Science.gov

Sample records for experience transportation research

  1. Transport Experiments

    NASA Technical Reports Server (NTRS)

    Hall, Timothy M.; Wuebbles, Donald J.; Boering, Kristie A.; Eckman, Richard S.; Lerner, Jean; Plumb, R. Alan; Rind, David H.; Rinsland, Curtis P.; Waugh, Darryn W.; Wei, Chu-Feng

    1999-01-01

    MM II defined a series of experiments to better understand and characterize model transport and to assess the realism of this transport by comparison to observations. Measurements from aircraft, balloon, and satellite, not yet available at the time of MM I [Prather and Remsberg, 1993], provide new and stringent constraints on model transport, and address the limits of our transport modeling abilities. Simulations of the idealized tracers the age spectrum, and propagating boundary conditions, and conserved HSCT-like emissions probe the relative roles of different model transport mechanisms, while simulations of SF6 and C02 make the connection to observations. Some of the tracers are related, and transport diagnostics such as the mean age can be derived from more than one of the experiments for comparison to observations. The goals of the transport experiments are: (1) To isolate the effects of transport in models from other processes; (2) To assess model transport for realistic tracers (such as SF6 and C02) for comparison to observations; (3) To use certain idealized tracers to isolate model mechanisms and relationships to atmospheric chemical perturbations; (4) To identify strengths and weaknesses of the treatment of transport processes in the models; (5) To relate evaluated shortcomings to aspects of model formulation. The following section are included:Executive Summary, Introduction, Age Spectrum, Observation, Tropical Transport in Models, Global Mean Age in Models, Source-Transport Covariance, HSCT "ANOY" Tracer Distributions, and Summary and Conclusions.

  2. Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie

    2004-01-01

    This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.

  3. Commercial Experiment Transporter: COMET

    SciTech Connect

    Wessling, F.C.; Robinson, M.; Martinez, R.S.; Gallimore, T.; Combs, N.

    1994-09-01

    A launch system consisting of ground-support equipment, a four-stage rocket, a service module, a recovery system and a recovery site, and an orbital operations center is being assembled. The system is designed to launch 818 kg (1800 lb) to a 552-km (300-n.mi.) low earth orbit at a 40-deg inclination. Experiment space exists in both the service module and the recovery system. The service module provides space for 68 kg (150 lb) of experiments plus telemetry services, attitude control, and power and uses no consumables to maintain attitude. Consequently, the service module can maintain orbit attitude for years. Power of 400 W is supplied by solar cells and batteries for both experiment operation and housekeeping. The recovery system houses an experiment carrier for 136 kg (300 lb) of experiments, a retro rocket, a heat shield, and a parachute. An orbital operations control center provides tracking, telemetry, and commanding for the satellite. The payloads are also briefly described. The first launch was scheduled for 1995.

  4. Integration and use of Microgravity Research Facility: Lessons learned by the crystals by vapor transport experiment and Space Experiments Facility programs

    NASA Technical Reports Server (NTRS)

    Heizer, Barbara L.

    1992-01-01

    The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science

  5. Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER

    SciTech Connect

    Loarte, A.; Polevoi, A. R.; Hosokawa, M.; Reinke, M. L.; Chilenski, M.; Howard, N.; Hubbard, A.; Hughes, J. W.; Rice, J. E.; Walk, J.; Köchl, F.; Pütterich, T.; Dux, R.; Zhogolev, V. E.

    2015-05-15

    Experiments in Alcator C-Mod tokamak plasmas in the Enhanced D-alpha H-mode regime with ITER-like mid-radius plasma density peaking and Ion Cyclotron Resonant heating, in which tungsten is introduced by the laser blow-off technique, have demonstrated that accumulation of tungsten in the central region of the plasma does not take place in these conditions. The measurements obtained are consistent with anomalous transport dominating tungsten transport except in the central region of the plasma where tungsten transport is neoclassical, as previously observed in other devices with dominant neutral beam injection heating, such as JET and ASDEX Upgrade. In contrast to such results, however, the measured scale lengths for plasma temperature and density in the central region of these Alcator C-Mod plasmas, with density profiles relatively flat in the core region due to the lack of core fuelling, are favourable to prevent inter and intra sawtooth tungsten accumulation in this region under dominance of neoclassical transport. Simulations of ITER H-mode plasmas, including both anomalous (modelled by the Gyro-Landau-Fluid code GLF23) and neoclassical transport for main ions and tungsten and with density profiles of similar peaking to those obtained in Alcator C-Mod show that accumulation of tungsten in the central plasma region is also unlikely to occur in stationary ITER H-mode plasmas due to the low fuelling source by the neutral beam injection (injection energy ∼ 1 MeV), which is in good agreement with findings in the Alcator C-Mod experiments.

  6. Transport experiments with Dirac electrons

    NASA Astrophysics Data System (ADS)

    Checkelsky, Joseph George

    This thesis presents transport experiments performed on solid state systems in which the behavior of the charge carriers can be described by the Dirac equation. Unlike the massive carriers in a typical material, in these systems the carriers behave like massless fermions with a photon-like dispersion predicted to greatly modify their spin and charge transport properties. The first system studied is graphene, a crystalline monolayer of carbon arranged in a hexagonal lattice. The band structure calculated from the hexagonal lattice has the form of the massless Dirac Hamiltonian. At the charge neutral Dirac point, we find that application of a magnetic field drives a transition to an insulating state. We also study the thermoelectric properties of graphene and find that the states near the Dirac point have a unique response compared to those at higher charge density. The second system is the 3D topological insulator Bi2Se3, where a Dirac-like dispersion for states on the 2D surface of the insulating 3D crystal arises as a result of the topology of the 3D bands and time reversal symmetry. To access the transport properties of the 2D states, we suppress the remnant bulk conduction channel by chemical doping and electrostatic gating. In bulk crystals we find strong quantum corrections to transport at low temperature when the bulk conduction channel is maximally suppressed. In microscopic crystals we are able better to isolate the surface conduction channel properties. We identify in-gap conducting states that have relatively high mobility compared to the bulk and exhibit weak anti-localization, consistent with predictions for protected 2D surface states with strong spin-orbit coupling.

  7. Ridesharing and transportation for the disadvantaged. Transportation research record

    SciTech Connect

    Lauritzen, T.; McKelvey, F.X.; Lyles, R.W.; Lighthizer, D.R.; Hardy, D.K.

    1988-01-01

    The 11 papers in the report deal with the following areas: a 1-year review of performance measures for the Chicago transit authority's special services contracted service for the elderly and handicapped; evaluation of a demonstration small bus program for the elderly and handicapped; travel mode choice behavior and physical barrier constraints among the elderly and handicapped: an examination of travel-mode preferences; the role of private enterprise in elderly and handicapped transportation in Canada; special transportation-service in Sweden--involvement of private operators; role of the private sector in the delivery of transportation services to the elderly and handicapped in the United States; suburban activity center transportation demand management market research study; commuting behavior of Hawaii state workers in Honolulu: implications for transportation system management strategies; mobility and specialized transportation for elderly and for disabled persons: a view from four selected countries; an inventory of twelve paratransit service delivery experiences; integrating social-service client transportation and special needs transportation systems: the Portland experience.

  8. Electrical Transport Experiments at High Pressure

    SciTech Connect

    Weir, S

    2009-02-11

    High-pressure electrical measurements have a long history of use in the study of materials under ultra-high pressures. In recent years, electrical transport experiments have played a key role in the study of many interesting high pressure phenomena including pressure-induced superconductivity, insulator-to-metal transitions, and quantum critical behavior. High-pressure electrical transport experiments also play an important function in geophysics and the study of the Earth's interior. Besides electrical conductivity measurements, electrical transport experiments also encompass techniques for the study of the optoelectronic and thermoelectric properties of materials under high pressures. In addition, electrical transport techniques, i.e., the ability to extend electrically conductive wires from outside instrumentation into the high pressure sample chamber have been utilized to perform other types of experiments as well, such as high-pressure magnetic susceptibility and de Haas-van Alphen Fermi surface experiments. Finally, electrical transport techniques have also been utilized for delivering significant amounts of electrical power to high pressure samples, for the purpose of performing high-pressure and -temperature experiments. Thus, not only do high-pressure electrical transport experiments provide much interesting and valuable data on the physical properties of materials extreme compression, but the underlying high-pressure electrical transport techniques can be used in a number of ways to develop additional diagnostic techniques and to advance high pressure capabilities.

  9. Air medical transportation in India: Our experience

    PubMed Central

    Khurana, Himanshu; Mehta, Yatin; Dubey, Sunil

    2016-01-01

    Background and Aims: Long distance air travel for medical needs is on the increase worldwide. The condition of some patients necessitates specially modified aircraft, and monitoring and interventions during transport by trained medical personnel. This article presents our experience in domestic and international interhospital air medical transportation from January 2010 to January 2014. Material and Methods: Hospital records of all air medical transportation undertaken to the institute during the period were analyzed for demographics, primary etiology, and events during transport. Results: 586 patients, 453 (77.3%) males and 133 (22.6%) females of ages 46.7 ± 12.6 years and 53.4 ± 9.7 years were transported by us to the institute. It took 3030 flying hours with an average of 474 ± 72 min for each mission. The most common indication for transport was cardiovascular diseases in 210 (35.8%) and central nervous system disease in 120 (20.4%) cases. The overall complication rate was 5.3% There was no transport related mortality. Conclusion: Cardiac and central nervous system ailments are the most common indication for air medical transportation. These patients may need attention and interventions as any critical patient in the hospital but in a difficult environment lacking space and help. Air medical transport carries no more risk than ground transportation.

  10. Air medical transportation in India: Our experience

    PubMed Central

    Khurana, Himanshu; Mehta, Yatin; Dubey, Sunil

    2016-01-01

    Background and Aims: Long distance air travel for medical needs is on the increase worldwide. The condition of some patients necessitates specially modified aircraft, and monitoring and interventions during transport by trained medical personnel. This article presents our experience in domestic and international interhospital air medical transportation from January 2010 to January 2014. Material and Methods: Hospital records of all air medical transportation undertaken to the institute during the period were analyzed for demographics, primary etiology, and events during transport. Results: 586 patients, 453 (77.3%) males and 133 (22.6%) females of ages 46.7 ± 12.6 years and 53.4 ± 9.7 years were transported by us to the institute. It took 3030 flying hours with an average of 474 ± 72 min for each mission. The most common indication for transport was cardiovascular diseases in 210 (35.8%) and central nervous system disease in 120 (20.4%) cases. The overall complication rate was 5.3% There was no transport related mortality. Conclusion: Cardiac and central nervous system ailments are the most common indication for air medical transportation. These patients may need attention and interventions as any critical patient in the hospital but in a difficult environment lacking space and help. Air medical transport carries no more risk than ground transportation. PMID:27625486

  11. Bacterial Transport Experiments in Fractured Crystalline Bedrock

    USGS Publications Warehouse

    Becker, M.W.; Metge, D.W.; Collins, S.A.; Shapiro, A.M.; Harvey, R.W.

    2003-01-01

    The efficiency of contaminant biodegradation in ground water depends, in part, on the transport properties of the degrading bacteria. Few data exist concerning the transport of bacteria in saturated bedrock, particularly at the field scale. Bacteria and microsphere tracer experiments were conducted in a fractured crystalline bedrock under forced-gradient conditions over a distance of 36 m. Bacteria isolated from the local ground water were chosen on the basis of physicochemical and physiological differences (shape, cell-wall type, motility), and were differentially stained so that their transport behavior could be compared. No two bacterial strains transported in an identical manner, and microspheres produced distinctly different breakthrough curves than bacteria. Although there was insufficient control in this field experiment to completely separate the effects of bacteria shape, reaction to Gram staining, cell size, and motility on transport efficiency, it was observed that (1) the nonmotile, mutant strain exhibited better fractional recovery than the motile parent strain; (2) Gram-negative rod-shaped bacteria exhibited higher fractional recovery relative to the Gram-positive rod-shaped strain of similar size; and (3) coccoidal (spherical-shaped) bacteria transported better than all but one strain of the rod-shaped bacteria. The field experiment must be interpreted in the context of the specific bacterial strains and ground water environment in which they were conducted, but experimental results suggest that minor differences in the physical properties of bacteria can lead to major differences in transport behavior at the field scale.

  12. Bacterial transport experiments in fractured crystalline bedrock.

    PubMed

    Becker, Matthew W; Metge, David W; Collins, Samantha A; Shapiro, Allen M; Harvey, Ronald W

    2003-01-01

    The efficiency of contaminant biodegradation in ground water depends, in part, on the transport properties of the degrading bacteria. Few data exist concerning the transport of bacteria in saturated bedrock, particularly at the field scale. Bacteria and microsphere tracer experiments were conducted in a fractured crystalline bedrock under forced-gradient conditions over a distance of 36 m. Bacteria isolated from the local ground water were chosen on the basis of physicochemical and physiological differences (shape, cell-wall type, motility), and were differentially stained so that their transport behavior could be compared. No two bacterial strains transported in an identical manner, and microspheres produced distinctly different breakthrough curves than bacteria. Although there was insufficient control in this field experiment to completely separate the effects of bacteria shape, reaction to Gram staining, cell size, and motility on transport efficiency, it was observed that (1) the nonmotile, mutant strain exhibited better fractional recovery than the motile parent strain; (2) Gram-negative rod-shaped bacteria exhibited higher fractional recovery relative to the Gram-positive rod-shaped strain of similar size; and (3) coccoidal (spherical-shaped) bacteria transported better than all but one strain of the rod-shaped bacteria. The field experiment must be interpreted in the context of the specific bacterial strains and ground water environment in which they were conducted, but experimental results suggest that minor differences in the physical properties of bacteria can lead to major differences in transport behavior at the field scale.

  13. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  14. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  15. DHS Research Experience Summary

    SciTech Connect

    Venkatachalam, V

    2008-10-24

    I learned a great deal during my summer internship at Lawrence Livermore National Laboratory (LLNL). I plan to continue a career in research, and I feel that my experience at LLNL has been formative. I was exposed to a new area of research, as part of the Single Particle Aerosol Mass Spectrometry (SPAMS) group, and I had the opportunity to work on projects that I would not have been able to work on anywhere else. The projects both involved the use of a novel mass spectrometer that was developed at LLNL, so I would not have been able to do this research at any other facility. The first project that Zachary and I worked on involved using SPAMS to detect pesticides. The ability to rapidly detect pesticides in a variety of matrices is applicable to many fields including public health, homeland security, and environmental protection. Real-time, or near real-time, detection of potentially harmful or toxic chemical agents can offer significant advantages in the protection of public health from accidental or intentional releases of harmful pesticides, and can help to monitor the environmental effects of controlled releases of pesticides for pest control purposes. The use of organophosphate neurotoxins by terrorists is a possibility that has been described; this is a legitimate threat, considering the ease of access, toxicity, and relatively low cost of these substances. Single Particle Aerosol Mass Spectrometry (SPAMS) has successfully been used to identify a wide array of chemical compounds, including drugs, high explosives, biological materials, and chemical warfare agent simulants. Much of this groundbreaking work was carried out by our group at LLNL. In our work, we had the chance to show that SPAMS fulfills a demonstrated need for a method of carrying out real-time pesticide detection with minimal sample preparation. We did this by using a single particle aerosol mass spectrometer to obtain spectra of five different pesticides. Pesticide samples were chosen to

  16. Program plan and summary, remote fluvial experimental (REFLEX) series: Research experiments using advanced remote sensing technologies with emphasis on hydrologic transport, and hydrologic-ecologic interactions

    SciTech Connect

    Wobber, F.J.

    1986-10-01

    This document describes research designed to evaluate advanced remote sensing technologies for environmental research. A series of Remote Fluvial Experiments (REFLEX) - stressing new applications of remote sensing systems and use of advanced digital analysis methods - are described. Program strategy, experiments, research areas, and future initiatives are summarized. The goals of REFLEX are: (1) to apply new and developing aerial and satellite remote sensing technologies - including both advanced sensor systems and digital/optical processing - for interdisciplinary scientific experiments in hydrology and to hydrologic/ecologic interactions; (2) to develop new concepts for processing and analyzing remote sensing data for general scientific application; and (3) to demonstrate innovative analytical technologies that advance the state of the art in applying information from remote sensing systems, for example, supercomputer processing and analysis.

  17. Research Experiences for Undergraduates.

    ERIC Educational Resources Information Center

    Rettig, Terrence W.; And Others

    1990-01-01

    Reviewed are six programs at different colleges and universities which provide research opportunities for undergraduate students in physics, astronomy, marine biology, meteorology, and anthropology. Background, features, and accomplishments of the programs are discussed. (CW)

  18. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  19. Intervention research: GAO experiences.

    PubMed

    Grasso, P G

    1996-04-01

    This paper describes tools of program evaluation that may prove useful in conducting research on occupational health and safety interventions. It presents examples of three studies conducted by the U.S. General Accounting Office that illustrate a variety of techniques for collecting and analyzing data on program interventions, including analysis of extant data, synthesis of results of existing studies, and combining data from administrative files with survey results. At the same time, it stresses the importance and difficulty of constructing an adequate "theory" of how the intervention is expected to affect outcomes, both for guiding data collection and for allowing adequate interpretation of results.

  20. Intervention research: GAO experiences.

    PubMed

    Grasso, P G

    1996-04-01

    This paper describes tools of program evaluation that may prove useful in conducting research on occupational health and safety interventions. It presents examples of three studies conducted by the U.S. General Accounting Office that illustrate a variety of techniques for collecting and analyzing data on program interventions, including analysis of extant data, synthesis of results of existing studies, and combining data from administrative files with survey results. At the same time, it stresses the importance and difficulty of constructing an adequate "theory" of how the intervention is expected to affect outcomes, both for guiding data collection and for allowing adequate interpretation of results. PMID:8728140

  1. Heat transport experiments on the HSX stellarator

    NASA Astrophysics Data System (ADS)

    Weir, Gavin McCabe

    It has been observed in tokamaks that temperature profiles are resilient to changes in heating, and that this effect has not been observed in conventional stellarators. Electron temperature profile resiliency is attributed to anomalous transport driven by turbulent micro-instabilities, and the resulting stiffness in the electron heat flux is measured using a combination of steady-state and perturbative experiments. In this work, stiffness measurements are presented in the quasihelically symmetric configuration of the Helically Symmetric eXperiment (HSX), in which the neoclassical transport is comparable to a tokamak and turbulent transport dominates throughout the plasma. A second gyrotron and transmission line have been installed and tested to facilitate modulated heating experiments on HSX, and a multi-pass absorption model accurately predicts the total absorption and spatial extent of the electron cyclotron resonance heating during a modulation experiment. The electron cyclotron emission measured by an absolutely calibrated 16-channel radiometer is used to measure the local electron temperature and its response to the modulated heating. The amplitude and phase of the heat wave through the foot of the steep electron temperature gradient region of the plasma, 0.2It has been observed in tokamaks that temperature profiles are resilient to changes in heating, and that this effect has not been observed in conventional stellarators. Electron temperature profile resiliency is attributed to anomalous transport driven by turbulent micro-instabilities, and the resulting stiffness in the electron heat flux is measured using a combination of steady-state and perturbative experiments. In this work, stiffness measurements are presented in the quasihelically symmetric configuration of the Helically Symmetric eXperiment (HSX), in which the neoclassical transport is comparable to a tokamak and turbulent transport dominates throughout the plasma. A second gyrotron and transmission

  2. Design of a proof of principle high current transport experiment

    SciTech Connect

    Lund, S.M.; Bangerter, R.O.; Barnard, J.J.; Celata, C.M.; Faltens, A.; Friedman, A.; Kwan, J.W.; Lee, E.P.; Seidl, P.A.

    2000-01-15

    Preliminary designs of an intense heavy-ion beam transport experiment to test issues for Heavy Ion Fusion (HIF) are presented. This transport channel will represent a single high current density beam at full driver scale and will evaluate practical issues such as aperture filling factors, electrons, halo, imperfect vacuum, etc., that cannot be fully tested using scaled experiments. Various machine configurations are evaluated in the context of the range of physics and technology issues that can be explored in a manner relevant to a full scale driver. it is anticipated that results from this experiment will allow confident construction of next generation ''Integrated Research Experiments'' leading to a full scale driver for energy production.

  3. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  4. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Researchers work with wheat samples that are part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. From left are research scientist Oscar Monje and research technicians Lisa Ruffa and Ignacio Eraso. The payload process testing they are performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  5. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  6. Designing Effective Undergraduate Research Experiences

    NASA Astrophysics Data System (ADS)

    Severson, S.

    2010-12-01

    I present a model for designing student research internships that is informed by the best practices of the Center for Adaptive Optics (CfAO) Professional Development Program. The dual strands of the CfAO education program include: the preparation of early-career scientists and engineers in effective teaching; and changing the learning experiences of students (e.g., undergraduate interns) through inquiry-based "teaching laboratories." This paper will focus on the carry-over of these ideas into the design of laboratory research internships such as the CfAO Mainland internship program as well as NSF REU (Research Experiences for Undergraduates) and senior-thesis or "capstone" research programs. Key ideas in maximizing student learning outcomes and generating productive research during internships include: defining explicit content, scientific process, and attitudinal goals for the project; assessment of student prior knowledge and experience, then following up with formative assessment throughout the project; setting reasonable goals with timetables and addressing motivation; and giving students ownership of the research by implementing aspects of the inquiry process within the internship.

  7. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  8. Researching the Experience of Pedagogy.

    ERIC Educational Resources Information Center

    van Manen, Max

    2002-01-01

    This discussion of phenomenological research methods examines the importance of secrets in children's development of self-identity, autonomy, independence, and maturity; the experience of recognition in children and its relationship to teaching, learning, and child development; and Alzheimer's dementia and the relationship between memory and sense…

  9. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  10. Experiment Definition Using the Space Laboratory, Long Duration Exposure Facility, and Space Transportation System Shuttle

    NASA Technical Reports Server (NTRS)

    Sheppard, Albert P.; Wood, Joan M.

    1976-01-01

    Candidate experiments designed for the space shuttle transportation system and the long duration exposure facility are summarized. The data format covers: experiment title, Experimenter, technical abstract, benefits/justification, technical discussion of experiment approach and objectives, related work and experience, experiment facts space properties used, environmental constraints, shielding requirements, if any, physical description, and sketch of major elements. Information was also included on experiment hardware, research required to develop experiment, special requirements, cost estimate, safety considerations, and interactions with spacecraft and other experiments.

  11. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  12. Sonic anemometers in aeolian sediment transport research

    NASA Astrophysics Data System (ADS)

    van Boxel, J. H.; Sterk, G.; Arens, S. M.

    2004-04-01

    Fast-response wind and turbulence instruments, including sonic anemometers, are used more and more in aeolian sediment transport research. These instruments give information on mean wind, but also on fluctuations and turbulent statistics, such as the uw covariance, which is a direct measure of Reynolds' stress (RS) and friction velocity. This paper discusses the interpretation of sonic anemometer data, the transformations needed to get proper results and turbulence spectra, and how they are influenced by instrument size, sampling frequency, and measurement height. Turbulence spectra characterize how much the different frequencies in the turbulent signals contribute to the variance of wind speed, or to the covariance of horizontal and vertical wind speed. They are important in determining the measurement strategy when working with fast-response instruments, such as sonic anemometers, and are useful for interpreting the measurement results. Choices on the type of sonic anemometer, observation height, sampling period, sampling frequency, and filtering can be made on the basis of expected high and low-frequency losses in turbulent signals, which are affected by those variables, as well as wind speed and atmospheric stability. Friction velocity and RS, important variables in aeolian sediment transport research, are very sensitive to tilt or slope errors. During a field experiment, the slope sensitivity of the RS was established as 9% per degree of slope, which is 1.5 times the value reported in literature on the basis of theoretical considerations. An important reason for the difference probably is the large influence of streamline curvature on turbulence statistics and thereby on the slope sensitivity of the RS. An error of 9% per degree of slope in the RS will translate into an error of approximately 4% per degree of slope in the calculated friction velocity. Space-time correlation of the horizontal wind speed is much larger than that of the vertical wind speed and

  13. The Orbital Acceleration Research Experiment

    NASA Astrophysics Data System (ADS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  14. The Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    1986-01-01

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  15. Heavy duty transport research needs assessment

    NASA Astrophysics Data System (ADS)

    1991-09-01

    As a result of the desire to decrease the dependence of the U.S. on foreign petroleum as a transportation fuel, this report assesses the research needs to further develop heavy duty engines. The topics covered include diesel engines, alternative fuels, electric vehicle technology, gas turbine engines, and Stirling cycle alternative engines.

  16. Transport systems research vehicle color display system operations manual

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.; Johnson, Larry E.

    1989-01-01

    A recent upgrade of the Transport Systems Research Vehicle operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has resulted in an all-glass panel in the research flight deck. Eight ARINC-D size CRT color displays make up the panel. A major goal of the display upgrade effort was ease of operation and maintenance of the hardware while maintaining versatility needed for flight research. Software is the key to this required versatility and will be the area demanding the most detailed technical design expertise. This document is is intended to serve as a single source of quick reference information needed for routine operation and system level maintenance. Detailed maintenance and modification of the display system will require specific design documentation and must be accomplished by individuals with specialized knowledge and experience.

  17. Partnership in Undergraduate Research Experience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Practical laboratory and work experience has been helpful in reinforcing the undergraduate educational experience. With limited resources, individual organizations may struggle to give a student a well rounded opportunity. Most undergraduates work within internships or cooperative educational fram...

  18. Lessons Learned from Bacterial Transport Experiments at the South Oyster Site

    SciTech Connect

    Scheibe, Timothy D; Hubbard, Susan S; Onstott, Tullis C; Deflaun, Mary F

    2011-09-27

    This paper provides a high-level review of bacterial transport experiments conducted by a multi-investigator, multi-institution, multi-disciplinary team of researchers under the auspices of the U. S. Department of Energy. The experiments considered were conducted during the time period 1999-2001 at a field site near the town of Oyster, Virginia known as the South Oyster Site, and included four major experimental campaigns aimed at understanding and quantifying bacterial transport in the subsurface environment. Several key elements of the research are discussed here: 1) Quantification of bacterial transport in physically and biogeochemically heterogeneous aquifers, 2) evaluation of the efficacy of conventional colloid filtration theory, 3) scale effects in bacterial transport, 4) development of new methods for microbial enumeration and screening for low adhesion strains, 5) application of novel hydrogeophysical techniques for aquifer characterization, and 6) experiences regarding management of a large field research effort.

  19. Multicomponent reactive transport modeling of uranium bioremediation field experiments

    SciTech Connect

    Fang, Yilin; Yabusaki, Steven B.; Morrison, Stan J.; Amonette, James E.; Long, Philip E.

    2009-10-15

    Biostimulation field experiments with acetate amendment are being performed at a former uranium mill tailings site in Rifle, Colorado, to investigate subsurface processes controlling in situ bioremediation of uranium-contaminated groundwater. An important part of the research is identifying and quantifying field-scale models of the principal terminal electron-accepting processes (TEAPs) during biostimulation and the consequent biogeochemical impacts to the subsurface receiving environment. Integrating abiotic chemistry with the microbially mediated TEAPs in the reaction network brings into play geochemical observations (e.g., pH, alkalinity, redox potential, major ions, and secondary minerals) that the reactive transport model must recognize. These additional constraints provide for a more systematic and mechanistic interpretation of the field behaviors during biostimulation. The reaction network specification developed for the 2002 biostimulation field experiment was successfully applied without additional calibration to the 2003 and 2007 field experiments. The robustness of the model specification is significant in that 1) the 2003 biostimulation field experiment was performed with 3 times higher acetate concentrations than the previous biostimulation in the same field plot (i.e., the 2002 experiment), and 2) the 2007 field experiment was performed in a new unperturbed plot on the same site. The biogeochemical reactive transport simulations accounted for four TEAPs, two distinct functional microbial populations, two pools of bioavailable Fe(III) minerals (iron oxides and phyllosilicate iron), uranium aqueous and surface complexation, mineral precipitation, and dissolution. The conceptual model for bioavailable iron reflects recent laboratory studies with sediments from the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site that demonstrated that the bulk (~90%) of Fe(III) bioreduction is associated with the phyllosilicates rather than the iron oxides

  20. Hardware of the flight experiment "Quail-SK" transport incubator.

    PubMed

    Sabo, V; Zongor, J; Majek, S; Bod'a, K; Guryeva, T S; Pakhomov, A I; Bella, I

    2001-07-01

    The transportation of quail eggs in various stages of incubation was used in an experiment at the orbital station MIR by the Slovak astronaut, Bella in February 1999. Device description, diagrams, and experimental results are presented in this paper.

  1. Transport simulations of ohmic ignition experiment: IGNITEX

    SciTech Connect

    Uckan, N.A.; Howe, H.C.

    1987-12-01

    The IGNITEX device, proposed by Rosenbluth et al., is a compact, super-high-field, high-current, copper-coil tokamak envisioned to reach ignition with ohmic (OH) heating alone. Several simulations of IGNITEX were made with a 0-D global model and with the 1-D PROCTR transport code. It is shown that OH ignition is a sensitive function of the assumptions about density profile, wall reflectivity of synchrotron radiation, impurity radiation, plasma edge conditions, and additional anomalous losses. In IGNITEX, OH ignition is accessible with nearly all scalings based on favorable OH confinement (such as neo-Alcator). Also, OH ignition appears to be accessible for most (not all) L-mode scalings (such as Kaye-Goldston), provided that the density profile is not too broad (parabolic or more peaked profiles are needed), Z/sub eff/ is not too large, and anomalous radiation and alpha losses and/or other enhanced transport losses (eta/sub i/ modes, edge convective energy losses, etc.) are not present. In IGNITEX, because the figure-of-merit parameters are large, ignition can be accessed (either with OH heating alone or with the aid of a small amount of auxiliary power) at relatively low beta, far from stability limits. Once the plasma is ignited, thermal runaway is prevented naturally by a combination of increased synchrotron radiation, burnout of the fuel in the plasma core and replacement by thermal alphas, and the reduction in the thermal plasma confinement assumed in L-mode-like scalings. 12 refs., 5 figs., 1 tab.

  2. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Research scientist Greg Goins monitors radish growth under a sulfur-microwave light at Hangar L at the Cape Canaveral Air Force Station. The research he is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long- duration spaceflight and environmental/ecological stewardship.

  3. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Research assistant Trisha Bruno performs an analysis on potato samples at Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  4. Experience Effect in E-Learning Research

    NASA Astrophysics Data System (ADS)

    Wu, Bing; Xu, WenXia; Ge, Jun

    This study is a productivity review on the literature gleaned from SSCI, SCIE databases concerning experience in E-Learning research. The result indicates that the number of literature productions on experience effect in ELearning research is still growing from 2005. The main research development country is Croatia, and from the analysis of the publication year, the number of papers is increasing to the peaking in 2010. And the main source title is British Journal of Educational Technology. In addition the subject area concentrated on Education & Educational Research. Moreover the research focuses on are mainly survey research and empirical research, in order to explore experience effect in E-Learning research. Also the limitations and future research of these research were discussed, so that the direction for further research work can be exploited

  5. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Visiting scientist Cheryl Frazier monitors a prototype composting machine in Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  6. Development of the COMmerical Experiment Transporter (COMET)

    NASA Technical Reports Server (NTRS)

    Pawlick, Joseph F., Jr.

    1990-01-01

    In order to commercialize space, this nation must develop a well defined path through which the Centers for the Commercial Development of Space (CCDS's) and their industrial partners and counterparts can exploit the advantages of space manufacturing and processing. Such a capability requires systems, a supporting infrastructure, and funding to become a viable component of this nation's economic strength. This paper follows the development of the COMmercial Experiment Program (COMET) from inception to its current position as the country's first space program dedicated to satisfying the needs of industry: an industry which must investigate the feasibility of space based processes, materials, and prototypes. With proposals now being evaluated, much of the COMET story is yet to be written, however concepts and events which led to it's current status and the plans for implementation may be presented.

  7. Researching the Study Abroad Experience

    ERIC Educational Resources Information Center

    McLeod, Mark; Wainwright, Philip

    2009-01-01

    The authors propose a paradigm for rigorous scientific assessment of study abroad programs, with the focus being on how study abroad experiences affect psychological constructs as opposed to looking solely at study-abroad-related outcomes. Social learning theory is used as a possible theoretical basis for making testable hypotheses and guiding…

  8. 46 CFR 393.6 - Research on Marine Highway Transportation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Research on Marine Highway Transportation. 393.6 Section 393.6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS UNDER PUBLIC LAW 91-469 AMERICA'S MARINE HIGHWAY PROGRAM § 393.6 Research on Marine Highway Transportation. (a) Summary. The Department will work in consultation...

  9. Research and Experiment in Stuttering.

    ERIC Educational Resources Information Center

    Beech, H.R.; Fransella, Fay

    A survey of research and experimentation in the field of stuttering is presented for those engaged in teaching or studying speech therapy, speech pathology, and psychology. The background to stuttering is discussed as are definition, diagnosis, and measurement. The perceptual, organic, perseverative, expectancy, diagnosogenic, and conflict…

  10. Limitations of Experiments in Education Research

    ERIC Educational Resources Information Center

    Schanzenbach, Diane Whitmore

    2012-01-01

    Research based on randomized experiments (along with high-quality quasi-experiments) has gained traction in education circles in recent years. There is little doubt this has been driven in large part by the shift in research funding strategy by the Department of Education's Institute of Education Sciences under Grover Whitehurst's lead, described…

  11. Academic Factors that Affect Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Taraban, Roman; Logue, Erin

    2012-01-01

    Undergraduate research experiences are considered an essential component in college curricula, and there is an ideological push to provide these experiences to all students. However, it is not clear whether engagement in research is better suited for higher ability undergraduates late in their programs or for all undergraduates and whether…

  12. Designing Effective Research Experiences for Undergraduates (Invited)

    NASA Astrophysics Data System (ADS)

    Jones Whyte, P.; Dalbotten, D. M.

    2009-12-01

    The undergraduate research experience has been recognized as a valuable component of preparation for graduate study. As competition for spaces in graduate schools become more keen students benefit from a formal introduction to the life of a scholar. Over the last twenty years a model of preparing students for graduate study with the research experience as the base has been refined at the University of Minnesota. The experience includes assignment with a faculty member and a series of seminars that support the experience. The seminars cover topics to include academic writing, scholarly literature review, writing of the abstract, research subject protection protocols, GRE test preparation, opportunities to interact with graduate student, preparing the graduate school application, and preparation of a poster to demonstrate the results of the research. The next phase of the process is to determine the role of the undergraduate research experience in the graduate school admission process.

  13. Sediment-transport experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.; Greeley, R.

    1986-01-01

    One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in Earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.

  14. Sediment-transport experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iversen, James D.; Greeley, Ronald

    1987-01-01

    One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.

  15. Researching the experience of kidney cancer patients.

    PubMed

    Taylor, K

    2002-09-01

    The author's personal experience as a kidney cancer patient, researcher and founder of a kidney cancer support group forms the basis for consideration of the challenges involved in researching patients' experiences. The researcher needs to understand the variability of those experiences in both clinical and psychological-emotional terms, and in relation to the personal, familial and social contexts of the patient. It is also essential to define the purpose of the research and to show how an understanding of personal experiences of cancer can be used to enhance the quality of care for cancer patients. The research encounter with a patient is also in some respects a therapeutic encounter requiring a considerable degree of sensitivity on the part of the researcher. The person-centred approach of Carl Rogers is of value in supporting such an encounter.

  16. Researching the experience of kidney cancer patients.

    PubMed

    Taylor, K

    2002-09-01

    The author's personal experience as a kidney cancer patient, researcher and founder of a kidney cancer support group forms the basis for consideration of the challenges involved in researching patients' experiences. The researcher needs to understand the variability of those experiences in both clinical and psychological-emotional terms, and in relation to the personal, familial and social contexts of the patient. It is also essential to define the purpose of the research and to show how an understanding of personal experiences of cancer can be used to enhance the quality of care for cancer patients. The research encounter with a patient is also in some respects a therapeutic encounter requiring a considerable degree of sensitivity on the part of the researcher. The person-centred approach of Carl Rogers is of value in supporting such an encounter. PMID:12296838

  17. Evaluation of a BSW Research Experience: Improving Student Research Competency

    ERIC Educational Resources Information Center

    Whipple, Ellen E.; Hughes, Anne; Bowden, Susan

    2015-01-01

    This article examines the experience of 24 BSW students in a faculty-mentored undergraduate research experience (URE) over the course of 1 academic year. In particular, we sought to better understand students' self-perceived sense of competency across 15 specific research skills. In addition, we examined the URE's impact on students' knowledge…

  18. Researching Children's Experience Hermeneutically and Holistically

    ERIC Educational Resources Information Center

    Ellis, Julia

    2006-01-01

    This article is about the possibilities of conducting research with children productively. Children may need suitable prompts, occasions, or media for their expression. The discussion begins with an overview of the challenges or dynamics researchers can experience with any participants in qualitative research in the constructivist paradigm. It…

  19. Doctoral Students' Experience of Information Technology Research

    ERIC Educational Resources Information Center

    Bruce, Christine; Stoodley, Ian; Pham, Binh

    2009-01-01

    As part of their journey of learning to research, doctoral candidates need to become members of their research community. In part, this involves coming to be aware of their field in ways that are shared amongst longer-term members of the research community. One aspect of candidates' experience we need to understand, therefore, involves how they…

  20. 46 CFR 393.6 - Research on Marine Highway Transportation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... The primary objectives of selected research Projects are to: (1) Identify and quantify environmental... 46 Shipping 8 2012-10-01 2012-10-01 false Research on Marine Highway Transportation. 393.6 Section...-469 AMERICA'S MARINE HIGHWAY PROGRAM § 393.6 Research on Marine Highway Transportation. (a)...

  1. 46 CFR 393.6 - Research on Marine Highway Transportation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... The primary objectives of selected research Projects are to: (1) Identify and quantify environmental... 46 Shipping 8 2011-10-01 2011-10-01 false Research on Marine Highway Transportation. 393.6 Section...-469 AMERICA'S MARINE HIGHWAY PROGRAM § 393.6 Research on Marine Highway Transportation. (a)...

  2. Undergraduate Laboratory Experiment Facilitating Active Learning of Concepts in Transport Phenomena: Experiment with a Subliming Solid

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.

    2015-01-01

    An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…

  3. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  4. Education. Undergraduate research experiences: impacts and opportunities.

    PubMed

    Linn, Marcia C; Palmer, Erin; Baranger, Anne; Gerard, Elizabeth; Stone, Elisa

    2015-02-01

    Most undergraduates give high ratings to research experiences. Studies report that these experiences improve participation and persistence, often by strengthening students' views of themselves as scientists. Yet, the evidence for these claims is weak. More than half the 60 studies reviewed rely on self-report surveys or interviews. Rather than introducing new images of science, research experiences may reinforce flawed images especially of research practices and conceptual understanding. The most convincing studies show benefits for mentoring and for communicating the nature of science, but the ideas that students learn are often isolated or fragmented rather than integrated and coherent. Rigorous research is needed to identify ways to design research experiences so that they promote integrated understanding. These studies need powerful and generalizable assessments that can document student progress, help distinguish effective and ineffective aspects of the experiences, and illustrate how students interpret the research experiences they encounter. To create research experiences that meet the needs of interested students and make effective use of scarce resources, we encourage systematic, iterative studies with multiple indicators of success.

  5. Change of Collision Efficiency with Distance in Bacterial Transport Experiements

    SciTech Connect

    Dong, Hailiang; Scheibe, Timothy D.; Johnson, William P.; Monkman, Crystal; Fuller, Mark E.

    2006-05-01

    Previous bacterial transport studies have shown decreased bacterial adhesion with transport distance, largely based on laboratory core experiments. An inferred effect of microbial population variability is invoked to interpret experimental data, but there lacks direct measurement at field-scale, especially in correlation of transport distance with change of bacterial surface properties. This study was undertaken to determine change of collision efficiency with transport distance, taking advantage of the bacterial transport experiment in Oyster, VA in the summer of 2001. Upon injection of an adhesion deficient strain, Comamonas sp. DA001 into a up-gradient well, bacterial samples were taken from multi-level samplers along the flow path, and were injected into cores of 40 cm in length and 7.5 cm in diameter packed with homogenized sediment from the same site, South Oyster focus area (SOFA). Bacterial suspension samples were also measured for bacterial electrophoretic mobility distribution. Using filtration theory, collision efficiency, the probability of bacterial attachment to the grain surfaces upon collision and a quantitative measure of bacterial adhesion, was determined using CXTFIT model fitted attachment rate, measured grain size (10th percentile), porosity, flow velocity, and collector efficiency. Collision efficiency was also determined based on the fraction of retention in the cores. Contrary to previous results and interpretation of field-scale breakthrough curves, our experimentally determined collision efficiency increases with transport distance in the core experiments, which correlates with increasingly negative surface charge of the injected bacteria. Therefore we conclude that the apparent decrease in adhesion with transport distance in the field is strongly controlled by field-scale heterogeneity in physical and chemical aquifer properties and not by microbial population heterogeneity.

  6. My Rewarding Summer Research Experience at NASA

    NASA Technical Reports Server (NTRS)

    Aviles, Andres

    2007-01-01

    My summer research experience at the Kennedy Space Center has been a truly rewarding one. As an electrical engineering student at the University of South Florida, I was blessed with a beneficial opportunity to gain valuable knowledge in my career, and also apply it through working at NASA. One of my inspirations in becoming an engineer is to work at NASA someday, and I was very excited and honored to have this opportunity. My goal in this internship was to strengthen my preparation in becoming an engineer by learning new material, acquiring skills by practicing what I learned, and discovering the expectations of engineering work at NASA. Through this summer research, I was able to learn new computer programs and perform various tasks that gave me experience and skills as an engineer. My primary job was to conduct work on the Constellation Test article, which is a simulation model of the Crew Launch Vehicle (CLV) tanking system. This is a prototype of a launch facility and an Ares I Vehicle, which God willing will transport astronauts to the moon. Construction of the CLV is in progress and a test launch is anticipated for 2010. Moreover, the Test Article serves as a demonstration too, training test bed, and may be expanded for new simulation of launch system elements, which could be applied to real life operations. The test article is operated and run by a Programmable Logic Controller (PLC), which is a digital computer that is used to control all forms of machinery such as those in manufacturing buildings and other industries. PLCs are different than other computers because of the physical protection they have against damaging environmental conditions that would destroy other computers. Also, PLCs are equipped with lots of input and output connections that allow extensive amounts of commands to be executed, which would normally require many computers to do. Therefore, PLCs are small, rugged, and extremely powerful tools that may continue to be employed at NASA

  7. Transportation demand management and ridesharing. Transportation research record

    SciTech Connect

    Solomon, N.

    1996-12-31

    ;Contents: Developing a Travel Time Congestion Index; Measuring and Estimating Congestion Using Travel Time-Based Procedures; Evaluation of Speed Measurement and Prediction Techniques for Signalized Arterials; Estimating the Effect of Operational Improvements in the Houston Area; Toward a Common Parking Policy: A Cross-Jurisdictional Matrix Comparison of Municipal Off-Street Parking Regulations in Metropolitan Dade County, Florida; Optimization Model for Parking in the Campus Environment; and How Do We Know Employer-Based Transportation Demand Mangement Works. The Need for Experimental Design.

  8. Manganese: brain transport and emerging research needs.

    PubMed

    Aschner, M

    2000-06-01

    Idiopathic Parkinson's disease (IPD) represents a common neurodegenerative disorder. An estimated 2% of the U.S. population, age 65 and older, develops IPD. The number of IPD patients will certainly increase over the next several decades as the baby-boomers gradually step into this high-risk age group, concomitant with the increase in the average life expectancy. While many studies have suggested that industrial chemicals and pesticides may underlie IPD, its etiology remains elusive. Among the toxic metals, the relationship between manganese intoxication and IPD has long been recognized. The neurological signs of manganism have received close attention because they resemble several clinical disorders collectively described as extrapyramidal motor system dysfunction, and in particular, IPD and dystonia. However, distinct dissimilarities between IPD and manganism are well established, and it remains to be determined whether Mn plays an etiologic role in IPD. It is particularly noteworthy that as a result of a recent court decision, methylcyclopentadienyl Mn tricarbonyl (MMT) is presently available in the United States and Canada for use in fuel, replacing lead as an antiknock additive. The impact of potential long-term exposure to low levels of MMT combustion products that may be present in emissions from automobiles has yet to be fully evaluated. Nevertheless, it should be pointed out that recent studies with various environmental modeling approaches in the Montreal metropolitan (where MMT has been used for more than 10 years) suggest that airborne Mn levels were quite similar to those in areas where MMT was not used. These studies also show that Mn is emitted from the tail pipe of motor vehicles primarily as a mixture of manganese phosphate and manganese sulfate. This brief review characterizes the Mn speciation in the blood and the transport kinetics of Mn into the central nervous system, a critical step in the accumulation of Mn within the brain, outlines the

  9. Lessons learned from bacterial transport research at the South Oyster Site

    SciTech Connect

    Scheibe, T.; Hubbard, S.S.; Onstott, T.C.; DeFlaun, M.F.

    2011-04-01

    This paper provides a review of bacterial transport experiments conducted by a multi-investigator, multi-institution, multi-disciplinary team of researchers under the auspices of the U. S. Department of Energy (DOE). The experiments were conducted during the time period 1999-2001 at a field site near the town of Oyster, Virginia known as the South Oyster Site, and included four major experimental campaigns aimed at understanding and quantifying bacterial transport in the subsurface environment. Several key elements of the research are discussed here: (1) quantification of bacterial transport in physically, chemically and biologically heterogeneous aquifers, (2) evaluation of the efficacy of conventional colloid filtration theory, (3) scale effects in bacterial transport, (4) development of new methods for microbial enumeration and screening for low adhesion strains, (5) application of novel hydrogeophysical techniques for aquifer characterization, and (6) experiences regarding management of a large field research effort. Lessons learned are summarized in each of these areas. The body of literature resulting from South Oyster Site research has been widely cited and continues to influence research into the controls exerted by aquifer heterogeneity on reactive transport (including microbial transport). It also served as a model (and provided valuable experience) for subsequent and ongoing highly-instrumented field research efforts conducted by DOE-sponsored investigators.

  10. Faculty Experiences in a Research Learning Community

    ERIC Educational Resources Information Center

    Holmes, Courtney M.; Kozlowski, Kelly A.

    2014-01-01

    The current study examines the experiences of faculty in a research learning community developed to support new faculty in increasing scholarly productivity. A phenomenological, qualitative inquiry was used to portray the lived experiences of faculty within a learning community. Several themes were found including: accountability, belonging,…

  11. Reflection on Lived Experience in Educational Research

    ERIC Educational Resources Information Center

    Barnacle, Robyn

    2004-01-01

    While debate about the meaning of hermeneutics and phenomenology for educational research continues, the notion of lived experience, and its application to reflective practice, has become a feature of much that goes by the name of phenomenological within this area. The prevalence of the lived experience model can be attributed in large part to the…

  12. COLLOID MOBILIZATION AND TRANSPORT IN CONTAMINANT PLUMES: FILED EXPERIMENTS, LABORATORY EXPERIMENTS, AND MODELING

    EPA Science Inventory

    The major hypothesis driving this research, that the transport of colloids in a contaminant plume is limited by the advance of the chemical agent causing colloid mobilization, was tested by (1) examining the dependence of colloid transport and mobilization on chemical perturbatio...

  13. Bacterial transport in heterogeneous porous media: Observations from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Silliman, S. E.; Dunlap, R.; Fletcher, M.; Schneegurt, M. A.

    2001-11-01

    Transport of bacteria through heterogeneous porous media was investigated in small-scale columns packed with sand and in a tank designed to allow the hydraulic conductivity to vary as a two-dimensional, lognormally distributed, second-order stationary, exponentially correlated random field. The bacteria were Pseudomonas ftuorescens R8, a strain demonstrating appreciable attachment to surfaces, and strain Ml, a transposon mutant of strain R8 with reduced attachment ability. In bench top, sand-filled columns, transport was determined by measuring intensity of fluorescence of stained cells in the effluent or by measuring radiolabeled cells that were retained in the sand columns. Results demonstrated that strain Ml was transported more efficiently than strain R8 through columns packed with either a homogeneous silica sand or a more heterogeneous sand with iron oxide coatings. Two experiments conducted in the tank involved monitoring transport of bacteria to wells via sampling from wells and sample ports in the tank. Bacterial numbers were determined by direct plate count. At the end of the first experiment, the distribution of the bacteria in the sediment was determined by destructive sampling and plating. The two experiments produced bacterial breakthrough curves that were quite similar even though the similarity between the two porous media was limited to first- and second-order statistical moments. This result appears consistent with the concept of large-scale, average behavior such as has been observed for the transport of conservative chemical tracers. The transported bacteria arrived simultaneously with a conservative chemical tracer (although at significantly lower normalized concentration than the tracer). However, the bacterial breakthrough curves showed significant late time tailing. The concentrations of bacteria attached to the sediment surfaces showed considerably more spatial variation than did the concentrations of bacteria in the fluid phase. This

  14. Planning for an integrated research experiment

    SciTech Connect

    Barnard, J.J.; Ahle, L.E.; Bangerter, R.O.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Friedman, A.; Grote, D.P.; Haber, I.; Henestroza, E.; Kishek, R.A.; de Hoon, M.J.L.; Karpenko, V.P.; Kirhek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.

    2001-03-25

    We describe the goals and research program leading to the Heavy Ion Integrated Research Experiment (IRE). We review the basic constraints which lead to a design and give examples of parameters and capabilities of an IRE. We also show design tradeoffs generated by the systems code IBEAM.

  15. 46 CFR 393.6 - Research on Marine Highway Transportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Research on Marine Highway Transportation. 393.6 Section...-469 AMERICA'S MARINE HIGHWAY PROGRAM § 393.6 Research on Marine Highway Transportation. (a) Summary... Marine Highway or in direct support of designated Marine Highway Corridors and Projects. (b)...

  16. Propulsion system for research VTOL transports

    NASA Technical Reports Server (NTRS)

    Gertsma, L. W.; Zigan, S.

    1973-01-01

    In anticipation of an eventual VTOL requirement for civil aviation, NASA has been conducting studies directed toward determining and developing the technology required for a commercial VTOL transport. In this paper, the commercial transport configurations are briefly reviewed; the propulsion system specifications and components developed by the engine study contractor are presented and described; and methods for using the lift-propulsion system for aircraft attitude control are discussed.

  17. Moral experience: a framework for bioethics research.

    PubMed

    Hunt, Matthew R; Carnevale, Franco A

    2011-11-01

    Theoretical and empirical research in bioethics frequently focuses on ethical dilemmas or problems. This paper draws on anthropological and phenomenological sources to develop an alternative framework for bioethical enquiry that allows examination of a broader range of how the moral is experienced in the everyday lives of individuals and groups. Our account of moral experience is subjective and hermeneutic. We define moral experience as "Encompassing a person's sense that values that he or she deem important are being realised or thwarted in everyday life. This includes a person's interpretations of a lived encounter, or a set of lived encounters, that fall on spectrums of right-wrong, good-bad or just-unjust". In our conceptualisation, moral experience is not limited to situations that are heavily freighted with ethically-troubling ramifications or are sources of debate and disagreement. Important aspects of moral experience are played out in mundane and everyday settings. Moral experience provides a research framework, the scope of which extends beyond the evaluation of ethical dilemmas, processes of moral justification and decision-making, and moral distress. This broad research focus is consistent with views expressed by commentators within and beyond bioethics who have called for deeper and more sustained attention in bioethics scholarship to a wider set of concerns, experiences and issues that better captures what is ethically at stake for individuals and communities. In this paper we present our conceptualisation of moral experience, articulate its epistemological and ontological foundations and discuss opportunities for empirical bioethics research using this framework.

  18. NSF program gives research experience to undergrads

    NASA Astrophysics Data System (ADS)

    Swift, Daniel W.

    Research Experience for Undergraduates (REU) is a new National Science Foundation (NSF) program designed to attract talented undergraduates into research careers in science, engineering, and mathematics. The program is intended to provide active research experience to students while they are still in their undergraduate years. There are two categories of support under this program: REU Sites and REU Supplements. The supplement, as the name implies, is to supplement existing NSF grants to permit an investigator to hire an undergraduate assistant. Here, I will report o n the REU site award made to the Geophysical Institute of the University of Alaska for summer 1987.

  19. Participatory Action Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Sample McMeeking, L. B.; Weinberg, A. E.

    2013-12-01

    Research experiences for undergraduates (REU) have been shown to be effective in improving undergraduate students' personal/professional development, ability to synthesize knowledge, improvement in research skills, professional advancement, and career choice. Adding to the literature on REU programs, a new conceptual model situating REU within a context of participatory action research (PAR) is presented and compared with data from a PAR-based coastal climate research experience that took place in Summer 2012. The purpose of the interdisciplinary Participatory Action Research Experiences for Undergraduates (PAREU) model is to act as an additional year to traditional, lab-based REU where undergraduate science students, social science experts, and community members collaborate to develop research with the goal of enacting change. The benefits to traditional REU's are well established and include increased content knowledge, better research skills, changes in attitudes, and greater career awareness gained by students. Additional positive outcomes are expected from undergraduate researchers (UR) who participate in PAREU, including the ability to better communicate with non-scientists. With highly politicized aspects of science, such as climate change, this becomes especially important for future scientists. Further, they will be able to articulate the relevance of science research to society, which is an important skill, especially given the funding climate where agencies require broader impacts statements. Making science relevant may also benefit URs who wish to apply their science research. Finally, URs will gain social science research skills by apprenticing in a research project that includes science and social science research components, which enables them to participate in future education and outreach. The model also positively impacts community members by elevating their voices within and outside the community, particularly in areas severely underserved

  20. Experiment to measure fast ion transport by magnetic fluctuations

    NASA Astrophysics Data System (ADS)

    Preiwisch, Adam; Heidbrink, William; Boehmer, Heinz; McWilliams, Roger; Carter, Troy; Gekelman, Walter; Tripathi, Shreekrishna; van Compernolle, Bart; Vincena, Steve

    2013-10-01

    Fast ion transport in a linear magnetic field is studied at the upgraded Large Plasma Device. Recent developments allow for the generation of turbulent magnetic flux ropes, produced by a hot LaB6 cathode situated in the main chamber.1 A large-gyroradius, energetic lithium ion beam (300 <= Efast /Ti <= 1000) is passed through the turbulent region and collected by a collimated analyzer downstream, yielding a detailed plane profile of the fast ion distribution.2 Magnetic fluctuations, density, and temperature profiles are also obtained via probes. Enhanced fast-ion transport is clearly observed in the form of beam broadening. Early analysis shows broadband ion saturation current and magnetic fluctuations attributed to the flux ropes. A follow up experiment is currently under way to address whether the increased transport is primarily attributed to magnetic fields, associated electric fields, or increased Coulomb scattering.

  1. Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media

    SciTech Connect

    Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

    2010-06-01

    This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

  2. High current heavy ion beam transport experiment at LBL

    SciTech Connect

    Chupp, W.; Faltens, A.; Hartwig, E.C.; Keefe, D.; Kim, C.H.; Pike, C.; Rosenblum, S.S.; Tiefenback, M.; Vanecek, D.; Warwick, A.I.

    1984-01-01

    Information on the current limit in a long quadrupole transport channel is required in designing an accelerator driver for an inertial confinement fusion system. Although a current transport limit was proposed by Maschke, quantitative estimates require a detailed knowledge of the stability of the beam. Analytic calculations based on the Kapchinskij-Vladimirskij (K-V) distribution function have identified transversely unstable modes, but particle simulations have shown that some of the K-V instabilities are benign, i.e., particles redistribute themselves in the 4-D transverse phase space, but the rms emittances do not grow. Some preliminary results of beam transport experiments were reported in the 1983 Particle Accelerator Conference in Santa Fe.

  3. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  4. Comparison of a radial fractional transport model with tokamak experiments

    SciTech Connect

    Kullberg, A. Morales, G. J.; Maggs, J. E.

    2014-03-15

    A radial fractional transport model [Kullberg et al., Phys. Rev. E 87, 052115 (2013)], that correctly incorporates the geometric effects of the domain near the origin and removes the singular behavior at the outer boundary, is compared to results of off-axis heating experiments performed in the Rijnhuizen Tokamak Project (RTP), ASDEX Upgrade, JET, and DIII-D tokamak devices. This comparative study provides an initial assessment of the presence of fractional transport phenomena in magnetic confinement experiments. It is found that the nonlocal radial model is robust in describing the steady-state temperature profiles from RTP, but for the propagation of heat waves in ASDEX Upgrade, JET, and DIII-D the model is not clearly superior to predictions based on Fick's law. However, this comparative study does indicate that the order of the fractional derivative, α, is likely a function of radial position in the devices surveyed.

  5. INTEX-NA: Intercontinental Chemical Transport Experiment - North America

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Jacob, D.; Pfister, L.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    characterizing Atlantic-outflow and Pacific-inflow, INTEX-NA will characterize air masses transported between the U.S., Canada, and Mexico. INTEX-NA will be the first continental scale inflow, outflow, and transformation experiment to be performed over North America. It will provide the most comprehensive observational data set to date to understand the O3/NOX/HOX/aerosol photochemical system and the carbon cycle. One of the critical needs of the carbon cycle research is to obtain large-scale vertical and horizontal concentration gradients of CO2, throughout the troposphere over continental source/sink regions. INTEX-NA is ideally suited to perform this role. Coastal and continental operational sites will allow us to develop a curtain profile of greenhouse gases (e. g. CO2,) and other key pollutants across North America. Such information is central to our quantitative understanding of chemical budgets on the continental scale. We expect to provide a number of satellite under-flights over land and water to test and validate observations from the appropriate satellite platform (e. g. Aura). We plan to develop strong collaborations with other national and international observational programs. Results from INTEX-NA should directly benefit the development of environmental policy for air quality and climate change.

  6. Nonlocal neoclassical transport in tokamak and spherical torus experiments

    SciTech Connect

    Wang, W. X.; Rewoldt, G.; Tang, W. M.; Hinton, F. L.; Manickam, J.; Zakharov, L. E.; White, R. B.; Kaye, S.

    2006-08-15

    Large ion orbits can produce nonlocal neoclassical effects on ion heat transport, the ambipolar radial electric field, and the bootstrap current in realistic toroidal plasmas. Using a global {delta}f particle simulation, it is found that the conventional local, linear gradient-flux relation is broken for the ion thermal transport near the magnetic axis. With regard to the transport level, it is found that details of the ion temperature profile determine whether the transport is higher or lower when compared with the predictions of standard neoclassical theory. Particularly, this nonlocal feature is suggested to exist in the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)], being consistent with NSTX experimental evidence. It is also shown that a large ion temperature gradient can increase the bootstrap current. When the plasma rotation is taken into account, the toroidal rotation gradient can drive an additional parallel flow for the ions and then additional bootstrap current, either positive or negative, depending on the gradient direction. Compared with the carbon radial force balance estimate for the neoclassical poloidal flow, our nonlocal simulation predicts a significantly deeper radial electric field well at the location of an internal transport barrier of an NSTX discharge.

  7. Across the Arctic Teachers Experience Field Research

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Warburton, J.; Wiggins, H. V.; Marshall, S. A.; Darby, D. A.

    2005-12-01

    From studying snow geese on the North Slope of Alaska to sediment coring aboard the U.S. Coast Guard Cutter Healy in the Arctic Ocean, K-12 teachers embark on scientific expeditions as part of a program that strives to make science in the Arctic a "virtual" reality. In the past two years, seventeen K-12 teachers have participated in Teachers and Researchers Exploring and Collaborating (TREC), a program that pairs teachers with researchers to improve science education through arctic field experiences. TREC builds on the scientific and cultural opportunities of the Arctic, linking research and education through topics that naturally engage students and the wider public. TREC includes expeditions as diverse as studying plants at Toolik Field Station, a research facility located 150 miles above the Arctic Circle; climate change studies in Norway's Svalbard archipelago; studying rivers in Siberia; or a trans-arctic expedition aboard the USCGC Healy collecting an integrated geophysical data set. Funded by the National Science Foundation Office of Polar Programs, TREC offers educators experiences in scientific inquiry while encouraging the public and students to become active participants in the scientific inquiry by engaging them virtually in arctic research. TREC uses online outreach elements to convey the research experience to a broad audience. While in remote field locations, teachers and researchers interact with students and the public through online seminars and live calls from the field, online journals with accompanying photos, and online bulletin boards. Since the program's inception in 2004, numerous visitors have posted questions or interacted with teachers, researchers, and students through the TREC website (http://www.arcus.org/trec). TREC teachers are required to transfer their experience of research and current science into their classroom through the development of relevant activities and resources. Teachers and researchers are encouraged to participate

  8. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated June 22, 1988: 'A dwarf wheat variety known as Yecoro Rojo flourishes in KSC's Biomass Production Chamber. Researchers are gathering information on the crop's ability to produce food, water and oxygen, and then remove carbon dioxide. The confined quarters associated with space travel require researchers to focus on smaller plants that yield proportionately large amounts of biomass. This wheat crop takes about 85 days to grow before harvest.' Plant experiments such as this are the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  9. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  10. NASA's Subsonic Jet Transport Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Preisser, John S.

    2000-01-01

    Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.

  11. Stochastic analysis of a field-scale unsaturated transport experiment

    NASA Astrophysics Data System (ADS)

    Severino, G.; Comegna, A.; Coppola, A.; Sommella, A.; Santini, A.

    2010-10-01

    Modelling of field-scale transport of chemicals is of deep interest to public as well as private sectors, and it represents an area of active theoretical research in many environmentally-based disciplines. However, the experimental data needed to validate field-scale transport models are very limited due to the numerous logistic difficulties that one faces out. In the present paper, the migration of a tracer (Cl -) was monitored during its movement in the unsaturated zone beneath the surface of 8 m × 50 m sandy soil. Under flux-controlled, steady-state water flow ( Jw = 10 mm/day) was achieved by bidaily sprinkler irrigation. A pulse of 105 g/m 2 KCl was applied uniformly to the surface, and subsequently leached downward by the same (chloride-free) flux Jw over the successive two months. Chloride concentration monitoring was carried out in seven measurement campaigns (each one corresponding to a given time) along seven (parallel) transects. The mass recovery was near 100%, therefore underlining the very good-quality of the concentration data-set. The chloride concentrations are used to test two field-scale models of unsaturated transport: (i) the Advection-Dispersion Equation (ADE), which models transport far from the zone of solute entry, and (ii) the Stochastic- Convective Log- normal (CLT) transfer function model, which instead accounts for transport near the release zone. Both the models provided an excellent representation of the solute spreading at z > 0.45 m (being z = 0.45 m the calibration depth). As a consequence, by the depth z ≈ 50 cm one can regard transport as Fickian. The ADE model dramatically underestimates solute spreading at shallow depths. This is due to the boundary effects which are not captured by the ADE. The CLT model appears to be a more robust tool to mimic transport at every depth.

  12. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  13. Research Experiences in Community College Science Programs

    NASA Astrophysics Data System (ADS)

    Beauregard, A.

    2011-12-01

    The benefits of student access to scientific research opportunities and the use of data in curriculum and student inquiry-driven approaches to teaching as effective tools in science instruction are compelling (i.e., Ledley, et al., 2008; Gawel & Greengrove, 2005; Macdonald, et al., 2005; Harnik & Ross. 2003). Unfortunately, these experiences are traditionally limited at community colleges due to heavy faculty teaching loads, a focus on teaching over research, and scarce departmental funds. Without such hands-on learning activities, instructors may find it difficult to stimulate excitement about science in their students, who are typically non-major and nontraditional. I present two different approaches for effectively incorporating research into the community college setting that each rely on partnerships with other institutions. The first of these is a more traditional approach for providing research experiences to undergraduate students, though such experiences are limited at community colleges, and involves student interns working on a research project under the supervision of a faculty member. Specifically, students participate in a water quality assessment study of two local bayous. Students work on different aspects of the project, including water sample collection, bio-assay incubation experiments, water quality sample analysis, and collection and identification of phytoplankton. Over the past four years, nine community college students, as well as two undergraduate students and four graduate students from the local four-year university have participated in this research project. Aligning student and faculty research provides community college students with the unique opportunity to participate in the process of active science and contribute to "real" scientific research. Because students are working in a local watershed, these field experiences provide a valuable "place-based" educational opportunity. The second approach links cutting-edge oceanographic

  14. Determining an optimal set of research experiments

    NASA Technical Reports Server (NTRS)

    Adams, B. H.; Gearing, C. E.

    1974-01-01

    Description of a procedure for optimal selection of research experiments to be performed aboard the Space Shuttle. The procedure is designed to provide the study team with a credible approach to their task. The procedure is characterized as methodologically sound and based on assumptions which reasonably approximate the real conditions. The data-gathering techniques proposed are accepted by scientifically trained personnel.

  15. International Research Students' Experiences in Academic Success

    ERIC Educational Resources Information Center

    Yeoh, Joanne Sin Wei; Terry, Daniel R.

    2013-01-01

    The flow of international students to study in Australia increases each year. It is a challenge for students to study abroad in a different sociocultural environment, especially for postgraduate research students, as they experience numerous difficulties in an unfamiliar and vastly different study environment. A study aimed to investigate the…

  16. The Microgravity Research Experiments (MICREX) Data Base

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments) was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigator (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes thE MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  17. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  18. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  19. USING SUBSURFACE TRANSPORT RESEARCH TO ACHIEVE AGENCY OUTCOMES

    EPA Science Inventory

    Gasoline leaks from underground storage tanks can cause ground water contamination because there are a number of organic chemicals in gasoline. These chemicals have varying properties that influence how far contamination extends from the release. Research on transport of these ...

  20. Field experiments of nonlocal sediment transport on a steep hillslope

    NASA Astrophysics Data System (ADS)

    DiBiase, R.; Booth, A. M.; Ganti, V.; Scheingross, J. S.; Lamb, M. P.

    2014-12-01

    Steep rocky hillslopes dominate the areal extent of rapidly uplifting mountain ranges, and pose a significant hazard to encroaching population centers. Existing models for hillslope sediment transport developed for soil-mantled landscapes are poorly suited to explain the evolution of steep hillslopes characterized by: (1) intermittent or patchy soil cover, (2) slopes that exceed the angle of repose, and (3) transport events that often involve long travel distances. Recently, nonlocal formulations of hillslope sediment transport laws that account for long travel distances have been proposed to overcome the limitations of traditional continuum-based models. However, their application to natural landscapes has been limited owing to few field constraints on key parameters, and computational difficulties expanding the framework to two-dimensions. To address this knowledge gap, we performed a series of field experiments on natural hillslopes to inform a simple particle-based model of hillslope sediment transport. We compiled the distribution of average velocity and transport distance for over 300 stones ranging in diameter from 2-10 cm using a video camera and laser range-finder. To characterize surface roughness, we used a tripod-based laser scanner to generate a 1 cm-resolution digital elevation model of each 30 m long hillslope. We find that hillslope travel distance follows a heavy-tailed distribution that varies systematically with the ratio of particle diameter to roughness height, in general agreement to published laboratory experiments. Mean particle velocity ranges from 1-3 m/s and scales weakly with distance traveled. Our modeling exercise reveals three key effects that should be included in any treatment of steep hillslope evolution: (1) there is a strong grain-size and surface roughness dependence on sediment transport distance, (2) sediment storage on slopes steeper than the angle of repose is possible due to vegetation or topographic roughness, and (3

  1. H- beam transport experiments in a solenoid low energy beam transport.

    PubMed

    Gabor, C; Back, J J; Faircloth, D C; Izaola, Z; Lawrie, S R; Letchford, A P

    2012-02-01

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H(-) ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H(-) high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  2. H{sup -} beam transport experiments in a solenoid low energy beam transport

    SciTech Connect

    Gabor, C.; Back, J. J.; Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Izaola, Z.

    2012-02-15

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  3. A capstone research experience for physics majors

    NASA Astrophysics Data System (ADS)

    Jackson, David

    2013-03-01

    Dickinson College is a small liberal arts college with a thriving physics program. For years, one of the key features of our program has been a year-long senior research project that was required for each student. Unfortunately, as our number of majors increased, it became more and more difficult to supervise such a large number of senior research projects. To deal with this growing challenge, we developed a capstone research experience that involves a larger number of students working together on an independent group project. In this talk I will give a broad overview of our new senior research model and provide a few examples of projects that have been carried out over the past few years. I will also briefly describe the positive and negative aspects of this model from the perspective of faculty and students.

  4. Vestibular Function Research (VFR) experiment. Phase B: Design definition study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.

  5. Swashzone Fellowships: a 6-month research experience

    NASA Astrophysics Data System (ADS)

    Raubenheimer, B.

    2011-12-01

    The Swashzone Fellowships funded by the CAREER program were designed to provide sufficient time for undergraduates with little knowledge of ocean processes and minimal prior research experience to participate in observational nearshore oceanographic studies. The fellows learned background material, developed hypotheses, planned field experiments, designed sensor arrays, tested and debugged instrumentation, collected and analyzed data, and communicated the results through oral and written presentations. The program funded 12 undergraduate student fellows (4 male and 8 female), with backgrounds in math (3 students), physics (4), geology (1), and environmental sciences (4). Preference was given to applicants who had not taken oceanography classes and who were unsure of career plans. All the students presented their results at department seminars, and most presented their results at a professional conference (eg, AGU or Ocean Sciences). The results often were incorporated in peer-reviewed manuscripts. Evaluations conducted following the fellowships and again several years after each fellowship indicated that many of the students pursued STEM careers: 5 are pursuing PhD degrees, including bio-mathematics, physics, atmospheric physics, and ocean physics; 2 are employed at environmental engineering and consulting firms; 4 are employed as research technicians at WHOI; and 1 is a lawyer (currently being considered as a clerk for the Supreme Court). Many of the students were excited to learn about the range of oceanographic career options, including engineering and technical staff, as well as science research. The graduating seniors expressed their appreciation for the fellowship opportunity, stating that there were few science positions available to students without significant prior research experience. Several students noted that the fellowships were critical to their later employment and to their decisions to pursue careers in science. In particular, the students noted

  6. Transient transport experiments in the CDX-U spherical torus

    NASA Astrophysics Data System (ADS)

    Munsat, Tobin Leo

    2001-05-01

    Electron transport has been measured in CDX-U using two separate perturbative techniques. Gas modulation at the plasma edge introduces cold-pulses which propagate towards the plasma center, providing time-of-flight information leading to a determination of χe as a function of radius. Sawteeth at the q = 1 radius (r/a ~ 0.15) induce heat-pulses which propagate outward towards the plasma edge, providing a complementary time-of-flight based χe profile measurement. This work represents the first localized measurement of χe in a spherical torus. It is found that χe = 1-2 m2/s in the plasma core (r/a < 1/3), increasing by an order of magnitude or more outside of this region. Furthermore, the χe profile exhibits a sharp transition near r/a = 1/3, indicating a possible transport barrier. Spectral and profile analyses of the soft x-ray, scanning interferometer, and edge probe data show no evidence of a significant magnetic island in the high χe region. In support of the electron transport experiments, a multichannel Thomson scattering system has been designed and constructed, providing the first electron profile information in CDX-U. The edge cold-pulse experiments make extensive use of the EBW electron temperature diagnostic, the sawtooth heat-pulse measurements are made with the soft x-ray array, and χe profiles are compared with Te and ne profiles from the Thomson scattering system.

  7. ABC transporter research: going strong 40 years on

    PubMed Central

    Theodoulou, Frederica L.; Kerr, Ian D.

    2015-01-01

    In most organisms, ABC transporters constitute one of the largest families of membrane proteins. In humans, their functions are diverse and underpin numerous key physiological processes, as well as being causative factors in a number of clinically relevant pathologies. Advances in our understanding of these diseases have come about through combinations of genetic and protein biochemical investigations of these transporters and the power of in vitro and in vivo investigations is helping to develop genotype–phenotype understanding. However, the importance of ABC transporter research goes far beyond human biology; microbial ABC transporters are of great interest in terms of understanding virulence and drug resistance and industrial biotechnology researchers are exploring the potential of prokaryotic ABC exporters to increase the capacity of synthetic biology systems. Plant ABC transporters play important roles in transport of hormones, xenobiotics, metals and secondary metabolites, pathogen responses and numerous aspects of development, all of which are important in the global food security area. For 3 days in Chester, this Biochemical Society Focused Meeting brought together researchers with diverse experimental approaches and with different fundamental questions, all of which are linked by the commonality of ABC transporters. PMID:26517919

  8. Joint University Program for Air Transportation Research, 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A summary of the research on air transportation is addressed including navigation; guidance, control and display concepts; and hardware, with special emphasis on applications to general aviation aircraft. Completed works and status reports are presented also included are annotated bibliographies of all published research sponsored on these grants since 1972.

  9. Asphalt and asphalt additives. Transportation research record

    SciTech Connect

    Not Available

    1992-01-01

    Contents: use of asphalt emulsions for in-place recycling: oregon experience; gap-graded cold asphalt concrete: benefits of polymer-modified asphalt cement and fibers; cold in-place recycling for rehabilitation and widening of low-volume flexible pavements in indiana; in situ cold recycling of bituminous pavements with polymer-modified high float emulsions; evaluation of new generation of antistripping additives; correlation between performance-related characteristics of asphalt cement and its physicochemical parameters using corbett's fractions and hpgc; reaction rates and hardening susceptibilities as determined from pressure oxygen vessel aging of asphalts; evaluation of aging characteristics of asphalts by using tfot and rtfot at different temperature levels; summary of asphalt additive performance at selected sites; relating asphalt absorption to properties of asphalt cement and aggregate; study of the effectiveness of styrene-butadiene rubber latex in hot mix asphalt mixes; stability of straight and polymer-modified asphalts.

  10. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  11. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  12. Uranium transport in a crushed granodiorite: Experiments and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reimus, P. W.

    2015-04-01

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system. Uranium was used as an example of a moderately adsorbing contaminant because of its relevance in geologic disposal of spent nuclear fuel. A fractured granodiorite from the Grimsel Test Site (GTS) in Switzerland was selected because this system has been studied extensively and field experiments have been conducted with radionuclides including uranium. We evaluated the role of pH, porous media size fraction, and flow interruptions on uranium transport. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and optical microscopy, and used in uranium batch sorption and column breakthrough experiments. A synthetic water was prepared that represented the porewater that would be present after groundwater interacts with bentonite backfill material near a nuclear waste package. Uranium was conservatively transported at pH 8.8. Significant adsorption and subsequent desorption was observed at pH ~ 7, with long desorption tails resulting after switching the column injection solution to uranium-free groundwater. Our experiments were designed to better interrogate this slow desorption behavior. A three-site model predicted sorption rate constants for a pH 7.2 solution with a 75-150 μm granodiorite fraction to be 3.5, 0.012, and 0.012 mL/g-h for the forward reactions and 0.49, 0.0025, and 0.001 h- 1 for the reverse reactions. Surface site densities were 1.3, 0.042, and 0.042 μmol/g for the first, second, and third sites, respectively. 10-year simulations show that including a slow binding site increases the arrival time of a uranium pulse by ~ 70%.

  13. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling.

    PubMed

    Dittrich, T M; Reimus, P W

    2015-01-01

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system. Uranium was used as an example of a moderately adsorbing contaminant because of its relevance in geologic disposal of spent nuclear fuel. A fractured granodiorite from the Grimsel Test Site (GTS) in Switzerland was selected because this system has been studied extensively and field experiments have been conducted with radionuclides including uranium. We evaluated the role of pH, porous media size fraction, and flow interruptions on uranium transport. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and optical microscopy, and used in uranium batch sorption and column breakthrough experiments. A synthetic water was prepared that represented the porewater that would be present after groundwater interacts with bentonite backfill material near a nuclear waste package. Uranium was conservatively transported at pH8.8. Significant adsorption and subsequent desorption was observed at pH ~7, with long desorption tails resulting after switching the column injection solution to uranium-free groundwater. Our experiments were designed to better interrogate this slow desorption behavior. A three-site model predicted sorption rate constants for a pH7.2 solution with a 75-150 μm granodiorite fraction to be 3.5, 0.012, and 0.012 mL/g-h for the forward reactions and 0.49, 0.0025, and 0.001 h(-1) for the reverse reactions. Surface site densities were 1.3, 0.042, and 0.042 μmol/g for the first, second, and third sites, respectively. 10-year simulations show that including a slow binding site increases the arrival time of a uranium pulse by ~70%.

  14. Joint University Program for Air Transportation Research, 1989-1990

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.

  15. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  16. Column experiments to investigate transport of colloidal humic acid through porous media during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Zhou, Jingjing; Zhang, Wenjing; Huan, Ying; Yu, Xipeng; Li, Fulin; Chen, Xuequn

    2016-09-01

    Colloids act as vectors for pollutants in groundwater, thereby creating a series of environmental problems. While managed aquifer recharge plays an important role in protecting groundwater resources and controlling land subsidence, it has a significant effect on the transport of colloids. In this study, particle size and zeta potential of colloidal humic acid (HA) have been measured to determine the effects of different hydrochemistry conditions. Column experiments were conducted to examine the effects on the transport of colloidal HA under varying conditions of pH (5, 7, 9), ionic strength (<0.0005, 0.02, 0.05 M), cation valence (Na+, Ca2+) and flow rate (0.1, 0.2, 0.4 ml/min) through collectors (glass beads) to model the properties and quality of artificial recharge water and changes in the hydrodynamic field. Breakthrough curves showed that the behavior of colloidal HA being transported varied depending on the conditions. Colloid transport was strongly influenced by hydrochemical and hydrodynamic conditions. With decreasing pH or increasing ionic strength, a decrease in the peak effluent concentration of colloidal HA and increase in deposition could be clearly seen. Comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than with monovalent Na+. Changes in hydrodynamic field (flow rate) also had an impact on transportation of colloidal HA. The results of this study highlight the need for further research in this area.

  17. Experiments on a videotape atom chip: fragmentation and transport studies

    NASA Astrophysics Data System (ADS)

    Llorente García, I.; Darquié, B.; Curtis, E. A.; Sinclair, C. D. J.; Hinds, E. A.

    2010-09-01

    This paper reports on experiments with ultracold rubidium atoms confined in microscopic magnetic traps created using a piece of periodically magnetized videotape mounted on an atom chip. The roughness of the confining potential is studied with atomic clouds at temperatures of a few μK and at distances between 30 and 80 μm from the videotape-chip surface. The inhomogeneities in the magnetic field created by the magnetized videotape close to the central region of the chip are characterized in this way. In addition, we demonstrate a novel transport mechanism whereby we convey cold atoms confined in arrays of videotape magnetic micro-traps over distances as large as ~1 cm parallel to the chip surface. This conveying mechanism enables us to survey the surface of the chip and observe potential-roughness effects across different regions.

  18. Human behavior research and the design of sustainable transport systems

    NASA Astrophysics Data System (ADS)

    Schauer, James J.

    2011-09-01

    reduced carbon emissions are central to the design and optimization of future low carbon transport systems. Gaker et al (2011) suggest a framework, and provide insight into the willingness of transport consumers to pay for emission reductions of carbon dioxide from their personal transport choices within the context of other attributes of transport variables. The results of this study, although limited to a small demographic segment of the US population, demonstrate that people can integrate information on greenhouse gas emissions with other transport attributes including cost and time. Likewise, the research shows that the study group was willing to pay for reduction in greenhouse gas emissions associated with their transport choices. The study examined auto purchase choice, transport mode choice and transport route choice, which represent key decisions associated with transport that impact greenhouse gas emissions. Interestingly, they found that the study group was willing to pay for reductions in greenhouse gas emissions at a relatively consistent price across these transport choices. Clearly, the study results may not broadly apply to all demographics of users of transport, even in the study domain, due to the small demographic segment that was examined and the fact that the study was conducted in the laboratory. However, the methods used by Gaker et al (2011) are cause for optimism that future studies can obtain much needed mapping of transport preferences and willingness to pay for greenhouse gas emission reductions associated with personal transport choices. Although the Gaker et al (2011) study is directed at understanding the promotion of low carbon transport in the context of existing infrastructures, the ability of these studies to elucidate human behavior and preferences within the trade-offs of transport are critical to the design of future transport systems that seek to meet transport demand with constrained greenhouse gas emissions. Additional studies of

  19. Public transportation 1995: Current research in planning, management, technology, and ridesharing. Transportation research record

    SciTech Connect

    1995-12-31

    ;Partial Contents: Long-Range Planning Issues for Small Transit Agencies; Methods and Strategies for Transit Benefit Measurement; Relationships Between Public Transport Finance and National Economy in The Netherlands; Modifying Transit Mode Share in Household Survey Expansion; Measuring Impacts of Transit Financing Policy in Geopolitical Context: Montreal Case; Perspective on Maglev Transit and Introduction of Personal Rapid Transit Maglev; Profile of Employee Transportation Coordinators; Demographics of Carpooling; Carpooling with Co-workers in Los Angeles: Employer Involvement Does Make a Difference; Stated Choice-Based Performance Evaluation of Selected Transportation Control Measures and Their Transfer Across Sites; and Five-Year Results of Employee Commute Options in Southern California.

  20. Quantifying the transport properties of lipid mesophases by theoretical modelling of diffusion experiments

    NASA Astrophysics Data System (ADS)

    Antognini, Luca M.; Assenza, Salvatore; Speziale, Chiara; Mezzenga, Raffaele

    2016-08-01

    Lyotropic Liquid Crystals (LLCs) are a class of lipid-based membranes with a strong potential for drug-delivery employment. The characterization and control of their transport properties is a central issue in this regard, and has recently prompted a notable volume of research on the topic. A promising experimental approach is provided by the so-called diffusion setup, where the drug molecules diffuse from a feeding chamber filled with water to a receiving one passing through a LLC. In the present work we provide a theoretical framework for the proper description of this setup, and validate it by means of targeted experiments. Due to the inhomogeneity of the system, a rich palette of different diffusion dynamics emerges from the interplay of the different time- and lengthscales thereby present. Our work paves the way to the employment of diffusion experiments to quantitatively characterize the transport properties of LLCs, and provides the basic tools for device diffusion setups with controlled kinetic properties.

  1. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically

  2. Transit management and replacement capital planning. Transportation research record

    SciTech Connect

    Not Available

    1988-01-01

    The 15 papers in this report deal with the following areas: planning priorities for replacement of transit assets; establishing a transit capital replacement account - the San Diego experience; use of life-cycle cost analysis in transit capital overhaul/replace decisions - an application to the PATH railcar fleet; methodology for projecting rail transit rehabilitation and replacement-capital financing needs; long-range transit fleet planning: defining and costing a replacement-only scenario for Seattle; strategic planning as a basis for capital-investment programming: case study of the regional transportation authority in Chicago; trolley bus and motor-coach operational cost comparisons utilizing section 15 data; strategic model for operator work-force planning in the transit industry; monitoring performance of new bus routes; optimization strategies for transit systems in urban corridors; data processing software for an automatic data-acquisition system in mass transit; determinants of superior performance in public transit: research opportunities using Section 15 data; life-cycle cost analysis of electronic registering fareboxes: a case study; cluster-sampling techniques for estimating transit patronage; recent changes in BART patronage: some findings on fare elasticities.

  3. Joint University Program for Air Transportation Research, 1988-1989

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  4. Joint University Program for Air Transportation Research, 1984

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.

  5. Joint University Program for Air Transportation Research, 1983

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1983 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The material was presented at a conference held at the Federal Aviation Administration Technical Center, Altantic City, New Jersey, December 16, 1983. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control, and display concepts. An overview of the year's activities for each of the universities is also presented.

  6. Experiments on hydrodynamic transport in ultra-cold bose gasses

    NASA Astrophysics Data System (ADS)

    Koller, S. B.

    2012-09-01

    At temperatures near the absolut zero, a gas, here atomic sodium vapour, with high enough density cannot be described as tiny balls moving around as in classical physics. Since the temperature is low, the atoms are so slow that the matterwave of each atom starts to extend over the size of the atom and even over the interatomic distance. Therefore, they start to interfere like waves. Quantum mechanics start to dominate the physics in this regime. Further, depending on the sort of atoms (bosons or fermions) the atoms prefer to be in the same state or avoid to be in the same state. In the case of bosons as in the thesis, if the temperature is lowered to sub micro Kelvin temperature, a new state of matter appears after a phase transition - a macroscopic, standing wave, the Bose-Einstein condensate. This leads to a new phenomena: superfluidity - frictionless flow, second sound, vorticity and coherent scattering effects to name a few. The atoms are trapped in a elongated trap as in most of the experiments in ultra cold gasses. Usually experiments are done in a regime where the atoms seldomly collide with each other while travelling from one end to the other end of the cloud. In this experiment, however, the atoms collide many times with each other when they oscillate in the trap. This means that the cloud is hydrodynamic and leads to a very different behaviour. Two different sound waves (first and second sound), heat conduction, and collisional dominated transport can be observed in this case. The fact that the gas is weakly interacting allows comparison with current theory. At very low temperatures as in the experiments described in the thesis, the Bose character strongly alters the collisions of the atoms. The outcome of the collision does not only depend on the colliding atoms, but also on the atoms near by in phase space. The experiments outlined in this thesis cover some aspects of physics involved. Vortices have been created and observed in the Bose

  7. Space Transportation Technology Workshop: Propulsion Research and Technology

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  8. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling.

    PubMed

    Dittrich, T M; Reimus, P W

    2015-01-01

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system. Uranium was used as an example of a moderately adsorbing contaminant because of its relevance in geologic disposal of spent nuclear fuel. A fractured granodiorite from the Grimsel Test Site (GTS) in Switzerland was selected because this system has been studied extensively and field experiments have been conducted with radionuclides including uranium. We evaluated the role of pH, porous media size fraction, and flow interruptions on uranium transport. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and optical microscopy, and used in uranium batch sorption and column breakthrough experiments. A synthetic water was prepared that represented the porewater that would be present after groundwater interacts with bentonite backfill material near a nuclear waste package. Uranium was conservatively transported at pH8.8. Significant adsorption and subsequent desorption was observed at pH ~7, with long desorption tails resulting after switching the column injection solution to uranium-free groundwater. Our experiments were designed to better interrogate this slow desorption behavior. A three-site model predicted sorption rate constants for a pH7.2 solution with a 75-150 μm granodiorite fraction to be 3.5, 0.012, and 0.012 mL/g-h for the forward reactions and 0.49, 0.0025, and 0.001 h(-1) for the reverse reactions. Surface site densities were 1.3, 0.042, and 0.042 μmol/g for the first, second, and third sites, respectively. 10-year simulations show that including a slow binding site increases the arrival time of a uranium pulse by ~70%. PMID:25727688

  9. Results from simulated upper-plenum aerosol transport and aerosol resuspension experiments

    SciTech Connect

    Wright, A.L.; Pattison, W.L.

    1984-01-01

    Recent calculational results published as part of the Battelle-Columbus BMI-2104 source term study indicate that, for some LWR accident sequences, aerosol deposition in the reactor primary coolant system (PCS) can lead to significant reductions in the radionuclide source term. Aerosol transport and deposition in the PCS have been calculated in this study using the TRAP-MELT 2 computer code, which was developed at Battelle-Columbus; the status of validation of the TRAP-MELT 2 code has been described in an Oak Ridge National Laboratory (ORNL) report. The objective of the ORNL TRAP-MELT Validation Project, which is sponsored by the Fuel Systems Behavior Research Branch of the US Nuclear Regulatory Commission, is to conduct simulated reactor-vessel upper-plenum aerosol deposition and transport tests. The results from these tests will be used in the ongoing effort to validate TRAP-MELT 2. The TRAP-MELT Validation Project includes two experimental subtasks. In the Aerosol Transport Tests, aerosol transport in a vertical pipe is being studied; this geometry was chosen to simulate aerosol deposition and transport in the reactor-vessel upper-plenum. To date, four experiments have been performed; the results from these tests are presented in this paper. 7 refs., 4 figs., 4 tabs.

  10. Experiences with remote collaborations in fusion research

    SciTech Connect

    Wurden, G.A.; Davis, S.; Barnes, D.

    1998-03-01

    The magnetic fusion research community has considerable experience in placing remote collaboration tools in the hands of real user. The ability to remotely view operations and to control selected instrumentation and analysis tasks has been demonstrated. University of Wisconsin scientists making turbulence measurements on TFTR: (1) were provided with a remote control room from which they could operate their diagnostic, while keeping in close contact with their colleagues in Princeton. LLNL has assembled a remote control room in Livermore in support of a large, long term collaboration on the DIII-D tokamak in San Diego. (2) From the same control room, a joint team of MIT and LLNL scientists has conducted full functional operation of the Alcator C-Mod tokamak located 3,000 miles away in Cambridge Massachusetts. (3) These early efforts have been highly successful, but are only the first steps needed to demonstrate the technical feasibility of a complete facilities on line environment. These efforts have provided a proof of principle for the collaboratory concept and they have also pointed out shortcomings in current generation tools and approaches. Current experiences and future directions will be discussed.

  11. Orbital Acceleration Research Experiment: Calibration Measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.; Larman, Kevin T.

    1995-01-01

    The Orbital Acceleration Research Experiment (OARE), which has flown on STS-40, STS-50, and STS-58, contains a three-axis accelerometer with a single, nonpendulous, electrostatically suspended proofmass, which can resolve accelerations to the 10(sub -9) g level. The experiment also contains a full calibration station to permit in situ bias and scale-factor calibration. This on-orbit calibration capability eliminates the large uncertainty of ground-based calibrations encountered with accelerometers flown in the past on the Orbiter, and thus provides absolute acceleration measurement accuracy heretofore unachievable. This is the first time accelerometer scale-factor measurements have been performed on orbit. A detailed analysis of the calibration process is given, along with results of the calibration factors from the on-orbit OARE flight measurements on STS-58. In addition, the analysis of OARE flight-maneuver data used to validate the scale-factor measurements in the sensor's most sensitive range are also presented. Estimates on calibration uncertainties are discussed. These uncertainty estimates provides bounds on the STS-58 absolute acceleration measurements for future applications.

  12. Computer-assisted comparison of analysis and test results in transportation experiments

    SciTech Connect

    Knight, R.D.; Ammerman, D.J.; Koski, J.A.

    1998-05-10

    As a part of its ongoing research efforts, Sandia National Laboratories` Transportation Surety Center investigates the integrity of various containment methods for hazardous materials transport, subject to anomalous structural and thermal events such as free-fall impacts, collisions, and fires in both open and confined areas. Since it is not possible to conduct field experiments for every set of possible conditions under which an actual transportation accident might occur, accurate modeling methods must be developed which will yield reliable simulations of the effects of accident events under various scenarios. This requires computer software which is capable of assimilating and processing data from experiments performed as benchmarks, as well as data obtained from numerical models that simulate the experiment. Software tools which can present all of these results in a meaningful and useful way to the analyst are a critical aspect of this process. The purpose of this work is to provide software resources on a long term basis, and to ensure that the data visualization capabilities of the Center keep pace with advancing technology. This will provide leverage for its modeling and analysis abilities in a rapidly evolving hardware/software environment.

  13. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    SciTech Connect

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D.

    1999-07-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed.

  14. Mitochondrial pyruvate transport: a historical perspective and future research directions

    PubMed Central

    McCommis, Kyle S.; Finck, Brian N.

    2015-01-01

    Pyruvate is the end-product of glycolysis, a major substrate for oxidative metabolism, and a branching point for glucose, lactate, fatty acid and amino acid synthesis. The mitochondrial enzymes that metabolize pyruvate are physically separated from cytosolic pyruvate pools and rely on a membrane transport system to shuttle pyruvate across the impermeable inner mitochondrial membrane (IMM). Despite long-standing acceptance that transport of pyruvate into the mitochondrial matrix by a carrier-mediated process is required for the bulk of its metabolism, it has taken almost 40 years to determine the molecular identity of an IMM pyruvate carrier. Our current understanding is that two proteins, mitochondrial pyruvate carriers MPC1 and MPC2, form a hetero-oligomeric complex in the IMM to facilitate pyruvate transport. This step is required for mitochondrial pyruvate oxidation and carboxylation – critical reactions in intermediary metabolism that are dysregulated in several common diseases. The identification of these transporter constituents opens the door to the identification of novel compounds that modulate MPC activity, with potential utility for treating diabetes, cardiovascular disease, cancer, neurodegenerative diseases, and other common causes of morbidity and mortality. The purpose of the present review is to detail the historical, current and future research investigations concerning mitochondrial pyruvate transport, and discuss the possible consequences of altered pyruvate transport in various metabolic tissues. PMID:25748677

  15. Internal transport barriers in the National Spherical Torus Experiment

    SciTech Connect

    Yuh, H. Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Mazzucato, E.; Peterson, J. L.; Smith, D. R.; Candy, J.; Waltz, R. E.; Domier, C. W.; Luhmann, N. C. Jr.; Lee, W.; Park, H. K.

    2009-05-15

    In the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum ExB shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients.

  16. Transient Transport Experiments in the CDX-U Spherical Torus

    SciTech Connect

    T. Munsat; P.C. Efthimion; B. Jones; R. Kaita; R. Majeski; D. Stutman; and G. Taylor

    2001-06-12

    Electron transport has been measured in the Current Drive Experiment-Upgrade (CDX-U) using two separate perturbative techniques. Gas modulation at the plasma edge was used to introduce cold-pulses which propagate towards the plasma center, providing time-of-flight information leading to a determination of chi(subscript e) as a function of radius. Sawteeth at the q=1 radius (r/a {approx} 0.15) induced heat-pulses which propagated outward towards the plasma edge, providing a complementary time-of-flight based chi(subscript e) profile measurement. This work represents the first localized measurement of chi(subscript e) in a spherical torus. It is found that chi(subscript e) = 1-2 meters squared per second in the plasma core (r/a < 1/3), increasing by an order of magnitude or more outside of this region. Furthermore, the chi(subscript e) profile exhibits a sharp transition near r/a = 1/3. Spectral and profile analyses of the soft X-rays, scanning interferometer, and edge probe data show no evidence of a significant magnetic island causing the high chi(subscript e) region.

  17. Non-intercepting diagnostics for the HIF neutralized transport experiment

    SciTech Connect

    Roy, P.K.; Eylon, S.; Hannik, R.; Henestroza, E.; Ludvig, J.; Shuman, D.; Yu, S.S.

    2003-05-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high purveyance heavy ion beams. We are developing a non-destructive beam diagnostic system to characterize the ion beam during its operation. Ion beam space charge is sensed by measuring deflection of mono energetic electron passing transversely through the ion beam. In this diagnostic system an electron beam of a submillimeter size with 1-5 {micro}A current and 5-8 kV energy will be injected perpendicularly through the ion beam. The position and intensity of the deflected e-beam would be registered on a scintillator for optical analysis to characterize the ion beam. An electron beam of negligible space charge will be deflected at an angle that depends on the charge density and energy distribution of the ion beam along its trajectory. The ebeam current and energy are chosen such that its trajectory will be significantly perturbed without perturbing the ion beam. We present a progress report on this diagnostic system including the characterization of the electron gun, the design of the e-beam transport system, and a study of the scintillator and its associate electronics and photonic components.

  18. Joint University Program for Air Transportation Research, 1987

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1989-01-01

    The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  19. Progress in heavy ion drivers inertial fusion energy: From scaled experiments to the integrated research experiment

    SciTech Connect

    Barnard, J.J.; Ahle, L.E.; Baca, D.; Bangerter, R.O.; Bieniosek, F.M.; Celata, C.M.; Chacon-Golcher, E.; Davidson, R.C.; Faltens, A.; Friedman, A.; Franks, R.M.; Grote, D.P.; Haber, I.; Henestroza, E.; de Hoon, M.J.L.; Kaganovich, I.; Karpenko, V.P.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.; Prost, L.R.; Qin, H.; Rose, D.; Sabbi, G.-L.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.; Shuman, D.; Vay, J.-L.; Waldron, W.L.; Welch, D.; Yu, S.S.

    2001-03-01

    The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents ({approx}100's Amperes/beam) and ion energies ({approx}1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned. The step which bridges the gap between the IBX and an engineering test facility for fusion has been designated the Integrated Research Experiment (IRE). The IRE (like the IBX) will

  20. Progress in Heavy Ion Driven Inertial Fusion Energy: From Scaled Experiments to the Integrated Research Experiment.

    SciTech Connect

    Barnard, J J; Ahle, L E; Baca, D; Bangerter, R O; Bieniosek, F M; Celata, C M; Chacon-Golcher, E; Davidson, R C; Faltens, A; Friedman, A; Franks, R M; Grote, D P; Haber, I; Henestroza, E; de Hoon, M J; Kaganovich, I; Karpenko, V P; Kishek, R A; Kwan, J W; Lee, E P; Logan, B G; Lund, S M; Meier, W R; Molvik, W; Olson, C; Prost, L R; Qin, H; Rose, D; Sabbi, G L; Sangster, T C; Seidl, P A; Sharp, W M; Shuman, D; Vay, J L; Waldron, W L; Welch, D; Yu, S S

    2001-07-10

    The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents (approx 100's Amperes/beam) and ion energies ({approx} 1 - 10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tun depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in the Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now beginning at LBNL. The mission of the HCX is to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned. The step which bridges the gap between the IBX and an engineering test facility for fusion has been designated the Integrated Research Experiment (IRE). The IRE (like the IBX) will provide an

  1. Transport and Storage Research Program. Gas Research Institute: Status report-1989 projects

    SciTech Connect

    Not Available

    1990-03-01

    The 1989 status report of the Gas Research Institute Transport and Storage Research Subprogram describes the tactical objectives, major accomplishments and strategies, and provides contract status reports for projects within these project areas: Construction and Maintenance, Metering and Operations, Plastic and Advanced Distribution Piping Materials, Residential/Commercial Interior Distribution Systems, Gas Storage Technology, Transmission Piping Systems, and Advanced Transport and Sensor-Based Systems.

  2. Uncovering Students' Preconceptions of Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Adedokun, Omolola A.; Burgess, Wilella D.

    2011-01-01

    Like all learners, undergraduate research interns bring to their research internships a variety of initial ideas, opinions, expectations, beliefs and attitudes about research internships. However, there is little published research on students' preconceptions about research internships and the relationships of these preconceptions to actual…

  3. 77 FR 38709 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Federal Highway Administration Surface Transportation Environment and Planning Cooperative Research...-LU) established the Surface Transportation Environment and Planning Cooperative Research Program... research on issues related to planning, environment, and realty will be included in future...

  4. 76 FR 50312 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Federal Highway Administration Surface Transportation Environment and Planning Cooperative Research...-LU) established the Surface Transportation Environment and Planning Cooperative Research Program... research on issues related to planning, environment, and realty will be included in future...

  5. 75 FR 38605 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... Federal Highway Administration Surface Transportation Environment and Planning Cooperative Research...-LU) established the Surface Transportation Environment and Planning Cooperative Research Program... research on issues related to planning, environment, and realty will be included in future...

  6. Light transport and general aviation aircraft icing research requirements

    NASA Technical Reports Server (NTRS)

    Breeze, R. K.; Clark, G. M.

    1981-01-01

    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  7. Fusion Ignition Research Experiment System Integration

    SciTech Connect

    T. Brown

    1999-11-01

    The FIRE (Fusion Ignition Research Experiment) configuration has been designed to meet the physics objectives and subsystem requirements in an arrangement that allows remote maintenance of in-vessel components and hands-on maintenance of components outside the TF (toroidal-field) boundary. The general arrangement consists of sixteen wedged-shaped TF coils that surround a free-standing central solenoid (CS), a double-wall vacuum vessel and internal plasma-facing components. A center tie rod is used to help support the vertical magnetic loads and a compression ring is used to maintain wedge pressure in the inboard corners of the TF coils. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double-wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex-vessel components. The FIRE configuration development and integration process has evolved from an early stage of concept selection to a higher level of machine definition and component details. This paper describes the status of the configuration development and the integration of the major subsystem components.

  8. Aeolian transport of biota with dust: A wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  9. Unique research challenges for high-speed civil transports

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.; Morris, Charles E. K., Jr.

    1987-01-01

    Market growth and technological advances are expected to lead to a generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research were identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.

  10. 25 CFR 170.941 - May tribes become involved in transportation research?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Research Board meetings, committees, and workshops sponsored by the National Science Foundation; (b... research proposals in their IRRTIPS; (e) Access Transportation Research Information System Network...

  11. 25 CFR 170.941 - May tribes become involved in transportation research?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Research Board meetings, committees, and workshops sponsored by the National Science Foundation; (b... research proposals in their IRRTIPS; (e) Access Transportation Research Information System Network...

  12. 25 CFR 170.941 - May tribes become involved in transportation research?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Research Board meetings, committees, and workshops sponsored by the National Science Foundation; (b... research proposals in their IRRTIPS; (e) Access Transportation Research Information System Network...

  13. 25 CFR 170.941 - May tribes become involved in transportation research?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Research Board meetings, committees, and workshops sponsored by the National Science Foundation; (b... research proposals in their IRRTIPS; (e) Access Transportation Research Information System Network...

  14. Adsorption and transport of polymaleic acid on Callovo-Oxfordian clay stone: Batch and transport experiments

    NASA Astrophysics Data System (ADS)

    Durce, Delphine; Landesman, Catherine; Grambow, Bernd; Ribet, Solange; Giffaut, Eric

    2014-08-01

    Dissolved Organic Matter (DOM) can affect the mobility of radionuclides in pore water of clay-rich geological formations, such as those intended to be used for nuclear waste disposal. The present work studies the adsorption and transport properties of a polycarboxylic acid, polymaleic acid (PMA, Mw = 1.9 kDa), on Callovo-Oxfordian argillite samples (COx). Even though this molecule is rather different from the natural organic matter found in clay rock, the study of its retention properties on both dispersed and intact samples allows assessing to which extent organic acids may undergo sorption under natural conditions (pH 7) and what could be the impact on their mobility. PMA sorption and desorption were investigated in dispersed systems. The degree of sorption was measured after 1, 8 and 21 days and for a range of PMA initial concentrations from 4.5 × 10- 7 to 1.4 × 10- 3 mol.L- 1. The reversibility of the sorption process was estimated by desorption experiments performed after the sorption experiments. At the sorption steady state, the sorption was described by a two-site Langmuir model. A total sorption capacity of COx for PMA was found to be 1.01×10- 2 mol.kg- 1 distributed on two sorption sites, one weak and one strong. The desorption of PMA was incomplete, independently of the duration of the sorption phase. The amount of desorbable PMA even appeared to decrease for sorption phases from 1 to 21 days. To describe the apparent desorption hysteresis, two conceptual models were applied. The two-box diffusion model accounted for intraparticle diffusion and more generally for nonequilibrium processes. The two-box first-order non-reversible model accounted for a first-order non-reversible sorption and more generally for kinetically-controlled irreversible sorption processes. The use of the two models revealed that desorption hysteresis was not the result of nonequilibrium processes but was due to irreversible sorption. Irreversible sorption on the strong site was

  15. Investigation of River Seismic Signal Induced by Sediment Transport and Water Flow: Controlled Dam Breaking Experiments

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Chen, S. C.; Chao, W. A.

    2015-12-01

    Natural river's bedload often hard to measure, which leads numerous uncertainties for us to predict the landscape evolution. However, the measurement of bedload flux has its certain importance to estimate the river hazard. Thus, we use seismometer to receive the seismic signal induced by bedload for partially fill the gap of field measurement capabilities. Our research conducted a controlled dam breaking experiments at Landao River, Huisun Forest since it has advantage to well constraining the spatial and temporal variation of bedload transport. We set continuous bedload trap at downstream riverbed of dam to trap the transport bedload after dam breaking so as to analyze its grain size distribution and transport behavior. In the meantime we cooperate with two portable velocity seismometers (Guralp CMG6TD) along the river to explore the relationship between bedload transport and seismic signal. Bedload trap was divided into three layers, bottom, middle, and top respectively. After the experiment, we analyzed the grain size and found out the median particle size from bottom to top is 88.664mm, 129.601mm, and 214.801mm individually. The median particle size of top layer is similar with the upstream riverbed before the experiment which median particle size is 230.683mm. This phenomena indicated that as the river flow become stronger after dam breaking, the sediment size will thereupon become larger, which meant the sediment from upstream will be carried down by the water flow and turned into bedload. Furthermore, we may tell apart the seismic signal induced by water flow and bedload by means of two different position seismometers. Eventually, we may estimate the probable error band of bedload quantity via accurately control of water depth, time-lapse photography, 3D LiDAR and other hydrology parameters.

  16. Research and development of electric vehicles for clean transportation.

    PubMed

    Wada, Masayoshi

    2009-01-01

    This article presents the research and development of an electric vehicle (EV) in Department of Human-Robotics Saitama Institute of Technology, Japan. Electric mobile systems developed in our laboratory include a converted electric automobile, electric wheelchair and personal mobile robot. These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles, i.e., batteries and electric motors, does not deteriorate the environment. To drive motors for vehicle traveling, robotic technologies were applied.

  17. Teacher Experience: What Does the Research Say?

    ERIC Educational Resources Information Center

    TNTP, 2012

    2012-01-01

    Experience makes a difference--especially at the beginning of a teacher's career. On average, teachers with some experience are more effective than brand new teachers. Teachers improve the most early in their careers. One study found that "close to half of the teacher achievement returns to experience arise during the first few years of teaching."…

  18. [University, Research, Neurosciences: forty years of experience and experiments].

    PubMed

    Calas, André

    2009-01-01

    Closing this symposium, André Calas remembers his teachers, his past and present collaborators, his students, his teaching and research itineraries and enlarges on the problems of public policy concerning these areas in France.

  19. Research on gas transport in chimneys: a progress report

    SciTech Connect

    Hearst, J.R.

    1986-03-18

    The results of the AGRINI and TIERRA experiments have led us to study three general topics: collapse phenomenology, CO/sub 2/ content measurement, and gas transport in chimneys. Our results so far are fragmentary, but we have been able to come to some tentative conclusions: (1) a layer of strong material between depths of 24 and 32 m, and perhaps some relatively strong material deeper, may have caused the AGRINI crater shape. This layer was absent at the nearby LABAN and CROWDIE events. We were unable to locate the layer with a surface penetrometer or surface seismic methods, but it may be possible to measure strength vs depth in situ by examining the penetration depth of a projectile. (2) We can probably improve our knowledge of the in situ CO/sub 2/ content by calibrating a commercial carbon/oxygen logging system for NTS conditions. (3) It is possible to measure the response of the gas in a chimney to changes in atmospheric pressure. There can be significantly different gas transport in chimneys with the same pressure response, depending on the porosity and the distribution of the porosity. It is possible to perform an inexpensive experiment to study the gas transport in an existing chimney.

  20. Joint University Program for Air Transportation Research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1993-01-01

    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.

  1. Passepartout Sherpa - A low-cost, reusable transportation system into the stratosphere for small experiments

    NASA Astrophysics Data System (ADS)

    Taraba, M.; Fauland, H.; Turetschek, T.; Stumptner, W.; Kudielka, V.; Scheer, D.; Sattler, B.; Fritz, A.; Stingl, B.; Fuchs, H.; Gubo, B.; Hettrich, S.; Hirtl, A.; Unger, E.; Soucek, A.; Frischauf, N.; Grömer, G.

    2014-12-01

    The Passepartout sounding balloon transportation system for low-mass (< 1200 g) experiments or hardware for validation to an altitude of 35 km is described. We present the general flight configuration, set-up of the flight control system, environmental and position sensors, power system, buoyancy considerations as well as the ground control infrastructure including recovery operations. In the telemetry and command module the integrated airborne computer is able to control the experiment, transmit telemetry and environmental data and allows for a duplex communication to a control centre for tele-commanding. The experiment module is mounted below the telemetry and command module and can either work as a standalone system or be controlled by the airborne computer. This spacing between experiment- and control unit allows for a high flexibility in the experiment design. After a parachute landing, the on-board satellite based recovery subsystems allow for a rapid tracking and recovery of the telemetry and command module and the experiment. We discuss flight data and lessons learned from two representative flights with research payloads.

  2. Connecting Arctic/Antarctic Researchers and Educators (CARE): Supporting Teachers and Researchers Beyond the Research Experience

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Warnick, W. K.; Breen, K.; Fischer, K.; Wiggins, H.

    2007-12-01

    Teacher research experiences (TREs) require long-term sustained support for successful transfer of research experiences into the classroom. Specifically, a support mechanism that facilitates focused discussion and collaboration among teachers and researchers is critical to improve science content and pedagogical approaches in science education. Connecting Arctic/Antarctic Researchers and Educators (CARE) is a professional development network that utilizes online web meetings to support the integration of science research experiences into classroom curriculum. CARE brings together teachers and researchers to discuss field experiences, current science issues, content, technology resources, and pedagogy. CARE is a component of the Arctic Research Consortium of the U.S. (ARCUS) education program PolarTREC--Teachers and Researchers Exploring and Collaborating. PolarTREC is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that advances polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Currently in its second year, the program fosters the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. The CARE network was established to develop a sustainable learning community through which teachers and researchers will further their work to bring polar research into classrooms. Through CARE, small groups of educators are formed on the basis of grade-level and geographic region; each group also contains a teacher facilitator. Although CARE targets educators with previous polar research experiences, it is also open to those who have not participated in a TRE but who are interested in bringing real-world polar science to the classroom

  3. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  4. Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1981-01-01

    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.

  5. SUMMARY OF GEOCHEMICAL TRANSPORT EXPERIMENTS AND MODELS FOR SOLUTE-SEDIMENT INTERACTIONS IN STREAMS.

    USGS Publications Warehouse

    Bencala, Kenneth E.; Zellweger, Gary W.; McKnight, Diane; Kennedy, Vance C.; Jackman, Alan P.

    1985-01-01

    A variety of in-stream experiments have been conducted in small, mountain streams to investigate in-stream solute transport, interactions between surface and subsurface flows, and geochemical interactions between solutes and sediments. Models for cation transport have been developed. The emphasis has been on attempting to demonstrate the relative roles of physical transport processes and geochemical reactions. A summary of experiments conducted in three streams is presented.

  6. Medical School Research Pipeline: Medical Student Research Experience in Psychiatry

    ERIC Educational Resources Information Center

    Balon, Richard; Heninger, George; Belitsky, Richard

    2006-01-01

    Objective: The authors discuss the importance of introducing research training in psychiatry and neurosciences to medical students. Methods: A review of existing models of research training in psychiatry with focus on those providing research training to medical students is presented. Results: Two research-training models for medical students that…

  7. Perioperative Research Fellowship: Planning, Implementation, Experience

    PubMed Central

    Memtsoudis, Stavros G; Mazumdar, Madhu; Stundner, Ottokar; Hargett, Mary J.

    2014-01-01

    Perioperative outcomes research has gained widespread interest and is viewed as increasingly important among different specialties, including anesthesiology. Outcome research studies serve to help in the adjustment of risk, allocation of resources, and formulation of hypotheses to guide future research. Pursuing high quality research projects requires familiarity with a wide range of research methodologies, and concepts are ideally learned in a dedicated setting. Skills associated with the use of these methodologies as well as with scientific publishing in general, however, are increasingly challenging to acquire. This article is intended to describe the curriculum and implementation of the Perioperative Medicine and Regional Anesthesia Research Fellowship at the Hospital for Special Surgery. We also propose a methodology to evaluate the success of a research fellowship curriculum. PMID:24942850

  8. Today's research development on the application of the superconductivity transport system in Japan

    NASA Technical Reports Server (NTRS)

    Kyotani, Yoshihiro

    1995-01-01

    At the Miyazaki test track today, the new test vehicle, MLU002N, is under test run to obtain necessary data for Yamanashi test track where the construction is underway, the test vehicle has been ordered and the first tunnel was completed in December 1993. Superconducting magnetohydrodynamic drive ship, MHDS, 'Yamato 1' has completed its experiment in 1992 and it is now under preparation to exhibit to the public in___1994. Furthermore, to promote the research development of MHDS, the detailed discussion is underway on the magnetohydrodynamic drive equipment as well as the research on the future scheme. Neither an automobile nor railway but a new transport system called EQUOS LIM CAR(ELC) has been proposed. By using the rotating magnetic field, it will levitate on the aluminum like reaction plate. On the normal road, it will run by rolling the wheels like an electric car but on the highway, it will levitate on the guideway resulting to less noise, less vibration and pollution free drive. To understand the concept of the ELC, the model was built and experimented by using permanent magnet. The same model was donated to the MUSEUM OF SCIENCE AND INDUSTRY in Chicago and was displayed to the public. Today, the trial superconducting magnet has been made and the research development of the subsystem is underway. Research development of superconducting elevator, equipment for the launching of spaceship, tube transportation system and others are in progress for the superconducting applied transportation system.

  9. COLLOID MOBILIZATION AND TRANSPORT IN CONTAMINANT PLUMES: FIELD EXPERIMENTS, LABORATORY EXPERIMENTS, AND MODELING (EPA/600/S-99/001)

    EPA Science Inventory

    The major hypothesis driving this research, that the transport of colloids in a contaminant plume is limited by the advance of the chemical agent causing colloid mobilization, was tested by (1) examining the dependence of colloid transport and mobilization on chemical perturbatio...

  10. Alumni Perceptions Used To Assess Undergraduate Research Experience.

    ERIC Educational Resources Information Center

    Bauer, Karen W.; Bennett, Joan S.

    2003-01-01

    On a survey of 986 alumni from a research-extensive university, respondents with undergraduate research experience, when compared to those with no research experience, reported greater enhancement of important cognitive and personal skills as well as higher satisfaction with their undergraduate education. They were also more likely to pursue…

  11. Near-field radiative thermal transport: From theory to experiment

    SciTech Connect

    Song, Bai Fiorino, Anthony; Meyhofer, Edgar; Reddy, Pramod

    2015-05-15

    Radiative thermal transport via the fluctuating electromagnetic near-field has recently attracted increasing attention due to its fundamental importance and its impact on a range of applications from data storage to thermal management and energy conversion. After a brief historical account of radiative thermal transport, we summarize the basics of fluctuational electrodynamics, a theoretical framework for the study of radiative heat transfer in terms of thermally excited propagating and evanescent electromagnetic waves. Various approaches to modeling near-field thermal transport are briefly discussed, together with key results and proposals for manipulation and utilization of radiative heat flow. Subsequently, we review the experimental advances in the characterization of both near-field heat flow and energy density. We conclude with remarks on the opportunities and challenges for future explorations of radiative heat transfer at the nanoscale.

  12. A preliminary assessment of field transport experiments using encapsulated cells

    SciTech Connect

    Petrich, C.R.; Knaebel, D.B.; Ralston, D.R.; Crawford, R.L.; Stormo, K.E.

    1995-12-31

    Microencapsulation of nonindigenous degradative organisms is a technique that enhances microorganism survival. An intermediate-scale field tracer test was conducted to evaluate the transport of encapsulated-cell microbeads and other particles in a shallow, confined, heterogeneous aquifer consisting of unconsolidated silts, sands, and gravels under induced-gradient, uniform flow conditions. Tracers included bromide; 2-, 5-, and 15-{micro}m-diameter polystyrene microspheres; and encapsulated Flavobacterium microbeads ranging in diameter from approximately 2 to 80 {micro}m. Results suggest that aquifer heterogeneity was a dominant factor in bromide- and particle-transport patterns. Encapsulated-cell migration appeared to be retarded with respect to the bromide and microsphere tracers. Results of this study also indicate that encapsulated-cell particle sizes and encapsulation material characteristics may be important factors affecting the transport of encapsulated cells in a subsurface environment.

  13. Partnering the University Field Experience Research Model with Action Research.

    ERIC Educational Resources Information Center

    Schnorr, Donna; Painter, Diane D.

    This paper presents a collaborative action research partnership model that involved participation by graduate school of education preservice students, school and university teachers, and administrators. An elementary teacher-research group investigated what would happen when fourth graders worked in teams to research and produce a multimedia…

  14. NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

    2004-01-01

    The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

  15. Comparison of approaches for predicting solute transport: sandbox experiments.

    PubMed

    Illman, Walter A; Berg, Steven J; Yeh, Tian-Chyi Jim

    2012-01-01

    The main purpose of this paper was to compare three approaches for predicting solute transport. The approaches include: (1) an effective parameter/macrodispersion approach (Gelhar and Axness 1983); (2) a heterogeneous approach using ordinary kriging based on core samples; and (3) a heterogeneous approach based on hydraulic tomography. We conducted our comparison in a heterogeneous sandbox aquifer. The aquifer was first characterized by taking 48 core samples to obtain local-scale hydraulic conductivity (K). The spatial statistics of these K values were then used to calculate the effective parameters. These K values and their statistics were also used for kriging to obtain a heterogeneous K field. In parallel, we performed a hydraulic tomography survey using hydraulic tests conducted in a dipole fashion with the drawdown data analyzed using the sequential successive linear estimator code (Yeh and Liu 2000) to obtain a K distribution (or K tomogram). The effective parameters and the heterogeneous K fields from kriging and hydraulic tomography were used in forward simulations of a dipole conservative tracer test. The simulated and observed breakthrough curves and their temporal moments were compared. Results show an improvement in predictions of drawdown behavior and tracer transport when the K tomogram from hydraulic tomography was used. This suggests that the high-resolution prediction of solute transport is possible without collecting a large number of small-scale samples to estimate flow and transport properties that are costly to obtain at the field scale.

  16. A radio frequency tracing experiment of bedload transport in a small braided mountain stream

    NASA Astrophysics Data System (ADS)

    Liebault, F.; Chapuis, M.; Bellot, H.; Deschatres, M.

    2009-04-01

    Radio frequency identification technology is used for monitoring the displacement of coarse particles in streams since the beginning of the 2000s. Passive integrated transponders (PIT tags) are small, cheap and long-lasting electronic tags that can be programmed with their own identification code. Initially used in environmental research for animal tracking, they have been deployed successfully in a variety of fluvial environments for coarse sediment tracing. Pioneering studies conducted in both semiarid and humid small upland streams with low intensity bedload transport gave recovery rates above 85% (Nichols 2004; Lamarre et al. 2005). Here we present an experiment of radio frequency sediment tracing implemented on a small braided mountain stream with a high intensity bedload transport and a wide active channel (mean active channel width: about 20 m). The study site is the Bouinenc Torrent, a tributary to the Bléone River in SE France that drains a 39 km² mountainous drainage basin of the Southern Prealps. In spring 2008, we deployed 451 tracers with b-axis ranging from 23 to 520 mm. Tracers were deployed along 8 cross sections located in the upstream part of the lowest 2.3 km of the stream. We developed a RFID detection system composed of an antenna and a reader unit; this system is characterized by a range of detection of 80 cm in optimal configuration. Two small intensity flow events occurred in June 2008 and entrained the tracers deployed in the most active part of the active channel. We mapped the position of the displaced tracers with a dGPS in July 2008. We obtained an overall recovery rate of 88%. The recovery rate calculated for the active tracers (those that were displaced after the flow events) was 76%. The projection of the tracer dispersion cloud on high resolution aerial photographs obtained with a drone allows us to calculate the distance of transport for each tracer. Mean and maximal distances of transport were respectively 796 m (+/- 53 m) and 2

  17. NASA Lewis Research Center combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1982-01-01

    The MHD power generation experiments were conducted in a high field strength cryomagnet which was adapted from an existing facility. In its original construction, it consisted of 12 high purity aluminum coils pool cooled in a bath of liquid neon. In this configuration, a peak field of 15 tesla was produced. For the present experiments, the center four coils were removed and a 23 cm diameter transverse warm bore tube was inserted to allow the placement of the MHD experiment between the remaining eight coils. In this configuration, a peak field of 6 tesla should be obtainable. The time duration of the experiment is limited by the neon supply which allows on the order of 1 minute of total operating time followed by an 18-hour reliquefaction period. As a result, the experiments are run in a pulsed mode. The run duration for the data presented here was 5 sec. The magnetic field profile along the MHD duct is shown. Since the working fluid is in essence superheated steam, it is easily water quenched at the exit of the diffuser and the components are designed vacuum tight so that the exhaust pipe and demister an be pumped down to simulate the vacuum of outer space.

  18. Comparisons of theoretically predicted transport from ion temperature gradient instabilities to L-mode tokamak experiments

    SciTech Connect

    Kotschenreuther, M.; Wong, H.V.; Lyster, P.L.; Berk, H.L.; Denton, R.; Miner, W.H.; Valanju, P.

    1991-12-01

    The theoretical transport from kinetic micro-instabilities driven by ion temperature gradients is a sheared slab is compared to experimentally inferred transport in L-mode tokamaks. Low noise gyrokinetic simulation techniques are used to obtain the ion thermal transport coefficient X. This X is much smaller than in experiments, and so cannot explain L-mode confinement. Previous predictions based on fluid models gave much greater X than experiments. Linear and nonlinear comparisons with the fluid model show that it greatly overestimates transport for experimental parameters. In addition, disagreements among previous analytic and simulation calculations of X in the fluid model are reconciled.

  19. Including health in transport policy agendas: the role of health impact assessment analyses and procedures in the European experience.

    PubMed Central

    Dora, Carlos; Racioppi, Francesca

    2003-01-01

    From the mid-1990s, research began to highlight the importance of a wide range of health impacts of transport policy decisions. The Third Ministerial Conference on Environment and Health adopted a Charter on Transport, Environment and Health based on four main components: bringing awareness of the nature, magnitude and costs of the health impacts of transport into intergovernmental processes; strengthening the arguments for integration of health into transport policies by developing in-depth analysis of the evidence; developing national case studies; and engaging ministries of environment, health and transport as well as intergovernmental and nongovernmental organizations. Negotiation of the Charter was based on two converging processes: the political process involved the interaction of stakeholders in transport, health and environment in Europe, which helped to frame the issues and the approaches to respond to them; the scientific process involved an international group of experts who produced state-of- the-art reviews of the health impacts resulting from transportation activities, identifying gaps in existing knowledge and methodological tools, specifying the policy implications of their findings, and suggesting possible targets for health improvements. Health arguments were used to strengthen environmental ones, clarify costs and benefits, and raise issues of health equity. The European experience shows that HIA can fulfil the need for simple procedures to be systematically applied to decisions regarding transport strategies at national, regional and local levels. Gaps were identified concerning models for quantifying health impacts and capacity building on how to use such tools. PMID:12894322

  20. 75 FR 24773 - Research and Innovative Technology Administration Advisory Council on Transportation Statistics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Bureau of Transportation Statistics Research and Innovative Technology Administration Advisory Council on Transportation Statistics; Notice of Meeting AGENCY: Research and Innovative Technology Administration, U.S... U.S. Mail to: U.S. Department of Transportation, Research and Innovative Technology...

  1. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  2. Quantifying the transport properties of lipid mesophases by theoretical modelling of diffusion experiments.

    PubMed

    Antognini, Luca M; Assenza, Salvatore; Speziale, Chiara; Mezzenga, Raffaele

    2016-08-28

    Lyotropic Liquid Crystals (LLCs) are a class of lipid-based membranes with a strong potential for drug-delivery employment. The characterization and control of their transport properties is a central issue in this regard, and has recently prompted a notable volume of research on the topic. A promising experimental approach is provided by the so-called diffusion setup, where the drug molecules diffuse from a feeding chamber filled with water to a receiving one passing through a LLC. In the present work we provide a theoretical framework for the proper description of this setup, and validate it by means of targeted experiments. Due to the inhomogeneity of the system, a rich palette of different diffusion dynamics emerges from the interplay of the different time- and lengthscales thereby present. Our work paves the way to the employment of diffusion experiments to quantitatively characterize the transport properties of LLCs, and provides the basic tools for device diffusion setups with controlled kinetic properties. PMID:27586942

  3. Asphalt pavement surfaces and asphalt mixtures. Transportation research record

    SciTech Connect

    1996-12-31

    The papers in this volume, which deal with asphalt pavement surfaces and asphalt mixtures, should be of interest to state and local construction, design, materials, and research engineers as well as contractors and material producers. The papers in Part 1 include discussions of pavement smoothness specifications and skidding characteristics. The first four papers in Part 2 were submitted in response to a call for papers for a session at the 75th Annual Meeting of the Transportation Research Board on low-temperature properties of hot-mix asphalt. The next eight are on the influence of volumetric and strength properties on the performance of hot-mix asphalt. In the following three papers, the topics covered are the complex modulus of asphalt concrete, cold in-place asphalt recycling, and polymer modification of asphalt pavements in Ontario. The last two papers were presented in a session on relationship of materials characterization to accelerated pavement performance testing.

  4. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  5. Reinvigorating the Undergraduate Experience with a Research-Supportive Curriculum

    NASA Astrophysics Data System (ADS)

    Karukstis, Kerry K.

    2004-07-01

    The programs, publications, meetings, and services of the Council on Undergraduate Research (CUR) are expressly designed to share successful models and strategies for establishing and institutionalizing undergraduate research programs. A research-supportive curriculum that provides undergraduates with a learning experience rooted in the process of discovery is a critical factor in establishing a strong research culture on campus. The newest publication of CUR, Reinvigorating the Undergraduate Experience: Successful Models Supported by NSF's AIRE/RAIRE Program , is a collection of case studies highlighting twenty institutions that have successfully transformed the undergraduate experience through an integration of research and education.

  6. Researching Graduates' Lived Experiences of Vocational Learning

    ERIC Educational Resources Information Center

    Leach, Tony

    2012-01-01

    The aim of this article is to exemplify the value of using a phenomenological approach when investigating graduates' lived experiences of vocational learning. For this study, qualitative data was obtained during a series of email interviews with 35 participants. As a group they are highly aspirational and, during their graduate studies, were…

  7. Preservice Teachers' Research Experiences in Scientists' Laboratories

    ERIC Educational Resources Information Center

    Brown, Sherri; Melear, Claudia

    2007-01-01

    To promote the use of scientific inquiry methods in K-12 classrooms, departments of teacher education must provide science teachers with experiences using such methods. To comply with state and national mandates, an apprenticeship course was designed to afford preservice secondary science teachers opportunities to engage in an authentic, extended,…

  8. Replication concepts for bioenergy research experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While there are some large and fundamental differences among disciplines related to the conversion of biomass to bioenergy, all scientific endeavors involve the use of biological feedstocks. As such, nearly every scientific experiment conducted in this area, regardless of the specific discipline, is...

  9. Electronic transport experiments on osmium-adatom-decorated graphene

    NASA Astrophysics Data System (ADS)

    Elias, Jamie; Henriksen, Erik

    Monolayer graphene is theoretically predicted to inherit a spin-orbit coupling from a dilute coating of certain transition metal adatoms. To explore these predictions we have constructed a cryogenic probe capable of in situ thermal annealing of graphene followed immediately by electronic transport measurements and controlled deposition of sub-monolayer coatings of most any metal. Previously a light coating of indium on graphene was investigated, and found to transfer electrons to graphene and reduce the mobility although no evidence of an induced spin-orbit coupling was seen. We are now depositing osmium and tungsten on graphene devices. Our initial results show an unexpected hole-doping and a sizable increase in resistance of the sample. We will report our progress on characterizing these samples by electronic transport measurements.

  10. Modeling Polymer Stabilized Nano-scale Zero Valent Iron Transport Experiments in Porous Media to Understand the Transport Behavior

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Krol, M.; Sleep, B. E.

    2015-12-01

    A wide variety of groundwater contaminants can be treated with nano-scale zero valent iron (nZVI). However, delivery of nZVI in the subsurface to the treatment zones is challenging as the bare nZVI particles have a higher tendency to agglomerate. The subsurface mobility of nZVI can be enhanced by stabilizing nZVI with polymer, such as carboxymethyl cellulose (CMC). In this study, numerical simulations were conducted to evaluate CMC stabilized nZVI transport behavior in porous media. The numerical simulations were based on a set of laboratory-scale transport experiments that were conducted in a two-dimensional water-saturated glass-walled sandbox (length - 55 cm; height - 45 cm; width - 1.4 cm), uniformly packed with silica sand. In the transport experiments: CMC stabilized nZVI and a non-reactive dye tracer Lissamine Green B (LGB) were used; water specific discharge and CMC concentration were varied; movements of LGB, and CMC-nZVI in the sandbox were tracked using a camera, a light source and a dark box. The concentrations of LGB, CMC, and CMC-nZVI at the sandbox outlet were analyzed. A 2D multiphase flow and transport model was applied to simulate experimental results. The images from LGB dye transport experiments were used to determine the pore water velocities and media permeabilities in various layers in the sand box. These permeability values were used in the subsequent simulations of CMC-nZVI transport. The 2D compositional simulator, modified to include colloid filtration theory (CFT), treated CMC as a solute and nZVI as a colloid. The simulator included composition dependent viscosity to account for CMC injection and mixing, and attachment efficiency as a fitting parameter for nZVI transport modeling. In the experiments, LGB and CMC recoveries were greater than 95%; however, CMC residence time was significantly higher than the LGB residence time and the higher CMC concentration caused higher pressure drops in the sandbox. The nZVI recovery was lower than 40

  11. Gas Research Institute experience in solar fuel research

    NASA Astrophysics Data System (ADS)

    Krist, Kevin

    Between 1981-1989, the Gas Research Institute (GRI) conducted a fundamental research program aimed at low-cost conversion of inorganic materials to gaseous fuels, using solar energy. Although the program focussed on photochemical approaches, thermochemical pathways were also evaluated. General conclusions are presented in the following areas: photochemical fuel synthesis, thermochemical fuel synthesis, photochemical processes, thermal processes, and collector systems.

  12. Beam transport experiment with a new kicker control system on the HIRFL

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Yu; Zhou, De-Tai; Luo, Jin-Fu; Zhang, Jian-Chuan; Zhou, Wen-Xiong; Ni, Fa-Fu; Yin, Jun; Yin, Jia; Yuan, You-Jin; Shang-Guan, Jing-Bin

    2016-04-01

    A kicker control system is used for beam extraction and injection between two cooling storage rings (CSRs) at the Heavy Ion Research Facility in Lanzhou (HIRFL). To meet the requirements of special physics experiments, the kicker controller has been upgraded, with a new controller designed based on ARM+DSP+FPGA technology and monolithic circuit architecture, which can achieve a precision time delay of 2.5 ns. In September 2014, the new kicker control system was installed in the kicker field, and the test experiment using the system was completed. In addition, a pre-trigger signal was provided by the controller, which was designed to synchronize the beam diagnostic system and physics experiments. Experimental results indicate that the phenomena of “missed kick” and “inefficient kick” were not observed, and the multichannel trigger signal delay could be adjusted individually for kick power supplies in digitization; thus, the beam transport efficiency was improved compared with that of the original system. The fast extraction and injection experiment was successfully completed based on the new kicker control systems for HIRFL. Supported by National Natural Science Foundation of China (U1232123)

  13. Transient transport experiments in the current-drive experiment upgrade spherical torus

    NASA Astrophysics Data System (ADS)

    Munsat, T.; Efthimion, P. C.; Jones, B.; Kaita, R.; Majeski, R.; Stutman, D.; Taylor, G.

    2002-02-01

    Electron transport has been measured in the Current-Drive Experiment Upgrade (CDX-U) (T. Jones, Ph.D. thesis, Princeton University, 1995) using two separate perturbative techniques. Sawteeth at the q=1 radius (r/a˜0.15) induced outward-propagating heat pulses, providing time-of-flight information leading to a determination of χe as a function of radius. Gas modulation at the plasma edge introduced inward-propagating cold pulses, providing a complementary time-of-flight based χe profile measurement. This work represents the first localized measurement of χe in a spherical torus. Core (r/a<1/3) χe values from the sawtooth study are 1-2 m2/s, and from the gas modulation study are 1-6 m2/s, increasing by an order of magnitude or more outside of the core region. Furthermore, the χe profile exhibits a sharp transition near r/a=1/3. Spectral and profile analyses of the soft x-rays, scanning interferometer, and edge probe data show no evidence of a significant magnetic island causing the high χe region. Comparisons are performed to several theoretical models, with measured χe≈5-10× neoclassical estimates in the core.

  14. Lessons in collaboration and effective field research from the Appalachian Headwaters Research Experience for Undergraduates Program

    NASA Astrophysics Data System (ADS)

    Jones, A. L.; Fox, J.; Wilder, M. S.

    2009-12-01

    In the summer of 2009, the authors launched year one of a three-year National Science Foundation-funded Research Experience for Undergraduates entitled "Carbon Storage and Headwater Health in the Appalachian Headwaters." Eight undergraduates selected from a nationally competitive field of more than 60 applicants participated in the ten-week field- and laboratory-based program along with three middle- and high-school teachers. Each student developed and completed an independent research project related to coal mining’s impact on soil organic carbon and sediment transport processes. Specifically, they used isotope ratio mass spectrometry to measure the carbon and nitrogen stable isotopic signature of soils and sediments in the Appalachian headwater landscapes and first order streams of Kentucky's southeastern coalfields. Among the program's innovative features was its fundamentally collaborative nature--which was represented in several ways. First, the background of the three program leaders was very different: an environmental planner with an academic background in land use planning and administration (Jones); a civil engineer trained in biogeochemistry and watershed modeling (Fox); and an environmental educator experienced in both formal and nonformal educator training and certification (Wilder). The program was also a collaboration between a Carnegie 1 research-oriented institution and an undergraduate/ teaching -focused regional comprehensive university. Finally, the participants themselves represented a diversity of disciplines and institutional backgrounds--including biology, geology, chemistry, environmental science and civil engineering. The Research Experience for Teachers component was another innovative program element. The teachers participated in all field and laboratory research activities during the first six weeks, then developed a unit of study for their own classrooms to be implemented during the current school year. In addition to the six

  15. In-situ Lysimeter Experiments For Validating Predictions of Contaminant Leachate Transport In Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Buczko, U.; Hopp, L.; Durner, W.; Peiffer, S.

    The German Soil Protection Law (Bundesbodenschutzgesetz - BBodSchG, 1998) pre- scribes - in case of a supposed soil contamination - a prognosis of the quality and quan- tity of the water percolating through the unsaturated (vadose) zone into the groundwa- ter. The methodology to accomplish this percolation water prognosis is not specified neither in the German Soil Protection Law, nor in the German Soil Protection Regula- tion (July 1999). Since direct measurements of contaminant entries at the groundwater surface are in most cases not feasible, indirect methodologies for the percolation im- mission prognosis are needed. The development of such a methodology for soils con- taminated by heavy metals, which should be relatively simple, yet scientifically sound, is the subject of an ongoing research project at the Chair of Hydrology, University of Bayreuth. The focus in this project lies on the redox-sensitive metals As, Cr, Pb, Cu and Cd. The objective of this contribution is to present the scientific approach used in this study and to discuss first results, with a special focus on the transport simula- tion through the unsaturated zone and the in-situ lysimeter experiments. Our approach for the percolation immission prognosis consists of three parts: 1. Estimation of the emission of metals from the contaminated source soil (using elutions, soil saturation extracts, and column experiments). 2. Transport simulations through the unsaturated zone. 3. Validation of the results gained by those first two steps by analysis of percola- tion water extracted in-situ from undisturbed soil by lysimeters which are installed at two different soil depths. First results indicate, that modeling solute transport of redox sensitive metals has to account for the pertinent redox reactions, which those metals are subject to on their passage through the unsaturated zone. Preferential flow phe- nomena and the heterogeneity of the subsurface may be accounted for in a 1D vertical model by

  16. Preliminary results of column experiments simulating nutrients transport in artificial recharge by treated wastewater

    NASA Astrophysics Data System (ADS)

    Leal, María; Meffe, Raffaella; Lillo, Javier

    2013-04-01

    Nutrients (phosphates, nitrates, nitrites and ammonium) are very often present in treated wastewater as consequence of the inefficient removal capability during wastewater treatments. Such compounds represent an environmental concern since they are responsible for contamination and/or eutrophication problems when reaching the water bodies (groundwater, river, streams…). Therefore, when wastewater reclamation activities such as artificial recharge are planned, special attention should be paid to these compounds to avoid groundwater deterioration. In this context, we proposed the installation of a Horizontal Permeable Reactive Barrier (H-PRB) made of different reactive materials, among them zeolite and palygorskite, to remove nutrients or at least to decrease their concentrations. The overall aim of this research is to evaluate if the application of a H-PRB could represent a feasible solution for the attenuation of nutrients when unconventional water resources (i.e. treated wastewater) are used for recharge activities. Specifically, this study is intended to identify the transport processes affecting nitrates, nitrites, ammonium and phosphates when treated wastewater is infiltrated through the reactive materials of the H-PRB. Column experiments are generally suitable to examine the interactions between reactive materials and treated wastewater that affect the transport behavior of nutrients. For example, processes such as adsorption can be identified and quantified. Thus, laboratory column experiments were carried out using zeolite or palygorskite as column infilling material and synthetic treated wastewater as column influent. The experiments are closely connected to an experimental field study in Carrión de los Céspedes (Seville-Spain) where a pilot H-PRB is currently under evaluation. The columns were operated under saturated conditions applying a constant flow rate of 1.2 mL/min equivalent to the infiltration rate estimated through infiltration experiments at

  17. Experience with Mandibular Reconstruction Using Transport-Disc-Distraction Osteogenesis

    PubMed Central

    Pingarrón-Martín, Lorena; Otero, T. González; Gallo, L.J. Arias

    2014-01-01

    The goal of transport-disc-distraction osteogenesis (TDDO) is to restore bone continuity by using in-situ bone. It may be useful following trauma, gunshot injuries, or tumor ablation, especially when there may be contraindications at the donor site or for prolonged surgery. To the best of the authors' knowledge, this is the first time TDDO has been used for mandibular reconstruction reporting additional procedures, which include osseointegrated dental implants rehabilitation and orthognathic surgery. A retrospective study is performed analyzing all mandibular reconstruction cases that may be suitable for distraction from January 2006 to December 2011. A thorough description of the documented cases includes details about sex, gender, complications, duration of hospitalization, etiology, size, and location of the defect. Eight cases of mandibular reconstruction were included. Six cases correspond to mandibular ameloblastoma. The remaining two cases were mandibular gunshot comminuted fractures. Range of the defects was from 45 to 60 mm. Length of the transport disc was 15 to 20 mm. Protocolized technique consisted of 5 days of latency period, 19 to 45 days of activation term (average 30 days), and 8 to 12 weeks for consolidation. Mean distraction length achieved was 40.45 mm. We can conclude that TDDO is an alternative to conventional and more invasive procedures, when we face severe segmental mandibular defects reconstruction. It shows the potential to restore a better anatomical bone regeneration, also providing soft tissues and reducing donor-site morbidity. Patients' education and awareness about the proper use of the transport-disc-distraction device is important to optimize functional outcomes. PMID:26000082

  18. Inverse Modeling of Experiments to Support More Realistic Simulations of Sorbing Radionuclide Transport

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; James, S. C.; Reimus, P. W.

    2012-12-01

    A series of adsorption, desorption, and column transport experiments were conducted to evaluate the transport of uranium (U) and neptunium (Np) through saturated volcanic tuffs. For potential high-level radioactive waste sites, these experiments demonstrate that slow radionuclide desorption processes, which are typically not accounted for in transport models implementing simple partition coefficients (Kd values), may dominate field-scale transport. A complimentary interpretive numerical model couples a simplified geochemical description of the system with transport calculations where heterogeneities are represented as an ensemble of sorption sites with characteristic adsorption and desorption rate constants that have widely varying values. Adsorption and desorption rate constants were estimated through inverse modeling such that reliable upscaled predictions of reactive transport in field settings could be simulated. The inverse modeling software, PEST, was also used to perform advanced uncertainty quantification. The multicomponent model/parameters matching the combined data sets suggest that over much longer time and distance scales the transport of U and Np under the experimental conditions would result in very little transport over field scales because even a small number of strong sorption sites will have an exaggerated retarding influence on the transport of a radionuclide plume. Modeling of combined sorption/desorption experiments and column transport experiments that involve both the measurement of column effluent breakthrough curves and the distribution of radionuclides remaining in the column at the conclusion of the experiments holds significant promise for supporting an improved approach to properly account for mineralogical heterogeneity over long time and distance scales in reactive radionuclide transport models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

  19. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    ERIC Educational Resources Information Center

    Hurtado, Sylvia; Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2009-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma.…

  20. Failed Rocket Payload Included Research Experiments

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-11-01

    About an hour and a half before the launch of the Orbital Sciences Corporation's Antares rocket and Cygnus cargo spacecraft at 6:22 p.m. on 28 October, Jeff Goldstein arrived at his vantage point on Arbuckle Neck Road in Assawoman, Va. It was just 1.5 miles from launchpad 0A at NASA's Wallops Flight Facility. Goldstein, director of the National Center for Earth and Space Science Education (NCESSE) had come with about 35 elementary school through college students, as well as some parents, teachers, and school administrators, to watch the liftoff that would deliver the students' microgravity experiments to the International Space Station (ISS).

  1. Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part II: transport experiments and modeling.

    PubMed

    Vitorge, Elsa; Szenknect, Stéphanie; Martins, Jean M-F; Barthès, Véronique; Gaudet, Jean-Paul

    2014-01-01

    Three types of labeled silica nanoparticles were used in transport experiments in saturated sand. The goal of this study was to evaluate both the efficiency of labeling techniques (fluorescence (FITC), metal (Ag(0) core) and radioactivity ((110m)Ag(0) core)) in realistic transport conditions and the reactive transport of silica nanocolloids of variable size and concentration in porous media. Experimental results obtained under contrasted experimental conditions revealed that deposition in sand is controlled by nanoparticles size and ionic strength of the solution. A mathematical model is proposed to quantitatively describe colloid transport. Fluorescent labeling is widely used to study fate of colloids in soils but was the less sensitive one. Ag(0) labeling with ICP-MS detection was found to be very sensitive to measure deposition profiles. Radiolabeled ((110m)Ag(0)) nanoparticles permitted in situ detection. Results obtained with radiolabeled nanoparticles are wholly original and might be used for improving the modeling of deposition and release dynamics.

  2. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    SciTech Connect

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  3. Linguistic analysis of project ownership for undergraduate research experiences.

    PubMed

    Hanauer, D I; Frederick, J; Fotinakes, B; Strobel, S A

    2012-01-01

    We used computational linguistic and content analyses to explore the concept of project ownership for undergraduate research. We used linguistic analysis of student interview data to develop a quantitative methodology for assessing project ownership and applied this method to measure degrees of project ownership expressed by students in relation to different types of educational research experiences. The results of the study suggest that the design of a research experience significantly influences the degree of project ownership expressed by students when they describe those experiences. The analysis identified both positive and negative aspects of project ownership and provided a working definition for how a student experiences his or her research opportunity. These elements suggest several features that could be incorporated into an undergraduate research experience to foster a student's sense of project ownership.

  4. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  5. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    SciTech Connect

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable {open_quotes}Integrated Research Experiment{close_quotes} (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, {open_quotes}the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenology{close_quotes}. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well.

  6. Human Nutrition Research Conducted at State Agricultural Experiment Stations and 1890/Tuskegee Agricultural Research Programs.

    ERIC Educational Resources Information Center

    Driskell, Judy A.; Myers, John R.

    1989-01-01

    Cooperative State Research Service-administered and state-appropriated State Agriculture Experiment Station funds for human nutrition research increased about two-fold from FY70-FY86, while the percentage of budget expended for this research decreased. (JOW)

  7. Taking Research Experiences for Undergraduates Online

    NASA Astrophysics Data System (ADS)

    Hubenthal, Michael; Judge, Jasmeet

    2013-04-01

    To today's budding scientists, the notion of sharing experiences and working collaboratively with distant peers is not a novelty. Instead, this is what most young scientists expect to achieve through the Internet portals they carry in their pockets and backpacks. They have never known a world without information and communication technologies (ICT) such as laptops, mobile phones, text messaging, and the Internet. As a result, they have grown to rely on uninterrupted access to the Internet for a range of information-gathering and communication activities. Further, this generation of students has fully embraced structured online learning opportunities. For example, in 2011 more than 6.7 million U.S. students in higher education took at least one online course [Allen and Seaman, 2013].

  8. Space Station Biological Research Project: Reference Experiment Book

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine (Editor); Wade, Charles (Editor)

    1996-01-01

    The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process.

  9. Uranium transport in a crushed granodiorite: Experiments and reactive transport modeling

    DOE PAGES

    Dittrich, T. M.; Reimus, P. W.

    2015-02-12

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system.

  10. Chamber transport

    SciTech Connect

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  11. Three long-range transport models compared to the ETEX experiment. a performance study

    NASA Astrophysics Data System (ADS)

    Wendum, D.

    For operational or research purposes (dispersion computations of radioactive effluents during nuclear emergency situations, simulations of chemical pollution in the vicinity of thermal power plants), different models of passive dispersion in the atmosphere have been developed at the Environment Department of EDF's R and D Division. This report presents the comparison of the performances of three such models: DIFTRA (lagrangian puff model, with operational goal), DIFEUL (three dimensional eulerian) and DIFPAR (Monte Carlo particle model) for the simulation of the first ETEX release, an international tracer campaign during which a passive tracer cloud has been followed over Europe. The results obtained in this study give model vs. experience differences of the same order as the model vs. experience differences observed during an international model comparison experiment using data of the Chernobyl release, the ATMES exercise. In addition to the standard statistical scores used in the evaluation of the performances of the transport models two asymmetric scores (in contradistinction with the Figure of Merit in Space) are proposed: "efficiency" and "power". Their aim is to separate the two manners in which a model may be wrong: by predicting presence of pollutant while none is measured or conversely predicting absence when pollutant is actually detected.

  12. Research Administrator Salary: Association with Education, Experience, Credentials and Gender

    ERIC Educational Resources Information Center

    Shambrook, Jennifer; Roberts, Thomas J.; Triscari, Robert

    2011-01-01

    The 2010 Research Administrators Stress Perception Survey (2010 RASPerS) collected data from 1,131 research administrators on salary, years experience, educational level, Certified Research Administrator (CRA) status, and gender. Using these data, comparisons were made to show how salary levels are associated with each of these variables. Using…

  13. Does Early Research Experience Affect Subsequent Career Choice?

    ERIC Educational Resources Information Center

    Pechmann, Connie A.; Pichert, James W.

    The Vanderbilt Summer Research Program in diabetes, which was designed to interest medical students in research careers and diabetes care, was evaluated. The program provides stipends to 20 sophomore and junior medical students for 12 weeks of preceptor-supervised laboratory research work, clinical experience, and classroom instruction. The…

  14. Reinvigorating the Undergraduate Experience with a Research-Supportive Curriculum

    ERIC Educational Resources Information Center

    Karukstis, Kerry K

    2004-01-01

    Educators recognize that undergraduate research programs flourish on campuses that provide a strong curricular structure to support research. Reinvigorating the undergraduate experience: successful models supported by NSF's AIRE/RAIRE program, the publication of Council on Undergraduate Research (CUR) is expressly designed to share successful…

  15. Adequacy of transport parameters obtained in soil column experiments for selected chemicals

    NASA Astrophysics Data System (ADS)

    Raymundo-Raymundo, E.; Nikolskii, Yu. N.; Guber, A. K.; Landeros-Sanchez, C.

    2012-07-01

    The transport parameters were determined for the 18O isotope (in the form of H2 18O), the Br- ion, and atrazine in intact columns of allophanic Andosol (Mexico State, Mexico). A one-dimensional model for the convective-dispersive transport of chemicals with account for the decomposition and equilibrium adsorption (HYDRUS-1D), which is widely applied for assessing the risk of the chemical and bacterial contamination of natural waters, was used. The model parameters were obtained by solving the inverse problem on the basis of laboratory experiments on the transport of the 18O isotope, the Br- ion, and atrazine in intact soil columns at a fixed filtration velocity. The hydrodynamic dispersion parameters determined for the 18O and Br- ions in one column were of the same order of magnitude, and those for atrazine were higher by 3-4 times. The obtained parameters were used to calculate the transport of these substances in another column with different values of the water content and filtration velocity. The transport process was adequately described only for the 18O isotope. In the case of the Br- ion, the model significantly underestimated the transport velocity; for atrazine, its peak concentration in the column was overestimated. The column study of the transport of the three chemical compounds showed that transport parameters could not be reliably predicted from the results of a single experiment, even when several compounds were used in this experiment.

  16. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

    2008-10-15

    During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

  17. Modeling and experiments for sheet flow transport with bimodal size distributions

    NASA Astrophysics Data System (ADS)

    Thaxton, C.; Holway, K.; Calantoni, J.

    2012-12-01

    The state-of-the-art models for coastal morphodynamics have moved beyond predicting bed elevation changes and begun to estimate the amount of sediment transport by size. The conventional method for predicting these fractional sediment transport rates typically involves dividing the bed into a user-defined number of size classes where traditional bedload transport formulae are computed using a median grain size for each class. Consequently, the conventional method does not resolve the effect of vertical sorting that occurs in the active sediment layer during transport. The challenge lies in quantifying the rate of exchange of sediment from one location to another even when there is zero net sediment transport. Numerical simulations and experimental observations demonstrate that significant vertical sorting of grains by size does occur under oscillatory forcing conditions at or near sheet flow, even when gradients in net transport rates are zero. We have developed a cellular automaton model that combines formulae for net sediment transport rates with a simple power law to also predict the transport rates of the individual size fractions in a bimodal mixture. The power law was previously developed using a simulation technique that explicitly captures the effect of vertical sorting of grains by size within the active layer. We performed laboratory experiments for sheet flow transport with bimodal distributions of sediments and used video observations to quantify the evolution of sediments by size on the surface of the bed. Results from our cellular automaton model compare favorably with the laboratory experiments.

  18. Method efficiency and signal quantification of bacteria for a groundwater transport experiment

    SciTech Connect

    Burlage, R.S.; Palumbo, A.V.; McCarthy, J.

    1995-04-01

    Bacterial transport is a key process in delivery of microbes to contaminated sites for bioremediation of chemicals. However, relatively little is known about the geochemical and hydrologic factors controlling the mobility of bacteria and viruses within subsurface systems. Laboratory-scale column studies have provided useful information (Harvey et al, 1989, 1993). However, successful application to in situ remediation will require that one identify and understand properties relevant to transport in aquifers. Only through field experiments can one evaluate the scales of physical and chemical heterogeneity in natural aquifers that affect the transport of microbiota in ways not predicted from experiments conducted at the laboratory-scale. Bacterial transport field experiments cannot be replicated as can column experiments. Rigorous testing of experimental hypotheses will require comparisons of the mobility of multiple strains with contrasting transport properties under identical field conditions. Consequently, a technique is needed to permit the transport of multiple strains of bacteria to be monitored simultaneously in a single field experiment. Molecular techniques can also detect very low levels of injected bacteria. Polymerase chain reaction (PCR) has been used successfully for the detection of microorganisms. This paper explores the use of PCR for identifying and enumerating the arrival of several individual strains of bacteria at monitoring wells downgradient of an experimental tracer injection well.

  19. Large wood transport and jam formation in a series of flume experiments

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; MacKenzie, L. G.; Eaton, B. C.

    2015-12-01

    Large wood has historically been removed from streams, resulting in the depletion of in-stream wood in waterways worldwide. As wood increases morphological and hydraulic complexity, the addition of large wood is commonly employed as a means to rehabilitate in-stream habitat. At present, however, the scientific understanding of wood mobilization and transport is incomplete. This paper presents results from a series of four flume experiments in which wood was added to a reach to investigate the piece and reach characteristics that determine wood stability and transport, as well as the time scale required for newly recruited wood to self-organize into stable jams. Our results show that wood transitions from a randomly distributed newly recruited state to a self-organized, or jam-stabilized state, over the course of a single bankfull flow event. Statistical analyses of piece mobility during this transitional period indicate that piece irregularities, especially rootwads, dictate the stability of individual wood pieces; rootwad presence or absence accounts for up to 80% of the variance explained by linear regression models for transport distance. Furthermore, small pieces containing rootwads are especially stable. Large ramped pieces provide nuclei for the formation of persistent wood jams, and the frequency of these pieces in the reach impacts the travel distance of mobile wood. This research shows that the simulation of realistic wood dynamics is possible using a simplified physical model, and also has management implications, as it suggests that randomly added wood may organize into persistent, stable jams, and characterizes the time scale for this transition.

  20. Sediment-transport (wind) experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iverson, J.; Gillette, D.; Greeley, R.; Lee, J.; Mackinnon, I.; Marshall, J.; Nickling, W.; Werner, B.; White, B.; Williams, S.

    1986-01-01

    The carousel wind tunnel (CWT) can be a significant tool for the determination of the nature and magnitude of interparticlar forces at threshold of motion. By altering particle and drum surface electrical properties and/or by applying electric potential difference across the inner and outer drums, it should be possible to separate electrostatic effects from other forces of cohesion. Besides particle trajectory and bedform analyses, suggestions for research include particle aggregation in zero and subgravity environments, effect of suspension-saltation ratio on soil abrasion, and the effects of shear and shearfree turbulence on particle aggregation as applied to evolution of solar nebula.

  1. BACTERIOPHAGE AND MICROSPHERE TRANSPORT IN SATURATED POROUS MEDIA: FORCED-GRADIENT EXPERIMENT AT BORDEN, ONTARIO

    EPA Science Inventory

    A two-well forced-gradient experiment involving virus and microsphere transport was carried out in a sandy aquifer in Borden, Ontario, Canada. Virus traveled at least a few meters in the experiment, but virus concentrations at observation points 1 and 2.54 m away from the injecti...

  2. Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.

    1990-01-01

    A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.

  3. Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

    SciTech Connect

    Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.

    2006-01-01

    A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

  4. Student Experience of Final-Year Undergraduate Research Projects: An Exploration of "Research Preparedness"

    ERIC Educational Resources Information Center

    Shaw, Kylie; Holbrook, Allyson; Bourke, Sid

    2013-01-01

    During this past decade the level of interest in building research capacity has intensified in Australia and internationally, with a particular emphasis on the development of postgraduate research students, but also extending to undergraduate research experience. This study investigated the student experience across a diverse range of fourth-year…

  5. Academics' Perceptions of the Purpose of Undergraduate Research Experiences in a Research-Intensive Degree

    ERIC Educational Resources Information Center

    Wilson, Anna; Howitt, Susan; Wilson, Kate; Roberts, Pam

    2012-01-01

    The inclusion of research experiences as core components of undergraduate curricula implies that students will be exposed to and situated within the research activities of their university. Such experiences thus provide a new prism through which to view the relations between teaching, research and learning. The intentions and actions of academics…

  6. Transport Experiments of Topological Insulators and Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Xiong, Jun

    The progress in understanding the Berry phase of Bloch electrons in crystals has triggered tremendous interest in discovering novel topological phases of solids. The integration of the Berry curvature in the Brillouin zone can categorize solids into phases such as topological insulators (TI), Dirac semimetals (DSM) and Weyl semimetals (WSM). These new phases have unconventional electronic states at the boundaries, such as the spin polarized electrons on the surface of a three-dimensional TI. Under proper engineering, such edge states can carry a dissipationless current, leading to a great application potential in low-power devices and topological quantum computers. Besides TI, the newly discovered Dirac and Weyl semimetals represent another example in which electrons have a linear energy-momentum dispersion. The paired Weyl nodes have opposite chiralities, and can be regarded as positive and negative monopoles of the Berry flux. Under the time-reversal, inversion and certain crystal symmetries, as in the cases of Cd3As2 and Na3Bi, the Weyl nodes with different chiralities can coexist at the same point in the Brillouin zone and the crystal becomes a Dirac semimetal. Such semimetals provide platforms for some phenomena in high energy physics, such as the chiral anomaly effect. The above predictions lie at the heart of our experimental study of topological materials. We synthesized a topological insulator, Bi2Te2 Se, with a suppressed bulk carrier density. Analysis of the prominent Shubnikov-de Haas oscillations in Bi2Te2Se demonstrates clear evidence for the Dirac surface electrons and their pi Berry phase. We also leveraged the ionic liquid gating technique to bring the chemical potential 50% closer to the Dirac point. Additionally, we studied two types of Na3Bi, a DSM. The first type with a high chemical potential exhibits a large and linear magnetoresistance (MR), implying a transport lifetime steeply tuned by the magnetic field. In the second type of Na3Bi with a

  7. Engineering and management experience at Texas A&M Transportation Institute

    NASA Astrophysics Data System (ADS)

    Chowdhury, Arif Tahjibul

    This manuscript presents the author's engineering and management experience during his internship in the Materials and Pavements (M&P) Division at the Texas A&M Transportation Institute (TTI), and is a record of study for the Doctor of Engineering at Texas A&M University. Through this internship, he met his established internship objectives of gaining technical knowledge as well as knowledge and skills in project management, organizational communication, and quality management of pavement condition data, and of attaining professional development. In meeting these objectives, the author describes the history, mission, and organizational structure of his workplace. He also presents his experience of developing and delivering a two-week training course on pavement design and construction in Kosovo. Participating in a number of professional development training courses and other activities prepared him for working as an engineering manager. These activities include Delta-T leadership training, an instructor development course, a time management and organizational skills course, and the M&P Division lecture series. Leadership and skills learned through the Delta-T program were beneficial for the employee as well as the employer. For the class project, the author and his teammates performed a study dealing with improving TTI's deliverables. The Delta-T team composed a report summarizing their efforts of examining the current state of TTI's project deliverables, the deliverables' shortcomings, and potential enhancements to expand the deliverables' appeal to additional types of potential users outside the traditional research community. The team also developed a prototype web-based model of deliverables and presented some implementation recommendations. Participating in the Texas Department of Transportation's (TxDOT's) pavement surface distress data collection program enabled the author to become familiar with pavement distress data quality management and thus attain the

  8. A Community Mentoring Model for STEM Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Kobulnicky, Henry A.; Dale, Daniel A.

    2016-01-01

    This article describes a community mentoring model for UREs that avoids some of the common pitfalls of the traditional paradigm while harnessing the power of learning communities to provide young scholars a stimulating collaborative STEM research experience.

  9. Technology transfer needs and experiences: The NASA Research Center perspective

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.

    1992-01-01

    Viewgraphs on technology transfer needs and experiences - the NASA Research Center perspective are provided. Topics covered include: functions of NASA, incentives and benefits, technology transfer mechanisms, economics of technology commercialization, examples, and conclusions.

  10. Exploring perceptions and experiences of Bolivian health researchers with research ethics.

    PubMed

    Sullivan, Sarah; Aalborg, Annette; Basagoitia, Armando; Cortes, Jacqueline; Lanza, Oscar; Schwind, Jessica S

    2015-04-01

    In Bolivia, there is increasing interest in incorporating research ethics into study procedures, but there have been inconsistent application of research ethics practices. Minimal data exist regarding the experiences of researchers concerning the ethical conduct of research. A cross-sectional study was administered to Bolivian health leaders with research experience (n = 82) to document their knowledge, perceptions, and experiences of research ethics committees and infrastructure support for research ethics. Results showed that 16% of respondents reported not using ethical guidelines to conduct their research and 66% indicated their institutions did not consistently require ethics approval for research. Barriers and facilitators to incorporate research ethics into practice were outlined. These findings will help inform a comprehensive rights-based research ethics education program in Bolivia.

  11. On Improving the Experiment Methodology in Pedagogical Research

    ERIC Educational Resources Information Center

    Horakova, Tereza; Houska, Milan

    2014-01-01

    The paper shows how the methodology for a pedagogical experiment can be improved through including the pre-research stage. If the experiment has the form of a test procedure, an improvement of methodology can be achieved using for example the methods of statistical and didactic analysis of tests which are traditionally used in other areas, i.e.…

  12. How to Conduct Clinical Qualitative Research on the Patient's Experience

    ERIC Educational Resources Information Center

    Chenail, Ronald J.

    2011-01-01

    From a perspective of patient-centered healthcare, exploring patients' (a) preconceptions, (b) treatment experiences, (c) quality of life, (d) satisfaction, (e) illness understandings, and (f) design are all critical components in improving primary health care and research. Utilizing qualitative approaches to discover patients' experiences can…

  13. Field-scale sulfur hexafluoride tracer experiment to understand long distance gas transport in the deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian; Green, Christopher T.; Stonestrom, David A.; Striegl, Rob

    2014-01-01

    A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.

  14. Embedding a Recovery Orientation into Neuroscience Research: Involving People with a Lived Experience in Research Activity.

    PubMed

    Stratford, Anthony; Brophy, Lisa; Castle, David; Harvey, Carol; Robertson, Joanne; Corlett, Philip; Davidson, Larry; Everall, Ian

    2016-03-01

    This paper highlights the importance and value of involving people with a lived experience of mental ill health and recovery in neuroscience research activity. In this era of recovery oriented service delivery, involving people with the lived experience of mental illness in neuroscience research extends beyond their participation as "subjects". The recovery paradigm reconceptualises people with the lived experience of mental ill health as experts by experience. To support this contribution, local policies and procedures, recovery-oriented training for neuroscience researchers, and dialogue about the practical applications of neuroscience research, are required.

  15. [Experience of stroke prevention-Enlightenment for cancer research].

    PubMed

    You, Weicheng

    2015-08-01

    Cancer, stroke and heart diseases are most common causes of death. This paper summarized the experience of stroke prevention, which is an enlightenment for cancer research. In addition, this paper also described the progress of cancer epidemiological research, particular the primary and second preventions in China.

  16. A Model for an Introductory Undergraduate Research Experience

    ERIC Educational Resources Information Center

    Canaria, Jeffrey A.; Schoffstall, Allen M.; Weiss, David J.; Henry, Renee M.; Braun-Sand, Sonja B.

    2012-01-01

    An introductory, multidisciplinary lecture-laboratory course linked with a summer research experience has been established to provide undergraduate biology and chemistry majors with the skills needed to be successful in the research laboratory. This three-credit hour course was focused on laboratory skills and was designed to reinforce and develop…

  17. Rutgers University Research Experience for Teachers in Engineering: Preliminary Findings

    ERIC Educational Resources Information Center

    Laffey, Evelyn H.; Cook-Chennault, Kimberly; Hirsch, Linda S.

    2013-01-01

    In addressing the nation's need for a more technologically-literate society, the Rutgers University Research Experience for Teachers in Engineering (RU RET-E) is designed to: (1) engage middle and high school math and science teachers in innovative "green" engineering research during the summer, and (2) support teachers in integrating…

  18. Using Phenomenology to Conduct Environmental Education Research: Experience and Issues

    ERIC Educational Resources Information Center

    Nazir, Joanne

    2016-01-01

    Recently, I applied a phenomenological methodology to study environmental education at an outdoor education center. In this article, I reflect on my experience of doing phenomenological research to highlight issues researchers may want to consider in using this type of methodology. The main premise of the article is that phenomenology, with its…

  19. Evidence in Support of Removing Boundaries to Undergraduate Research Experience

    ERIC Educational Resources Information Center

    Haave, Neil; Audet, Doris

    2013-01-01

    Undergraduate research is one of several high impact educational practices used by educational institutions to increase student engagement and success (Kuh, 2008). Many studies on the impact of undergraduate research have surveyed students or faculty on their personal experience and its influence on students' subsequent degrees and employment…

  20. Faculty's Degrees, Experience and Research Vary with Specialty.

    ERIC Educational Resources Information Center

    Fedler, Fred; Counts, Tim; Carey, Arlen; Santana, Maria Cristina

    1998-01-01

    Examines issues of professional experience, degrees, research, and productivity for journalism and mass communication faculty members, separating and comparing different specialties. Finds that requirements regarding academic degrees and research vary from specialty to specialty and that 53% of those teaching in advertising, radio/television, and…

  1. Development of a Structured Undergraduate Research Experience: Framework and Implications

    ERIC Educational Resources Information Center

    Brown, Anne M.; Lewis, Stephanie N.; Bevan, David R.

    2016-01-01

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process.…

  2. [Experience of stroke prevention-Enlightenment for cancer research].

    PubMed

    You, Weicheng

    2015-08-01

    Cancer, stroke and heart diseases are most common causes of death. This paper summarized the experience of stroke prevention, which is an enlightenment for cancer research. In addition, this paper also described the progress of cancer epidemiological research, particular the primary and second preventions in China. PMID:26733022

  3. Field-Based Research Experience in Earth Science Teacher Education.

    ERIC Educational Resources Information Center

    O'Neal, Michael L.

    2003-01-01

    Describes the pilot of a field-based research experience in earth science teacher education designed to produce well-prepared, scientifically and technologically literate earth science teachers through a teaching- and research-oriented partnership between in-service teachers and a university scientist-educator. Indicates that the pilot program was…

  4. PRES 2013: Results from the Postgraduate Research Experience Survey

    ERIC Educational Resources Information Center

    Bennett, Paul; Turner, Gosia

    2013-01-01

    This document outlines the results of the "2013 Postgraduate Research Experience Survey" ("PRES"), where 48,401 replies were received from 122 participating institutions. Redeveloped for 2013, our biennial survey is the only national survey to gather insight from postgraduate research students about their learning and…

  5. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    PubMed Central

    Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2013-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma. Participants spoke of essential factors for becoming a scientist, but their experiences also raised complex issues about the role of race and social stigma in scientific training. Students experienced the collaborative and empowering culture of science, exhibited strong science identities and high self-efficacy, while developing directed career goals as a result of “doing science” in these programs. PMID:23503690

  6. NASA Glenn Research Center Experience with LENR Phenomenon

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  7. Experience-based, body-anchored qualitative research interviewing.

    PubMed

    Stelter, Reinhard

    2010-06-01

    Two theoretical constructs that lay the foundation for experience-based, body-anchored interviewing are presented: the first-person perspective and the concept of meaning. These theoretical concepts are concretized, first, by means of a methodological framework for experience-based, body-anchored interviewing, and second, by an interview guide that explores a research participant's personal experience with mindfulness meditation. An excerpt from an interview is discussed to illustrate the advantages of this interview form, namely its value as a methodological instrument for qualitative research in areas such as traditional and holistic medicine, Western alternative and complementary medicine, nursing, psychotherapy, coaching, physiotherapy, movement arts, and physical education.

  8. NASA Glenn Research Center Experience with "LENR Phenomenon"

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  9. 25 CFR 170.941 - May tribes become involved in transportation research?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... meetings, committees, and workshops sponsored by the National Science Foundation; (b) Participate in and... proposals in their IRRTIPS; (e) Access Transportation Research Information System Network (TRISNET)...

  10. Facilities, breed and experience affect ease of sheep handling: the livestock transporter's perspective.

    PubMed

    Burnard, C L; Pitchford, W S; Hocking Edwards, J E; Hazel, S J

    2015-08-01

    An understanding of the perceived importance of a variety of factors affecting the ease of handling of sheep and the interactions between these factors is valuable in improving profitability and welfare of the livestock. Many factors may contribute to animal behaviour during handling, and traditionally these factors have been assessed in isolation under experimental conditions. A human social component to this phenomenon also exists. The aim of this study was to gain a deeper understanding of the importance of a variety of factors affecting ease of handling, and the interactions between these from the perspective of the livestock transporter. Qualitative interviews were used to investigate the factors affecting sheep behaviour during handling. Interview transcripts underwent thematic analysis. Livestock transporters discussed the effects of attitudes and behaviours towards sheep, helpers, facilities, distractions, environment, dogs and a variety of sheep factors including breed, preparation, experience and sex on sheep behaviour during handling. Transporters demonstrated care and empathy and stated that patience and experience were key factors determining how a person might deal with difficult sheep. Livestock transporters strongly believed facilities (ramps and yards) had the greatest impact, followed by sheep experience (naivety of the sheep to handling and transport) and breed. Transporters also discussed the effects of distractions, time of day, weather, dogs, other people, sheep preparation, body condition and sheep sex on ease of handling. The concept of individual sheep temperament was indirectly expressed.

  11. Facilities, breed and experience affect ease of sheep handling: the livestock transporter's perspective.

    PubMed

    Burnard, C L; Pitchford, W S; Hocking Edwards, J E; Hazel, S J

    2015-08-01

    An understanding of the perceived importance of a variety of factors affecting the ease of handling of sheep and the interactions between these factors is valuable in improving profitability and welfare of the livestock. Many factors may contribute to animal behaviour during handling, and traditionally these factors have been assessed in isolation under experimental conditions. A human social component to this phenomenon also exists. The aim of this study was to gain a deeper understanding of the importance of a variety of factors affecting ease of handling, and the interactions between these from the perspective of the livestock transporter. Qualitative interviews were used to investigate the factors affecting sheep behaviour during handling. Interview transcripts underwent thematic analysis. Livestock transporters discussed the effects of attitudes and behaviours towards sheep, helpers, facilities, distractions, environment, dogs and a variety of sheep factors including breed, preparation, experience and sex on sheep behaviour during handling. Transporters demonstrated care and empathy and stated that patience and experience were key factors determining how a person might deal with difficult sheep. Livestock transporters strongly believed facilities (ramps and yards) had the greatest impact, followed by sheep experience (naivety of the sheep to handling and transport) and breed. Transporters also discussed the effects of distractions, time of day, weather, dogs, other people, sheep preparation, body condition and sheep sex on ease of handling. The concept of individual sheep temperament was indirectly expressed. PMID:25874817

  12. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  13. Designing Undergraduate Research Experiences: A Multiplicity of Options

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2001-12-01

    Research experiences for undergraduate students can serve many goals including: developing student understanding of the process of science; providing opportunities for students to develop professional skills or test career plans; completing publishable research; enabling faculty professional development; or enhancing the visibility of a science program. The large range of choices made in the design of an undergraduate research program or opportunity must reflect the goals of the program, the needs and abilities of the students and faculty, and the available resources including both time and money. Effective program design, execution, and evaluation can all be enhanced if the goals of the program are clearly articulated. Student research experiences can be divided into four components: 1) defining the research problem; 2) developing the research plan or experiment design; 3) collecting and interpreting data, and 4) communicating results. In each of these components, the program can be structured in a wide variety of ways and students can be given more or less guidance or freedom. While a feeling of ownership of the research project appears to be very important, examples of successful projects displaying a wide range of design decisions are available. Work with the Keck Geology Consortium suggests that four strategies can enhance the likelihood of successful student experiences: 1) students are well-prepared for research experience (project design must match student preparation); 2) timelines and events are structured to move students through intermediate goals to project completion; 3) support for the emotional, financial, academic and technical challenges of a research project is in place; 4) strong communications between students and faculty set clear expectations and enable mid-course corrections in the program or project design. Creating a research culture for the participants or embedding a project in an existing research culture can also assist students in

  14. Authentic Research Immersion Experiences: the Key to Enduring Understandings

    NASA Astrophysics Data System (ADS)

    Klug, S. L.

    2007-12-01

    Do authentic research experiences have a role in today's classrooms? Where do they fit into the constrained curriculum units and high-stakes testing regimen that define a teacher's world? It is possible, even in today's somewhat narrow teaching environment, to integrate authentic research into the classroom and evolve away from the worksheets and lessons that simply "teach to the test"? Authentic research immersion experiences must be carefully packaged the for classroom use with clear alignment to standards and a learning curve that is not too daunting. By helping teachers to see the value in replacing curricular units with authentic research experiences and designing the research program to fit within a teacher's needs, the rate of successful adoption of the research program becomes much higher. As a result, not only do their students reap the educational rewards of becoming active research participants in the process of science and learn it from the inside out, but the opportunity for the teachers to grow professionally in content and science process knowledge is also an additional benefit. NASA has had and continues to have a significant role in providing these data and mission- related immersion experiences for elementary classrooms through graduate school students.

  15. Public Transport for Everyone: A Summary of the Results of Research and Development Projects Concerning Disabled People and Transport Facilities Supported by the Swedish Transport Research Board. TFB-Report 1989:1.

    ERIC Educational Resources Information Center

    Borjesson, Mats

    This report summarizes the results of research and development concerning disabled individuals in Sweden and their use of transport facilities. The first section, "People with Impaired Mobility and Their Travel Needs," outlines Sweden's transport policy goal to adapt transport to the needs of disabled people, addresses the difficulty in…

  16. Dissolution-precipitation processes in tank experiments for testing numerical models for reactive transport calculations: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Poonoosamy, Jenna; Kosakowski, Georg; Van Loon, Luc R.; Mäder, Urs

    2015-06-01

    In the context of testing reactive transport codes and their underlying conceptual models, a simple 2D reactive transport experiment was developed. The aim was to use simple chemistry and design a reproducible and fast to conduct experiment, which is flexible enough to include several process couplings: advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. A small tank was filled with a reactive layer of strontium sulfate (SrSO4) of two different grain sizes, sandwiched between two layers of essentially non-reacting quartz sand (SiO2). A highly concentrated solution of barium chloride was injected to create an asymmetric flow field. Once the barium chloride reached the reactive layer, it forced the transformation of strontium sulfate into barium sulfate (BaSO4). Due to the higher molar volume of barium sulfate, its precipitation caused a decrease of porosity and lowered the permeability. Changes in the flow field were observed with help of dye tracer tests. The experiments were modelled using the reactive transport code OpenGeosys-GEM. Tests with non-reactive tracers performed prior to barium chloride injection, as well as the density-driven flow (due to the high concentration of barium chloride solution), could be well reproduced by the numerical model. To reproduce the mineral bulk transformation with time, two populations of strontium sulfate grains with different kinetic rates of dissolution were applied. However, a default porosity permeability relationship was unable to account for measured pressure changes. Post mortem analysis of the strontium sulfate reactive medium provided useful information on the chemical and structural changes occurring at the pore scale at the interface that were considered in our model to reproduce the pressure evolution with time.

  17. Dissolution-precipitation processes in tank experiments for testing numerical models for reactive transport calculations: Experiments and modelling.

    PubMed

    Poonoosamy, Jenna; Kosakowski, Georg; Van Loon, Luc R; Mäder, Urs

    2015-01-01

    In the context of testing reactive transport codes and their underlying conceptual models, a simple 2D reactive transport experiment was developed. The aim was to use simple chemistry and design a reproducible and fast to conduct experiment, which is flexible enough to include several process couplings: advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. A small tank was filled with a reactive layer of strontium sulfate (SrSO4) of two different grain sizes, sandwiched between two layers of essentially non-reacting quartz sand (SiO2). A highly concentrated solution of barium chloride was injected to create an asymmetric flow field. Once the barium chloride reached the reactive layer, it forced the transformation of strontium sulfate into barium sulfate (BaSO4). Due to the higher molar volume of barium sulfate, its precipitation caused a decrease of porosity and lowered the permeability. Changes in the flow field were observed with help of dye tracer tests. The experiments were modelled using the reactive transport code OpenGeosys-GEM. Tests with non-reactive tracers performed prior to barium chloride injection, as well as the density-driven flow (due to the high concentration of barium chloride solution), could be well reproduced by the numerical model. To reproduce the mineral bulk transformation with time, two populations of strontium sulfate grains with different kinetic rates of dissolution were applied. However, a default porosity permeability relationship was unable to account for measured pressure changes. Post mortem analysis of the strontium sulfate reactive medium provided useful information on the chemical and structural changes occurring at the pore scale at the interface that were considered in our model to reproduce the pressure evolution with time.

  18. Development of a structured undergraduate research experience: Framework and implications.

    PubMed

    Brown, Anne M; Lewis, Stephanie N; Bevan, David R

    2016-09-10

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process. Modernizing the current life sciences research environment to accommodate the growing demand by students for experiential learning is needed. By developing and implementing a structured, theory-based approach to undergraduate research in the life sciences, specifically biochemistry, it has been successfully shown that more students can be provided with a high-quality, high-impact research experience. The structure of this approach allowed students to develop novel, independent projects in a computational molecular modeling lab. Students engaged in an experience in which career goals, problem-solving skills, time management skills, and independence in a research lab were developed. After experiencing this approach to undergraduate research, students reported feeling challenged to think critically and prepared for future career paths. The approach allowed for a progressive learning environment where more undergraduate students could participate in publishable research. Future areas for development include implementation in a bench-top lab and extension to disciplines beyond biochemistry. In this study, it has been shown that utilizing the structured approach to undergraduate research could allow for more students to experience undergraduate research and develop into more confident, independent life scientists well prepared for graduate schools and professional research environments. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):463-474, 2016.

  19. Development of a structured undergraduate research experience: Framework and implications.

    PubMed

    Brown, Anne M; Lewis, Stephanie N; Bevan, David R

    2016-09-10

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process. Modernizing the current life sciences research environment to accommodate the growing demand by students for experiential learning is needed. By developing and implementing a structured, theory-based approach to undergraduate research in the life sciences, specifically biochemistry, it has been successfully shown that more students can be provided with a high-quality, high-impact research experience. The structure of this approach allowed students to develop novel, independent projects in a computational molecular modeling lab. Students engaged in an experience in which career goals, problem-solving skills, time management skills, and independence in a research lab were developed. After experiencing this approach to undergraduate research, students reported feeling challenged to think critically and prepared for future career paths. The approach allowed for a progressive learning environment where more undergraduate students could participate in publishable research. Future areas for development include implementation in a bench-top lab and extension to disciplines beyond biochemistry. In this study, it has been shown that utilizing the structured approach to undergraduate research could allow for more students to experience undergraduate research and develop into more confident, independent life scientists well prepared for graduate schools and professional research environments. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):463-474, 2016. PMID:27124101

  20. Options for integrated beam experiments for inertial fusion energy and high-energy density physics research

    NASA Astrophysics Data System (ADS)

    Leitner, M. A.; Celata, C. M.; Lee, E. P.; Logan, B. G.; Waldron, W. L.; Yu, S. S.; Barnard, J. J.

    2005-05-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is presently focused on separate smaller-scale scientific experiments addressing key issues of future Inertial Fusion Energy (IFE) and High-Energy-Density-Physics (HEDP) drivers: the injection, transport, and focusing of intense heavy ion beams at currents from 25 to 600 mA. As a next major step in the HIF-VNL program, we aim for a fully integrated beam physics experiment, which allows integrated source-to-target physics research with a high-current heavy ion beam of IFE-relevant brightness with the goal of optimizing target focusing. This paper describes two rather different options for such an integrated experiment, the Integrated Beam Experiment (IBX) and the Neutralized Drift Compression Experiment (NDCX). Both proposals put emphasis on the unique capability for integrated injection, acceleration, compression, and focusing of a high-current, space-charge-dominated heavy ion beam.

  1. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 2: Experiment selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.

  2. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  3. The Core Analytics of Randomized Experiments for Social Research. MDRC Working Papers on Research Methodology

    ERIC Educational Resources Information Center

    Bloom, Howard S.

    2006-01-01

    This chapter examines the core analytic elements of randomized experiments for social research. Its goal is to provide a compact discussion for faculty members, graduate students, and applied researchers of the design and analysis of randomized experiments for measuring the impacts of social or educational interventions. Design issues considered…

  4. High speed commercial transport fuels considerations and research needs

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Niedzwiecki, R. W.

    1989-01-01

    NASA is currently evaluating the potential of incorporating High Speed Civil Transport (HSCT) aircraft in the commercial fleet in the beginning of the 21st century. NASA sponsored HSCT enabling studies currently underway with airframers and engine manufacturers, are addressing a broad range of technical, environmental, economic, and related issues. Supersonic cruise speeds for these aircraft were originally focused in the Mach 2 to 5 range. At these flight speeds, both jet fuels and liquid methane were considered potential fuel candidates. For the year 2000 to 2010, cruise Mach numbers of 2 to 3+ are projected for aircraft fuel with thermally stable liquid jet fuels. For 2015 and beyond, liquid methane fueled aircraft cruising at Mach numbers of 4+ may be viable candidates. Operation at supersonic speeds will be much more severe than those encountered at subsonic flight. One of the most critical problems is the potential deterioration of the fuel due to the high temperature environment. HSCT fuels will not only be required to provide the energy necessary for flight, but will also be subject to aerodynamic heating and, will be required to serve as the primary heat sink for cooling the engine and airframe. To define fuel problems for high speed flight, a fuels workshop was conducted at NASA Lewis Research Center. The purpose of the workshop was to gather experts on aviation fuels, airframe fuel systems, airport infrastructure, and combustion systems to discuss high speed fuel alternatives, fuel supply scenarios, increased thermal stability approaches and measurements, safety considerations, and to provide directional guidance for future R and D efforts. Subsequent follow-up studies defined airport infrastructure impacts of high speed fuel candidates. The results of these activities are summarized. In addition, an initial case study using modified in-house refinery simulation model Gordian code (1) is briefly discussed. This code can be used to simulate different

  5. The Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment (SALTRACE 2013) - An overview

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Althausen, Dietrich; Chouza, Fernando; Dollner, Maximilian; Farrell, David; Groß, Silke; Heinold, Bernd; Kristensen, Thomas B.; Mayol-Bracero, Olga L.; Omar, Ali; Prospero, Joseph; Sauer, Daniel; Schäfler, Andreas; Toledano, Carlos; Tegen, Ina

    2015-04-01

    Saharan mineral dust is regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the Sahara. During transport, the properties of mineral dust may be modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. To investigate the aging and modification of Saharan mineral dust during long-range transport across the Atlantic Ocean, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE was designed as a closure experiment combining ground-based lidar, in-situ and sun photometer instruments deployed on Cape Verde, Barbados and Puerto Rico, with airborne measurements of the DLR research aircraft Falcon, satellite observations and model simulations. During SALTRACE, mineral dust from five dust outbreaks was studied under different atmospheric conditions and a unique data set on the chemical, microphysical and optical properties of aged mineral dust was gathered. For the first time, Lagrangian sampling of a dust plume in the Cape Verde area on 17 June 2013 which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados was realized. Further highlights of SALTRACE include the formation and evolution of tropical storm Chantal in a dusty environment and the interaction of dust with mixed-phase clouds. In our presentation, we give an overview of the SALTRACE study, discuss the meteorological situation and the dust transport during SALTRACE and highlight selected results from SALTRACE.

  6. The use of synthetic colloids in tracer transport experiments in saturated rock fractures

    SciTech Connect

    Reimus, P.W.

    1995-08-01

    Studies of groundwater flow and contaminant transport in saturated, fractured geologic media are of great interest to researchers studying the potential long-term storage of hazardous wastes in or near such media. A popular technique for conducting such studies is to introduce tracers having different chemical and physical properties into a system and then observe the tracers at one or more downstream locations, inferring flow and transport mechanisms from the breakthrough characteristics of the different tracers. Many tracer studies have been conducted in saturated, fractured media to help develop and/or refine models capable of predicting contaminant transport over large scales in such media.

  7. The SUPER Program: A Research-based Undergraduate Experience

    NASA Astrophysics Data System (ADS)

    Ernakovich, J. G.; Boone, R. B.; Boot, C. M.; Denef, K.; Lavallee, J. M.; Moore, J. C.; Wallenstein, M. D.

    2014-12-01

    Producing undergraduates capable of broad, independent thinking is one of the grand challenges in science education. Experience-based learning, specifically hands-on research, is one mechanism for increasing students' ability to think critically. With this in mind, we created a two-semester long research program called SUPER (Skills for Undergraduate Participation in Ecological Research) aimed at teaching students to think like scientists and enhancing the student research experience through instruction and active-learning about the scientific method. Our aim was for students to gain knowledge, skills, and experience, and to conduct their own research. In the first semester, we hosted active-learning workshops on "Forming Hypotheses", "Experimental Design", "Collecting and Managing Data", "Analysis of Data", "Communicating to a Scientific Audience", "Reading Literature Effectively", and "Ethical Approaches". Each lesson was taught by different scientists from one of many ecological disciplines so that students were exposed to the variation in approach that scientists have. In the second semester, students paired with a scientific mentor and began doing research. To ensure the continued growth of the undergraduate researcher, we continued the active-learning workshops and the students attended meetings with their mentors. Thus, the students gained technical and cognitive skills in parallel, enabling them to understand both "the how" and "the why" of what they were doing in their research. The program culminated with a research poster session presented by the students. The interest in the program has grown beyond our expectations, and we have now run the program successfully for two years. Many of the students have gone on to campus research jobs, internships and graduate school, and have attributed part of their success in obtaining their positions to their experience with the SUPER program. Although common in other sciences, undergraduate research experiences are

  8. Laboratory transport experiments with antibiotic sulfadiazine: Experimental results and parameter uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Sittig, S.; Vrugt, J. A.; Kasteel, R.; Groeneweg, J.; Vereecken, H.

    2011-12-01

    Persistent antibiotics in the soil potentially contaminate the groundwater and affect the quality of drinking water. To improve our understanding of antibiotic transport in soils, we performed laboratory transport experiments in soil columns under constant irrigation conditions with repeated applications of chloride and radio-labeled SDZ. The tracers were incorporated in the first centimeter, either with pig manure or with solution. Breakthrough curves and concentration profiles of the parent compound and the main transformation products were measured. The goal is to describe the observed nonlinear and kinetic transport behavior of SDZ. Our analysis starts with synthetic transport data for the given laboratory flow conditions for tracers which exhibit increasingly complex interactions with the solid phase. This first step is necessary to benchmark our inverse modeling approach for ideal situations. Then we analyze the transport behavior using the column experiments in the laboratory. Our analysis uses a Markov chain Monte Carlo sampler (Differential Evolution Adaptive Metropolis algorithm, DREAM) to efficiently search the parameter space of an advective-dispersion model. Sorption of the antibiotics to the soil was described using a model regarding reversible as well as irreversible sorption. This presentation will discuss our initial findings. We will present the data of our laboratory experiments along with an analysis of parameter uncertainty.

  9. Impact of operational experience on research and development

    NASA Astrophysics Data System (ADS)

    Loewenstein, W. B.; Adamantiades, A. G.

    1981-01-01

    The gradual accumulation of operating experience data from nuclear plants is having a perceptible impact on the direction of research and development. Four areas where this influence is best manifested are identified: increased awareness of systems interaction, the importance of operational data for code qualification, a sharper focus of separate effects, and the importance of well-defined scaled experiments. Illustrations from EPRI-sponsored and EPRI-conducted projects are presented.

  10. Energy demand analysis and alternative fuels. Transportation research record

    SciTech Connect

    Dingemans, D.; Sperling, D.; Greene, D.L.; Hu, P.S.; Hallet, P.

    1986-01-01

    Contents include: Mental maps and the refueling behavior of vehicle drivers; A functional form analysis of the short-run demand for travel and gasoline by one-vehicle households; An assessment methodology for alternative fuels technologies; Drive-up windows, energy, and air quality; Travel characteristics and transportation energy consumption patterns of minority and poor households; An investigation into the use of market segmentation analysis for transportation energy planning.

  11. Emotionally excited eyeblink-rate variability predicts an experience of transportation into the narrative world

    PubMed Central

    Nomura, Ryota; Hino, Kojun; Shimazu, Makoto; Liang, Yingzong; Okada, Takeshi

    2015-01-01

    Collective spectator communications such as oral presentations, movies, and storytelling performances are ubiquitous in human culture. This study investigated the effects of past viewing experiences and differences in expressive performance on an audience’s transportive experience into a created world of a storytelling performance. In the experiment, 60 participants (mean age = 34.12 years, SD = 13.18 years, range 18–63 years) were assigned to watch one of two videotaped performances that were played (1) in an orthodox way for frequent viewers and (2) in a modified way aimed at easier comprehension for first-time viewers. Eyeblink synchronization among participants was quantified by employing distance-based measurements of spike trains, Dspike and Dinterval (Victor and Purpura, 1997). The results indicated that even non-familiar participants’ eyeblinks were synchronized as the story progressed and that the effect of the viewing experience on transportation was weak. Rather, the results of a multiple regression analysis demonstrated that the degrees of transportation could be predicted by a retrospectively reported humor experience and higher real-time variability (i.e., logarithmic transformed SD) of inter blink intervals during a performance viewing. The results are discussed from the viewpoint in which the extent of eyeblink synchronization and eyeblink-rate variability acts as an index of the inner experience of audience members. PMID:26029123

  12. Pathways to Improve Student Pharmacists’ Experience in Research

    PubMed Central

    McClendon, Katie S.; Bell, Allison M.; Ellis, Ashley; Adcock, Kim G.; Hogan, Shirley; Ross, Leigh Ann

    2015-01-01

    Objective. To describe the implementation of a student research program and to provide outcomes from the initial 4 years’ experience. Design. Students conducted individual research projects in a 4-year longitudinal program (known as Pathway), with faculty member advising and peer mentoring. A prospective assessment compared perceptions of those who completed the Pathway program with those of students who did not. Descriptive statistics, t tests, and analysis of variance (ANOVA) were used. Assessment. The class of 2013 was the first to complete the Pathway program. In the Pathway assessment project, 59% (n=47) of students who responded reached self-set goals. Pathway students agreed that this research experience improved their ability to work/think independently, evaluate literature, and distinguish themselves from other students. Conclusion. The Pathway program helped students understand the research process and reach other self-set goals. PMID:26089567

  13. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  14. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.

  15. Some Information of the Operational Experiences of Turbine-Powered Commercial Transports

    NASA Technical Reports Server (NTRS)

    Jewel, Joseph W., Jr.; Hunter, Paul A.; McLaughlin, Milton D.

    1961-01-01

    This report presents a brief discussion of some information on the operational experiences noted on VGH records from six types of turbine- powered commercial transport aircraft. These flight characteristics cover oscillatory motions, maneuver accelerations, sinking speeds, placard speed exceedances, and miscellaneous or unusual flight events.

  16. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    SciTech Connect

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-04-05

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  17. Design and Characterization of a Neutralized-Transport Experiment for Heavy-Ion Fusion

    SciTech Connect

    Henderson, E; Eylon, S; Roy, P; Yu, S S; Anders, A; Bieniosek, F M; Greenway, W G; Logan, B G; MacGill, R A; Shuman, D B; Vanecek, D L; Waldron, W L; Sharp, W M; Houck, T L; Davidson, R C; Efthimion, P C; Gilson, E P; Sefkow, A B; Welch, D R; Rose, D V; Olson, C L

    2004-05-24

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, a converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present the first results from the experiment.

  18. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    SciTech Connect

    Henestroza, E.; Eylon, S.; Roy, P.K.; Yu, S.S.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; MacGill, R.A.; Shuman, D.B.; Vanecek, D.L.; Waldron, W.L.; Sharp, W.M.; Houck, T.L.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2004-03-14

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  19. Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks

    SciTech Connect

    Oostrom, Martinus; Wietsma, Thomas W.

    2014-09-30

    Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

  20. The Effect of a Simulated Macropore on the Colloid-Facilitated Transport of Cesium and Strontium: Experiment and Model Results

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Ryan, J. N.; Saiers, J. E.

    2011-12-01

    The sorption of contaminants to mobile colloids has been shown to increase the transport of the contaminants in a process known as colloid-facilitated transport. Many laboratory experiments and computer model simulations have shown that enhanced transport can occur when a contaminant strongly associates with mobile colloids and release kinetics are slow relative to the rate of flow. Knowing when colloid-facilitated transport will affect field-scale situations and risk assessment decisions has been difficult. The three parts of our research were (1) conduct a set of isotherms and breakthrough curves for a well-characterized system (illite colloids, homogeneous quartz sand, saturated and unsaturated conditions), (2) conduct breakthrough experiments with the addition of a central macropore and, (3) model the results to identify and quantify the effects of desorption kinetics and unsaturated conditions on colloid-facilitated transport with a macropore. Breakthrough experiments used a 12.7 cm diameter and 33.5 cm long column packed with cleaned and sieved quartz sand. The homogeneous experiments used sand with a median grain size of 0.325 mm. For macropore experiments, a 2 cm diameter tube of 1.6 mm sand (about 5× the size of the matrix sand) was packed in the center of the column. A rainfall simulator was suspended over the column and a relative saturation of 1.0, 0.80, or 0.33 was established. Three moisture sensors and three tensiometers monitored the flow conditions. Effluent was collected with a peristaltic pump and a fraction collector and measured for total and dissolved ions, pH, and colloid concentration. Cesium and strontium were used as model contaminants because they are common contaminants found on Department of Energy sites in the United States and because they have contrasting sorption kinetics with illite. A previously developed model for saturated colloid-facilitated transport of cesium and strontium was extended to accommodate unsaturated conditions

  1. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    NASA Astrophysics Data System (ADS)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  2. Coursework Master's Programmes: The Student's Experience of Research and Research Supervision

    ERIC Educational Resources Information Center

    Drennan, Jonathan; Clarke, Marie

    2009-01-01

    Although the coursework master's degree is becoming the principal conduit for the delivery of continuing education to the professions, it is one of the least understood or researched academic levels in higher education. Furthermore, little is known of coursework master's graduates' experience of research or research supervision following the…

  3. What Knowledge of Responsible Conduct of Research Do Undergraduates Bring to Their Undergraduate Research Experiences?

    ERIC Educational Resources Information Center

    Mabrouk, Patricia Ann

    2016-01-01

    Over a three-year period, chemistry and engineering students participating in six Research Experience for Undergraduates (REU) programs were surveyed before and after participating in a research ethics training workshop. The goal was to learn what undergraduate students already knew about key concepts in research ethics at the start of their…

  4. How useful are olfactometer experiments in chemical ecology research?

    PubMed Central

    Ballhorn, Daniel J.; Kautz, Stefanie

    2013-01-01

    Olfactometer experiments, in which arthropods are given the choice between two or more odor sources to test behavioral preferences, are commonly used in chemical ecology research. Results of such often lead to conclusions on behavior in an ecologically relevant setting. However, it is widely unknown how well these experiments reflect actual behavior in nature. Recently, we used natural insect herbivores of wild lima bean plants to evaluate their behavior in Y-tube olfactometer experiments compared with feeding experiments. We demonstrated that depending on volatile concentration, insect sex significantly determined preference, and that independent of sex, the actual feeding choice of insects depended on defensive short-distance cues, which did not correlate with volatile cues emitted by the plants. Thus, our study shows that olfactory decisions do not reflect actual feeding choice and that olfactometer experiments may only provide a limited and simplified picture of actual decision making by insects. PMID:23986812

  5. Enhancing Undergraduate Education through Mentored Research and Practical Writing Experiences

    NASA Astrophysics Data System (ADS)

    Stephens, Denise C.; Hintz, Eric G.; Joner, Michael D.; Moody, J. Ward

    2015-01-01

    Twenty years ago I attended my very first AAS meeting as a 21-year old undergraduate physics major. At that meeting I presented the light curve of a variable star I had studied as part of a mentored research program at BYU. That opportunity to do mentored research, and to attend a professional meeting of astronomers, helped to set the foundation for my success today as an associate professor of physics and astronomy. Twenty years ago I was the student, now I am the mentor! I have eight undergraduate students whom I currently supervise in active research, four of which are presenting their senior projects at the 225th meeting of the AAS.My experience has shown me that the full impact of mentored research cannot be measured by yearly numbers or statistics. When we mentor a student, we influence their career path and choices for years to come. Where feasible, every undergraduate should have the opportunity to do research if they so choose. It is a sacrifice of our time and our effort that cannot be easily measured through numbers or results, and is only visible many years down the road as these students become the future leaders in astronomy and policy. In this poster, I will discuss the benefits of mentored research, the growth we have seen at BYU over the past twenty years with the introduction of a mentored research program, and ideas for implementing mentored research and writing into course curricula to enhance the undergraduate educational experience.

  6. Partnership and the Revitalization of Aviation: A Study of the Advanced General Aviation Transport Experiments Program, 1994-2001

    NASA Technical Reports Server (NTRS)

    Metz, Nanette Scarpellini

    2002-01-01

    As the Advanced General Aviation Transport Experiments (AGATE) program completes its eight-year plan, the outcomes and industry effects reveal its successes and problems. AGATE engaged several different types of institutions, including federal agencies, business and industry, universities, and non-profit organizations. By examining the perceptions of those intimately involved as well as periphery members, this study shows the powerful consequences of this type of combination both now and in the future. The problems are a particularly useful illustration of the interworking of a jointly funded research and development initiative. By learning how these problems are addressed, the study reveals lessons that may be applied to future government-industry partnerships.

  7. Investigating minority student participation in an authentic science research experience

    NASA Astrophysics Data System (ADS)

    Preston, Stephanie Danette

    In the United States, a problem previously overlooked in increasing the total number of scientifically literate citizens is the lack of diversity in advanced science classes and in science, technology, engineering, and mathematics (STEM) fields. Groups traditionally underserved in science education and thus underrepresented in the STEM fields include: low-income, racial/ethnic minorities, and females of all ethnic and racial backgrounds. Despite the number of these students who are initially interested in science very few of them thrive in the discipline. Some scholars suggest that the declining interest for students underrepresented in science is traceable to K-12th grade learning experiences and access to participating in authentic science. Consequently, the diminishing interest of minorities and women in science contributes negatively to the representation of these groups in the STEM disciplines. The purpose of this study was to investigate a summer science research experience for minority students and the nature of students' participation in scientific discourse and practices within the context of the research experience. The research questions that guided this study are: The nature of the Summer Experience in Earth and Mineral Science (SEEMS) research experience . (A) What are the SEEMS intended outcomes? (B) To what extent does SEEMS enacted curriculum align with the intended outcomes of the program? The nature of students engagement in the SEEMS research. (A) In what ways do students make sense of and apply science concepts as they engage in the research (e.g., understand problem, how they interpret data, how they construct explanations), and the extent to which they use the science content appropriately? (B) In what ways do students engage in the cultural practices of science, such as using scientific discourse, interpreting inscriptions, and constructing explanations from evidence (engaging in science practices, knowing science and doing science)? The

  8. Flow and Transport in Highly Heterogeneous Porous Formations: Numerical Experiments Performed Using the Analytic Element Method

    NASA Astrophysics Data System (ADS)

    Jankovic, I.

    2002-05-01

    Flow and transport in porous formations are analyzed using numerical simulations. Hydraulic conductivity is treated as a spatial random function characterized by a probability density function and a two-point covariance function. Simulations are performed for a multi-indicator conductivity structure developed by Gedeon Dagan (personal communication). This conductivity structure contains inhomogeneities (inclusions) of elliptical and ellipsoidal geometry that are embedded in a homogeneous background. By varying the distribution of sizes and conductivities of inclusions, any probability density function and two-point covariance may be reproduced. The multi-indicator structure is selected since it yields simple approximate transport solutions (Aldo Fiori, personal communication) and accurate numerical solutions (based on the Analytic Element Method). The dispersion is examined for two conceptual models. Both models are based on the multi-indicator conductivity structure. The first model is designed to examine dispersion in aquifers with continuously varying conductivity. The inclusions in this model cover as much area/volume of the porous formation as possible. The second model is designed for aquifers that contain clay/sand/gravel lenses embedded in otherwise homogeneous background. The dispersion in both aquifer types is simulated numerically. Simulation results are compared to those obtained using simple approximate solutions. In order to infer transport statistics that are representative of an infinite domain using the numerical experiments, the inclusions are placed in a domain that was shaped as a large ellipse (2D) and a large spheroid (3D) that were submerged in an unbounded homogeneous medium. On a large scale, the large body of inclusions behaves like a single large inhomogeneity. The analytic solution for a uniform flow past the single inhomogeneity of such geometry yields uniform velocity inside the domain. The velocity differs from that at infinity and

  9. Identification of transport processes in Southern Indian fractured crystalline rock using forced-gradient tracer experiments

    NASA Astrophysics Data System (ADS)

    Guihéneuf, Nicolas; Bour, Olivier; Boisson, Alexandre; Le Borgne, Tanguy; Becker, Matthew R.; Nigon, Benoit; Wajiduddin, Mohammed; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2015-04-01

    Understanding dominant transport processes is essential to improve prediction of contaminants transfer in fractured crystalline rocks. In such fractured media, solute transport is characterized by fast advection within open and connected fractures and sometimes by matrix diffusion that may be enhanced by chemical weathering. To investigate this phenomenon, we carried out radially convergent and push-pull tracer experiments in the fractured granite of the Experimental Hydrogeological Park of Choutuppal (Southern India). Tracer tests were performed in the same permeable fracture from few meters to several ten meters and from few hours to two weeks to check the consistency of the results at different spatial and temporal scales. These different types of forced gradient tracer experiments allow separation of the effects of advection and diffusion on transport. Breakthrough curves from radially convergent tracer tests display systematically a -2 power law slope on the late time behavior. This tailing can be adequately represented by a transport model that only takes into account heterogeneous advection caused by fluid flow channeling. The negligible impact of matrix diffusion was confirmed by the push-pull tracer tests, at least for the duration of experiments. A push-pull experiment carried out with a cocktail of two conservative tracers having different diffusion coefficients displayed similar breakthrough curves. Increasing the resting phase during the experiments did not lead to a significant decline of peak concentration. All these results suggest a negligible impact of matrix diffusion. However, increasing the scales of investigation during push-pull tracer tests led to a decrease of the power law slope on the late time behavior. This behavior that cannot be modeled with a transport model based on independent flow paths and indicate non-reversible heterogeneous advection. This process could be explained by the convergence of streamlines after a certain distance

  10. Interpretation of column experiments of transport of solutes undergoing an irreversible bimolecular reaction using a continuum approximation

    NASA Astrophysics Data System (ADS)

    Sanchez-Vila, Xavier; Fernã Ndez-Garcia, Daniel; Guadagnini, Alberto

    2010-12-01

    We provide a quantitative interpretation of the column experiment reported by Gramling et al. (2002). The experiment involves advection-dominated transport in porous media of three dissolved species, i.e., two reactants undergoing a fast irreversible reaction and the resulting product. The authors found that their observations could not be properly fitted with a model based on an advection-dispersion-reaction equation (ADRE) assuming the reaction was instantaneous, the actual measured total reaction product being lower than predictions for all times. The data have been recently well reproduced by Edery et al. (2009, 2010) by means of a particle tracking approach in a continuous time random walk framework. These and other authors have questioned the use of partial differential equation (PDE)-based approaches to quantify reactive transport because of the difficulty in capturing local-scale mixing and reaction. We take precisely this approach and interpret the experiments mentioned by means of a continuum-scale model based on the ADRE. Our approach differs from previous modeling attempts in that we imbue effects of incomplete mixing at the pore scale in a time-dependent kinetic reaction term and show that this model allows quantitative interpretation of the experiments in terms of both reaction product profiles and time-dependent global production rate. The time dependence of the kinetic term presented accounts for the progressive effects of incomplete mixing due to pore-scale rate-limited mass transfer, and follows a power law, which is consistent with the compilation of existing experiments reported by Haggerty et al. (2004). Our interpretation can form the basis for further research to assess the potential use of PDE approaches for the interpretation of reactive transport problems in moderately heterogeneous media.

  11. Research studies using OSO-6 zodiacal light experiment data

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of research studies on the OSO-6 zodiacal light experiment, conducted during the period from May 1976 to October 1977 are described. A discussion is included of the instrument performance and the empirical calibrations developed. Main areas of the research performed, i.e., (1) zodiacal light variation analysis; (2) integrated starlight and diffuse galactic light; and (3) earth/moon libration region counterglow, are covered. Considerable data processing was performed during these studies and it is summarized. Recommendations for future research to complete the interim results are given.

  12. Biogeochemical Reactive Transport Model of the Redox Zone Experiment of the Aespoe Hard Rock Laboratory in Sweden

    SciTech Connect

    Molinero-Huguet, Jorge; Samper-Calvete, F. Javier; Zhang Guoxiang; Yang Changbing

    2004-11-15

    Underground facilities are being operated by several countries around the world for performing research and demonstration of the safety of deep radioactive waste repositories. The Aespoe Hard Rock Laboratory is one such facility launched and operated by the Swedish Nuclear Fuel and Waste Management Company where various in situ experiments have been performed in fractured granites. One such experiment is the redox zone experiment, which aimed at evaluating the effects of the construction of an access tunnel on the hydrochemical conditions of a fracture zone. Dilution of the initially saline groundwater by fresh recharge water is the dominant process controlling the hydrochemical evolution of most chemical species, except for bicarbonate and sulfate, which unexpectedly increase with time. We present a numerical model of water flow, reactive transport, and microbial processes for the redox zone experiment. This model provides a plausible quantitatively based explanation for the unexpected evolution of bicarbonate and sulfate, reproduces the breakthrough curves of other reactive species, and is consistent with previous hydrogeological and solute transport models.

  13. Romanian Experience for Enhancing Safety and Security in Transport of Radioactive Material - 12223

    SciTech Connect

    Vieru, Gheorghe

    2012-07-01

    The transport of Dangerous Goods-Class no.7 Radioactive Material (RAM), is an important part of the Romanian Radioactive Material Management. The overall aim of this activity is for enhancing operational safety and security measures during the transport of the radioactive materials, in order to ensure the protection of the people and the environment. The paper will present an overall of the safety and security measures recommended and implemented during transportation of RAM in Romania. Some aspects on the potential threat environment will be also approached with special referring to the low level radioactive material (waste) and NORM transportation either by road or by rail. A special attention is given to the assessment and evaluation of the possible radiological consequences due to RAM transportation. The paper is a part of the IAEA's Vienna Scientific Research Contract on the State Management of Nuclear Security Regime (Framework) concluded with the Institute for Nuclear Research, Romania, where the author is the CSI (Chief Scientific Investigator). The transport of RAM in Romania is a very sensible and complex problem taking into consideration the importance and the need of the security and safety for such activities. The Romanian Nuclear Regulatory Body set up strictly regulation and procedures according to the Recommendation of the IAEA Vienna and other international organizations. There were implemented the adequate regulation and procedures in order to keep the environmental impacts and the radiological consequences at the lower possible level and to assure the effectiveness of state nuclear security regime due to possible malicious acts in carrying out these activities including transport and the disposal site at the acceptable international levels. The levels of the estimated doses and risk expectation values for transport and disposal are within the acceptable limits provided by national and international regulations and recommendations but can increase

  14. Culminating Experience Action Research Projects, Volume 13, Fall 2008

    ERIC Educational Resources Information Center

    McAllister, Deborah A., Ed.; Cutcher, Cortney L., Ed.

    2010-01-01

    As a part of the teacher licensure program at the graduate level at The University of Tennessee at Chattanooga (UTC), the M.Ed. Licensure candidate is required to complete an action research project during a 3-semester-hour course that coincides with the 9-semester-hour student teaching experience. This course, Education 590 Culminating…

  15. Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) Implementation Study

    NASA Technical Reports Server (NTRS)

    Stadler, John H.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Ball, Donald J.

    1998-01-01

    New technological advances have made possible new active remote sensing capabilities from space. Utilizing these technologies, the Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) will provide high spatial resolution measurements of ozone, clouds and aerosols in the stratosphere and lower troposphere. Simultaneous measurements of ozone, clouds and aerosols will assist in the understanding of global change, atmospheric chemistry and meteorology.

  16. Research Methods to Investigate Significant Life Experiences: Review and Recommendations

    ERIC Educational Resources Information Center

    Chawla, Louise

    2006-01-01

    This article reviews different research approaches to understanding the significant experiences that influence peoples environmental concern and behaviour, with an emphasis on identifying the strengths and weaknesses of existing studies. It also reviews relevant findings regarding the validity of autobiographical memory, as memory is the medium…

  17. Videos of Experiments from ORNL Gas Hydrate Research

    DOE Data Explorer

    Gas hydrate research performed by the Environmental Sciences Division utilizes the ORNL Seafloor Process Simulator, the Parr Vessel, the Sapphire Cell, a fiber optic distributed sensing system, and Raman spectroscopy. The group studies carbon sequestration in the ocean, desalination, gas hydrates in the solar system, and nucleation and dissociation kinetics. The videos available at the gas hydrates website are very short clips from experiments.

  18. Culminating Experience Action Research Projects, Volume 3, Spring 2003.

    ERIC Educational Resources Information Center

    McAllister, Deborah A., Ed.; Moyer, Peggy S., Ed.

    This document presents the course syllabus for Education 590 Culminating Experience at the University of Tennessee at Chattanooga's teacher licensure program. It also includes action research projects from spring 2003: "'To Track or Untrack...That Is the Question'" (Sarah Armes); "Providing Urban Students with the Motivation to Succeed in School"…

  19. 78 FR 58575 - Review of Experiments for Research Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Review of Experiments for Research Reactors AGENCY: Nuclear Regulatory Commission. ACTION..., by email at Alexander.Adams@nrc.gov , Office of Nuclear Reactor Regulation, U.S. Nuclear...

  20. Culminating Experience Action Research Projects, Volume 17, Fall 2010

    ERIC Educational Resources Information Center

    McAllister, Deborah A., Ed.; Cutcher, Cortney L., Ed.

    2011-01-01

    As a part of the teacher licensure program at the graduate level at The University of Tennessee at Chattanooga (UTC), the M.Ed. Licensure candidate is required to complete an action research project during a 3-semester-hour course that coincides with the 9-semester-hour student teaching experience. This course, Education 5900 Culminating…

  1. Culminating Experience Action Research Projects, Volume 10, Spring 2007

    ERIC Educational Resources Information Center

    McAllister, Deborah A., Ed.; Deaver, Sharon R., Ed.

    2008-01-01

    As a part of the teacher licensure program at the graduate level at The University of Tennessee at Chattanooga (UTC), the M.Ed. Licensure candidate is required to complete an action research project during a 3-semester-hour course that coincides with the 9-semester-hour student teaching experience. This course, Education 590 Culminating…

  2. Culminating Experience Action Research Projects, Volume 5, Spring 2004

    ERIC Educational Resources Information Center

    McAllister, Deborah A., Ed.; Bothman, Susan M., Ed

    2005-01-01

    As a part of the teacher licensure program at the graduate level at The University of Tennessee at Chattanooga (UTC), the M.Ed. Licensure candidate is required to complete an action research project during a 3-semester-hour course that coincides with the 9-semester-hour student teaching experience. This course, Education 590 Culminating…

  3. Culminating Experience Action Research Projects, Volume 7, Fall 2005

    ERIC Educational Resources Information Center

    McAllister, Deborah A., Ed.; Fritch, Sarah C., Ed.

    2007-01-01

    As a part of the teacher licensure program at the graduate level at The University of Tennessee at Chattanooga (UTC), the M.Ed. Licensure candidate is required to complete an action research project during a 3-semester-hour course that coincides with the 9-semester-hour student teaching experience. This course, Education 590 Culminating…

  4. Research Training in Medical Informatics: The Stanford Experience.

    ERIC Educational Resources Information Center

    Shortliffe, Edward H.; Fagan, Lawrence M.

    1989-01-01

    Stanford University created an interdisciplinary program to train researchers and academic leaders in the field of medical information sciences. The program is described, identifying experiences of interest to people developing such a program. The program's background and history, students, curriculum and philosophy, and lessons learned are…

  5. Benefits of Supervised Agricultural Experience Programs: A Synthesis of Research.

    ERIC Educational Resources Information Center

    Williams, David L.; Dyer, James E.

    1997-01-01

    A review of literature from 1964 to 1993 identified the benefits of supervised agricultural experience (SAE) programs, including agriculture knowledge and positive work attitudes. Classroom, SAE, and Future Farmers of America complemented each other. The research base is state specific and fragmented and lacks cohesiveness. (SK)

  6. Student and Faculty Perceptions of Undergraduate Research Experiences in Computing

    ERIC Educational Resources Information Center

    Barker, L.

    2009-01-01

    Undergraduate research experiences are promoted and funded for their potential in increasing students' likelihood of pursuing graduate degrees, increasing their confidence, and expanding their awareness of their discipline and career opportunities. These outcomes, however, depend on the social, organizational, and intellectual conditions under…

  7. Culminating Experience Action Research Projects, Volume 9, Fall 2006

    ERIC Educational Resources Information Center

    McAllister, Deborah A., Ed.; Ezell, Benjamin T., Ed.

    2010-01-01

    As a part of the teacher licensure program at the graduate level at The University of Tennessee at Chattanooga (UTC), the M.Ed. Licensure candidate is required to complete an action research project during a 3-semester-hour course that coincides with the 9-semester-hour student teaching experience. This course, Education 590 Culminating…

  8. Culminating Experience Action Research Projects, Volume 14, Spring 2009

    ERIC Educational Resources Information Center

    McAllister, Deborah A., Ed.; Cutcher, Cortney L., Ed.

    2010-01-01

    As a part of the teacher licensure program at the graduate level at The University of Tennessee at Chattanooga (UTC), the M.Ed. Licensure candidate is required to complete an action research project during a 3-semester-hour course that coincides with the 9-semester-hour student teaching experience. This course, Education 590 Culminating…

  9. Teacher Research Experience Programs = Increase in Student Achievement

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2010-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.

  10. The Microgravity Research Experiments (MICREX) Data Base. Volume 1

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J.C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  11. The Microgravity Research Experiments (MICREX) Data Base, Volume 4

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical Memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  12. Lived Observations: Linking the Researcher's Personal Experiences to Knowledge Development.

    PubMed

    Thoresen, Lisbeth; Öhlén, Joakim

    2015-11-01

    As researchers in palliative care, we recognize how involvement with seriously ill and dying persons has an impact on us. Using one's own senses, emotional and bodily responses in observations might open intersubjective dimensions of the research topic. The aim of the article is to highlight how phenomenological theories on intersubjectivity can be useful to develop rich and transparent data generation and analysis. We present three field note examples from observation in a hospice ward, which illuminate how researcher awareness of aspects of intersubjectivity can add valuable insights to data and analysis. Out of the examples, we elaborate on three arguments: (a) how the researcher's lived experience of time and space during fieldwork triggers new research questions, (b) how observations as an embodied activity can bring new insights and open new layers of meaning, and (c) the value of observations in gaining insight into relational aspects in a hospice.

  13. Mentoring health researchers globally: Diverse experiences, programmes, challenges and responses.

    PubMed

    Cole, Donald C; Johnson, Nancy; Mejia, Raul; McCullough, Hazel; Turcotte-Tremblay, Anne-Marie; Barnoya, Joaquin; Falabella Luco, María Soledad

    2016-10-01

    Mentoring experiences and programmes are becoming increasingly recognised as important by those engaged in capacity strengthening in global health research. Using a primarily qualitative study design, we studied three experiences of mentorship and eight mentorship programmes for early career global health researchers based in high-income and low- and middle-income countries. For the latter, we drew upon programme materials, existing unpublished data and more formal mixed-method evaluations, supplemented by individual email questionnaire responses. Research team members wrote stories, and the team assembled and analysed them for key themes. Across the diverse experiences and programmes, key emergent themes included: great mentors inspire others in an inter-generational cascade, mentorship is transformative in personal and professional development and involves reciprocity, and finding the right balance in mentoring relationships and programmes includes responding creatively to failure. Among the challenges encountered were: struggling for more level playing fields for new health researchers globally, changing mindsets in institutions that do not have a culture of mentorship and building collaboration not competition. Mentoring networks spanning institutions and countries using multiple virtual and face-to-face methods are a potential avenue for fostering organisational cultures supporting quality mentorship in global health research. PMID:26234691

  14. Mentoring health researchers globally: Diverse experiences, programmes, challenges and responses

    PubMed Central

    Cole, Donald C.; Johnson, Nancy; Mejia, Raul; McCullough, Hazel; Turcotte-Tremblay, Anne-Marie; Barnoya, Joaquin; Falabella Luco, (María) Soledad

    2016-01-01

    ABSTRACT Mentoring experiences and programmes are becoming increasingly recognised as important by those engaged in capacity strengthening in global health research. Using a primarily qualitative study design, we studied three experiences of mentorship and eight mentorship programmes for early career global health researchers based in high-income and low- and middle-income countries. For the latter, we drew upon programme materials, existing unpublished data and more formal mixed-method evaluations, supplemented by individual email questionnaire responses. Research team members wrote stories, and the team assembled and analysed them for key themes. Across the diverse experiences and programmes, key emergent themes included: great mentors inspire others in an inter-generational cascade, mentorship is transformative in personal and professional development and involves reciprocity, and finding the right balance in mentoring relationships and programmes includes responding creatively to failure. Among the challenges encountered were: struggling for more level playing fields for new health researchers globally, changing mindsets in institutions that do not have a culture of mentorship and building collaboration not competition. Mentoring networks spanning institutions and countries using multiple virtual and face-to-face methods are a potential avenue for fostering organisational cultures supporting quality mentorship in global health research. PMID:26234691

  15. Developing risk models of Cryptosporidium transport in soils from vegetated, tilted soilbox experiments.

    PubMed

    Harter, Thomas; Atwill, Edward R; Hou, Lingling; Karle, Betsy M; Tate, Kenneth W

    2008-01-01

    Transport of Cryptosporidium parvum through macroporous soils is poorly understood yet critical for assessing the risk of groundwater contamination. We developed a conceptual model of the physics of flow and transport in packed, tilted, and vegetated soilboxes during and immediately after a simulated rainfall event and applied it to 54 experiments implemented with different soils, slopes, and rainfall rates. Using a parsimonious inverse modeling procedure, we show that a significant amount of subsurface outflow from the soilboxes is due to macropore flow. The effective hydraulic properties of the macropore space were obtained by calibration of a simple two-domain flow and transport model that accounts for coupled flow in the matrix and in the macropores of the soils. Using linear mixed-effects analysis, macropore hydraulic properties and oocyst attenuation were shown to be associated with soil bulk density and rainfall rate. Macropore flow was shown to be responsible for bromide and C. parvum transport through the soil into the underlying pore space observed during the 4-h experiments. We confirmed this finding by conducting a pair of saturated soil column studies under homogeneously repacked conditions with no macropores in which no C. parvum transport was observed in the effluent. The linear mixed-effects and logistic regression models developed from the soilbox experiments provide a basis for estimating macropore hydraulic properties and the risk of C. parvum transport through shallow soils from bulk density, precipitation, and total shallow subsurface flow rate. The risk assessment is consistent with the reported occurrence of oocysts in springs or groundwater from fractured or karstic rocks protected only by shallow overlying soils.

  16. Transport calculations and accelerator experiments needed for radiation risk assessment in space.

    PubMed

    Sihver, Lembit

    2008-01-01

    The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials. PMID:19205295

  17. Infiltration and Transport of Bromide and Cryptosporidium parvum in Vegetated, Tilted Soil Box Experiments

    NASA Astrophysics Data System (ADS)

    Harter, T.; Atwill, E. R.; Hou, L.; Carle, B. M.

    2005-12-01

    In this paper we develop a conceptual model of the physics of flow and transport in packed, tilted, and vegetated soil boxes during and immediately after simulated rainfall events and apply it to 54 experiments implemented for three different soils at three different slopes and two different rainfall rates. Using an inverse modeling procedure, we show that a significant amount of the subsurface outflow from the soil boxes is due to macropore flow. The effective hydraulic properties of the macropore space were obtained by calibration of a simple two-domain flow and transport model that accounts for coupled flow in the matrix and in the macropores of the soils. While the macropore hydraulic properties are highly variable, linear mixed effects ( LME) modeling showed significant association with soil bulk density and with the rainfall rate. Macropore flow is shown to be responsible for both, tracer (bromide) and C. parvum transport through the soil into the underlying pore space observed during the 4 hours experiments. Over a 20 cm thick soil horizon, the soil attenuation rate for C. parvum due to straining in the soil matrix and due to filtration to the macropore surfaces is 0.6 (half an order of magnitude). The LME and logistic regression models developed from the soil box experiments provide a basis for estimating macropore hydraulic properties and the risk of C. parvum transport through shallow soils from bulk density, precipitation, and total subsurface flow rate information.

  18. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

    SciTech Connect

    White, A. E.; Howard, N. T.; Greenwald, M.; Reinke, M. L.; Sung, C.; Baek, S.; Barnes, M.; Dominguez, A.; Ernst, D.; Gao, C.; Hubbard, A. E.; Hughes, J. W.; Lin, Y.; Parra, F.; Porkolab, M.; Rice, J. E.; Walk, J.; Wukitch, S. J.; Team, Alcator C-Mod; Candy, J.; and others

    2013-05-15

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxes from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.

  19. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulationsa)

    NASA Astrophysics Data System (ADS)

    White, A. E.; Howard, N. T.; Greenwald, M.; Reinke, M. L.; Sung, C.; Baek, S.; Barnes, M.; Candy, J.; Dominguez, A.; Ernst, D.; Gao, C.; Hubbard, A. E.; Hughes, J. W.; Lin, Y.; Mikkelsen, D.; Parra, F.; Porkolab, M.; Rice, J. E.; Walk, J.; Wukitch, S. J.; Team, Alcator C-Mod

    2013-05-01

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxes from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T˜e/Te)/(n ˜e/ne), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.

  20. Geographical and temporal distribution of basic research experiments in homeopathy.

    PubMed

    Clausen, Jürgen; van Wijk, Roeland; Albrecht, Henning

    2014-07-01

    The database HomBRex (Homeopathy Basic Research experiments) was established in 2002 to provide an overview of the basic research already done on homeopathy (http://www.carstens-stiftung.de/hombrex). By this means, it facilitates the exploration of the Similia Principle and the working mechanism of homeopathy. Since 2002, the total number of experiments listed has almost doubled. The current review reports the history of basic research in homeopathy as evidenced by publication dates and origin of publications. In July 2013, the database held 1868 entries. Most publications were reported from France (n = 267), followed by Germany (n = 246) and India (n = 237). In the last ten years, the number of publications from Brazil dramatically increased from n = 13 (before 2004) to n = 164 (compared to n = 251 published in France before 2004, and n = 16 between 2004 and 2013). The oldest database entry was from Germany (1832).

  1. Determination of Transport Parameters in Unsaturated Zone by Tracer Experiment in the Porous Aquifer located at Ljubljana, Slovenia

    NASA Astrophysics Data System (ADS)

    Vidmar, S.; Cencur Curk, B.

    2009-04-01

    The gravel sandy aquifer of Ljubljansko polje is the source of drinking water for nearly 300.000 inhabitants of the Ljubljana city and vicinity. There are two main waterworks: Kleče and Hrastje. The plain area of Ljubljansko polje is a tectonic sink and consists of river sediments that can reach in thickness more than 100 m in the deepest part. The bedrock is the impermeable permocarbonic clayey shale, mudstones and sandstones. The hydraulic conductivity of Ljubljansko polje sediments is very good, from 10-2 m/s in the central part to 3.7•10-3 m/s on the borders of the plain. The average groundwater level is 20 m below surface. A numerical groundwater flow model was established for the wider area of the Ljubljansko polje aquifer. The fore mentioned model was not calibrated on solute transport parameters but only on water levels and this lead to unreliability in the transport model and its predictions of pollution scenarios. The transport model needs to calculate reliable scenarios of pollution dispersion, which can only be achieved with the application of real transport parameters. Human activities in the area of the Hrastje waterworks of Ljubljana threaten to degrade groundwater quality. For this reason several tracer experiments were carried out in the past. Despite a great risk, the experiments were performed on the catchment area of the Hrastje waterworks, inside the second water protection zone. During the experiments the water from Hrastje waterworks was still in use for drinking water supply. The tracer experiments were carried out in order to determine the solute transport parameters such as advection, dispersion and sorption. The research proved that the tracers could be used safely on sensitive area and that the researchers are capable and qualified to carry it out with a highest level of security. Since none of the past tracer experiments, carried out in the same area, gave us any detailed information on pollutant spreading in unsaturated zone a new

  2. Research and Research-Type Experiences Throughout an Undergraduate Liberal Arts Curriculum

    NASA Astrophysics Data System (ADS)

    Reinen, L. A.; Grosfils, E. B.

    2003-12-01

    During the past several decades there has been a growing awareness of the educational benefits to students who participate in undergraduate research experiences. These benefits include, among others, increased communication skills, ability to work as part of a research team, and enhanced self-confidence in personal problem-solving skills. Several programs have been developed which provide summer research opportunities for undergraduates; however these programs must limit the number of students participating each year. In order for all of our students to reap the benefits of participating in research experiences, during the past eight years the Pomona College Geology Department has focused on developing a Community of Research for all members of our department which incorporate multiple research experiences into the geology curriculum. Students in geology courses at Pomona College participate in research and research-type experiences - including introductory-level and mid-tier courses through the required senior thesis. A central component of this research curricular "thread" is the mid-tier Research Methods course required of all geology majors. The research experience varies between courses and projects, but all share two elements which we find to be key to a successful experience: (1) The research results are unknown by both the student and the professor prior to the start of the project. The investigative nature of research is highlighted when students and professors are learning new results together. (2) Each student is responsible for deciding some important aspect of the project (e.g., defining the question to be addressed, the methods to be used, the area to be studied). This ownership helps students remain engaged in projects through difficult times and over long durations; the students thus become vested in the project results. In this session, we will present several examples of research projects and research-type experiences. The projects presented

  3. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2015-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  4. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2014-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  5. Cold pulse experiments in plasma with an electron internal transport barrier on LHD

    NASA Astrophysics Data System (ADS)

    Inagaki, S.; Ida, K.; Tamura, N.; Shimozuma, T.; Kubo, S.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; LHD Experimental Group

    2004-05-01

    Transient transport experiments are performed in LHD plasma with electron internal transport barrier (e-ITB). Evidence for a reduction of electron heat diffusivity inside the ITB is observed from cold and heat pulse propagations. The observed enhancement of the cold pulse peak is explained by the temperature dependent electron heat diffusivity. The heat diffusivity inside the ITB decreases with an increase in the electron temperature in LHD. A preliminary version of this study was presented in the 29th EPS Conf. on Plasma Phys. and Control. Fusion (Montreux, Switzerland, 17 21 June 2002) [1].

  6. Transportation Requirements for Improved Racial Balance. Research Memorandum No. 6.

    ERIC Educational Resources Information Center

    Ross, Howard R.; Moon, Albert E.

    This memorandum presents the costs of transporting students to achieve racial balance in the San Francisco public schools. The costs of a district owned school bus system are analyzed for a four year implementation period. Costs of different sizes and types of buses and of major operating requirements (including parking, buildings, staff, and…

  7. Improving School Bus Safety. Transportation Research Board Special Report 222.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Transportation Research Board.

    While school buses transport more passengers per trip, the rate of occupant fatalities per mile driven for school buses is one-quarter that for passenger cars. Nevertheless, the public expects school districts and other school bus operators to take all reasonable precautions to protect children as they travel to and from school. Although a variety…

  8. Mechanisms and control of K/sup +/ transport in plants and fungi: Research progress report

    SciTech Connect

    Not Available

    1988-01-01

    This report briefly describes experiments on transport responses to long-and short-term temperature changes in Neurospora, preliminary chracterization of potassium channels in the plasma membrane of Arabidopsis protoplasts, and cloning of the gene for high-affinity K/sup +/ transport in Neurospora.

  9. Identification of transport processes in column experiments using a frequency domain approach

    NASA Astrophysics Data System (ADS)

    Shuai, Xiufu; Yost, Russell S.

    2007-10-01

    When a solute transport process is viewed as a dynamic system with input and output, a system identification technique can be used to study it from input-output data. According to the design of excitation signals in the system identification approach, the commonly used rectangular pulse as input signal for column experiments is not optimum because it does not simultaneously meet the requirements for exciting the studied transport process, i.e., possessing frequency components with high enough amplitude and wide enough passband. In this article, stepped sine signals were proposed to replace the rectangular pulse because their amplitude and passband can be independently chosen. The stepped sine signals of concentration were generated by a High Performance Liquid Chromatography (HPLC) and used as the input for the column experiments to identify parameters of the convection-dispersion equation (CDE) and mobile-immobile model (MIM). In order to test the effect of noise on the identification of transport process, numerical experiments were carried out to identify the CDE under white noise when the input was designed as stepped sine functions and rectangular pulse. The results of the numerical experiments showed that the input signal of a sine function was more robust and accurate in process identification than that of a rectangular pulse.

  10. Perturbative electron heat transport experiments in a quasi-helically symmetric stellarator

    NASA Astrophysics Data System (ADS)

    Weir, G. M.; Likin, K. M.; Faber, B. J.; Talmadge, J. N.; Anderson, F. S. B.; Anderson, D. T.

    2013-10-01

    Results from perturbative heat transport experiments on the Helically Symmetric eXperiment (HSX) will be presented and compared to linear gyrokinetic predictions from the GENE code made in collaboration with the PPPL. A gyrotron capable of modulating 200 kW at frequencies up to 6 kHZ was installed to perform these experiments. The electron temperature response to 6% ECRH modulation is monitored with a 16 channel ECE system. The measured stiffness in the electron heat flux, 1 <=χeHP /χePB <= 4 , is higher than the gyrokinetic prediction for the quasi-helically symmetric configuration of HSX. The measured stiffness decreases and comes into better agreement with gyrokinetic results with increasing ECRH power per particle. This reduction of stiffness is accompanied by decreased broadband density fluctuations measured through reflectometry. These results will be compared to perturbative heat transport experiments in which the quasi-helical symmetry is intentionally degraded to test the effect of neoclassical transport on stiffness in the electron heat flux.

  11. The Arecibo Geoscience Diversity Program: A Research Experience for Hispanics

    NASA Astrophysics Data System (ADS)

    Alonso, J.; Ramos, M.; Gonzalez, S.

    2004-12-01

    In an effort to increase the number of Hispanics that pursue a career in the geosciences, the National Astronomy and Ionosphere Center and the University of Puerto Rico at Arecibo (UPRA), have established a collaboration that provides a research experience to group of high school students, teachers, and undergraduates in the region. The program exploits the natural setting of the Arecibo Observatory and the UPRA campus by providing participants with research opportunities to study the atmosphere, and the Caño Tiburones wetland. The atmospheric research is conducted at the Arecibo Observatory. Here, altitude, density and temperature variations in the ionosphere are monitored using data collected with the 305 m radio telescope. The study of the Caño Tiburones tropical wetland, is conducted at UPRA. Participants are engaged in the design and the execution of an environmental monitoring program that assess the physical and biological profile of the wetland. This three-year effort will provide a hands-on research experience in the geosciences to 60 high school students, 12 teachers, and 24 undergraduate students. The participation of teachers will broaden the impact beyond the group trained, by incorporating the geoscience field experience in their curriculum. All participants undergo pre and post-test summative evaluation, and are surveyed in order to measure the impact of the program in respect of their academic or professional careers.

  12. Transportation Education and Training: Meeting the Needs of the 1980s. Transportation Research Record 793.

    ERIC Educational Resources Information Center

    Kassabian, Naomi, Ed.

    This volume consists of nine papers dealing with transportation education and training in the 1980's. Contents of the volume are the following articles: "Development of a Unique Highway Safety Curriculum," by Larry E. Jones; "Railroad Engineering Education at the Undergraduate Level," by Richard G. McGinnis; "Cooperative Training Programs for…

  13. Experiment 2: Vapor Transport Crystal Growth of Mercury Cadmium Telluride in Microgravity- USML-2

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.; Ge, Y. R.; Hutchins, M. A.

    1998-01-01

    The new epitaxial growth experiments of Hg(l-x)Cd(x)Te on (100) CdTe substrates by chemical vapor transport (CVT), using HgI2 as a transport agent, were performed in the transient growth regime of this ternary, heteroepitaxial system at normal and reduced gravity during the USML-2 flight. The surface and interface morphology, the compositional and structural uniformity, and carrier mobility of the epitaxial layer and islands grown in microgravity are measurably improved relative to ground specimens. These observations demonstrate the effects of convective flow on the transport, deposition, and growth processes of this solid-vapor system even in the transient growth regime. The properties of the Hg(l-x)Cd(x)Te layer grown in a microgravity environment compare quite favorably to those of layers obtained by other techniques.

  14. Preliminary characterization of materials for a reactive transport model validation experiment

    SciTech Connect

    Siegel, M.D.; Ward, D.B.; Cheng, W.C.; Bryant, C.; Chocas, C.S.; Reynolds, C.G.

    1993-03-01

    The geochemical properties of a porous sand and several tracers (Ni, Br, and Li) have been characterized for use in a caisson experiment designed to validate sorption models used in models of inactive transport. The surfaces of the sand grains have been examined by a combination of techniques including potentiometric titration, acid leaching, optical microscopy, and scanning electron microscopy with energy-dispersive spectroscopy. The surface studies indicate the presence of small amounts of carbonate, kaolinite and iron-oxyhydroxides. Adsorption of nickel, lithium and bromide by the sand was measured using batch techniques. Bromide was not sorbed by the sand. A linear (K{sub d}) or an isotherm sorption model may adequately describe transport of Li; however, a model describing the changes of pH and the concentrations of other solution species as a function of time and position within the caisson and the concomitant effects on Ni sorption may be required for accurate predictions of nickel transport.

  15. Mass transport at infinite regular arrays of microband electrodes submitted to natural convection: theory and experiments.

    PubMed

    Pebay, Cécile; Sella, Catherine; Thouin, Laurent; Amatore, Christian

    2013-12-17

    Mass transport at infinite regular arrays of microband electrodes was investigated theoretically and experimentally in unstirred solutions. Even in the absence of forced hydrodynamics, natural convection limits the convection-free domain up to which diffusion layers may expand. Hence, several regimes of mass transport may take place according to the electrode size, gap between electrodes, time scale of the experiment, and amplitude of natural convection. They were identified through simulation by establishing zone diagrams that allowed all relative contributions to mass transport to be delineated. Dynamic and steady-state regimes were compared to those achieved at single microband electrodes. These results were validated experimentally by monitoring the chronoamperometric responses of arrays with different ratios of electrode width to gap distance and by mapping steady-state concentration profiles above their surface through scanning electrochemical microscopy. PMID:24283775

  16. Model simulation and experiments of flow and mass transport through a nano-material gas filter

    SciTech Connect

    Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir; Eckels, Steve

    2013-11-01

    A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing with experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.

  17. Research Experience for Undergraduates: an International Program Enhancing Interdisciplinary Learning

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.; Davis, K. L.; Phelps, T. J.; Kieft, T. L.; Gihring, T. M.; Onstott, T. C.; Nthangeni, B.; Piater, L.; van Heerden, E.

    2004-12-01

    This NSF-funded research experience for undergraduates (REU) took place in South Africa, where gold mines provided outstanding field sites to investigate biogeochemical processes in deep subsurface environments. Underrepresented minorities were encouraged to participate. Cross-disciplinary training was a major ambition for this REU Site: Biogeochemical Educational Experiences - South Africa. Students were selected from diverse academic disciplines (biology, chemistry, and geology) to participate in this interdisciplinary research program. Research projects included characterizing microbial communities with molecular and biochemical techniques, cultivating microorganisms, utilizing geochemical and isotopic parameters to constrain nutrient cycling in groundwater, investigating extreme enzymes and examining functional genes. During the REU, students collected biofilms and fissure water emanating from gas-rich boreholes in 2-3 km deep mines and performed laboratory research in teams under joint mentorship of U.S. and South African scientists. Research teams consisted of three to five students with at least one student from each country and at least two of the disciplines represented. Team membership reflected students' ranking of their choices among mentor-proposed projects. The REU encouraged students to increase scientific knowledge across disciplines, improve oral and written communication skills, and explore cultural and international challenges for scientific research in the global community. Each research team presented oral progress reports to the other research teams to provide communication skill development and to provide a forum for data exchange and interpretation among the various disciplines. Oral communication training culminated in a public presentation by each team at a university/industry science symposium. Mentors reviewed students' writing skills as they prepared text on experimental design, research findings, data interpretation, and literature

  18. Transportation Secure Data Center: Real-World Data for Value Pricing and Tolling Research (Fact Sheet)

    SciTech Connect

    Not Available

    2013-01-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database provides free-of-charge web-based access to valuable transportation data that can be used for: Location and time-of-day variable tolling research, Mileage-based fee analysis, Travel demand modeling and transit planning, Congestion mitigation research, and Validating transportation data from other sources. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

  19. Atmospheric transport simulations in support of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE)

    NASA Astrophysics Data System (ADS)

    Henderson, J. M.; Eluszkiewicz, J.; Mountain, M. E.; Nehrkorn, T.; Chang, R. Y.-W.; Karion, A.; Miller, J. B.; Sweeney, C.; Steiner, N.; Wofsy, S. C.; Miller, C. E.

    2014-10-01

    This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (Polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May-October 2012 and March-November 2013 - the first two years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s-1 in 2012 and 0.3 m s-1 in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1° grid show increased spatial detail compared with those on the more common 0.5° grid, lending itself better for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that

  20. Experiments to Understand and Control Energetic Particle Transport by Alfvén Eigenmodes

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.; Collins, C.; Pace, D. C.; van Zeeland, M. A.; Holcomb, C. T.

    2014-10-01

    Alfvén eigenmodes (AE) cause appreciable fast-ion transport in both steady-state scenario and in L-mode current ramp plasmas. All fast-ion diagnostics that are sensitive to a populated portion of phase space observe reductions in signal relative to classical predictions in the presence of many, small-amplitude AEs. Theory indicates that the many wave-particle resonances in these plasmas results in stochastic transport and critical gradient behavior. Initial data from a modulation experiment is consistent with the hypothesis that the fast-ion transport becomes ``stiff.'' Another experiment investigates whether AE-induced transport from the core couples with edge losses induced by test-blanket module fields to enhance localized heating. Application of electron cyclotron heating to control the AEs gives mixed results: AEs are sometimes stabilized but the dependence on the fast-ion and q profiles is complex. Work supported by the US Department of Energy under SC-G903402, DE-FC02-04ER54698 and DE-AC52-07NA27344.

  1. Course-Based Undergraduate Research Experiences Can Make Scientific Research More Inclusive

    ERIC Educational Resources Information Center

    Bangera, Gita; Brownell, Sara E.

    2014-01-01

    Current approaches to improving diversity in scientific research focus on graduating more science, technology, engineering, and mathematics (STEM) majors, but graduation with a STEM undergraduate degree alone is not sufficient for entry into graduate school. Undergraduate independent research experiences are becoming more or less a prerequisite…

  2. Fostering Undergraduate Research Experiences in Management Information Systems through the "Research Group" Framework

    ERIC Educational Resources Information Center

    Bartkus, Ken; Mills, Robert; Olsen, David

    2010-01-01

    The purpose of this paper is to propose an innovative approach to engaged learning. Founded on the principles of a scholarly think-tank and administered along the lines of a consulting organization, the proposed "Research Group" framework is designed to facilitate effective and efficient undergraduate research experiences in Management…

  3. "Research Papers Have Always Seemed Very Daunting": Information Literacy Narratives and the Student Research Experience

    ERIC Educational Resources Information Center

    Detmering, Robert; Johnson, Anna Marie

    2012-01-01

    Taking an interdisciplinary approach that draws on narrative theory, composition scholarship, and investigations into the affective dimensions of the research process, this article discusses stories written by college students about their experiences locating, evaluating, and using information in the context of academic research. These narratives…

  4. Exploring the Postgraduate Research Climate and the Postgraduate Research Experience: A Conceptual Model

    ERIC Educational Resources Information Center

    Govender, K. K.

    2011-01-01

    The objective of this article is to develop a conceptual model aimed at improving the postgraduate research students' experience. Since postgraduate students "vote with their feet" an improved understanding of the postgraduate research service encounter may result in improving the quality of the encounter and so increasing throughput and the…

  5. Re-authoring research conversations: beyond epistemological differences and toward transformative experience for researchers and educators

    NASA Astrophysics Data System (ADS)

    Rowe, Shawn M.

    2016-03-01

    Common sense and published literature both assert that education research is often dismissed by practitioners on the grounds that it is irrelevant to their work. Some have argued that this is due primarily to a mismatch of professional epistemologies. While agreeing in principle, this work draws on work in sociology (Erving Goffman) and literary theory (Mikhail Bakhtin) to argue that practitioner mistrust of research may be primarily related to differences in the presentation of self in the teaching (and research) profession and a history of research used as a tool of transgression in the authorship of the practitioner professional self. Goffman's account of frontstage and backstage settings in the everyday presentation of self is combined with Bakhtin's account of the ways research erases the voice of practitioners by reducing their fundamentally dialogic experiences to monologic narratives dominated by the voice of the researcher. As an alternative, I draw on the work of the research psychologist Jerome Bruner and the practicing clinical psychologist Michael White to explore ways in which practitioners might be more meaningfully engaged in the research enterprise through a process of re-narrativizing their own experiences captured as part of research. Narrative techniques that help share responsibility for authoring accounts of practice among researchers and practitioners as research participants are described leading to conclusions about the potential transformative nature of such work for both researchers and practitioners.

  6. Unassisted transport of N-acetyl-L-tryptophanamide through membrane: experiment and simulation of kinetics.

    PubMed

    Cardenas, Alfredo E; Jas, Gouri S; DeLeon, Kristine Y; Hegefeld, Wendy A; Kuczera, Krzysztof; Elber, Ron

    2012-03-01

    Cellular transport machinery, such as channels and pumps, is working against the background of unassisted material transport through membranes. The permeation of a blocked tryptophan through a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane is investigated to probe unassisted or physical transport. The transport rate is measured experimentally and modeled computationally. The time scale measured by parallel artificial membrane permeation assay (PAMPA) experiments is ~8 h. Simulations with the milestoning algorithm suggest mean first passage time (MFPT) of ~4 h and the presence of a large barrier at the center of the bilayer. A similar calculation with the solubility-diffusion model yields a MFPT of ~15 min. This permeation rate is 9 orders of magnitude slower than the permeation rate of only a tryptophan side chain (computed by us and others). This difference suggests critical dependence of transport time on permeant size and hydrophilicity. Analysis of the simulation results suggests that the permeant partially preserves hydrogen bonding of the peptide backbone to water and lipid molecules even when it is moving closer to the bilayer center. As a consequence, defects of the membrane structure are developed to assist permeation.

  7. University of Tennessee Center for Space Transportation and Applied Research (CSTAR)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.

  8. Experiments on Turbulence and Transport in the Edge Plasma of the Text Tokamak

    NASA Astrophysics Data System (ADS)

    Rhodes, Terry Lee

    We studied the turbulence and fluctuation driven transport in the edge plasma of the TEXT tokamak using a Langmuir probe array. In this dissertation we present three separate experiments, each of which examines a particular aspect of the edge turbulence and transport. In the first experiment we compare the observed fluctuation levels to the scaling predictions of several turbulence theories. We found that the fluctuations and transport were not proportional to the density and temperature gradients. Thus, drift wave turbulence theories, which predict strong scalings with density gradients, do not describe the edge plasma turbulence. In the second experiment we identify low frequency modulations (<=q1KHz) in the edge density, potential and temperature to be associated with heat and density pulses (sawtooth oscillations) which originate from the central region of the tokamak. Concurrent with the edge sawtooth oscillations are significant increases in the density and potential fluctuation levels. As a result of these increases, the fluctuation driven particle flux and associated heat flux are increased as much as 60 and 100% respectively during the sawtooth. This result has direct implications on the current methods of determining the electron thermal diffusivity chi_ {e}. The effect of electron cyclotron heating (ECH) on the edge plasma was investigated in the third experiment. Increases in edge temperature, density and potential with simultaneous increases in the density and potential fluctuations were observed during ECH. These increased fluctuation levels resulted in a significant increase (20-50%) in the fluctuation driven particle flux. Comparison of these results to an equal input power, ohmic only discharge showed similar increases in the average density, temperature and potential. However, the density fluctuations did not increase as much with the additional ohmic heating (compared to ECH) resulting in a generally smaller comparative level of fluctuation

  9. Snow, Ice, & Satellites: An Early Career Researcher's Experience with Twitter

    NASA Astrophysics Data System (ADS)

    Pope, A.; Scambos, T. A.

    2014-12-01

    As a doctoral student, I was lucky enough to be able to experiment with a variety of communication and outreach activities (classroom visits, museum events, science festivals, blogging, social media, etc.) to build communication skills and learn how to talk about my science without writing a journal article. More importantly, the wide range of experience helped me identify what worked for me. My favorite way to share my science now? Twitter. To many, Twitter is a frivolous platform for sharing snippets 140 characters or less. To me, however, it is how I can connect directly with the elusive "wider public" and share my science. Specifically, I use satellite imagery (mostly Landsat 8) to study glaciers around the world. I look at long-term change related to climate, and I also investigate new, innovative ways to use satellite imagery to better understand glaciers and ice sheets. Luckily for me, my research is very visual. Whether fieldwork snapshots or satellite data, images make for great, shareable, accessible tweets. In this presentation, I propose to share my experience of tweeting as an early career researcher. I will include successful strategies (e.g. particular #hashtags, creating new content, using story-telling, timely tweets), as well as some not-so-successful attempts. I will also talk about how I built my Twitter network. In addition to anecdotes, I will include evaluation of my Twitter activity using available metrics and analytics (e.g. followers, favorites, re-tweets, Klout score, etc.). While misunderstood by many in the scientific community, Twitter is a platform increasingly being adopted by researchers. Used correctly, it can be a great tool for connecting directly with an interested, non-technical audience eager to learn about your research. With my experiences and evaluation, I will show how both scientists and the networks that they join and create can benefit by using Twitter as a platform for science communication.

  10. Reaction Rate Measurements at the National Criticality Experiments Research Center

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Bounds, J. A.; Brooks, G. H., Jr.; Favorite, J. A.; Goda, J. M.; Hayes, D. K.; Jackman, K. R.; Little, R. C.; Macinnes, M. R.; Myers, W. L.; Oldham, W. J.; Rundberg, R. S.; Sanchez, R. G.; Schake, A. R.; White, M. C.; Wilkerson, C. W., Jr.

    2014-09-01

    With the resumption of regular operations of the Los Alamos Critical Assemblies at the National Criticality Experiments Research Center (NCERC), located at the Nevada National Security Site, we have embarked upon a series of campaigns to restore the capability to perform integral reaction rate and fission product yield measurements using historical radiochemical methods. This talk will present an overview of the current and future experimental plans, including results from our experimental campaigns on the Comet/Zeus and Flattop assemblies.

  11. Making Tracks 1.0: Action Researching an Active Transportation Education Program

    ERIC Educational Resources Information Center

    Robinson, Daniel; Foran, Andrew; Robinson, Ingrid

    2014-01-01

    This paper reports on the results of the first cycle of an action research project. The objective of this action research was to examine the implementation of a school-based active transportation education program (Making Tracks). A two-cycle action research design was employed in which elementary school students' (ages 7-9), middle school…

  12. Using my ARMADA Research Experience to Enhance Teaching

    NASA Astrophysics Data System (ADS)

    Harris, M.

    2006-12-01

    I am a high school Biology teacher living in Layton, Utah. I was chosen to participate in the 2006 ARMADA Project. This project is funded by the National Science Foundation and administered by the University of Rhode Island Graduate School of Oceanography. The project focuses on a mentoring experience coupled with a summer scientific research for teachers. I wish to present how I am incorporating the University of Rhode Island training experience and my scientific research field experience into my classroom teaching. My research experience was in the Eastern Tropical Pacific estimating current dolphin populations. Other projects I worked on were sea turtle tagging, squid sampling, fish sampling, whale biopsy, and CTD deployment. The knowledge I gleaned from the University of Rhode Island to incorporate into my classroom came from Roger Williams University aquaculture program. I am presently doing two ongoing projects with my students. We are aquaculturing zebra fish, by using this tool I am able to teach each state directed objective with the hands on experience of raising zebra fish. The second project I am involved with is the Great Salt Lake project. The high school environmental club owns a 26 foot sailboat on the Great Salt Lake. Every Saturday we take 6 students out on the lake and record position, visibility, water temperature, and salinity. We are also sampling brine shrimp and bottom bacteria for wet lab work. This is a new and innovative approach for me to teach Biology. The information and experience I was able to receive over the summer of 2006 has greatly enhanced the way I teach. I would like the opportunity to share my experiences and how I have incorporated them into my classroom. I will use power point to share my strategies and will answer questions on the practical application of these projects in the classroom. My students have grasped these 2 projects and inquiry questions have risen. Global warming and lake temperature are now being paralleled

  13. U.S. dental students' attitudes toward research and science: impact of research experience.

    PubMed

    Holman, Shaina Devi; Wietecha, Mateusz S; Gullard, Angela; Peterson, Jon M B

    2014-03-01

    This study aimed to provide a first nationwide assessment of dental students' attitudes toward the importance of research and its integration into the dental curriculum. For this purpose, the American Association for Dental Research National Student Research Group developed an online survey that was distributed to 89 percent of U.S. dental students in May 2012. The survey consisted of twenty-one Likert-type items divided into three groups: importance of research in dentistry, barriers to research involvement, and exposure to research in the dental curriculum. There were 733 responses (3.9 percent response rate), including students in all stages of education representing fifty-eight out of sixty-one dental schools. Age and race/ethnic distributions corresponded with U.S. dental school enrollees. Results showed that 63 percent of respondents had conducted research before matriculation, and of the 34 percent that participated in research during dental school, only 27 percent were newcomers. Respondents strongly agreed that scientific research enabled their progress in dentistry. Inadequate time in the curriculum was an obstacle they perceived to research involvement during dental school. Respondents agreed that dental curricula emphasize evidence-based practices but may be inadequately teaching biostatistics and research methodologies. Students with research experience tended to have stronger positive opinions about the importance of research in dental education. Efforts to foster research in schools have been well received by students, but several issues remain for enriching dental education through greater involvement of students in research. PMID:24609336

  14. U.S. dental students' attitudes toward research and science: impact of research experience.

    PubMed

    Holman, Shaina Devi; Wietecha, Mateusz S; Gullard, Angela; Peterson, Jon M B

    2014-03-01

    This study aimed to provide a first nationwide assessment of dental students' attitudes toward the importance of research and its integration into the dental curriculum. For this purpose, the American Association for Dental Research National Student Research Group developed an online survey that was distributed to 89 percent of U.S. dental students in May 2012. The survey consisted of twenty-one Likert-type items divided into three groups: importance of research in dentistry, barriers to research involvement, and exposure to research in the dental curriculum. There were 733 responses (3.9 percent response rate), including students in all stages of education representing fifty-eight out of sixty-one dental schools. Age and race/ethnic distributions corresponded with U.S. dental school enrollees. Results showed that 63 percent of respondents had conducted research before matriculation, and of the 34 percent that participated in research during dental school, only 27 percent were newcomers. Respondents strongly agreed that scientific research enabled their progress in dentistry. Inadequate time in the curriculum was an obstacle they perceived to research involvement during dental school. Respondents agreed that dental curricula emphasize evidence-based practices but may be inadequately teaching biostatistics and research methodologies. Students with research experience tended to have stronger positive opinions about the importance of research in dental education. Efforts to foster research in schools have been well received by students, but several issues remain for enriching dental education through greater involvement of students in research.

  15. Public transit 1993: Bus, paratransit, and ridesharing. Transportation research record

    SciTech Connect

    Kassabian, N.C.; Tobias, A.G.; Crayton, L.; Solomon, N.; Brown, S.E.G.

    1993-01-01

    Contents: evaluation of the operating cost consequences of signal preemption as an IVHS strategy; efficient transit priority at intersections; welfare comparison of fixed- and flexible-route bus systems; bus stop accessibility: a guide for virginia transit systems and public entities for complying with the americans with disabilities act of 1990; implications of technological developments for demand responsive transit; impact of nonresponse bias on forecasts of average passenger occupancy; what has happened to carpooling: trends in North Carolina, 1980 to 1990; ridesharing and the consumer: a tale of two marketing strategies; transportation demand management at small employer sites; and state of the commute in Southern California, 1992.

  16. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    SciTech Connect

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  17. The Continuing Umbrella of Research Experiences (CURE): a model for training underserved scientists in cancer research.

    PubMed

    Franco, Idalid; Bailey, LeeAnn O; Bakos, Alexis D; Springfield, Sanya A

    2011-03-01

    Mentoring is a critical aspect of research and training; and the adoption of a successful mentoring model for guiding researchers through the educational pipeline is lacking. The Continuing Umbrella of Research Experiences (CURE) program was established in the Comprehensive Minority Biomedical Branch; which is part of the National Cancer Institute. This program offers unique training and career development opportunities to enhance diversity in cancer research. The CURE initiative focuses on broadening the cadre of underserved investigators engaging in cancer research. CURE begins with high school students and fosters scientific, academic and research excellence throughout the trainee's educational progression. The program supports students throughout the entirety of their training career. During this period, the trainee matures into a competitive early stage investigator; capable of securing advanced research project funding in academic and industry workforces. Thus, the CURE program provides a comprehensive vehicle for training and reinforces the critical mass of underserved investigators conducting cancer research.

  18. Preferential Flow and Transport of Cryptosporidium Parvum Oocysts Through Vadose Zone: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Darnault, C. J.; Darnault, C. J.; Garnier, P.; Kim, Y.; Oveson, K.; Jenkins, M.; Ghiorse, W.; Baveye, P.; Parlange, J.; Steenhuis, T.

    2001-12-01

    Oocysts of the protozoan Cryptosporidium parvum, when they contaminate drinking water supplies, can cause outbreaks of Cryptosporidiosis, a common waterborne disease. Of the different pathways by which oocysts can wind up in drinking water, one has received very little attention to date; because soils are often considered to be perfect filters, the transport of oocysts through the subsoil to groundwater by preferential flow is generally ignored. To evaluate its significance, three set of laboratory experiments investigated transport of oocysts through vadose zone. Experiment set I was carried out in a vertical 50 cm-long column filled with silica sand, under conditions known to foster fingered flow. Experiment set II investigates the effect of gas-water interfaces by modifying the hydrodynamical conditions in the sand columns with water-repellent sand barriers. Experiment III involved undisturbed soil columns subjected to macropores flow. The sand and soil columns were subjected to artificial rainfall and were allowed to reach steady-state. At that point, feces of contaminated calves were applied at the surface, along with a known amount of KCl to serve as tracer, and rainfall was continued at the same rate. The breakthrough of oocysts and Cl-, monitored in the effluent, demonstrate the importance of preferential flow - fingered flow and macropore flow - on the transport of oocysts through vadose zone. Peak oocyst concentrations were not appreciably delayed, compared to Cl-, and in some cases, occurred even before the Cl- peak. However, the numbers of oocysts present in the effluents were still orders of magnitude higher than the 5 to 10 oocysts per liter that are considerable sufficient to cause cryptosporidiosis in healthy adults. The transport of oocysts was simulated based on a partitioning the soil profile in both a distribution zone and a preferential zone, In particular, the model simulates accurately the markedly asymmetric breakthrough patterns, and the

  19. High school student physics research experience yields positive results

    NASA Astrophysics Data System (ADS)

    Podolak, K. R.; Walters, M. J.

    2016-03-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.

  20. Center for Space Transportation and Applied Research Fifth Annual Technical Symposium Proceedings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Fifth Annual Technical Symposium, sponsored by the UT-Calspan Center for Space Transportation and Applied Research (CSTAR), is organized to provide an overview of the technical accomplishments of the Center's five Research and Technology focus areas during the past year. These areas include chemical propulsion, electric propulsion, commerical space transportation, computational methods, and laser materials processing. Papers in the area of artificial intelligence/expert systems are also presented.

  1. Addressing transportation energy and environmental impacts: technical and policy research directions

    SciTech Connect

    Weissenberger, S.; Pasternak, A.; Smith, J.R.; Wallman, H.

    1995-08-01

    The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental issues in transportation. This workshop took place in Livermore on August 10 and brought together researchers from throughout the UC systems in order to establish a joint LLNL-UC research program in transportation, with a focus on energy and environmental impacts.

  2. Responsibilities and obligations of using human research specimens transported across national boundaries

    PubMed Central

    Muula, A S; Mfutso‐Bengo, J M

    2007-01-01

    Research collaboration beyond national jurisdiction is one aspect of the globalisation of health research. It has potential to complement researchers in terms of research skills, equipment and lack of adequate numbers of potential research subjects. Collaboration at an equal level of partnership though desirable, may not be practicable. Sometimes, human research specimens must be transported from one country to other. Where this occurs, there should be clear understanding between the collaborating research institutions regarding issues of access and control of the specimens as well as the duration of storage of specimens. The researchers have the duty to inform the research participants about specimen storage and transport across national boundaries. While obtaining informed consent from study subjects if specimens are to be stored beyond the life of the present study could be the ideal, there still remains significant challenges in a multi‐cultural world. PMID:17209108

  3. Responsibilities and obligations of using human research specimens transported across national boundaries.

    PubMed

    Muula, A S; Mfutso-Bengo, J M

    2007-01-01

    Research collaboration beyond national jurisdiction is one aspect of the globalisation of health research. It has potential to complement researchers in terms of research skills, equipment and lack of adequate numbers of potential research subjects. Collaboration at an equal level of partnership though desirable, may not be practicable. Sometimes, human research specimens must be transported from one country to other. Where this occurs, there should be clear understanding between the collaborating research institutions regarding issues of access and control of the specimens as well as the duration of storage of specimens. The researchers have the duty to inform the research participants about specimen storage and transport across national boundaries. While obtaining informed consent from study subjects if specimens are to be stored beyond the life of the present study could be the ideal, there still remains significant challenges in a multi-cultural world.

  4. Responsibilities and obligations of using human research specimens transported across national boundaries.

    PubMed

    Muula, A S; Mfutso-Bengo, J M

    2007-01-01

    Research collaboration beyond national jurisdiction is one aspect of the globalisation of health research. It has potential to complement researchers in terms of research skills, equipment and lack of adequate numbers of potential research subjects. Collaboration at an equal level of partnership though desirable, may not be practicable. Sometimes, human research specimens must be transported from one country to other. Where this occurs, there should be clear understanding between the collaborating research institutions regarding issues of access and control of the specimens as well as the duration of storage of specimens. The researchers have the duty to inform the research participants about specimen storage and transport across national boundaries. While obtaining informed consent from study subjects if specimens are to be stored beyond the life of the present study could be the ideal, there still remains significant challenges in a multi-cultural world. PMID:17209108

  5. SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research

    NASA Astrophysics Data System (ADS)

    Bassler, N.; Hansen, D. C.; Lühr, A.; Thomsen, B.; Petersen, J. B.; Sobolevsky, N.

    2014-03-01

    Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The "-A" fork of SHIELD-HIT also aims to attach SHIELD-HIT to a heavy ion dose optimization algorithm to provide MC-optimized treatment plans that include radiobiology. Methods: SHIELD-HIT12A is written in FORTRAN and carefully retains platform independence. A powerful scoring engine is implemented scoring relevant quantities such as dose and track-average LET. It supports native formats compatible with the heavy ion treatment planning system TRiP. Stopping power files follow ICRU standard and are generated using the libdEdx library, which allows the user to choose from a multitude of stopping power tables. Results: SHIELD-HIT12A runs on Linux and Windows platforms. We experienced that new users quickly learn to use SHIELD-HIT12A and setup new geometries. Contrary to previous versions of SHIELD-HIT, the 12A distribution comes along with easy-to-use example files and an English manual. A new implementation of Vavilov straggling resulted in a massive reduction of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More information about SHIELD-HIT12A and a demo version can be found on http://www.shieldhit.org.

  6. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  7. Experiences using SciPy for computer vision research

    SciTech Connect

    Eads, Damian R; Rosten, Edward J

    2008-01-01

    SciPy is an effective tool suite for prototyping new algorithms. We share some of our experiences using it for the first time to support our research in object detection. SciPy makes it easy to integrate C code, which is essential when algorithms operating on large data sets cannot be vectorized. The universality of Python, the language in which SciPy was written, gives the researcher access to a broader set of non-numerical libraries to support GUI development, interface with databases, manipulate graph structures. render 3D graphics, unpack binary files, etc. Python's extensive support for operator overloading makes SciPy's syntax as succinct as its competitors, MATLAB, Octave, and R. More profoundly, we found it easy to rework research code written with SciPy into a production application, deployable on numerous platforms.

  8. Strengthening research governance for sustainable research: experiences from three Zimbabwean universities.

    PubMed

    Mashaah, Thokozile; Hakim, James; Chidzonga, Midion; Kangwende, Rugare A; Naik, Yogeshkumar; Federspiel, Nancy; Fiorillo, Suzanne; Scott, Jim; Gomo, Exnevia

    2014-08-01

    A robust research system requires a robust governance framework. As part of the Medical Education Partnership Initiative, three Zimbabwean universities partnered with two U.S. universities in a project to strengthen research governance in the Zimbabwean universities. The project aimed at (1) developing research policies, (2) strengthening central research management offices, (3) developing a research administration curriculum, and (4) enhancing awareness about the role and relevance of research administration in other universities and research institutions in Zimbabwe. Through the efforts of the partners, a generic research policy was developed and successfully adapted by the institutions. A curriculum was drafted, and module development experts are helping to finalize the curriculum to meet university requirements for accreditation of training research administrators. The Association of Research Managers of Zimbabwe was established to promote information sharing and professionalize research administration. The consortium approach enabled rapid and smooth development and adoption of research policies in the institutions. It also helped researchers and managers accept research administration as an essential structure and function. The experiences and lessons learned are reported here to benefit other institutions and consortia.

  9. Strengthening Research Governance for Sustainable Research: Experiences from Three Zimbabwean Universities

    PubMed Central

    Mashaah, Thokozile; Hakim, James; Chidzonga, Midion; Kangwende, Rugare A.; Naik, Yogeshkumar; Federspiel, Nancy; Fiorillo, Suzanne; Scott, Jim; Gomo, Exnevia

    2014-01-01

    A robust research system requires a robust governance framework. As part of the Medical Education Partnership Initiative, three Zimbabwean universities partnered with two US universities in a project to strengthen research governance in the Zimbabwean universities. The project aimed at (1) developing research policies; (2) strengthening central research management offices; (3) developing a research administration curriculum; and (4) enhancing awareness about the role and relevance of research administration in other universities and research institutions in Zimbabwe. Through the efforts of the partners, a generic research policy was developed and successfully adapted by the institutions. A curriculum was drafted, and module development experts are helping to finalize the curriculum to meet university requirements for accreditation of training research administrators. The Association of Research Managers of Zimbabwe was established to promote information sharing and professionalize research administration. The consortium approach enabled rapid and smooth development and adoption of research policies in the institutions. It also helped researchers and managers accept research administration as an essential structure and function. The experiences and lessons learned are reported here to benefit other institutions and consortia. PMID:25072583

  10. Biofuels for transportation: The road from research to the marketplace

    SciTech Connect

    Not Available

    1993-03-01

    This brief document describes research sponsored by the National Renewable Energy Laboratory (NREL) in support of producing and processing biomass for automotive fuel production. An overview of feedstocks, pretreatment, bioconversion, product recovery, and ethanol and co-products is given.

  11. Seal coats and asphalt recycling. Transportation research record

    SciTech Connect

    1995-12-31

    The papers in this volume deal with various facets of seal coats and asphalt recycling; they should be of interest to state and local construction, design, materials, maintenance, and research engineers as well as contractors and material producers. Authors describe their work related to the design, construction, and performance of seal coats. The relationship between asphalt mixture characteristics and design and the frictional resistance of bituminous wearing course mixtures is reported, and research efforts related to asphalt recycling are explained.

  12. Space radiation research in Europe: flight experiments and ground-based studies.

    PubMed

    Durante, M; Reitz, G; Angerer, O

    2010-08-01

    Exposure to space radiation has long been acknowledged as a potential showstopper for long-duration manned interplanetary missions. In an effort to gain more information on space radiation risk and to develop countermeasures, NASA initiated several years ago a Space Radiation Health Program, which is currently supporting biological experiments performed at the Brookhaven National Laboratory. Accelerator-based radiobiology research in the field of space radiation research is also under way in Russia and Japan. The European Space Agency (ESA) supports research in the field in three main directions: spaceflight experiments on the International Space Station; modeling and simulations of the space radiation environment and transport; and, recently, ground-based radiobiology experiments exploiting the high-energy SIS18 synchrotron at GSI in Germany (IBER program). Several experiments are currently under way within IBER, and so far, beams of C and Fe-ions at energies between 11 and 1,000 MeV/n have been used in cell and tissue targets. PMID:20532544

  13. Role of Soil-derived Dissolved Substances in Arsenic Transport and Transformation in Laboratory Experiments

    PubMed Central

    Chen, Zhangrong; Cai, Yong; Liu, Guangliang; Solo-Gabriele, Helena; Snyder, George H.; Cisar, John L.

    2011-01-01

    Dissolved substances derived from soil may interact with both soil surfaces and with arsenic and subsequently influence arsenic mobility and species transformation. The purpose of this study was to investigate arsenic transport and transformation in porous media with a specific focus on the impact of soil-derived dissolved substances, mainly consisting of inorganic colloids and dissolved organic matter (DOM), on these processes. Arsenic transport and transformation through columns, which were packed with uncoated sand (UC) or naturally coated sand (NC) and fed with arsenate (AsV) or monomethylarsonic acid (MMA) spiked influents, were investigated in the presence or absence of soil-derived dissolved substances. The presence of soil-derived inorganic colloids and/or DOM clearly enhanced As transport through the column, with the fraction of As leached out of column (referring to the total amount added) being increased from 23 to 46% (UC) and 21 to 50% (NC) in AsV experiments while 46 to 64% (UC) and 28 to 63% (NC) in MMA experiments. The association of arsenic with DOM and the competitive adsorption between arsenic and DOM could account for, at least partly, the enhanced As movement. Distinct species transformation of As during transport through soil columns was observed. When AsV was the initial species spiked in the influent solutions, only arsenite (AsIII) was detected in the effluents for UC columns; while both AsIII (dominant) and AsV were present for NC columns, with AsIII being the dominant species. When MMA was initially spiked in the influent solutions, all method detectable As species, AsIII, AsV, MMA, and dimethylarsenic acid (DMA) were present in the effluents for both soil columns. These results indicate that risk assessment associated with As contamination, particularly due to previous organoarsenical pesticide applications, should take into account the role of soil-derived dissolved substances in promoting As transport and As species transformation

  14. Sediment Transport and Flow Dynamics in a Fish-Habitat Restoration Project: Field and Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Biron, P.; Carver, R. B.; Carré, D. M.

    2009-12-01

    Few studies have examined sediment transport patterns around instream structures used to enhance fish habitat despite the importance of this variable in the successful design of stream restoration schemes. This paper presents results from a field experiment on particle movement around flow deflectors during a series of floods in a restored reach of the Nicolet River (Quebec). Bedload transport is investigated using passive integrated transponder (PIT) tags with particles ranging from 0.05 m to 0.16 m. These were followed from positions upstream of a pair of current deflectors which were designed to maintain a deep downstream pool. Three-dimensional numerical simulations of the flow field at various flow stages (when deflectors are either emerged or submerged) are also used to relate near-bed velocity and bed shear stress to transport patterns. A key question is whether particles are capable of leaving the restored pool afterwards, since it determines whether the pool will be maintained in the long term. Results indicate that from 2005 to 2008, of the 117 pit-tagged particles that fell in the pool only 27 are known to have exited. None of the 30 largest rocks entering the pool escaped. To explain bedload transport, the three-dimensionality of the flow field when structures are submerged must be taken into account. The interaction between submerged deflectors and the dug pool gives rise to large streamwise, lateral and vertical velocity gradients, resulting in several interconnected mixing layers which likely affect sediment transport. To further understand the interactions between the morphology of the dug pool and flow dynamics, various pool geometries are tested in numerical experiments.

  15. Role of soil-derived dissolved substances in arsenic transport and transformation in laboratory experiments.

    PubMed

    Chen, Zhangrong; Cai, Yong; Liu, Guangliang; Solo-Gabriele, Helena; Snyder, George H; Cisar, John L

    2008-11-15

    Dissolved substances derived from soil may interact with both soil surfaces and with arsenic and subsequently influence arsenic mobility and species transformation. The purpose of this study was to investigate arsenic transport and transformation in porous media with a specific focus on the impact of soil-derived dissolved substances, mainly consisting of inorganic colloids and dissolved organic matter (DOM), on these processes. Arsenic transport and transformation through columns, which were packed with uncoated sand (UC) or naturally coated sand (NC) and fed with arsenate (AsV) or monomethylarsonic acid (MMA) spiked influents, were investigated in the presence or absence of soil-derived dissolved substances. The presence of soil-derived inorganic colloids and/or DOM clearly enhanced As transport through the column, with the fraction of As leached out of column (referring to the total amount added) being increased from 23 to 46% (UC) and 21 to 50% (NC) in AsV experiments while 46 to 64% (UC) and 28 to 63% (NC) in MMA experiments. The association of arsenic with DOM and the competitive adsorption between arsenic and DOM could account for, at least partly, the enhanced As movement. Distinct species transformation of As during transport through soil columns was observed. When AsV was the initial species spiked in the influent solutions, only arsenite (AsIII) was detected in the effluents for UC columns; while both AsIII (dominant) and AsV were present for NC columns, with AsIII being the dominant species. When MMA was initially spiked in the influent solutions, all method detectable As species, AsIII, AsV, MMA, and dimethylarsenic acid (DMA) were present in the effluents for both soil columns. These results indicate that risk assessment associated with As contamination, particularly due to previous organoarsenical pesticide applications, should take into account the role of soil-derived dissolved substances in promoting As transport and As species transformation.

  16. Complainant issues in research misconduct: the office of research integrity experience.

    PubMed

    Pascal, Chris B

    2006-07-01

    This paper discusses the experiences of the Office of Research Integrity (ORI) with issues involving complainants who make allegations of research misconduct. The paper describes the legal framework for complainant issues, the various roles of the complainant as the allegation of misconduct proceeds through the steps of investigation and resolution, how allegations of retaliation against the complainant are handled, the responsibilities of ORI and of the research institution where the alleged misconduct occurred, and ORI's experience with several cases of alleged retaliation. In each of these areas, the paper attempts to provide guidance to prospective complainants, research institutions, and other interested persons on effective ways to approach the various problems and concerns that arise, while maintaining a balance between the needs of the complainant, the accused, the research institution handling the allegation, and ORI.

  17. HOV facilities and transportation-systems management, 1991. Transportation Research Record

    SciTech Connect

    Not Available

    1991-01-01

    The papers in the Record are related by their focus on either high-occupancy vehicle (HOV) systems or transportation systems management (TSM). The reports evaluate the effectiveness in reducing delay to through-moving vehicles of left-turn bypass lanes at two-lane, rural T-intersections; examines the viability of advanced technology traffic management systems to provide solutions to the future traffic needs of New York City; summarizes the results of an extensive parking demand study of neighborhood and community shopping centers in northern Virginia; and examines various aspects of HOV systems.

  18. Reactive solute transport in streams. 2. Simulation of a pH modification experiment

    USGS Publications Warehouse

    Runkel, R.L.; McKnight, Diane M.; Bencala, K.E.; Chapra, S.C.

    1996-01-01

    We present an application of an equilibrium-based solute transport model to a pH-modification experiment conducted on the Snake River, an acidic, metal-rich stream located in the Rocky Mountains of Colorado. During the experiment, instream pH decreased from 4.2 to 3.2, causing a marked increase in dissolved iron concentrations. Model application requires specification of several parameters that are estimated using tracer techniques, mass balance calculations, and geochemical data. Two basic questions are addressed through model application: (1) What are the processes responsible for the observed increase in dissolved iron concentrations? (2) Can the identified processes be represented within the equilibrium-based transport model? Simulation results indicate that the increase in iron was due to the dissolution of hydrous iron oxides and the photoreduction of ferric iron. Dissolution from the streambed is represented by considering a trace compartment consisting of freshly precipitated hydrous iron oxide and an abundant compartment consisting of aged precipitates that are less soluble. Spatial variability in the solubility of hydrous iron oxide is attributed to heterogeneity in the streambed sediments, temperature effects, and/or variability in the effects of photoreduction. Solubility products estimated via simulation fall within a narrow range (pK(sp) from 40.2 to 40.8) relative to the 6 order of magnitude variation reported for laboratory experiments (pK(sp) from 37.3 to 43.3). Results also support the use of an equilibrium-based transport model as the predominate features of the iron and p H profiles are reproduced. The model provides a valuable tool for quantifying the nature and extent of pH- dependent processes within the context of hydrologic transport.

  19. Research on transport properties of HFC-227ea

    NASA Astrophysics Data System (ADS)

    Shi, Lin; Liu, Xiaojun; Duan, Yuanyuan; Han, Lizhong; Zhu, Mingshan

    2001-10-01

    HFC-227ea(1,1,1,2,3,3,3-heptafluoropropane) is considered as a promising refrigerant alternative, especially as a component in mixtures, to replace to CFC-12, HCFC-22 and R502. But reliable transport properties data for HFC-227ea are very limited. In this paper, experimental data of viscosity along the saturation line and gaseous thermal conductivity of HFC-227ea are given. The viscosity of HFC-227ea was measured with a capillary viscometer at temperatures between 263.15 K and 333.15 K along the saturation line and its uncertainty of the results is estimated to be no more than ±3%. The thermal conductivity of gaseous HFC-227ea was also measured with a transient hot-wire instrument at temperatures between 259.28 K and 341.75 K and pressures up to 1.289MPa, and its uncertainty of the results is estimated to be less than ±1%.

  20. Aviation safety research and transportation/hazard avoidance and elimination

    NASA Technical Reports Server (NTRS)

    Sonnenschein, C. M.; Dimarzio, C.; Clippinger, D.; Toomey, D.

    1976-01-01

    Data collected by the Scanning Laser Doppler Velocimeter System (SLDVS) was analyzed to determine the feasibility of the SLDVS for monitoring aircraft wake vortices in an airport environment. Data were collected on atmospheric vortices and analyzed. Over 1600 landings were monitored at Kennedy International Airport and by the end of the test period 95 percent of the runs with large aircraft were producing usable results in real time. The transport was determined in real time and post analysis using algorithms which performed centroids on the highest amplitude in the thresholded spectrum. Making use of other parameters of the spectrum, vortex flow fields were studied along with the time histories of peak velocities and amplitudes. The post analysis of the data was accomplished with a CDC-6700 computer using several programs developed for LDV data analysis.

  1. Perspectives on three issues facing the transportation manager in the nineties. Research report

    SciTech Connect

    Lewis, C.A.; Marzette, D.; McCoy, B.

    1999-03-01

    The nineties have been a period of tremendous change for the transportation industry. The Intermodal Surface Transportation Efficiency Act, Clean Air Act Amendments, Americans with Disabilities Act, and increasing gender and ethnic diversity have caused agencies to reassess their standard operating procedures. Greater knowledge has been sought by senior level transportation officials in an effort to prepare agencies for the changing policy, including, seminars and workshops, revisions to policy manuals, and strengthened procedures regarding how issues will be resolved. This research examines the level and nature of direct impacts on the transportation organization. Major legislative changes and mandates have imposed the need for changes in how transportation systems operate. Transportation professionals continue to be challenged to develop plans and implement services that respond to mandates within the framework of the legislation.

  2. Solute and heat transport model of the Henry and hilleke laboratory experiment.

    PubMed

    Langevin, Christian D; Dausman, Alyssa M; Sukop, Michael C

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. PMID:19563419

  3. Solute and heat transport model of the Henry and Hilleke laboratory experiment

    USGS Publications Warehouse

    Langevin, C.D.; Dausman, A.M.; Sukop, M.C.

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. Journal Compilation ?? 2009 National Ground Water Association.

  4. Modeling fast-ion transport during toroidal Alfven eigenmode avalanches in National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, E. D.; Bell, R. E.; Darrow, D. S.; Gorelenkov, N. N.; Kramer, G. J.; Medley, S. S.; White, R. B.; Crocker, N. A.; Kubota, S.; Levinton, F. M.; Yuh, H.; Liu, D.; Podesta, M.; Tritz, K.

    2009-12-15

    Experiments on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] found strong bursts of toroidal Alfven eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA[C. Z. Cheng, Phys. Rep. 211, 1 (1992)] and ORBIT[R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE was modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE was then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate, however, further refinements in both the simulation of the TAE structure and in the modeling of the fast-ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.

  5. Sorption kinetics during macropore transport of organic contaminants in soils: Laboratory experiments and analytical modeling

    NASA Astrophysics Data System (ADS)

    Rahman, M. Mokhlesur; Liedl, Rudolf; Grathwohl, Peter

    2004-01-01

    Preferential solute transport coupled with diffusion into the surrounding matrix region has been examined in a silty loam soil by conducting macropore column experiments for various hydrophobic organic compounds (phenanthrene, 1, 2-DCB, TCE, carbofuran) representing the polycyclic aromatic hydrocarbons, chlorobenzenes, chlorinated solvents, and pesticides. A new and ready-to-use analytical solution was developed for this setting to model the breakthrough curves. The model accounts for advection in the macropore region, diffusion into the matrix region, and linear sorption in both regions. In this setting, hydrodynamic dispersion is negligible as proved by a comparison of an advection-dispersion model of finite pulse input. Conservative tracer experiments were predicted very well with independently determined transport parameters except for the tortuosity factor, which was used as a fitting parameter for the pore diffusion coefficient in the matrix. In case of sorbing solutes the sorption coefficient (Kd) was used as additional fitting parameter. The fitted Kd was 65% smaller for less sorbing compounds, e.g., carbofuran, and 80% less for strongly sorbing compounds, e.g., phenanthrene compared to the independently determined Kd from batch experiments. This indicates that sorption equilibrium was not obtained completely during the matrix diffusion at the timescale of the macropore flow experiment.

  6. A PC-based bus monitor program for use with the transport systems research vehicle RS-232 communication interfaces

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.

    1991-01-01

    Experiment critical use of RS-232 data busses in the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has recently increased. Each application utilizes a number of nonidentical computer and peripheral configurations and requires task specific software development. To aid these development tasks, an IBM PC-based RS-232 bus monitoring system was produced. It can simultaneously monitor two communication ports of a PC or clone, including the nonstandard bus expansion of the TSRV Grid laptop computers. Display occurs in a separate window for each port's input with binary display being selectable. A number of other features including binary log files, screen capture to files, and a full range of communication parameters are provided.

  7. Mentoring and Research Capacity-Building Experiences: Acculturating to Research From the Perspective of the Trainee

    PubMed Central

    Belgrave, Faye Z.

    2009-01-01

    We participated in the Collaborative HIV Prevention in Minority Communities Program, which was designed to support ethnic minority researchers in improving their HIV-prevention research skills. Here we share our experiences as trainees, as well as the effect this program has had on our research careers. We liken the process of securing funding for our research to that of acculturation: we had to learn a new culture while retaining our own identity and membership in ethnic minority communities. We also discuss the importance of mentorship from the perspective of the trainee and reflect on our learning and skills acquisition process. PMID:19246665

  8. Russian-American Experience in Science Education and Volcanological Research

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Gordeev, E. I.; Vesna, E. B.

    2007-12-01

    After five years experience in bringing American students to meet and learn with Russian students in Kamchatka and bringing Russian students to meet and learn with American students in Alaska, it is possible to make some generalizations about the problems and benefits this growing program. Some 200 students, including many from other countries besides the United States and Russian Federation, have now had this experience. The context of their collaboration is the International Volcanological Field School, sponsored by the University of Alaska Fairbanks, Kamchatka State University, and the Institute of Volcanology and Seismology, and also a comparison of Mount St Helens, Bezymianny, and Shiveluch volcanoes under the National Science Foundation's Partnerships in International Research in Education, with important support from the Russian Academy of Sciences, Far East Division. Elements of these two projects are adaptation to unfamiliar, harsh, and remote environments; intensive courses in Russian language, history, geography, and culture; and sharing of research and education experiences among students. The challenges faced by the program are: · Slow and complex visa processes. · Demise of a direct airline connection, necessitating round-the-world travel to go 3000 km. · Adequately communicating to students beforehand the need for physical fitness, mental fortitude in uncomfortable conditions, and patience when bad weather limits mobility. Benefits of the projects have been: · Experiences that students report to be career- and life-changing. · Much more positive perceptions of Russia and Russian people by American students and of America and Americans by Russian students. · Introduction to the "expedition style" volcanology necessary in challenging environments. · Development of long-lasting collaborations and friendships in the context of international science. Students often comment that hearing about what their peers have done or are doing in research at

  9. Using full-mission simulation for human factors research in air transport operations

    NASA Technical Reports Server (NTRS)

    Orlady, Harry W.; Hennessy, Robert W.; Obermayer, Richard; Vreuls, Donald; Murphy, Miles R.

    1988-01-01

    This study examined state-of-the-art mission oriented simulation and its use in human factors research. Guidelines were developed for doing full-mission human factors research on crew member behavior during simulated air transport operations. The existing literature was reviewed. However, interviews with experienced investigators provided the most useful information. The fundamental scientific and practical issues of behavioral research in a simulation environment are discussed. Guidelines are presented for planning, scenario development, and the execution of behavioral research using full-mission simulation in the context of air transport flight operations . Research is recommended to enhance the validity and productivity of full-mission research by: (1) validating the need for high-fidelity simulation of all major elements in the operational environment, (2) improving methods for conducting full-mission research, and (3) examining part-task research on specific problems through the use of vehicles which contain higher levels of abstraction (and lower fidelity) of the operational environment.

  10. Multiple Transportable Carbohydrates During Exercise: Current Limitations and Directions for Future Research.

    PubMed

    Wilson, Patrick B

    2015-07-01

    The concept of multiple transportable carbohydrates (MTC) refers to a combination of saccharides that rely on distinct transporters for intestinal absorption. Ingestion of MTC during prolonged exercise has been purported to increase carbohydrate absorption efficiency, increase exogenous carbohydrate oxidation, reduce gastrointestinal (GI) distress, and improve athletic performance when carbohydrate intake is high (>50-60 g·h⁻¹). Although reviews of MTC research have been published previously, a comprehensive literature evaluation underscoring methodological limitations has not been conducted to guide future work. Accordingly, this review outlined the plausible mechanisms of MTC and subsequently evaluated MTC research based on several factors, including participant characteristics, exercise modality, exercise task, treatment formulation, treatment blinding, and pre-exercise nutrition status. A total of 27 articles examining MTC during exercise were identified and reviewed. Overall, ingestion of MTC led to increased exogenous carbohydrate oxidation, reduced GI distress, and improved performance during cycling lasting ≥2.5 hours, particularly when carbohydrate was ingested at ≥1.2 g·min⁻¹. Despite the apparent benefits, several limitations in the literature were apparent, including that only 3 studies used running, only 2 studies were conducted in the field, most participants were fasted, and women and adolescents were underrepresented. In addition, the majority of the studies fed carbohydrate at ≥1.2 g·min⁻¹, which may have inflated levels of GI distress and exaggerated performance decrements with single-saccharide feedings. Based on these limitations, future MTC investigations should consider focusing on running, examining team-based sports, including women and adolescents, conducting experiments under field conditions, examining the modifying effects of pre-exercise nutrition, and using modest feeding protocols (1.0-1.2 g·min⁻¹).

  11. An Undergraduate Research Experience on Studying Variable Stars

    NASA Astrophysics Data System (ADS)

    Amaral, A.; Percy, J. R.

    2016-06-01

    We describe and evaluate a summer undergraduate research project and experience by one of us (AA), under the supervision of the other (JP). The aim of the project was to sample current approaches to analyzing variable star data, and topics related to the study of Mira variable stars and their astrophysical importance. This project was done through the Summer Undergraduate Research Program (SURP) in astronomy at the University of Toronto. SURP allowed undergraduate students to explore and learn about many topics within astronomy and astrophysics, from instrumentation to cosmology. SURP introduced students to key skills which are essential for students hoping to pursue graduate studies in any scientific field. Variable stars proved to be an excellent topic for a research project. For beginners to independent research, it introduces key concepts in research such as critical thinking and problem solving, while illuminating previously learned topics in stellar physics. The focus of this summer project was to compare observations with structural and evolutionary models, including modelling the random walk behavior exhibited in the (O-C) diagrams of most Mira stars. We found that the random walk could be modelled by using random fluctuations of the period. This explanation agreed well with observations.

  12. "We Are Researchers": Students with and without Intellectual Disabilities Research the University Experience in a Participatory Action Research Course

    ERIC Educational Resources Information Center

    Ryan, Susan M.; Yuan, Susan J.; Karambelas, Alex M.; Lampugnale, Luke E.; Parrott, Bernard J.; Sagar, Cora E.; Terry, Taylor V.

    2015-01-01

    This article describes an undergraduate Participatory Action Research (PAR) course in which students with and without intellectual disabilities collaborated as co-researchers in order to explore various aspects of the university experience. The article describes the university course as well as presents results of the students' PAR projects. The…

  13. A New Model for Climate Science Research Experiences for Teachers

    NASA Astrophysics Data System (ADS)

    Hatheway, B.

    2012-12-01

    After two years of running a climate science teacher professional development program for secondary teachers, science educators from UCAR and UNC-Greeley have learned the benefits of providing teachers with ample time to interact with scientists, informal educators, and their teaching peers. Many programs that expose teachers to scientific research do a great job of energizing those teachers and getting them excited about how research is done. We decided to try out a twist on this model - instead of matching teachers with scientists and having them do science in the lab, we introduced the teachers to scientists who agreed share their data and answer questions as the teachers developed their own activities, curricula, and classroom materials related to the research. Prior to their summer experience, the teachers took three online courses on climate science, which increased their background knowledge and gave them an opportunity to ask higher-level questions of the scientists. By spending time with a cohort of practicing teachers, each individual had much needed time to interact with their peers, share ideas, collaborate on curriculum, and learn from each other. And because the goal of the program was to create classroom modules that could be implemented in the coming school year, the teachers were able to both learn about climate science research by interacting with scientists and visiting many different labs, and then create materials using data from the scientists. Without dedicated time for creating these classroom materials, it would have been up to the teachers to carve out time during the school year in order to find ways to apply what they learned in the research experience. We feel this approach worked better for the teachers, had a bigger impact on their students than we originally thought, and gave us a new approach to teacher professional development.

  14. Norfolk State University Research Experience in Earth System Science

    NASA Technical Reports Server (NTRS)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  15. Three-dimensional scrape off layer transport in the helically symmetric experiment HSX

    NASA Astrophysics Data System (ADS)

    Akerson, A. R.; Bader, A.; Hegna, C. C.; Schmitz, O.; Stephey, L. A.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.

    2016-08-01

    The edge topology of helically symmetric experiment (HSX) in the quasi-helically symmetric configuration is characterized by an 8/7 magnetic island remnant embedded in a short connection length scrape-off layer (SOL) domain. A 2D mapping of edge plasma profiles within this heterogeneous SOL has been constructed using a movable, multi-pin Langmuir probe. Comparisons of these measurements to edge simulations using the EMC3-EIRENE 3D plasma fluid and kinetic neutral gas transport model have been performed. The measurements provide strong evidence that particle transport is diffusive within the island region and dominantly convective in the SOL region. Measurements indicate that phenomenological cross-field diffusion coefficients are low in the SOL region between the last closed flux surface and edge island (i.e. {{D}\\bot}≈ 0.03 m2 s‑1). This level of transport was found to increase by a factor of two when a limiter is inserted almost completely into the magnetic island. A reduction in gradients of the edge electrostatic plasma potential was also measured in this configuration, suggesting that the reduced electric field may be linked to the increased cross-field transport observed.

  16. Three-dimensional scrape off layer transport in the helically symmetric experiment HSX

    NASA Astrophysics Data System (ADS)

    Akerson, A. R.; Bader, A.; Hegna, C. C.; Schmitz, O.; Stephey, L. A.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.

    2016-08-01

    The edge topology of helically symmetric experiment (HSX) in the quasi-helically symmetric configuration is characterized by an 8/7 magnetic island remnant embedded in a short connection length scrape-off layer (SOL) domain. A 2D mapping of edge plasma profiles within this heterogeneous SOL has been constructed using a movable, multi-pin Langmuir probe. Comparisons of these measurements to edge simulations using the EMC3-EIRENE 3D plasma fluid and kinetic neutral gas transport model have been performed. The measurements provide strong evidence that particle transport is diffusive within the island region and dominantly convective in the SOL region. Measurements indicate that phenomenological cross-field diffusion coefficients are low in the SOL region between the last closed flux surface and edge island (i.e. {{D}\\bot}≈ 0.03 m2 s-1). This level of transport was found to increase by a factor of two when a limiter is inserted almost completely into the magnetic island. A reduction in gradients of the edge electrostatic plasma potential was also measured in this configuration, suggesting that the reduced electric field may be linked to the increased cross-field transport observed.

  17. Flight Experiments of Physical Vapor Transport of ZnSe: Growth of Crystals in Various Convective Conditions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2015-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). The flight experiment will conduct crystal growths of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT). The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds, especially the effects of different growth orientations related to gravity direction on the grown crystals.

  18. Transportability, distributability and rehosting experience with a kernel operating system interface set

    NASA Technical Reports Server (NTRS)

    Blumberg, F. C.; Reedy, A.; Yodis, E.

    1986-01-01

    For the past two years, PRC has been transporting and installing a software engineering environment framework, the Automated Product control Environment (APCE), at a number of PRC and government sites on a variety of different hardware. The APCE was designed using a layered architecture which is based on a standardized set of interfaces to host system services. This interface set called the APCE Interface Set (AIS), was designed to support many of the same goals as the Common Ada Programming Support Environment (APSE) Interface Set (CAIS). The APCE was developed to provide support for the full software lifecycle. Specific requirements of the APCE design included: automation of labor intensive administrative and logistical tasks: freedom for project team members to use existing tools: maximum transportability for APCE programs, interoperability of APCE database data, and distributability of both processes and data: and maximum performance on a wide variety of operating systems. A brief description is given of the APCE and AIS, a comparison of the AIS and CAIS both in terms of functionality and of philosophy and approach and a presentation of PRC's experience in rehosting AIS and transporting APCE programs and project data. Conclusions are drawn from this experience with respect to both the CAIS efforts and Space Station plans.

  19. Laboratory experiments on solute transport in bimodal porous media under cyclic precipitation-evaporation boundary conditions

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa

    2016-04-01

    Flow and solute transport in the shallow subsurface is strongly governed by atmospheric boundary conditions. Erratically varying infiltration and evaporation cycles lead to alternating upward and downward flow, as well as spatially and temporally varying water contents and associated hydraulic conductivity of the prevailing materials. Thus presenting a highly complicated, dynamic system. Knowledge of subsurface solute transport processes is vital to assess e.g. the entry of, potentially hazardous, solutes to the groundwater and nutrient uptake by plant roots and can be gained in many ways. Besides field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. With the aim to gain a better understanding and to quantify solute transport in the unsaturated shallow subsurface under natural precipitation conditions in heterogeneous media, we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell that is filled with two types of sand and apply cyclic infiltration-evaporation phases at the soil surface. Pressure at the bottom of the domain is kept constant. Following recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a), heterogeneity is introduced by a sharp vertical interface between coarse and fine sand. Fluorescent tracers are used to i) qualitatively visualize transport paths within the domain and ii) quantify solute leaching at the bottom of the domain. Temporal and spatial variations in water content during the experiment are derived from x-ray radiographic images. Monitored water contents between infiltration and evaporation considerably changed in the coarse sand while the fine sand remained saturated throughout the experiments. Lateral solute transport through the interface in both directions at different depths of the investigated soil columns were observed. This depended on the flow rate applied at the soil surface and

  20. Transport of trace gases into the Tropical Tropopause Layer: the CAST experiment

    NASA Astrophysics Data System (ADS)

    Harris, N. R.

    2013-12-01

    The transport of trace gases from the lower troposphere into and through the Tropical Tropopause Layer is of fundamental importance in determining the chemical composition of the stratosphere. This occurs in convection which is particularly strong in the West Pacific in Boreal winter. A joint aircraft experiment will take place which involves the NERC CAST (Coordinated Airborne Studies in the Tropics), the NASA ATTREX (Airborne Tropical TRopopause EXperiment) and the NSF/NCAR CONTRAST Convective Transport of Active Species in the Tropics) projects. These will be supplemented by ground-based and sonde measurements made at Palau in CAST and in Biak in the Japanese SOWER experiment. One aim of the combined experiment is to measure the chemical composition of both the inflow and the outflow of the convection. The use of tracers with different lifetimes, including a range of short-lived halocarbons and hydrocarbons, should reveal a great deal about the mass fluxes of air from the lower troposphere to different altitudes in the TTL. This presentation describes the studies examining the composition and structure of the TTL, the plans for the aircraft and ground-based measurements, and the analyses to be used for interpretation. Examples of similar analyses based on the ATTREX measurements made in the East Pacific in February 2013 will be presented. These show the variability in the amount of air transported from the lower troposphere into the TTL calculated by the UK Met Office's NAME dispersion model as well as that model's ability to reproduce tracer distributions in the TTL.

  1. Transportation and Aging: A Research Agenda for Advancing Safe Mobility

    ERIC Educational Resources Information Center

    Dickerson, Anne E.; Molnar, Lisa J.; Eby, David W.; Adler, Geri; Bedard, Michel; Berg-Weger, Marla; Classen, Sherrilene; Foley, Daniel; Horowitz, Amy; Kerschner, Helen; Page, Oliver; Silverstein, Nina M.; Staplin, Loren; Trujillo, Leonard

    2007-01-01

    Purpose: We review what we currently know about older driver safety and mobility, and we highlight important research needs in a number of key areas that hold promise for achieving the safety and mobility goals for the aging baby boomers and future generations of older drivers. Design and Methods: Through the use of a framework for transportation…

  2. Flow and transport at the Las Cruces trench site: Experiment IIb

    SciTech Connect

    Vinson, J.; Hills, R.G.; Wierenga, P.J.; Young, M.H.

    1997-07-01

    The US Nuclear Regulatory Commission (NRC) has been directed by Congress in the Low Level Waste Policy Act of 1980 to develop regulatory guidance and assist the individual states and compacts in siting and assessing future low level radioactive waste (LLW) disposal facilities. Three water flow and solute transport experiments were performed as part of a comprehensive field trench study near Las Cruces, New Mexico to test deterministic and stochastic models of vadose zone flow and transport. This report presents partial results from the third experiment (experiment IIb). Experiments IIa and b were conducted on the North side of the trench, on a plot 1.22 m wide by 12 m long, perpendicular to the trench. The area was drip irrigated during two time periods with water containing a variety of tracers. The advance of the water front during the two irrigation episodes was measured with tensiometers and neutron probes. Solute front positions were determined from soil solution sampling through suction samplers and from disturbed sampling. The results from experiment IIb show predominantly downward water movement through the layered unsaturated soil, as evidenced from neutron probe data and gravimetric sampling. Tritium plumes were only half as deep and half as wide as the water plumes at 310 days after the beginning of experiment IIb. Chromium, applied as Cr(VI), moved a readily as, and similar to tritium, but there was a loss of mass due to reduction of Cr(VI) to Cr(III). Chloride and nitrate, initially present at high concentrations in the soil solution, were displaced by the low concentration irrigation water, resulting in chloride and nitrate concentration distributions that looked like negative images of the tritium distributions. The extensive data presented should serve well as a data base for model testing.

  3. Predicting Activation of Experiments Inside the Annular Core Research Reactor

    SciTech Connect

    Greenberg, Joseph Isaac

    2015-11-01

    The objective of this thesis is to create a program to quickly estimate the radioactivity and decay of experiments conducted inside of the Annular Core Research Reactor at Sandia National Laboratories and eliminate the need for users to write code. This is achieved by model the neutron fluxes in the reactor’s central cavity where experiments are conducted for 4 different neutron spectra using MCNP. The desired neutron spectrum, experiment material composition, and reactor power level are then input into CINDER2008 burnup code to obtain activation and decay information for every isotope generated. DREAD creates all of the files required for CINDER2008 through user selected inputs in a graphical user interface and executes the program for the user and displays the resulting estimation for dose rate at various distances. The DREAD program was validated by weighing and measuring various experiments in the different spectra and then collecting dose rate information after they were irradiated and comparing it to the dose rates that DREAD predicted. The program provides results with an average of 17% higher estimates than the actual values and takes seconds to execute.

  4. Inside the research incubator: a case study of an intensive undergraduate research experience for nursing a midwifery students.

    PubMed

    Kain, Victoria J; Hepworth, Julie; Bogossian, Fiona; McTaggart, Lya

    2014-01-01

    Undergraduate research experiences are an increasing component of nursing and midwifery degrees. The Summer Research Scholarship Programme (SRSP) is a tertiary education initiative in Australia to provide an intensive undergraduate research experience. Between 2009 and 2010, six students and four academic faculty mentors in School of Nursing and Midwifery participated in an inaugural SRSP. This study explores the experiences of both students and faculty mentors to determine how this undergraduate research experience impacted student learning and interest in research. A qualitative case study approach was used to explore the research experiences of undergraduate student and faculty participants in an inaugural undergraduate research programme. Based on the results of two surveys four main themes were identified: (1) acquisition of research skills, (2) expectations, (3) academic engagement, and (4) continued interest in research. An intensive undergraduate research experience is a valuable component of student learning that has the capacity to contribute to immediate and longer-term learning and research outcomes.

  5. National Criticality Experiments Research Center: Capability and Status

    SciTech Connect

    Hayes, David K.; Myers, William L.

    2012-07-12

    After seven years, the former Los Alamos Critical Experiments Facility (LACEF), or Pajarito Site, has reopened for business as the National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS). Four critical assembly machines (Comet, Planet, Flat-Top, and Godiva-IV) made the journey from Los Alamos to the NNSS. All four machines received safety system upgrades along with new digital control systems. Between these machines, systems ranging from the thermal through the intermediate to the fast spectrum may be assembled. Steady-State, transient, and super-prompt critical conditions may be explored. NCERC is the sole remaining facility in the United States capable of conducting general-purpose nuclear materials handling including the construction and operation of high-multiplication assemblies, delayed critical assemblies, and prompt critical assemblies. Reconstitution of the unique capabilities at NCERC ensures the viability of (1) The Nuclear Renaissance, (2) Stockpile Stewardship, and (3) and the next generation of criticality experimentalists.

  6. Mars Pathfinder Rover-Lewis Research Center Technology Experiments Program

    NASA Technical Reports Server (NTRS)

    Stevenson, Steven M.

    1997-01-01

    An overview of NASA's Mars Pathfinder Program is given and the development and role of three technology experiments from NASA's Lewis Research Center and carried on the Mars Pathfinder rover is described. Two recent missions to Mars were developed and managed by the Jet Propulsion Laboratory, and launched late last year: Mars Global Surveyor in November 1996 and Mars Pathfinder in December 1996. Mars Global Surveyor is an orbiter which will survey the planet with a number of different instruments, and will arrive in September 1997, and Mars Pathfinder which consists of a lander and a small rover, landing on Mars July 4, 1997. These are the first two missions of the Mars Exploration Program consisting of a ten year series of small robotic martian probes to be launched every 26 months. The Pathfinder rover will perform a number of technology and operational experiments which will provide the engineering information necessary to design and operate more complex, scientifically oriented surface missions involving roving vehicles and other machinery operating in the martian environment. Because of its expertise in space power systems and technologies, space mechanisms and tribology, Lewis Research Center was asked by the Jet Propulsion Laboratory, which is heading the Mars Pathfinder Program, to contribute three experiments concerning the effects of the martian environment on surface solar power systems and the abrasive qualities of the Mars surface material. In addition, rover static charging was investigated and a static discharge system of several fine Tungsten points was developed and fixed to the rover. These experiments and current findings are described herein.

  7. Swing-free transport of suspended loads. Summer research report

    SciTech Connect

    Basher, A.M.H.

    1996-02-01

    Transportation of large objects using traditional bridge crane can induce pendulum motion (swing) of the object. In environments such as factory the energy contained in the swinging mass can be large and therefore attempts to move the mass onto target while still swinging can cause considerable damage. Oscillations must be damped or allowed to decay before the next process can take place. Stopping the swing can be accomplished by moving the bridge in a manner to counteract the swing which sometimes can be done by skilled operator, or by waiting for the swing to damp sufficiently that the object can be moved to the target without risk of damage. One of the methods that can be utilized for oscillation suppression is input preshaping. The validity of this method depends on the exact knowledge of the system dynamics. This method can be modified to provide some degrees of robustness with respect to unknown dynamics but at the cost of the speed of transient response. This report describes investigations on the development of a controller to dampen the oscillations.

  8. Pavement management and weigh-in-motion. Transportation research record

    SciTech Connect

    Cation, K.A.; Shahin, M.Y.; Scullion, T.; Lytton, R.L.; Butt, A.A.

    1987-01-01

    The 15 papers in the report deal with the following areas: development of a preventive maintenance algorithm for use in pavement-management systems; pavement-performance prediction model using the Markov Process; roadway modeling and data conversion for a transportation-facilities information system; development of a methodology to estimate pavement maintenance and repair costs for different ranges of pavement-condition index; new techniques for modeling pavement deterioration; pavement management at the local government level; a comprehensive ranking system for local-agency pavement management; expert system as a part of pavement management; MAPCON: a pavement-evaluation data-analysis computer system; a microcomputer procedure to analyze axle load limits and pavement damage responsibility; selected results from the first three years of the Oregon automatic monitoring demonstration project; automated acquisition of truck-tire pressure data; calibration and accuracy testing of weigh-in-motion systems; accuracy and tolerances of weigh-in-motion systems; on-site calibration of weigh-in-motion systems.

  9. Capacity development for health research in Africa: experiences managing the African Doctoral Dissertation Research Fellowship Program

    PubMed Central

    2010-01-01

    Africa's progress depends on her capacity to generate, adapt, and use scientific knowledge to meet regional health and development needs. Yet, Africa's higher education institutions that are mandated to foster this capacity lack adequate resources to generate and apply knowledge, raising the need for innovative approaches to enhance research capacity. In this paper, we describe a newly-developed program to support PhD research in health and population sciences at African universities, the African Doctoral Dissertation Research Fellowship (ADDRF) Program. We also share our experiences implementing the program. As health research capacity-strengthening in Africa continues to attract attention and as the need for such programs to be African-led is emphasized, our experiences in developing and implementing the ADDRF offer invaluable lessons to other institutions undertaking similar initiatives. PMID:20587016

  10. Tsunami-induced boulder transport - combining physical experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Oetjen, Jan; Engel, Max; May, Simon Matthias; Schüttrumpf, Holger; Brueckner, Helmut; Prasad Pudasaini, Shiva

    2016-04-01

    Coasts are crucial areas for living, economy, recreation, transportation, and various sectors of industry. Many of them are exposed to high-energy wave events. With regard to the ongoing population growth in low-elevation coastal areas, the urgent need for developing suitable management measures, especially for hazards like tsunamis, becomes obvious. These measures require supporting tools which allow an exact estimation of impact parameters like inundation height, inundation area, and wave energy. Focussing on tsunamis, geological archives can provide essential information on frequency and magnitude on a longer time scale in order to support coastal hazard management. While fine-grained deposits may quickly be altered after deposition, multi-ton coarse clasts (boulders) may represent an information source on past tsunami events with a much higher preservation potential. Applying numerical hydrodynamic coupled boulder transport models (BTM) is a commonly used approach to analyse characteristics (e.g. wave height, flow velocity) of the corresponding tsunami. Correct computations of tsunamis and the induced boulder transport can provide essential event-specific information, including wave heights, runup and direction. Although several valuable numerical models for tsunami-induced boulder transport exist (e. g. Goto et al., 2007; Imamura et al., 2008), some important basic aspects of both tsunami hydrodynamics and corresponding boulder transport have not yet been entirely understood. Therefore, our project aims at these questions in four crucial aspects of boulder transport by a tsunami: (i) influence of sediment load, (ii) influence of complex boulder shapes other than idealized rectangular shapes, (iii) momentum transfers between multiple boulders, and (iv) influence of non-uniform bathymetries and topographies both on tsunami and boulder. The investigation of these aspects in physical experiments and the correct implementation of an advanced model is an urgent need

  11. Core-flood experiment for transport of reactive fluids in rocks.

    PubMed

    Ott, H; de Kloe, K; van Bakel, M; Vos, F; van Pelt, A; Legerstee, P; Bauer, A; Eide, K; van der Linden, A; Berg, S; Makurat, A

    2012-08-01

    Investigation of the transport of reactive fluids in porous rocks is an intriguing but challenging task and relevant in several areas of science and engineering such as geology, hydrogeology, and petroleum engineering. We designed and constructed an experimental setup to investigate physical and chemical processes caused by the flow of reactive and volatile fluids such as supercritical CO(2) and/or H(2)S in geological formations. Potential applications are geological sequestration of CO(2) in the frame of carbon capture and storage and acid-gas injection for sulfur disposal and/or enhanced oil recovery. The present paper outlines the design criteria and the realization of reactive transport experiments on the laboratory scale. We focus on the spatial and time evolution of rock and fluid composition as a result of chemical rock fluid interaction and the coupling of chemistry and fluid flow in porous rocks.

  12. Materials to be used for radionuclide transport experiments (milestones SPL3A1M4)

    SciTech Connect

    Viani, B., LLNL

    1998-02-01

    Experiments to determine the effect of canister corrosion products on the transport of radionuclides will be undertaken using the FE(III) oxides goethite and hematite as proxies for the expected corrosion envelope that will form as a result of alteration of the corrosion allowance overpack prior to the breaching of the waste container. Samples of ESF invert concrete that have been crushed, or left intact but fractured, and that have been subjected to hydrothermal alteration will be used to determine the effect of cementitious materials on transport of radionuclides. A mixture of CaCO{sub 3}, Si0{sub 2}, and aggregate will be used as a proxy for completely carbonated concrete.

  13. SEA monitoring in Swedish regional transport infrastructure plans - Improvement opportunities identified in practical experience

    SciTech Connect

    Lundberg, K.; Balfors, B.; Folkeson, L.; Nilsson, M.

    2010-11-15

    Strategic Environmental Assessment (SEA) requires monitoring in order to identify unforeseen adverse effects and to enable appropriate remedial action to be taken. Guidelines on how to monitor significant environmental impacts have been developed but experience from practice is limited. This paper presents a study of environmental monitoring in Swedish regional transport infrastructure planning. The result shows that essentially no environmental monitoring is currently performed. Monitoring of the plans merely involves checking the implementation of projects and performing an economic account. At present, a new planning period has commenced for the regional transport infrastructure plans. To obtain an iterative SEA process for the new plan with integrated SEA monitoring, the following means are suggested: reinforcement of practitioners' incentives to plan and perform monitoring; integration of monitoring in the SEA process; pre-determined impact thresholds that prompt remedial action; and more efficient use of monitoring results.

  14. Core-flood experiment for transport of reactive fluids in rocks

    NASA Astrophysics Data System (ADS)

    Ott, H.; de Kloe, K.; van Bakel, M.; Vos, F.; van Pelt, A.; Legerstee, P.; Bauer, A.; Eide, K.; van der Linden, A.; Berg, S.; Makurat, A.

    2012-08-01

    Investigation of the transport of reactive fluids in porous rocks is an intriguing but challenging task and relevant in several areas of science and engineering such as geology, hydrogeology, and petroleum engineering. We designed and constructed an experimental setup to investigate physical and chemical processes caused by the flow of reactive and volatile fluids such as supercritical CO2 and/or H2S in geological formations. Potential applications are geological sequestration of CO2 in the frame of carbon capture and storage and acid-gas injection for sulfur disposal and/or enhanced oil recovery. The present paper outlines the design criteria and the realization of reactive transport experiments on the laboratory scale. We focus on the spatial and time evolution of rock and fluid composition as a result of chemical rock fluid interaction and the coupling of chemistry and fluid flow in porous rocks.

  15. Soft-Stowed Approach: Safe Transportation to ISS for Experiments, Spares & New Hardware

    NASA Astrophysics Data System (ADS)

    Itta, Antonietta; Quagliotti, Francesco

    2012-07-01

    The ISS operational and logistic scenario relies on the regular upload of new experiments and maintenance hardware. The extension of the ISS lifetime places even more emphasis on a resupply policy based on safe, cheap and flexible transportation solutions to ISS. A transportation method suitable for all available carriers is represented by foam packaged items put inside bags or containers. This flight condition can now be analyzed thanks to the results derived from an extensive test campaign performed by Boeing in 2009 under NASA sponsorship. Data and guidelines are provided for the calculation of the attenuated flight environments due to the soft packaging conditions. The paper also reports a real life application: the uploading to ISS of the Columbus PDU (some 90 kg) inside ATV II Johannes Kepler, wrapped in 1” of zotek and put inside a M01 bag. The mission was successful: PDU is today safely stored inside a Columbus Rack.

  16. Hydrogeophysical characterization of transport processes in fractured rock by combining push-pull and single-hole ground penetrating radar experiments

    NASA Astrophysics Data System (ADS)

    Shakas, Alexis; Linde, Niklas; Baron, Ludovic; Bochet, Olivier; Bour, Olivier; Le Borgne, Tanguy

    2016-02-01

    The in situ characterization of transport processes in fractured media is particularly challenging due to the considerable spatial uncertainty on tracer pathways and dominant controlling processes, such as dispersion, channeling, trapping, matrix diffusion, ambient and density driven flows. We attempted to reduce this uncertainty by coupling push-pull tracer experiments with single-hole ground penetrating radar (GPR) time-lapse imaging. The experiments involved different injection fractures, chaser volumes and resting times, and were performed at the fractured rock research site of Ploemeur in France (H+ network, hplus.ore.fr/en). For the GPR acquisitions, we used both fixed and moving antenna setups in a borehole that was isolated with a flexible liner. During the fixed-antenna experiment, time-varying GPR reflections allowed us to track the spatial and temporal dynamics of the tracer during the push-pull experiment. During the moving antenna experiments, we clearly imaged the dominant fractures in which tracer transport took place, fractures in which the tracer was trapped for longer time periods, and the spatial extent of the tracer distribution (up to 8 m) at different times. This demonstrated the existence of strongly channelized flow in the first few meters and radial flow at greater distances. By varying the resting time of a given experiment, we identified regions affected by density-driven and ambient flow. These experiments open up new perspectives for coupled hydrogeophysical inversion aimed at understanding transport phenomena in fractured rock formations.

  17. Research experience for undergraduates in robotics and materials

    NASA Astrophysics Data System (ADS)

    Yih, T. C.; Tansel, I. N.; Wu, K. H.

    1993-03-01

    Florida International University successfully completed the proposed project entitled, 'Research Experience for Undergraduates in Robotics and Materials.' Nineteen students designed and manufactured a 'user-friendly' industrial robot with three functional axes and an IBM-PC-based C-based controller. The accuracy of the robot is 0.0005 inch when two axes are used. An operator can control the motions of the robot with a few hours of training by using the PC-based controller mouse. The controller also provides graphical simulation of the robot motions.

  18. A Summer Research Experience in Particle Physics Using Skype

    NASA Astrophysics Data System (ADS)

    Johnston, Curran; Alexander, Steven; Mahmood, A. K.

    2012-10-01

    This last summer I did research in particle physics as part of a ``remote REU.'' This poster will describe that experience and the results of my project which was to experimentally verify the mass ranges of the Z' boson. Data from the LHC's Atlas detector was filtered by computers to select for likely Z boson decays; my work was in noting all instances of Z or Z' boson decays in one thousand events and their masses, separating the Z from Z' bosons, and generating histograms of the masses.

  19. [The experience of initiating the projects in ophthalmologic research].

    PubMed

    Chu, Ren-yuan

    2007-11-01

    The choice of subjects plays a significant role in scientific research. About how to make a good choice, author's brief experience is to keep one theme, two essentials, three thinking and four methods. One theme refers to innovation. The headspring of innovation is associative thinking, which bases on extensive knowledge and excellent summing-up. Two essentials refer to the essential of being steadfast and earnest and the essential of "nail" which stands for persistence. Three thinking refer to associative thinking, logical thinking and converse thinking. Four methods refer to method of reading, method of practice, method of consultation and method of inversion.

  20. Joint University Program for Air Transportation Research, 1990-1991

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1991-01-01

    The goals of this program are consistent with the interests of both NASA and the FAA in furthering the safety and efficiency of the National Airspace System. Research carried out at the Massachusetts Institute of Technology (MIT), Ohio University, and Princeton University are covered. Topics studied include passive infrared ice detection for helicopters, the cockpit display of hazardous windshear information, fault detection and isolation for multisensor navigation systems, neural networks for aircraft system identification, and intelligent failure tolerant control.

  1. Development of a summer field-based hydrogeology research experience for undergraduates

    NASA Astrophysics Data System (ADS)

    Singha, K.

    2011-12-01

    A critical problem in motivating and training the next generation of environmental scientists is providing them with an integrated scientific experience that fosters a depth of understanding and helps them build a network of colleagues for their future. As the education part of an NSF-funded CAREER proposal, I have developed a three-week summer research experience for undergraduate students that links their classroom education with field campaigns aiming to make partial differential equations come "alive" in a practical, applied setting focused on hydrogeologic processes. This course has been offered to freshman- to junior-level undergraduate students from Penn State and also the three co-operating Historically Black Universities (HBUs)--Jackson State University, Fort Valley State University, and Elizabeth City State University-since 2009. Broad learning objectives include applying their knowledge of mathematics, science, and engineering to flow and transport processes in the field and communicating science effectively in poster and oral format. In conjunction with ongoing research about solute transport, students collected field data in the Shale Hills Critical Zone Observatory in Central Pennsylvania, including slug and pumping tests, ground-penetrating radar, electrical resistivity imaging, wireline logging, and optical televiewers, among other instruments. Students conducted tracer tests, where conservative solutes are introduced into a local stream and monitored. Students also constructed numerical models using COMSOL Multiphysics, a research-grade code that can be used to model any physical system; with COMSOL, students create models without needing to be trained in computer coding. With guidance, students built basic models of fluid flow and transport to visualize how heterogeneity of hydraulic and transport properties or variations in forcing functions impact their results. The development of numerical models promoted confidence in predicting flow and

  2. Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations

    SciTech Connect

    Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-08-02

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  3. Teacher Professional Development to Foster Authentic Student Research Experiences

    NASA Astrophysics Data System (ADS)

    Conn, K.; Iyengar, E.

    2004-12-01

    This presentation reports on a new teacher workshop design that encourages teachers to initiate and support long-term student-directed research projects in the classroom setting. Teachers were recruited and engaged in an intensive marine ecology learning experience at Shoals Marine Laboratory, Appledore Island, Maine. Part of the weeklong summer workshop was spent in field work, part in laboratory work, and part in learning experimental design and basic statistical analysis of experimental results. Teachers were presented with strategies to adapt their workshop learnings to formulate plans for initiating and managing authentic student research projects in their classrooms. The authors will report on the different considerations and constraints facing the teachers in their home school settings and teachers' progress in implementing their plans. Suggestions for replicating the workshop will be offered.

  4. Theoretical research relevant to medium energy upgrades and experiments

    SciTech Connect

    Goldman, T.; Benesh, C.; Carlson, J.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This work provides theoretical research results for sources of pions, neutrons, neutrinos and heavy ions. The authors have undertaken specific calculations in neutrino-nucleus scattering and to analyze constraints on exotic decays relevant to the study of neutrino oscillations. They have also performed calculations regarding neutrino cosmology and astrophysics relevant to the experimental study of neutrino masses. They analyzed the constraints of data on T-violation in neutron decay and the nucleon-nucleon (NN) interaction which will be important for the understanding of experiments with cold and ultra-cold neutrons. They completed several specific calculations which were essential to predict (pion, kaon) hypernuclear production and pion-induced reactions studying baryonic resonances. They also calculated the nuclear spectroscopy of nuclei far from stability that can be studied experimentally.

  5. Multiple-case depth research: bringing experience-near closer.

    PubMed

    Schneider, K J

    1999-12-01

    The term "experience-near" has become associated with a variety of alternatives to mainstream clinical research. These alternatives converge on one basic methodological goal-faithfulness to clinical phenomena as lived. This article presents one approach to lived clinical phenomena that I term multiple-case depth research or MCDR. MCDR is a novel and highly sensitive methodology that combines both in-depth case investigation with experiential therapeutic principles. To illustrate the power of MCDR, I present a hypothetical process and outcome study involving three client cohorts (those who undergo respectively cognitive-behavioral therapy, intersubjective psychoanalytic therapy, and existential-humanistic therapy). I detail the structure of this hypothetical study, the steps by which it proceeds, and the yield that it portends. I conclude that, if conducted properly, MCDR can provide rich, valid, and unprecedented insight into effective psychotherapy.

  6. Estimating uncertainty caused by ocean heat transport to the North Sea: experiments downscaling EC-Earth

    NASA Astrophysics Data System (ADS)

    Tian, T.; Su, J.; Boberg, F.; Yang, S.; Schmith, T.

    2016-01-01

    The heat content of the North Sea is determined by the surface heat flux and the ocean heat transport into the region. The uncertainty in the projected warming in the North Sea caused by ocean heat transport has rarely been quantified. The difference in the estimates using regional ocean models is known to arise from the poorly prescribed temperature boundary forcing, either provided by global models at coarse grid resolutions, or from anomaly correction (using difference of the simulation from observed climatology) without interannual variation. In this study, two marine downscaling experiments were performed using boundary temperature forcings prepared with the two above mentioned strategies: one interpolated from a global model simulation (MI: model incl. interannual variation), and the other from observed climatology with warming trends in the future ocean derived from the global model simulation (OT: observed climatol. plus trend). The comparative experiments allowed us to estimate the uncertainty caused by ocean heat transport to the North Sea. The global climate model EC-Earth CMIP5 simulations of historical and future scenarios were used to provide lateral boundary forcing for regional models. The OT boundary was found to affect deep water temperatures (below 50 m) in the North Sea because of reduced interannual variability. The difference of mean temperature changes by 2100 (MI - OT) was up to 0.5 °C near the bottom across 58°N. While the deep water temperature in the North Sea did not directly link to the large-scale atmospheric circulation, the Norwegian outflow was highly correlated with the NAO index and heat transport of the Atlantic inflow provided by EC-Earth. It was found that model uncertainty due to the choice of lateral boundary forcing could be significant in the interannual variation of thermal stratification in the northern North Sea in a long-term simulation.

  7. The experience of critiquing published research: learning from the student and researcher perspective.

    PubMed

    Knowles, Judie M; Gray, Morag A

    2011-11-01

    This paper commences with affirmation of the importance of research critique within academic programmes of study, and the context of this skill within the nursing profession. Judie (student) shares an experience from a Professional Doctorate in Education (EdD) assignment that involved selecting and critiquing a piece of published research. "The qualities of an effective mentor" (Gray and Smith, 2000) was critiqued using the Critical Appraisal Skills Programme (CASP, 2006) framework. Morag was the researcher and co-author (Gray and Smith, 2000) and was subsequently contacted by Judie for the purposes of validating her critique assignment. On the tenth anniversary since publication of her PhD research findings Morag reflects on the original article in the light of Judie's critique and shares evaluative comments. Some of the assignment critique is validated by Morag, whilst some of the evaluation demonstrates unreliability of critique shown by Judie. Discussion surrounding sufficiency of research critique through systematic examination of a published article, versus an original research report such as a thesis ensues. The student and researcher/author reveal their learning from this collaborative experience and conclude with recommendations for; setting critique assignments; authors publishing their research findings; and students undertaking critique assignments.

  8. Developing Research-Ready Skills: Preparing Early Academic Students for Participation in Research Experiences

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Morris, A. R.

    2015-12-01

    Engaging lower-division undergraduates in research experiences is a key but challenging aspect of guiding talented students into the geoscience research pipeline. UNAVCO conducted a summer internship program to prepare first and second year college students for participation in authentic, scientific research. Many students in their first two years of academic studies do not have the science content knowledge or sufficient math skills to conduct independent research. Students from groups historically underrepresented in the geosciences may face additional challenges in that they often have a less robust support structure to help them navigate the university environment and may be less aware of professional opportunities in the geosciences.UNAVCO, manager of NSF's geodetic facility, hosted four students during summer 2015 internship experience aimed to help them develop skills that will prepare them for research internships and skills that will help them advance professionally. Students spent eight weeks working with UNAVCO technical staff learning how to use equipment, prepare instrumentation for field campaigns, among other technical skills. Interns also participated in a suite of professional development activities including communications workshops, skills seminars, career circles, geology-focused field trips, and informal interactions with research interns and graduate student interns at UNAVCO. This presentation will outline the successes and challenges of engaging students early in their academic careers and outline the unique role such experiences can have in students' academic careers.

  9. Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments.

    PubMed

    Lewis, Jeffrey; Sjöstrom, Jan

    2010-06-25

    Soil column experiments in both the saturated and unsaturated regimes are widely used for applied and theoretical studies in such diverse fields as transport model evaluation, fate and transport of pesticides, explosives, microbes, heavy metals and non aqueous phase liquids, and for evapotranspiration studies. The apparent simplicity of constructing soil columns conceals a number of technical issues which can seriously affect the outcome of an experiment, such as the presence or absence of macropores, artificial preferential flow paths, non-ideal infiltrate injection and unrealistic moisture regimes. This review examines the literature to provide an analysis of the state of the art for constructing both saturated and unsaturated soil columns. Common design challenges are discussed and best practices for potential solutions are presented. This article discusses both basic principles and the practical advantages and disadvantages of various experimental approaches. Both repacked and monolith-type columns are discussed. The information in this review will assist soil scientists, hydrogeologists and environmental professionals in optimizing the construction and operation of soil column experiments in order to achieve their objectives, while avoiding serious design flaws which can compromise the integrity of their results. PMID:20452088

  10. Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments.

    PubMed

    Lewis, Jeffrey; Sjöstrom, Jan

    2010-06-25

    Soil column experiments in both the saturated and unsaturated regimes are widely used for applied and theoretical studies in such diverse fields as transport model evaluation, fate and transport of pesticides, explosives, microbes, heavy metals and non aqueous phase liquids, and for evapotranspiration studies. The apparent simplicity of constructing soil columns conceals a number of technical issues which can seriously affect the outcome of an experiment, such as the presence or absence of macropores, artificial preferential flow paths, non-ideal infiltrate injection and unrealistic moisture regimes. This review examines the literature to provide an analysis of the state of the art for constructing both saturated and unsaturated soil columns. Common design challenges are discussed and best practices for potential solutions are presented. This article discusses both basic principles and the practical advantages and disadvantages of various experimental approaches. Both repacked and monolith-type columns are discussed. The information in this review will assist soil scientists, hydrogeologists and environmental professionals in optimizing the construction and operation of soil column experiments in order to achieve their objectives, while avoiding serious design flaws which can compromise the integrity of their results.

  11. Evaluation of the MOCAGE Chemistry Transport Model during the ICARTT/ITOP Experiment

    NASA Technical Reports Server (NTRS)

    Bousserez, N.; Attie, J. L.; Peuch, V. H.; Michou, M.; Pfister, G.; Edwards, D.; Emmons, L.; Arnold, S.; Heckel, A.; Richter, A.; Shlager, H.; Lewis A.; Avery, M.; Sachse, G.; Browell, E.; Ferrare, R.

    2007-01-01

    We evaluate the Meteo-France global chemistry transport 3D model MOCAGE (MOdele de Chimie Atmospherique a Grande Echelle) using the important set of aircraft measurements collected during the ICARRT/ITOP experiment. This experiment took place between US and Europe during summer 2004 (July 15-August 15). Four aircraft were involved in this experiment providing a wealth of chemical data in a large area including the North East of US and western Europe. The model outputs are compared to the following species of which concentration is measured by the aircraft: OH, H2O2, CO, NO, NO2, PAN, HNO3, isoprene, ethane, HCHO and O3. Moreover, to complete this evaluation at larger scale, we used also satellite data such as SCIAMACHY NO2 and MOPITT CO. Interestingly, the comprehensive dataset allowed us to evaluate separately the model representation of emissions, transport and chemical processes. Using a daily emission source of biomass burning, we obtain a very good agreement for CO while the evaluation of NO2 points out incertainties resulting from inaccurate ratio of emission factors of NOx/CO. Moreover, the chemical behavior of O3 is satisfactory as discussed in the paper.

  12. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    NASA Astrophysics Data System (ADS)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  13. Looking for seismic scatterers: summer research experience for undergraduate students

    NASA Astrophysics Data System (ADS)

    Gerasimenko, I.; Bagchi, S.; Toteva, T.; Peng, Z.

    2008-12-01

    This project was part of collaboration between Randolph College (VA) and Georgia Institute of Technology (GA). It was designed as summer research experience for undergraduate students. The duration of the project was eight weeks. The aim of this study was to search for fault zone scatterers in the Parkfield section of the San Andreas Fault, and examine the presence or absence of physical changes in the scattering intensity before and after the 2004 M6 Parkfield earthquake. The two students visited Georgia Tech for a week and were trained to manipulate seismic data in Seismic Analysis Code (SAC) format. They assembled a data base of over a thousand events that occurred before and after the M6 earthquake and were recorded by the USGS Parkfield, California, dense seismograph array (UPSAR). They manually picked the arrivals for the P and S waves. Additional signal processing such as frequency filtering and semblance analysis were applied to the records in search for isolated scatterers in the seismic coda. While the eight-week-long research was not enough for the students to complete their project, it was certainly enough to sparkle excitement for conducting seismological research. Currently both students are enrolled in a research topics class and continue to work on this project. Their past and future work will be presented at the meeting.

  14. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    NASA Astrophysics Data System (ADS)

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-09-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.

  15. Simulated Interactive Research Experiments as Educational Tools for Advanced Science.

    PubMed

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M; Hopf, Martin; Arndt, Markus

    2015-09-15

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.

  16. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    PubMed Central

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-01-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627

  17. Multi-process herbicide transport in structured soil columns: experiments and model analysis.

    PubMed

    Köhne, J Maximilian; Köhne, Sigrid; Simůnek, Jirka

    2006-05-01

    Model predictions of pesticide transport in structured soils are complicated by multiple processes acting concurrently. In this study, the hydraulic, physical, and chemical nonequilibrium (HNE, PNE, and CNE, respectively) processes governing herbicide transport under variably saturated flow conditions were studied. Bromide (Br-), isoproturon (IPU, 3-(4-isoprpylphenyl)-1,1-dimethylurea) and terbuthylazine (TER, N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine) were applied to two soil columns. An aggregated Ap soil column and a macroporous, aggregated Ah soil column were irrigated at a rate of 1 cm h(-1) for 3 h. Two more irrigations at the same rate and duration followed in weekly intervals. Nonlinear (Freundlich) equilibrium and two-site kinetic sorption parameters were determined for IPU and TER using batch experiments. The observed water flow and Br- transport were inversely simulated using mobile-immobile (MIM), dual-permeability (DPM), and combined triple-porosity (DP-MIM) numerical models implemented in HYDRUS-1D, with improving correspondence between empirical data and model results. Using the estimated HNE and PNE parameters together with batch-test derived equilibrium sorption parameters, the preferential breakthrough of the weakly adsorbed IPU in the Ah soil could be reasonably well predicted with the DPM approach, whereas leaching of the strongly adsorbed TER was predicted less well. The transport of IPU and TER through the aggregated Ap soil could be described consistently only when HNE, PNE, and CNE were simultaneously accounted for using the DPM. Inverse parameter estimation suggested that two-site kinetic sorption in inter-aggregate flow paths was reduced as compared to within aggregates, and that large values for the first-order degradation rate were an artifact caused by irreversible sorption. Overall, our results should be helpful to enhance the understanding and modeling of multi-process pesticide transport through structured soils

  18. Transport and sorption behavior of individual phthalate esters in sandy aquifer: column experiments.

    PubMed

    Zakari, Sissou; Liu, Hui; Li, Yan-Xi; He, Xi; Tong, Lei

    2016-08-01

    This work aimed to quantify the transport and sorption behavior of four individual phthalate esters (PAEs) in sandy aquifer using column experiments so as to provide important parameters for the prediction and control of PAEs pollution plume in groundwater system. The transport curves of four individual PAEs were simulated with HYDRUS-1D through fitting linear and nonlinear equilibrium (LE/NO), linear and nonlinear, first-order, one-site non-equilibrium (LO/NO), linear and nonlinear, first-order, two-site non-equilibrium (LFO/NFO) sorption models. Simulation results showed that two-site models (LFO and NFO) displayed similar best fittings. The results from LFO model simulation showed that when water flowed 1000 m in sandy aquifer, PAEs with shorter carbon chains (DMP and DEP) transport 31.6 and 22.2 m, respectively. Unexpectedly for the same water transport distance, PAEs with longer carbon chains (DBP and DiBP) transported 40.2 and 60.7 m, respectively, which were faster than DMP and DEP, mainly due to the limited accessibility of type-2 sorption sites. The retardations were mainly caused by the sorption of PAEs on the time-dependent type-2 sites. DBP and DiBP exhibited higher mass transfer speed to and fro type-2 sites but showed lower total sorption coefficient (K) due to the limited accessibility of sorption sites. Coexistence of PAEs and smaller sorbent particles increased total K values of DBP and DiBP due to synergic development of more sorption sites with DMP and DEP. PMID:27146532

  19. THE ESTABLISHMENT OF A GROUNDWATER RESEARCH DATA CENTER FOR VALIDATION OF SUBSURFACE FLOW AND TRANSPORT MODELS

    EPA Science Inventory

    The International Ground Water Modeling Center has established a Groundwater Research Data Center which provides information on research datasets resulting from publicly funded field experiments regarding soil and groundwater pollution and related laboratory bench studies, and wh...

  20. Viability of modelling gas transport in shallow injection-monitoring experiment field at Maguelone, France

    NASA Astrophysics Data System (ADS)

    Basirat, Farzad; Perroud, Hervé; Lofi, Johanna; Denchik, Nataliya; Lods, Gérard; Fagerlund, Fritjof; Sharma, Prabhakar; Pezard, Philippe; Niemi, Auli

    2015-04-01

    In this study, TOUGH2/EOS7CA model is used to simulate the shallow injection-monitoring experiment carried out at Maguelone, France, during 2012 and 2013. The possibility of CO2 leakage from storage reservoir to upper layers is one of the issues that need to be addressed in CCS projects. Developing reliable monitoring techniques to detect and characterize CO2 leakage is necessary for the safety of CO2 storage in reservoir formations. To test and cross-validate different monitoring techniques, a series of shallow gas injection-monitoring experiments (SIMEx) has been carried out at the Maguelone. The experimental site is documented in Lofi et al [2013]. At the site, a series of nitrogen and one CO2 injection experiment have been carried out during 2012-2013 and different monitoring techniques have been applied. The purpose of modelling is to acquire understanding of the system performance as well as to further develop and validate modelling approaches for gas transport in the shallow subsurface, against the well-controlled data sets. The preliminary simulation of the experiment including the simulation for the Nitrogen injection test in 2012 was presented in Basirat et al [2013]. In this work, the simulations represent the gaseous CO2 distribution and dissolved CO2 within range obtained by monitoring approaches. The Multiphase modelling in combination with geophysical monitoring can be used for process understanding of gas phase migration- and mass transfer processes resulting from gaseous CO2 injection. Basirat, F., A. Niemi, H. Perroud, J. Lofi, N. Denchik, G. Lods, P. Pezard, P. Sharma, and F. Fagerlund (2013), Modeling Gas Transport in the Shallow Subsurface in Maguelone Field Experiment, Energy Procedia, 40, 337-345. Lofi, J., P. Pezard, F. Bouchette, O. Raynal, P. Sabatier, N. Denchik, A. Levannier, L. Dezileau, and R. Certain (2013), Integrated Onshore-Offshore Investigation of a Mediterranean Layered Coastal Aquifer, Groundwater, 51(4), 550-561.

  1. Modelling gas transport in the shallow subsurface in the Maguelone field experiment

    NASA Astrophysics Data System (ADS)

    Basirat, Farzad; Niemi, Auli; Perroud, Hervé; Lofi, Johanna; Denchik, Nataliya; Lods, Gérard; Pezard, Philippe; Sharma, Prabhakar; Fagerlund, Fritjof

    2013-04-01

    Developing reliable monitoring techniques to detect and characterize CO2 leakage in shallow subsurface is necessary for the safety of any GCS project. To test different monitoring techniques, shallow injection-monitoring experiment have and are being carried out at the Maguelone, along the Mediterranean lido of the Gulf of Lions, near Montpellier, France. This experimental site was developed in the context of EU FP7 project MUSTANG and is documented in Lofi et al. (2012). Gas injection experiments are being carried out and three techniques of pressure, electrical resistivity and seismic monitoring have been used to detect the nitrogen and CO2 release in the near surface environment. In the present work we use the multiphase and multicomponent TOUGH2/EOS7CA model to simulate the gaseous nitrogen and CO2 transport of the experiments carried out so far. The objective is both to gain understanding of the system performance based on the model analysis as well as to further develop and validate modelling approaches for gas transport in the shallow subsurface, against the well-controlled data sets. Numerical simulation can also be used for the prediction of experimental setup limitations. We expect the simulations to represent the breakthrough time for the different tested injection rates. Based on the hydrogeological formation data beneath the lido, we also expect the vertical heterogeneities in grain size distribution create an effective capillary barrier against upward gas transport in numerical simulations. Lofi J., Pezard P.A., Bouchette F., Raynal O., Sabatier P., Denchik N., Levannier A., Dezileau L., and Certain R. Integrated onshore-offshore geophysical investigation of a layered coastal aquifer, NW Mediterranean. Ground Water, (2012).

  2. Research Experience for Undergraduates: A Non-Traditional Approach

    NASA Astrophysics Data System (ADS)

    Carrick, T. L.; Miller, K. C.; Hagedorn, E.; Velasco, A. A.

    2012-12-01

    Research experiences for undergraduates (REUs) have been documented to be an effective way to increase student retention in the Science, Technology, Engineering and Mathematics (STEM) by exposing students to research. REUs typically run during the summer months, allowing students to travel to different universities away from their home institutions. We created an REU program, Pathways Research Experience for undergraduates Program (PREP) that ran during the fall and spring academic semesters and focused on the geosciences. These students were provided with a monthly stipend to work with a research mentor, and they were required to attend a weekly professional development meeting led by the Pathways PIs and the program coordinator. The weekly training program focused on research skills, presentation skills, and graduate school preparation. Since a majority of students at University of Texas at El Paso (a Hispanic Serving Institution with 70% Hispanic and 10% Mexican students) must work outside the university while attending college, the stipends enabled students to remain on campus to "work", with the hope that this may contribute to their overall academic success. By spending more time on campus, the participants were able to interact more with faculty and other students, both at the undergraduate and graduate levels. Participants were chosen on a basis of GPA and the contents of an application that included a statement of purpose, a resume, a transcript, and at least one letter of recommendation. Once the student was selected, they were required to find a mentor and research project. Through an analysis of surveys, we have found that participants enjoy the meetings, which gave them a sense of belonging to a group, and an additional source of academic support. Participants were also expected to take part in outreach activities as part of our goal to create a geosciences network in El Paso. With this REU approach, we believe that our success rate suggests that this

  3. StreamLab Collaboratory: Experiments, data sets, and research synthesis

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Marr, Jeffrey D. G.; Hill, Craig; Johnson, Sara; Ellis, Chris; Mullin, James; Orr, Cailin H.; Wilcock, Peter R.; Hondzo, Miki; Paola, Chris

    2013-03-01

    A series of community-led, large-scale laboratory experiments, termed "StreamLab", were performed by the National Center for Earth-surface Dynamics (NCED) with the purpose of advancing multidisciplinary research, education, and knowledge transfer at the interface of physical/chemical/biological processes in streams, science-based stream restoration practice, and environmental sensing technologies. Two series of experiments, StreamLab06 and StreamLab08, were conducted in the Main Channel of the St. Anthony Falls Laboratory at the University of Minnesota, a flume 84 m long and 2.75 m wide with water fed by the Mississippi River at a rate of up to 8.5 m3/s. The purpose of this paper is to share with the broader community the data collected with the hope of stimulating further analysis and future experimental campaigns toward advancing our predictive understanding of the physical, chemical, and biological processes in streams. Toward this end, a brief summary of the results to date is included and some ideas for further research are provided.

  4. Undergraduate Research Experiences with the Global Telescope Network

    NASA Astrophysics Data System (ADS)

    McLin, Kevin M.; Wyman, K.; Broughton, N.; Coble, K.; Cominsky, L. R.

    2009-01-01

    Students at Chicago State University and Sonoma State University have undertaken observational programs using telescopes of the Global Telescope Network (GTN) and SkyNet. The GTN is a network of small telescopes funded by GLAST to support the science of high energy astrophysics missions, specifically GLAST, Swift and XMM-Newton. It is managed by the NASA E/PO Group at Sonoma State University. SkyNet encompasses a network  of small telescopes managed from the University of North Carolina to catch gamma ray burst afterglows. A primary motivator behind both networks is education. In the program outlined here, undergraduate students will schedule, reduce and analyze observations of active galaxies and other targets. Students will then present their work as part of observational course work, or in some cases as a "capstone” research experience required for graduation. This work will give the students direct experience with several aspects of scientific research, including literature searches, data acquisition and analysis, and reporting of results.

  5. Density modulation experiment to determine transport coefficients on Joint-TEXT Tokamak.

    PubMed

    Chen, W; Zhuang, G; Gao, L; Gentle, K W; Chen, J; Shi, P; Liu, Y; Li, Q; Wang, Z J

    2015-02-01

    Density modulation experiments have been conducted on Joint-TEXT (J-TEXT) Tokamak Ohmic discharge to investigate particle transport based on a model with constant diffusion plus inward convection. Like the HCN interferometer, the newly developed three-wave polarimeter-interferometer system (POLARIS) is used to measure the perturbed density. The comparison of results between the HCN interferometer and POLARIS is given. The consistent results indicate the validity of the analysis scheme. At lower densities, the typical particle confinement time τp is found to increase with electron density, while it saturates at higher densities. PMID:25725842

  6. Density modulation experiment to determine transport coefficients on Joint-TEXT Tokamak

    NASA Astrophysics Data System (ADS)

    Chen, W.; Zhuang, G.; Gao, L.; Gentle, K. W.; Chen, J.; Shi, P.; Liu, Y.; Li, Q.; Wang, Z. J.

    2015-02-01

    Density modulation experiments have been conducted on Joint-TEXT (J-TEXT) Tokamak Ohmic discharge to investigate particle transport based on a model with constant diffusion plus inward convection. Like the HCN interferometer, the newly developed three-wave polarimeter-interferometer system (POLARIS) is used to measure the perturbed density. The comparison of results between the HCN interferometer and POLARIS is given. The consistent results indicate the validity of the analysis scheme. At lower densities, the typical particle confinement time τp is found to increase with electron density, while it saturates at higher densities.

  7. Density modulation experiment to determine transport coefficients on Joint-TEXT Tokamak

    SciTech Connect

    Chen, W.; Zhuang, G.; Gao, L. Chen, J.; Shi, P.; Liu, Y.; Li, Q.; Wang, Z. J.; Gentle, K. W.

    2015-02-15

    Density modulation experiments have been conducted on Joint-TEXT (J-TEXT) Tokamak Ohmic discharge to investigate particle transport based on a model with constant diffusion plus inward convection. Like the HCN interferometer, the newly developed three-wave polarimeter-interferometer system (POLARIS) is used to measure the perturbed density. The comparison of results between the HCN interferometer and POLARIS is given. The consistent results indicate the validity of the analysis scheme. At lower densities, the typical particle confinement time τ{sub p} is found to increase with electron density, while it saturates at higher densities.

  8. NASA Experiment on Tropospheric-Stratospheric Water Vapor Transport in the Intertropical Convergence Zone

    NASA Technical Reports Server (NTRS)

    Page, William A.

    1982-01-01

    The following six papers report preliminary results obtained from a field experiment designed to study the role of tropical cumulo-nimbus clouds in the transfer of water vapor from the troposphere to the stratosphere over the region of Panama. The measurements were made utilizing special NOAA enhanced IR satellite images, radiosonde-ozonesondes and a NASA U-2 aircraft carrying. nine experiments. The experiments were provided by a group of NASA, NOAA, industry, and university scientists. Measurements included atmospheric humidity, air and cloud top temperatures, atmospheric tracer constituents, cloud particle characteristics and cloud morphology. The aircraft made a total of eleven flights from August 30 through September 18, 1980, from Howard Air Force Base, Panama; the pilots obtained horizontal and vertical profiles in and near convectively active regions and flew around and over cumulo-nimbus towers and through the extended anvils in the stratosphere. Cumulo-nimbus clouds in the tropics appear to play an important role in upward water vapor transport and may represent the principal source influencing the stratospheric water vapor budget. The clouds provide strong vertical circulation in the troposphere, mixing surface air and its trace materials (water vapor, CFM's sulfur compounds, etc.) quickly up to the tropopause. It is usually assumed that large scale mean motions or eddy scale motions transport the trace materials through the tropopause and into the stratosphere where they are further dispersed and react with other stratospheric constituents. The important step between the troposphere and stratosphere for water vapor appears to depend upon the processes occurring at or near the tropopause at the tops of the cumulo-nimbus towers. Several processes have been sugested: (1) The highest towers penetrate the tropopause and carry water in the form of small ice particles directly into the stratosphere. (2) Water vapor from the tops of the cumulonimbus clouds is

  9. Density modulation experiment to determine transport coefficients on Joint-TEXT Tokamak.

    PubMed

    Chen, W; Zhuang, G; Gao, L; Gentle, K W; Chen, J; Shi, P; Liu, Y; Li, Q; Wang, Z J

    2015-02-01

    Density modulation experiments have been conducted on Joint-TEXT (J-TEXT) Tokamak Ohmic discharge to investigate particle transport based on a model with constant diffusion plus inward convection. Like the HCN interferometer, the newly developed three-wave polarimeter-interferometer system (POLARIS) is used to measure the perturbed density. The comparison of results between the HCN interferometer and POLARIS is given. The consistent results indicate the validity of the analysis scheme. At lower densities, the typical particle confinement time τp is found to increase with electron density, while it saturates at higher densities.

  10. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  11. Reverse osmosis transport of alkali halides and nickel salts through cellulose triacetate membranes. Performance prediction from NaCl experiments

    SciTech Connect

    Nirmal, J.D.; Pandya, V.P.; Desai, N.V.; Rangarajan, R. )

    1992-10-01

    The separation of alkali metal halides, nickel chloride, and nickel sulfate was determined for cellulose triacetate reverse osmosis (CTA RO) membranes. From transport analysis, the relative free energy parameters for transport of these salts through CTA membranes were determined. From these relative free energy parameters of salts, the solute separation by CTA membranes could be predicted from RO experiment with NaCl solution. The transport analysis and an illustration of how the concept is useful are presented in this paper.

  12. Traffic flow theory and characteristics with applications for intelligent transportation system technologies. Transportation research record

    SciTech Connect

    1995-12-31

    ;Contents: Another Look at A Priori Relationship Among Traffic Flow Characteristics; Description of Macroscopic Relationships Among Traffic Flow Variables Using Neural Network Models; Microscopic Modeling of Traffic Within Freeway Lanes; Statistical Analysis of Day-to-Day Variations in Real-Time Traffic Flow Data; Statistical Analysis and Validation of Multipopulation Traffic Simulation Experiments; Event-Based Short-Term Traffic Flow Prediction Model; Estimating Intersection Turning Movement Proportions from Less-Than-Complete Sets of Traffic Counts; Arterial Incident Detection Integrating Data from Multiple Sources; and Driver Deceleration Behavior on a Freeway in New Zealand.

  13. Effects of transportation on energy and air quality. Transportation research record

    SciTech Connect

    1997-11-01

    Partial Contents: Alternative Fuel Vehicle Programs: Applicability of Government Incentives; Transitional Alternative Fuels and Vehicles Model; Forecasting Cost Path of Electric Vehicle Drive System: Monte Carlo Experience Curve Simulation; Another Way to Go. Some Implications of Light-duty Diesel Strategy; Use of Episodic Controls to Reduce Frequency and Severity of Air Pollution Events; Conformity: Long-Term Prognoses for Selected Ozone Nonattainment Areas in California; Development of Comprehensive Modal Emissions Model: Operating Under Hot-Stabilized Conditions; and Implications of Transient Mode Duration for Spatially Disaggregated High-Resolution Emission Inventory Studies.

  14. Data collection and field experiments at the Apache Leap research site. Annual report, May 1995--1996

    SciTech Connect

    Woodhouse, E.G.; Bassett, R.L.; Neuman, S.P.; Chen, G.

    1997-08-01

    This report documents the research performed during the period May 1995-May 1996 for a project of the U.S. Regulatory Commission (sponsored contract NRC-04-090-051) by the University of Arizona. The project manager for this research in Thomas J. Nicholson, Office of Nuclear Regulatory Research. The objectives of this research were to examine hypotheses and test alternative conceptual models concerning unsaturated flow and transport through fractured rock, and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models at the Apache Leap Research Site near Superior, Arizona. Each chapter in this report summarizes research related to a specific set of objectives and can be read and interpreted as a separate entity. Topics include: crosshole pneumatic and gaseous tracer field and modeling experiments designed to help validate the applicability of contiuum geostatistical and stochastic concepts, theories, models, and scaling relations relevant to unsaturated flow and transport in fractured porous tuffs; use of geochemistry and aquifer testing to evaluate fracture flow and perching mechanisms; investigations of {sup 234}U/{sup 238}U fractionation to evaluate leaching selectivity; and transport and modeling of both conservative and non-conservative tracers.

  15. Authentic Astronomy Research Experiences for Teachers: the NASA/IPAC Teacher Archive Research Program (NITARP)

    NASA Astrophysics Data System (ADS)

    Rebull, Luisa M.; Gorjian, V.; Squires, G.; NITARP Team

    2011-01-01

    How many times have you gotten a question from the general public, or read a news story, and concluded that "they just don't understand how real science works"? One really good way to get the word out about how science works is to have more people experience the process of scientific research. The way we have chosen to do this, since 2004, is to provide authentic research experiences for teachers using Spitzer data. (The program used to be called the Spitzer Teacher Program for Teachers and Students, and in 2009 was rechristened NITARP, the NASA/IPAC Teacher Archive Research Program.) We partner small groups of teachers with a mentor astronomer, they do research as a team, write up a poster, and present it at an AAS meeting. The teachers incorporate this experience into their classroom, and their experiences color their teaching for years to come, influencing 100s of students per teacher. Four different teams from the 2010 class of NITARP teachers are presenting scientific and educational results at this AAS meeting; please look for them!

  16. Engaging Students in Applied Research: Experiences from Collaborative Research and Learning in Brazil and Paraguay

    ERIC Educational Resources Information Center

    Vasquez-Leon, Marcela; Burke, Brian; Radonic, Lucero

    2009-01-01

    A critical interest of applied anthropology is to educate students to be theoretically grounded and capable of assuming a level of social responsibility that extends beyond academia. In this paper, we reflect on the issue of student preparation for work in the policy arena by focusing on the experiences of a five-year applied research project that…

  17. Research Engagement as Identity Construction: Hong Kong Preservice Teachers' Experiences of a Compulsory Research Project

    ERIC Educational Resources Information Center

    Trent, John

    2012-01-01

    This paper reports the results of a qualitative study that examined the experiences of six preservice English language teachers in Hong Kong as they prepared for, engaged in, and reflected upon a compulsory research project during the final year of their Bachelor of Education degree program. Drawing upon in-depth interviews and using methods of…

  18. Broadening participation in Research Experiences for Undergraduates (REU) programs: an evaluation of the team research model for undergraduate research experiences

    NASA Astrophysics Data System (ADS)

    Berthelote, A. R.; Geraghty Ward, E. M.; Dalbotten, D. M.

    2014-12-01

    The REU site on sustainable land and water resources has a goal of broadening participation in the geosciences by underrepresented groups and particularly Native American students. We are evaluating modifications to the traditional REU model in order to better support these students. First, we review a team research model for REU students, where students are placed on teams and work together in peer groups supported by a team of mentors. Second, the REU takes place in locations that have high populations of Native American students to remove barriers to participation for non-traditional students. Finally, the teams do research on issues related to local concerns with cultural focus. Traditional REU models (1 faculty to 1 student/on campus) have been shown to be effective in supporting student movement into graduate programs but often fail to attract a diverse group of candidates. In addition, they rely for success on the relationship between faculty and student, which can often be undermined by unrealistic expectations on the part of the student about the mentor relationship, and can be exacerbated by cultural misunderstanding, conflicting discourse, or students' personal or family issues. At this REU site, peer mentorship and support plays a large role. Students work together to select their research question, follow the project to completion and present the results. Students from both native and non-native backgrounds learn about the culture of the partner reservations and work on a project that is of immediate local concern. The REU also teaches students protocols for working on Native American lands that support good relations between reservation and University. Analysis of participant data gathered from surveys and interview over the course of our 3-year program indicates that the team approach is successful. Students noted that collaborating with other teams was rewarding and mentors reported positively about their roles in providing guidance for the student

  19. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    SciTech Connect

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H.; Randall, P.R.; Wegener, W.H.

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  20. The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides a summary of conclusions from the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) Flight Experiment which NASA conducted to determine pilot acceptability of the HVO concept for normal conditions. The SATS HVO concept improves efficiency at non-towered, non-radar airports in Instrument Meteorological Conditions (IMC) while achieving a level of safety equal to today s system. Reported are results from flight experiment data that indicate that the SATS HVO concept is viable. The success of the SATS HVO concept is based on acceptable pilot workload, performance, and subjective criteria when compared to the procedural control operations in use today at non-towered, non-radar controlled airfields in IMC. The HVO Flight Experiment, flown on NASA's Cirrus SR22, used a subset of the HVO Simulation Experiment scenarios and evaluation pilots in order to validate the simulation experiment results. HVO and Baseline (today s system) scenarios flown included: single aircraft arriving for a GPS non-precision approach; aircraft arriving for the approach with multiple traffic aircraft; and aircraft arriving for the approach with multiple traffic aircraft and then conducting a missed approach. Results reveal that all twelve low-time instrument-rated pilots preferred SATS HVO when compared to current procedural separation operations. These pilots also flew the HVO procedures safely and proficiently without additional workload in comparison to today s system (Baseline). Detailed results of pilot flight technical error, and their subjective assessments of workload and situation awareness are presented in this paper.

  1. Modeling Course-Based Undergraduate Research Experiences: An Agenda for Future Research and Evaluation

    PubMed Central

    Corwin, Lisa A.; Graham, Mark J.; Dolan, Erin L.

    2015-01-01

    Course-based undergraduate research experiences (CUREs) are being championed as scalable ways of involving undergraduates in science research. Studies of CUREs have shown that participating students achieve many of the same outcomes as students who complete research internships. However, CUREs vary widely in their design and implementation, and aspects of CUREs that are necessary and sufficient to achieve desired student outcomes have not been elucidated. To guide future research aimed at understanding the causal mechanisms underlying CURE efficacy, we used a systems approach to generate pathway models representing hypotheses of how CURE outcomes are achieved. We started by reviewing studies of CUREs and research internships to generate a comprehensive set of outcomes of research experiences, determining the level of evidence supporting each outcome. We then used this body of research and drew from learning theory to hypothesize connections between what students do during CUREs and the outcomes that have the best empirical support. We offer these models as hypotheses for the CURE community to test, revise, elaborate, or refute. We also cite instruments that are ready to use in CURE assessment and note gaps for which instruments need to be developed. PMID:25687826

  2. Modeling course-based undergraduate research experiences: an agenda for future research and evaluation.

    PubMed

    Corwin, Lisa A; Graham, Mark J; Dolan, Erin L

    2015-03-01

    Course-based undergraduate research experiences (CUREs) are being championed as scalable ways of involving undergraduates in science research. Studies of CUREs have shown that participating students achieve many of the same outcomes as students who complete research internships. However, CUREs vary widely in their design and implementation, and aspects of CUREs that are necessary and sufficient to achieve desired student outcomes have not been elucidated. To guide future research aimed at understanding the causal mechanisms underlying CURE efficacy, we used a systems approach to generate pathway models representing hypotheses of how CURE outcomes are achieved. We started by reviewing studies of CUREs and research internships to generate a comprehensive set of outcomes of research experiences, determining the level of evidence supporting each outcome. We then used this body of research and drew from learning theory to hypothesize connections between what students do during CUREs and the outcomes that have the best empirical support. We offer these models as hypotheses for the CURE community to test, revise, elaborate, or refute. We also cite instruments that are ready to use in CURE assessment and note gaps for which instruments need to be developed. PMID:25687826

  3. Regional Seismic Identification Research:Processing, Transportability and Source Models

    SciTech Connect

    Walter, W; Mayeda, K; Rodgers, A; Taylor, S; Dodge, D; Matzel, E; Ganzberger, M

    2004-07-09

    Our identification research for the past several years has focused on the problem of correctly discriminating small-magnitude explosions from a background of earthquakes, mining tremors, and other events. Small magnitudes lead to an emphasis on regional waveforms. It has been shown that at each test site where earthquake and explosions are in close proximity and recorded at the same station, clear differences in the regional body waves such as the relative high frequency amplitudes of P and S waves can be used to discriminate between event types. However path and source effects can also induce such differences, therefore these must be quantified and accounted for. We have been using a specific technique called Magnitude and Distance Amplitude Correction (MDAC), with some success to account for some of these effects.

  4. The Space Science Lab: High School Student Solar Research Experience

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Whitworth, C.; Harris, B.; David, C.

    2007-12-01

    Native American, Hispanic, African American, and other underrepresented high school students in rural Western North Carolina have the unprecedented opportunity as researchers in the Space Science Lab to conduct visible and radio observations of the Sun. The program involves 90 students over a three year period. The primary goal is to reach students who otherwise would not have this opportunity, and motivate them to develop the critical thinking skills necessary for objective scientific inquiry. Students develop skills in electronics, computer sciences, astronomy, physics and earth sciences. Equally important is the hope that the students will become interested in pursuing careers in research or other science-related areas. We expect their enthusiasm for science will increase by experiencing research investigations that are fun and relevant to their understanding of the world around them. The students conduct their own research, and also interact with scientists around the world. A total of 54 students have spent a week at the Space Science Lab located on the campus of the Pisgah Astronomical Research Institute (PARI) during the Summers of 2006 and 2007. Students construct their own JOVE radio telescopes that they bring home to continue their observations during the academic year. They share their results during four follow-up sessions throughout the school year. The students also have Internet access to radio telescopes and solar monitoring equipment at PARI. We report on results from student evaluations from the first year in 2006 and current session student experiences. We gratefully acknowledge support from the Burroughs Wellcome Fund - Student Science Enrichment Program

  5. High-Speed Research Surveillance Symbology Assessment Experiment

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Norman, R. Michael

    2000-01-01

    Ten pilots flew multiple approach and departure scenarios in a simulation experiment of the High-Speed Civil Transport to evaluate the utility of different airborne surveillance display concepts. The primary eXternal Visibility System (XVS) display and the Navigation Display (ND) were used to present tactical and strategic surveillance information, respectively, to the pilot. Three sensors, the Traffic Alert and Collision Avoidance System, radar, and the Automatic Dependent Surveillance-Broadcast system, were modeled for this simulation and the sensors surveillance information was presented in two different symbology sets to the pilot. One surveillance symbology set used unique symbol shapes to differentiate among the sensors, while the other set used common symbol shapes for the sensors. Surveillance information in the form of escape guidance from threatening traffic was also presented to the pilots. The surveillance information (sensors and escape guidance) was either presented head-up on the primary XVS display and head-down on the ND or head-down on the ND only. Both objective and subjective results demonstrated that the display concepts having surveillance information presented head-up and head-down have surveillance performance benefits over those concepts having surveillance information displayed head-down only. No significant symbology set differences were found for surveillance task performance.

  6. Reaction-based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect

    Tsyh Yeh, Gour

    2007-12-21

    This research sought to examine biogeochemical processes likely to take place in the less conductive materials above and below the gravel during the in situ ethanol biostimulation experiment conducted at Area 2 during 2005-2006. The in situ experiment in turn examined the hypothesis that injection of electron donor into this layer would induce formation of a redox barrier in the less conductive materials, resulting in decreased mass transfer of uranium out these materials and attendant declines in groundwater U(VI) concentration. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This report summarizes research activities conducted at The University of Central Florida (2004-2007), the development of biogeochemical and reactive transport models and the conduction of numerical simulations at laboratory, column, and field scales.

  7. Solute movement through unsaturated fen peat: Lab and greenhouse experiments for transport study of contaminants from Athabasca oil sands tailing pond water

    NASA Astrophysics Data System (ADS)

    Price, J. S.; Rezanezhad, F.; Graf, M.; Rochefort, L.

    2009-12-01

    In the Athabasca oil sands region, wetlands specially peatland dominate the landscape. Processing oil sands produces large volumes of wet material called oil sands tailing water. Discharge of organic liquid contaminants such as Naphthenic Acids (NA) and Sodium (Na) from tailing waters have a toxic effect on plants in this region. One of the greatest barriers to peatland creation will be the elevated amount of toxins (naphthenic acid, metals and salinity) present in the post-mined landscapes. Variability in solute transport properties in the unsaturated zone is of growing concern due to environmental hazards and there are no many scientific challenges in the field of organic liquid contaminants transport through the unsaturated peat soils. The attenuation, degradation and transport of NA and Na in peat are essentially unknown. The ionizable nature of NA and Na along with the complex structure of peat soils poses challenges to characterizing the transport properties of NA and Na in the filed and laboratory. In this experimental research project, we examine the plant responses in 64 greenhouse tubs filled with peat and process-water; and study the transport and attenuation processes of NA and Na through peat in a series of laboratory column experiments. We developed an analytical method for evaluating the transport and adsorption characteristics of NA and Na to derive a clear understanding of the transport, sorption mechanisms and desorption behaviour of NA and Na with temporal evolution of the solute concentration distribution from groundwater to fen plants. The goal of this research project is to investigate how oil sands process-affected waters will affect peatland vegetation, specifically fen vegetation. In particular, we would like to know how contaminants present in oil sand process affected water will be transported through peat and how typical fen vegetation will react to a realistic contamination scenario in a controlled macrocosm environment? Research that

  8. Sediment-transport events on the northern California continental shelf during the 1990-1991 STRESS experiment

    USGS Publications Warehouse

    Sherwood, C.R.; Butman, B.; Cacchione, D.A.; Drake, D.E.; Gross, T.F.; Sternberg, R.W.; Wiberg, P.L.; Williams, A. J.

    1994-01-01

    Measurements of currents and light transmission were made at bottom tripods and moorings arrayed across the northern California continental shelf along the Coastal Ocean Dynamics Experiment (CODE) "C" transect as part of the 1990-1991 Sediment Transport Events on Shelves and Slopes (STRESS) experiment. In combination with meteorological and wave data from the National Data Buoy Center Buoy 46013, these measurements provide information about the physical forcing and resultant resuspension and transport of bottom material between 21 November and 8 March. Sixteen events were identified in the wave, wind and current-meter records for this period. Only two were local storms with southerly winds, but they caused about half of the seasonal net transport. Seven were swell events that combined long-period waves generated by distant storms with local currents. At the 90-m site, swells interacted with the mean northward flow to produce northward transport. During six northerly wind events, upwelling-favorable winds often were sufficient to slow or reverse the mean northward flow and thus caused southward transport. A single current event, which produced moderate southward transport, was observed at the 130-m site. Net transport during the winter experiment was offshore at all sites, northward at the inner- and mid-shelf sites, but southward at the outer-shelf site. The results suggest that local storms with southerly winds may dominate seasonal transport, as on the Washington shelf, but significant transport also can occur during fair weather and during periods of northerly winds. ?? 1994.

  9. MOBILIZATION AND TRANSPORT OF SOIL PARTICLES DURING INFILTRATION EXPERIMENTS IN AN AGRICULTURAL FIELD, SHENANDOAH VALLEY, VIRGINIA. (R824772)

    EPA Science Inventory

    Evidence that fine particles mobilized and transported in
    soils and aquifers can have a profound influence on
    contaminant migration has spawned much interest recently
    in understanding colloid transport in natural materials.
    Repeated infiltration experiments on an i...

  10. Using sediment transport and river restoration to link research and education, and promote K-12 female involvement in STEM fields

    NASA Astrophysics Data System (ADS)

    Yager, E. M.; Bradley-Eitel, K.

    2011-12-01

    The focus of this CAREER award is to better understand and predict the mechanics of sediment transport, to link research and education through courses and shared field sites, and to increase female interest in STEM fields. To accomplish the education component of this proposal we have focused on the following three activities: 1) a Keystone course on the scientific method, 2) a Women Outside with Science (WOWS) camp and 3) a permanent field site for research and education on river processes. In the Keystone Course, students investigated the impact of roughness addition, in sediment-starved river reaches (e.g. downstream of dams), on the retention of gravel used for spawning. They developed research questions and hypotheses, designed and conducted a set of scaled laboratory flume experiments, analyzed their data and wrote a draft manuscript of their results. Student feedback was overwhelmingly positive on the merits of this course, which included hands-on learning of the following: basic sediment transport and fluvial geomorphology, applied statistics, laboratory methods, and scientific writing skills. Students sometimes struggled when flume experiments did not progress as planned, and in the analysis and interpretation of complex data. Some of the students in the course have reanalyzed data, conducted additional experiments and are currently rewriting the manuscript for submission to a peer-reviewed journal. Such a course fundamentally links research and teaching, and provides an introduction to research for advanced undergraduates or beginning graduate students. We have also run one summer WOWS camp, which was a ten day camping and inquiry based research experience for 20 female junior-high and high-school students. The girls studied climate change and water related issues, worked on a restoration project on the Little Salmon River, met with a fish biologist and did fish habitat surveys and studied water quality along the North Fork of the Payette River while on a

  11. Georgians Experience Astronomy Research in Schools: An Introduction

    NASA Astrophysics Data System (ADS)

    Webster, Zodiac T.; Aguilar, J. C.; Higdon, S. J. U.

    2010-01-01

    Georgia Department of Education and its partners at Columbus State and Georgia Southern Universities are engaged in creating a comprehensive program to institutionalize high quality astronomy in its high schools. The goal of the Georgians Experience Astronomy Research in Schools (GEARS) project is to transform the way high-school Astronomy is taught in 100% of GA's public schools by 2012. GEARS will be an innovative and rigorous, NASA research-infused Astronomy curriculum, which will reach thousands of students in rural, urban, and suburban areas and will be taught by highly trained teachers. GEARS project leaders have two objectives: 1) Develop and implement an online high-school Astronomy course for inclusion in the GA Virtual School portal. The GEARS course will be a progression through inquiry-based research experiences culminating in authentic data analysis and data mining activities selected from the NASA archives. The GEARS framework and units will meet the new Georgia Performance Standards in Astronomy and will be incorporated into teacher workshops. 2) Ensure the sustainability and utilization of GEARS both online and in a blended classroom approach by providing teacher professional development, integrating it into Space Science for Teachers graduate courses, and by developing a network of Georgia Astronomy Resource Teachers who will teach GEARS astronomy and mentor other teachers in their local areas. This poster will provide an overview of the workshop and course curricular framework, design philosophy and sample units. Partnerships with interested parties, especially those with NASA data, are sought. The project website is http://cheller.phy.georgiasouthern.edu/ shigdon/GEARS/GEARS.html. This project is funded by NASA Grant NNX09AH83A through the GADOE, supported by CSU and GSU.

  12. A Course-Based Undergraduate Research Experience Investigating p300 Bromodomain Mutations

    ERIC Educational Resources Information Center

    Shanle, Erin K.; Tsun, Ian K.; Strahl, Brian D.

    2016-01-01

    Course-based undergraduate research experiences (CUREs) provide an opportunity for students to engage in experiments with outcomes that are unknown to both the instructor and students. These experiences allow students and instructors to collaboratively bridge the research laboratory and classroom, and provide research experiences for a large…

  13. Laboratory experiments of fine-scale mixing and mass transport within a coral canopy

    NASA Astrophysics Data System (ADS)

    Reidenbach, Matthew A.; Koseff, Jeffrey R.; Monismith, Stephen G.

    2007-07-01

    Laboratory experiments obtained fine scale measurements of turbulent shear stresses and rates of mixing and mass transfer over a nonliving bed of the coral, Porites compressa, the dominant species found in Kaneohe Bay, Hawaii. A reef canopy was placed in a recirculating wave-current flume and flow was generated that simulated the flow characteristics of the reef flat of Kaneohe Bay. Turbulence and velocity structure under both unidirectional and wave-dominated currents were measured using a two-dimensional laser Doppler anemometer. Mass transport measurements were made using a planar laser-induced fluorescence technique in which the scalar transport of Rhodamine 6G dye, fluxed from the surfaces of the coral, was quantified. Results show that the action of surface waves, interacting with the structure of the reef, can increase instantaneous shear and mixing up to six times compared to that of unidirectional currents. Maximum shear and mass transport events coincided with flow separation within the wave-current boundary layer and the ejection of vortices into the flow. Wave action also acted to increase the vertical flux of water from within the coral structure. The combined effects of increased turbulent stress and fluid exchange from the interior of the canopy increased mass flux due to wave action 2.3±0.5 times that measured for comparable unidirectional currents.

  14. Inward radial transport in differentially rotated plasma discs formed in z-pinch experiments

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey; Bennett, M.; Swadling, G. F.; Suttle, L.; Blackman, E.; Burdiak, G.; Chittenden, J. P.; Ciardi, A.; Drake, R. P.; Frank, A.; Hall, G. N.; Hare, J.; Patankar, S.; Smith, R. A.; Suzuki-Vidal, F.

    2014-10-01

    We will present experimental results showing the development of instabilities and an inward transport of matter in a differentially rotating supersonic plasma disc with dimensionless parameters relevant to modeling physics of astrophysical discs. The converging off-axis plasma flow forming the disc is produced by ablation of wires in a cylindrical wire array z-pinch (1.4 MA, 250 ns) combined with a cusp magnetic field, and the rotating disc is supported in equilibrium by the ram pressure of the flow. The radial profile of rotation velocity in the disc is measured using Doppler shifts of the ion feature of Thomson scattering spectra, while the broadening of the spectra yields the plasma temperature. The evolution of the disc structure is observed with multi-frame XUV and optical cameras, and the plasma density is measured using end-on laser interferometry. The Reynolds number in the disc is sufficiently large (>105) to allow development of turbulence on the time-scale of the experiment, and the observed inward transport of matter with the growth of small scale structures suggests that turbulence is responsible for the transport.

  15. STS-95 space experiment for plant growth and development, and auxin polar transport.

    PubMed

    Ueda, J; Miyamoto, K; Yuda, T; Hoshino, T; Sato, K; Fujii, S; Kamigaichi, S; Izumi, R; Ishioka, N; Aizawa, S; Yoshizaki, I; Shimazu, T; Fukui, K

    2000-06-01

    The principal objective of the space experiment, BRIC-AUX on STS-95, was the integrated analysis of the growth and development of etiolated pea and maize seedlings in space, and the effect of microgravity conditions in space on auxin polar transport in the segments. Microgravity conditions in space strongly affected the growth and development of etiolated pea and maize seedlings. Etiolated pea and maize seedlings were leaned and curved during space flight, respectively. Finally the growth inhibition of these seedlings was also observed. Roots of some pea seedlings grew toward the aerial space of Plant Growth Chamber. Extensibilities of cell walls of the third internode of etiolated pea epicotyls and the top region of etiolated maize coleoptiles which were germinated and grown under microgravity conditions in space were significantly low. Activities of auxin polar transport in the second internode segments of etiolated pea seedlings and coleoptile segments of etiolated maize seedlings were significantly inhibited and extremely promoted, respectively, under microgravity conditions in space. These results strongly suggest that auxin polar transport as well as the growth and development of plants is controlled under gravity on the earth.

  16. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment.

    PubMed

    Yabusaki, Steven B; Fang, Yilin; Williams, Kenneth H; Murray, Christopher J; Ward, Andy L; Dayvault, Richard D; Waichler, Scott R; Newcomer, Darrell R; Spane, Frank A; Long, Philip E

    2011-11-01

    Three-dimensional, coupled variably saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport and biogeochemical reactions controlling uranium behavior under pulsed acetate amendment, seasonal water table variation, spatially variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. While the simulation of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado was generally consistent with behaviors identified in previous field experiments at the Rifle IFRC site, the additional process and property detail provided several new insights. A principal conclusion from this work is that uranium bioreduction is most effective when acetate, in excess of the sulfate-reducing bacteria demand, is available to the metal-reducing bacteria. The inclusion of an initially small population of slow growing sulfate-reducing bacteria identified in proteomic analyses led to an additional source of Fe(II) from the dissolution of Fe(III) minerals promoted by biogenic sulfide. The falling water table during the experiment significantly reduced the saturated thickness of the aquifer and resulted in reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted

  17. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment

    NASA Astrophysics Data System (ADS)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Andy L.; Dayvault, Richard D.; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-11-01

    Three-dimensional, coupled variably saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport and biogeochemical reactions controlling uranium behavior under pulsed acetate amendment, seasonal water table variation, spatially variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. While the simulation of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado was generally consistent with behaviors identified in previous field experiments at the Rifle IFRC site, the additional process and property detail provided several new insights. A principal conclusion from this work is that uranium bioreduction is most effective when acetate, in excess of the sulfate-reducing bacteria demand, is available to the metal-reducing bacteria. The inclusion of an initially small population of slow growing sulfate-reducing bacteria identified in proteomic analyses led to an additional source of Fe(II) from the dissolution of Fe(III) minerals promoted by biogenic sulfide. The falling water table during the experiment significantly reduced the saturated thickness of the aquifer and resulted in reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted

  18. Research ethics committee auditing: the experience of a university hospital.

    PubMed

    Marchetti, Daniela; Spagnolo, Angelico; Cicerone, Marina; Cascini, Fidelia; La Monaca, Giuseppe; Spagnolo, Antonio G

    2013-09-01

    The authors report the first Italian experience of a research ethics committee (REC) audit focused on the evaluation of the REC's compliance with standard operating procedures, requirements in insurance coverage, informed consent, protection of privacy and confidentiality, predictable risks/harms, selection of subjects, withdrawal criteria and other issues, such as advertisement details and justification of placebo. The internal audit was conducted over a two-year period (March 2009-February 2011) divided into quarters to better value the influence of the new insurance coverage regulation that came into effect in March 2010 (Ministerial Decree of 14 July, 2009) and expand the requirements to safeguard participants in clinical drug trials including other critical items as information and consent and the risks to benefits ratio. Out of a total of 639 REC's opinions and research studies, 316 were reviewed. Regarding the insurance policy requirements, Auditor/REC non-compliance occurred only in one case. The highest number of Auditor/REC non-compliance was in regard to information and consent, which should have incurred a suspended decision rather than a favorable opinion. This internal audit shows the importance and the difficulty of the review process. For this reason, specific courses for members of the research ethics committee and for those who aspire to become auditors will be provided. There may also be efforts to improve the standard operating procedures already in place.

  19. TM4 of the glutamate transporter GLT-1 experiences substrate-induced motion during the transport cycle

    PubMed Central

    Rong, Xiuliang; Tan, Feng; Wu, Xiaojuan; Zhang, Xiuping; Lu, Lingli; Zou, Xiaoming; Qu, Shaogang

    2016-01-01

    Excitatory amino acid transporter 2 (EAAT2), also known as glial glutamate transporter type 1 (GLT-1), plays an important role in maintaining the extracellular glutamate concentrations below neurotoxic levels. The highly conserved TM2 transmembrane domain of GLT-1 maintains a stable position during the transport cycle; however, the effect of the transport cycle on the topology of TM4 in not well established. To further reveal the function of TM4, two cysteine pairs between TM2 and TM4 were introduced using site-directed mutagenesis. A significant decrease of transport activity was observed in the I93C/V241C and I97C/V241C mutants upon application of the oxidative cross-linking reagent, copper (II) (1,10-phenanthroline)3 (CuPh), which suggests that a conformational shift is essential for transporter activity. Furthermore, the decrease in activity by CuPh crosslinking was enhanced in external media with glutamate or potassium, which suggests that TM2 and TM4 assume closer proximity in the inward-facing conformation of the transporter. Our results suggest that the TM4 domain of GLT-1, and potentially other glutamate transporters, undergoes a complex conformational shift during substrate translocation, which involves an increase in the proximity of the TM2 and TM4 domains in the inward-facing conformation. PMID:27698371

  20. Benefits and payments for research participants: Experiences and views from a research centre on the Kenyan coast

    PubMed Central

    2012-01-01

    Background There is general consensus internationally that unfair distribution of the benefits of research is exploitative and should be avoided or reduced. However, what constitutes fair benefits, and the exact nature of the benefits and their mode of provision can be strongly contested. Empirical studies have the potential to contribute viewpoints and experiences to debates and guidelines, but few have been conducted. We conducted a study to support the development of guidelines on benefits and payments for studies conducted by the KEMRI-Wellcome Trust programme in Kilifi, Kenya. Methods Following an initial broad based survey of cash, health services and other items being offered during research by all programme studies (n = 38 studies), interviews were held with research managers (n = 9), and with research staff involved in 8 purposively selected case studies (n = 30 interviewees). Interviews explored how these ‘benefits’ were selected and communicated, experiences with their administration, and recommendations for future guidelines. Data fed into a consultative workshop attended by 48 research staff and health managers, which was facilitated by an external ethicist. Findings The most commonly provided benefits were medical care (for example free care, and strengthened quality of care), and lunch or snacks. Most cash given to participants was reimbursement of transport costs (for example to meet appointments or facilitate use of services when unexpectedly sick), but these payments were often described by research participants as benefits. Challenges included: tensions within households and communities resulting from lack of clarity and agreement on who is eligible for benefits; suspicion regarding motivation for their provision; and confusion caused by differences between studies in types and levels of benefits. Conclusions Research staff differed in their views on how benefits should be approached. Echoing elements of international benefit

  1. Improvement of Experiment Planning as an Important Precondition for the Quality of Educational Research

    ERIC Educational Resources Information Center

    Rutkiene, Ausra; Tereseviciene, Margarita

    2010-01-01

    The article presents the stages of the experiment planning that are necessary to ensure the validity and reliability of it. The research data reveal that doctoral students of Educational Research approach the planning of the experiment as the planning of the whole dissertation research; and the experiment as a research method is often confused…

  2. Design of an intermediate-scale experiment to validate unsaturated- zone transport models

    SciTech Connect

    Siegel, M.D.; Hopkins, P.L.; Glass, R.J.; Ward, D.B.

    1991-12-18

    An intermediate-scale experiment is being carried out to evaluate instrumentation and models that might be used for transport-model validation for the Yucca Mountain Site Characterization Project. The experimental test bed is a 6-m high {times} 3-m diameter caisson filled with quartz sand with a sorbing layer at an intermediate depth. The experiment involves the detection and prediction of the migration of fluid and tracers through an unsaturated porous medium. Pre-test design requires estimation of physical properties of the porous medium such as the relative permeability, saturation/pressure relations, porosity, and saturated hydraulic conductivity as well as geochemical properties such as surface complexation constants and empircial K{sub d}`S. The pre-test characterization data will be used as input to several computer codes to predict the fluid flow and tracer migration. These include a coupled chemical-reaction/transport model, a stochastic model, and a deterministic model using retardation factors. The calculations will be completed prior to elution of the tracers, providing a basis for validation by comparing the predictions to observed moisture and tracer behavior.

  3. Simulation of System Error Tolerances of a High Current Transport Experiment for Heavy-Ion Fusion

    NASA Astrophysics Data System (ADS)

    Lund, Steven M.; Bangerter, Roger O.; Freidman, Alex; Grote, Dave P.; Seidl, Peter A.

    2000-10-01

    A driver-scale, intense ion beam transport experiment (HCX) is being designed to test issues for Heavy Ion Fusion (HIF) [1]. Here we present detailed, Particle in Cell simulations of HCX to parametrically explore how various system errors can impact machine performance. The simulations are transverse and include the full 3D fields of the quadrupole focusing magnets, spreads in axial momentum, conducting pipe boundary conditions, etc. System imperfections such as applied focusing field errors (magnet strength, field nonlinearities, etc.), alignment errors (magnet offsets and rotations), beam envelope mismatches to the focusing lattice, induced beam image charges, and beam distribution errors (beam nonuniformities, collective modes, and other distortions) are all analyzed in turn and in combination. The influence of these errors on the degradation of beam quality (emittance growth), halo production, and loss of beam control are evaluated. Evaluations of practical machine apertures and centroid steering corrections that can mitigate particle loss and degradation of beam quality are carried out. 1. P.A. Seidl, L.E. Ahle, R.O. Bangerter, V.P. Karpenko, S.M. Lund, A Faltens, R.M. Franks, D.B. Shuman, and H.K. Springer, Design of a Proof of Principal High Current Transport Experiment for Heavy-Ion Fusion, these proceedings.

  4. Analysis and modeling of edge fluctuations and transport mechanism in the Maryland Centrifugal Experiment

    SciTech Connect

    Uzun-Kaymak, I. U.; Guzdar, P. N.; Clary, R.; Ellis, R. F.; Hassam, A. B.; Teodorescu, C.

    2008-11-15

    The Maryland Centrifugal Experiment [R. F. Ellis et al., Phys. Plasmas 12, 055704 (2005)] is a mirror machine designed to have a plasma axially confined by supersonic rotation and dominantly interchange stable by the radial shear in the azimuthal velocity. Nevertheless, residual fluctuations still persist. To investigate the presence of such fluctuations, an azimuthal array of 16 magnetic pickup coils at the edge region of the plasma has been employed. A comprehensive analysis of the magnetic fluctuations reveals that, under the imposed shear flow, only m=0 and m=2 modes are dominant; yet, the observed frequency spectrum is broadband. Using higher order spectral analysis, clear evidence of nonlinear mode coupling is detected. It is also observed that the amplification of magnetic fluctuations leads to enhanced transport consistent with the drop of the plasma density and voltage. As a result, the magnetic fluctuations start to decrease in amplitude as the central plasma pressure drops. In return, the anomalous radial particle and momentum transport are reduced; thus, the plasma confinement improves. As the plasma pressure starts to build up, the plasma voltage increases, destabilizing the m=2 interchange mode. The cycle of enhanced transport and intermittent fluctuations repeats itself. A two-dimensional magnetohydrodynamics code in slab geometry is employed to investigate the dynamics of the primary interchange instability and to assess the level of transport. For very low sheared rotation, a broad spatial spectrum of unstable modes is obtained. As the sheared rotation is increased, the high mode numbers become stabilized and low mode numbers dominate the spectrum. Both the experimental data obtained from the azimuthal array probes and the simulations in case of parabolic shear flow show clear evidence of nonlinear mode coupling, explaining the broadband frequency spectrum for low mode numbers. A detailed comparison of spatiotemporal dynamics of simulations with

  5. Experiments and modeling of the transport of trichloroethene vapor in unsaturated aquifer material

    SciTech Connect

    Lorden, S.W.; Lion, L.W.; Chen, W.

    1998-07-01

    A bench-scale reactor system was used to investigate mass-transfer dynamics and transport of trichloroethene (TCE) vapor in a column of unsaturated aquifer material under conditions of advective gas flow, at 25 C and 90% relative humidity. Two gas flows and two relative vapor pressures of TCE (10% and 90% P/P{sub o}, where P is vapor pressure and P{sub o} is the saturation vapor pressure) were selected as experimental variables. Breakthrough curves were generated for week-long inputs of TCE-laden air and for short pulses of a nonsorbing tracer gas. Equilibrium sorption isotherms for TCE were also measured and used as tools for interpreting the column experiment results. Slow mass-transfer kinetics were observed in all of the transport experiments. Evidence from the breakthrough curves and the sorption isotherms suggested that, at 90% P/P{sub o}, a significant amount of TCE was condensed in pores or sorbed at the gas-water interface. Desorption and volatilization of interfacially sorbed TCE appeared to be rapid processes. The applicability of a recently developed mathematical transport model using a statistical {gamma} distribution of desorption rate constants was tested using the experimental data. The {gamma} distribution provides two adjustable parameters to account for sorption site heterogeneity and multiple mechanisms of sorption. When fit to the breakthrough curve obtained at high flow and high relative pressure, the model successfully predicted TCE frontal breakthrough and elution profiles at all other experimental conditions with no adjustable parameters. The predictive capability of the {gamma} model was shown to be superior to that of two commonly used alternative model paradigms: the two-site first-order and two-site spherical diffusion models.

  6. The phase diagram and transport properties of MgO from theory and experiment

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke

    2013-06-01

    Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Importance of reversible attachment in predicting E. coli transport in saturated aquifers from column experiments

    NASA Astrophysics Data System (ADS)

    Knappett, P. S. K.; Du, J.; Liu, P.; Horvath, V.; Mailloux, B. J.; Feighery, J.; van Geen, A.; Culligan, P. J.

    2014-01-01

    Drinking water wells indiscriminatingly placed adjacent to fecal contaminated surface water represents a significant but difficult to quantify health risk. Here we seek to understand mechanisms that limit the contamination extent by scaling up bacterial transport results from the laboratory to the field in a well constrained setting. Three pulses of Escherichia coli originating during the early monsoon from a freshly excavated pond receiving latrine effluent in Bangladesh were monitored in 6 wells and modeled with a two-dimensional (2-D) flow and transport model conditioned with measured hydraulic heads. The modeling was performed assuming three different modes of interaction of E. coli with aquifer sands: (1) irreversible attachment only (best-fit ki = 7.6 day-1); (2) reversible attachment only (ka = 10.5 and kd = 0.2 day-1); and (3) a combination of reversible and irreversible modes of attachment (ka = 60, kd = 7.6, ki = 5.2 day-1). Only the third approach adequately reproduced the observed temporal and spatial distribution of E. coli, including a 4-log10 lateral removal distance of ˜9 m. In saturated column experiments, carried out using aquifer sand from the field site, a combination of reversible and irreversible attachment was also required to reproduce the observed breakthrough curves and E. coli retention profiles within the laboratory columns. Applying the laboratory-measured kinetic parameters to the 2-D calibrated flow model of the field site underestimates the observed 4-log10 lateral removal distance by less than a factor of two. This is promising for predicting field scale transport from laboratory experiments.

  8. Importance of Reversible Attachment in Predicting E. Coli Transport in Saturated Aquifers From Column Experiments.

    PubMed

    Knappett, P S K; Du, J; Liu, P; Horvath, V; Mailloux, B J; Feighery, J; van Geen, A; Culligan, P J

    2014-01-01

    Drinking water wells indiscriminatingly placed adjacent to fecal contaminated surface water represents a significant but difficult to quantify health risk. Here we seek to understand mechanisms that limit the contamination extent by scaling up bacterial transport results from the laboratory to the field in a well constrained setting. Three pulses of E. coli originating during the early monsoon from a freshly excavated pond receiving latrine effluent in Bangladesh were monitored in 6 wells and modeled with a two-dimensional (2-D) flow and transport model conditioned with measured hydraulic heads. The modeling was performed assuming three different modes of interaction of E. coli with aquifer sands: 1) irreversible attachment only (best-fit ki=7.6 day(-1)); 2) reversible attachment only (ka=10.5 and kd=0.2 day(-1)); and 3) a combination of reversible and irreversible modes of attachment (ka=60, kd=7.6, ki=5.2 day(-1)). Only the third approach adequately reproduced the observed temporal and spatial distribution of E. coli, including a 4-log10 lateral removal distance of ∼9 m. In saturated column experiments, carried out using aquifer sand from the field site, a combination of reversible and irreversible attachment was also required to reproduce the observed breakthrough curves and E. coli retention profiles within the laboratory columns. Applying the laboratory-measured kinetic parameters to the 2-D calibrated flow model of the field site underestimates the observed 4-log10 lateral removal distance by less than a factor of two. This is promising for predicting field scale transport from laboratory experiments.

  9. Importance of Reversible Attachment in Predicting E. Coli Transport in Saturated Aquifers From Column Experiments

    PubMed Central

    Knappett, P. S. K.; Du, J.; Liu, P.; Horvath, V.; Mailloux, B. J.; Feighery, J.; van Geen, A.; Culligan, P. J.

    2014-01-01

    Drinking water wells indiscriminatingly placed adjacent to fecal contaminated surface water represents a significant but difficult to quantify health risk. Here we seek to understand mechanisms that limit the contamination extent by scaling up bacterial transport results from the laboratory to the field in a well constrained setting. Three pulses of E. coli originating during the early monsoon from a freshly excavated pond receiving latrine effluent in Bangladesh were monitored in 6 wells and modeled with a two-dimensional (2-D) flow and transport model conditioned with measured hydraulic heads. The modeling was performed assuming three different modes of interaction of E. coli with aquifer sands: 1) irreversible attachment only (best-fit ki=7.6 day-1); 2) reversible attachment only (ka=10.5 and kd=0.2 day-1); and 3) a combination of reversible and irreversible modes of attachment (ka=60, kd=7.6, ki=5.2 day-1). Only the third approach adequately reproduced the observed temporal and spatial distribution of E. coli, including a 4-log10 lateral removal distance of ∼9 m. In saturated column experiments, carried out using aquifer sand from the field site, a combination of reversible and irreversible attachment was also required to reproduce the observed breakthrough curves and E. coli retention profiles within the laboratory columns. Applying the laboratory-measured kinetic parameters to the 2-D calibrated flow model of the field site underestimates the observed 4-log10 lateral removal distance by less than a factor of two. This is promising for predicting field scale transport from laboratory experiments. PMID:24821993

  10. 2011 Joint Science Education Project: Research Experience in Polar Science

    NASA Astrophysics Data System (ADS)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  11. Verification experiment of the three-dimensional Oak Ridge transport code (TORT)

    SciTech Connect

    Muckenthaler, F. J.; Holland, L. B.; Hull, J. L.; Manning, J. J.

    1985-12-01

    An experiment was conducted at the Oak Ridge National Laboratory Tower Shielding Facility during FY 1984-85 to provide verification of a discrete ordinates Three-Dimensional Oak Ridge Transport computer code (TORT), which is being developed at ORNL for calculating the neutron and gamma-ray fluxes within concrete structures that were exposed to radiation at Hiroshima and Nagasaki. In the experiment a collimated beam of radiation from the Tower Shielding Reactor II, modified to represent the spectra of neutrons and gamma rays emitted in weapons bursts, impinged on a concrete structure simulating a small, simple, single-story concrete block house. Variations in the structure were introduced during the experiment by successive changes in the outer wall and within the building: several blocks in the front wall were removed to form a window; a concrete support pillar within the building was relocated; and a central concrete wall was added to divide the single room into two rooms of approximately the same dimensions. Integral neutron fluxes and gamma-ray energy depositions were measured both in the modified reactor beam and at selected locations inside each structure. This report describes the experiment and presents the detailed results in both tabular and graphical form. It also discusses the impact of the variations in the basic configuration on the measured results.

  12. "Waiting in Araf" research without consent: a Turkish mother's experience.

    PubMed

    Ulusoy, M F

    1998-01-01

    In this article, a nurse author from Turkey relates the anxiety and struggle that she experienced with the birth of her first baby when, for unknown reasons, the baby experienced acute rectal bleeding after birth. Unsatisfactory doctor-patient relations, abolishment of patient rights, suspicion of research without permission, and clinical iatrogenesis are discussed. The mother describes the 10 days she spent with her child in the hospital as "waiting in Araf." According to Middle Eastern culture, "Araf" is defined in the Koran as a place between Eden and Hell where people who have sinned are required to wait. Though anticipating acceptance into Eden, they wait with fear as they watch Hell on one side, and with hope while watching the happiness of Eden on the other side. The author's story depicts such an experience.

  13. Research on data from the ATLAS experiment at CERN

    SciTech Connect

    Purohit, Milind V.

    2015-07-31

    In this report senior investigator Prof. Milind V. Purohit describes research done with data from the ATLAS experiment at CERN. This includes preparing papers on the performance of the CSC detector, searches for SUSY using a new modern ''big data'' technique, and a search for supersymmetry (SUSY) using the "zero leptons razor" (0LRaz) technique. The prediction of the W=Z+jets background processes by the ATLAS simulation prior to the fit is found to be overestimated in the phase space of interest. In all new signal regions presented in this analysis the number of events observed is consistent with the post-fit SM expectations. Assuming R-parity conservation, the limit on the gluino mass exceeds 1150 GeV at 95% confidence level, for an LSP mass smaller than 100 GeV. Other USC personnel who participated in this project during the period of this grant were a graduate student, Anton Kravchenko.

  14. Authentic Astronomy Research Experiences for Teachers: The NASA/IPAC Teacher Archive Research Program (NITARP)

    NASA Astrophysics Data System (ADS)

    Rebull, L. M.; Gorjian, V.; Squires, G.; Nitarp Team

    2012-08-01

    How many times have you gotten a question from the general public, or read a news story, and concluded that "they just don't understand how real science works?" One really good way to get the word out about how science works is to have more people experience the process of scientific research. Since 2004, the way we have chosen to do this is to provide authentic research experiences for teachers using real data (the program used to be called the Spitzer Teacher Program for Teachers and Students, which in 2009 was rechristened the NASA/IPAC Teacher Archive Research Program, or NITARP). We partner small groups of teachers with a mentor astronomer, they do research as a team, write up a poster, and present it at an American Astronomical Society (AAS) meeting. The teachers incorporate this experience into their classroom, and their experiences color their teaching for years to come, influencing hundreds of students per teacher. This program differs from other similar programs in several important ways. First, each team works on an original, unique project. There are no canned labs here! Second, each team presents their results in posters at the AAS, in science sessions (not outreach sessions). The posters are distributed throughout the meeting, in amongst other researchers' work; the participants are not "given a free pass" because they are teachers. Finally, the "product" of this project is the scientific result, not any sort of curriculum packet. The teachers adapt their project to their classroom environment, and we change the way they think about science and scientists.

  15. Coupled Simulations, Ground-Based Experiments and Flight Experiments for Astrodynamics Research

    NASA Astrophysics Data System (ADS)

    Boyce, R.; Brown, M.; Lorrain, P.; Capon, C.; Lambert, A.; Benson, C.; Tuttle, S.; Griffin, D.

    Near-Earth satellites undergo complex and poorly understood interactions with their environment, leading to large uncertainties in predicting orbits and an associated risk of collision with other satellites and with space debris. The nature, evolution and behaviour of the growing cloud of space debris in that environment is even less well understood. Significant effort and expenditure is currently being made by governments in Australia, UK, USA, Europe and elsewhere in space surveillance and tracking, in order to mitigate the risk. However, a major gap exists with respect to the science of in-orbit behaviour. Research is underway in Australia to enable the prediction of the orbits of near-Earth space objects with order(s) of magnitude greater fidelity than currently possible. This is being achieved by coupling together the necessary parts of the puzzle - the physics of rarefied space object “aerodynamics” and the space physics and space weather that affects it - and employing our capabilities in ground-based and in-orbit experiments, ground-based observations and high performance computing to do so. As part of the effort, UNSW Canberra is investing $10M to develop a sustainable university-led program to develop and fly affordable in-orbit missions for space research. In the coming 6 years, we will fly a minimum of four cubesat missions, some in partnership with DSTO, which will include flight experiments for validating Space Situational Awareness astrodynamics simulation and observation capabilities. The flights are underpinned by ground-based experimental research employing space test chambers, advanced diagnostics, and supercomputer simulations that couple DSMC and Particle-in-Cell methods for modelling space object interactions with the ionosphere. This paper will describe the research both underway and planned, with particular emphasis on the coupled numerical/experimental/flight approach.

  16. Teachers doing science: An authentic geology research experience for teachers

    USGS Publications Warehouse

    Hemler, D.; Repine, T.

    2006-01-01

    Fairmont State University (FSU) and the West Virginia Geological and Economic Survey (WVGES) provided a small pilot group of West Virginia science teachers with a professional development session designed to mimic experiences obtained by geology majors during a typical summer field camp. Called GEOTECH, the program served as a research capstone event complimenting the participants' multi-year association with the RockCamp professional development program. GEOTECH was funded through a Improving Teacher Quality Grant administered by West Virginia Higher Education Policy Commission. Over the course of three weeks, eight GEOTEACH participants learned field measurement and field data collection techniques which they then applied to the construction of a surficial geologic map. The program exposed participants to authentic scientific processes by emphasizing the authentic scientific application of content knowledge. As a secondary product, it also enhanced their appreciation of the true nature of science in general and geology particular. After the session, a new appreciation of the effort involved in making a geologic map emerged as tacit knowledge ready to be transferred to their students. The program was assessed using pre/post instruments, cup interviews, journals, artifacts (including geologic maps, field books, and described sections), performance assessments, and constructed response items. Evaluation of the accumulated data revealed an increase in participants demonstrated use of science content knowledge, an enhanced awareness and understanding of the processes and nature of geologic mapping, positive dispositions toward geologic research and a high satisfaction rating for the program. These findings support the efficacy of the experience and document future programmatic enhancements.

  17. Non-isothermal infiltration and tracer transport experiments on large soil columns

    NASA Astrophysics Data System (ADS)

    Sobotkova, Martina; Snehota, Michal; Cejkova, Eva; Tesar, Miroslav

    2016-04-01

    Isothermal and non-isothermal infiltration experiments were carried out in the laboratory on large undisturbed soil columns (19 cm in diameter, 25 cm high) taken at the experimental catchments Roklan (Sumava Mountains, Czech Republic) and Uhlirska (Jizera Mountains, Czech republic). The aim of the study was twofold. The first goal was to obtain water flow and heat transport data for indirect parameter estimation of thermal and hydraulic properties of soils from two sites by inverse modelling. The second aim was to investigate the extent of impact of the temperature on saturated hydraulic conductivity (Ksat) and dispersity of solute transport. The temperature of infiltrating water in isothermal experiment (20 °C) was equal to the initial temperature of the sample. For non-isothermal experiment water temperature was 5°C, while the initial temperature of the sample was 20°C as in previous case. The experiment was started by flooding the sample surface. Then water level was maintained at constant level throughout the infiltration run using the optical sensor and peristaltic pump. Concentration pulse of deuterium was applied at the top of the soil sample, during the steady state flow. Initial pressure head in the sample was close to field capacity. Two tensiometers and two temperature sensors were inserted in the soil sample in two depths (9 and 15 cm below the top of the sample). Two additional temperature sensors monitored the temperature entering and leaving the samples. Water drained freely through the perforated plate at the bottom of sample by gravity. Inflow and outflow water flux densities, water pressure heads and soil temperatures were monitored continuously during experiments. Effluent was sampled in regular time intervals and samples were analysed for deuterium concentrations by laser spectroscopy to develop breakthrough curves. The outcome of experiments are the series of measured water fluxes, pressure heads and temperatures ready for inverse modelling

  18. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures

    NASA Technical Reports Server (NTRS)

    Klaus, David M.; Benoit, Michael R.; Nelson, Emily S.; Hammond, Timmothy G.

    2004-01-01

    Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.

  19. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures.

    PubMed

    Klaus, David M; Benoit, Michael R; Nelson, Emily S; Hammond, Timmothy G

    2004-03-01

    Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.

  20. Experience of the Paris Research Consortium Climate-Environment-Society

    NASA Astrophysics Data System (ADS)

    Joussaume, Sylvie; Pacteau, Chantal; Vanderlinden, Jean Paul

    2016-04-01

    It is now widely recognized that the complexity of climate change issues translates itself into a need for interdisciplinary approaches to science. This allows to first achieve a more comprehensive vision of climate change and, second, to better inform the decision-making processes. However, it seems that willingness alone is rarely enough to implement interdisciplinarity. The purpose of this presentation is to mobilize reflexivity to revisit and analyze the experience of the Paris Consortium for Climate-Environment-Society. The French Consortium Climate-Environment-Society aims to develop, fund and coordinate interdisciplinary research into climate change and its impacts on society and environment. Launched in 2007, the consortium relies on the research expertise of 17 laboratories and federation in the Paris area working mainly in the fields of climatology, hydrology, ecology, health sciences, and the humanities and social sciences. As examples, economists and climatologists have studied greenhouse gas emission scenarios compatible with climate stabilization goals. Historical records have provided both knowledge about past climate change and vulnerability of societies. Some regions, as the Mediterranean and the Sahel, are particularly vulnerable and already have to cope with water availability, agricultural production and even health issues. A project showed that millet production in West Africa is expected to decline due to warming in a higher proportion than observed in recent decades. Climate change also raises many questions concerning health: combined effects of warming and air quality, impacts on the production of pollens and allergies, impacts on infectious diseases. All these issues lead to a need for approaches integrating different disciplines. Furthermore, climate change impacts many ecosystems which, in turn, affect its evolution. Our experience shows that interdisciplinarity supposes, in order to take shape, the conjunction between programming