. Hence, to estimate the net influx of suspended sediment into the DWS, realistic high resolution three-dimensional numerical simulations have been carried out using the General Estuarine Transport Model (GETM). The hydrodynamics are mainly governed by the tides, the fresh water discharge from several sluices into the DWS and wind variability. It is expected that the transport of suspended particulate matter (SPM) is governed by the same factors, too, in combination with sediment sink and source terms. For validation, the results are compared against different observational data sets, such as tidal gauges, temperature and salinity at a fixed station, and the volumetric flux rate through one of the inlets obtained from an acoustic Doppler current profiler (ADCP) attached to a ferry. SPM transport is modeled for four different sediment classes each of which is defined by the critical shear stress and the settling velocity. Results show a clear net import of SPM through one of the inlets, which is in agreement with the observations. First estimates of the total sediment fluxes through the different inlets are presented together with an analysis on their variability and sensibility to the external forcing. Of particular importance is the net export of SPM during storms as well as the role of storms on sub-tidal variability.

  12. Integrating Thematic Web Portal Capabilities into the NASA Earthdata Web Infrastructure

    NASA Technical Reports Server (NTRS)

    Wong, Minnie; Baynes, Kathleen E.; Huang, Thomas; McLaughlin, Brett

    2015-01-01

    This poster will present the process of integrating thematic web portal capabilities into the NASA Earth data web infrastructure, with examples from the Sea Level Change Portal. The Sea Level Change Portal will be a source of current NASA research, data and information regarding sea level change. The portal will provide sea level change information through articles, graphics, videos and animations, an interactive tool to view and access sea level change data and a dashboard showing sea level change indicators.

  13. A new Arctic 25-year Altimetric Sea-level Record (1992-2016) and Initial look at Arctic Sea Level Budget Closure

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Passaro, M.; Benveniste, J.; Piccioni, G.

    2016-12-01

    A new initiative within the ESA Sea Level Climate Change initiative (SL-cci) framework to improve the Arctic sea level record has been initiated as a combined effort to reprocess and retrack past altimetry to create a 25-year combined sea level record for sea level research studies. One of the objectives is to retracked ERS-2 dataset for the high latitudes based on the ALES retracking algorithm through adapting the ALES retracker for retracking of specular surfaces (leads). Secondly a reprocessing using tailored editing to Arctic Conditions will be carried out also focusing on the merging of the multi-mission data. Finally an effort is to combine physical and empirical retracked sea surface height information to derive an experimental spatio-temporal enhanced sea level product for high latitude. The first results in analysing Arctic Sea level variations on annual inter-annual scales for the 1992-2015 from a preliminar version of this dataset is presented. By including the GRACE water storage estimates and NOAA halo- and thermo-steric sea level variatios since 2002 a preliminary attempt to close the Arctic Sea level budget is presented here. Closing the Arctic sea level budget is by no mean trivial as both steric data and satellite altimetry is both sparse temporally and limited geographically.

  14. Volga shallow offing dynamics investigation based on space photography

    NASA Astrophysics Data System (ADS)

    Kovalev, E. E.

    Volga mouth region is investigated much better, than sea mouths of other river in Russia. In spite of the fact, not enough attention was devoted to Volga shallow offing. Volga shallow offing covers area about 9,3 ths. sq. km and has great significance for Caspian sea fish industry, because environmental conditions of this region and neighboring shallows of Northern Caspian Sea are determinative for passage, spawning and young fish growth of valuable sorts of fish. Insufficient investigation of Volga shallow offing is caused as by difficulty of access to this region through small depths (1 - 2 m) and intensive vegetation, so by data deficiency. Data deficiency notably intensified during recent 10 - 15 years, when significant reduction of hydro-meteorological investigations in Volga mouth area occurred. Gradual accumulation of on-site data, development of new technologies of map material analysis and space photography data processing allows to expect new scientific and application results. The purpose of our investigation concludes in determination of space-time mechanism of hydro-meteorological processes in Volga shallow offing based on space photography materials. Main results of our investigation can be summarized in following basic statements: (1) The most efficient method of Volga shallow offing investigation appears to be combined application of space photography data and on-site materials. (2) Electronic atlas of Volga shallow offing photomaps for the period of 1975 to 1997 yrs. is created. (3) Maps of above-water flora of Volga shallow offing for 1975 and 1997 yrs are created. (4) Electronic atlas of streams in Volga shallow offing for the period of 1975 to 1997 yrs. is created. On basis of it four maps of drain streams at Volga shallow offing are created. (5) Landscape zoning of Volga shallow offing is made and most active and passive regions are determined depending on drain streams and water vegetation. (6) It is shown, that development of Volga shallow offing and delta determines by river runoff fluctuations and sea level. The influence of sea level on intensity of shallow offing processes development is explored. New information about river flow paths advancing into sea at the seacoast is obtained. Its determined, that most intensive delta flooding is possible at sea level (near Makhachkala) more than -27,4 m abs. (7) Recommendations for canals layout in Volga shallow offing are given. (9) Prognosis of future channel net in Volga shallow offing is made.

  15. The complex reality of sea-level rise in an atoll nation

    NASA Astrophysics Data System (ADS)

    Donner, S. D.

    2012-12-01

    Sea-level rise famously poses an existential threat to island nations like Kiribati, Tuvalu and the Maldives. Yet as the global mean sea-level rises, the response of any one location at any given time will depend on the natural variability in regional sea-level and other impact of local human activities on coastal processes. As with climate warming, the state of an individual shoreline or the extent of flooding on a given day is not proof of a sea-level trend, nor is a global sea-level trend a good predictor of individual flooding or erosion events. Failure to consider the effect of natural variability and local human activity on coastal processes often leads to misattribution of flooding events and even some long-term shoreline changes to global sea level rise. Moreover, unverified attribution of individual events or changes to specific islets to sea level rise can inflame or invite scepticism of the strong scientific evidence for an accelerating increase in the global sea level due to the impacts of human activity on the climate system. This is particularly important in developing nations like Kiribati, which are depending on international financial support to adapt to rising sea levels. In this presentation, I use gauge data and examples from seven years of field work in Tarawa Atoll, the densely populated capital of Kiribati, to examine the complexity of local sea level and shoreline change in one of the world's most vulnerable countries. First, I discuss how the combination of El Nino-driven variability in sea-level and the astronomical tidal cycle leads to flooding and erosion events which can be mistaken for evidence of sea-level rise. Second, I show that human modification to shorelines has redirected sediment supply, leading, in some cases, to expansion of islets despite rising sea levels. Taken together, the analysis demonstrates the challenge of attributing particular coastal events to global mean sea-level rise and the impact on decision-making. The presentation concludes with a discussion of the implications for attribution research, discourse about sea-level rise, and adaptation planning.

  16. Saltmarsh Boundary Modulates Dispersal of Mangrove Propagules: Implications for Mangrove Migration with Sea-Level Rise

    PubMed Central

    Peterson, Jennifer M.; Bell, Susan S.

    2015-01-01

    Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise. PMID:25760867

  17. Saltmarsh boundary modulates dispersal of mangrove propagules: implications for mangrove migration with sea-level rise.

    PubMed

    Peterson, Jennifer M; Bell, Susan S

    2015-01-01

    Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise.

  18. Contribution of atmospheric circulation to recent off-shore sea-level variations in the Baltic Sea and the North Sea

    NASA Astrophysics Data System (ADS)

    Karabil, Sitar; Zorita, Eduardo; Hünicke, Birgit

    2018-01-01

    The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual timescales. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea level that remains stable through the 20th century, in contrast to the much more variable link between sea level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993-2013, explaining locally up to 90 % of the interannual sea-level variance in winter and up to 79 % in summer. The eastern part of the Gulf of Finland is the area where the BANOS index is most sensitive to sea level in wintertime, whereas the Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several physical mechanisms which may explain the link between the sea-level variability and the atmospheric pattern described by the BANOS index. These mechanisms include the inverse barometer effect (IBE), freshwater balance, net energy surface flux and wind-induced water transport. We found that the most important mechanism is the IBE in both wintertime and summertime. Assuming a complete equilibration of seasonal sea level to the SLP gradients over this region, the IBE can explain up to 88 % of the sea-level variability attributed to the BANOS index in wintertime and 34 % in summertime. The net energy flux at the surface is found to be an important factor for the variation of sea level, explaining 35 % of sea-level variance in wintertime and a very small amount in summer. The freshwater flux could only explain 27 % of the variability in summertime and a negligible part in winter. In contrast to the NAO, the direct wind forcing associated with the SLP BANOS pattern does not lead to transport of water from the North Sea into the Baltic Sea in wintertime.

  19. Multi-linear regression of sea level in the south west Pacific as a first step towards local sea level projections

    NASA Astrophysics Data System (ADS)

    Kumar, Vandhna; Meyssignac, Benoit; Melet, Angélique; Ganachaud, Alexandre

    2017-04-01

    Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years is up to 3 times the global average. In this study, we attempt to reconstruct sea levels at selected sites in the region (Suva, Lautoka, Noumea - Fiji and New Caledonia) as a mutiple-linear regression of atmospheric and oceanic variables. We focus on interannual-to-decadal scale variability, and lower (including the global mean sea level rise) over the 1979-2014 period. Sea levels are taken from tide gauge records and the ORAS4 reanalysis dataset, and are expressed as a sum of steric and mass changes as a preliminary step. The key development in our methodology is using leading wind stress curl as a proxy for the thermosteric component. This is based on the knowledge that wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. The analysis is primarily based on correlation between local sea level and selected predictors, the dominant one being wind stress curl. In the first step, proxy boxes for wind stress curl are determined via regions of highest correlation. The proportion of sea level explained via linear regression is then removed, leaving a residual. This residual is then correlated with other locally acting potential predictors: halosteric sea level, the zonal and meridional wind stress components, and sea surface temperature. The statistically significant predictors are used in a multi-linear regression function to simulate the observed sea level. The method is able to reproduce between 40 to 80% of the variance in observed sea level. Based on the skill of the model, it has high potential in sea level projection and downscaling studies.

  20. The Adriatic Sea: A Long-Standing Laboratory for Sea Level Studies

    NASA Astrophysics Data System (ADS)

    Vilibić, Ivica; Šepić, Jadranka; Pasarić, Mira; Orlić, Mirko

    2017-10-01

    The paper provides a comprehensive review of all aspects of Adriatic Sea level research covered by the literature. It discusses changes occurring over millennial timescales and documented by a variety of natural and man-made proxies and post-glacial rebound models; mean sea level changes occurring over centennial to annual timescales and measured by modern instruments; and daily and higher-frequency changes (with periods ranging from minutes to a day) that are contributing to sea level extremes and are relevant for present-day flooding of coastal areas. Special tribute is paid to the historic sea level studies that shaped modern sea level research in the Adriatic, followed by a discussion of existing in situ and remote sensing observing systems operating in the Adriatic area, operational forecasting systems for Adriatic storm surges, as well as warning systems for tsunamis and meteotsunamis. Projections and predictions of sea level and related hazards are also included in the review. Based on this review, open issues and research gaps in the Adriatic Sea level studies are identified, as well as the additional research efforts needed to fill the gaps. The Adriatic Sea, thus, remains a laboratory for coastal sea level studies for semi-enclosed, coastal and marginal seas in the world ocean.

  1. The impact of half-a-degree Celsius upon the spatial pattern of future sea-level change.

    NASA Astrophysics Data System (ADS)

    Jackson, Luke

    2017-04-01

    It has been shown that the global thermal expansion of sea level and ocean dynamics are linearly related to global temperature change. On this basis one can estimate the difference in local sea-level change between a 1.5°C and 2.0°C world. The mitigation scenario RCP 2.6 shows an end-of-century global temperature range of 0.9 to 2.3°C (median 1.6°C). Additional sea-level components, such as mass changes in ice sheets, glaciers and land-water storage have unique spatial patterns that contribute to sea-level change and will be indirectly affected by global temperature change. We project local sea-level change for RCP 2.6 using sub-sets of models in the CMIP5 archive that follow different global temperature pathways. The method used to calculate local sea-level change is probabilistic and combines the normalised spatial patterns of sea-level components with global average projections of individual sea-level components.

  2. Sea-level rise caused by climate change and its implications for society

    PubMed Central

    MIMURA, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society. PMID:23883609

  3. Incorporating Sediment Compaction Into a Gravitationally Self-consistent Model for Global Sea-level Change

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.

    2015-12-01

    In sedimentary deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. The deposition of sediment and incorporation of water into the sedimentary pore space reduces sea level by increasing the elevation of the seafloor, which reduces the thickness of sea-water above the bed. In a similar manner, the compaction of sediment and purging of water out of the sedimentary pore space increases sea level by reducing the elevation of the seafloor, which increases the thickness of sea water above the bed. Here we show how one can incorporate the effects of sediment deposition and compaction into the global, gravitationally self-consistent sea-level model of Dalca et al. (2013). Incorporating sediment compaction requires accounting for only one additional quantity that had not been accounted for in Dalca et al. (2013): the mean porosity in the sediment column. We provide a general analytic framework for global sea-level changes including sediment deposition and compaction, and we demonstrate how sea level responds to deposition and compaction under one simple parameterization for compaction. The compaction of sediment generates changes in sea level only by changing the elevation of the seafloor. That is, sediment compaction does not affect the mass load on the crust, and therefore does not generate perturbations in crustal elevation or the gravity field that would further perturb sea level. These results have implications for understanding sedimentary effects on sea-level changes and thus for disentangling the various drivers of sea-level change. ReferencesDalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.

  4. Reef productivity and preservation during the Late Neogene

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Pastier, Anne-Morwenn; Schmitt, Anais; Sarr, Anta-Clarisse; Elliot, Mary; Pedoja, Kevin; Bezos, Antoine

    2016-04-01

    During the glacial-interglacials cycles that prevailed during Plio-Pleistocence times, the pace of sea level oscillations exerts a major control on coral reef growth and expansion. We designed a numerical model to quantify reef productivity and carbonate preservation that accounts for sea level oscillations, reef growth, erosion and subsequent geomorphological carving. We carried out a parametric study of a variety of processes (reef growth, erosion, local slope, uplift and subsidence, relative sea level, etc) towards a probabilistic analysis of reef productivity and carbonate production. We further test the effect of the frequency and amplitude of sea level oscillations using sea level curves derived from both the 18O isotope record of past sea level change and synthetic sinusoidal sea level curves. Over a typical climate cycle, our model simulations confirm that the rate of sea level change is the primary controlling factor of reef production, as it modifies the productivity by several orders of magnitude. Most importantly, reef productivity increases during periods of sea level rise, and decreases during sea level stands, while conversely, the morphology records the opposite in a misleading fashion: Reef terraces expand during sea level stands due to the joint effects of erosion and patient reef growth at a stationary level until the accommodation space is filled up. On the long-term, over the Plio-Pleistocene period, vertical ground motion also significantly alters the production: moderate uplift or subsidence can boost reef productivity up to tenfold with respect to a stationary coastline. Last, the amplitude and frequency of the sea level oscillations (typically 40 kyrs vs. 100 kyrs periods) moderately impact reef productivity. These results can be ultimately converted into estimates of carbonate production and carbon sequestration during the Late Neogene, provided relative sea level is documented in the tectonically agitated intertropical zone.

  5. An assessment of the genotoxic impact of the Sea Empress oil spill by the measurement of DNA adduct levels in selected invertebrate and vertebrate species.

    PubMed

    Harvey, J S; Lyons, B P; Page, T S; Stewart, C; Parry, J M

    1999-04-26

    The grounding of the Sea Empress oil tanker resulted in the release of 72,000 tonnes of crude oil into Milford Haven, Wales, UK. Our initial studies indicated that this contamination resulted in elevated levels of DNA adducts in one of the area's native marine species Lipophrys pholis [B.P. Lyons, J.S. Harvey, J.M. Parry, An initial assessment of the genotoxic impact of the Sea Empress oil spill by the measurement of DNA adduct levels in the intertidal teleost Lipophrys pholis, Mutat. Res. 390 (1997) 263-268]. These original studies were extended and the genotoxic impact of the oil contamination was investigated in the invertebrates Halichondria panicea and Mytilus edulis, along with the vertebrate fish species L. pholis, Pleuronectes platessa and Limanda limanda. DNA adduct levels were assessed in these species over a period of 2-17 months after the incident. The studies indicate differences in the impact of acute oil contamination upon vertebrate and invertebrate species. The oil contamination did not induce any detectable elevations in adduct levels in the invertebrate species H. panicea and M. edulis. In contrast, the oil contamination did appear to induce adducts in the vertebrate teleost species L. pholis, P. platessa and Lim. limanda. Despite some difficulties in sampling, the data obtained 12-17 months after the spill suggested that the affected species recovered from the oil contamination. While the studies indicate that the genetic impact of the oil contamination was less severe than might have been expected, it remains possible that the DNA adducts detected in the teleosts could lead to genetic changes in these species in the future. Copyright 1999 Elsevier Science B.V.

  6. Demersal Fish Assemblages and Spatial Diversity Patterns in the Arctic-Atlantic Transition Zone in the Barents Sea

    PubMed Central

    Johannesen, Edda; Høines, Åge S.; Dolgov, Andrey V.; Fossheim, Maria

    2012-01-01

    Direct and indirect effects of global warming are expected to be pronounced and fast in the Arctic, impacting terrestrial, freshwater and marine ecosystems. The Barents Sea is a high latitude shelf Sea and a boundary area between arctic and boreal faunas. These faunas are likely to respond differently to changes in climate. In addition, the Barents Sea is highly impacted by fisheries and other human activities. This strong human presence places great demands on scientific investigation and advisory capacity. In order to identify basic community structures against which future climate related or other human induced changes could be evaluated, we analyzed species composition and diversity of demersal fish in the Barents Sea. We found six main assemblages that were separated along depth and temperature gradients. There are indications that climate driven changes have already taken place, since boreal species were found in large parts of the Barents Sea shelf, including also the northern Arctic area. When modelling diversity as a function of depth and temperature, we found that two of the assemblages in the eastern Barents Sea showed lower diversity than expected from their depth and temperature. This is probably caused by low habitat complexity and the distance to the pool of boreal species in the western Barents Sea. In contrast coastal assemblages in south western Barents Sea and along Novaya Zemlya archipelago in the Eastern Barents Sea can be described as diversity “hotspots”; the South-western area had high density of species, abundance and biomass, and here some species have their northern distribution limit, whereas the Novaya Zemlya area has unique fauna of Arctic, coastal demersal fish. (see Information S1 for abstract in Russian). PMID:22545093

  7. A near uniform basin-wide sea level fluctuation over the Japan/East Sea: A semienclosed sea with multiple straits

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Bum; Fukumori, Ichiro

    2008-06-01

    Sea level of the Japan/East Sea observed by the TOPEX/Poseidon (T/P) satellite altimeter is analyzed using a 1/4°-resolution ocean general circulation model. A significant fraction of the Japan/East Sea sea level variability is found to be spatially uniform with periods ranging from 20 d to a year. The model simulation is consistent with T/P records in terms of the basin-wide sea level fluctuation's spectral energy and coherence. The simulation indicates that the changes are barotropic in nature and controlled, notably at high frequencies, by the net mass transport through the straits of the Japan/East Sea driven by winds in the vicinity of the Korea/Tsushima and Soya Straits. A series of barotropic simulations suggest that the sea level fluctuations are the result of a dynamic balance at the straits among near-strait winds, friction, and geostrophic control. The basin-wide sea level response is a linear superposition of changes due to winds near the individual straits. In particular, a basin-wide sea level response can be established by winds near either one of the straits alone. For the specific geometry and winds, winds near the Soya Strait have a larger impact on the Japan/East Sea mean sea level than those near the Korea/Tsushima Strait.

  8. At-sea distribution of satellite-tracked grey-faced petrels, Pterodroma macroptera gouldi, captured on the Ruamaahua (Aldermen) Islands, New Zealand

    USGS Publications Warehouse

    MacLeod, Catriona; Adams, Josh; Lyver, Phil

    2008-01-01

    We used satellite telemetry to determine the at-sea distribution of 32 adult (non-breeders and failed breeders) Grey-faced Petrels, Pterodroma macroptera gouldi, during July-October in 2006 and 2007. Adults captured at breeding colonies on the Ruamaahua (Aldermen) Islands ranged across the southwestern Pacific Ocean and Tasman Sea between 20-49°S and 142°E and 1300 W Petrels were located almost exclusively over offshore waters> 1000 m depth. The extent oftheir distributions was similar across years, but petrels ranged farther south and west in 2006. Individuals displayed a high degree ofspatial overlap (48-620/0 among individuals) and area use revealed three general "hotspots" within their overall range: waters near the Ruamaahua Islands; the central Tasman Sea; and the area surrounding the Chatham Rise. In July-August 2006, most petrels congregated over the Tasman Sea, but for the same period in 2007 were predominantly associated with Chatham Rise. The home ranges of petrels tended to overlap disproportionately more than expected with the Australian Exclusive Economic Zone and less than expected with High Seas, relative to the area available in each zone, in July-August 2006. Accordingly, multiple nations are responsible for determining potential impacts resulting from fisheries bycatch and potential resource competition with Grey-faced Petrels.

  9. Robustness of larval development of intertidal sea urchin species to simulated ocean warming and acidification.

    PubMed

    García, Eliseba; Hernández, José Carlos; Clemente, Sabrina

    2018-08-01

    Ocean warming and acidification are the two most significant side effects of carbone dioxide emissions in the world's oceans. By changing water, temperature and pH are the main environmental factors controlling the distribution, physiology, morphology and behaviour of marine invertebrates. This study evaluated the combined effects of predicted high temperature levels, and predicted low pH values, on fertilization and early development stages of the sea urchins Arbacia lixula, Paracentrotus lividus, Sphaerechinus granularis and Diadema africanum. Twelve treatments, combining different temperatures (19, 21, 23 and 25 °C) and pH values (8.1, 7.7 and 7.4 units), were tested in laboratory experiments. All of the tested temperatures and pH values were within the open coast seawater range expected within the next century. We examined fertilization rate, cleavage rate, 3-day larvae survival, and development of the different sea urchin species at set time intervals after insemination. Our results highlight the susceptibility of subtidal species to environmental changes, and the robustness of intertidal species to ocean warming and acidification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Sea ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears.

    PubMed

    Mckinney, Melissa A; Peacock, Elizabeth; Letcher, Robert J

    2009-06-15

    Two global environmental issues, climate change and contamination by persistent organic pollutants, represent major concerns for arctic ecosystems. Yet, it is unclear how these two stressors interact in the Arctic. For instance, the influence of climate-associated changes in food web structure on exposure to pollutants within arctic ecosystems is presently unknown. Here, we report on recent changes in feeding ecology (1991-2007) in polar bears (Ursus maritimus) from the western Hudson Bay subpopulation that have resulted in increases in the tissue concentrations of several chlorinated and brominated contaminants. Differences in timing of the annual sea ice breakup explained a significant proportion of the diet variation among years. As expected from climate change predictions, this diet change was consistent with an increase in the consumed proportions of open water-associated seal species compared to ice-associated seal species in years of earlier sea ice breakup. Our results demonstrate that climate change is a modulating influence on contaminants in this polar bear subpopulation and may pose an additional and previously unidentified threat to northern ecosystems through altered exposures to contaminants.

  11. Emerging and Submerging Shorelines: Impacts of Physical Change on Bioband Length

    NASA Astrophysics Data System (ADS)

    Kruger, L. E.; Johnson, A. C.; Gregovich, D.; Buma, B.; Noel, J.

    2017-12-01

    We approximated shifts in coastal benthic species for shoreline length units undergoing both sea level rise and relative sea level lowering (often post-glacial, termed isostatic rebound) where subsistence-based, southeast Alaska Natives reside. From six community centers, we examined 30 km radii shoreline reaches by merging relevant portions of the NOAA ShoreZone database with near shore bathymetry and measures of mean global sea level rise with local global positioning system information (GIS) of tectonic shift and isostatic rebound. For our analysis, we estimated change for 9,868 assessed shoreline length units having uniform substrate and biologic type over a 100-yr time span (2008-2108) using geometric analysis of shoreline attributes. For each shoreline length unit we assessed relationships among substrate, slope, exposure, and presence of five benthic species including eel grass (Zostera marina), blue mussel (Mytilus edulis), butter clams (Saxidomus gigantean), bull kelp (Nereocytis leutkeana), and foliose red algae including ribbon kelp (Palmaria sp.). Our research indicates that both emergence, up to 1.8 m, and submergence, up 0.2 m, of the land will result in disportionately larger shoreline length segment alterations for habitats in protected low-slope gradient bays and estuaries (dominated by eelgrass and butter clam habitats) with less change for rocky steep-gradient exposed penninsulas (red algae and canopy kelp). This trend, holding true regardless of isostatic rebound, tectonic shift or sea level rise rate, highlights the importance of initial geomorphology-based assessments serving to improve bio-physical, chemical, and socially-related coastal research. Where shorelines are emerging 30% decreases in estuary lengths are predicted, but where shorelines are submerging up to 3% increases in estuaries are expected. Our research results are consistent with anthropology studies assessing past coastal change. Coastal change, influencing subsistance foods, salmon rearing areas, ocean acidification rate, and ocean carbon sequestration rate, have relevance to community resilience.

  12. Coupled Long-Term Evolution of Climate and the Greenland Ice Sheet During the Last Interglacial and Implications for the Future

    NASA Astrophysics Data System (ADS)

    Otto-Bliesner, B. L.; Lofverstrom, M.; Lipscomb, W.; Fyke, J. G.; Marshall, S.; Sacks, B.

    2017-12-01

    The Greenland Ice Sheet (GrIS) is expected to contribute increasingly to global sea level rise by the end of this century, and potentially several meters in this millennium, but still with considerable uncertainty. The rate of Greenland melt will impact on regional sea levels. The Last Interglacial (LIG, 129 ka to 116 ka) is recognized as an important period for testing our knowledge of climate-ice sheet interactions in warm climate states. Although the LIG was discussed in the First Assessment Report of the IPCC, it gained more prominence in the IPCC Fourth and Fifth Assessment (AR4 and AR5) with reconstructions highlighting that global mean sea level was at least 5 m higher (but probably no more than 10 m higher) than present for several thousand years during the LIG. Model results assessed for the AR5 suggest a sea level contribution of 1.4 to 4.3 m from the GrIS. These model simulations, though, did not include all the feedbacks of the climate system and the GrIS. Here, we examine the response of the Arctic climate system and the GrIS in simulations with the Community Earth System Model (CESM) fully coupled to the Community Ice Sheet Model (CISM), using a surface energy balance scheme and without bias corrections. The analysis focuses on how the GrIS responds to the imposed high boreal summer insolation of the LIG and in addition, to the long-term feedbacks of high-latitude vegetation changes. Results will highlight the evolution of the ice sheet and the surface mass balance (patterns of ablation and accumulation) as compared to data-based reconstructions for the LIG. We conclude with a discussion on how the LIG may be informative as a potential process analogue for the GrIS response for future centuries to come.

  13. Simulated Sea-Level Rise Effects on the Above and Below-Ground Growth of Two Tidal Marsh Plant Species

    NASA Astrophysics Data System (ADS)

    Schile, L. M.; Callaway, J. C.; Kelly, M.

    2011-12-01

    Sea-level is expected to rise between 55 and 140 cm in the next century and is likely to have significant effects on the distribution and maintenance of tidal wetlands; however, little is known about the effects of increased sea level on Pacific coast tidal marsh vegetation. We initiated a field experiment in March 2011 to examine how increased depth and duration of inundation affect above and below-ground growth of two tidal wetland plant species: Schoenoplectus acutus and S. americanus. PVC planters, referred to as marsh organs, were installed at fixed elevations in channels at two ancient marshes in the San Francisco Bay Estuary: Browns Island and Rush Ranch. Each marsh organ structure is comprised of five rows of three six-inch PVC pipes, with each row 15cm lower than the row above, and was filled with surrounding mudflat sediment. Elevations span 60 cm and were chosen to be lower than the average current elevations of both species at each marsh to reflect projected increases in sea level. Rhizomes were collected from Browns Island, the less-saline site, and were cut to uniform sizes before planting. In every row, each species was grown individually and together. On a monthly basis, plant heights were recorded and pore-water sulfide concentration, salinity, and soil oxidation-reduction potential were measured. Schoenoplectus americanus growth and density significantly decreased with increased inundation at both sites. Schoenoplectus acutus growth was impacted more significantly at lower elevations at Rush Ranch but had little variation in density and growth across elevations at Browns Island. Salinity and sulfide concentrations varied little across elevations within a site but differed between sites. Above and belowground biomass will be collected in September 2011 to measure total annual productivity. The experiment provides basic yet crucial information on the impacts of increased inundation on tidal wetland vegetation and insight into potential changes in plant assemblages with predicted climate change.

  14. Sea Level Trend and Variability in the Straits of Singapore and Malacca

    NASA Astrophysics Data System (ADS)

    Luu, Q.; Tkalich, P.

    2013-12-01

    The Straits of Singapore and Malacca (SSM) connect the Andaman Sea located northeast of the Indian Ocean to the South China Sea, the largest marginal sea situated in the tropical Pacific Ocean. Consequently, sea level in the SSM is assumed to be governed by various regional phenomena associated with the adjacent parts of Indian and Pacific Oceans. At annual scale sea level variability is dominant by the Asian monsoon. Interannual sea level signals are modulated by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In the long term, regional sea level is driven by the global climate change. However, relative impacts of these multi-scale phenomena on regional sea level in the SSM are yet to be quantified. In present study, publicly available tide gauge records and satellite altimetry data are used to derive long-term sea level trend and variability in SSM. We used the data from research-quality stations, including four located in the Singapore Strait (Tanjong Pagar, Raffles Lighthouse, Sultan Shoal and Sembawang) and seven situated in the Malacca Strait (Kelang, Keling, Kukup, Langkawji, Lumut, Penang and Ko Taphao Noi), each one having 25-39 year data up to the year 2011. Harmonic analysis is performed to filter out astronomic tides from the tide gauge records when necessary; and missing data are reconstructed using identified relationships between sea level and the governing phenomena. The obtained sea level anomalies (SLAs) and reconstructed mean sea level are then validated against satellite altimetry data from AVISO. At multi-decadal scale, annual measured sea level in the SSM is varying with global mean sea level, rising for the period 1984-2009 at the rate 1.8-2.3 mm/year in the Singapore Strait and 1.1-2.8 mm/year in the Malacca Strait. Interannual regional sea level drops are associated with El Niño events, while the rises are correlated with La Niña episodes; both variations are in the range of ×5 cm with correlation coefficient of -0.7 (in correspondence with the Multivariate ENSO Index). The IOD modulates interannual sea level variability only in the Malacca Strait in the range of ×3 cm with a correlation coefficient of -0.6 (with respect to the Dipole Mode Index). At annual scale, SLAs in the SSM are mainly monsoon-driven; of the order of 20 cm. Mean sea level in the Singapore Strait reach the peak during northeast monsoon and trough during southwest monsoon; while these in the Malacca Strait are highest at middle of both monsoons and lowest during their transitional monsoonal seasons. Global and regional signals are quantitatively captured in the SSM. In comparison with the global sea level trends, SSM sea level rise are larger for recent decades 1984-2009. Taking into account the rough estimate of land subsidence rates in Singapore (2006-2011) and Peninsular Malaysia (1994-2004), the trend of absolute sea level rise in SSM follows regional tendency. At interannual scale, ENSO modulates sea level variabilities in the entire SSM region, while IOD affects the Malacca Strait only. At annual scale, sea level responds differently to the Asian monsoon: quasi-periodic cycles are observed twice a year in the Malacca Strait, but once a year in the Singapore Strait. Such behavior implies that the narrow channel constriction between the Singapore and Malacca Straits may be a reason of different variability of sea level in the domains.

  15. Quantifying Population-Level Risks Using an Individual-Based Model: Sea Otters, Harlequin Ducks, and the Exxon Valdez Oil Spill

    PubMed Central

    Harwell, Mark A; Gentile, John H; Parker, Keith R

    2012-01-01

    Ecological risk assessments need to advance beyond evaluating risks to individuals that are largely based on toxicity studies conducted on a few species under laboratory conditions, to assessing population-level risks to the environment, including considerations of variability and uncertainty. Two individual-based models (IBMs), recently developed to assess current risks to sea otters and seaducks in Prince William Sound more than 2 decades after the Exxon Valdez oil spill (EVOS), are used to explore population-level risks. In each case, the models had previously shown that there were essentially no remaining risks to individuals from polycyclic aromatic hydrocarbons (PAHs) derived from the EVOS. New sensitivity analyses are reported here in which hypothetical environmental exposures to PAHs were heuristically increased until assimilated doses reached toxicity reference values (TRVs) derived at the no-observed-adverse-effects and lowest-observed-adverse-effects levels (NOAEL and LOAEL, respectively). For the sea otters, this was accomplished by artificially increasing the number of sea otter pits that would intersect remaining patches of subsurface oil residues by orders of magnitude over actual estimated rates. Similarly, in the seaduck assessment, the PAH concentrations in the constituents of diet, sediments, and seawater were increased in proportion to their relative contributions to the assimilated doses by orders of magnitude over measured environmental concentrations, to reach the NOAEL and LOAEL thresholds. The stochastic IBMs simulated millions of individuals. From these outputs, frequency distributions were derived of assimilated doses for populations of 500 000 sea otters or seaducks in each of 7 or 8 classes, respectively. Doses to several selected quantiles were analyzed, ranging from the 1-in-1000th most-exposed individuals (99.9% quantile) to the median-exposed individuals (50% quantile). The resulting families of quantile curves provide the basis for characterizing the environmental thresholds below which no population-level effects could be detected and above which population-level effects would be expected to become manifest. This approach provides risk managers an enhanced understanding of the risks to populations under various conditions and assumptions, whether under hypothetically increased exposure regimes, as demonstrated here, or in situations in which actual exposures are near toxic effects levels. This study shows that individual-based models are especially amenable and appropriate for conducting population-level risk assessments, and that they can readily be used to answer questions about the risks to individuals and populations across a variety of exposure conditions. Integr Environ Assess Manag 2012; 8: 503–522. © 2012 SETAC PMID:22275071

  16. Quantifying population-level risks using an individual-based model: sea otters, Harlequin Ducks, and the Exxon Valdez oil spill.

    PubMed

    Harwell, Mark A; Gentile, John H; Parker, Keith R

    2012-07-01

    Ecological risk assessments need to advance beyond evaluating risks to individuals that are largely based on toxicity studies conducted on a few species under laboratory conditions, to assessing population-level risks to the environment, including considerations of variability and uncertainty. Two individual-based models (IBMs), recently developed to assess current risks to sea otters and seaducks in Prince William Sound more than 2 decades after the Exxon Valdez oil spill (EVOS), are used to explore population-level risks. In each case, the models had previously shown that there were essentially no remaining risks to individuals from polycyclic aromatic hydrocarbons (PAHs) derived from the EVOS. New sensitivity analyses are reported here in which hypothetical environmental exposures to PAHs were heuristically increased until assimilated doses reached toxicity reference values (TRVs) derived at the no-observed-adverse-effects and lowest-observed-adverse-effects levels (NOAEL and LOAEL, respectively). For the sea otters, this was accomplished by artificially increasing the number of sea otter pits that would intersect remaining patches of subsurface oil residues by orders of magnitude over actual estimated rates. Similarly, in the seaduck assessment, the PAH concentrations in the constituents of diet, sediments, and seawater were increased in proportion to their relative contributions to the assimilated doses by orders of magnitude over measured environmental concentrations, to reach the NOAEL and LOAEL thresholds. The stochastic IBMs simulated millions of individuals. From these outputs, frequency distributions were derived of assimilated doses for populations of 500,000 sea otters or seaducks in each of 7 or 8 classes, respectively. Doses to several selected quantiles were analyzed, ranging from the 1-in-1000th most-exposed individuals (99.9% quantile) to the median-exposed individuals (50% quantile). The resulting families of quantile curves provide the basis for characterizing the environmental thresholds below which no population-level effects could be detected and above which population-level effects would be expected to become manifest. This approach provides risk managers an enhanced understanding of the risks to populations under various conditions and assumptions, whether under hypothetically increased exposure regimes, as demonstrated here, or in situations in which actual exposures are near toxic effects levels. This study shows that individual-based models are especially amenable and appropriate for conducting population-level risk assessments, and that they can readily be used to answer questions about the risks to individuals and populations across a variety of exposure conditions. Copyright © 2012 SETAC.

  17. Potential for shoreline changes due to sea-level rise along the U.S. mid-Atlantic region

    USGS Publications Warehouse

    Gutierrez, Benjamin T.; Williams, S. Jeffress; Thieler, E. Robert

    2007-01-01

    Sea-level rise over the next century is expected to contribute significantly to physical changes along open-ocean shorelines. Predicting the form and magnitude of coastal changes is important for understanding the impacts to humans and the environment. Presently, the ability to predict coastal changes is limited by the scientific understanding of the many variables and processes involved in coastal change, and the lack of consensus regarding the validity of existing conceptual, analytical, or numerical models. In order to assess potential future coastal changes in the mid-Atlantic U.S. for the U.S. Climate Change Science Program (CCSP), a workshop was convened by the U.S. Geological Survey. Assessments of future coastal change were made by a committee of coastal scientists with extensive professional experience in the mid-Atlantic region. Thirteen scientists convened for a two-day meeting to exchange information and develop a consensus opinion on potential future coastal changes for the mid-Atlantic coast in response to sea-level rise. Using criteria defined in past work, the mid-Atlantic coast was divided into four geomorphic compartments: spits, headlands, wave-dominated barriers, and mixed-energy barriers. A range of potential coastal responses was identified for each compartment based on four sea-level rise scenarios. The four scenarios were based on the assumptions that: a) the long-term sea-level rise rate observed over the 20th century would persist over the 21st century, b) the 20th century rate would increase by 2 mm/yr, c) the 20th century rate would increase by 7 mm/yr, or d) sea-level would rise by 2 m over the next few hundred years. Potential responses to these sea-level rise scenarios depend on the landforms that occur within a region and include increased likelihood for erosion and shoreline retreat for all coastal types, increased likelihood for erosion, overwash and inlet breaching for barrier islands, as well as the possibility of a threshold state (e.g., dramatic change in barrier evolution, such as segmentation or disintegration) for some barrier island systems. The likelihood of the potential coastal responses is expressed using standard terminology employed in climate change assessments (e.g., as used by the Intergovernmental Panel on Climate Change and CCSP). This assessment was based on the coastal geomorphology in its present condition and does not consider any coastal protection that might be undertaken in the future. The committee recognized that a variety of erosion mitigation measures have been implemented along developed portions of the coast and these are very likely to be applied in the future. It was also acknowledged that economics, political will, and other factors can drive decisions to implement these measures, and that such decisions cannot be predicted with confidence. The results of this assessment are depicted graphically on maps of the study area.

  18. Increasing Influence of Societal Response Variables in Coastal Evolution Projections (Invited)

    NASA Astrophysics Data System (ADS)

    Gayes, P. T.; McCoy, C. A.; Pietrafesa, L. J.

    2010-12-01

    Recent efforts to project changes in coastal erosion and vulnerability of the state of South Carolina’s (SC’s) oceanfront for different scenarios of future sea level have reinforced the significance of the influence of societal modifications and response to past and anticipated coastal change in these systems. For large reaches of the SC coast human interactions have been a dominant signal driving coastal change across annual to decadal scales. Over the last 20 years, SC’s shoreline has been advanced seawards in many areas due to a combination of sustained societal commitment to beach nourishment and to a lull in atmospheric storms; reversing the long-term erosional trend of shoreline change. Adjacent areas not yet threatened or where coastal defense is unsupported economically have continued to migrate landwards. Locally, efforts focused on stabilizing the subaerial beach have not moderated long-term shoreward migration of the shoreface changing the overall morphology of the coastal boundary waves and currents are operating against. These societal effects, coupled with realistic, substative assessments of future atmospheric storm activity and sea level variability, both over scales of seasons to multi-decades, require consideration to realistically project future coastal behavior across time and spatial scales for planning and resource management. As with future climate and sea level variability effects on the shoreline, the scale and intensity of societal response is not static or precisely projected spatially and temporally into the future. With continued expansion of coastal development and erosion into previously lightly developed and defended coastal areas, societal influences should be expected to increase. Increasing cost of larger scale defenses will likely drive pressure for hardened structures to enhance ”softer” nourishment strategies. However, this strategy would further modify the ability of nature to respond to natural forces. Nourishment programs are strongly cyclic and can act in or out of phase with natural cyclic (inlet migration, sea level variability) or stochastic (storms) drivers with significant effects on coastal response and predictions of coastal behavior. Economic cycles and events may similarly moderate timing and scale of coastal defense relative to natural drivers. Societal decisions to not, enhance and or even abandon and remove existing engineering structures as future forces and costs increase, can result in a disproportional response and potentially failure of a section of coast. Some communities have expressed confidence in the ability to maintain the oceanfront shoreline against most projections of sea level rise over the next 100 years. The long-term trend in sea level change may be less important than naturally occurring regional scale, seasonal to inter-annual to multi-decadal variability in sea level; and these are complex but deterministic. There is less confidence, however, in the ability to combat passive submergence and associated flooding issues behind the immediate oceanfront. To the extent that may influence commitment to defend the oceanfront could strongly influence coastal behavior and stability in the long term.

  19. The flooding of the San Matías Gulf: The Northern Patagonia sea-level curve

    NASA Astrophysics Data System (ADS)

    Isla, Federico Ignacio

    2013-12-01

    Northern Patagonia is characterised by tectonic depressions below present sea level. Some of them are today flooded by the sea; others remain emerged although they are at altitudes of - 50 m (Bajo del Gualicho), - 35 m (Salinas Grandes) and - 7 m (Salina La Piedra). San Matías Gulf also was such an emerged depression below contemporary mean sea level during the Late Pleistocene. It flooded between 11,500 and 11,000 years ago, when the sea level surpassed the sill of the gulf (today 50 m below mean sea level) during postglacial sea-level rise. In those days, shrublands extended on the slopes of the tectonic depression. In-situ pieces of woods dredged from the bottom of the gulf at depths of 70 m gave a conventional age of 11,310 ± 150 years BP. We used the wood, together with dated shells from the continental shelf, and shells and organic matter dated from the San Blas, Negro and Chubut coastal plains to construct a sea-level curve. Sea level rise surpassed the present level somewhat before 6000 years BP, reaching a maximum stand of + 6 m. It has since gently diminished towards present sea level.

  20. Implications of sediment redistribution on modeled sea-level changes over millennial timescales

    NASA Astrophysics Data System (ADS)

    Ferrier, Ken

    2016-04-01

    Sea level is a critical link in feedbacks among topography, tectonics, and climate. Over millennial timescales, changes in sea level reshape river networks, regulate organic carbon burial, influence sediment deposition, and set moving boundary conditions for landscape evolution. Sea-level changes influence tectonics by regulating rates and patterns of erosion and deposition, which perturb the surface loads that drive geodynamic processes at depth. These interactions are complex because sea-level changes are influenced by the geomorphic processes that they themselves modify, since sediment redistribution deforms the gravitational and crustal elevation fields that define sea level. A recent advance in understanding the coupling between sea level, tectonics, and topography was the incorporation of sediment redistribution into a gravitationally self-consistent sea-level model, which permits the computation of sea-level responses to erosion and deposition (Dalca et al., 2013, Geophysical Journal International). Here I use this model to quantify changes in sea level resulting from the erosion of some of the most rapidly eroding sites on Earth and the deposition of sediment offshore. These model results show that the sea-level fingerprints of sediment redistribution are strongly variable in space, and that they can represent a significant component of the total sea level change since the last interglacial. This work provides a basis for understanding a fundamental driver of landscape evolution at some of Earth's most geomorphically dynamic sites, and thus aids investigation of the couplings among tectonics, climate, and topography. References Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.

  1. Spatial-temporal analysis of sea level changes in China seas and neighboring oceans by merged altimeter data

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Zhou, Bin; Yu, Zhifeng; Lei, Hui; Sun, Jiamin; Zhu, Xingrui; Liu, Congjin

    2017-01-01

    The knowledge of sea level changes is critical important for social, economic and scientific development in coastal areas. Satellite altimeter makes it possible to observe long term and large scale dynamic changes in the ocean, contiguous shelf seas and coastal zone. In this paper, 1993-2015 altimeter data of Topex/Poseidon and its follow-on missions is used to get a time serious of continuous and homogeneous sea level anomaly gridding product. The sea level rising rate is 0.39 cm/yr in China Seas and the neighboring oceans, 0.37 cm/yr in the Bo and Yellow Sea, 0.29 cm/yr in the East China Sea and 0.40 cm/yr in the South China Sea. The mean sea level and its rising rate are spatial-temporal non-homogeneous. The mean sea level shows opposite characteristics in coastal seas versus open oceans. The Bo and Yellow Sea has the most significant seasonal variability. The results are consistent with in situ data observation by the Nation Ocean Agency of China. The coefficient of variability model is introduced to describe the spatial-temporal variability. Results show that the variability in coastal seas is stronger than that in open oceans, especially the seas off the entrance area of the river, indicating that the validation of altimeter data is less reasonable in these seas.

  2. In silico mining and characterization of simple sequence repeats from gilthead sea bream (Sparus aurata) expressed sequence tags (EST-SSRs); PCR amplification, polymorphism evaluation and multiplexing and cross-species assays.

    PubMed

    Vogiatzi, Emmanouella; Lagnel, Jacques; Pakaki, Victoria; Louro, Bruno; Canario, Adelino V M; Reinhardt, Richard; Kotoulas, Georgios; Magoulas, Antonios; Tsigenopoulos, Costas S

    2011-06-01

    We screened for simple sequence repeats (SSRs) found in ESTs derived from an EST-database development project ('Marine Genomics Europe' Network of Excellence). Different motifs of di-, tri-, tetra-, penta- and hexanucleotide SSRs were evaluated for variation in length and position in the expressed sequences, relative abundance and distribution in gilthead sea bream (Sparus aurata). We found 899 ESTs that harbor 997 SSRs (4.94%). On average, one SSR was found per 2.95 kb of EST sequence and the dinucleotide SSRs are the most abundant accounting for 47.6% of the total number. EST-SSRs were used as template for primer design. 664 primer pairs could be successfully identified and a subset of 206 pairs of primers was synthesized, PCR-tested and visualized on ethidium bromide stained agarose gels. The main objective was to further assess the potential of EST-SSRs as informative markers and investigate their cross-species amplification in sixteen teleost fish species: seven sparid species and nine other species from different families. Approximately 78% of the primer pairs gave PCR products of expected size in gilthead sea bream, and as expected, the rate of successful amplification of sea bream EST-SSRs was higher in sparids, lower in other perciforms and even lower in species of the Clupeiform and Gadiform orders. We finally determined the polymorphism and the heterozygosity of 63 markers in a wild gilthead sea bream population; fifty-eight loci were found to be polymorphic with the expected heterozygosity and the number of alleles ranging from 0.089 to 0.946 and from 2 to 27, respectively. These tools and markers are expected to enhance the available genetic linkage map in gilthead sea bream, to assist comparative mapping and genome analyses for this species and further with other model fish species and finally to help advance genetic analysis for cultivated and wild populations and accelerate breeding programs. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Colloid transport in porous media: impact of hyper-saline solutions.

    PubMed

    Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander

    2011-05-01

    The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during transport through soil in high salinity solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A Poor Relationship Between Sea Level and Deep-Water Sand Delivery

    NASA Astrophysics Data System (ADS)

    Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier

    2018-08-01

    The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.

  5. Flooded! An Investigation of Sea-Level Rise in a Changing Climate

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    Explore how melting ice sheets affect global sea levels. Sea-level rise (SLR) is a rise in the water level of the Earth's oceans. There are two major kinds of ice in the polar regions: sea ice and land ice. Land ice contributes to SLR and sea ice does not. This article explores the characteristics of sea ice and land ice and provides some hands-on…

  6. Grain-size based sea-level reconstruction in the south Bohai Sea during the past 135 kyr

    NASA Astrophysics Data System (ADS)

    Yi, Liang; Chen, Yanping

    2013-04-01

    Future anthropogenic sea-level rise and its impact on coastal regions is an important issue facing human civilizations. Due to the short nature of the instrumental record of sea-level change, development of proxies for sea-level change prior to the advent of instrumental records is essential to reconstruct long-term background sea-level changes on local, regional and global scales. Two of the most widely used approaches for past sea-level changes are: (1) exploitation of dated geomorphologic features such as coastal sands (e.g. Mauz and Hassler, 2000), salt marsh (e.g. Madsen et al., 2007), terraces (e.g. Chappell et al., 1996), and other coastal sediments (e.g. Zong et al., 2003); and (2) sea-level transfer functions based on faunal assemblages such as testate amoebae (e.g. Charman et al., 2002), foraminifera (e.g. Chappell and Shackleton, 1986; Horton, 1997), and diatoms (e.g. Horton et al., 2006). While a variety of methods has been developed to reconstruct palaeo-changes in sea level, many regions, including the Bohai Sea, China, still lack detailed relative sea-level curves extending back to the Pleistocene (Yi et al., 2012). For example, coral terraces are absent in the Bohai Sea, and the poor preservation of faunal assemblages makes development of a transfer function for a relative sea-level reconstruction unfeasible. In contrast, frequent alternations between transgression and regression has presumably imprinted sea-level change on the grain size distribution of Bohai Sea sediments, which varies from medium silt to coarse sand during the late Quaternary (IOCAS, 1985). Advantages of grainsize-based relative sea-level transfer function approaches are that they require smaller sample sizes, allowing for replication, faster measurement and higher spatial or temporal resolution at a fraction of the cost of detail micro-palaeontological analysis (Yi et al., 2012). Here, we employ numerical methods to partition sediment grain size using a combined database of marine surface and core samples, and to quantitatively reconstruct sea-level variation since the late Pleistocene in the south Bohai Sea, China. New insights into regional relative sea-level changes since the late Pleistocene are obtained (Yi et al., 2012): (1) The grain size of surface and core samples can be mathematically partitioned using the Weibull distribution into four components. These four components with differing modal sizes and percentages could be interpreted as a long-term suspension component, which only settles under low turbulence conditions, sortable silt and very fine sand components transported by suspension during greater turbulence and bedload transport component, respectively. (2) Through regression and rigorous verification techniques, the reference water level could be reconstructed from sediment grain size. The reconstruction quantitatively extends the regional relative sea-level history to the late Pleistocene, providing a comparatively long dataset to evaluate regional sea-level variability. (3) We find no evidence of a sea-level high stand during MIS3 but rather a substantial regression during 70-30 cal kyr BP and potentially exposed land during 38-20 cal kyr BP. These results for the south Bohai Sea are in good agreement with published global sea-level records for the late Pleistocene, implying similarities between local and global sea-level patterns. Therefore, it is concluded that grain-size based sea-level reconstruction provide results that are comparable to other reconstruction methods and demonstrates great potential application for future works. (The data was shared on http://hurricane.ncdc.noaa.gov/) References Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y., Pillans, B., 1996. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141, 227-236. Chappell, J., Shackleton, N.J., 1986. Oxygen isotopes and sea level. Nature 324, 137-140. Charman, D.J., Roe, H.M., Roland Gehrels, W., 2002. Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variables. Journal of Quaternary Science 17, 387-409. Horton, B.P., 1997. Quantification of the indicative meaning of a range of Holocene sea-level index points from the western North Sea, Department of Geography. University of Durham, Durham City, UK, p. 509. Horton, B.P., Corbett, R., Culver, S.J., Edwards, R.J., Hillier, C., 2006. Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuarine, Coastal and Shelf Science 69, 381-394. IOCAS (Institute of Oceanology, Chinese Academy of Sciences), 1985. Bohai Sea Geology. Science Press, Beijing, China. Madsen, A.T., Murray, A.S., Andersen, T.J., Pejrup, M., 2007. Temporal changes of accretion rates on an estuarine salt marsh during the late Holocene -Reflection of local sea level changes? The Wadden Sea, Denmark. Marine Geology 242, 221-233. Mauz, B., Hassler, U., 2000. Luminescence chronology of Late Pleistocene raised beaches in southern Italy: new data of relative sea-level changes. Marine Geology 170, 187-203. Yi, L., Yu, H.J., Ortiz, J.D., Xu, X.Y., Qiang, X.K., Huang, H.J., Shi, X., Deng, C.L., 2012. A reconstruction of late Pleistocene relative sea level in the south Bohai Sea, China, based on sediment grain-size analysis. Sedimentary Geology 281, 88-100. Zong, Y., Shennan, I., Combellick, R.A., Hamilton, S.L., Rutherford, M.M., 2003. Microfossil evidence for land movements associated with the AD 1964 Alaska earthquake. The Holocene 13, 7-20.

  7. Climate related sea-level variations over the past two millennia

    PubMed Central

    Kemp, Andrew C.; Horton, Benjamin P.; Donnelly, Jeffrey P.; Mann, Michael E.; Vermeer, Martin; Rahmstorf, Stefan

    2011-01-01

    We present new sea-level reconstructions for the past 2100 y based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. Sea level then increased for 400 y at a rate of 0.6 mm/y, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/y, representing the steepest century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semiempirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium. PMID:21690367

  8. Long-term sea level trends: Natural or anthropogenic?

    NASA Astrophysics Data System (ADS)

    Becker, M.; Karpytchev, M.; Lennartz-Sassinek, S.

    2014-08-01

    Detection and attribution of human influence on sea level rise are important topics that have not yet been explored in depth. We question whether the sea level changes (SLC) over the past century were natural in origin. SLC exhibit power law long-term correlations. By estimating Hurst exponent through Detrended Fluctuation Analysis and by applying statistics of Lennartz and Bunde, we search the lower bounds of statistically significant external sea level trends in longest tidal records worldwide. We provide statistical evidences that the observed SLC, at global and regional scales, is beyond its natural internal variability. The minimum anthropogenic sea level trend (MASLT) contributes to the observed sea level rise more than 50% in New York, Baltimore, San Diego, Marseille, and Mumbai. A MASLT is about 1 mm/yr in global sea level reconstructions that is more than half of the total observed sea level trend during the XXth century.

  9. Quantitative analysis of Paratethys sea level change during the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    de la Vara, Alba; Meijer, Paul; van Baak, Christiaan; Marzocchi, Alice; Grothe, Arjen

    2016-04-01

    At the time of the Messinian Salinity Crisis in the Mediterranean Sea (i.e., the Pontian stage of the Paratethys), the Paratethys sea level dropped also. Evidence found in the sedimentary record of the Black Sea and the Caspian Sea has been interpreted to indicate that a sea level fall occurred between 5.6 and 5.5 Ma. Estimates for the magnitude of the fall range between tens of meters to more than 1500 m. The purpose of this study is to provide quantitative insight into the sensitivity of the water level of the Black Sea and the Caspian Sea to the hydrologic budget, for the case that the Paratethys is disconnected from the Mediterranean. Using a Late Miocene bathymetry based on a palaeographic map by Popov et al. (2004) we quantify the fall in sea level, the mean salinity, and the time to reach equilibrium for a wide range of negative hydrologic budgets. By combining our results with (i) estimates derived from a recent global Late Miocene climate simulation and (ii) reconstructed basin salinities, we are able to rule out a drop in sea level of the order of 1000 m in the Caspian Sea during this time period. In the Black Sea, however, such a large sea level fall cannot be fully discarded.

  10. The measurement of climate change using data from the Advanced Very High Resolution and Along Track Scanning Radiometers

    NASA Astrophysics Data System (ADS)

    Lawrence, S. P.; Llewellyn-Jones, D. T.; Smith, S. J.

    2004-08-01

    Global sea-surface temperature is an important indicator of climate change, with the ability to reflect warming/cooling climate trends. The detection of such trends requires rigorous measurements that are global, accurate, and consistent. Space instruments can provide the means to achieve these required attributes in sea-surface temperature data. Analyses of two independent data sets from the Advanced Very High Resolution and Along Track Scanning Radiometers series of space sensors during the period 1985 to 2000 reveal trends of increasing global temperature with magnitudes of 0.09°C and 0.13°C per decade, respectively, closely matching that expected due to current levels of greenhouse gas exchange. In addition, an analysis based upon singular value decomposition, allowing the removal of El Niño in order to examine areas of change other than the tropical Pacific region, indicates that the 1997 El Niño event affected sea-surface temperature globally. The methodology demonstrated here can be applied to other data sets, which cover long time series observations of geophysical observations in order to characterize long-term change. The conclusion is that satellite sea-surface temperature provides an important means to quantify and explore the processes of climate change.

  11. Hydrographic survey in the dying Aral Sea

    NASA Astrophysics Data System (ADS)

    Zavialov, P. O.; Kostianoy, A. G.; Emelianov, S. V.; Ni, A. A.; Ishniyazov, D.; Khan, V. M.; Kudyshkin, T. V.

    2003-07-01

    We report the results of a hydrographic survey conducted in November, 2002, in the Uzbekistan part of the western basin of the dying Aral Sea. There were very few hydrographic measurements in this region since at least early 1990s. The salinity in the western deep basin of the Aral Sea varied from about 82 psu at the surface to over 94 psu at the bottom. The absolute lake surface level was about 30.5 m. Hence, the observed salinity values were much higher, and the level much lower, than expected according to earlier predictions. The density in the western basin exhibited an extremely strong stratification of ~11 kg/m3 per ~20 m in the bottom layer. The picnocline was accompanied by a temperature inversion whose magnitude was ~4°C. The observed density stratification effectively isolating the lower part of the water column from surface exchanges may be responsible for the increase of summer SSTs and evaporation rates reported in previous studies. We discovered the hydrogen sulphide contamination in the bottom layer whose upper limit was at the depth of approximately 22 m. Estimates suggest that the western basin salinization occurs not only because of the local evaporation, but also because of the assimilation of the saltier eastern basin water in the course of the interbasin exchange through the connecting channel. The satellite imagery analysis, in particular the Maximum Cross-Correlation method, suggests that the circulation pattern in the Aral Sea in its present limits is cyclonic under the eastern winds that are predominant in the region throughout the year.

  12. Characterizing Cretaceous Glaciation Events: K-Ar Ages of Southern Ocean Sediments

    NASA Astrophysics Data System (ADS)

    Wright, M. A.; Hemming, S. R.; Barbeau, D. L.; Torfstein, A.; Pierce, E. L.; Williams, T.; McManus, J. F.; Gombiner, J.

    2012-12-01

    Evidence from paleosols and carbonate weathering models suggest that the Late Cretaceous had a supergreenhouse climate due to atmospheric CO2 concentrations two to four times greater than modern levels, tropical sea surface temperatures exceeding 35°C, and high-latitude temperatures exceeding 20°C. Despite this warmth, the Late Cretaceous was apparently punctuated by large (>25 m) and rapid (<<1 million year) sea-level changes, as recorded by marginal marine stratigraphic architectures and pelagic stable isotope compositions. The magnitude and tempo of these changes suggest a glacio-eustatic control, presumably from the growth and decay of continental ice sheets on Antarctica. Because continental glaciation tends to increase the weathering of bedrock and production of sediment delivered to the oceans, circum-Antarctic marine sediment flux would be expected to increase during periods of glaciation. In order to identify a Late Cretaceous glaciation signal from such marine records, we must first constrain the compositional signal of continental detritus in marine sediments. Here we report the results of downcore K-Ar analysis of the terrigenous sediments of Quaternary Weddell Sea cores PS1170-1 and PS1388-3 in order to identify the compositional signature of continent-derived detritus deposited in the Weddell Sea during a known glacial period. Further, we use our K-Ar analyses of circum-Antarctic Quaternary sediment cores to pinpoint potential sediment source areas. Having constrained this glaciation signal, we also present preliminary K-Ar and Sm-Nd analysis of the Campanian-Maastrictian boundary event (69 Ma) at Ocean Drilling Project site 690C to assess the controversial hypothesis of Late Cretaceous glaciation of Antarctica.

  13. Times are taxing for UK companies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven, R.R.

    1982-06-20

    Despite excellent prospects for new petroleum discoveries in the United Kingdom sector of the North Sea, a drop of oil prices and taxation has caused a slow down in development activities. Gas exploration is beginning to attract attention because of higher prices and a new bill which allows oil companies to sell gas directly to industry. A site licensing project by the government is expected to boost exploration. Recent exploration in the Norwegian sector has confirmed sufficient reserves to maintain current production levels for the next century. Reserves of natural gas were also appraised, particularly in the Sleipner area. Amore » gas-gathering pipeline system has been planned for dry and wet gases. Oil production has declined since 1980, but with new platforms, production is expected to increase. (JBF)« less

  14. Sea level budget in the Arctic during the satellite altimetry era

    NASA Astrophysics Data System (ADS)

    Carret, Alice; Cazenave, Anny; Meyssignac, Benoît; Prandi, Pierre; Ablain, Michael; Andersen, Ole; Blazquez, Alejandro

    2016-04-01

    Studying sea level variations in the Arctic region is challenging because of data scarcity. Here we present results of the sea level budget in the Arctic (up to 82°N) during the altimetry era. We first investigate closure of the sea level budget since 2002 using altimetry data from Envisat and Cryosat for estimating sea level, temperature and salinity data from the ORAP5 reanalysis and GRACE space gravimetry to estimate the steric and mass components. Two altimetry sea level data sets are considered (from DTU and CLS), based on Envisat waveforms retracking. Regional sea level trends seen in the altimetric map, in particular over the Beaufort Gyre and along the eastern coast of Greenland are of steric origin. However, in terms of regional average, the steric component contributes very little to the observed sea level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree very well with the altimetry-based sea level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus we estimated the mass contribution over the whole altimetry era from the difference between altimetry-based sea level and the ORAP5 steric component. Finally we compared altimetry-based coastal sea level with tide gauge records available along Norwegian, Greenland and Siberian coastlines and investigated whether the Arctic Oscillation that was the main driver of coastal sea level in the Arctic during the past decades still plays a dominant role or if other factors (e.g., of anthropogenic origin) become detectable.

  15. Generalized Cauchy model of sea level fluctuations with long-range dependence

    NASA Astrophysics Data System (ADS)

    Li, Ming; Li, Jia-Yue

    2017-10-01

    This article suggests the contributions with two highlights. One is to propose a novel model of sea level fluctuations (sea level for short), which is called the generalized Cauchy (GC) process. It provides a new outlook for the description of local and global behaviors of sea level from a view of fractal in that the fractal dimension D that measures the local behavior of sea level and the Hurst parameter H which characterizes the global behavior of sea level are independent of each other. The other is to show that sea level appears multi-fractal in both spatial and time. Such a meaning of multi-fractal is new in the sense that a pair of fractal parameters (D, H) of sea level is varying with measurement sites and time. This research exhibits that the ranges of D and H of sea level, in general, are 1 ≤ D < 2 and 0 . 5 < H < 1, respectively but D is independent of H. With respect to the global behavior of sea level, we shall show that H > 0 . 96 for all data records at all measurement sites, implying that strong LRD may be a general phenomenon of sea level. On the other side, regarding with the local behavior, we will reveal that there appears D = 1 or D ≈ 1 for data records at a few stations and at some time, but D > 0 . 96 at most stations and at most time, meaning that sea level may appear highly local irregularity more frequently than weak local one.

  16. Inception of a global atlas of Holocene sea levels

    NASA Astrophysics Data System (ADS)

    Khan, Nicole; Rovere, Alessio; Engelhart, Simon; Horton, Benjamin

    2017-04-01

    Determining the rates, mechanisms and geographic variability of sea-level change is a priority science question for the next decade of ocean research. To address these research priorities, the HOLocene SEA-level variability (HOLSEA) working group is developing the first standardized global synthesis of Holocene relative sea-level data to: (1) estimate the magnitudes and rates of global mean sea-level change during the Holocene; and (2) identify trends in spatial variability and decipher the processes responsible for geographic differences in relative sea-level change. Here we present the preliminary efforts of the working group to compile the database, which includes sea-level index points and limiting data from a range of different indicators across seven continents from the Last Glacial Maximum to present. We follow a standard protocol that incorporates full consideration of vertical and temporal uncertainty for each sea-level index point, including uncertainties associated with the relationship of each indicator to past sea-level and the methods used to date each indicator. We describe the composition of the global database, identify gaps in data availability, and highlight our effort to create an online platform to access the data. These data will be made available in a special issue of Quaternary Science Reviews and archived on NOAA's National Centers for Environmental Information (NCEI) in early 2018. We also invite researchers who collect or model Holocene sea-level data to participate. Long-term, this effort will enhance predictions of 21st century sea-level rise, and provide a vital contribution to the assessment of natural hazards with respect to sea-level rise and coastal response.

  17. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    PubMed

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  18. The role of atmospheric circulation patterns on short-term sea-level fluctuations along the eastern seaboard of the US

    NASA Astrophysics Data System (ADS)

    Sheridan, S. C.; Lee, C. C.; Pirhalla, D.; Ransi, V.

    2017-12-01

    Sea-level fluctuations over time are a product of short-term weather events, as well as long-term secular trends in sea-level rise. With sea-levl rise, these fluctuations increasingly have substantial impacts upon coastal ecosystems and impact society through coastal flooding events. In this research, we assess the impact of short-term events, combined with sea-level rise, through synoptic climatological analysis, exploring whether circulation pattern identification can be used to enhance probabilistic forecasts of flood likelihood. Self-organizing maps (SOMs) were created for two discrete atmospheric variables: 700-hPa geopotential height (700z) and sea-level pressure (SLP). For each variable, a SOM array of patterns was created based on data spanning 25°-50°N and 60°-90°W for the period 1979-2014. Sea-level values were derived from tidal gauges between Cape May, New Jersey and Charleston, South Carolina, along the mid-Atlantic coast of the US. Both anomalous sea-level values, as well as nuisance flood occurrence (defined using the local gauge threshold), were assessed. Results show the impacts of both the inverted barometer effect as well as surface wind forcing on sea levels. With SLP, higher sea levels are associated with either patterns that were indicative of on-shore flow or cyclones. At 700z, ridges situated along the east coast are associated with higher sea levels. As the SOM matrix arranges atmospheric patterns in a continuum, the nodes of each SOM show a clear spatial pattern in terms of anomalous sea level, including some significant sea-level anomalies associated with relatively ambiguous pressure patterns. Further, multi-day transitions are also analyzed, showing rapidly deepening cyclones, or persistent onshore flow, can be associated with the greatest likelihood of nuisance floods. Results are weaker with 700z than SLP; however, in some cases, it is clear that the mid-tropospheric circulation can modulate the connection between sea-level anomalies and surface circulation.

  19. Improving sea level simulation in Mediterranean regional climate models

    NASA Astrophysics Data System (ADS)

    Adloff, Fanny; Jordà, Gabriel; Somot, Samuel; Sevault, Florence; Arsouze, Thomas; Meyssignac, Benoit; Li, Laurent; Planton, Serge

    2017-08-01

    For now, the question about future sea level change in the Mediterranean remains a challenge. Previous climate modelling attempts to estimate future sea level change in the Mediterranean did not meet a consensus. The low resolution of CMIP-type models prevents an accurate representation of important small scales processes acting over the Mediterranean region. For this reason among others, the use of high resolution regional ocean modelling has been recommended in literature to address the question of ongoing and future Mediterranean sea level change in response to climate change or greenhouse gases emissions. Also, it has been shown that east Atlantic sea level variability is the dominant driver of the Mediterranean variability at interannual and interdecadal scales. However, up to now, long-term regional simulations of the Mediterranean Sea do not integrate the full sea level information from the Atlantic, which is a substantial shortcoming when analysing Mediterranean sea level response. In the present study we analyse different approaches followed by state-of-the-art regional climate models to simulate Mediterranean sea level variability. Additionally we present a new simulation which incorporates improved information of Atlantic sea level forcing at the lateral boundary. We evaluate the skills of the different simulations in the frame of long-term hindcast simulations spanning from 1980 to 2012 analysing sea level variability from seasonal to multidecadal scales. Results from the new simulation show a substantial improvement in the modelled Mediterranean sea level signal. This confirms that Mediterranean mean sea level is strongly influenced by the Atlantic conditions, and thus suggests that the quality of the information in the lateral boundary conditions (LBCs) is crucial for the good modelling of Mediterranean sea level. We also found that the regional differences inside the basin, that are induced by circulation changes, are model-dependent and thus not affected by the LBCs. Finally, we argue that a correct configuration of LBCs in the Atlantic should be used for future Mediterranean simulations, which cover hindcast period, but also for scenarios.

  20. Feasibility of synthetic aperture altimeter data in ice charting

    NASA Astrophysics Data System (ADS)

    Rinne, Eero; Kangas, Antti

    We demonstrate the possibility to utilise synthetic aperture altimeter data in operational ice charting. Different waveform parameters from Cryosat-2 SIRAL measurements are compared to AARI ice charts over the Barents and Kara seas. It is shown that polygons of different ice types are distinguishable in the altimeter data. The most important sea ice application of satellite altimeters today is measuring the thickness of Arctic winter sea ice. However, the use of altimeters to support ice mapping has been suggested already more than 30 years ago. Due to advent of imaging instruments more suitable for ice charting, most notably the SAR, altimeters have remained tools for sea ice science. They are however used operationally to determine sea height anomaly and significant wave height. Our input data is the SAR mode Level 1B data of CryoSat-2. We only consider the waveform data and calculate simple parameters describing the shape of the waveform such as the pulse peakiness and backscatter coefficient sigma_0. We compare these to ice stages of development given in the ice chart. As expected, ice edge is clearly visible in the altimeter data. What is more promising for operational ice thickness, areas of old ice can be distinguished from areas of young ice and nilas. Altimeters provide an independent source of sea ice information to complement SAR and passive microwave data. Albeit low resolution, altimeter data may prove valuable at times and locations where other data sources are unavailable. SAR data is frequently available for our study area, but our methods are applicable to areas where SAR data is scarce such as the Southern ice covered seas. Furthermore, our results here are directly applicable to the future Sentinel-3 altimeter data.

  1. Transformation of tsunami waves passing through the Straits of the Kuril Islands

    NASA Astrophysics Data System (ADS)

    Kostenko, Irina; Kurkin, Andrey; Pelinovsky, Efim; Zaytsev, Andrey

    2015-04-01

    Pacific ocean and themselves Kuril Islands are located in the zone of high seismic activity, where underwater earthquakes cause tsunamis. They propagate across Pacific ocean and penetrates into the Okhotsk sea. It is natural to expect that the Kuril Islands reflect the Okhotsk sea from the Pacific tsunami waves. It has long been noted that the historical tsunami appeared less intense in the sea of Okhotsk in comparison with the Pacific coast of the Kuril Islands. Despite the fact that in the area of the Kuril Islands and in the Pacific ocean earthquakes with magnitude more than 8 occur, in the entire history of observations on the Okhotsk sea coast catastrophic tsunami was not registered. The study of the peculiarities of the propagation of historical and hypothetical tsunami in the North-Eastern part of the Pacific ocean was carried out in order to identify level of effect of the Kuril Islands and Straits on them. Tsunami sources were located in the Okhotsk sea and in the Pacific ocean. For this purpose, we performed a series of computational experiments using two bathymetries: 1) with use Kuril Islands; 2) without Kuril Islands. Magnitude and intensity of the tsunami, obtained during numerical simulation of height, were analyzed. The simulation results are compared with the observations. Numerical experiments have shown that in the simulation without the Kuril Islands tsunamis in the Okhotsk sea have higher waves, and in the Central part of the sea relatively quickly damped than in fact. Based on shallow-water equation tsunami numerical code NAMI DANCE was used for numerical simulations. This work was supported by ASTARTE project.

  2. Sea-level rise caused by climate change and its implications for society.

    PubMed

    Mimura, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society.(Communicated by Kiyoshi HORIKAWA, M.J.A.).

  3. Towards a robust methodology to assess coastal impacts and adaptation policies for Europe

    NASA Astrophysics Data System (ADS)

    Vousdoukas, Michalis; Voukouvalas, Evangelos; Mentaschi, Lorenzo; Feyen, Luc

    2016-04-01

    The present contribution aims to present preliminary results from efforts towards (i) the development of the integrated risk assessment tool LISCoAsT for Europe (Large scale Integrated Sea-level and Coastal Assessment Tool); (ii) the assessment of coastal risk along the European coastline in view of climate change; and (iii) the development and application of a robust methodology to evaluate adaptation options for the European coastline under climate change scenarios. The overall approach builds on the disaster risk methodology proposed by the IPCC SREX (2012) report, defining risk as the combination of hazard, exposure and vulnerability. Substantial effort has been put in all the individual components of the risk assessment chain, including: (1) the development of dynamic scenarios of catastrophic coastal hazards (e.g., storm surges, sea-level rise) in view of climate change; (2) quantification, mapping and forecasting exposure and vulnerability in coastal areas; (3) carrying out a bottom-up, highly disaggregated assessment of climate impacts on coastal areas in Europe in view of global warming; (4) estimating the costs and assessing the effectiveness of different adaptation options. Projections indicate that, by the end of this century, sea levels in Europe will rise on average between 45 and 70 cm; while projections of coastal hazard showed that for some European regions, the increased storminess can be an additional significant driver of further risk. Projections of increasing extreme storm surge levels (SSL) were even more pronounced under the business-as-usual RCP8.5 concentration pathway, in particular along the Northern Europe coastline. The above are also reflected in the coastal impact projections, which show a significant increase in the expected annual damage (EAD) from coastal flooding. The present EAD for Europe of 800 million €/year is projected to increase up to 2.4 and 3.2 billion €/year by 2040 under RCP 4.5 and 8.5, respectively, and to 11.2 and 18.3 billion €/year by 2100 under RCP 4.5 and 8.5, respectively (values correspond to a medium ice-sheet behavior scenario). The projected Expected Annual Number of People forced to relocate because of RSLR by the year 2100 is 22,000 and 35,000 for RCP4.5 and RCP8.5, respectively. Finally, the expected annual number of people affected by coastal flooding in Europe is projected to increase from presently 27,000 to 67,000 and 197,000 under RCP 4.5 and 8.5, respectively by 2040, and to 81,000 and 295,000 under RCP 4.5 and 8.5, respectively by 2100. Apart from improving the impact assessment approach, the main current priority is to advance further towards the evaluation of coastal adaptation and risk reduction strategies.

  4. Regional characteristics of the effects of the El Niño-Southern Oscillation on the sea level in the China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Liu, Kexiu; Wang, Aimei; Feng, Jianlong; Fan, Wenjing; Liu, Qiulin; Xu, Yao; Zhang, Zengjian

    2018-05-01

    Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China's coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China's coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China's coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4-7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).

  5. Resistivity Surveys on the Mauna Kea Saddle: Implications for groundwater resources on the Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Pierce, H. A.

    2009-12-01

    A sequence of Audiomagnetotelluric (AMT) and Magnetotelluric (MT) surveys was recently completed on the Island of Hawaii along a transect spanning the 2000 m high Humu'ula Saddle region bounded by Mauna Kea, Mauna Loa and Hualalai volcanoes. The surveys extended down to an elevation of ~600 m on the eastern flank of the island and to 1,100 m on the drier, western slope of Mauna Kea and were intended to define the depth to the local groundwater table across the interior of the island. The results of the surveys present a much more complicated picture of the interior structure, and associated hydrology, of the island than has generally been assumed. At the eastern end of the transect, where existing wells unequivocally define the depth to the water table, young Mauna Kea basalts saturated with freshwater yielded a resistivity of ~600 ohm-meters. At increasing elevations toward the west, where rainfall rates decline markedly, the resistivity/depth profiles are consistent with progressively drier, resistive rocks to depths approaching 1000 m below the surface. These are underlain by well-defined, moderately resistive zones consistent with freshwater saturated basalts. As the transect approaches an inferred southeasterly-trending rift zone near the crest of the Saddle, the moderately resistive intervals are underlain by less resistive rocks near sea level that fall into the range expected for either (cold) saltwater or heated freshwater. Near the center of the transect, freshwater resistivity values extend to elevations of ~1000 m above sea level and are, again, underlain by significantly less resistive intervals near sea level. We believe that the moderately resistive intervals reflect substantial quantities of freshwater that are bounded by rift systems of Mauna Kea and Hualalai and the northern flank of Mauna Loa. The unexpectedly low resistivity values near sea level are considered to more probably reflect leakage of thermal fluids from the interior of Mauna Kea rather than saltwater intrusion from below the freshwater system. Alternatively, the less resistive formations may be the result of hydrothermal alteration from now-extinct geothermal leakage from Mauna Kea. The presence of freshwater to 1000 m above sea level within the Mauna Kea flanks, if confirmed by planned drilling, will increase estimates of groundwater storage within the island by as much as a factor of ten above those projected by traditional ocean island groundwater models.

  6. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.

    PubMed

    Garzke, Jessica; Ismar, Stefanie M H; Sommer, Ulrich

    2015-03-01

    Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient -4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.

  7. Quantifying and Projecting Relative Sea-Level Rise At The Regional Scale: The Bangladesh Sea-Level Project (BanD-AID)

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Kuo, C. Y.; Guo, J.; Shang, K.; Tseng, K. H.; Wan, J.; Calmant, S.; Ballu, V.; Valty, P.; Kusche, J.; Hossain, F.; Khan, Z. H.; Rietbroek, R.; Uebbing, B.

    2014-12-01

    The potential for accelerated sea-level rise under anthropogenic warming is a significant societal problem, in particular in world's coastal deltaic regions where about half of the world's population resides. Quantifying geophysical sources of sea-level rise with the goal of improved projection at local scales remains a complex and challenging interdisciplinary research problem. These processes include ice-sheet/glacier ablations, steric sea-level, solid Earth uplift or subsidence due to GIA, tectonics, sediment loading or anthropogenic causes, hydrologic imbalance, and human processes including water retention in reservoirs and aquifer extraction. The 2013 IPCC AR5 concluded that the observed and explained geophysical causes of global geocentric sea-level rise, 1993-2010, is closer towards closure. However, the discrepancy reveals that circa 1.3→37.5% of the observed sea-level rise remains unexplained. This relatively large discrepancy is primarily attributable to the wide range of estimates of respective contributions of Greenland and Antarctic ice-sheets and mountain/peripheral glaciers to sea-level rise. Understanding and quantifying the natural and anthropogenic processes governing solid Earth (land, islands and sea-floor) uplift or subsidence at the regional and local scales remain elusive to enable addressing coastal vulnerability due to relative sea-level rise hazards, such as the Bangladesh Delta. This study focuses on addressing coastal vulnerability of Bangladesh, a Belmont Forum/IGFA project, BanD-AID (http://Belmont-SeaLevel.org). Sea-level rise, along with tectonic, sediment load and groundwater extraction induced land uplift/subsidence, have exacerbated Bangladesh's coastal vulnerability, affecting 150 million people in one of the world's most densely populated regions. Here we present preliminary results using space geodetic observations, including satellite radar and laser altimetry, GRACE gravity, tide gauge, hydrographic, and GPS/InSAR observed land subsidence, and via fingerprint sea-level adjustment and reconstructed sea-level approaches, for improved quantification of major contributions to, and the projection of relative sea-level rise at the Bangladesh delta, towards addressing its coastal vulnerability and sustainability.

  8. The forecast of coastal recession in the eastern gulf of Finland for the twenty-first century

    NASA Astrophysics Data System (ADS)

    Leont'yev, I. O.; Ryabchuk, D. V.; Sergeev, A. Yu.; Kovaleva, O. A.

    2015-05-01

    The evolution of a significant part of the coast in the study area is determined by extreme storm surges eroding the upper part of dunes and inducing coastal recession. In order to forecast the recession a special method using numerical modelling of storm-induced changes in the coastal profiles based on the CROSS-P model is used. The response of the shoreline profile to sea-level rise is estimated using the Bruun rule. Three types of future coastal evolution are distinguished depending on slope of an active part of the profile. It is shown that if the most probable patterns of storm activity and sea level rise occur then the relatively steep coasts in an area from Komarovo to Solnechnoe will retreat by 302-40 meters. Recession of less steep coasts (Ushkovo, south Kotlin, and Petrodvorets) is expected to be 10-20 meters, whereas the extremely gently dipping coasts (in the vicinity of Sestroretsk and near the northern end of the St. Petersburg Flood Protection Complex (FPC)) will retreat by 50-100 m.

  9. Atmospheric teleconnections between the Arctic and the Baltic Sea regions

    NASA Astrophysics Data System (ADS)

    Jakobson, L.; Jakobson, E.

    2017-12-01

    The observed enhanced warming of the Arctic, referred to as the AA, is expected to be related to further changes that impact mid-latitudes and the rest of the world. Our aim is to clarify how the climatic parameters in the Baltic Sea and Arctic regions are associated. Knowledge of such connections helps to define regions in the Arctic that could be with higher extent associated with the Baltic Sea region climate change. We used monthly mean reanalysis data from NCEP-CFSR and ERA-Interim. The strongest teleconnections between the same parameter (temperature, SLP, specific humidity, wind speed) at the Baltic Sea region and the Arctic are found in winter, but they are clearly affected by the Arctic Oscillation (AO) index. After removal of the AO index variability, correlations in winter were everywhere below ±0.5, while in other seasons there remained regions with strong (|R|>0.5, p<0.002) correlations. Strong correlations are also present between different climate variables at the Baltic Sea region and different regions of the Arctic. Temperature from 1000 to 500 hPa level at the Baltic Sea region have a strong negative correlation with the Greenland sector (the region between 20 - 80W and 55 - 80N) during all seasons except summer. The positive temperature anomaly of mild winter at the Greenland sector shifts towards east during the next seasons, reaching to Scandinavia/Baltic Sea region in summer. The Greenland sector is the region which gives the most significant correlations with the climatic parameters (temperature, wind speed, specific humidity, SLP) of the Baltic Sea region. These relationships can be explained by the AO index variability only in winter. In other seasons there has to be other influencing factors. The results of this study are valuable for selecting regions in the Arctic that have statistically the largest effect on climate in the Baltic Sea region.

  10. Evolution of potentially eroding events along the northern coast of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, D.; García Codrón, J. C.

    2009-09-01

    The anthropogenic global warming is expected to result in a rise in sea-level, accompanied by changes in extreme climate events, such as the frequency and intensity of storms. Such scenario would result in an acceleration of coastal erosion. The aim of the present study is to assess the temporal evolution of potentially eroding events along the northern coast of the Iberian Peninsula during the second half of the 20th century, and to investigate changes in forcing processes such as the frequency and magnitude of storm surges and high wave events. To characterize the potentially eroding events, the total elevation of the water level was selected, being calculated as the sum of the contributions of the average water level, wave run up and the storm surges. Potentially eroding events were identified and quantified following a two-step procedure. Through the first step the potential flood induced by a given storm was estimated by simulating its effects on a theoretical beach profile (intermediate) using an empirical parameterization for extreme run-up approach. The second step consisted on characterizing the maximum storm surge registered during a storm. Those parameters were calculated from hindcasted data (storm surge, wave heights and period, wind speed and direction), retrieved from the SIMAR-44 database (Puertos del Estado), and validated against actual tide gauge measurements and buoy data (RedMar and RedExt networks). Analyses of total water levels showed a long term increase since 1958, resulting from the increase of mean sea level; conversely, a reduction of the frequency and the intensity of the storm events were deduced from the analysis of meteorological records. Since the impact of the storms on macro- and meso- tidal coast closely depend on the tides, a storm impact index was computed taking into account the storm surge magnitude, the wave heights and time duration during which a predefined threshold was exceeded by the sea level. The results are consistent with the analysis of the shoreline evolution on a specific sector of Cantabria (Oyambre) through the comparison of aerial photographs taken between 1957 and 2005. From the late 50´s to late 70’s, the shoreline significantly retreated, in correspondence with the period of maximum storm activity. Conversely, shoreline retreat slowed down during the late 1980s and 1990s while storm activity considerably decreased. Thus long-term coastal erosion, due to the occurrences of high water levels embedded into a long trend term of sea level rise, has been balanced by the reduction of the frequency and intensity of the Atlantic storms. Since relative sea-level will continue rising in the future, most of the coastal morphologies will probably be more frequently reached by the sea, increasing the flooding risk in low-lying sectors and promoting landslides along the cliffs.

  11. Sea-level change during the last 2500 years in New Jersey, USA

    USGS Publications Warehouse

    Kemp, Andrew C.; Horton, Benjamin P.; Vane, Christopher H.; Bernhardt, Christopher E.; Corbett, D. Reide; Engelhart, Simon E.; Anisfeld, Shimon C.; Parnell, Andrew C.; Cahill, Niamh

    2013-01-01

    Relative sea-level changes during the last ∼2500 years in New Jersey, USA were reconstructed to test if late Holocene sea level was stable or included persistent and distinctive phases of variability. Foraminifera and bulk-sediment δ13C values were combined to reconstruct paleomarsh elevation with decimeter precision from sequences of salt-marsh sediment at two sites using a multi-proxy approach. The additional paleoenvironmental information provided by bulk-sediment δ13C values reduced vertical uncertainty in the sea-level reconstruction by about one third of that estimated from foraminifera alone using a transfer function. The history of sediment deposition was constrained by a composite chronology. An age–depth model developed for each core enabled reconstruction of sea level with multi-decadal resolution. Following correction for land-level change (1.4 mm/yr), four successive and sustained (multi-centennial) sea-level trends were objectively identified and quantified (95% confidence interval) using error-in-variables change point analysis to account for age and sea-level uncertainties. From at least 500 BC to 250 AD, sea-level fell at 0.11 mm/yr. The second period saw sea-level rise at 0.62 mm/yr from 250 AD to 733 AD. Between 733 AD and 1850 AD, sea level fell at 0.12 mm/yr. The reconstructed rate of sea-level rise since ∼1850 AD was 3.1 mm/yr and represents the most rapid period of change for at least 2500 years. This trend began between 1830 AD and 1873 AD. Since this change point, reconstructed sea-level rise is in agreement with regional tide-gauge records and exceeds the global average estimate for the 20th century. These positive and negative departures from background rates demonstrate that the late Holocene sea level was not stable in New Jersey.

  12. Paleocene-Eocene and Plio-Pleistocene sea-level changes as "species pumps" in Southeast Asia: Evidence from Althepus spiders.

    PubMed

    Li, Fengyuan; Li, Shuqiang

    2018-05-17

    Sea-level change has been viewed as a primary driver in the formation of biodiversity. Early studies confirmed that Plio-Pleistocene sea-level changes led to the isolation and subsequent genetic differentiation of Southeast (SE) Asian organisms over short geological timescales. However, long-time consequences of sea-level fluctuations remain unclear. Herein, we analyze the evolutionary history of Althepus (spiders) whose distribution encompasses Indo-Burma and the Sunda shelf islands to understand how sea-level changes over shallow and deep timescales effected their history. Our integrative analyses, including phylogeny, divergence times, ancestral area reconstruction and diversification dynamics, reveal an intricate pattern of diversification, probably triggered by sea-level fluctuations during the Paleocene-Eocene and Plio-Pleistocene. The timing of one early divergence between the Indo-Burmese and Sundaic species coincides with late Paleocene and early Eocene high global sea levels, which induced the formation of inland seaways in the Thai-Malay Peninsula. Subsequent lowered sea levels could have provided a land bridge for its dispersal colonization across the Isthmus of Kra. Analyses suggest that Plio-Pleistocene sea-level rises contributed to recent divergence of many species. Thus, our findings cannot reject the hypothesis that sea-level changes during the Paleocene-Eocene and Plio-Pleistocene played a major role in generating biodiversity in SE Asia; sea-level changes can act as "species pumps". Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Micro- and mesozooplankton community response to increasing CO2 levels in the Baltic Sea: insights from a large-scale mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Lischka, S.; Bach, L. T.; Schulz, K.-G.; Riebesell, U.

    2015-12-01

    Community approaches investigating ocean acidification (OA) effects suggest a high tolerance of micro- and mesozooplankton to carbonate chemistry changes expected to occur within this century. Plankton communities in the coastal areas of the Baltic Sea frequently experience pH variations partly exceeding projections for the near future both on a diurnal and seasonal basis, thus some level of tolerance/adaptation may be expected. We conducted a large-scale mesocosm CO2 enrichment experiment (~ 55 m3) enclosing the natural plankton community in Tvärminne/Storfjärden for eight weeks during June-August 2012 and studied community and species/taxon response of microzooplankton (ciliates) and mesozooplankton to CO2 elevations expected for this century. Besides the response to fCO2 and associate changes in carbonate chemistry speciation, we also considered temperature and chlorophyll a variations in our analyses. Shannon diversity of microzooplankton significantly decreased with fCO2 and temperature with a greater dominance of smaller species. Small sized ciliates (Myrionecta rubra, Balanion comatum, Strombidium cf. epidemum, Strobilidium sp.) showed significant relations with one or more of the factors. The phototrophic Myrionecta rubra seemed to directly benefit from higher CO2 concentrations and showed increased abundance in the pre-bloom phase. With respect to meszooplankton, we neither detected significant effects for total abundance nor for Shannon diversity. The cladocera Bosmina occurred at distinctly higher abundance (more than twice as high compared to the control mesocosms) for a short time period during the second half of the experiment in three of the CO2-enriched mesocosms except for the highest CO2 level. The ratio of Bosmina with empty to embryo/resting egg bearing brood chambers, however, was significantly affected by all three factors. An indirect CO2 effect via increased food availability stimulating Bosmina reproduction is suggested, but too low sampling frequency of this highly flexible organism probably entailed proving a significant relation with fCO2. Filter-feeding cladocerans effectively transfer microbial loop carbon to higher trophic levels. Thus, under increasing OA in cladoceran dominated mesozooplankton communities the importance of the microbial loop in the pelagic zone may be enhanced and carbon transfer to higher trophic levels stimulated.

  14. Potentiometric surface and water-level difference maps of selected confined aquifers in Southern Maryland and Maryland’s Eastern Shore, 1975-2015

    USGS Publications Warehouse

    Curtin, Stephen E.; Staley, Andrew W.; Andreasen, David C.

    2016-01-01

    Key Results This report presents potentiometric-surface maps of the Aquia and Magothy aquifers and the Upper Patapsco, Lower Patapsco, and Patuxent aquifer systems using water levels measured during September 2015. Water-level difference maps are also presented for these aquifers. The water-level differences in the Aquia aquifer are shown using groundwater-level data from 1982 and 2015, while the water-level differences are shown for the Magothy aquifer using data from 1975 and 2015. Water-level difference maps for both the Upper Patapsco and Lower Patapsco aquifer systems are shown using data from 1990 and 2015. The water-level differences in the Patuxent aquifer system are shown using groundwater-level data from 2007 and 2015. The potentiometric surface maps show water levels ranging from 53 feet above sea level to 164 feet below sea level in the Aquia aquifer, from 86 feet above sea level to 106 feet below sea level in the Magothy aquifer, from 115 feet above sea level to 115 feet below sea level in the Upper Patapsco aquifer system, from 106 feet above sea level to 194 feet below sea level in the Lower Patapsco aquifer system, and from 165 feet above sea level to 171 feet below sea level in the Patuxent aquifer system. Water levels have declined by as much as 116 feet in the Aquia aquifer since 1982, 99 feet in the Magothy aquifer since 1975, 66 and 83 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990, and 80 feet in the Patuxent aquifer system since 2007.

  15. Development of flood probability charts for urban drainage network in coastal areas through a simplified joint assessment approach

    NASA Astrophysics Data System (ADS)

    Archetti, R.; Bolognesi, A.; Casadio, A.; Maglionico, M.

    2011-04-01

    The operating conditions of urban drainage networks during storm events certainly depend on the hydraulic conveying capacity of conduits but also on downstream boundary conditions. This is particularly true in costal areas where the level of the receiving water body is directly or indirectly affected by tidal or wave effects. In such cases, not just different rainfall conditions (varying intensity and duration), but also different sea-levels and their effects on the network operation should be considered. This paper aims to study the behaviour of a seaside town storm sewer network, estimating the threshold condition for flooding and proposing a simplified method to assess the urban flooding severity as a function of either climate variables. The case study is a portion of the drainage system of Rimini (Italy), implemented and numerically modelled by means of InfoWorks CS code. The hydraulic simulation of the sewerage system has therefore allowed to identify the percentage of nodes of the drainage system where flooding is expected to occur. Combining these percentages with both climate variables values has lead to the definition charts representing the combined degree of risk "sea-rainfall" for the drainage system under investigation. A final comparison between such charts and the results obtained from a one-year sea-rainfall time series has confirmed the reliability of the analysis.

  16. Tide Gauge Records Reveal Improved Processing of Gravity Recovery and Climate Experiment Time-Variable Mass Solutions over the Coastal Ocean

    NASA Astrophysics Data System (ADS)

    Piecuch, Christopher G.; Landerer, Felix W.; Ponte, Rui M.

    2018-05-01

    Monthly ocean bottom pressure solutions from the Gravity Recovery and Climate Experiment (GRACE), derived using surface spherical cap mass concentration (MC) blocks and spherical harmonics (SH) basis functions, are compared to tide gauge (TG) monthly averaged sea level data over 2003-2015 to evaluate improved gravimetric data processing methods near the coast. MC solutions can explain ≳ 42% of the monthly variance in TG time series over broad shelf regions and in semi-enclosed marginal seas. MC solutions also generally explain ˜5-32 % more TG data variance than SH estimates. Applying a coastline resolution improvement algorithm in the GRACE data processing leads to ˜ 31% more variance in TG records explained by the MC solution on average compared to not using this algorithm. Synthetic observations sampled from an ocean general circulation model exhibit similar patterns of correspondence between modeled TG and MC time series and differences between MC and SH time series in terms of their relationship with TG time series, suggesting that observational results here are generally consistent with expectations from ocean dynamics. This work demonstrates the improved quality of recent MC solutions compared to earlier SH estimates over the coastal ocean, and suggests that the MC solutions could be a useful tool for understanding contemporary coastal sea level variability and change.

  17. Effects of Projected Future Climate Change on Groundwater Recharge and Storage for Two Coastal Aquifers in Guanacaste Province, Costa Rica

    NASA Astrophysics Data System (ADS)

    Kolb, C.

    2017-12-01

    Climate change is expected to pose a significant threat to water resources in the future. Guanacaste Province, located in northwestern Costa Rica, has a unique climate that is influenced by the Pacific Ocean and Caribbean Sea, as well as the Central Cordillera mountain range. Although the region experiences a marked rainy season between May and November, the hot, dry summers often stress water resources. Climate change projections suggest increased temperatures and reduced precipitation for the region, which will further stress water supplies. This study focuses on the effects of climate change on groundwater resources for two coastal aquifers, Potrero and Brasilito. The UZF model package coupled with the finite difference groundwater flow model MODFLOW were used to evaluate the effect of climate change on groundwater recharge and storage. A potential evapotranspiration model was used to estimate groundwater infiltration rates used in the MODFLOW model. Climate change projections for temperature, precipitation, and sea level rise were used to develop climate scenarios, which were compared to historical data. Preliminary results indicate that climate change could reduce future recharge, especially during the dry season. Additionally, the coastal aquifers are at increased risk of reduced storage and increased salinization due to the reductions in groundwater recharge and sea level rise. Climate change could also affect groundwater quality in the region, disrupting the ecosystem and impairing a primary source of drinking water.

  18. Sea-Level Projections from the SeaRISE Initiative

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie; Bindschadler, Robert

    2011-01-01

    SeaRISE (Sea-level Response to Ice Sheet Evolution) is a community organized modeling effort, whose goal is to inform the fifth IPCC of the potential sea-level contribution from the Greenland and Antarctic ice sheets in the 21st and 22nd century. SeaRISE seeks to determine the most likely ice sheet response to imposed climatic forcing by initializing an ensemble of models with common datasets and applying the same forcing to each model. Sensitivity experiments were designed to quantify the sea-level rise associated with a change in: 1) surface mass balance, 2) basal lubrication, and 3) ocean induced basal melt. The range of responses, resulting from the multi-model approach, is interpreted as a proxy of uncertainty in our sea-level projections. http://websrv.cs .umt.edu/isis/index.php/SeaRISE_Assessment.

  19. Steric and mass-induced Mediterranean sea level trends from 14 years of altimetry data

    NASA Astrophysics Data System (ADS)

    Criado-Aldeanueva, Francisco; Del Río Vera, Jorge; García-Lafuente, Jesús

    2008-02-01

    Long-term series of almost 14 years of altimetry data (1992-2005) have been analysed along with Sea Surface Temperature (SST) and temperature and salinity profiles to investigate sea level trends over the Mediterranean Sea. Although sea level variations are mainly driven by the steric contribution, the mass-induced component plays some role in modulating its oscillation. A spatially averaged positive trend of 2.1 ± 0.6 mm/year has been observed, but a change in sign in 2001 seems to appear. Steric effects (mainly on thermal origin) account for ˜ 55% of sea level trend. Although Mediterranean Sea is a semi-enclosed basin, this value is comparable to that reported for the global ocean. Sea level rise is particularly important in the Levantine basin south of Crete with values up to 10 ± 1 mm/year. Other areas of sea level rise are localised throughout the Levantine basin and in the Adriatic and Alboran Seas, with more moderate values. Sea level drop areas are localised in the Algerian basin, between the Balearic Islands and the African coasts and, particularly, in the Ionian basin. In this area, negative trends as high as - 10 ± 0.8 mm/year are detected mainly due to the mass-induced contribution, which suggests decadal changes of surface circulation. The inferred sea level trends have been correlated with North Atlantic Oscillation (NAO) indices and a low but significant correlation has been detected between sea level in the Levantine and Balearic basins and NAO index.

  20. The sea-level fingerprints of ice-sheet collapse during interglacial periods

    NASA Astrophysics Data System (ADS)

    Hay, Carling; Mitrovica, Jerry X.; Gomez, Natalya; Creveling, Jessica R.; Austermann, Jacqueline; E. Kopp, Robert

    2014-03-01

    Studies of sea level during previous interglacials provide insight into the stability of polar ice sheets in the face of global climate change. Commonly, these studies correct ancient sea-level highstands for the contaminating effect of isostatic adjustment associated with past ice age cycles, and interpret the residuals as being equivalent to the peak eustatic sea level associated with excess melting, relative to present day, of ancient polar ice sheets. However, the collapse of polar ice sheets produces a distinct geometry, or fingerprint, of sea-level change, which must be accounted for to accurately infer peak eustatic sea level from site-specific residual highstands. To explore this issue, we compute fingerprints associated with the collapse of the Greenland Ice Sheet, West Antarctic Ice Sheet, and marine sectors of the East Antarctic Ice Sheet in order to isolate regions that would have been subject to greater-than-eustatic sea-level change for all three cases. These fingerprints are more robust than those associated with modern melting events, when applied to infer eustatic sea level, because: (1) a significant collapse of polar ice sheets reduces the sensitivity of the computed fingerprints to uncertainties in the geometry of the melt regions; and (2) the sea-level signal associated with the collapse will dominate the signal from steric effects. We evaluate these fingerprints at a suite of sites where sea-level records from interglacial marine isotopes stages (MIS) 5e and 11 have been obtained. Using these results, we demonstrate that previously discrepant estimates of peak eustatic sea level during MIS5e based on sea-level markers in Australia and the Seychelles are brought into closer accord.

  1. Sea-level responses to sediment transport over the last ice age cycle

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.

    2013-12-01

    Sea-level changes over the last ice age cycle were instrumental in steering Earth's topographic evolution. These sea-level variations were driven by changes in surface mass loads, including not only ice and ocean mass variations but also the transfer of rock from eroding mountains to sedimentary deposits. Here we use an extended numerical model of ice age sea level (Dalca et al., 2013) to explore how sediment erosion and deposition affected global sea-level variations over the last ice age cycle. The model takes histories of ice and sediment loads as inputs, and it computes gravitationally self-consistent sea level responses by accounting for the deformational, gravitational, and rotational perturbations in the Earth's viscoelastic form. In these model simulations, we use published estimates of erosion rates, sedimentation rates, and ice sheet variations to constrain sediment and ice loading since the Last Interglacial. We explore sea-level responses to several erosional and depositional scenarios, and in each we quantify the relative contributions of crustal deformation and gravitational perturbation to the computed sea-level change. We also present a case study to illustrate the effects that sediment transfer can have on sea level at the regional scale. In particular, we focus on the region surrounding the Indus River, where fluvial sediment fluxes are among the highest on Earth. Preliminary model results suggest that sediment fluxes from Asia to the ocean are large enough to produce a significant response in sea level along the northeastern coast of the Arabian Sea. Moreover, they suggest that modeled sea-level histories are sensitive to the timing and spatial distribution of sediment erosion and deposition. For instance, sediment deposition along the continental shelf - which may have been the primary site of Indus River sediment deposition during the Holocene - produces a different sea-level response than sediment deposition on the deep-sea Indus Fan, where most of the Indus sediment may have been deposited during the glacial period preceding the Holocene. These simulations highlight the role that massive continent-to-ocean sediment fluxes can play in driving sea-level patterns over thousands of years. References: Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III: Incorporating sediment redistribution. Geophys. J. Int., doi: 10.1093/gji/ggt089.

  2. Effects of sediment transport and deposition on crustal loading, Earth's gravitational field, and sea level

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.; Perron, T.; Milne, G. A.; Wickert, A. D.

    2012-12-01

    Spatial patterns in static sea level are controlled by the interplay between the history of ice mass variations and the associated deformational, gravitational and rotational perturbations in the Earth's state. Over the last decade, there has been a renewed effort to extend classic treatments of ice-age sea-level change (Farrell and Clark, 1976) to incorporate effects such as shoreline migration due to the local onlap or offlap of seawater and changes in the extent of grounded, marine-based ice, as well as feedbacks between sea level and the orientation of Earth's rotation axis. To date, the impact of sediment transport - whether in the context of glacial processes, or other processes such as fluvial deposition - has not been incorporated into a gravitationally self-consistent sea-level theory. Here we briefly summarize the main elements of a new sea-level theory that includes sediment transport, and we apply this new theory to investigate crustal deformation and sea-level changes driven by sediment deposition on the Mississippi fan in the Gulf of Mexico. The calculations incorporate sediment transport from the start of the last glacial cycle through to the present and are constrained to conserve sediment and ocean mass. We compare relative sea level histories predicted with and without sediment transport at sites in and around the Gulf of Mexico, and we quantify the relative impacts of gravitational and deformational effects of sediment deposition. We also explore the extent to which sea-level changes associated with sediment transport impact the interpretation of paleo-sea-level records. Our new sea-level formulation provides an important component of a comprehensive coupling between sediment transfer and sea level on local, regional and global spatial scales, and on time scales extending from decades to tens of thousands of years. References: Farrell, W.E., and Clark, J.A., 1976. On postglacial sea level: Geophysical Journal of the Royal Astronomical Society, v. 46, p. 647-667.

  3. A fractal analysis of quaternary, Cenozoic-Mesozoic, and Late Pennsylvanian sea level changes

    NASA Technical Reports Server (NTRS)

    Hsui, Albert T.; Rust, Kelly A.; Klein, George D.

    1993-01-01

    Sea level changes are related to both climatic variations and tectonic movements. The fractal dimensions of several sea level curves were compared to a modern climatic fractal dimension of 1.26 established for annual precipitation records. A similar fractal dimension (1.22) based on delta(O-18/O-16) in deep-sea sediments has been suggested to characterize climatic change during the past 2 m.y. Our analysis indicates that sea level changes over the past 150,000 to 250,000 years also exhibit comparable fractal dimensions. Sea level changes for periods longer than about 30 m.y. are found to produce fractal dimensions closer to unity and Missourian (Late Pennsylvanian) sea level changes yield a fractal dimension of 1.41. The fact that these sea level curves all possess fractal dimensions less than 1.5 indicates that sea level changes exhibit nonperiodic, long-run persistence. The different fractal dimensions calculated for the various time periods could be the result of a characteristic overprinting of the sediment recored by prevailing processes during deposition. For example, during the Quaternary, glacio-eustatic sea level changes correlate well with the present climatic signature. During the Missourian, however, mechanisms such as plate reorganization may have dominated, resulting in a significantly different fractal dimension.

  4. Consequences of sea level variability and sea level rise for Cuban territory

    NASA Astrophysics Data System (ADS)

    Hernández, M.; Martínez, C. A.; Marzo, O.

    2015-03-01

    The objective of the present paper was to determine a first approximation of coastal zone flooding by 2100, taking into account the more persistent processes of sea level variability and non-accelerated linear sea level rise estimation to assess the main impacts. The annual linear rate of mean sea level rise in the Cuban archipelago, obtained from the longest tide gauge records, has fluctuated between 0.005 cm/year at Casilda and 0.214 cm/year at Siboney. The main sea level rise effects for the Cuban coastal zone due to climate change and global warming are shown. Monthly and annual mean sea level anomalies, some of which are similar to or higher than the mean sea level rise estimated for halfway through the present century, reinforce the inland seawater penetration due to the semi-daily high tide. The combination of these different events will result in the loss of goods and services, and require expensive investments for adaption.

  5. Indo-Pacific sea level variability during recent decades

    NASA Astrophysics Data System (ADS)

    Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.

    2016-12-01

    Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.

  6. Regional Sea Level Scenarios for Coastal Risk Management: Managing the Uncertainty of Future Sea Level Change and Extreme Water Levels for Department of Defense Coastal Sites Worldwide

    DTIC Science & Technology

    2016-04-01

    SERDP NOAA USACE Ocean MANAGING THE UNCERTAINTY OF FUTURE SEA LEVEL CHANGE AND EXTREME WATER LEVELS FOR DEPARTMENT OF DEFENSE COASTAL SITES...WORLDWIDE APRIL 2016 REGIONAL SEA LEVEL SCENARIOS FOR COASTAL RISK MANAGEMENT: COVER PHOTOS, FROM LEFT TO RIGHT: - Overwash of the island of Roi-Namur on...J.A., S. Gill, J. Obeysekera, W. Sweet, K. Knuuti, and J. Marburger. 2016. Regional Sea Level Scenarios for Coastal Risk Management: Managing the

  7. GGOS Focus Area 3: Understanding and Forecasting Sea-Level Rise and Variability

    NASA Astrophysics Data System (ADS)

    Schöne, Tilo; Shum, Ck; Tamisiea, Mark; Woodworth, Philip

    2017-04-01

    Sea level and its change have been measured for more than a century. Especially for coastal nations, deltaic regions, and coastal-oriented industries, observations of tides, tidal extremes, storm surges, and sea level rise at the interannual or longer scales have substantial impacts on coastal vulnerability towards resilience and sustainability of world's coastal regions. To date, the observed global sea level rise is largely associated with climate related changes. To find the patterns and fingerprints of those changes, and to e.g., separate the land motion from sea level signals, different monitoring techniques have been developed. Some of them are local, e.g., tide gauges, while others are global, e.g., satellite altimetry. It is well known that sea level change and land vertical motion varies regionally, and both signals need to be measured in order to quantify relative sea level at the local scale. The Global Geodetic Observing System (GGOS) and its services contribute in many ways to the monitoring of the sea level. These includes tide gauge observations, estimation of gravity changes, satellite altimetry, InSAR/Lidar, GNSS-control of tide gauges, providing ground truth sites for satellite altimetry, and importantly the maintenance of the International Reference Frame. Focus Area 3 (Understanding and Forecasting Sea-Level Rise and Variability) of GGOS establishes a platform and a forum for researchers and authorities dealing with estimating global and local sea level changes in a 10- to 30-year time span, and its project to the next century or beyond. It presents an excellent opportunity to emphasize the global, through to regional and local, importance of GGOS to a wide range of sea-level related science and practical applications. Focus Area 3 works trough demonstration projects to highlight the value of geodetic techniques to sea level science and applications. Contributions under a call for participation (http://www.ggos.org/Applications/theme3_SL.html) are welcome. The present status of GGOS Focus Area 3 will be highlighted. http://www.ggos-portal.org/lang_en/GGOS-Portal/EN/Themes/SeaLevel/seaLevel.html

  8. Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific — A regional assessment

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin J. E.; McInnes, Kathleen L.; McBride, John L.

    2012-01-01

    This paper reviews the current understanding of the effect of climate change on extreme sea levels in the South Pacific region. This region contains many locations that are vulnerable to extreme sea levels in the current climate, and projections indicate that this vulnerability will increase in the future. The recent publication of authoritative statements on the relationship between global warming and global sea level rise, tropical cyclones and the El Niño-Southern Oscillation phenomenon has motivated this review. Confident predictions of global mean sea level rise are modified by regional differences in the steric (density-related) component of sea level rise and changing gravitational interactions between the ocean and the ice sheets which affect the regional distribution of the eustatic (mass-related) contribution to sea level rise. The most extreme sea levels in this region are generated by tropical cyclones. The intensity of the strongest tropical cyclones is likely to increase, but many climate models project a substantial decrease in tropical cyclone numbers in this region, which may lead to an overall decrease in the total number of intense tropical cyclones. This projection, however, needs to be better quantified using improved high-resolution climate model simulations of tropical cyclones. Future changes in ENSO may lead to large regional variations in tropical cyclone incidence and sea level rise, but these impacts are also not well constrained. While storm surges from tropical cyclones give the largest sea level extremes in the parts of this region where they occur, other more frequent high sea level events can arise from swell generated by distant storms. Changes in wave climate are projected for the tropical Pacific due to anthropogenically-forced changes in atmospheric circulation. Future changes in sea level extremes will be caused by a combination of changes in mean sea level, regional sea level trends, tropical cyclone incidence and wave climate. Recommendations are given for research to increase understanding of the response of these factors to climate change. Implications of the results for adaptation research are also discussed.

  9. Eustatic control of turbidites and winnowed turbidites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, G.; Moiola, R.J.

    1982-05-01

    Global changes in sea level, primarily the results of tectonism and glaciation, control deep-sea sedimentation. During periods of low sea level the frequency of turbidity currents is greatly increased. Episodes of low sea level also cause vigorous contour currents, which winnow away the fines of turbidites. In the rock record, the occurrence of most turbidites and winnowed turbidities closely corresponds to global lowstands of paleo-sea level. This observation may be useful in predicting the occurrence of deep-sea reservoir facies in the geologic record.

  10. Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 65 wells. The highest measured water level was 111 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale and Arnold. The measured ground-water levels were 87 feet below sea level at Severndale, and 42 feet below sea level at Arnold. There was also a cone of depression covering a large area in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The ground-water levels measured were as low as 219 feet below sea level at Waldorf, 187 feet below sea level at La Plata, 106 feet below sea level at Indian Head, and 89 feet below sea level at the Morgantown power plant.

  11. Observed mean sea level changes around the North Sea coastline from 1800 to present

    NASA Astrophysics Data System (ADS)

    Wahl, T.; Haigh, I. D.; Woodworth, P. L.; Albrecht, F.; Dillingh, D.; Jensen, J.; Nicholls, R. J.; Weisse, R.; Wöppelmann, G.

    2013-09-01

    This paper assesses historic changes in mean sea level around the coastline of the North Sea, one of the most densely populated coasts in the world. Typically, such analyses have been conducted at a national level, and detailed geographically wider analyses have not been undertaken for about 20 years. We analyse long records (up to 200 years) from 30 tide gauge sites, which are reasonably uniformly distributed along the coastline, and: (1) calculate relative sea level trends; (2) examine the inter-annual and decadal variations; (3) estimate regional geocentric (sometimes also referred to as 'absolute') sea level rise throughout the 20th century; and (4) assess the evidence for regional acceleration of sea-level rise. Relative sea level changes are broadly consistent with known vertical land movement patterns. The inter-annual and decadal variability is partly coherent across the region, but with some differences between the Inner North Sea and the English Channel. Data sets from various sources are used to provide estimates of the geocentric sea level changes. The long-term geocentric mean sea level trend for the 1900 to 2011 period is estimated to be 1.5 ± 0.1 mm/yr for the entire North Sea region. The trend is slightly higher for the Inner North Sea (i.e. 1.6 ± 0.1 mm/yr), and smaller but not significantly different on the 95% confidence level for the English Channel (i.e. 1.2 ± 0.1 mm/yr). The uncertainties in the estimates of vertical land movement rates are still large, and the results from a broad range of approaches for determining these rates are not consistent. Periods of sea level rise acceleration are detected at different times throughout the last 200 years and are to some extent related to air pressure variations. The recent rates of sea level rise (i.e. over the last two to three decades) are high compared to the long-term average, but are comparable to those which have been observed at other times in the late 19th and 20th century.

  12. Sea Level Changes: Determination and Effects

    NASA Astrophysics Data System (ADS)

    Woodworth, P. L.; Pugh, D. T.; DeRonde, J. G.; Warrick, R. G.; Hannah, J.

    The measurement of sea level is of fundamental importance to a wide range of research in climatology, oceanography, geology and geodesy. This volume attempts to cover many aspects of the field. The volume opens with a description by Bolduc and Murty of one of the products stemming from the development of tide gauge networks in the northern and tropical Atlantic. This work is relevant to the growth of the Global Sea Level Observing System (GLOSS), the main goal of which is to provide the world with an efficient, coherent sea level monitoring system for océanographie and climatological research. The subsequent four papers present results from the analysis of existing tide gauge data, including those datasets available from the Permanent Service for Mean Sea Level and the TOGA Sea Level Center. Two of the four, by Wroblewski and by Pasaric and Orlic, are concerned with European sea level changes, while Yu Jiye et al. discuss inter-annual changes in the Pacific, and Wang Baocan et al. describe variability in the Changjiang estuary in China. The papers by El- Abd and A wad, on Red Sea levels, are the only contributions to the volume from the large research community of geologists concerned with sea level changes.

  13. Seasonal Sea-Level Variations in San Francisco Bay in Response to Atmospheric Forcing, 1980

    USGS Publications Warehouse

    Wang, Jingyuan; Cheng, R.T.; Smith, P.C.

    1997-01-01

    The seasonal response of sea level in San Francisco Bay (SFB) to atmospheric forcing during 1980 is investigated. The relations between sea-level data from the Northern Reach, Central Bay and South Bay, and forcing by local wind stresses, sea level pressure (SLP), runoff and the large scale sea level pressure field are examined in detail. The analyses show that the sea-level elevations and slopes respond to the along-shore wind stress T(V) at most times of the year, and to the cross-shore wind stress T(N) during two transition periods in spring and autumn. River runoff raises the sea-level elevation during winter. It is shown that winter precipitation in the SFB area is mainly attributed to the atmospheric circulation associated with the Alcutian Low, which transports the warm, moist air into the Bay area. A multiple linear regression model is employed to estimate the independent contributions of barometric pressure and wind stress to adjusted sea level. These calculations have a simple dynamical interpretation which confirms the importance of along-shore wind to both sea level and north-south slope within the Bay.

  14. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction

    PubMed Central

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A.; Leorri, Eduardo

    2016-01-01

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches. PMID:27929122

  15. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction.

    PubMed

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A; Leorri, Eduardo

    2016-12-08

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.

  16. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Legeais, Jean-François; Ablain, Michaël; Zawadzki, Lionel; Zuo, Hao; Johannessen, Johnny A.; Scharffenberg, Martin G.; Fenoglio-Marc, Luciana; Joana Fernandes, M.; Baltazar Andersen, Ole; Rudenko, Sergei; Cipollini, Paolo; Quartly, Graham D.; Passaro, Marcello; Cazenave, Anny; Benveniste, Jérôme

    2018-02-01

    Sea level is a very sensitive index of climate change since it integrates the impacts of ocean warming and ice mass loss from glaciers and the ice sheets. Sea level has been listed as an essential climate variable (ECV) by the Global Climate Observing System (GCOS). During the past 25 years, the sea level ECV has been measured from space by different altimetry missions that have provided global and regional observations of sea level variations. As part of the Climate Change Initiative (CCI) program of the European Space Agency (ESA) (established in 2010), the Sea Level project (SL_cci) aimed to provide an accurate and homogeneous long-term satellite-based sea level record. At the end of the first phase of the project (2010-2013), an initial version (v1.1) of the sea level ECV was made available to users (Ablain et al., 2015). During the second phase of the project (2014-2017), improved altimeter standards were selected to produce new sea level products (called SL_cci v2.0) based on nine altimeter missions for the period 1993-2015 (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612; Legeais and the ESA SL_cci team, 2016c). Corresponding orbit solutions, geophysical corrections and altimeter standards used in this v2.0 dataset are described in detail in Quartly et al. (2017). The present paper focuses on the description of the SL_cci v2.0 ECV and associated uncertainty and discusses how it has been validated. Various approaches have been used for the quality assessment such as internal validation, comparisons with sea level records from other groups and with in situ measurements, sea level budget closure analyses and comparisons with model outputs. Compared with the previous version of the sea level ECV, we show that use of improved geophysical corrections, careful bias reduction between missions and inclusion of new altimeter missions lead to improved sea level products with reduced uncertainties on different spatial and temporal scales. However, there is still room for improvement since the uncertainties remain larger than the GCOS requirements (GCOS, 2011). Perspectives on subsequent evolution are also discussed.

  17. Impact of asymmetry in the total ozone distribution in Antarctic region to the South Ocean ecosystem

    NASA Astrophysics Data System (ADS)

    Kovalenok, S.; Evtushevsky, A.; Grytsai, A.; Milinevsky, G.

    2009-04-01

    Impact of asymmetry in the total ozone distribution in Antarctic region to South Ocean ecosystem is studied. The existence of the considerable zonal asymmetry in total ozone distribution over Antarctica observed last decades based on the satellite TOMS measurements in 1979-2005 due to existence of quasi-stationary planetary waves in a polar stratosphere. As was shown by authors earlier in the latitudinal interval of 55-75°S in Antarctic spring months (Sep-Nov) the region of zonal total ozone minimum experienced the systematic spatial drift to the east. In the same period a minimum and maximum of quasi-stationary wave in TOC distribution are located: minimum over the Antarctic Peninsula and Weddell Sea area, and maximum in the Ross Sea area. We expect that zonal asymmetry in total ozone distribution and its long-term spatial changes should impact to South Ocean ecosystem food chain, especially in primary level. The systematic eastern shift of the quasi-stationary minimum in ozone distribution over north Weddell Sea area should cause the increased UV radiation on sea surface in comparison to Ross Sea area, where the lack of UVR should exist in spring month. To study this influence the available data of phytoplankton distribution in South Ocean in 1997-2007 were analyzed. The results of analysis in connections with Antarctic Peninsula regional climate warming are discussed. The research was partly supported by project 06BF051-12 of the National Taras Shevchenko University of Kyiv.

  18. Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasin, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 64 wells. The highest measured water level was 110 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale, Broad Creek, and Arnold. The measured groundwater levels were 99 feet below sea level at Severndale, 50 feet below sea level at Broad Creek, and 36 feet below sea level at Arnold. There was also a cone of depression in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The groundwater levels measured were as low as 215 feet below sea level at Waldorf, 149 feet below sea level at La Plata, 121 feet below sea level at Indian Head, and 96 feet below sea level at the Morgantown power plant. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  19. Sea level response to ENSO along the central California coast: How the 1997-1998 event compares with the historic record

    USGS Publications Warehouse

    Ryan, H.F.; Noble, M.

    2002-01-01

    Long-term monthly sea level and sea surface temperature (SST) anomalies from central California show that during winter months, positive anomalies are associated with El Nin??o events and the negative ones with La Nin??a events. There is no significant impact on monthly mean anomalies associated with Pacific decadal oscillations, although there is a tendency for more extreme events and greater variance during positive decadal oscillations. The very strong 1997-1998 El Nin??o was analyzed with respect to the long-term historic record to assess the forcing mechanisms for sea level and SST. Beginning in the spring of 1997, we observed several long-period (> 30days) fluctuations in daily sea level with amplitudes of over 10 cm at San Francisco, California. Fluctuations of poleward long-period alongshore wind stress anomalies (AWSA) are coherent with the sea level anomalies. However, the wind stress cannot entirely account for the observed sea level signals. The sea level fluctuations are also correlated with sea level fluctuations observed further south at Los Angeles and Tumaco, Columbia, which showed a poleward phase propagation of the sea level signal. We suggest that the sea level fluctuations were, to a greater degree, forced by the passage of remotely generated and coastally trapped waves that were generated along the equator and propagated to the north along the west coast of North America. However, both local and remote AWSA can significantly modulate the sea level signals. The arrival of coastally trapped waves began in the spring of 1997, which is earlier than previous strong El Nin??o events such as the 1982-1983 event. Published by Elsevier Science Ltd.

  20. High-Energy Neutrino Searches in the Mediterranean Sea: probing the Universe with antares and km3net-arca

    NASA Astrophysics Data System (ADS)

    Kouchner, Antoine; "> antares, km3net Collaborations

    2017-09-01

    antares is a first generation neutrino telescope, built in the deep sea. We present here its latest results, focusing on the constraints placed on the origin of the cosmic signal observed by the icecube detector. In parallel to the antares results, we discuss the expected performance of the next generation detector under construction in the Mediterranean Sea - km3net- and in particular its high-energy component arca.

  1. Detection of the fast Kelvin wave teleconnection due to El Niño-Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Meyers, Steven D.; Melsom, Arne; Mitchum, Gary T.; O'Brien, James J.

    1998-11-01

    Previous analyses of the ocean state along the western American coast have often indicated unexpectedly slow and limited propagation of coastally trapped Kelvin waves associated with the El Niño-Southern Oscillation. In contrast, theoretical and numerical ocean models demonstrate that these Kelvin waves are a rapid and long-range teleconnection between the low- and high-latitude Pacific Ocean, strongly impacting both the surface coastal currents and nutrient upwelling. Sea level variations along the western coast of North America are reexamined under the assumption that tropically forced Kelvin waves are produced in bursts of several months duration. A cross-correlation analysis, restricted to mid-1982 to mid-1983, is performed between Galapagos Island and stations along western Central and North America. A coastally trapped Kelvin wave is revealed to propagate at a speed of 2-3 m s-1 from the tropical Pacific to the Aleutian Island Chain. The observed phase speed agrees with the estimated speed of a Kelvin wave based on the average density profile of the ocean near the coast. Weaker El Niño events in 1986/1987 and 1991/1992 appear to contain a combination of this remote signal and local wind forcing. The wave propagation speed calculated from the spectral phase is shown to be sensitive to the presence of other (noise) processes in the observations. This is demonstrated through an analysis of a synthetic sea level data set that contains many of the essential features of the real sea level data. A relatively small level of red noise can give a 100% expected error in the estimated propagation speed. This suggests a new explanation for this important inconsistency within dynamical oceanography.

  2. Coastal marsh response to historical and future sea-level acceleration

    USGS Publications Warehouse

    Kirwan, M.; Temmerman, S.

    2009-01-01

    We consider the response of marshland to accelerations in the rate of sea-level rise by utilizing two previously described numerical models of marsh elevation. In a model designed for the Scheldt Estuary (Belgium-SW Netherlands), a feedback between inundation depth and suspended sediment concentrations allows marshes to quickly adjust their elevation to a change in sea-level rise rate. In a model designed for the North Inlet Estuary (South Carolina), a feedback between inundation and vegetation growth allows similar adjustment. Although the models differ in their approach, we find that they predict surprisingly similar responses to sea-level change. Marsh elevations adjust to a step change in the rate of sea-level rise in about 100 years. In the case of a continuous acceleration in the rate of sea-level rise, modeled accretion rates lag behind sea-level rise rates by about 20 years, and never obtain equilibrium. Regardless of the style of acceleration, the models predict approximately 6-14 cm of marsh submergence in response to historical sea-level acceleration, and 3-4 cm of marsh submergence in response to a projected scenario of sea-level rise over the next century. While marshes already low in the tidal frame would be susceptible to these depth changes, our modeling results suggest that factors other than historical sea-level acceleration are more important for observations of degradation in most marshes today.

  3. Projecting future sea level

    USGS Publications Warehouse

    Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard

    2006-01-01

    California’s coastal observations and global model projections indicate that California’s open coast and estuaries will experience increasing sea levels over the next century. Sea level rise has affected much of the coast of California, including the Southern California coast, the Central California open coast, and the San Francisco Bay and upper estuary. These trends, quantified from a small set of California tide gages, have ranged from 10–20 centimeters (cm) (3.9–7.9 inches) per century, quite similar to that estimated for global mean sea level. So far, there is little evidence that the rate of rise has accelerated, and the rate of rise at California tide gages has actually flattened since 1980, but projections suggest substantial sea level rise may occur over the next century. Climate change simulations project a substantial rate of global sea level rise over the next century due to thermal expansion as the oceans warm and runoff from melting land-based snow and ice accelerates. Sea level rise projected from the models increases with the amount of warming. Relative to sea levels in 2000, by the 2070–2099 period, sea level rise projections range from 11–54 cm (4.3–21 in) for simulations following the lower (B1) greenhouse gas (GHG) emissions scenario, from 14–61 cm (5.5–24 in) for the middle-upper (A2) emission scenario, and from 17–72 cm (6.7–28 in) for the highest (A1fi) scenario. In addition to relatively steady secular trends, sea levels along the California coast undergo shorter period variability above or below predicted tide levels and changes associated with long-term trends. These variations are caused by weather events and by seasonal to decadal climate fluctuations over the Pacific Ocean that in turn affect the Pacific coast. Highest coastal sea levels have occurred when winter storms and Pacific climate disturbances, such as El Niño, have coincided with high astronomical tides. This study considers a range of projected future global sea level rises in examining possible impacts at California coastal and estuarine stations. Two climate models and three scenarios considered in this scenarios study provide a set of possible future weather and short-period climate fluctuations, and a range of potential long-term sea level rise values. A range of mean sea level rise was considered in combination with weather and El Niño fluctuations extracted from two global climate models and two GHG emissions scenarios. The mean sea level rise values, determined from a survey of several climate models, range from approximately 10–80 cm (3.9–31 in) between 2000 and 2100. The middle to higher end of this range would substantially exceed the historical rate of sea level rise of 15–20 cm (5.9–7.9 in)per century observed at San Francisco and San Diego during the last 100 years. Gradual sea level rise progressively worsens the impacts of high tides and the surge and waves associated with storms. The potential for impacts of future sea level rise was assessed from the occurrence of hourly sea level extremes. The occurrence of extreme events follows a sharply escalating pattern as the magnitude of future sea level rise increases. The confluence of Low barometric pressures from storms and the presence large waves at the same time substantially increases the likelihood of high, damaging sea levels along the California coast. Similarly, astronomical tides and disturbances in sea level that are caused by weather and climate fluctuations are x transmitted into the San Francisco Bay and Delta, and on into the lower reaches of the Sacramento River. In addition to elevating Bay and Delta sea levels directly through inverse barometer and wind effects, storms may generate heavy precipitation and high fresh water runoff and cause floods in the Sacramento/San Joaquin Delta, increasing the potential for inundation of levees and other structures. There may also be increased risk of levee failure due to the hydraulics and geometry of these structures. Rising sea levels from climate change will increase the frequency and duration of extreme high water levels, causing historical coastal and San Francisco Bay/Delta structure design criteria to be exceeded.

  4. Investigating the Relationship of Late Pleistocene Terrace Formation and Channel Dynamics within the Texas Gulf Coastal Plain

    NASA Astrophysics Data System (ADS)

    Ellis, T.; Hassenruck-Gudipati, H. J.; Mohrig, D. C.; Goudge, T. A.

    2016-12-01

    Terrace formation along coastal rivers is often assumed to be a direct result of punctuated sea-level fall. However, it has been experimentally shown that terraces commonly form under conditions of constant base level fall. In addition, it has been demonstrated that migrating channels in a bedrock system with steady state rock uplift can produce similar looking terraces. The lower Trinity River, in East Texas, is an ideal location to study allogenic (punctuated external forcing) versus autogenic terrace-building mechanisms using lidar measurements and OSL depositional age constraints (Gavin, 2005). To understand paleochannel influence on terrace construction, we measured channel characteristics for 27 preserved segments of paleochannels that are late Pleistocene in age and associated with 27 of 34 measured terraces along about 90 km of the modern river. There is no clear clustering of terrace elevation that might be tied to distinct sea level change events. Rather, the range of mean terrace elevations is indicative of a more constant system transformation. Based on lidar measurements, all paleochannels are larger than the modern channel, suggesting a wetter climate or larger watershed. Channel width measurements are used to quantify these changes in paleoflow discharge. Paleochannel width, radius of curvature and terrace slope measurements are used to characterize the movement of an incising channel. Based upon OSL terrace dates (Gavin, 2005), known global climate variations can be compared to discharge estimates and investigated as a predictor of terrace formation. If terrace formation occurred during distinct intervals of sea level fall, terraces with similar calculated paleoflow discharges are expected to plot along specific downstream elevation profiles. Assuming avulsion-driven terrace formation occurs at locations of higher channel sinuosity, the sinuosity of paleochannels on terraces is compared to the sinuosity of the modern river. Higher paleo-sinuosity would indicate preferential terrace formation at avulsion prone channel bends. Many factors may contribute to terrace formation during sea level fall and as such, we seek correlations between paleochannel morphology and terrace characteristics to distinguish between different terrace forming mechanisms.

  5. Timescales for detecting a significant acceleration in sea level rise

    PubMed Central

    Haigh, Ivan D.; Wahl, Thomas; Rohling, Eelco J.; Price, René M.; Pattiaratchi, Charitha B.; Calafat, Francisco M.; Dangendorf, Sönke

    2014-01-01

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records. PMID:24728012

  6. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records

    NASA Astrophysics Data System (ADS)

    Chappell, John; Omura, Akio; Esat, Tezer; McCulloch, Malcolm; Pandolfi, John; Ota, Yoko; Pillans, Brad

    1996-06-01

    A major discrepancy between the Late Quaternary sea level changes derived from raised coral reef terraces at the Huon Peninsula in Papua New Guinea and from oxygen isotopes in deep sea cores is resolved. The two methods agree closely from 120 ka to 80 ka and from 20 ka to 0 ka (ka = 1000 yr before present), but between 70 and 30 ka the isotopic sea levels are 20-40 m lower than the Huon Peninsula sea levels derived in earlier studies. New, high precision U-series age measurements and revised stratigraphic data for Huon Peninsula terraces aged between 30 and 70 ka now give similar sea levels to those based on deep sea oxygen isotope data planktonic and benthic δ 18O data. Using the sea level and deep sea isotopic data, oxygen isotope ratios are calculated for the northern continental ice sheets through the last glacial cycle and are consistent with results from Greenland ice cores. The record of ice volume changes through the last glacial cycle now appears to be reasonably complete.

  7. Decadal sea level variability in the East China Sea linked to the North Pacific Gyre Oscillation

    NASA Astrophysics Data System (ADS)

    Moon, Jae-Hong; Song, Y. Tony

    2017-07-01

    In view of coastal community's need for adapting to sea level rise (SLR), understanding and predicting regional variability on decadal to longer time scales still remain a challenging issue in SLR research. Here, we have examined the low-frequency sea level signals in the East China Sea (ECS) from the 50-year hindcast of a non-Boussinesq ocean model in comparison with data sets from altimeters, tide-gauges, and steric sea level produced by in-situ profiles. It is shown that the mean sea levels in the ECS represent significant decadal fluctuations over the past 50 years, with a multi-decadal trend shift since the mid-1980s compared to the preceding 30 years. The decadal fluctuations in sea level are more closely linked to the North Pacific Gyre Oscillation (NPGO) rather than the Pacific Decadal Oscillation, which reflects the multi-decadal trend shift. A composite analysis indicates that wind patterns associated with the NPGO is shown to control the decadal variability of the western subtropical North Pacific. A positive NPGO corresponds to cyclonic wind stress curl anomaly in the western subtropical regions that results in a higher sea level in the ECS, particularly along the continental shelf, and lower sea levels off the ECS. The reverse occurs in years of negative NPGO.

  8. MIS 5e sea level: up to what point can we use literature reviews to answer the most pressing questions on the Last Interglacial ice sheets?

    NASA Astrophysics Data System (ADS)

    Rovere, A.; Raymo, M. E.

    2014-12-01

    During MIS 5e (between ~128 and 116 kyr BP) greenhouse gas concentrations were comparable to pre-industrial levels, summer insolation was higher by ~10% at high latitudes and polar temperatures in both hemispheres were about 3-5 °C warmer than today. Sea level (SL) at this time has been a subject of numerous studies (and some debate) with ~1000 sites with MIS 5e sea level markers recognized worldwide. Recently, Kopp et al. (Nature, 2009) and Dutton & Lambeck (Science, 2012) analyzed worldwide datasets of sea level markers pertaining to the last interglacial. After accounting for GIA, they reached similar conclusions that eustatic (i.e., globally averaged) sea level (ESL) was between +5 and +9.4 m above modern during MIS 5e. Furthermore, Kopp et al. (Nature, 2009; GJI, 2013) suggest that sea level was not uniform during the LIG, but instead underwent at least two rapid oscillations including a rapid late 5e rise first proposed by Hearty et al. (QSR, 2007) and later by O'Leary et al. (Nat. Geo., 2013). Investigating the temporal and geographic variability of MIS 5e sea level opens new lines of research, in particular the possibility to fingerprint (Hay et al., QSR, 2014) the source of the proposed rapid ice sheet collapse near the end of the Last Interglacial. In this presentation we ask: can we use a database of published sea level estimates for this purpose? To answer this question, we built a relative sea level (RSL) database using RSLcalc 2.0; this is a relational database specifically designed to review relative sea level data points while keeping all the relevant information contained in the original publications. RSlcalc allows to estimate the measurement error (on the actual elevation of the SL feature), the error on the indicative range (the elevation range occupied by a sea level indicator) as well as the reference water level (the relationship between the marker and the former sea level). We show that the majority of published data have an accuracy of few meters at best and, in most cases, are not precise enough for sea level fingerprinting. We conclude that the use of topographic-grade survey techniques is paramount in the study of paleo-sea levels and that revisiting known sites using such techniques is a priority for the understanding of polar ice volume and sea level changes during past interglacials

  9. Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance.

    PubMed

    Grazioli, Jacopo; Madeleine, Jean-Baptiste; Gallée, Hubert; Forbes, Richard M; Genthon, Christophe; Krinner, Gerhard; Berne, Alexis

    2017-10-10

    Snowfall in Antarctica is a key term of the ice sheet mass budget that influences the sea level at global scale. Over the continental margins, persistent katabatic winds blow all year long and supply the lower troposphere with unsaturated air. We show that this dry air leads to significant low-level sublimation of snowfall. We found using unprecedented data collected over 1 year on the coast of Adélie Land and simulations from different atmospheric models that low-level sublimation accounts for a 17% reduction of total snowfall over the continent and up to 35% on the margins of East Antarctica, significantly affecting satellite-based estimations close to the ground. Our findings suggest that, as climate warming progresses, this process will be enhanced and will limit expected precipitation increases at the ground level.

  10. Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance

    PubMed Central

    Grazioli, Jacopo; Madeleine, Jean-Baptiste; Gallée, Hubert; Forbes, Richard M.; Genthon, Christophe; Krinner, Gerhard; Berne, Alexis

    2017-01-01

    Snowfall in Antarctica is a key term of the ice sheet mass budget that influences the sea level at global scale. Over the continental margins, persistent katabatic winds blow all year long and supply the lower troposphere with unsaturated air. We show that this dry air leads to significant low-level sublimation of snowfall. We found using unprecedented data collected over 1 year on the coast of Adélie Land and simulations from different atmospheric models that low-level sublimation accounts for a 17% reduction of total snowfall over the continent and up to 35% on the margins of East Antarctica, significantly affecting satellite-based estimations close to the ground. Our findings suggest that, as climate warming progresses, this process will be enhanced and will limit expected precipitation increases at the ground level. PMID:28973875

  11. An Integrated Framework to Analyze Local Decision Making and Adaptation to Sea-Level Rise in Coastal Regions in Santos-Brazil, Broward County-USA and Selsey-UK

    NASA Astrophysics Data System (ADS)

    Marengo, J. A.; Muller-Karger, F. E.; Pelling, M.; Reynolds, C. J.; Merril, S. B.; Nunes, L. H.; Paterson, S.; Gray, A.; Lockman, J. T.; Kartez, J.; Moreira, F.; Greco, R.; Harari, J.; Souza, C. G.; Alves, L. M.; Hosokawa, E.; Tabuchi, E.

    2016-12-01

    One of the clear signals of present climate change is sea level rise (SLR). There is mounting evidence of other changes, including warmer temperatures in many localities, and changes in the intensity and frequency of extreme meteorological events, including wind, rain, and waves. A rising sea level combined with these factors and tides is expected to affect coastal communities through a number of processes, including increased risk of flooding and contamination of water sources. An international collaboration between Brazil, the United Kingdom, and the United States was designed to evaluate local decision making processes and to open convening space for local urban managers to reflect on possible actions toward adaption to SLR and the constraints imposed by framing administrative and institutional structures. The overall goal of the project is to help coastal communities better understand factors that facilitate or hinder their intrinsic, local decision-making processes related to planning for adaptation to risk. The project carried out these tests in 2014 and 2015 in one coastal city in each partnering nation. The framework was designed by an interdisciplinary team that incorporated social and natural scientists from these three nations, and which included local government officials. To support the overall goal, this paper 1) discusses some aspects of adaptive capacity and participant survey research conducted through the project, 2) presents technical modelling results for adaptation options that may reduce the potential damages of SLR and storm surge in each location, and 3) identifies project design considerations for similar transnational adaptation projects.

  12. Sequence stratigraphy of an Oligocene carbonate shelf, Central Kalimantan, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saller, A.; Armin, R.; Ichram, L.O.

    1991-03-01

    Interpretations of Oligocene shelfal limestones from Central Kalimantan, Indonesia, suggest caution in predicting sea-level lowstands from seismic reflector patterns or published sea-level curves. Three major depositional sequences, each 200-400 m thick, were delineated in outcrops and seismic lines: late Eocene to early Oligocene (34-38 Ma), middle Oligocene (29.7-32 Ma), and early late Oligocene (28-29.7 Ma). The lowest sequence is mainly shale with tin sandstones and limestones (large-foram wackestone). The middle and upper sequences are carbonate with transgressive systems tracts (TSTs) overlain by highstand systems tracts (HSTs). TSTs contain large-foram wackestone-packstones and coral wackestone-packstones. HSTs are characterized by (1) shale andmore » carbonate debris flows deposited on the lower slope, (2) argillaceous large-foram wackestones on the upper slope, (3) discontinuous coral wackestones and boundstones on the shelf margin, (4) bioclastic packstones and grainstones on backreef flats and shelf-margin shoals, and (5) branching-coral and foraminiferal wackestones in the lagoon. Bases of sequences are characterized by transgression and onlap. Deepending and/or drowning of the carbonate shelf occurred at the top of the middle and upper sequences. Basinal strata that apparently onlap the middle and upper carbonate shelf margins might be misinterpreted as lowstand deposits, although regional studies indicate they are prodelta sediments baselapping against the shelf. Shallowing the subaerial exposure of the carbonates might be expected during the large mid-Oligocene (29.5-30 Ma) sea-level drop of Haq et al. (1987), instead of the observed deepening and local drowning.« less

  13. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems

    USGS Publications Warehouse

    Larsen, Laurel G.; Moseman, Serena; Santoro, Alyson; Hopfensperger, Kristine; Burgin, Amy

    2010-01-01

    To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.

  14. Coral Bleaching Products - Office of Satellite and Product Operations

    Science.gov Websites

    weeks. One DHW is equivalent to one week of sea surface temperatures one degree Celsius greater than the expected summertime maximum. Two DHWs are equivalent to two weeks at one degree above the expected summertime maximum OR one week of two degrees above the expected summertime maximum. Also called Coral Reef

  15. A 6,700 years sea-level record based on French Polynesian coral reefs

    NASA Astrophysics Data System (ADS)

    Hallmann, Nadine; Camoin, Gilbert; Eisenhauer, Anton; Vella, Claude; Samankassou, Elias; Botella, Albéric; Milne, Glenn; Fietzke, Jan; Dussouillez, Philippe

    2015-04-01

    Sea-level change during the Mid- to Late Holocene has a similar amplitude to the sea-level rise that is likely to occur before the end of the 21st century providing a unique opportunity to study the coastal response to sea-level change and to reveal an important baseline of natural climate variability prior to the industrial revolution. Mid- to Late Holocene relative sea-level change in French Polynesia was reconstructed using coral reef records from ten islands, which represent ideal settings for accurate sea-level studies because: 1) they can be regarded as tectonically stable during the relevant period (slow subsidence), 2) they are located far from former ice sheets (far-field), 3) they are characterized by a low tidal amplitude, and 4) they cover a wide range of latitudes which produces significantly improved constraints on GIA (Glacial Isostatic Adjustment) model parameters. Absolute U/Th dating of in situ coral colonies and their accurate positioning via GPS RTK (Real Time Kinematic) measurements is crucial for an accurate reconstruction of sea-level change. We focus mainly on the analysis of coral microatolls, which are sensitive low-tide recorders, as their vertical accretion is limited by the mean low water springs level. Growth pattern analysis allows the reconstruction of low-amplitude, high-frequency sea-level changes on centennial to sub-decadal time scales. A sea-level rise of less than 1 m is recorded between 6 and 3-3.5 ka, and is followed by a gradual fall in sea level that started around 2.5 ka and persisted until the past few centuries. The reconstructed sea-level curve therefore extends the Tahiti sea-level curve [Deschamps et al., 2012, Nature, 483, 559-564], and is in good agreement with a geophysical model tuned to fit far-field deglacial records [Bassett et al., 2005, Science, 309, 925-928].

  16. Sea level and turbidity controls on mangrove soil surface elevation change

    USGS Publications Warehouse

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  17. Sea level history in Beringia during the past 250,000 years

    USGS Publications Warehouse

    Hopkins, D.M.

    1973-01-01

    This paper attempts to relate current knowledge of sea-level history in Beringia to the Broecker-van Donk "Termination" concept of climatic and sea-level history. The Einahnuhtan transgression is thought to represent Termination III, which according to Broecker and van Donk, took place about 225,000 y.a. The Kotzebuan transgression is thought to represent a positive fluctuation that modulated the generally falling sea level during the ensuing 100,000 yr. Sea level probably fell to about -135 m in the Bering Sea area during the maximum phase of the penultimate glaciation. The two Pelukian shorelines probably represent Termination II (about 125,000 yr BP in the Broecker-van Donk chronology) and one of the two positive fluctuations that modulated the generally falling sea level of early Wisconsinan time, about 105,000 and 80,000 y.a. according to Broecker and van Donk. Another positive modulation brought sea level to at least -20 m, about 30,000 y.a. Sea level evidently fell to between -90 and -100 m during the late Wisconsinan regression, but a substantial part of the outer Bering shelf remained submerged. Submerged shoreline features at -38m, -30 m, -24 to -20 m, and -12 to -10 m represent stillstands or slight regressions that modulated Termination I, the late Wisconsinan, and early Holocene recovery of sea level. ?? 1973.

  18. Evidence for the timing of sea-level events during MIS 3

    NASA Astrophysics Data System (ADS)

    Siddall, M.

    2005-12-01

    Four large sea-level peaks of millennial-scale duration occur during MIS 3. In addition smaller peaks may exist close to the sensitivity of existing methods to derive sea level during these periods. Millennial-scale changes in temperature during MIS 3 are well documented across much of the planet and are linked in some unknown, yet fundamental way to changes in ice volume / sea level. It is therefore highly likely that the timing of the sea level events during MIS 3 will prove to be a `Rosetta Stone' for understanding millennial scale climate variability. I will review observational and mechanistic arguments for the variation of sea level on Antarctic, Greenland and absolute time scales.

  19. Precise mean sea level measurements using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and temporal resolution higher than that available from altimeter data.

  20. Calibration Adjustments to the MODIS Aqua Ocean Color Bands

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard

    2012-01-01

    After the end of the SeaWiFS mission in 2010 and the MERIS mission in 2012, the ocean color products of the MODIS on Aqua are the only remaining source to continue the ocean color climate data record until the VIIRS ocean color products become operational (expected for summer 2013). The MODIS on Aqua is well beyond its expected lifetime, and the calibration accuracy of the short wavelengths (412nm and 443nm) has deteriorated in recent years_ Initially, SeaWiFS data were used to improve the MODIS Aqua calibration, but this solution was not applicable after the end of the SeaWiFS mission_ In 2012, a new calibration methodology was applied by the MODIS calibration and support team using desert sites to improve the degradation trending_ This presentation presents further improvements to this new approach. The 2012 reprocessing of the MODIS Aqua ocean color products is based on the new methodology.

  1. Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: Application to the Ebro Delta (Spain)

    NASA Astrophysics Data System (ADS)

    Sayol, J. M.; Marcos, M.

    2018-02-01

    This study presents a novel methodology to estimate the impact of local sea level rise and extreme surges and waves in coastal areas under climate change scenarios. The methodology is applied to the Ebro Delta, a valuable and vulnerable low-lying wetland located in the northwestern Mediterranean Sea. Projections of local sea level accounting for all contributions to mean sea level changes, including thermal expansion, dynamic changes, fresh water addition and glacial isostatic adjustment, have been obtained from regionalized sea level projections during the 21st century. Particular attention has been paid to the uncertainties, which have been derived from the spread of the multi-model ensemble combined with seasonal/inter-annual sea level variability from local tide gauge observations. Besides vertical land movements have also been integrated to estimate local relative sea level rise. On the other hand, regional projections over the Mediterranean basin of storm surges and wind-waves have been used to evaluate changes in extreme events. The compound effects of surges and extreme waves have been quantified using their joint probability distributions. Finally, offshore sea level projections from extreme events superimposed to mean sea level have been propagated onto a high resolution digital elevation model of the study region in order to construct flood hazards maps for mid and end of the 21st century and under two different climate change scenarios. The effect of each contribution has been evaluated in terms of percentage of the area exposed to coastal hazards, which will help to design more efficient protection and adaptation measures.

  2. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing.

    PubMed

    Li, Mingsong; Hinnov, Linda A; Huang, Chunju; Ogg, James G

    2018-03-08

    In ancient hothouses lacking ice sheets, the origins of large, million-year (myr)-scale sea-level oscillations remain a mystery, challenging current models of sea-level change. To address this mystery, we develop a sedimentary noise model for sea-level changes that simultaneously estimates geologic time and sea level from astronomically forced marginal marine stratigraphy. The noise model involves two complementary approaches: dynamic noise after orbital tuning (DYNOT) and lag-1 autocorrelation coefficient (ρ 1 ). Noise modeling of Lower Triassic marine slope stratigraphy in South China reveal evidence for global sea-level variations in the Early Triassic hothouse that are anti-phased with continental water storage variations in the Germanic Basin. This supports the hypothesis that long-period (1-2 myr) astronomically forced water mass exchange between land and ocean reservoirs is a missing link for reconciling geological records and models for sea-level change during non-glacial periods.

  3. On the relationship between sea level and Spartina alterniflora production

    USGS Publications Warehouse

    Kirwan, Matthew L.; Christian, Robert R.; Blum, Linda K.; Brinson, Mark M.

    2012-01-01

    A positive relationship between interannual sea level and plant growth is thought to stabilize many coastal landforms responding to accelerating rates of sea level rise. Numerical models of delta growth, tidal channel network evolution, and ecosystem resilience incorporate a hump-shaped relationship between inundation and plant primary production, where vegetation growth increases with sea level up to an optimum water depth or inundation frequency. In contrast, we use decade-long measurements of Spartina alterniflora biomass in seven coastal Virginia (USA) marshes to demonstrate that interannual sea level is rarely a primary determinant of vegetation growth. Although we find tepid support for a hump-shaped relationship between aboveground production and inundation when marshes of different elevation are considered, our results suggest that marshes high in the intertidal zone and low in relief are unresponsive to sea level fluctuations. We suggest existing models are unable to capture the behavior of wetlands in these portions of the landscape, and may underestimate their vulnerability to sea level rise because sea level rise will not be accompanied by enhanced plant growth and resultant sediment accumulation.

  4. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action.

    PubMed

    Mengel, Matthias; Nauels, Alexander; Rogelj, Joeri; Schleussner, Carl-Friedrich

    2018-02-20

    Sea-level rise is a major consequence of climate change that will continue long after emissions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-mean temperature increase. Here we quantify the effect of these constraints on global sea-level rise until 2300, including Antarctic ice-sheet instabilities. We estimate median sea-level rise between 0.7 and 1.2 m, if net-zero greenhouse gas emissions are sustained until 2300, varying with the pathway of emissions during this century. Temperature stabilization below 2 °C is insufficient to hold median sea-level rise until 2300 below 1.5 m. We find that each 5-year delay in near-term peaking of CO 2 emissions increases median year 2300 sea-level rise estimates by ca. 0.2 m, and extreme sea-level rise estimates at the 95th percentile by up to 1 m. Our results underline the importance of near-term mitigation action for limiting long-term sea-level rise risks.

  5. Tsunami Loss Assessment For Istanbul

    NASA Astrophysics Data System (ADS)

    Hancilar, Ufuk; Cakti, Eser; Zulfikar, Can; Demircioglu, Mine; Erdik, Mustafa

    2010-05-01

    Tsunami risk and loss assessment incorporating with the inundation mapping in Istanbul and the Marmara Sea region are presented in this study. The city of Istanbul is under the threat of earthquakes expected to originate from the Main Marmara branch of North Anatolian Fault System. In the Marmara region the earthquake hazard reached very high levels with 2% annual probability of occurrence of a magnitude 7+ earthquake on the Main Marmara Fault. Istanbul is the biggest city of Marmara region as well as of Turkey with its almost 12 million inhabitants. It is home to 40% of the industrial facilities in Turkey and operates as the financial and trade hub of the country. Past earthquakes have evidenced that the structural reliability of residential and industrial buildings, as well as that of lifelines including port and harbor structures in the country is questionable. These facts make the management of earthquake risks imperative for the reduction of physical and socio-economic losses. The level of expected tsunami hazard in Istanbul is low as compared to earthquake hazard. Yet the assets at risk along the shores of the city make a thorough assessment of tsunami risk imperative. Important residential and industrial centres exist along the shores of the Marmara Sea. Particularly along the northern and eastern shores we see an uninterrupted settlement pattern with industries, businesses, commercial centres and ports and harbours in between. Following the inundation maps resulting from deterministic and probabilistic tsunami hazard analyses, vulnerability and risk analyses are presented and the socio-economic losses are estimated. This study is part of EU-supported FP6 project ‘TRANSFER'.

  6. High altitude, prolonged exercise, and the athlete biological passport.

    PubMed

    Schumacher, Yorck O; Garvican, Laura A; Christian, Ryan; Lobigs, Louisa M; Qi, Jiliang; Fan, Rongyun; He, Yingying; Wang, Hailing; Gore, Christopher J; Ma, Fuhai

    2015-01-01

    The Athlete Biological Passport (ABP) detects blood doping in athletes through longitudinal monitoring of erythropoietic markers. Mathematical algorithms are used to define individual reference ranges for these markers for each athlete. It is unclear if altitude and exercise can affect the variables included in these calculations in a way that the changes might be mistaken for blood manipulation. The aim of this study was to investigate the influence of the simultaneous strenuous exercise and low to high altitude exposure on the calculation algorithms of the ABP. 14 sea level (SL) and 11 altitude native (ALT) highly trained athletes participated in a 14-day cycling stage race taking place at an average altitude of 2496 m above sea level (min. 1014 m, max. 4120 m), race distances ranged between 96 and 227 km per day. ABP blood measures were taken on days -1,3,6,10,14 (SL) and -1,9,15 (ALT) of the race. Four results from three samples of two different SL athletes exceeded the individual limits at the 99% specificity threshold and one value at 99.9%. In ALT, three results from three samples of three different athletes were beyond the individual limits at 99%, one at 99.9%. The variations could be explained by the expected physiological reaction to exercise and altitude. In summary, the abnormalities observed in the haematological ABP´s of well-trained athletes during extensive exercise at altitude are limited and in line with expected physiological changes. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Structured decision making as a proactive approach to dealing with sea level rise in Florida

    USGS Publications Warehouse

    Martin, Julien; Fackler, Paul L.; Nichols, James D.; Lubow, Bruce C.; Eaton, Mitchell J.; Runge, Michael C.; Stith, Bradley M.; Langtimm, Catherine A.

    2011-01-01

    Sea level rise (SLR) projections along the coast of Florida present an enormous challenge for management and conservation over the long term. Decision makers need to recognize and adopt strategies to adapt to the potentially detrimental effects of SLR. Structured decision making (SDM) provides a rigorous framework for the management of natural resources. The aim of SDM is to identify decisions that are optimal with respect to management objectives and knowledge of the system. Most applications of SDM have assumed that the managed systems are governed by stationary processes. However, in the context of SLR it may be necessary to acknowledge that the processes underlying managed systems may be non-stationary, such that systems will be continuously changing. Therefore, SLR brings some unique considerations to the application of decision theory for natural resource management. In particular, SLR is expected to affect each of the components of SDM. For instance, management objectives may have to be reconsidered more frequently than under more stable conditions. The set of potential actions may also have to be adapted over time as conditions change. Models have to account for the non-stationarity of the modeled system processes. Each of the important sources of uncertainty in decision processes is expected to be exacerbated by SLR. We illustrate our ideas about adaptation of natural resource management to SLR by modeling a non-stationary system using a numerical example. We provide additional examples of an SDM approach for managing species that may be affected by SLR, with a focus on the endangered Florida manatee.

  8. Sea-level Variation Along the Suez Canal

    NASA Astrophysics Data System (ADS)

    Eid, F. M.; Sharaf El-Din, S. H.; Alam El-Din, K. A.

    1997-05-01

    The variation of sea level at 11 stations distributed along the Suez Canal was studied during the period from 1980 to 1986. The ranges of variation in daily mean sea level at Port Said and Port Tawfik are about 60 and 120 cm, respectively. The minimum range of daily variation is at Kantara (47 cm). The fluctuations of the monthly mean sea level between the two ends of the Suez Canal vary from one season to another. From July to December, the sea level at Port Said is higher than that at Port Tawfik, with the maximum difference (10·5 cm) in September. During the rest of the year, the mean sea level at Port Tawfik is higher than that at Port Said, with the maximum difference (31·5 cm) in March. The long-term variations of the annual mean sea level at both Port Said and Port Tawfik for the period from 1923 to 1986 showed a positive trend. The sea level at Port Said increased by about 27·8 cm century -1while it increased by only 9·1 cm century -1at Port Tawfik. This indicates that the difference between sea level at Port Said and Port Tawfik has decreased with time.

  9. Sea level oscillations over minute timescales: a global perspective

    NASA Astrophysics Data System (ADS)

    Vilibic, Ivica; Sepic, Jadranka

    2016-04-01

    Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.

  10. Analysis of Sea Level Rise in Singapore Strait

    NASA Astrophysics Data System (ADS)

    Tkalich, Pavel; Luu, Quang-Hung

    2013-04-01

    Sea level in Singapore Strait is governed by various scale phenomena, from global to local. Global signals are dominated by the climate change and multi-decadal variability and associated sea level rise; at regional scale seasonal sea level variability is caused by ENSO-modulated monsoons; locally, astronomic tides are the strongest force. Tide gauge records in Singapore Strait are analyzed to derive local sea level trend, and attempts are made to attribute observed sea level variability to phenomena at various scales, from global to local. It is found that at annual scale, sea level anomalies in Singapore Strait are quasi-periodic, of the order of ±15 cm, the highest during northeast monsoon and the lowest during southwest monsoon. Interannual regional sea level falls are associated with El Niño events, while the rises are related to La Niña episodes; both variations are in the range of ±9 cm. At multi-decadal scale, sea level in Singapore Strait has been rising at the rate 1.2-1.9 mm/year for the period 1975-2009, 2.0±0.3 mm/year for 1984-2009, and 1.3-4.7 mm/year for 1993-2009. When compared with the respective global trends of 2.0±0.3, 2.4, and 2.8±0.8 mm/year, Singapore Strait sea level rise trend was weaker at the earlier period and stronger at the recent decade.

  11. Keep up or drown: adjustment of western Pacific coral reefs to sea-level rise in the 21st century

    PubMed Central

    van Woesik, R.; Golbuu, Y.; Roff, G.

    2015-01-01

    Since the Mid-Holocene, some 5000 years ago, coral reefs in the Pacific Ocean have been vertically constrained by sea level. Contemporary sea-level rise is releasing these constraints, providing accommodation space for vertical reef expansion. Here, we show that Porites microatolls, from reef-flat environments in Palau (western Pacific Ocean), are ‘keeping up’ with contemporary sea-level rise. Measurements of 570 reef-flat Porites microatolls at 10 locations around Palau revealed recent vertical skeletal extension (78±13 mm) over the last 6–8 years, which is consistent with the timing of the recent increase in sea level. We modelled whether microatoll growth rates will potentially ‘keep up’ with predicted sea-level rise in the near future, based upon average growth, and assuming a decline in growth for every 1°C increase in temperature. We then compared these estimated extension rates with rates of sea-level rise under four Representative Concentration Pathways (RCPs). Our model suggests that under low–mid RCP scenarios, reef-coral growth will keep up with sea-level rise, but if greenhouse gas concentrations exceed 670 ppm atmospheric CO2 levels and with +2.2°C sea-surface temperature by 2100 (RCP 6.0 W m−2), our predictions indicate that Porites microatolls will be unable to keep up with projected rates of sea-level rise in the twenty-first century. PMID:26587277

  12. The effect of regional sea level atmospheric pressure on sea level variations at globally distributed tide gauge stations with long records

    NASA Astrophysics Data System (ADS)

    Iz, H. Bâki

    2018-05-01

    This study provides additional information about the impact of atmospheric pressure on sea level variations. The observed regularity in sea level atmospheric pressure depends mainly on the latitude and verified to be dominantly random closer to the equator. It was demonstrated that almost all the annual and semiannual sea level variations at 27 globally distributed tide gauge stations can be attributed to the regional/local atmospheric forcing as an inverted barometric effect. Statistically significant non-linearities were detected in the regional atmospheric pressure series, which in turn impacted other sea level variations as compounders in tandem with the lunar nodal forcing, generating lunar sub-harmonics with multidecadal periods. It was shown that random component of regional atmospheric pressure tends to cluster at monthly intervals. The clusters are likely to be caused by the intraannual seasonal atmospheric temperature changes,which may also act as random beats in generating sub-harmonics observed in sea level changes as another mechanism. This study also affirmed that there are no statistically significant secular trends in the progression of regional atmospheric pressures, hence there was no contribution to the sea level trends during the 20th century by the atmospheric pressure.Meanwhile, the estimated nonuniform scale factors of the inverted barometer effects suggest that the sea level atmospheric pressure will bias the sea level trends inferred from satellite altimetry measurements if their impact is accounted for as corrections without proper scaling.

  13. The social values at risk from sea-level rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Sonia, E-mail: sonia.graham@unimelb.edu.au; Barnett, Jon, E-mail: jbarn@unimelb.edu.au; Fincher, Ruth, E-mail: r.fincher@unimelb.edu.au

    Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values frommore » within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies.« less

  14. Longitudinal development of muons in large air showers studies from the arrival time distributions measured at 900m above sea level

    NASA Technical Reports Server (NTRS)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow.

  15. Sleep and sleepiness of fishermen on rotating schedules.

    PubMed

    Gander, Philippa; van den Berg, Margo; Signal, Leigh

    2008-04-01

    Seafaring is a hazardous occupation with high death and injury rates, but the role of seafarer fatigue in these events is generally not well documented. The International Maritime Organization has identified seafarer fatigue as an important health and safety issue. Most research to date has focused on more regularly scheduled types of operations (e.g., merchant vessels, ferries), but there is relatively little information on commercial fishing, which often involves high day-to-day and seasonal variability in work patterns and workload. The present study was designed to monitor the sleep and sleepiness of commercial fishermen at home and during extended periods at sea during the peak of the hoki fishing season, with a view to developing better fatigue management strategies for this workforce. Sleep (wrist actigraphy and sleep diaries) and sleepiness (Karolinska Sleepiness Scale [KSS] before and after each sleep period) of 20 deckhands were monitored for 4-13 days at home and for 5-9 days at sea while working a nominal 12 h on/6 h off schedule. On the 12 h on/6 hoff schedule, there was still a clear preference for sleep at night. Comparing the last three days at home and the first three days at sea showed that fishermen were more likely to have split sleep at sea (Wilcoxon signed ranks p < 0.001), but the median sleep/24 h did not differ significantly by location (5.9 h at sea vs. 6.7 h at home). However, on 23% of days at sea, fishermen obtained < 4 h total sleep/24 h, compared to 3% of days at home ( p(chi 2) < 0.01). Sleep efficiency, mean activity counts/min sleep, and subjective ratings of sleep quality did not differ significantly between the last three days at home and the first three days at sea. However, sleepiness ratings remained higher after sleep at sea (Wilcoxon signed ranks p < 0.05), with fishermen having post-sleep KSS ratings >or= 7 on 24% of days at sea vs. 9% of days at home (Wilcoxon signed ranks p < 0.01). This work adds to the limited number of studies that objectively monitored the sleep of seafarers. It has the strength of operational fidelity but the weakness that large inter- and intra-individual variability in sleep, combined with the small sample size, limited the power of the study to detect statistically significant differences between sleep at home and at sea. The clear preference for sleep at night during the 12 h on/6 h off schedule at sea is consistent with the expectation that this 18 h duty/rest cycle is outside the range of entrainment of the circadian pacemaker. High levels of acute sleep loss, and residual sleepiness after sleep, were much more common at sea than at home. The longer duration of trips during the peak of the fishing season increases the risk of performance impairment due to greater cumulative sleep loss than would be expected on typical three-day trips. Key fatigue management strategies in this environment include that fishermen report to work as well rested as possible. Once at sea, the day-to-day variability in activities due to uncontrollable factors, such as fishing success, repairing gear, and weather conditions, mean that contingency planning is required for managing situations where the entire crew have experienced long periods of intensive work with minimum recovery opportunities.

  16. The land-ice contribution to 21st-century dynamic sea level rise

    NASA Astrophysics Data System (ADS)

    Howard, T.; Ridley, J.; Pardaens, A. K.; Hurkmans, R. T. W. L.; Payne, A. J.; Giesen, R. H.; Lowe, J. A.; Bamber, J. L.; Edwards, T. L.; Oerlemans, J.

    2014-06-01

    Climate change has the potential to influence global mean sea level through a number of processes including (but not limited to) thermal expansion of the oceans and enhanced land ice melt. In addition to their contribution to global mean sea level change, these two processes (among others) lead to local departures from the global mean sea level change, through a number of mechanisms including the effect on spatial variations in the change of water density and transport, usually termed dynamic sea level changes. In this study, we focus on the component of dynamic sea level change that might be given by additional freshwater inflow to the ocean under scenarios of 21st-century land-based ice melt. We present regional patterns of dynamic sea level change given by a global-coupled atmosphere-ocean climate model forced by spatially and temporally varying projected ice-melt fluxes from three sources: the Antarctic ice sheet, the Greenland Ice Sheet and small glaciers and ice caps. The largest ice melt flux we consider is equivalent to almost 0.7 m of global mean sea level rise over the 21st century. The temporal evolution of the dynamic sea level changes, in the presence of considerable variations in the ice melt flux, is also analysed. We find that the dynamic sea level change associated with the ice melt is small, with the largest changes occurring in the North Atlantic amounting to 3 cm above the global mean rise. Furthermore, the dynamic sea level change associated with the ice melt is similar regardless of whether the simulated ice fluxes are applied to a simulation with fixed CO2 or under a business-as-usual greenhouse gas warming scenario of increasing CO2.

  17. Reply to comment by E. Bard et al. on "Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reef crest coral Acropora palmata" by N. A. Abdul et al.

    NASA Astrophysics Data System (ADS)

    Mortlock, Richard A.; Abdul, Nicole A.; Wright, James D.; Fairbanks, Richard G.

    2016-12-01

    Abdul et al. (2016) presented a detailed record of sea level at Barbados (13.9-9 kyr B.P.) tightly constraining the timing and amplitude during the Younger Dryas and Meltwater Pulse 1B (MWP-1B) based on U-Th dated reef crest coral species Acropora palmata. The Younger Dryas slow stand and the large (14 m) rapid sea level jump are not resolved in the Tahiti record. Tahiti sea level estimates are remarkably close to the Barbados sea level curve between 13.9 and 11.6 kyr but fall below the Barbados sea level curve for a few thousand years following MWP-1B. By 9 kyr the Tahiti sea level estimates again converge with the Barbados sea level curve. Abdul et al. (2016) concluded that Tahiti reefs at the core sites did not keep up with intervals of rapidly rising sea level during MWP-1B. We counter Bard et al. (2016) by showing (1) that there is no evidence for a hypothetical fault in Oistins Bay affecting one of the Barbados coring locations, (2) that the authors confuse the rare occurrences of A. palmata at depths >5 m with the "thickets" of A. palmata fronds representing the reef-crest facies, and (3) that uncertainties in depth habitat proxies largely account for differences in Barbados and Tahiti sea level differences curves with A. palmata providing the most faithful proxy. Given the range in Tahiti paleodepth uncertainties at the cored sites, the most parsimonious explanation remains that Tahiti coralgal ridges did not keep up with the sea level rise of MWP-1B.

  18. NASA Space Shuttle Program: Shuttle Environmental Assurance (SEA) Initiative

    NASA Technical Reports Server (NTRS)

    Glover, Steve E.; McCool, Alex (Technical Monitor)

    2002-01-01

    The first Space Shuttle flight was in 1981 and the fleet was originally expected to be replaced with a new generation vehicle in the early 21st century. Space Shuttle Program (SSP) elements proactively address environmental and obsolescence concerns and continue to improve safety and supportability. The SSP manager created the Shuttle Environmental Assurance (SEA) Initiative in 2000. SEA is to provide an integrated approach for the SSP to promote environmental excellence, proactively manage materials obsolescence, and optimize associated resources.

  19. Air-sea Forcing and Thermohaline Changes In The Ross Sea.

    NASA Astrophysics Data System (ADS)

    Fusco, G.; Budillon, G.

    Heat exchanges between sea and atmosphere from 1986 to 2000 in the Ross Sea (Antarctica) were computed from climatological data obtained from the European Centre for Medium Range Weather Forecasts. They have been related with the thermo- haline changes observed during 5 hydrological surveys performed between the austral summer 1994-1995 and 2000-2001 in the western sector of the Ross Sea. The esti- mated heat fluxes show extremely strong spatial and temporal variability over all the Ross Sea. As can be expected the largest heat losses occur between May and August, while during the period November-February the heat budget becomes positive. In the first six years of the investigated period the heat loss is very strong with its maximum about 166 Wm-2; while during the period 1992-2000 the yearly heat losses are the lowest. Thermohaline changes in the surface layer (upper pycnocline) of the western Ross Sea follow the expected seasonal pattern of warming and freshening from the be- ginning to the end of the austral summer. The heating changes are substantially lower than the estimated heat supplied by the atmosphere during the summer, which under- lines the importance in this season of the advective component carried by the currents in the total heat budget of this area. The year to year differences are about one or two orders of magnitude smaller than the seasonal changes in the surface layer. In the in- termediate and deep layers, the summer heat and salt variability is of the same order as or one order higher than from one summer to the next. Moreover a freshening of the near bottom layer has been observed, it is consistent with the High Salinity Shelf Water salinity decrease recently detected in the Ross Sea.

  20. Combining Probability Distributions of Wind Waves and Sea Level Variations to Assess Return Periods of Coastal Floods

    NASA Astrophysics Data System (ADS)

    Leijala, U.; Bjorkqvist, J. V.; Pellikka, H.; Johansson, M. M.; Kahma, K. K.

    2017-12-01

    Predicting the behaviour of the joint effect of sea level and wind waves is of great significance due to the major impact of flooding events in densely populated coastal regions. As mean sea level rises, the effect of sea level variations accompanied by the waves will be even more harmful in the future. The main challenge when evaluating the effect of waves and sea level variations is that long time series of both variables rarely exist. Wave statistics are also highly location-dependent, thus requiring wave buoy measurements and/or high-resolution wave modelling. As an initial approximation of the joint effect, the variables may be treated as independent random variables, to achieve the probability distribution of their sum. We present results of a case study based on three probability distributions: 1) wave run-up constructed from individual wave buoy measurements, 2) short-term sea level variability based on tide gauge data, and 3) mean sea level projections based on up-to-date regional scenarios. The wave measurements were conducted during 2012-2014 on the coast of city of Helsinki located in the Gulf of Finland in the Baltic Sea. The short-term sea level distribution contains the last 30 years (1986-2015) of hourly data from Helsinki tide gauge, and the mean sea level projections are scenarios adjusted for the Gulf of Finland. Additionally, we present a sensitivity test based on six different theoretical wave height distributions representing different wave behaviour in relation to sea level variations. As these wave distributions are merged with one common sea level distribution, we can study how the different shapes of the wave height distribution affect the distribution of the sum, and which one of the components is dominating under different wave conditions. As an outcome of the method, we obtain a probability distribution of the maximum elevation of the continuous water mass, which enables a flexible tool for evaluating different risk levels in the current and future climate.

  1. Ice2sea - the future glacial contribution to sea-level rise

    NASA Astrophysics Data System (ADS)

    Vaughan, D. G.; Ice2sea Consortium

    2009-04-01

    The melting of continental ice (glaciers, ice caps and ice sheets) is a substantial source of current sea-level rise, and one that is accelerating more rapidly than was predicted even a few years ago. Indeed, the most recent report from Intergovernmental Panel on Climate Change highlighted that the uncertainty in projections of future sea-level rise is dominated by uncertainty concerning continental ice, and that understanding of the key processes that will lead to loss of continental ice must be improved before reliable projections of sea-level rise can be produced. Such projections are urgently required for effective sea-defence management and coastal adaptation planning. Ice2sea is a consortium of European institutes and international partners seeking European funding to support an integrated scientific programme to improve understanding concerning the future glacial contribution to sea-level rise. This includes improving understanding of the processes that control, past, current and future sea-level rise, and generation of improved estimates of the contribution of glacial components to sea-level rise over the next 200 years. The programme will include targeted studies of key processes in mountain glacier systems and ice caps (e.g. Svalbard), and in ice sheets in both polar regions (Greenland and Antarctica) to improve understanding of how these systems will respond to future climate change. It will include fieldwork and remote sensing studies, and develop a suite of new, cross-validated glacier and ice-sheet model. Ice2sea will deliver these results in forms accessible to scientists, policy-makers and the general public, which will include clear presentations of the sources of uncertainty. Our aim is both, to provide improved projections of the glacial contribution to sea-level rise, and to leave a legacy of improved tools and techniques that will form the basis of ongoing refinements in sea-level projection. Ice2sea will provide exciting opportunities for many early-career glaciologists and ice-modellers in a variety of host institutes.

  2. The impact of a pressurized regional sea or global ocean on stresses on Enceladus

    NASA Astrophysics Data System (ADS)

    Johnston, Stephanie A.; Montési, Laurent G. J.

    2017-06-01

    Liquid water is likely present in the interior of Enceladus, but it is still debated whether this water forms a global ocean or a regional sea and whether the present-day situation is stable. As the heat flux of Enceladus exceeds most heat source estimates, the liquid water is likely cooling and crystallizing, which results in expansion and pressurization of the sea or ocean. We determine, using an axisymmetric Finite Element Model, the tectonic patterns that pressurization of a regional sea or global ocean might produce at the surface of Enceladus. Tension is always predicted above where the ice is thinnest and generates cracks that might be at the origin of the Tiger Stripes. Tectonic activity is also expected in an annulus around the sea if the ice shell is in contact with but slips freely along the rocky core of the satellite. Cracks at the north pole are expected if the shell slips along the core or if there is a global ocean with thin ice at the pole. Water is likely injected along the base of the ice when the shell is grounded, which may lead to cycles of tectonic activity with the shell alternating between floating and grounded states and midlatitude faulting occurring at the transition from a grounded to a floating state.

  3. The future for the Global Sea Level Observing System (GLOSS) Sea Level Data Rescue

    NASA Astrophysics Data System (ADS)

    Bradshaw, Elizabeth; Matthews, Andrew; Rickards, Lesley; Aarup, Thorkild

    2016-04-01

    Historical sea level data are rare and unrepeatable measurements with a number of applications in climate studies (sea level rise), oceanography (ocean currents, tides, surges), geodesy (national datum), geophysics and geology (coastal land movements) and other disciplines. However, long-term time series are concentrated in the northern hemisphere and there are no records at the Permanent Service for Mean Sea Level (PSMSL) global data bank longer than 100 years in the Arctic, Africa, South America or Antarctica. Data archaeology activities will help fill in the gaps in the global dataset and improve global sea level reconstruction. The Global Sea Level Observing System (GLOSS) is an international programme conducted under the auspices of the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology. It was set up in 1985 to collect long-term tide gauge observations and to develop systems and standards "for ocean monitoring and flood warning purposes". At the GLOSS-GE-XIV Meeting in 2015, GLOSS agreed on a number of action items to be developed in the next two years. These were: 1. To explore mareogram digitisation applications, including NUNIEAU (more information available at: http://www.mediterranee.cerema.fr/logiciel-de-numerisation-des-enregistrements-r57.html) and other recent developments in scanning/digitisation software, such as IEDRO's Weather Wizards program, to see if they could be used via a browser. 2. To publicise sea level data archaeology and rescue by: • maintaining and regularly updating the Sea Level Data Archaeology page on the GLOSS website • strengthening links to the GLOSS data centres and data rescue organisations e.g. linking to IEDRO, ACRE, RDA • restarting the sea level data rescue blog with monthly posts. 3. Investigate sources of funding for data archaeology and rescue projects. 4. Propose "Guidelines" for rescuing sea level data. These action items will aid the discovery, scanning, digitising and quality control of analogue tide gauge charts and sea level ledgers and improve the quality, quantity and availability of long-term sea level data series.

  4. Revisiting global mean sea level budget closure : Preliminary results from an integrative study within ESA's Climate Change Initiative -Sea level Budget Closure-Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Palanisamy, H.; Cazenave, A. A.

    2017-12-01

    The global mean sea level budget is revisited over two time periods: the entire altimetry era, 1993-2015 and the Argo/GRACE era, 2003-2015 using the version '0' of sea level components estimated by the SLBC-CCI teams. The SLBC-CCI is an European Space Agency's project on sea level budget closure using CCI products. Over the entire altimetry era, the sea level budget was performed as the sum of steric and mass components that include contributions from total land water storage, glaciers, ice sheets (Greenland and Antarctica) and total water vapor content. Over the Argo/GRACE era, it was performed as the sum of steric and GRACE based ocean mass. Preliminary budget analysis performed over the altimetry era (1993-2015) results in a trend value of 2.83 mm/yr. On comparison with the observed altimetry-based global mean sea level trend over the same period (3.03 ± 0.5 mm/yr), we obtain a residual of 0.2 mm/yr. In spite of a residual of 0.2 mm/yr, the sea level budget result obtained over the altimetry era is very promising as this has been performed using the version '0' of the sea level components. Furthermore, uncertainties are not yet included in this study as uncertainty estimation for each sea level component is currently underway. Over the Argo/GRACE era (2003-2015), the trend estimated from the sum of steric and GRACE ocean mass amounts to 2.63 mm/yr while that observed by satellite altimetry is 3.37 mm/yr, thereby leaving a residual of 0.7 mm/yr. Here an ensemble GRACE ocean mass data (mean of various available GRACE ocean mass data) was used for the estimation. Using individual GRACE data results in a residual range of 0.5 mm/yr -1.1 mm/yr. Investigations are under way to determine the cause of the vast difference between the observed sea level and the sea level obtained from steric and GRACE ocean mass. One main suspect is the impact of GRACE data gaps on sea level budget analysis due to lack of GRACE data over several months since 2011. The current action plan of the project is to work on an accurate closure of the sea level budget using both the above performed methodologies. We also intend to provide a standardized uncertainty estimation and to correctly identify the causes leading to sea level budget non-closure if that is the case.

  5. A joint analysis of sea-level and meteorological data over the past 19th and 20th century on the Charente-Maritime French Atlantic coast

    NASA Astrophysics Data System (ADS)

    Gouriou, Thomas; Wöppelmann, Guy

    2010-05-01

    A systematic survey of the historical French archives was initiated in 2004 to search for ancient sea level observations. Long term sea-level records are invaluable to study trends in sea level components in the context of climate change due to global warming. A large amount of records have been discovered, notably on the Charente-Maritime French Atlantic coast: fort Enet (1859-1873) and fort Boyard (1873-1909), a few kilometres apart. These two historical data sets include meteorological observations in addition to the sea-level heights: sea-level pressure, air temperature, wind direction and speed, and sometimes daily indications on the local climatic conditions. Sea-level heights were measured with a "Chazallon" type of float tide gauge and whereas the sea-level pressures were measured with a "Fortin" mercury barometer. The historical data sets are now in computer-accessible form. They were manually checked for consistency, and compared to nearby data sets (e.g. Brest, Hadley centre Sea Level Pressure data set HadSLP2). We will present the data sets, the composite time series that were built for the period 1859-1909, and the joint sea level and meteorological data analysis which proved worthwhile. The pressure data were indeed of particular interest (7 observations per day, from 6.00am to 9.00pm between 1859 and 1909). First, examining the inverse barometer (IB) effect was demonstrated to be a good means to check the sea-level data sets (Woodworth 2006). If the data sets were of poor quality, then the sea-level height and air pressure monthly mean time series would show low or no correlation. Conversely, if both data sets were of good quality, there would be a high negative correlation between the local sea-level heights and sea-level pressure changes. Second, a linear regression between the two parameters (sea level and atmospheric pressure) would be giving a regression coefficient of approximately -1 cm/mbar under static assumption. Any departure from this relationship is indicative of wind-driven dynamical processes. As will be shown, the Charente-Maritime French Atlantic coast is a particular environment subject to westward winds with a complex coastline and bathymetry (islands, shallow waters). Last but not least, our data archeology exercise will provide additional evidence to the intriguing relation that was first noted by Miller and Douglas (2007) between sea level on the eastern boundary of the North Atlantic and the strength of the gyre-scale circulation, as represented by air pressure in the centre of the gyre, on multi-decadal and century-timescales.

  6. Development of a WebGIS-based monitoring and environmental protection and preservation system for the Black Sea: The ECO-Satellite project

    NASA Astrophysics Data System (ADS)

    Tziavos, Ilias N.

    2013-04-01

    The ECO-Satellite project has been approved in the frame of the Joint Operational Program "Black Sea Basin 2007-2013" and it is co-financed by the European Union through the European Neighborhood and Partnership Instrument and the Instrument for Pre-Accession Assistance and National Funds. The overall objective of the project is to contribute to the protection and preservation of the water system of the Black Sea, with its main emphasis given to river deltas and protected coastal regions at the seaside. More specifically, it focuses on the creation of an environmental monitoring system targeting the marine, coastal and wetland ecosystems of the Black Sea, thus strengthening the development of common research among the involved partners and increasing the intraregional knowledge for the corresponding coastal zones. This integrated multi-level system is based on the technological assets provided by satellite Earth observation data and Geo-Informatics innovative tools and facilities, as well as on the development of a unified, easy to update geodatabase including a wide range of appropriately selected environmental parameters. Furthermore, a Web-GIS system is under development aiming in principle to support environmental decision and policy making by monitoring the state of marine, coastal and wetland ecosystems of the Black Sea and managing all the aforementioned data sources and derived research results. The system is designed in a way that is easily expandable and adaptable for environmental management in local, regional national and trans-national level and as such it will increase the capacity of decision makers who are related to Black Sea environmental policy. Therefore, it is expected that administrative authorities, scientifically related institutes and environmental protection bodies in all eligible areas will show interest in the results and applications of the information system, since the ECO-Satellite project could serve as a support tool for the environmental monitoring, protection and preservation of the Black Sea system. In this presentation the design and development of the system architecture along with the innovative technologies for environmental monitoring implemented in the Web-GIS system of the ECO-Satellite project are presented and analyzed. Additionally, the collection and processing of current and historical data and the design and structure of the developed geodatabase are described. Finally, the testing of system components and geodatabase levels in different demonstration sites are also discussed in the frame of a variety of environmentally oriented project applications.

  7. Sea level rise and variability around Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Tkalich, Pavel; Luu, Quang-Hung; Tay, Tze-Wei

    2014-05-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea, both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. As a result, sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); whilst long term sea level trend is coordinated by the global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability surrounding the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 0.8 mm/yr and 2.7 ± 0.6 mm/yr, respectively. Discounting for their vertical land movements (0.8 ± 2.6 mm/yr and 0.9 ± 2.2 mm/yr, respectively), their pure SLR rates are 1.6 ± 3.4 mm/yr and 1.8 ± 2.8 mm/yr, respectively, which are lower than the global tendency. At interannual scale, ENSO affects sea level over the Malaysian east coast in the range of ± 5 cm with very high correlation coefficient. Meanwhile, IOD modulates sea level anomalies in the Malacca Strait in the range of ± 2 cm with high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index. Seasonally, SLAs are mainly monsoon-driven, in the order of 10-25 cm. Geographically, sea level responds differently to the monsoon: two cycles per year are observed in the Malacca Strait, presumably due to South Asian - Indian Monsoon; while single annual cycle is noted in the remaining region, mostly due to East Asian - Western Pacific Monsoon. These results imply that a narrow topographic constriction off Singapore may separate different modes of annual and interannual sea level variability along coastline of Peninsular Malaysia.

  8. Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the North Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Torresan, S.; Critto, A.; Rizzi, J.; Marcomini, A.

    2012-07-01

    Sea level rise, changes in storms and wave climate as a consequence of global climate change are expected to increase the size and magnitude of flooded and eroding coastal areas, thus having profound impacts on coastal communities and ecosystems. River deltas, beaches, estuaries and lagoons are considered particularly vulnerable to the adverse effects of climate change, which should be studied at the regional/local scale. This paper presents a regional vulnerability assessment (RVA) methodology developed to analyse site-specific spatial information on coastal vulnerability to the envisaged effects of global climate change, and assist coastal communities in operational coastal management and conservation. The main aim of the RVA is to identify key vulnerable receptors (i.e. natural and human ecosystems) in the considered region and localize vulnerable hot spot areas, which could be considered as homogeneous geographic sites for the definition of adaptation strategies. The application of the RVA methodology is based on a heterogeneous subset of bio-geophysical and socio-economic vulnerability indicators (e.g. coastal topography, geomorphology, presence and distribution of vegetation cover, location of artificial protection), which are a measure of the potential harm from a range of climate-related impacts (e.g. sea level rise inundation, storm surge flooding, coastal erosion). Based on a system of numerical weights and scores, the RVA provides relative vulnerability maps that allow to prioritize more vulnerable areas and targets of different climate-related impacts in the examined region and to support the identification of suitable areas for human settlements, infrastructures and economic activities, providing a basis for coastal zoning and land use planning. The implementation, performance and results of the methodology for the coastal area of the North Adriatic Sea (Italy) are fully described in the paper.

  9. Wasp-Waist Interactions in the North Sea Ecosystem

    PubMed Central

    Fauchald, Per; Skov, Henrik; Skern-Mauritzen, Mette; Johns, David; Tveraa, Torkild

    2011-01-01

    Background In a “wasp-waist” ecosystem, an intermediate trophic level is expected to control the abundance of predators through a bottom-up interaction and the abundance of prey through a top-down interaction. Previous studies suggest that the North Sea is mainly governed by bottom-up interactions driven by climate perturbations. However, few studies have investigated the importance of the intermediate trophic level occupied by small pelagic fishes. Methodology/Principal Findings We investigated the numeric interactions among 10 species of seabirds, two species of pelagic fish and four groups of zooplankton in the North Sea using decadal-scale databases. Linear models were used to relate the time series of zooplankton and seabirds to the time series of pelagic fish. Seabirds were positively related to herring (Clupea harengus), suggesting a bottom-up interaction. Two groups of zooplankton; Calanus helgolandicus and krill were negatively related to sprat (Sprattus sprattus) and herring respectively, suggesting top-down interactions. In addition, we found positive relationships among the zooplankton groups. Para/pseudocalanus was positively related to C. helgolandicus and C. finmarchicus was positively related to krill. Conclusion/Significance Our results indicate that herring was important in regulating the abundance of seabirds through a bottom-up interaction and that herring and sprat were important in regulating zooplankton through top-down interactions. We suggest that the positive relationships among zooplankton groups were due to selective foraging and switching in the two clupeid fishes. Our results suggest that “wasp-waist” interactions might be more important in the North Sea than previously anticipated. Fluctuations in the populations of pelagic fish due to harvesting and depletion of their predators might accordingly have profound consequences for ecosystem dynamics through trophic cascades. PMID:21829494

  10. Geomorphology and Sustainable Subsistence Habitats

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Kruger, L. E.

    2016-02-01

    Climatic, tectonic, and human-related impacts are changing the distribution of shoreline habitats and associated species used as food resources. There is a need to summarize current and future shoreline geomorphic - biotic relationships and better understand potential impacts to native customary and traditional gathering patterns. By strategically integrating Native knowledge and observations, we create an inclusive vulnerability assessment strategy resulting in a win-win opportunity for resource users and research scientists alike. We merged the NOAA ShoreZone database with results from over sixty student intern discussions in six southeast Alaska Native communities. Changes in shore width and unit length were derived using near shore bathymetry depths and available isostatic rebound, tectonic movement, and rates of sea level rise. Physical attributes including slope, substrate, and exposure were associated with presence and abundance of specific species. Student interns, selected by Tribes and Tribal associations, conducted resource-based discussions with community members to summarize species use, characteristics of species habitat, transportation used to access collection areas, and potential threats to habitats. Geomorphic trends and community observations were summarized to assess potential threats within a spatial context. Given current measured rates of uplift and sea level rise, 2.4 to 0 m of uplift along with 0.20 m of sea level rise is expected in the next 100 years. Coastlines of southeast Alaska will be subject to both drowning (primarily to the south) and emergence (primarily to the north). We predict decreases in estuary and sediment-dominated shoreline length and an increase in rocky habitats. These geomorphic changes, combined with resident's concerns, highlight six major interrelated coastal vulnerabilities including: (1) reduction of clam and clam habitat quantity and quality, (2) reduction in chiton quality and quantity, (3) harmful expansion of sea otter populations, (4) overharvest and pollution of black seaweed habitats, (5) overharvest of salmon and decrease in salmon rearing areas, and (6) decrease in quantity of deer. Spatial trends and possible solutions are discussed.

  11. Regional Sea Level Changes Projected by the NASA/GISS Atmosphere-Ocean Model

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Gornitz, Vivien; Miller, James R.

    1999-01-01

    Sea level has been rising for the past century, and inhabitants of the Earth's coastal regions will want to understand and predict future sea level changes. In this study we present results from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. Model results are compared with observed sea level changes during the past 40 years at 17 coastal stations around the world. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in Co2 after 1990, model projections show that global sea level measured from 1950 will rise by 61 mm in the year 2000, by 212 mm in 2050, and by 408 mm in 2089. By 2089, two thirds of the global sea level rise will be due to thermal expansion and one third will be due to ocean mass changes. The spatial distribution of sea level rise is different than that projected by rigid lid ocean models.

  12. Long-term patterns in fish phenology in the western Dutch Wadden Sea in relation to climate change

    NASA Astrophysics Data System (ADS)

    van Walraven, Lodewijk; Dapper, Rob; Nauw, Janine J.; Tulp, Ingrid; Witte, Johannes IJ.; van der Veer, Henk W.

    2017-09-01

    Long-term patterns in fish phenology in the western Dutch Wadden Sea were studied using a 53 year (1960-2013) high resolution time series of daily kom-fyke catches in spring and autumn. Trends in first appearance, last occurrence and peak abundance were analysed for the most common species in relation to mode of life (pelagic, demersal, benthopelagic) and biogeographic guild (northern or southern distribution). Climate change in the western Wadden Sea involved an increase in water temperature from 1980 onwards. The main pattern in first day of occurrence, peak occurrence and last day of occurrence was similar: a positive trend over time and a correlation with spring and summer water temperature. This is counterintuitive; with increasing temperature, an advanced immigration of fish species would be expected. An explanation might be that water temperatures have increased offshore as well and hence fish remain longer there, delaying their immigration to the Wadden Sea. The main trend towards later date of peak occurrence and last day of occurrence was in line with our expectations: a forward shift in immigration into the Wadden Sea implies also that peak abundance is delayed. As a consequence of the increased water temperature, autumn water temperature remains favourable longer than before. For most of the species present, the Wadden Sea is not near the edge of their distributional range. The most striking phenological shifts occurred in those individual species for which the Wadden Sea is near the southern or northern edge of their distribution.

  13. Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable

    PubMed Central

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J.; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-01-01

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity. PMID:20689848

  14. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    PubMed

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-08-02

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.

  15. Eustatic sea level fluctuations induced by polar wander

    NASA Technical Reports Server (NTRS)

    Sabadini, Roberto; Doglioni, Carlo; Yuen, David A.

    1990-01-01

    It is shown here that polar wander of a viscoelastic, stratified earth can induce global sea level fluctuations comparable to the short-term component in eustatic sea-level curves. The sign of these fluctuations, which are very sensitive to the rheological stratification, depends on the geographical location of the observation point; rises and falls in sea level can thus be coeval in different parts of the world. This finding is a distinct contrast to the main assumption underlying the reconstruction of eustatic curves, namely that global sea-level events produce the same depositional sequence everywhere. It is proposed that polar wander should be added to the list of geophysical mechanisms that can control the third-order cycles in sea level.

  16. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season

    NASA Astrophysics Data System (ADS)

    Stuecker, Malte F.; Bitz, Cecilia M.; Armour, Kyle C.

    2017-09-01

    The 2016 austral spring was characterized by the lowest Southern Hemisphere (SH) sea ice extent seen in the satellite record (1979 to present) and coincided with anomalously warm surface waters surrounding most of Antarctica. We show that two distinct processes contributed to this event: First, the extreme El Niño event peaking in December-February 2015/2016 contributed to pronounced extratropical SH sea surface temperature and sea ice extent anomalies in the eastern Ross, Amundsen, and Bellingshausen Seas that persisted in part until the following 2016 austral spring. Second, internal unforced atmospheric variability of the Southern Annular Mode promoted the exceptional low sea ice extent in November-December 2016. These results suggest that a combination of tropically forced and internal SH atmospheric variability contributed to the unprecedented sea ice decline during the 2016 austral spring, on top of a background of slow changes expected from greenhouse gas and ozone forcing.

  17. Coastal vulnerability and the implications of sea level rise between the cities of Pescara and Ortona (Adriatic Sea - Central Italy)

    NASA Astrophysics Data System (ADS)

    Tarragoni, C.; Bellotti, P.; Caputo, C.; Davoli, L.; Evangelista, S.; Pugliese, F.; Raffi, R.; Lupia Palmieri, E.

    2012-04-01

    Geomorphic processes induce rapid environmental changes especially along the coast that is highly susceptible to them. In addiction, the effects of storm or wave may be amplified by the expected relative sea level rise. In a context, like Italian coast, where the almost part of coast is densely populated and many infrastructures are presents, it is very important to have adequate tools to urban planning like the coastal vulnerability map. In this study the preliminary results of the ongoing SECOA project (Solution for Environmental contrasts in COastal Areas; 7th Framework Program) are presented, with reference to the Adriatic coast between Pescara and Ortona cities, in the Abruzzo region. In this work the same analytical model applied in the Venice Lagoon has been employed (Fontolan, 2001; 2005) involving the evaluation of the effective vulnerability (Ve). Ve is calculated as the difference between the potential vulnerability (Vp) and the defence elements present along the coast (D). (Ve = Vp - D) The data used to measure quantitative features are: high-resolution DEM (LiDAR), satellite images, aero photos, bathymetric profiles and topographic maps. The variables that contribute to the evaluation are: beach amplitude, berm height, seafloor gradient, seafloor evolution, recent and historical shorelines evolution for Vp; height, slope, vegetation cover, presence of passages, incipient dunes and windbreak barriers for the dune and anthropic barriers height. In this context, the potential vulnerability results from the sum of each variable (Vn) per the relative efficacy coefficient (Kn): Vp = V1K1+V2K2+ …VnKn In the same way the defences result from the sum of each kind of defence per the relative efficacy coefficient: D = D1K1+ …. DnKn The coastal area between Pescara and Ortona cities has been segmented in different sectors characterized by homogeneous values of the considered variables and for each of these the Ve values have been calculated and referred to one of the five corresponding standard vulnerability classes. In long-term vulnerability analyses (year 2100) the following aspects have been taken into account: sea level rise expected according to the IPCC and Rahmstorf hypothesis, local tectonic movement (compaction and sedimentary load) and local vertical movement due to isostasy. The height of defences have been decreased of relative sea level rise value and the efficacy coefficients have been modified according to the different long-term weight of morphological and morphodynamics variables. A coastal vulnerability map has been drawn both for the short-term (present day) and long-term; the vulnerability classes values have been represented by different colours from green to red respectively from lowest to highest values. In conclusion, the short-term results show Ve values belonging to the lowest class due to the considerable presence of the defence works, even if Vp values falling in the medium and medium-low classes. Similar results are obtained from the long-term analysis in the case of both the IPCC and Rahmstorf hypothesis, further evidencing the overwhelming employment of defence structures.

  18. Extreme sea-levels, coastal risks and climate changes: lost in translation

    NASA Astrophysics Data System (ADS)

    Marone, Eduardo; Castro Carneiro, Juliane; Cintra, Márcio; Ribeiro, Andréa; Cardoso, Denis; Stellfeld, Carol

    2014-05-01

    Occurring commonly in Brazilian coastal (and continental) areas, floods are probably the most devastating natural hazards our local society faces nowadays. With the expected sea-level rise and tropical storms becoming stronger and more frequents, the scenarios of local impacts of sea-level rise and storm surges; causing loss of lives, environmental damages and socio-economic stress; need to be addressed and properly communicated. We present results related to the sea-level setups accordingly to IPCC's scenarios and the expected coastal floods in the Paraná State, Southern Brazil. The outcomes are displayed in scientific language accompanied by "translations" with the objective of showing the need of a different language approach to communicate with the players affected by coastal hazards. To create the "translation" of the "scientific" text we used the Up-Goer Five Text Editor, which allows writing texts using only the ten hundred most used English words. We allowed ourselves to use a maximum of five other words per box not present at this dictionary, not considering geographical names or units in the count, provided there were simple. That was necessary because words as sea, beach, sand, storm, etc., are not among the one thousand present at the Up-Goer, and they are simple enough anyhow. On the other hand, the not scientific public we targeted speaks Portuguese, not English, and we do not have an Up-Goer tool for that language. Anyhow, each Box was also produced in Portuguese, as much simple as possible, to disseminate our results to the local community. To illustrate the need of "translation", it is worthy to mention a real case of a troublesome misunderstanding caused by us, scientists, in our coastal society. Some years ago, one of our colleagues at the university, a much-respected scientist, informed through a press release that, on a given day, "we will experience the highest astronomical tide of the century". That statement (scientifically true and accurate) caused some panic in the coastal communities, which consulted us, at the coastal research campus, if they were supposed to take all their belongings and move up to the hills. This tide was only few centimeters higher than the usual. Thus, the translation we mentioned is not just the need of putting in plain words our scientific results when communicating outside the academy, nor just a need of not being "cryptic". It goes far away from obvious: we have to be formally trained, also, to explain science other than in a scientific language. We hope this chapter will alert, also, to the need of training the youth scientists in the use of appropriate languages and the need of being socially sympathetic in doing so, not only publishing relevant outcomes in the academic world, in spite of the PoP environment. In particular, this work was the result of a class and fieldwork with a group of graduate students of Oceanography and Geology, who we hope will develop their careers with this extra skill. This work was possible thanks to partial support of IOI-SWAO and the Lloyds' Register Foundation.

  19. Roles of Sea Level and Climate Change in the Development of Holocene Deltaic Sequences in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, J.; Milliman, J. D.

    2002-12-01

    Both post-glacial sea-level and climatic changes are preserved in the the shallow, low gradient, sediment-dominated Yellow Sea. As a result of rapid flooding during melt-water pulse (MWP) 1A, 14.3-14.1 ka BP, sea level reached the southern edge of the North Yellow Sea (NYS), and after MWP-1B (11.6-11.4 ka BP) sea level entered the Bohai Sea. The first major Yellow River-derived deltaic deposit formed in the NYS during decelerated transgression following MWP-1B and increased river discharge in response to re-intensification of the summer monsoon about 11 ka cal BP. A second subaqueous delta formed in the South Yellow Sea about 9-7 ka BP during decelerated transgression after MWP-1C flooding and in response to the southern shift of the Yellow River mouth. The modern subaqueous and subaerial deltas in the west Bahai Gulf and (to a lesser extent) along the Jiangus coast have formed during the modern sea-level highstand. These changing Holocene patterns are most clearly illustrated by a short film clip.

  20. Catastrophes and conservation: Lessons from sea otters and the Exxon Valdez

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, J.A.

    1991-12-13

    In this commentary, the author considers the effort to save sea otters after the Exxon Valdez oil spill. Despite immense expenditures, the emerging facts lead to two conclusions: population losses were poorly documented, and few animals were saved. These findings cast doubt on our ability to protect sea otters from future spills and lead to troubling questions about how to recognize and document the effects of catastrophic events, and, ultimately, the utility of highly visible and expensive efforts to save wildlife from perceived environmental catastrophes. On 24 March 1989, the Exxon Valdez ran aground on Bligh Reef in northeastern Princemore » William Sound, spilling more than 10 million gallons of crude oil. Catastrophic losses were expected and a monumental effort was made to save sea otters. The Exxon Valdez spill spread over a linear distance of more than 700 kilometers and soiled an estimated 5,300 kilometers of shoreline. While cleaning up and capturing oiled wildlife for rehabilitation, 878 sea otter carcasses were recovered - a minimal estimate of loss. However, many animals killed by the spill undoubtedly were not found. Losses have been estimated from pre- and post-spill surveys, although these surveys shed little light on the population-level effect, mainly because the size and distribution of the population just prior to the spill is poorly known. This is because a comprehensive survey of Prince William Sound and adjacent waters was not done immediately after the spill but before oil dispersed into southwestern Prince William Sound and the northern Gulf of Alaska. Thus, although the Exxon Valdez spill undoubtedly killed many sea otters and may have reduced populations substantially, available data lack the power to demonstrate population changes.« less

  1. Modelling Potential Consequences of Different Geo-Engineering Treatments for the Baltic Sea Ecosystem

    NASA Astrophysics Data System (ADS)

    Schrum, C.; Daewel, U.

    2017-12-01

    From 1950 onwards, the Baltic Sea ecosystem suffered increasingly from eutrophication. The most obvious reason for the eutrophication is the huge amount of nutrients (nitrogen and phosphorus) reaching the Baltic Sea from human activities. However, although nutrient loads have been decreasing since 1980, the hypoxic areas have not decreased accordingly. Thus, geo-engineering projects were discussed and evaluated to artificially ventilate the Baltic Sea deep water and suppress nutrient release from the sediments. Here, we aim at understanding the consequences of proposed geo-engineering projects in the Baltic Sea using long-term scenario modelling. For that purpose, we utilize a 3d coupled ecosystem model ECOSMO E2E, a novel NPZD-Fish model approach that resolves hydrodynamics, biogeochemical cycling and lower and higher trophic level dynamics. We performed scenario modelling that consider proposed geo-engineering projects such as artificial ventilation of Baltic Sea deep waters and phosphorus binding in sediments with polyaluminium chlorides. The model indicates that deep-water ventilation indeed suppresses phosphorus release in the first 1-4 years of treatment. Thereafter macrobenthos repopulates the formerly anoxic bottom regions and nutrients are increasingly recycled in the food web. Consequently, overall system productivity and fish biomass increases and toxic algae blooms decrease. However, deep-water ventilation has no long-lasting effect on the ecosystem: soon after completion of the ventilation process, the system turns back into its original state. Artificial phosphorus binding in sediments in contrast decreases overall ecosystem productivity through permanent removal of phosphorus. As expected it decreases bacterial production and toxic algae blooms, but it also decreases fish production substantially. Contrastingly to deep water ventilation, artificial phosphorus binding show a long-lasting effect over decades after termination of the treatment.

  2. Remote sensing algorithm for sea surface CO2 in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2014-08-01

    Studies of coastal seas in Europe have brought forth the high variability in the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes makes their accurate estimation an arduous task. This is more pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been as highly detailed as in the open oceans. In adition, the joint availability of in-situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, a combination of two existing methods (Self-Organizing-Maps and Multiple Linear regression) is used to estimate ocean surface pCO2 in the Baltic Sea from remotely sensed surface temperature, chlorophyll, coloured dissolved organic matter, net primary production and mixed layer depth. The outputs of this research have an horizontal resolution of 4 km, and cover the period from 1998 to 2011. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in-situ measurements, and a root mean square error is of 38 μatm. The removal of any of the satellite parameters degraded this reconstruction of the CO2 flux, and we chose therefore to complete any missing data through statistical imputation. The CO2 maps produced by this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data and we expect to be able to produce even more accurate reconstructions in the coming years, in view of the predicted acquisitions of new data.

  3. The Solomon Sea eddy activity from a 1/36° regional model

    NASA Astrophysics Data System (ADS)

    Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques

    2013-04-01

    In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is expected to provide observations of small-scale sea level variability, spectral analysis is performed from the 1/36° resolution realistic model in order to characterize the finer scale signals in the Solomon sea region. The preliminary SSH spectral analysis shows a k-4 slope, in good agreement with the suface quasigeostrophic (SQG) turbulence theory. Keywords: Solomon Sea; meso-scale activity; eddy detection, tracking and properties; wavenumber spectrum.

  4. The Caribbean conundrum of Holocene sea level.

    NASA Astrophysics Data System (ADS)

    Jackson, Luke; Mound, Jon

    2014-05-01

    In the tropics, pre-historic sea-level curve reconstruction is often problematic because it relies upon sea-level indicators whose vertical relationship to the sea surface is poorly constrained. In the Caribbean, fossil corals, mangrove peats and shell material dominate the pre-historic indicator record. The common approach to reconstruction involves the use of modern analogues to these indicators to establish a fixed vertical habitable range. The aim of these reconstructions is to find spatial variability in the Holocene sea level in an area gradually subsiding (< 1.2 mm yr-1) due the water loading following the deglaciation of the Laurentide ice sheet. We construct two catalogues: one of published Holocene sea-level indicators and the other of published, modern growth rates, abundance and coverage of mangrove and coral species for different depths. We use the first catalogue to calibrate 14C ages to give a probabilistic age range for each indicator. We use the second catalogue to define a depth probability distribution function (pdf) for mangroves and each coral species. The Holocene indicators are grouped into 12 sub-regions around the Caribbean. For each sub-region we apply our sea-level reconstruction, which involves stepping a fixed-length time window through time and calculating the position (and rate) of sea-level (change) using a thousand realisations of the time/depth pdfs to define an envelope of probable solutions. We find that the sub-regional relative sea-level curves display spatio-temporal variability including a south-east to north-west 1500 year lag in the arrival of Holocene sea level to that of the present day. We demonstrate that these variations are primarily due to glacial-isostatic-adjustment induced sea-level change and that sub-regional variations (where sufficient data exists) are due to local uplift variability.

  5. Sea level hazards: Altimetric monitoring of tsunamis and sea level rise

    NASA Astrophysics Data System (ADS)

    Hamlington, Benjamin Dillon

    Whether on the short timescale of an impending tsunami or the much longer timescale of climate change-driven sea level rise, the threat stemming from rising and inundating ocean waters is a great concern to coastal populations. Timely and accurate observations of potentially dangerous changes in sea level are vital in determining the precautionary steps that need to be taken in order to protect coastal communities. While instruments from the past have provided in situ measurements of sea level at specific locations across the globe, satellites can be used to provide improved spatial and temporal sampling of the ocean in addition to producing more accurate measurements. Since 1993, satellite altimetry has provided accurate measurements of sea surface height (SSH) with near-global coverage. Not only have these measurements led to the first definitive estimates of global mean sea level rise, satellite altimetry observations have also been used to detect tsunami waves in the open ocean where wave amplitudes are relatively small, a vital step in providing early warning to those potentially affected by the impending tsunami. The use of satellite altimetry to monitor two specific sea level hazards is examined in this thesis. The first section will focus on the detection of tsunamis in the open ocean for the purpose of providing early warning to coastal inhabitants. The second section will focus on estimating secular trends using satellite altimetry data with the hope of improving our understanding of future sea level change. Results presented here will show the utility of satellite altimetry for sea level monitoring and will lay the foundation for further advancement in the detection of the two sea level hazards considered.

  6. MIS 5e relative sea-level changes in the Mediterranean Sea: Contribution of isostatic disequilibrium

    NASA Astrophysics Data System (ADS)

    Stocchi, Paolo; Vacchi, Matteo; Lorscheid, Thomas; de Boer, Bas; Simms, Alexander R.; van de Wal, Roderik S. W.; Vermeersen, Bert L. A.; Pappalardo, Marta; Rovere, Alessio

    2018-04-01

    Sea-level indicators dated to the Last Interglacial, or Marine Isotope Stage (MIS) 5e, have a twofold value. First, they can be used to constrain the melting of Greenland and Antarctic Ice Sheets in response to global warming scenarios. Second, they can be used to calculate the vertical crustal rates at active margins. For both applications, the contribution of glacio- and hydro-isostatic adjustment (GIA) to vertical displacement of sea-level indicators must be calculated. In this paper, we re-assess MIS 5e sea-level indicators at 11 Mediterranean sites that have been generally considered tectonically stable or affected by mild tectonics. These are found within a range of elevations of 2-10 m above modern mean sea level. Four sites are characterized by two separate sea-level stands, which suggest a two-step sea-level highstand during MIS 5e. Comparing field data with numerical modeling we show that (i) GIA is an important contributor to the spatial and temporal variability of the sea-level highstand during MIS 5e, (ii) the isostatic imbalance from the melting of the MIS 6 ice sheet can produce a >2.0 m sea-level highstand, and (iii) a two-step melting phase for the Greenland and Antarctic Ice Sheets reduces the differences between observations and predictions. Our results show that assumptions of tectonic stability on the basis of the MIS 5e records carry intrinsically large uncertainties, stemming either from uncertainties in field data and GIA models. The latter are propagated to either Holocene or Pleistocene sea-level reconstructions if tectonic rates are considered linear through time.

  7. Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses

    NASA Astrophysics Data System (ADS)

    Salvo, Flora; Hamoutene, Dounia; Hayes, Vonda E. Wareham; Edinger, Evan N.; Parrish, Christopher C.

    2018-03-01

    The trophic behavior of some deep-sea Newfoundland cold-water corals was explored using fatty acid (FA) and lipid profiles. No significant effect of geographic location and/or depth was identified in lipid or FA composition. However, differences were detected between and within taxon groups in hexa- or octocoral subclasses. Phospholipids constituted the main lipid class in all groups except black-thorny corals which had less structural lipids likely due to their morphology (stiff axes) and slower growth rates. Within each subclass, major differences in the identity of dominant FAs were detected at the order level, whereas differences between species and taxon groups of the same order were mainly driven by a variation in proportions of the dominant FA. Soft corals and gorgonians (Order Alcyonacea) were close in composition and are likely relying on phytodetritus resulting from algae, macrophytes and/or foraminifera, while sea pens (Order Pennatulacea) seem to consume more diatoms and/or herbivorous zooplankton with the exception of Pennatula sp. In the hexacoral subclass, black-thorny corals ( Stauropathes arctica) differed significantly from the stony-cup corals ( Flabellum alabastrum); S. arctica was seemingly more carnivorous (zooplankton markers) than F. alabastrum, which appears omnivorous (phyto- and zooplankton markers). Our results suggest that deep-sea corals are not as opportunistic as expected but have some selective feeding associated with taxonomy.

  8. Large-scale mitochondrial COI gene sequence variability reflects the complex colonization history of the invasive soft-shell clam, Mya arenaria (L.) (Bivalvia)

    NASA Astrophysics Data System (ADS)

    Lasota, Rafal; Pierscieniak, Karolina; Garcia, Pascale; Simon-Bouhet, Benoit; Wolowicz, Maciej

    2016-11-01

    The aim of the study was to determine genetic diversity in the soft-shell clam Mya arenaria on a wide geographical scale using mtDNA COI gene sequences. Low levels of genetic diversity was found, which can most likely be explained by a bottleneck effect during Pleistocene glaciations and/or selection. The geographical genetic structuring of the studied populations was also very low. The star-like phylogeny of the haplotypes indicates a relatively recent, rapid population expansion following the glaciation period and repeated expansion following the founder effect(s) after the initial introduction of the soft-shell clam to Europe. North American populations are characterized by the largest number of haplotypes, including rare ones, as expected for native populations. Because of the founder effect connected with initial and repeated expansion events, European populations have significantly lower numbers of haplotypes in comparison with those of North America. We also observed subtle differentiations among populations from the North and Baltic seas. The recently founded soft-shell clam population in the Black Sea exhibited the highest genetic similarity to Baltic populations, which confirmed the hypothesis that M. arenaria was introduced to the Gulf of Odessa from the Baltic Sea. The most enigmatic results were obtained for populations from the White Sea, which were characterized by high genetic affinity with American populations.

  9. New sea-level data of the MIS 5e interglacial of Mallorca Island, Spain

    NASA Astrophysics Data System (ADS)

    Lorscheid, Thomas; Stocchi, Paolo; de Boer, Bas; Mann, Thomas; Westphal, Hildegard; Rovere, Alessio

    2015-04-01

    The island of Mallorca (Balearic Islands, Spain) is one of the key locations in the Western Mediterranean for the study of Last Interglacial sea levels. Although MIS 5e deposits and landforms have been investigated by several authors since Cuerda (1979), most former studies concentrate on few outcrops. Although description of fossils, facies and age attribution for these outcrops are known in detail, these sites have never been the object of differential GPS measurements and glacial isostatic adjustment effects have never been taken into consideration. In this study, we present the results of fieldwork at several outcrops around the Island of Mallorca. We measured the elevation of deposits and landforms associated with the Last Interglacial with a high-precision GPS-system, and we calculated for each the reference water level and indicative range using modern analogs along the same shorelines. Moreover, we took samples of some outcrops for radiometric dating. The outcrops consist mainly of beach deposits at 1-3 m apsl and one elevated deposit in the Southeast of the island at 8 m apsl. We use an earth-ice coupled GIA-model for the Mediterranean to compare the elevation of our deposits to expected GIA signal in this region and discuss our results in terms of tectonics and eustasy.

  10. Recent Trends in Global Ocean Chlorophyll

    NASA Technical Reports Server (NTRS)

    Gregg, Watson; Casey, Nancy

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 5% since 1998. The North Pacific ocean basin has increased nearly 19%. To understand the causes of these trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The mode1 utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. Ths enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll.

  11. Greenland's Biggest Losers

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Hubbard, A.; Howat, I. M.; Csatho, B. M.; Decker, D. T.; Bates, R.; Tulaczyk, S. M.

    2010-12-01

    On 4 August, 2010, 275 square km of the front of the floating Petermann Glacier, far northwest Greenland, broke away. The glacier effectively retreated 15 km. Petermann has retreated 21 km since year 2000. Consulting available imagery, publications, and maps spanning the past century, we conclude that this is a retreat to a minimum extent in the observational record. This glacier is not the only ice are loser in Greenland. GRACE observations verify the concern of increased mass budget deficit. Retreat is ongoing at the 110 km wide Humboldt glacier and at the 23 km wide Zachariae ice stream. Humboldt, Zachariae, and Petermann (16 km wide) are among a handful of large marine-terminating outlets that have bedrock trenches that lead inland below sea level to the thick, interior reservoir of the ice sheet. Sleeping giants are awakening. Our area change survey of the 35 widest Greenland outlets indicates an annual marine-terminating glacier area loss rate in excess of 130 sq km per year. Here, we evaluate in this context the mechanisms for marine-terminating glacier retreat, dynamical responses to calving, and the apparent climate forcings. The work thus consults a suite of data sets, including: long-term meteorological station records; satellite-derived sea and land surface temperatures; satellite-derived sea ice extent; regional climate model output; oceanographic casts; time lapse cameras, surface elevation change, and tidal records. Cumulative area change at Greenland’s glacier top 5 “losers”. 2010 areas are measured ~1 month prior to the end of summer melt when the survey usually is made . We do not expect 2010 area changes to be much different using the future data. If anything, we expect the losses to be larger. Click here for a full resolution graphic.

  12. Synthesis of nearshore recovery following the 1989 Exxon Valdez oil spill: sea otter liver pathology and survival in Western Prince William Sound, 2001 – 2008

    USGS Publications Warehouse

    Ballachey, Brenda E.; Monson, Daniel H.; Kloecker, Kimberly A.; Esslinger, George G.; Mohr, F.C.; Lipscomb, T.P.; Murray, M.J.; Howlin, S.

    2014-01-01

    We examined livers and liver biopsies collected from captured sea otters in WPWS, 2001–2008, to determine whether indicators of liver health correlated with history of oil contamination from the 1989 Exxon Valdez oil spill. Sea otters captured in oiled areas had a significantly higher proportion of livers with gross pathological change, based on visual inspection at the time of capture, than those from unoiled areas. Of the 10 histopathology variables scored on liver biopsies, only two (vacuolar change and pigment) differed between animals from oiled and unoiled areas, and neither correlated with gross pathology scores. Vacuolar change indicates physiological disturbance, which is consistent with potential effects from oil exposure but also could be influenced by a number of other factors. We concluded that, as of 2008, some differences in liver health were evident between sea otters from oiled and unoiled areas; these differences were consistent with, but not specific to, effects that might be expected with sublethal exposure to lingering Exxon Valdez oil. We also quantified variation in survival of radiomarked sea otters within oiled areas of WPWS in relation to age, sex, body condition, selected blood serum chemistry variables, and histological scores indicative of liver health. Of the variables considered, only the serum enzyme aspartate aminotransferase (AST) and the ratio of serum proteins albumin and globulin (A/G) were correlated with survival, with higher levels of AST and lower levels of A/G associated with increased likelihood of mortality. High AST and low A/G both may be indicative of liver disease. Taken together, results reported here suggest that liver health of sea otters in oiled areas was slightly poorer than those from unoiled areas and, ifurther, that this may have translated to poorer survival through 2008, nearly 2 decades after the spill. More recently collected information indicated that mortality patterns and abundance had returned to pre-spill conditions between 2010 and 2013, suggesting that the effects that we detected through 2008 may have represented the end of effects related to exposure to lingering oil.

  13. Improvement of the GEOS-5 AGCM upon Updating the Air-Sea Roughness Parameterization

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.

    2011-01-01

    The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.

  14. Interannual sea level variability in the Pearl River Estuary and its response to El Niño-Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Li, Qiang; Mao, Xian-zhong; Bi, Hongsheng; Yin, Peng

    2018-03-01

    The South China coast, especially the Pearl River Estuary (PRE) region, is prosperous and densely populated, but vulnerable to sea level changes. Sea level anomalies (SLA) during 1954-2012 from tide gauge station data and regional SLAs during 1993-2012 from satellite altimetry are analyzed and compare to the El Niño-Southern Oscillation (ENSO). Results show that sea level declines during El Niño events and rises during La Niña. Sea level in the PRE responds to ENSO with 3-month lag. The ENSO can cause sea level in the PRE to fluctuate from -8.70 to 8.11 cm. Sea level cycles of 3 and 5 years are related to ENSO. The ENSO mechanism affecting sea level in the PRE was analyzed by identifying dominant regional and local forces. Weak/strong SLAs in most El Niño/La Niña events may be attributed to less/more seawater transport driven by anomalously weak/strong north winds and local anomalously high/low sea level pressure. Wind-driven coastal current is the predominant factor. It generated coastal seawater volume transport along a 160 km wide cross section to decrease by 21.07% in a typical El Niño period (January 2010) and increase by 44.03% in a typical La Niña period (January 2011) as compared to an ENSO neutral situation (January 2013). Results of sea level rise and its potential mechanism provide insight for disaster protection during extreme El Niño/La Niña events.

  15. Global Sea Level Rise and its Impact Estimation Model by Beach Mechanics, GDP, and Shoreline Length using Big Data Approach.

    NASA Astrophysics Data System (ADS)

    Xu, A. A.

    2016-12-01

    Existing research has shown consistent increase in global sea levels due to warming of the climate; since 1870, average global sea level has risen by about 20 cm. There are processes that scientists and coastal engineers can follow to estimate the erosion and flooding risk impacts for specific locations based on historical data. However, there are no methods available to assess the risk impacts for locations where little research has been conducted. In this study, we introduce a prototype to better predict sea level change and land loss using big data technology. Our approach combines cluster analysis and artificial intelligence to classify and calculate impacts for locations worldwide. Data from 235 locations (89 countries) on sea level change was gathered from NOAA data investigations and other research organizations, including beach profile data, shoreline length data, and GDP data. The rate of sea level rise varies from -18 to 21 mm/yr. We divide the data into 4 groups (Group A: +0 to 9mm, Group B: +10 to +20mm, Group C: -0 to -9mm, and Group D:-10 to -20mm). Our research focuses on types A and B only since both reflect increase on sea level rise. We find the correlation between the sea level rise and factors such as the economic parameter (α), sea level rise height (h), beach breaker wave (Hb), gravitational constant (g), period of wave (T), foreshore slope (i), and sand sizes (D). We conclude the sea level rise impact ($ lost) can be more scientifically and precisely predicted using our model.

  16. Sea-level variability over the Common Era

    NASA Astrophysics Data System (ADS)

    Kopp, Robert; Horton, Benjamin; Kemp, Andrew; Engelhart, Simon; Little, Chris

    2017-04-01

    The Common Era (CE) sea-level response to climate forcing, and its relationship to centennial-timescale climate variability such as the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA), is fragmentary relative to other proxy-derived climate records (e.g. atmospheric surface temperature). However, the Atlantic coast of North America provides a rich sedimentary record of CE relative sea level with sufficient spatial and temporal resolution to inform mechanisms underlying regional and global sea level variability and their relationship to other climate proxies. This coast has a small tidal range, improving the precision of sea-level reconstructions. Coastal subsidence (from glacial isostatic adjustment, GIA) creates accommodation space that is filled by salt-marsh peat and preserves accurate and precise sea-level indicators and abundant material for radiocarbon dating. In addition to longer term GIA induced land-level change from ongoing collapse of the Laurentide forebulge, these records are ideally situated to capture climate-driven sea level changes. The western North Atlantic Ocean sea level is sensitive to static equilibrium effects from melting of the Greenland Ice Sheet, as well as large-scale changes in ocean circulation and winds. Our reconstructions reveal two distinct patterns in sea-level during the CE along the United States Atlantic coast: (1) South of Cape Hatteras, North Carolina, to Florida sea-level rise is essentially flat, with the record dominated by long-term geological processes until the onset of historic rates of rise in the late 19th century; (2) North of Cape Hatteras to Connecticut, sea level rise to maximum around 1000CE, a sea-level minimum around 1500 CE, and a long-term sea-level rise through the second half of the second millennium. The northern-intensified sea-level fall beginning 1000 is coincident with shifts toward persistent positive NAO-like atmospheric states inferred from other proxy records and is consistent with climate model simulations forced with sustained NAO-like heat fluxes. Changes in the wind-driven ocean circulation may also contribute to alongshore sea level variability over the CE. To reveal global mean sea level variability, we combine the salt-marsh data from North American Atlantic coast with tide-gauge records and other high resolution proxies from the northern and southern hemispheres. All reconstructions are from coasts that are tectonically stable and are based on four types of proxy archives (archaeological indicators, coral microatolls, salt marsh sediments and vermetid [mollusk] bioconstructions) that are best capable of capturing submeter-scale RSL changes. The database consists of reconstructions from Australasia (n = 2), Europe (n=5), Greenland (n = 3), North America (n = 6), the northern Gulf of Mexico (n = 3), the Mediterranean (n = 1), South Africa (n = 2), South America (n =2) and the South Pacific (n =3). We apply a noisy-input Gaussian process spatio-temporal modeling framework, which identifies a long-term falling global mean sea-level, interrupted in the middle of the 19th century by an acceleration yielding a 20th century rate of rise extremely likely (probability P = 0:95) faster than any previous century in the CE.

  17. Probabilistic Estimates of Global Mean Sea Level and its Underlying Processes

    NASA Astrophysics Data System (ADS)

    Hay, C.; Morrow, E.; Kopp, R. E.; Mitrovica, J. X.

    2015-12-01

    Local sea level can vary significantly from the global mean value due to a suite of processes that includes ongoing sea-level changes due to the last ice age, land water storage, ocean circulation changes, and non-uniform sea-level changes that arise when modern-day land ice rapidly melts. Understanding these sources of spatial and temporal variability is critical to estimating past and present sea-level change and projecting future sea-level rise. Using two probabilistic techniques, a multi-model Kalman smoother and Gaussian process regression, we have reanalyzed 20th century tide gauge observations to produce a new estimate of global mean sea level (GMSL). Our methods allow us to extract global information from the sparse tide gauge field by taking advantage of the physics-based and model-derived geometry of the contributing processes. Both methods provide constraints on the sea-level contribution of glacial isostatic adjustment (GIA). The Kalman smoother tests multiple discrete models of glacial isostatic adjustment (GIA), probabilistically computing the most likely GIA model given the observations, while the Gaussian process regression characterizes the prior covariance structure of a suite of GIA models and then uses this structure to estimate the posterior distribution of local rates of GIA-induced sea-level change. We present the two methodologies, the model-derived geometries of the underlying processes, and our new probabilistic estimates of GMSL and GIA.

  18. On the regional characteristics of past and future sea-level change (Invited)

    NASA Astrophysics Data System (ADS)

    Timmermann, A.; McGregor, S.

    2010-12-01

    Global sea-level rise due to the thermal expansion of the warming oceans and freshwater input from melting glaciers and ice-sheets is threatening to inundate low-lying islands and coast-lines worldwide. At present global mean sea level rises at 3.1 ± 0.7 mm/yr with an accelerating tendency. However, the magnitude of recent decadal sea-level trends varies greatly spatially attaining values of up to 10 mm/yr in some areas of the western tropical Pacific. Identifying the causes of recent regional sea-level trends and understanding the patterns of future projected sea-level change is of crucial importance. Using a wind-forced simplified dynamical ocean model, we show that the regional features of recent decadal and multidecadal sea-level trends in the tropical Indo-Pacific can be attributed to changes in the prevailing wind-regimes. Furthermore it is demonstrated that within an ensemble of ten state-of-the art coupled general circulation models, forced by increasing atmospheric CO2 concentrations over the next century, wind-induced re-distributions of upper-ocean water play a key role in establishing the spatial characteristics of projected regional sea-level rise. Wind-related changes in near- surface mass and heat convergence near the Solomon Islands, Tuvalu, Kiribati, the Cook Islands and French Polynesia oppose, but can not cancel the regional signal of global mean sea-level rise.

  19. Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An Overview

    NASA Astrophysics Data System (ADS)

    Spada, Giorgio

    2017-01-01

    Glacial isostatic adjustment (GIA) encompasses a suite of geophysical phenomena accompanying the waxing and waning of continental-scale ice sheets. These involve the solid Earth, the oceans and the cryosphere both on short (decade to century) and on long (millennia) timescales. In the framework of contemporary sea-level change, the role of GIA is particular. In fact, among the processes significantly contributing to contemporary sea-level change, GIA is the only one for which deformational, gravitational and rotational effects are simultaneously operating, and for which the rheology of the solid Earth is essential. Here, I review the basic elements of the GIA theory, emphasizing the connections with current sea-level changes observed by tide gauges and altimetry. This purpose is met discussing the nature of the "sea-level equation" (SLE), which represents the basis for modeling the sea-level variations of glacial isostatic origin, also giving access to a full set of geodetic variations associated with GIA. Here, the SLE is employed to characterize the remarkable geographical variability of the GIA-induced sea-level variations, which are often expressed in terms of "fingerprints". Using harmonic analysis, the spatial variability of the GIA fingerprints is compared to that of other components of contemporary sea-level change. In closing, some attention is devoted to the importance of the "GIA corrections" in the context of modern sea-level observations, based on tide gauges or satellite altimeters.

  20. Sea Level Rise Data Discovery

    NASA Astrophysics Data System (ADS)

    Quach, N.; Huang, T.; Boening, C.; Gill, K. M.

    2016-12-01

    Research related to sea level rise crosses multiple disciplines from sea ice to land hydrology. The NASA Sea Level Change Portal (SLCP) is a one-stop source for current sea level change information and data, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. The architecture behind the SLCP makes it possible to integrate web content and data relevant to sea level change that are archived across various data centers as well as new data generated by sea level change principal investigators. The Extensible Data Gateway Environment (EDGE) is incorporated into the SLCP architecture to provide a unified platform for web content and science data discovery. EDGE is a data integration platform designed to facilitate high-performance geospatial data discovery and access with the ability to support multi-metadata standard specifications. EDGE has the capability to retrieve data from one or more sources and package the resulting sets into a single response to the requestor. With this unified endpoint, the Data Analysis Tool that is available on the SLCP can retrieve dataset and granule level metadata as well as perform geospatial search on the data. This talk focuses on the architecture that makes it possible to seamlessly integrate and enable discovery of disparate data relevant to sea level rise.

Top