Sample records for experiencing large deformation

  1. Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion–Extension of the Neck

    PubMed Central

    Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B.; Li, Guoan; Cha, Thomas D.

    2017-01-01

    While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion–extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine. PMID:28334358

  2. Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion-Extension of the Neck.

    PubMed

    Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B; Li, Guoan; Cha, Thomas D

    2017-06-01

    While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.

  3. A zebrafish embryo behaves both as a "cortical shell-liquid core" structure and a homogeneous solid when experiencing mechanical forces.

    PubMed

    Liu, Fei; Wu, Dan; Chen, Ken

    2014-12-01

    Mechanical properties are vital for living cells, and various models have been developed to study the mechanical behavior of cells. However, there is debate regarding whether a cell behaves more similarly to a "cortical shell-liquid core" structure (membrane-like) or a homogeneous solid (cytoskeleton-like) when experiencing stress by mechanical forces. Unlike most experimental methods, which concern the small-strain deformation of a cell, we focused on the mechanical behavior of a cell undergoing small to large strain by conducting microinjection experiments on zebrafish embryo cells. The power law with order of 1.5 between the injection force and the injection distance indicates that the cell behaves as a homogenous solid at small-strain deformation. The linear relation between the rupture force and the microinjector radius suggests that the embryo behaves as membrane-like when subjected to large-strain deformation. We also discuss the possible reasons causing the debate by analyzing the mechanical properties of F-actin filaments.

  4. Strain memory of 2D and 3D rigid inclusion populations in viscous flows - What is clast SPO telling us?

    NASA Astrophysics Data System (ADS)

    Stahr, Donald W.; Law, Richard D.

    2014-11-01

    We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.

  5. Monitoring Ground Deformation Using Persistent Scatters Interferometry (PSI) and Small Baselines (SBAS) Techniques Integrated in the ESA RSS Service: The Case Study of Valencia, Rome and South Sardinia

    NASA Astrophysics Data System (ADS)

    Delgado, Manuel J.; Cuccu, Roberto; Rivolta, Giancarlo

    2015-05-01

    This work is focused on the infrastructure monitoring of areas which had experienced significant urbanization and therefore, also an increase of the exploitation of natural resources. Persistent Scatters Interferometry (PS-InSAR) and Small Baselines (SBAS) approaches are applied to three study areas for which large datasets of SAR images are available in ascending and descending modes to finally deploy deformation maps of different buildings and infrastructures. Valencia, Rome and South Sardinia areas have been selected for this study, having experienced an increase of the exploitation of natural resources in parallel with their urban expansion. Moreover, Rome is a very special case, where Cultural Heritage permeating the city and its surroundings would suggest the necessity of a tool for monitoring the stability of the different sites. This work wants to analyse the potential deformation that had occurred in these areas during the period 1992 to 2010, by applying Persistent Scatters Interferometry to ESA ERS SAR and Envisat ASAR data.

  6. Lithospheric thinning beneath rifted regions of Southern California.

    PubMed

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.

  7. Problems, acceptance and social inequality: a study of the deformed leprosy patients and their families.

    PubMed

    Kopparty, S N

    1995-09-01

    Though the impact of social inequality on health conditions is widely known, its impact on the chronic and stigmatized disease, leprosy, has received little attention. Deformity sometimes leads to disabilities and to handicaps causing problems to the patient and his family. In this paper an attempt has been made to understand the impact of social inequality, prevalent in the form of the caste system in India on the deformed leprosy patients and on their families. This impact was examined in terms of the problems faced by the patients. A sample of 150 deformed patients and their families, drawn from two districts in Tamil Nadu, was selected for the study. About 57% of the deformed patients experienced their deformity as a handicap which caused social and economic problems while the rest did not. Of the three caste groups, the Lower Caste group experienced more severe economic problems while the Upper Caste group faced more social problems. The extent of acceptance of deformed patients in their family varied significantly among those facing and not facing problems due to their deformity. The deformed patients without any handicap were accepted in a large majority of their families (82%) regardless of their caste status. In contrast the deformed but handicapped patients were accepted differentially among the three caste groups with the Upper group accepting them in most of their families (80%) while in the Lower group much less number of families (54%) did. All the families of the deformed but not handicapped patients desired to keep their patients till their death irrespective of their caste status. On the contrary, while all the families in the Upper Caste group expressed their willingness to keep their handicapped patients in the family till their death, 10% in the Middle and 22% in the Lower Caste groups did not want to do so. This suggests the gradual marginalization, rejection and dehabilitation of the affected. Thus, one's caste status can be a broad indicator of the nature and the extent of handicaps and acceptance in the family. This factor needs to be appropriately taken care of for rehabilitation and disability management in leprosy control programmes.

  8. How rheological heterogeneities control the internal deformation of salt giants.

    NASA Astrophysics Data System (ADS)

    Raith, Alexander; Urai, Janos L.

    2017-04-01

    Salt giants, like the North European Zechstein, consist of several evaporation cycles of different evaporites with highly diverse rheologies. Common Potassium and Magnesium (K-Mg) salt are typically 10 to 100 times less viscous as halite while stringers consisting of anhydrite and carbonates are about 100 times more viscous. In most parts, these mechanically layered bodies experienced complex deformation, resulting in large scale internal folding with ruptured stringers and shear zones, as observed in seismic images. Furthermore, locally varying evaporation history produced different mechanical stratigraphies across the salt basin. Although most of these extraordinary soft or strong layers are rather thin (<100 m) compared to the dominating halite, we propose they have first order control on the deformation and the resulting structures inside salt bodies. Numerical models representing different mechanical stratigraphies of hard and soft layers inside a salt body were performed to analyze their influence on the internal deformation during lateral salt flow. The results show that a continuous or fractured stringer is folded and thrusted during salt contraction while soft K-Mg salt layers act as internal décollement. Depending on the viscosity of the fractured stringers, the shortening is mostly compensated by either folding or thrusting. This folding has large control over the internal structure of the salt body imposing a dominating wavelength to the whole structure during early deformation. Beside strong stringers, K-Mg salt layers also influence the deformation and salt flow inside the salt pillow. Strain is accumulated in the soft layers leading to stronger salt flow near these layers and extensive deformation inside of them. Thus, if a soft layer is present near a stringer, it will experience more deformation. Additionally, the strong strain concentration in the soft layers could decouple parts of the salt body from the main deformation.

  9. Analysis of the Los Angeles Basin ground subsidence with InSAR data by independent component analysis approach

    NASA Astrophysics Data System (ADS)

    Xu, B.

    2017-12-01

    Interferometric Synthetic Aperture Radar (InSAR) has the advantages of high spatial resolution which enable measure line of sight (LOS) surface displacements with nearly complete spatial continuity and a satellite's perspective that permits large areas view of Earth's surface quickly and efficiently. However, using InSAR to observe long wavelength and small magnitude deformation signals is still significantly limited by various unmodeled errors sources i.e. atmospheric delays, orbit induced errors, Digital Elevation Model (DEM) errors. Independent component analysis (ICA) is a probabilistic method for separating linear mixed signals generated by different underlying physical processes.The signal sources which form the interferograms are statistically independent both in space and in time, thus, they can be separated by ICA approach.The seismic behavior in the Los Angeles Basin is active and the basin has experienced numerous moderate to large earthquakes since the early Pliocene. Hence, understanding the seismotectonic deformation in the Los Angeles Basin is important for analyzing seismic behavior. Compare with the tectonic deformations, nontectonic deformations due to groundwater and oil extraction may be mainly responsible for the surface deformation in the Los Angeles basin. Using the small baseline subset (SBAS) InSAR method, we extracted the surface deformation time series in the Los Angeles basin with a time span of 7 years (September 27, 2003-September 25,2010). Then, we successfully separate the atmospheric noise from InSAR time series and detect different processes caused by different mechanisms.

  10. An analysis of rotor blade twist variables associated with different Euler sequences and pretwist treatments

    NASA Technical Reports Server (NTRS)

    Alkire, K.

    1984-01-01

    A nonlinear analysis which is necessary to adequately model elastic helicopter rotor blades experiencing moderately large deformations was examined. The analysis must be based on an appropriate description of the blade's deformation geometry including elastic bending and twist. Built-in pretwist angles complicate the deformation process ant its definition. Relationships between the twist variables associated with different rotation sequences and corresponding forms of the transformation matrix are lasted. Relationships between the twist variables associated with first, the pretwist combined with the deformation twist are included. Many of the corresponding forms of the transformation matrix for the two cases are listed. It is shown that twist variables connected with the combined twist treatment are related to those where the pretwist is applied initially. A method to determine the relationships and some results are outlined. A procedure to evaluate the transformation matrix that eliminates the Eulerlike sequence altogether is demonstrated. The resulting form of the transformation matrix is unaffected by rotation sequence or pretwist treatment.

  11. Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah

    PubMed Central

    Verdon, James P.; Kendall, J.-Michael; Stork, Anna L.; Chadwick, R. Andy; White, Don J.; Bissell, Rob C.

    2013-01-01

    Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ∼1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site. PMID:23836635

  12. Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah.

    PubMed

    Verdon, James P; Kendall, J-Michael; Stork, Anna L; Chadwick, R Andy; White, Don J; Bissell, Rob C

    2013-07-23

    Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ~1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site.

  13. Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition

    NASA Astrophysics Data System (ADS)

    Figiel, Łukasz; Dunne, Fionn P. E.; Buckley, C. Paul

    2010-01-01

    Layered-silicate nanoparticles offer a cost-effective reinforcement for thermoplastics. Computational modelling has been employed to study large deformations in layered-silicate/poly(ethylene terephthalate) (PET) nanocomposites near the glass transition, as would be experienced during industrial forming processes such as thermoforming or injection stretch blow moulding. Non-linear numerical modelling was applied, to predict the macroscopic large deformation behaviour, with morphology evolution and deformation occurring at the microscopic level, using the representative volume element (RVE) approach. A physically based elasto-viscoplastic constitutive model, describing the behaviour of the PET matrix within the RVE, was numerically implemented into a finite element solver (ABAQUS) using an UMAT subroutine. The implementation was designed to be robust, for accommodating large rotations and stretches of the matrix local to, and between, the nanoparticles. The nanocomposite morphology was reconstructed at the RVE level using a Monte-Carlo-based algorithm that placed straight, high-aspect ratio particles according to the specified orientation and volume fraction, with the assumption of periodicity. Computational experiments using this methodology enabled prediction of the strain-stiffening behaviour of the nanocomposite, observed experimentally, as functions of strain, strain rate, temperature and particle volume fraction. These results revealed the probable origins of the enhanced strain stiffening observed: (a) evolution of the morphology (through particle re-orientation) and (b) early onset of stress-induced pre-crystallization (and hence lock-up of viscous flow), triggered by the presence of particles. The computational model enabled prediction of the effects of process parameters (strain rate, temperature) on evolution of the morphology, and hence on the end-use properties.

  14. Constraints on the depositional age and tectonometamorphic evolution of marbles from the Biharia Nappe System (Apuseni Mountains, Romania)

    NASA Astrophysics Data System (ADS)

    Reiser, Martin Kaspar; Schuster, Ralf; Tropper, Peter; Fügenschuh, Bernhard

    2017-04-01

    Basement rocks from the Biharia Nappe System in the Apuseni Mountains comprise several dolomite and calcite marble sequences or lenses which experienced deformation and metamorphic overprint during the Alpine orogeny. New Sr, O and C-isotope data in combination with considerations from the lithological sequences indicate Middle to Late Triassic deposition of calcite marbles from the Vulturese-Belioara Series (Biharia Nappe s.str.). Ductile deformation and large-scale folding of the siliciclastic and carbonatic lithologies is attributed to NW-directed nappe stacking during late Early Cretaceous times (D2). The studied marble sequences experienced a metamorphic overprint under lower greenschist- facies conditions (316-370 °C based on calcite - dolomite geothermometry) during this tectonic event. Other marble sequences from the Biharia Nappe System (i.e. Vidolm and Baia de Arieș nappes) show similarities in the stratigraphic sequence and their isotope signature, together with a comparable structural position close to nappe contact. However, the dataset is not concise enough to allow for a definitive attribution of a Mesozoic origin to other marble sequences than the Vulturese-Belioara Series.

  15. Active and long-lived permanent forearc deformation driven by the subduction seismic cycle

    NASA Astrophysics Data System (ADS)

    Aron Melo, Felipe Alejandro

    I have used geological, geophysical and engineering methods to explore mechanisms of upper plate, brittle deformation at active forearc regions. My dissertation particularly addresses the permanent deformation style experienced by the forearc following great subduction ruptures, such as the 2010 M w8.8 Maule, Chile and 2011 Mw9.0 Tohoku, Japan earthquakes. These events triggered large, shallow seismicity on upper plate normal faults above the rupture reaching Mw7.0. First I present new structural data from the Chilean Coastal Cordillera over the rupture zone of the Maule earthquake. The study area contains the Pichilemu normal fault, which produced the large crustal aftershocks of the megathrust event. Normal faults are the major neotectonic structural elements but reverse faults also exist. Crustal seismicity and GPS surface displacements show that the forearc experiences pulses of rapid coseismic extension, parallel to the heave of the megathrust, and slow interseismic, convergence-parallel shortening. These cycles, over geologic time, build the forearc structural grain, reactivating structures properly-oriented respect to the deformation field of each stage of the interplate cycle. Great subduction events may play a fundamental role in constructing the crustal architecture of extensional forearc regions. Static mechanical models of coseismic and interseismic upper plate deformation are used to explore for distinct features that could result from brittle fracturing over the two stages of the interplate cycle. I show that the semi-elliptical outline of the first-order normal faults along the Coastal Cordillera may define the location of a characteristic, long-lived megathrust segment. Finally, using data from the Global CMT catalog I analyzed the seismic behavior through time of forearc regions that have experienced great subduction ruptures >Mw7.7 worldwide. Between 61% and 83% of the cases where upper plate earthquakes exhibited periods of increased seismicity above background levels occurred contemporaneous to megathrust ruptures. That correlation is stronger for normal fault events than reverse or strike-slip crustal earthquakes. More importantly, for any given megathrust the summation of the Mw accounted by the forearc normal fault aftershocks appears to have a positive linear correlation with the Mw of the subduction earthquake -- the larger the megathrust the larger the energy released by forearc events.

  16. Numerical simulation of the pairwise interaction of deformable cells during migration in a microchannel

    NASA Astrophysics Data System (ADS)

    Lan, Hongzhi; Khismatullin, Damir B.

    2014-07-01

    Leukocytes and other circulating cells deform and move relatively to the channel flow in the lateral and translational directions. Their migratory property is important in immune response, hemostasis, cancer progression, delivery of nutrients, and microfluidic technologies such as cell separation and enrichment, and flow cytometry. Using our three-dimensional computational algorithm for multiphase viscoelastic flow, we have investigated the effect of pairwise interaction on the lateral and translational migration of circulating cells in a microchannel. The numerical simulation data show that when two cells with the same size and small separation distance interact, repulsive interaction take place until they reach the same lateral equilibrium position. During this process, they undergo swapping or passing, depending on the initial separation distance between each other. The threshold value of this distance increases with cell deformation, indicating that the cells experiencing larger deformation are more likely to swap. When a series of closely spaced cells with the same size are considered, they generally undergo damped oscillation in both lateral and translational directions until they reach equilibrium positions where they become evenly distributed in the flow direction (self-assembly phenomenon). A series of cells with a large lateral separation distance could collide repeatedly with each other, eventually crossing the centerline and entering the other side of the channel. For a series of cells with different deformability, more deformable cells, upon impact with less deformable cells, move to an equilibrium position closer to the centerline. The results of our study show that the bulk deformation of circulating cells plays a key role in their migration in a microchannel.

  17. Aragonite pseudomorphs in high-pressure marbles of Syros, Greece

    NASA Astrophysics Data System (ADS)

    Brady, John B.; Markley, Michelle J.; Schumacher, John C.; Cheney, John T.; Bianciardi, Grace A.

    2004-01-01

    Numerous rod-shaped calcite crystals occur in the blueschist to eclogite facies marbles of Syros, Greece. The rods show a shape-preferred orientation, and the long axes of the rods are oriented at a large angle to foliation. The crystals also have a crystallographic-preferred orientation: calcite c-axes are oriented parallel to the long axes of the rods. Based on their chemical composition, shape, and occurrence in high-pressure marbles, these calcite crystals are interpreted as topotactic pseudomorphs after aragonite that developed a crystallographic-preferred orientation during peak metamorphism. This interpretation is consistent with deformation of aragonite by dislocation creep, which has been observed in laboratory experiments but has not been previously reported on the basis of field evidence. Subsequent to the high-pressure deformation of the aragonite marbles, the aragonite recrystallized statically into coarse rod-shaped crystals, maintaining the crystallographic orientation developed during deformation. During later exhumation, aragonite reverted to calcite, and the marbles experienced little further deformation, at least in the pseudomorph-rich layers. Some shearing of pseudomorph-bearing marble layers did occur and is indicated by twinning of calcite and by a variable inclination of the pseudomorphs relative to foliation.

  18. Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake.

    PubMed

    Hu, Yan; Bürgmann, Roland; Banerjee, Paramesh; Feng, Lujia; Hill, Emma M; Ito, Takeo; Tabei, Takao; Wang, Kelin

    2016-10-20

    The concept of a weak asthenospheric layer underlying Earth's mobile tectonic plates is fundamental to our understanding of mantle convection and plate tectonics. However, little is known about the mechanical properties of the asthenosphere (the part of the upper mantle below the lithosphere) underlying the oceanic crust, which covers about 60 per cent of Earth's surface. Great earthquakes cause large coseismic crustal deformation in areas hundreds of kilometres away from and below the rupture area. Subsequent relaxation of the earthquake-induced stresses in the viscoelastic upper mantle leads to prolonged postseismic crustal deformation that may last several decades and can be recorded with geodetic methods. The observed postseismic deformation helps us to understand the rheological properties of the upper mantle, but so far such measurements have been limited to continental-plate boundary zones. Here we consider the postseismic deformation of the very large (moment magnitude 8.6) 2012 Indian Ocean earthquake to provide by far the most direct constraint on the structure of oceanic mantle rheology. In the first three years after the Indian Ocean earthquake, 37 continuous Global Navigation Satellite Systems stations in the region underwent horizontal northeastward displacements of up to 17 centimetres in a direction similar to that of the coseismic offsets. However, a few stations close to the rupture area that had experienced subsidence of up to about 4 centimetres during the earthquake rose by nearly 7 centimetres after the earthquake. Our three-dimensional viscoelastic finite-element models of the post-earthquake deformation show that a thin (30-200 kilometres), low-viscosity (having a steady-state Maxwell viscosity of (0.5-10) × 10 18 pascal seconds) asthenospheric layer beneath the elastic oceanic lithosphere is required to produce the observed postseismic uplift.

  19. Influence of torque control motors and the operator's proficiency on ProTaper failures.

    PubMed

    Yared, Ghassan; Bou Dagher, Fadia; Kulkarni, Kiran

    2003-08-01

    The purpose of this study was to evaluate the influence of 2 electric torque control motors and operator experience with a specific nickel-titanium rotary instrumentation technique on the incidence of deformation and separation of instruments. ProTaper (PT) nickel-titanium rotary instruments were used at 300 rpm. In the first part of the study, electric high torque control (group 1) and low torque control (group 2) motors were compared. In the second part of the study, 3 operators with varying experience (groups 3, 4, and 5) were also compared. Twenty sets of PT instruments and 100 canals of extracted human molars were used in each group. Each set of PT instruments was used in up to 5 canals and sterilized before each case. For irrigation, 2.5% NaOCl was used. The number of deformed and separated instruments among the groups (within each part of the study) was statistically analyzed for significance with pair-wise comparisons by using the Fisher exact test (alpha =.05). In part 1, instrument deformation and separation did not occur in groups 1 and 2. In part 2, 25 and 12 instruments were deformed and separated, respectively, with the least experienced operator. Instrument deformation and separation did not occur with the most experienced operator. The Fisher exact test revealed a significant difference between groups 3 and 4 with respect to instrument deformation (P =.0296). In addition, the Fisher exact test revealed that the incidence of instrument deformation was statistically different between groups 3 and 5 (P <.0001) and groups 4 and 5 (P =.0018). The incidence of instrument separation was significantly higher in group 5 than in groups 3 and 4 (P =.001). Preclinical training in the use of the PT technique at 300 rpm is crucial to prevent instrument separation and reduce the incidence of instrument deformation. The use of an electric high torque control motor is safe with the experienced operator.

  20. Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.

    PubMed

    Pacchierotti, Claudio; Prattichizzo, Domenico; Kuchenbecker, Katherine J

    2016-02-01

    Despite its expected clinical benefits, current teleoperated surgical robots do not provide the surgeon with haptic feedback largely because grounded forces can destabilize the system's closed-loop controller. This paper presents an alternative approach that enables the surgeon to feel fingertip contact deformations and vibrations while guaranteeing the teleoperator's stability. We implemented our cutaneous feedback solution on an Intuitive Surgical da Vinci Standard robot by mounting a SynTouch BioTac tactile sensor to the distal end of a surgical instrument and a custom cutaneous display to the corresponding master controller. As the user probes the remote environment, the contact deformations, dc pressure, and ac pressure (vibrations) sensed by the BioTac are directly mapped to input commands for the cutaneous device's motors using a model-free algorithm based on look-up tables. The cutaneous display continually moves, tilts, and vibrates a flat plate at the operator's fingertip to optimally reproduce the tactile sensations experienced by the BioTac. We tested the proposed approach by having eighteen subjects use the augmented da Vinci robot to palpate a heart model with no haptic feedback, only deformation feedback, and deformation plus vibration feedback. Fingertip deformation feedback significantly improved palpation performance by reducing the task completion time, the pressure exerted on the heart model, and the subject's absolute error in detecting the orientation of the embedded plastic stick. Vibration feedback significantly improved palpation performance only for the seven subjects who dragged the BioTac across the model, rather than pressing straight into it.

  1. Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals

    NASA Astrophysics Data System (ADS)

    Byun, T. S.

    2007-04-01

    The dose dependence of true stress parameters has been investigated for nuclear structural materials: A533B pressure vessel steels, modified 9Cr-1Mo and 9Cr-2WVTa ferritic martensitic steels, 316 and 316LN stainless steels, and Zircaloy-4. After irradiation to significant doses, these alloys show radiation-induced strengthening and often experience prompt necking at yield followed by large necking deformation. In the present work, the critical true stresses for deformation and fracture events, such as yield stress (YS), plastic instability stress (PIS), and true fracture stress (FS), were obtained from uniaxial tensile tests or calculated using a linear strain-hardening model for necking deformation. At low dose levels where no significant embrittlement was detected, the true fracture stress was nearly independent of dose. The plastic instability stress was also independent of dose before the critical dose-to-prompt-necking at yield was reached. A few bcc alloys such as ferritic martensitic steels experienced significant embrittlement at doses above ∼1 dpa; and the true fracture stress decreased with dose. The materials fractured before yield at or above 10 dpa.

  2. Multi-technique approach for deriving a VLBI signal extra-path variation model induced by gravity: the example of Medicina

    NASA Astrophysics Data System (ADS)

    Sarti, P.; Abbondanza, C.; Negusini, M.; Vittuari, L.

    2009-09-01

    During the measurement sessions gravity might induce significant deformations in large VLBI telescopes. If neglected or mismodelled, these deformations might bias the phase of the incoming signal thus corrupting the estimate of some crucial geodetic parameters (e.g. the height component of VLBI Reference Point). This paper describes a multi-technique approach implemented for measuring and quantifying the gravity-dependent deformations experienced by the 32-m diameter VLBI antenna of Medicina (Northern Italy). Such an approach integrates three different methods: Terrestrial Triangulations and Trilaterations (TTT), Laser Scanning (LS) and a Finite Element Model (FEM) of the antenna. The combination of the observations performed with these methods allows to accurately define an elevation-dependent model of the signal path variation which appears to be, for the Medicina telescope, non negligible. In the range [0,90] deg the signal path increases monotonically by almost 2 cm. The effect of such a variation has not been introduced in actual VLBI analysis yet; nevertheless this is the task we are going to pursue in the very next future.

  3. Co- and post-seismic shallow fault physics from near-field geodesy, seismic tomography, and mechanical modeling

    NASA Astrophysics Data System (ADS)

    Nevitt, J.; Brooks, B. A.; Catchings, R.; Goldman, M.; Criley, C.; Chan, J. H.; Glennie, C. L.; Ericksen, T. L.; Madugo, C. M.

    2017-12-01

    The physics governing near-surface fault slip and deformation are largely unknown, introducing significant uncertainty into seismic hazard models. Here we combine near-field measurements of surface deformation from the 2014 M6.0 South Napa earthquake with high-resolution seismic imaging and finite element models to investigate the effects of rupture speed, elastic heterogeneities, and plasticity on shallow faulting. We focus on two sites that experienced either predominantly co-seismic or post-seismic slip. We measured surface deformation with mobile laser scanning of deformed vine rows within 300 m of the fault at 1 week and 1 month after the event. Shear strain profiles for the co- and post-seismic sites are similar, with maxima of 0.012 and 0.013 and values exceeding 0.002 occurring within 26 m- and 18 m-wide zones, respectively. That the rupture remained buried at the two sites and produced similar deformation fields suggests that permanent deformation due to dynamic stresses did not differ significantly from the quasi-static case, which might be expected if the rupture decelerated as it approached the surface. Active-source seismic surveys, 120 m in length with 1 m geophone/shot spacing, reveal shallow compliant zones of reduced shear modulus. For the co- and post-seismic sites, the tomographic anomaly (Vp/Vs > 5) at 20 m depth has a width of 80 m and 50 m, respectively, much wider than the observed surface displacement fields. We investigate this discrepancy with a suite of finite element models in which a planar fault is buried 5 m below the surface. The model continuum is defined by either homogeneous or heterogeneous elastic properties, with or without Drucker-Prager plastic yielding, with properties derived from lab testing of similar near-surface materials. We find that plastic yielding can greatly narrow the surface displacement zone, but that the width of this zone is largely insensitive to changes in the elastic structure (i.e., the presence of a compliant zone).

  4. On the distinction between large deformation and large distortion for anisotropic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRANNON,REBECCA M.

    2000-02-24

    A motion involves large distortion if the ratios of principal stretches differ significantly from unity. A motion involves large deformation if the deformation gradient tensor is significantly different from the identity. Unfortunately, rigid rotation fits the definition of large deformation, and models that claim to be valid for large deformation are often inadequate for large distortion. An exact solution for the stress in an idealized fiber-reinforced composite is used to show that conventional large deformation representations for transverse isotropy give errant results. Possible alternative approaches are discussed.

  5. Subaqueous Sediment Remobilization and Development of Syndepositional Deformational Structures on Mars: A Kinematic Approach from the Noachian Terby Crater

    NASA Astrophysics Data System (ADS)

    Sarkar, R.; Das, P.; Basu Sarbadhikari, A.

    2017-12-01

    A 2 km thick layered sequence within the Noachian Terby crater ( 174 km diameter, 28.0°S - 74.0°E), located at the Northern rim of Hellas basin, has been re-classified here into three major categories, i.e. mega-slump, debris flows, and turbidites based on sedimentation process. A wide spectrum of deformation structures, such as large scale isoclinal moderately inclined fold, pinch and swells, disharmonic folds, sediment loading structure, normal faults and thrust duplexes, suggest that amplitude of the syndepositional deformation spanned from hydroplastic to brittle domains. These structures provide ample evidences of sediment remobilization in Terby. The dominance of such mass-flow deposits in different stratigraphic horizons indicates that the basin was reactivated in frequent intervals during the filling process. However, an undeformed thinning-up sequence of beds, well exhibited at the basinal-lows, identified as ponded/confined turbidites, indicates that the basin experienced a stable bathymetric condition at the up-dip areas of the mega-slumps. An overall enrichment of phyllosilicates and scarcity of large boulders at the basin margins indicates that the provenance materials were deposited under stable and low-energy condition before being transported and re-deposited within the crater during the Terby impact. We presume that the inter-crater layered terrain of Hellas acted as a provenance of Terby's mass-transport deposits.

  6. Growth of the Pamir

    NASA Astrophysics Data System (ADS)

    Gloaguen, R.; Ratschbacher, L.

    2009-04-01

    We aim to establish the Late Cenozoic deformation field of the Pamir by localizing and characterizing active and neotectonic deformation structures, and setting up the drainage-basin, river-capture, river- reversal, and regional erosion history. The project thus aims to record the short-term, upper crustal response to active intra-continental subduction, orocline formation, and erosion. Our hypothesis is that the neotectonics is governed by subduction beneath the frontal part of the orocline, E-W extension in the intra-plateau Karakul-lake rift, and transtension (east) and transpression (west) along the lateral margins of the orocline, a result of oroclinal formation, rotation of the Indian indenter, and focused precipitation caused by the Westerlies. The model for the evolution of the drainage system involves: growth of the Pamir by N-ward propagating deformation, establishing E-trending belts of shortening and rivers/drainages; diversion and blocking of these rivers by the development of the lateral boundaries of the orocline that resulted in river capture and reversal. Even the present-day Panj (Amu Darya) is affected by ongoing uplift: tilted river terraces, wind gaps, and abnormal intersection of streams of different order indicate that large parts of the river have changed flow direction. The determination of a number of geomorphic indices with remote sensing techniques help us to identify areas experiencing tectonic deformation.

  7. Does permanent extensional deformation in lower forearc slopes indicate shallow plate-boundary rupture?

    NASA Astrophysics Data System (ADS)

    Geersen, J.; Ranero, C. R.; Kopp, H.; Behrmann, J. H.; Lange, D.; Klaucke, I.; Barrientos, S.; Diaz-Naveas, J.; Barckhausen, U.; Reichert, C.

    2018-05-01

    Seismic rupture of the shallow plate-boundary can result in large tsunamis with tragic socio-economic consequences, as exemplified by the 2011 Tohoku-Oki earthquake. To better understand the processes involved in shallow earthquake rupture in seismic gaps (where megathrust earthquakes are expected), and investigate the tsunami hazard, it is important to assess whether the region experienced shallow earthquake rupture in the past. However, there are currently no established methods to elucidate whether a margin segment has repeatedly experienced shallow earthquake rupture, with the exception of mechanical studies on subducted fault-rocks. Here we combine new swath bathymetric data, unpublished seismic reflection images, and inter-seismic seismicity to evaluate if the pattern of permanent deformation in the marine forearc of the Northern Chile seismic gap allows inferences on past earthquake behavior. While the tectonic configuration of the middle and upper slope remains similar over hundreds of kilometers along the North Chilean margin, we document permanent extensional deformation of the lower slope localized to the region 20.8°S-22°S. Critical taper analyses, the comparison of permanent deformation to inter-seismic seismicity and plate-coupling models, as well as recent observations from other subduction-zones, including the area that ruptured during the 2011 Tohoku-Oki earthquake, suggest that the normal faults at the lower slope may have resulted from shallow, possibly near-trench breaking earthquake ruptures in the past. In the adjacent margin segments, the 1995 Antofagasta, 2007 Tocopilla, and 2014 Iquique earthquakes were limited to the middle and upper-slope and the terrestrial forearc, and so are upper-plate normal faults. Our findings suggest a seismo-tectonic segmentation of the North Chilean margin that seems to be stable over multiple earthquake cycles. If our interpretations are correct, they indicate a high tsunami hazard posed by the yet un-ruptured southern segment of the seismic gap.

  8. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    NASA Astrophysics Data System (ADS)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust. Synkinematic granitoids localize most, if not all, deformation in the studied shear zone. The regional continuity and the pervasive character of the magmatic fabric in the various synkinematic granitic bodies, consistently displaying similar plane and direction of flow, argue for accommodation of large amounts of orogen-parallel movement by viscous deformation of these magmas. Moreover, activation of high-temperature deformation mechanisms probably allowed a much easier deformation of the hot synkinematic granites than of the colder country rock and, consequently, contributed significantly to the localization of deformation. Finally, the small extent of the low-temperature deformation suggests that the strike-slip deformation ended approximately synchronously with the final cooling of the peraluminous granites. The evolution of the deformation reflects the strong influence of synkinematic magma emplacement and subsequent cooling on the thermomechanical evolution of the shear zone. Magma intrusion in an orogen-scale transcurrent shear zone deeply modifies the rheological behavior of the continental crust. It triggers an efficient thermomechanical softening localized within the fault that may subsist long enough for large displacements to be accommodated. Therefore the close association of deformation and synkinematic magmatism probably represents an important factor controlling the mechanical response of continental plates in collisional environments.

  9. Early Cretaceous Ductile Deformation of Marbles from the Western Hills of Beijing, North China Craton

    NASA Astrophysics Data System (ADS)

    Feng, H.; Liu, J.

    2017-12-01

    During the Early Cretaceous tectonic lithosphere extension, the pre-mesozoic rocks from the Western Hills in the central part of the North China Craton suffered from weak metamorphism but intense shear deformation. The prominent features of the deformation structures are the coexisting layer-parallel shear zones and intrafolia folds, and the along-strike thickness variations of the marble layers from the highly sheared Mesoproterozoic Jing'eryu Formation. Platy marbles are well-developed in the thinner layers, while intrafolia folds are often observed in the thicker layers. Most folds are tight recumbent folds and their axial planes are parallel to the foliations and layerings of the marbles. The folds are A-type folds with hinges being always paralleling to the stretching lineations consistently oriented at 130°-310° directions throughout the entire area. SPO and microstructural analyses of the sheared marbles suggest that the thicker layers suffered from deformations homogeneously, while strain localization can be distinguished in the thinner layers. Calcite twin morphology and CPO analysis indicate that the deformation of marbles from both thinner and thicker layers happened at temperatures of 300 to 500°C. The above analysis suggests that marbles in the thicker layers experienced a progressive sequence of thermodynamic events: 1) regional metamorphism, 2) early ductile deformation dominated by relatively higher temperature conditions, during which all the mineral particles elongated and oriented limitedly and the calcite grains are deformed mainly by mechanical twinning, and 3) late superimposition of relatively lower temperature deformation and recrystallization, which superposed the early deformation, and made the calcites finely granulated, elongated and oriented by dynamical recrystallization along with other grains. Marbles from the thinner layers, however, experienced a similar, but different sequence of thermo-dynamic events, i.e. regional metamorphism, early ductile deformation and weak superimposition by subsequent deformation, which caused the development of the strain localization. It is also shown that the intensity of progressive superimposition deformation contributed to the thinning and thickening of the marble layers.

  10. Tracking sea ice floes from the Lincoln Sea to Nares Strait and deriving large scale melt from coincident spring and summer (2009) aerial EM thickness surveys

    NASA Astrophysics Data System (ADS)

    Lange, B. A.; Haas, C.; Beckers, J.; Hendricks, S.

    2011-12-01

    Satellite observations demonstrate a decreasing summer Arctic sea ice extent over the past ~40 years, as well as a smaller perennial sea ice zone, with a significantly accelerated decline in the last decade. Recent ice extent observations are significantly lower than predicted by any model employed by the Intergovernmental Panel on Climate Change. The disagreement of the modeled and observed results, along with the large variability of model results, can be in part attributed to a lack of consistent and long term sea ice mass balance observations for the High Arctic. This study presents the derivation of large scale (individual floe) seasonal sea ice mass balance in the Lincoln Sea and Nares Strait. Large scale melt estimates are derived by comparing aerial borne electromagnetic induction thickness surveys conducted in spring with surveys conducted in summer 2009. The comparison of coincident floes is ensured by tracking sea ice using ENIVSAT ASAR and MODIS satellite imagery. Only EM thickness survey sections of floes that were surveyed in both spring and summer are analyzed and the resulting modal thicknesses of the distributions, which represent the most abundant ice type, are compared to determine the difference in thickness and therefore total melt (snow+basal ice+surface ice melt). Preliminary analyses demonstrate a bulk (regional ice tracking) seasonal total thickness variability of 1.1m, Lincoln Sea modal thickness 3.7m (April, 2009) and Nares Strait modal thickness 2.6m (August 2009)(Fig1). More detailed floe tracking, in depth analysis of EM surveys and removal of deformed ridged/rafted sea ice (due to inaccuracies over deformed ice) will result in more accurate melt estimates for this region and will be presented. The physical structure of deformed sea ice and the footprint of the EM instrument typically underestimate the total thicknesses observed. Seasonal variations of sea ice properties can add additional uncertainty to the response of the EM instrument over deformed ridged/rafted sea ice. Here we will present additional analysis of the data comparing total thickness to ridge height that will provide some insight into the magnitude of seasonal discrepancies experienced by the EM instrument over deformed ice.

  11. Geotechnical aspects of the January 2003 Tecoma'n, Mexico, earthquake

    USGS Publications Warehouse

    Wartman, Joseph; Rodriguez-Marek, Adrian; Macari, Emir J.; Deaton, Scott; Ramirez-Reynaga, Marti'n; Ochoa, Carlos N.; Callan, Sean; Keefer, David; Repetto, Pedro; Ovando-Shelley, Efrai'n

    2005-01-01

    Ground failure was the most prominent geotechnical engineering feature of the 21 January 2003 Mw 7.6 Tecoma´n earthquake. Ground failure impacted structures, industrial facilities, roads, water supply canals, and other critical infrastructure in the state of Colima and in parts of the neighboring states of Jalisco and Michoaca´n. Landslides and soil liquefaction were the most common type of ground failure, followed by seismic compression of unsaturated materials. Reinforced earth structures generally performed well during the earthquake, though some structures experienced permanent lateral deformations up to 10 cm. Different ground improvement techniques had been used to enhance the liquefaction resistance of several sites in the region, all of which performed well and exhibited no signs of damage or significant ground deformation. Earth dams in the region experienced some degree of permanent deformation but remained fully functional after the earthquake.

  12. Preliminary Investigation of Skull Fracture Patterns Using an Impactor Representative of Helmet Back-Face Deformation.

    PubMed

    Weisenbach, Charles A; Logsdon, Katie; Salzar, Robert S; Chancey, Valeta Carol; Brozoski, Fredrick

    2018-03-01

    Military combat helmets protect the wearer from a variety of battlefield threats, including projectiles. Helmet back-face deformation (BFD) is the result of the helmet defeating a projectile and deforming inward. Back-face deformation can result in localized blunt impacts to the head. A method was developed to investigate skull injury due to BFD behind-armor blunt trauma. A representative impactor was designed from the BFD profiles of modern combat helmets subjected to ballistic impacts. Three post-mortem human subject head specimens were each impacted using the representative impactor at three anatomical regions (frontal bone, right/left temporo-parietal regions) using a pneumatic projectile launcher. Thirty-six impacts were conducted at energy levels between 5 J and 25 J. Fractures were detected in two specimens. Two of the specimens experienced temporo-parietal fractures while the third specimen experienced no fractures. Biomechanical metrics, including impactor acceleration, were obtained for all tests. The work presented herein describes initial research utilizing a test method enabling the collection of dynamic exposure and biomechanical response data for the skull at the BFD-head interface.

  13. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.

    2015-01-01

    A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals oriented optimally for basal slip accommodated strain mainly viscously and experienced only minor fracturing. Instead, the crystals misoriented for basal slip hardened and deformed by pervasive domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms vary transiently in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.

  14. The Fragmented Manihiki Plateau - Key Region for Understanding the Break-up of the "Super" Large Igneous Province Ontong Java Nui

    NASA Astrophysics Data System (ADS)

    Hochmuth, K.; Gohl, K.; Uenzelmann-Neben, G.; Werner, R.

    2014-12-01

    The Manihiki Plateau of the western Pacific is one of the world - wide greatest Large Igneous Province (LIP) on oceanic crust. It is assumed that the Manihiki Plateau was emplaced as the centerpiece of the "Super-LIP" Ontong Java Nui by multiple volcanic phases during the Cretaceous Magnetic Quiet Period. The subsequent break-up of Ontong Java Nui led to fragmentation of the Manihiki Plateau into three sub-plateaus, which all exhibit individual relicts of the "Super-LIP" break-up. We examine two deep crustal seismic refraction/wide-angle reflection profiles crossing the two largest sub-plateaus of the Manihiki Plateau, the Western Plateaus and the High Plateau. Modeling of P- and S-wave velocities reveals surprising differences in the crustal structure between the two sub-plateaus. Whereas the High Plateau shows a constant crustal thickness of 20 km, relicts of multiple volcanic phases and break-up features at its margins, the model of the Western Plateaus reveals a crustal thickness decreasing from 17 km to only 9 km. There is only little evidence of secondary phases of volcanic activity. The main upper crustal structure on the Western Plateaus consists of fault systems and sedimentary basins. We infer that the High Plateau experienced phases of strong secondary volcanism, and that tectonic deformation was limited to its edges. The Western Plateaus, on the contrary, were deformed by crustal stretching and underwent only little to no secondary volcanism. This indicates that the two main sub-plateaus of the Manihiki Plateau experienced a different geological history and have played their individual parts in the break-up history of Ontong Java Nui.

  15. Microscopic asperity contact and deformation of ultrahigh molecular weight polyethylene bearing surfaces.

    PubMed

    Wang, F C; Jin, Z M; McEwen, H M J; Fisher, J

    2003-01-01

    The effect of the roughness and topography of ultrahigh molecular weight polyethylene (UHMWPE) bearing surfaces on the microscopic contact mechanics with a metallic counterface was investigated in the present study. Both simple sinusoidal roughness forms, with a wide range of amplitudes and wavelengths, and real surface topographies, measured before and after wear testing in a simple pin-on-plate machine, were considered in the theoretical analysis. The finite difference method was used to solve the microscopic contact between the rough UHMWPE bearing surface and a smooth hard counterface. The fast Fourier transform (FFT) was used to cope with the large number of mesh points required to represent the surface topography of the UHMWPE bearing surface. It was found that only isolated asperity contacts occurred under physiological loading, and the real contact area was only a small fraction of the nominal contact area. Consequently, the average contact pressure experienced at the articulating surfaces was significantly higher than the nominal contact pressure. Furthermore, it was shown that the majority of asperities on the worn UHMWPE pin were deformed in the elastic region, and consideration of the plastic deformation only resulted in a negligible increase in the predicted asperity contact area. Microscopic asperity contact and deformation mechanisms may play an important role in the understanding of the wear mechanisms of UHMWPE bearing surfaces.

  16. An analysis of seismic hazard in the Upper Rhine Graben enlightened by the example of the New Madrid seismic zone.

    NASA Astrophysics Data System (ADS)

    Doubre, Cécile; Masson, Frédéric; Mazzotti, Stéphane; Meghraoui, Mustapha

    2014-05-01

    Seismic hazard in the "stable" continental regions and low-level deformation zones is one of the most difficult issues to address in Earth sciences. In these zones, instrumental and historical seismicity are not well known (sparse seismic networks, seismic cycle too long to be covered by the human history, episodic seismic activity) and many active structures remain poorly characterized or unknown. This is the case of the Upper Rhine Graben, the central segment of the European Cenozoic rift system (ECRIS) of Oligocene age, which extends from the North Sea through Germany and France to the Mediterranean coast over a distance of some 1100 km. Even if this region has already experienced some destructive earthquakes, its present-day seismicity is moderate and the deformation observed by geodesy is very small (below the current measurement accuracy). The strain rate does not exceed 10-10 and paleoseismic studies indicate an average return period of 2.5 to 3 103 ka for large earthquakes. The largest earthquake known for this zone is the 1356 Basel earthquake, with a magnitude generally estimated about 6.5 (Meghraoui et al., 2001) but recently re-evaluated between 6.7 and 7.1 (Fäh et al et al., 2009). A comparison of the Upper Rhine Graben with equivalent regions around the world could help improve our evaluation of seismic hazard of this region. This is the case of the New Madrid seismic zone, one of the best studied intraplate system in central USA, which experienced an M 7.0 - 7.5 earthquake in 1811-1812 and shares several characteristics with the Upper Rhine Graben, i.e. the general framework of inherited geological structures (reactivation of a failed rift / graben), seismicity patterns (spatial variability of small and large earthquakes), the null or low rate of deformation, and the location in a "stable" continental interior. Looking at the Upper Rhine Graben as an analogue of the New Madrid seismic zone, we can re-evaluate its seismic hazard and consider the possibility of an earthquake of magnitude 7 or greater.

  17. Age, distribution and style of deformation in Alaska north of 60°N: Implications for assembly of Alaska

    USGS Publications Warehouse

    Moore, Thomas; Box, Stephen E.

    2016-01-01

    The structural architecture of Alaska is the product of a complex history of deformation along both the Cordilleran and Arctic margins of North America involving oceanic plates, subduction zones and strike-slip faults and with continental elements of Laurentia, Baltica, and Siberia. We use geological constraints to assign regions of deformation to 14 time intervals and to map their distributions in Alaska. Alaska can be divided into three domains with differing deformational histories. Each domain includes a crustal fragment that originated near Early Paleozoic Baltica. The Northern domain experienced the Early Cretaceous Brookian orogeny, an oceanic arc-continent collision, followed by mid-Cretaceous extension. Early Cretaceous opening of the oceanic Canada Basin rifted the orogen from the Canadian Arctic margin, producing the bent trends of the orogen. The second (Southern) domain consists of Neoproterozoic and younger crust of the amalgamated Peninsular-Wrangellia-Alexander arc terrane and its paired Mesozoic accretionary prism facing the Pacific Ocean basin. The third (Interior) domain, situated between the first two domains and roughly bounded by the Cenozoic dextral Denali and Tintina faults, includes the large continental Yukon Composite and Farewell terranes having different Permian deformational episodes. Although a shared deformation that might mark their juxtaposition by collisional processes is unrecognized, sedimentary linkage between the two terranes and depositional overlap of the boundary with the Northern domain occurred by early Late Cretaceous. Late Late Cretaceous deformation is the first deformation shared by all three domains and correlates temporally with emplacement of the Southern domain against the remainder of Alaska. Early Cenozoic shortening is mild across interior Alaska but is significant in the Brooks Range, and correlates in time with dextral faulting, ridge subduction and counter-clockwise rotation of southern Alaska. Late Cenozoic shortening is significant in southern Alaska inboard of the underthrusting Yakutat terrane at the Pacific margin and in northeastern Alaska.

  18. Rapid deformation of the South flank of kilauea volcano, hawaii.

    PubMed

    Owen, S; Segall, P; Freymueller, J; Mikijus, A; Denlinger, R; Arnadóttir, T; Sako, M; Bürgmann, R

    1995-03-03

    The south flank of Kilauea volcano has experienced two large [magnitude (M) 7.2 and M 6.1] earthquakes in the past two decades. Global Positioning System measurements conducted between 1990 and 1993 reveal seaward displacements of Kilauea's central south flank at rates of up to about 10 centimeters per year. In contrast, the northern side of the volcano and the distal ends of the south flank did not displace significantly. The observations can be explained by slip on a low-angle fault beneath the south flank combined with dilation deep within Kilauea's rift system, both at rates of at least 15 centimeters per year.

  19. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain.

    PubMed

    MacManus, David B; Pierrat, Baptiste; Murphy, Jeremiah G; Gilchrist, Michael D

    2017-07-15

    Traumatic brain injury (TBI) has become a recent focus of biomedical research with a growing international effort targeting material characterization of brain tissue and simulations of trauma using computer models of the head and brain to try to elucidate the mechanisms and pathogenesis of TBI. The meninges, a collagenous protective tri-layer, which encloses the entire brain and spinal cord has been largely overlooked in these material characterization studies. This has resulted in a lack of accurate constitutive data for the cranial meninges, particularly under dynamic conditions such as those experienced during head impacts. The work presented here addresses this lack of data by providing for the first time, in situ large deformation material properties of the porcine dura-arachnoid mater composite under dynamic indentation. It is demonstrated that this tissue is substantially stiffer (shear modulus, μ=19.10±8.55kPa) and relaxes at a slower rate (τ 1 =0.034±0.008s, τ 2 =0.336±0.077s) than the underlying brain tissue (μ=6.97±2.26kPa, τ 1 =0.021±0.007s, τ 2 =0.199±0.036s), reducing the magnitudes of stress by 250% and 65% for strains that arise during indentation-type deformations in adolescent brains. We present the first mechanical analysis of the protective capacity of the cranial meninges using in situ micro-indentation techniques. Force-relaxation tests are performed on in situ meninges and cortex tissue, under large strain dynamic micro-indentation. A quasi-linear viscoelastic model is used subsequently, providing time-dependent mechanical properties of these neural tissues under loading conditions comparable to what is experienced in TBI. The reported data highlights the large differences in mechanical properties between these two tissues. Finite element simulations of the indentation experiments are also performed to investigate the protective capacity of the meninges. These simulations show that the meninges protect the underlying brain tissue by reducing the overall magnitude of stress by 250% and up to 65% for strains. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Prediction on fracture risk of femur with Osteogenesis Imperfecta using finite element models: Preliminary study

    NASA Astrophysics Data System (ADS)

    Wanna, S. B. C.; Basaruddin, K. S.; Mat Som, M. H.; Mohamad Hashim, M. S.; Daud, R.; Majid, M. S. Abdul; Sulaiman, A. R.

    2017-10-01

    Osteogenesis imperfecta (OI) is a genetic disease which affecting the bone geometry. In a severe case, this disease can cause death to patients. The main issue of this disease is the prediction on bone fracture by the orthopaedic surgeons. The resistance of the bone to withstand the force before the bones fracture often become the main concern. Therefore, the objective of the present preliminary study was to investigate the fracture risk associated with OI bone, particularly in femur, when subjected to the self-weight. Finite element (FEA) was employed to reconstruct the OI bone model and analyse the mechanical stress response of femur before it fractures. Ten deformed models with different severity of OI bones were developed and the force that represents patient self-weight was applied to the reconstructed models in static analysis. Stress and fracture risk were observed and analysed throughout the simulation. None of the deformed model were observed experienced fracture. The fracture risk increased with increased severity of the deformed bone. The results showed that all deformed femur models were able to bear the force without experienced fracture when subjected to only the self-weight.

  1. Crust and Mantle Deformation Revealed from High-Resolution Radially Anisotropic Velocity Models

    NASA Astrophysics Data System (ADS)

    Li, A.; Dave, R.; Yao, Y.

    2017-12-01

    Love wave tomography, which can achieve a similar model resolution as Rayleigh wave, so far has limited applications to the USArray data. Recently, we have developed high-resolution Love wave phase velocity maps in the Wyoming craton and Texas using data at the Transportable Array stations. 3-D, radially anisotropic velocity models are obtained by jointly inverting Love and Rayleigh wave phase velocities. A high-velocity anomaly extending to about 200 km depth beneath central Wyoming correlates with negative radial anisotropy (Vsv>Vsh), suggesting that mantle downwelling develops under the cratonic lithosphere. Surprisingly, the significantly low velocity beneath the Yellowstone hotspot, which has been interpreted as partial melting and asthenospheric upwelling, is associated with the largest radial anisotropy (Vsh>Vsv) in the area. This observation does not support mantle upwelling. Instead, it indicates that the upper mantle beneath the hotspot has experienced strong shear deformation probably by the plate motion and large-scale mantle flow. In Texas, positive radial anisotropy in the lower crust extends from the coast to the Ouachita belt, which is characterized by high velocity and negative radial anisotropy. In the upper mantle, large variations of velocity and anisotropy exit under the coastal plain. A common feature in these anisotropic models is that high-velocity anomalies in the upper mantle often correlate with negative anisotropy (Vsv>Vsh) while low-velocity anomalies are associated with positive anisotropy (Vsh>Vsv). The manifestation of mantle downweling as negative radial anisotropy is largely due to the relatively high viscosity of the high-velocity mantle block, which is less affected by the surrounding large-scale horizontal flow. However, mantle upwelling, which is often associated with low-velocity anomalies, presumably low-viscosity mantle blocks, is invisible in radial anisotropy models. Such upwelling may happen too quickly to make last effects or too slow to alter the dominant shear deformation in the asthenosphere.

  2. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-06-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} _{ {f}}), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their < {c}> -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal < {c+a}> slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}}1}-{10{\\bar{1}}2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} _{ {f}} value. A combination of basal, prismatic, and pyramidal < {c+a}> slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal < {c+a}> slip, and the improved {ɛ} _{ {f}} values at elevated temperatures were attributed to the vanishing activity of contraction twinning.

  3. Characterizing a middle to upper crustal shear zone: Microstructures, quartz c-axis fabrics, deformation temperatures and flow vorticity analysis of the northern Ailao Shan-Red River shear zone, China

    NASA Astrophysics Data System (ADS)

    Wu, Wenbin; Liu, Junlai; Zhang, Lisheng; Qi, Yinchuan; Ling, Chengyang

    2017-05-01

    Structural and microstructural characteristics, deformation temperatures and flow vorticities of the northern Ailao Shan (ALS) high-grade metamorphic belt provide significant information regarding the nature and tectonic evolution of the Ailao Shan-Red River (ASRR) shear zone. Mineral deformation mechanisms, quartz lattice-preferred orientation (LPO) patterns and the opening angles of quartz c-axis fabrics of samples from the Gasa section indicate that the northern ALS high-grade metamorphic belt has experienced progressive shear deformation. The early stage shearing is characterized by a gradual decrease of deformation temperatures from >650 °C at the northeastern unit to ca. 300 °C at the southwestern unit, that results in the formation of migmatites, mylonitic gneisses, thin bedded mylonites, mylonitic schists and phyllonites from the NE to SW across the strike of the shear zone. The late stage low-temperature (300-400 °C) shearing is superimposed on the early deformation throughout the belt with the formation of discrete, small-scale shear zones, especially in the thin-banded mylonitic rocks along both margins. The kinematic vorticity values estimated by rotated rigid porphyroclast method and oblique grain-shaped/quartz c-axis-fabric method imply that the general shear-dominated flow (0.49-0.77) progressively changed to a simple shear-dominated flow (0.77-1) toward the late stage of ductile deformation. The two stages of shearing are consistent with early shortening-dominated and late extrusion-controlled regional tectonic processes. The transition between them occurred at ca. 27 Ma in the ALS high-grade metamorphic belt along the ASRR shear zone. The large amount of strike-slip displacement along the ASRR shear zone is predominantly attributed to accelerated flow along the shear zone during the late extrusion-controlled tectonic process.

  4. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-03-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} f ), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their < {c}> -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal < {c+a}> slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}} 1}-{10{\\bar{1}} 2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} f value. A combination of basal, prismatic, and pyramidal < {c+a}> slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal < {c+a}> slip, and the improved {ɛ} f values at elevated temperatures were attributed to the vanishing activity of contraction twinning.

  5. Electric Eel-Skin-Inspired Mechanically Durable and Super-Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic-Skin Applications.

    PubMed

    Lai, Ying-Chih; Deng, Jianan; Niu, Simiao; Peng, Wenbo; Wu, Changsheng; Liu, Ruiyuan; Wen, Zhen; Wang, Zhong Lin

    2016-12-01

    Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator is demonstrated for the first time by using triboelectric effect. This newly designed nanogenerator can produce electricity by touch or tapping despite under various extreme mechanical deformations or even after experiencing damage. This device can be used not only as deformable and wearable power source but also as fully autonomous and self-sufficient adaptive electronic skin system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery.

    PubMed

    Mummaneni, Praveen V; Shaffrey, Christopher I; Lenke, Lawrence G; Park, Paul; Wang, Michael Y; La Marca, Frank; Smith, Justin S; Mundis, Gregory M; Okonkwo, David O; Moal, Bertrand; Fessler, Richard G; Anand, Neel; Uribe, Juan S; Kanter, Adam S; Akbarnia, Behrooz; Fu, Kai-Ming G

    2014-05-01

    Minimally invasive surgery (MIS) is an alternative to open deformity surgery for the treatment of patients with adult spinal deformity. However, at this time MIS techniques are not as versatile as open deformity techniques, and MIS techniques have been reported to result in suboptimal sagittal plane correction or pseudarthrosis when used for severe deformities. The minimally invasive spinal deformity surgery (MISDEF) algorithm was created to provide a framework for rational decision making for surgeons who are considering MIS versus open spine surgery. A team of experienced spinal deformity surgeons developed the MISDEF algorithm that incorporates a patient's preoperative radiographic parameters and leads to one of 3 general plans ranging from MIS direct or indirect decompression to open deformity surgery with osteotomies. The authors surveyed fellowship-trained spine surgeons experienced with spinal deformity surgery to validate the algorithm using a set of 20 cases to establish interobserver reliability. They then resurveyed the same surgeons 2 months later with the same cases presented in a different sequence to establish intraobserver reliability. Responses were collected and tabulated. Fleiss' analysis was performed using MATLAB software. Over a 3-month period, 11 surgeons completed the surveys. Responses for MISDEF algorithm case review demonstrated an interobserver kappa of 0.58 for the first round of surveys and an interobserver kappa of 0.69 for the second round of surveys, consistent with substantial agreement. In at least 10 cases there was perfect agreement between the reviewing surgeons. The mean intraobserver kappa for the 2 surveys was 0.86 ± 0.15 (± SD) and ranged from 0.62 to 1. The use of the MISDEF algorithm provides consistent and straightforward guidance for surgeons who are considering either an MIS or an open approach for the treatment of patients with adult spinal deformity. The MISDEF algorithm was found to have substantial inter- and intraobserver agreement. Although further studies are needed, the application of this algorithm could provide a platform for surgeons to achieve the desired goals of surgery.

  7. Water Impact of Syntactic Foams

    PubMed Central

    Shams, Adel; Zhao, Sam; Porfiri, Maurizio

    2017-01-01

    Syntactic foams are particulate composite materials that are extensively integrated in naval and aerospace structures as core materials for sandwich panels. While several studies have demonstrated the potential of syntactic foams as energy absorbing materials in impact tests, our understanding of their response to water impact remains elusive. In this work, we attempt a first characterization of the behavior of a vinyl ester/glass syntactic subject to slamming. High-speed imaging is leveraged to elucidate the physics of water impact of syntactic foam wedges in a free-fall drop tower. From the images, we simultaneously measure the deformation of the wedge and the hydrodynamic loading, thereby clarifying the central role of fluid–structure interaction during water impact. We study two different impact heights and microballoon density to assess the role of impact energy and syntactic foam composition on the slamming response. Our results demonstrate that both these factors have a critical role on the slamming response of syntactic foams. Reducing the density of microballoons might help to reduce the severity of the hydrodynamic loading experienced by the wedge, but this comes at the expense of a larger deformation. Such a larger deformation could ultimately lead to failure for large drop heights. These experimental results offer compelling evidence for the role of hydroelastic coupling in the slamming response of syntactic foams. PMID:28772581

  8. Characterizing the deformation of reservoirs using interferometry, gravity, and seismic analyses

    NASA Astrophysics Data System (ADS)

    Schiek, Cara Gina

    In this dissertation, I characterize how reservoirs deform using surface and subsurface techniques. The surface technique I employ is radar interferometry, also known as InSAR (Interferometric Synthetic Aperture Radar). The subsurface analyses I explore include gravity modeling and seismic techniques consisting of determining earthquake locations from a small-temporary seismic network of six seismometers. These techniques were used in two different projects to determine how reservoirs deform in the subsurface and how this deformation relates to its remotely sensed surface deformation. The first project uses InSAR to determine land subsidence in the Mimbres basin near Deming, NM. The land subsidence measurements are visually compared to gravity models in order to determine the influence of near surface faults on the subsidence and the physical properties of the aquifers in these basins. Elastic storage coefficients were calculated for the Mimbres basin to aid in determining the stress regime of the aquifers. In the Mimbres basin, I determine that it is experiencing elastic deformation at differing compaction rates. The west side of the Mimbres basin is deforming faster, 17 mm/yr, while the east side of the basin is compacting at a rate of 11 mm/yr. The second project focuses on San Miguel volcano, El Salvador. Here, I integrate InSAR with earthquake locations using surface deformation forward modeling to investigate the explosive volcanism in this region. This investigation determined the areas around the volcano that are undergoing deformation, and that could lead to volcanic hazards such as slope failure from a fractured volcano interior. I use the earthquake epicenters with field data to define the subsurface geometry of the deformation source, which I forward model to produce synthetic interferograms. Residuals between the synthetic and observed interferograms demonstrate that the observed deformation is a direct result of the seismic activity along the San Miguel Fracture Zone. Based on the large number of earthquakes concentrated in this region and the fracturing suggested by the earthquake location results, I conclude that the southwestern slope of San Miguel is the most susceptible to volcanic hazards such as landsliding and flank lava flows. Together these projects explore the dynamics of reservoir systems, both hydrologic and magmatic. They show the utility of geodetic remote sensing to constrain the relative importance of various, complex, subsurface processes, including faulting, fluid migration, and compaction.

  9. Deformation at Lava Lake Volcanoes: Lessons from Karthala

    NASA Astrophysics Data System (ADS)

    Biggs, J.; Rust, A.; Owens, C.

    2014-12-01

    To remain hot, permanent lava lakes require a continuous connection to a magma reservoir. Depending on the state of the conduit, changes in magma pressure could result in changes in the lake level (hydraulic head) or be accommodated elastically leading to surface deformation. Observing deformation is therefore key to understanding the plumbing system associated with lava lakes. However, the majority of the world's lava lakes lie in difficult socio-economic or remote locations meaning that there are few ground-based observations, and it is often necessary to rely on satellite imagery. Karthala volcano experienced a sequence of eruptions in April 2005, Nov 2005, May 2006 and Jan 2007. The first 3 took place at the Choungou Chahale crater, which typically contains either a water or lava lake; the last formed a new pit crater to the north. Satellite thermal imagery (Hirn et al, 2008) does not show an anomaly during the first eruption, which had a phreatomagmatic component, but large thermal anomalies, associated with an ephemeral lava lake were detected during the Nov 2005 and May 2006 eruptions. The final eruption produced a smaller anomaly attributed to a minor lava flow. Here we present InSAR observations from 2004-2010. We find no significant deformation associated with the first three eruptions, but the January 2007 eruption was associated with ~25 cm of deformation near the volcano's summit, characteristic of a dyke intrusion aligned with the northern rift zone. We also observe an unusual pattern deformation along the coast which may be attributed to rapid settling of soft sediment or recent volcanic deposits triggered by seismic activity. We propose that the first eruption cleared the reservoir-summit connection and interacted with the water in Choungou Chahale. The following eruptions formed a lava lake, but without causing deformation. By the final eruption, the conduit had become blocked and magma intruded along the rift zone causing deformation but no thermal anomaly. The dyke intersected the surface at Choungou Chagnoumeni. At Karthala volcano, no deformation is associated with lava lake activity, but when the conduit is blocked, magma intrudes along the rift zone causing deformation. This is in contrast to observations at Kileauea in Hawaii, where both lake level changes and deformation occur simultaneously.

  10. Influence of inherited structures on the growth of basement-cored ranges, basin inversion and foreland basin development in the Central Andes, from apatite fission-track and apatite Helium thermochronology.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Sobel, E. R.; Del Papa, C.; Jelinek, A. R.; Muruaga, C.

    2017-12-01

    The Central Andes in NW of Argentina is part of a long-lived subduction zone, active since the Paleozoic. This region experienced several tectonic cycles; each of which created an unique set of structures and may have reactivated preexisting structures. These inherited structures may exert a first-order control over the different foreland deformational styles observed along the strike in the Central Andes. Our study area is located between 26°S and 28°S on the transition between the broken foreland (Santa Barbara system), which expresses a combination of thin-skin and thick-skin styles, and the Sierras Pampeanas, which is deform in a thick-skin style. The Cumbres Calchaquies range and the associated Choromoro Basin are located in the northern part of the study area, and are the southern expression of the Santa Barbara system. Published thermochronology data suggest that the rocks from the basement experienced Late Cretaceous and Late Miocene exhumation; the associated sedimentary rocks within the Choromoro basin experienced Paleogene and Late Miocene deformational phases. In contrast, the Sierra Aconquija range, located immediately south on the transition to the Sierras Pampeanas (thick skin) foreland basin, exhibit larger amounts of Miocene exhumation and lack of Cretaceous exhumation; the associated sedimentary rocks from the Tucuman basin have not been deformed since the Cretaceous. Our goal is to understand the evolution of the structural blocks and the structures responsible for the along strike changes in foreland basin deformational styles and their relation with inherited structures from previous tectonic cycles. We are obtaining new apatite U-Th/He and fission track data to reconstruct the thermal history of the basement, accompanied by U-Pb geochronology and stratigraphy to constrain the evolution of the associated sedimentary basins. Preliminary results combined with published data suggest that inherited structures within the study area have evolved through different tectonic cycles, controlling the thicknes and the geometry of the sediments within the Mesozoic rift basin, the Miocene amount of exhumation in the basement-cored ranges and the deformation style of the associated foreland basins.

  11. Determining Wheel-Soil Interaction Loads Using a Meshfree Finite Element Approach Assisting Future Missions with Rover Wheel Design

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Peng, Chia-Yen; Wang, Dongdong; Chen, Jiun-Shyan

    2012-01-01

    A wheel experiencing sinkage and slippage events poses a high risk to rover missions as evidenced by recent mobility challenges on the Mars Exploration Rover (MER) project. Because several factors contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc., there are significant benefits to modeling these events to a sufficient degree of complexity. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree finite element approaches enable simulations that capture sufficient detail of wheel-soil interaction while remaining computationally feasible. This study demonstrates some of the large deformation modeling capability of meshfree methods and the realistic solutions obtained by accounting for the soil material properties. A benchmark wheel-soil interaction problem is developed and analyzed using a specific class of meshfree methods called Reproducing Kernel Particle Method (RKPM). The benchmark problem is also analyzed using a commercially available finite element approach with Lagrangian meshing for comparison. RKPM results are comparable to classical pressure-sinkage terramechanics relationships proposed by Bekker-Wong. Pending experimental calibration by future work, the meshfree modeling technique will be a viable simulation tool for trade studies assisting rover wheel design.

  12. Generation of deformation time series from SAR data sequences in areas affected by large dynamics: insights from Sierra Negra caldera, Galápagos Islands

    NASA Astrophysics Data System (ADS)

    Casu, Francesco; Manconi, Andrea; Pepe, Antonio; Lanari, Riccardo

    2010-05-01

    Differential Synthetic Aperture Radar Interferometry (DInSAR) is a remote sensing technique that allows producing spatially dense deformation maps of the Earth surface, with centimeter accuracy. To this end, the phase difference of SAR image pairs acquired before and after a deformation episode is properly exploited. This technique, originally applied to investigate single deformation events, has been further extended to analyze the temporal evolution of the deformation field through the generation of displacement time-series. A well-established approach is represented by the Small BAseline Subset (SBAS) technique (Berardino et al., 2002), whose capability to analyze deformation events at low and full spatial resolution has largely been demonstrated. However, in areas where large and/or rapid deformation phenomena occur, the exploitation of the differential interferograms, thus also of the displacement time-series, can be strongly limited by the presence of significant misregistration errors and/or very high fringe rates, making unfeasible the phase unwrapping step. In this work, we propose advances on the generation of deformation time-series in areas affected by large deformation dynamics. We present an extension of the amplitude-based Pixel-Offset analyses by applying the SBAS strategy, in order to move from the investigation of single (large) deformation events to that of dynamic phenomena. The above-mentioned method has been tested on an ENVISAT SAR data archive (Track 61, Frames 7173-7191) related to the Galapagos Islands, focusing on Sierra Negra caldera (Galapagos Islands), an active volcanic area often characterized by large and rapid deformation events leading to severe image misregistration effects (Yun et al., 2007). Moreover, we present a cross-validation of the retrieved deformation estimates comparing our results to continuous GPS measurements and to synthetic deformation obtained by independently modeling the interferometric phase information when available. References: P. Berardino et al., (2002), A new algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms, IEEE Transactions on Geoscience and Remote Sensing, vol. 40, 11, pp. 2375-2383. S-H. Yun et al., (2007), Interferogram formation in the presence of complex and large deformation, Geophys. Res. Lett., vol. 34, L12305.

  13. Repair of Pectus Excavatum and Carinatum Deformities in 116 Adults

    PubMed Central

    Fonkalsrud, Eric W.; DeUgarte, Daniel; Choi, Edmund

    2002-01-01

    Objective To determine the feasibility of surgically correcting pectus excavatum and carinatum deformities in adult patients. Summary Background Data Although pectus chest deformities are common, many patients progress to adulthood without surgical repair and experience increasing symptoms. There are sparse published data regarding repair of pectus deformities in adults. Methods Since 1987, 116 patients over the age of 18 years with pectus excavatum (n = 104) or carinatum (n = 12) deformities underwent correction using a highly modified Ravitch repair, with a temporary internal support bar. The ages ranged from 19 to 53 years (mean 30.1). Eighty-six patients sought repair after reviewing information regarding pectus deformities available on the Internet. Each patient experienced dyspnea with mild exertion and decreased endurance; 84 had chest pain with activity; 75 had palpitations and/or tachycardia. Seven patients underwent repair for symptomatic recurrent deformities. The mean severity score (chest width divided by distance from sternum to spine) was 4.8. The sternal bar was removed from 101 patients 6 months after the repair without complications. Results Each of the patients with reduced endurance or dyspnea with mild exercise experienced marked improvement within 6 months. Chest discomfort was reduced in 82 of the 84 patients. Complications included pleural effusion (n = 7), pneumothorax (n = 2), pericarditis (n = 2), dislodged sternal bar (n = 3), and mildly hypertrophic scar (n = 12). Mean hospitalization was 2.9 days; mean blood loss was 122 mL. Pain was mild and of short duration (intravenous analgesics were used a mean of 2.1 days). There were no deaths. With a mean follow-up of 4.3 years, 109 of 113 respondents had a very good or excellent result. Conclusions Although technically more difficult than in children, pectus deformities may be repaired in adults with low morbidity, short hospital stay, and very good physiologic and cosmetic results. PMID:12192317

  14. Tectonic evolution of the Fru\\vska Gora (NW Serbia) and implications for the late stage inversion of the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Novčić, Novak; Toljić, Marinko; Stojadinović, Uroš; Matenco, Liviu

    2017-04-01

    Indentation of Adria microplate during latest Miocene to Quaternary times created contraction and transcurrent movements distributed in the Dinarides Mountains and along its margin with the adjacent Pannonian Basin. Fru\\vska Gora of northern Serbia is one of the few areas along the southern margin of the Pannonian Basin where the kinematic effects of this late-stage inversion can be studied. These mountains are located along the Sava-Vardar Suture Zone as an isolated inselberg surrounded by Neogene deposits of the Pannonian Basin, exposing metamorphic rocks, Mesozoic ophiolites and sediments belonging to the Dinarides units. Our field kinematic study demonstrate that deformation structures are related to several Oligocene - Miocene extensional and latest Miocene - Quaternary contractional deformation events. These events took place during the differential rotational stages experienced by Fru\\vska Gora. This has created a gradual change in strike from N-S to E-W of three successive normal faulting episodes (Oligocene-Early Miocene, Early Miocene and Middle-Late Miocene), subsequently inverted by contractional deformation. This latter deformation took place during the continuous latest Miocene - Quaternary Adria indentation and was accompanied by yet another 40 degrees counter clockwise rotation of the entire Fru\\vska Gora. Almost all resulting contractional structures reactivate the pre-existing Oligocene - Miocene normal faults. This is reflected in the present-day morphology of Fruska Gora that has a large-scale flower-type of structural geometry formed during dextral transpression, as demonstrated by field kinematics and seismic interpretations. This overall geometry is significantly different when compared with other areas situated more westwards in a similar structural position in the Dinariders at their contact with the Pannonian Basin, such as Medvednica Mountains or Sava-Drava transpressional systems. The variation in offsets along the strike of the orogen demonstrate that the indentation into the Pannonian basin significantly decrease eastwards towards Fruska Gora, likely accommodating a large-scale variation in indentation mechanics across and along the Dinarides.

  15. Deformation sequences of the Day Nui Con Voi metamorphic belt, northern Vietnam

    NASA Astrophysics Data System (ADS)

    Yeh, M. W.; Lee, T. Y.; Lo, C. H.; Chung, S. L.; Lan, C. Y.; Lee, J. C.; Lin, T. S.; Lin, Y. J.

    2003-04-01

    The correlation of structure, microstructure and metamorphic assemblages is of fundamental importance to the understanding of the complex tectonic history and kinematics of the Day Nui Con Voi (DNCV) metamorphic belt in Vietnam along the Ailao Shan-Red River (ASRR) shear zone as it provides constraints on the relative timing of the deformation, kinematics and metamorphism. High-grade metamorphic rocks of amphibolite faces showed consistent deformation sequences of three folding events followed by one brittle deformation through all four cross sections from Lao Cai to Viet Tri indicated the DNCV belt experienced similar deformation condition throughout its length. The first deformation event, D1, produced up-right folds (locally preserved) with sub-vertical, NE-SW striking axial planes with dextral sense of shear probably formed during the early phase of the lowermost Triassic Indosinian orogeny. Followed by this compressional event is a gravitational collapsing event, D2, which is the major deformation and metamorphic event characterized by kyanite grade metamorphism and large scale horizontal folds with NW-SE (320) striking sub-horizontal axial pane showing sinsistral sense of shear most likely formed during the Oligocene-Miocene SE extrusion of Indochina peninsula. The 3rd folding event, D3, is a post-metamorphism doming event with NW-SE (310) striking sub-vertical axial plane that folded/tilted the once sub-horizontal D2 axial planes into shallowly (<30 degrees) NE dipping on the NE limb, and SW dipping on the SW limb possibly due to left-lateral movement of the N-S trending Xian Shui He fault system in Mid-Miocene. The outward decreasing of the metamorphic grade from kyanite to garnet then biotite indicated the D3 occurred post metamorphism. Reactivation of the sub-horizontal D2 fold axial planes showed dextral sense of shear possibly due to Late Miocene-Pliocene right-lateral movement of the ASRR shear zone. This right lateral movement continuously deformed the DNCV with brittle fractures such as joints and normal faults (D4) striking NE-SW to E-W and NW-SE.

  16. Deformation Cycling of a Ti - Ni Alloy with Superelasticity Effect Applied in Cardiology

    NASA Astrophysics Data System (ADS)

    Kaputkin, D. E.; Morozova, T. V.

    2014-07-01

    The study concerns the effect of the conditions and of the force of loading experienced by an implanted device from a Ti - Ni alloy during its transfer to the working zone, for example, in endoscopic implantation into the coronary sinus of the greater vena cava of heart. It is shown that preliminary deformation cycling (10 - 15 cycles) stabilizes the set of mechanical properties of the alloy.

  17. Variscan tectonics in Dodecanese, Kalymnos island, Greece

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Eleftheria; Grasemann, Bernhard; Schneider, David; Hubmann, Bernhard; Soukis, Konstantinos

    2015-04-01

    Kalymnos island is located in the Dodecanese, southeastern Aegean Sea, and geologically appears to be part of the external Hellenides. Pre-Alpidic basement rocks on the Dodecanese islands have been suggested to record compelling similarities with the basement rocks in Eastern Crete with respect to their lithologies and pre-Alpidic metamorphic evolution. The lithotectonic units experienced greenschist to amphibolite facies conditions during the Variscan orogeny. Whereas the rocks in Eastern Crete reveal Alpine high-pressure overprint, the Variscan basement units in the Dodecanese record no or low-grade Alpine metamorphism. A field study of basement rocks below Mesozoic limestones and dolomites in the NW part of Kalymnos near Emporios uncovered a complex history of metamorphism, folding and faulting. Three different tectonic units can be discriminated from top to bottom: a) a quartz-mica schist, b) a white-grey, fossiliferous coarse grained marble and c) a fine-grained fossiliferous blue-grey marble. In the marbles macrofossils such as brachiopods, ammonoid cephalopods (Goniatids?) and crinoids suggest a Middle-Upper Devonian deposition age (Givetian- Frasnian). Structural mapping the area resolved a dominant W-E shortening event, resulting in an overall inverted metamorphic gradient. The lowermost blue-grey marble unit is folded into large-scale upright folds, which are truncated by top-to-east overthrusting of the white-grey marble unit. Whereas deformation mechanisms in the blue-grey marble unit are dominated by dissolution-precipitation creep, the white-grey marble suffered intense crystal plastic deformation with localized high-strain mylonitic shear zones. The uppermost quartz-mica schist unit is separated from the lower units by a cataclastic phyllonitic shear zone. 40Ar/39Ar geochronological dating on white micas from the quartz-mica schists yielded cooling ages between 240 and 334 Ma indicative of Variscan cooling. Our data suggest that this part of the Dodecanese experienced intense Variscan deformation with no high-temperature Alpine overprint.

  18. Analytical Approach to Large Deformation Problems of Frame Structures

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Atsumi; Ellyin, Fernand

    In elements used as flexible linking devices and structures, the main characteristic is a fairly large deformation without exceeding the elastic limit of the material. This property is of both analytical and technological interests. Previous studies of large deformation have been generally concerned with a single member (e.g. a cantilever beam, a simply supported beam, etc.). However, there are very few large deformation studies of assembled members such as frames. This paper deals with a square frame with rigid joints, loaded diagonally in either tension or compression by a pair of opposite forces. Analytical solutions for large deformation are obtained in terms of elliptic integrals, and are compared with the experimental data. The agreement is found to be fairly close.

  19. SU-E-J-88: Deformable Registration Using Multi-Resolution Demons Algorithm for 4DCT.

    PubMed

    Li, Dengwang; Yin, Yong

    2012-06-01

    In order to register 4DCT efficiently, we propose an improved deformable registration algorithm based on improved multi-resolution demons strategy to improve the efficiency of the algorithm. 4DCT images of lung cancer patients are collected from a General Electric Discovery ST CT scanner from our cancer hospital. All of the images are sorted into groups and reconstructed according to their phases, and eachrespiratory cycle is divided into 10 phases with the time interval of 10%. Firstly, in our improved demons algorithm we use gradients of both reference and floating images as deformation forces and also redistribute the forces according to the proportion of the two forces. Furthermore, we introduce intermediate variable to cost function for decreasing the noise in registration process. At the same time, Gaussian multi-resolution strategy and BFGS method for optimization are used to improve speed and accuracy of the registration. To validate the performance of the algorithm, we register the previous 10 phase-images. We compared the difference of floating and reference images before and after registered where two landmarks are decided by experienced clinician. We registered 10 phase-images of 4D-CT which is lung cancer patient from cancer hospital and choose images in exhalationas the reference images, and all other images were registered into the reference images. This method has a good accuracy demonstrated by a higher similarity measure for registration of 4D-CT and it can register a large deformation precisely. Finally, we obtain the tumor target achieved by the deformation fields using proposed method, which is more accurately than the internal margin (IM) expanded by the Gross Tumor Volume (GTV). Furthermore, we achieve tumor and normal tissue tracking and dose accumulation using 4DCT data. An efficient deformable registration algorithm was proposed by using multi-resolution demons algorithm for 4DCT. © 2012 American Association of Physicists in Medicine.

  20. The effects of composition and thermal path on hot ductility of forging steels

    NASA Astrophysics Data System (ADS)

    Connolly, Brendan M.

    This work examines the effects of composition and thermal path on the hot ductility of several forging steels with varied aluminum and nitrogen content. The primary mechanisms and controlling factors related to hot ductility are identified with a focus on the role of precipitates and segregation. The unique thermal paths and solidification structures of large cross-section forging ingots are discussed. Hot ductility testing is performed in a manner that approximates industrial conditions experienced by large cross-section forging ingots. A computer model for precipitation of aluminum nitride and vanadium nitride in austenite is presented. Industrial material is examined for comparison to experimental findings. It is found that increased aluminum and nitrogen content coarsens the as-solidified structure. The combined effects of microsegregation and uphill diffusion during deformation allow for carbide precipitation at prior austenite grain boundaries which reduces the hot ductility.

  1. High Resolution, Large Deformation 3D Traction Force Microscopy

    PubMed Central

    López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian

    2014-01-01

    Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435

  2. Comparison of the Modified McBride Procedure and the Distal Chevron Osteotomy for Mild to Moderate Hallux Valgus.

    PubMed

    Choi, Gi Won; Kim, Hak Jun; Kim, Taik Seon; Chun, Sung Kwang; Kim, Tae Wan; Lee, Yong In; Kim, Kyoung Ho

    2016-01-01

    Distal metatarsal osteotomy and the modified McBride procedure have each been used for the treatment of mild to moderate hallux valgus. However, few studies have compared the results of these 2 procedures for mild to moderate hallux valgus. The purpose of the present study was to compare the results of distal chevron osteotomy and the modified McBride procedure for treatment of mild to moderate hallux valgus according to the severity of the deformity. We analyzed the data from 45 patients (49.5%; 48 feet [49.0%]), who had undergone an isolated modified McBride procedure (McBride group), and 46 patients (50.5%; 50 feet [51.0%]), who had a distal chevron osteotomy (chevron group). We subdivided each group into those with mild and moderate deformity and compared the clinical and radiologic outcomes between the groups in relation to the severity of the deformity. The improvements in the American Orthopaedic Foot and Ankle Society scale score and the visual analog scale for pain were significantly better for the chevron group for both mild and moderate deformity. The chevron group experienced significantly greater correction in the hallux valgus angle and intermetatarsal angle for both mild and moderate deformity. The chevron group experienced a significantly greater decrease in the grade of sesamoid displacement for patients with moderate deformity. The McBride group had a greater risk of recurrence than did the chevron group for moderate deformity (odds ratio 14.00, 95% confidence interval 3.91 to 50.06, p < .001). The results of the present study have demonstrated the superiority of the distal chevron osteotomy over the modified McBride procedure for mild to moderate deformity. For patients with moderate deformity, the McBride group had a greater risk of hallux valgus recurrence than did the distal chevron group. Therefore, we recommend distal chevron osteotomy rather than a modified McBride procedure for the treatment of mild and moderate hallux valgus. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Vertical axis rotation (or lack thereof) of the eastern Mongolian Altay Mountains: Implications for far-field transpressional mountain building

    NASA Astrophysics Data System (ADS)

    Gregory, Laura C.; Mac Niocaill, Conall; Walker, Richard T.; Bayasgalan, Gantulga; Craig, Tim J.

    2018-06-01

    The Altay Mountains of Western Mongolia accommodate 10-20% of the current shortening of the India-Asia collision in a transpressive regime. Kinematic models of the Altay require faults to rotate anticlockwise about a vertical axis in order to accommodate compressional deformation on the major strike slip faults that cross the region. Such rotations should be detectable by palaeomagnetic data. Previous estimates from the one existing palaeomagnetic study from the Altay, on Oligocene and younger sediments from the Chuya Basin in the Siberian Altay, indicate that at least some parts of the Altay have experienced up to 39 ± 8° of anticlockwise rotation. Here, we present new palaeomagnetic results from samples collected in Cretaceous and younger sediments in the Zereg Basin along the Har-Us-Nuur fault in the eastern Altay Mountains, Mongolia. Our new palaeomagnetic results from the Zereg Basin provide reliable declinations, with palaeomagnetic directions from 10 sites that pass a fold test and include magnetic reversals. The declinations are not significantly rotated with respect to the directions expected from Cretaceous and younger virtual geomagnetic poles, suggesting that faults in the eastern Altay have not experienced a large degree of vertical axis rotation and cannot have rotated >7° in the past 5 m.y. The lack of rotation along the Har-Us-Nuur fault combined with a large amount of rotation in the northern Altay fits with a kinematic model for transpressional deformation in which faults in the Altay have rotated to an orientation that favours the development of flower structures and building of mountainous topography, while at the same time the range widens at the edges as strain is transferred to better oriented structures. Thus the Har-Us-Nuur fault is a relatively young fault in the Altay, and has not yet accommodated significant rotation.

  4. Displacement and deformation measurement for large structures by camera network

    NASA Astrophysics Data System (ADS)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  5. Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations

    PubMed Central

    Sibole, Scott C.; Erdemir, Ahmet

    2012-01-01

    Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro-scale model providing application for other multi-scale continuum mechanics problems. PMID:22649535

  6. Craniofacial reconstruction with poly(methyl methacrylate) customized cranial implants.

    PubMed

    Huang, Gary J; Zhong, Susan; Susarla, Srinivas M; Swanson, Edward W; Huang, Judy; Gordon, Chad R

    2015-01-01

    Secondary cranioplasty with customized craniofacial implants (CCIs) are often used to restore cerebral protection and reverse syndromes of the trephined, and for reconstruction of acquired cranial deformities. The 2 most widely used implant materials are polyetheretherketone and poly(methylmethacrylate) (PMMA). Previous series with CCIs report several major complications, including implant infection leading to removal, extended hospital stays, and surgical revisions. With this in mind, we chose to review our large case series of 22 consecutive PMMA CCI cranioplasties treated by a single craniofacial surgeon. A cohort of 20 consecutive patients receiving 22 PMMA implants during a 2-year period was identified and outcomes reviewed. The mechanism of initial insult, time from craniectomy to cranioplasty, anesthesia time, major and minor postoperative complications, radiation history, and length of follow-up were statistically analyzed. There were no complications related to infection, hematoma/seroma, or cerebrospinal fluid leak (0/22, 0%). Two patients experienced major complications related to persistent temporal hollowing (PTH) following standard CCI cranioplasty, which required revision surgery with modified implants (2/22, 9%). One minor complication of self-resolving transient diplopia was noted (1/22, 5%). In this consecutive series, PMMA CCIs were associated with a very low complication rate, suggesting that PMMA may be a preferred material for CCI fabrication. However, with 10% (2/20) of patients experiencing PTH and dissatisfaction related to asymmetry, future research must be directed at modifying CCI shape, to address the overlying soft-tissue deformity. If successful, this may increase patient satisfaction, prevent PTH, and avoid additional costs of revision surgery.

  7. Large Scale Deformation of the Western US Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2001-01-01

    Destructive earthquakes occur throughout the western US Cordillera (WUSC), not just within the San Andreas fault zone. But because we do not understand the present-day large-scale deformations of the crust throughout the WUSC, our ability to assess the potential for seismic hazards in this region remains severely limited. To address this problem, we are using a large collection of Global Positioning System (GPS) networks which spans the WUSC to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.

  8. Adaptive Diffeomorphic Multiresolution Demons and Their Application to Same Modality Medical Image Registration with Large Deformation

    PubMed Central

    Wang, Chang; Ren, Qiongqiong; Qin, Xin

    2018-01-01

    Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.

  9. Adaptive Diffeomorphic Multiresolution Demons and Their Application to Same Modality Medical Image Registration with Large Deformation.

    PubMed

    Wang, Chang; Ren, Qiongqiong; Qin, Xin; Yu, Yi

    2018-01-01

    Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.

  10. The ANACONDA algorithm for deformable image registration in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weistrand, Ola; Svensson, Stina, E-mail: stina.svensson@raysearchlabs.com

    2015-01-15

    Purpose: The purpose of this work was to describe a versatile algorithm for deformable image registration with applications in radiotherapy and to validate it on thoracic 4DCT data as well as CT/cone beam CT (CBCT) data. Methods: ANAtomically CONstrained Deformation Algorithm (ANACONDA) combines image information (i.e., intensities) with anatomical information as provided by contoured image sets. The registration problem is formulated as a nonlinear optimization problem and solved with an in-house developed solver, tailored to this problem. The objective function, which is minimized during optimization, is a linear combination of four nonlinear terms: 1. image similarity term; 2. grid regularizationmore » term, which aims at keeping the deformed image grid smooth and invertible; 3. a shape based regularization term which works to keep the deformation anatomically reasonable when regions of interest are present in the reference image; and 4. a penalty term which is added to the optimization problem when controlling structures are used, aimed at deforming the selected structure in the reference image to the corresponding structure in the target image. Results: To validate ANACONDA, the authors have used 16 publically available thoracic 4DCT data sets for which target registration errors from several algorithms have been reported in the literature. On average for the 16 data sets, the target registration error is 1.17 ± 0.87 mm, Dice similarity coefficient is 0.98 for the two lungs, and image similarity, measured by the correlation coefficient, is 0.95. The authors have also validated ANACONDA using two pelvic cases and one head and neck case with planning CT and daily acquired CBCT. Each image has been contoured by a physician (radiation oncologist) or experienced radiation therapist. The results are an improvement with respect to rigid registration. However, for the head and neck case, the sample set is too small to show statistical significance. Conclusions: ANACONDA performs well in comparison with other algorithms. By including CT/CBCT data in the validation, the various aspects of the algorithm such as its ability to handle different modalities, large deformations, and air pockets are shown.« less

  11. The effects of needle deformation during lumbar puncture.

    PubMed

    Özdemir, Hasan Hüseyin; Demir, Caner F; Varol, Sefer; Arslan, Demet; Yıldız, Mustafa; Akil, Eşref

    2015-01-01

    The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP). Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1%) of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3%) of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%). Forty-seven (41.5%) patients experienced post lumbar puncture headache (PLPH) and 13 (11.5%) patients experienced intracranial hypotension (IH). No statistically significant correlation between the degree of deflection and headache was found (P > 0.05). Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH.

  12. Metamorphism in the Potomac composite terrane, Virginia-Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, A.A. Jr.

    1985-01-01

    Metamorphic rocks in the Potomac Valley occur in three allochthon-precursory melange pairs unconformably overlain by the Popes Head Formation which is at greenschist facies of metamorphism. The highest motif, the Piney Branch Complex and Yorkshire Formation are also in the greenschist facies. The middle motif, consists of the Peters Creek Schist and the Sykesville Formation. Quartzose schists and metagraywacke of the Peters Creek contain serpentinite debris and have had a complex metamorphic history: Barrovian prograde to amphibolite facies (with sillimanite), a localized retrograde event producing chlorite phyllonite, and a later greenschist prograde event. The Sykeville is at biotite +/- garnetmore » grade and contains deformed olistoliths of Peters Creek, including phyllonite, at various grades. The lower motif consists of the Annandale Group (pelitic schists and metasandstone) and Indian Run Formation. The Annandale has experienced two greenschist metamorphisms. The Indian Run is at biotite +/- garnet grade and contains previously metamorphosed and deformed olistoliths of Annandale. The allochthons have had different histories, but after stacking they were metamorphosed with their melanges and the Popes Head to biotite grade. The Popes Head has experienced three phases of folding, the earliest synkinematic with Occoquan emplacement. These fold phases are superposed on earlier structures in the older rocks and are probably of Late Cambrian age (Penobscotian). Earlier deformation is probably of Late Proterozoic age (Cadomian). Neither of these deformations is recognized in North American rocks.« less

  13. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    USGS Publications Warehouse

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming inboard of the east Asian margin. ?? 2011 The Authors. Basin Research ?? 2011 Blackwell Publishing Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists.

  14. The influence of partial melting and melt migration on the rheology of the continental crust

    NASA Astrophysics Data System (ADS)

    Cavalcante, Geane Carolina G.; Viegas, Gustavo; Archanjo, Carlos José; da Silva, Marcos Egydio

    2016-11-01

    The presence of melt during deformation produces a drastic change in the rheological behavior of the continental crust; rock strength is decreased even for melt fractions as low as ∼7%. At pressure/temperature conditions typical of the middle to lower crust, melt-bearing systems may play a critical role in the process of strain localization and in the overall strength of the continental lithosphere. In this contribution we focus on the role and dynamics of melt flow in two different mid-crustal settings formed during the Brasiliano orogeny: (i) a large-scale anatectic layer in an orthogonal collision belt, represented by the Carlos Chagas anatexite in southeastern Brazil, and (ii) a strike-slip setting, in which the Espinho Branco anatexite in the Patos shear zone (northeast Brazil) serves as an analogue. Both settings, located in eastern Brazil, are part of the Neoproterozoic tectonics that resulted in widespread partial melting, shear zone development and the exhumation of middle to lower crustal layers. These layers consist of compositionally heterogeneous anatexites, with variable former melt fractions and leucosome structures. The leucosomes usually form thick interconnected networks of magma that reflect a high melt content (>30%) during deformation. From a comparison of previous work based on detailed petrostructural and AMS studies of the anatexites exposed in these areas, we discuss the rheological implications caused by the accumulation of a large volume of melt ;trapped; in mid-crustal levels, and by the efficient melt extraction along steep shear zones. Our analyses suggest that rocks undergoing partial melting along shear settings exhibit layers with contrasting competence, implying successive periods of weakening and strengthening. In contrast, regions where a large amount of magma accumulates lack clear evidence of competence contrast between layers, indicating that they experienced only one major stage of dramatic strength drop. This comparative analysis also suggests that the middle part of both belts contained large volumes of migmatites, attesting that the orogenic root was partially molten and encompassed more than 30% of granitic melt at the time of deformation.

  15. Deformable image registration for tissues with large displacements

    PubMed Central

    Huang, Xishi; Ren, Jing; Green, Mark

    2017-01-01

    Abstract. Image registration for internal organs and soft tissues is considered extremely challenging due to organ shifts and tissue deformation caused by patients’ movements such as respiration and repositioning. In our previous work, we proposed a fast registration method for deformable tissues with small rotations. We extend our method to deformable registration of soft tissues with large displacements. We analyzed the deformation field of the liver by decomposing the deformation into shift, rotation, and pure deformation components and concluded that in many clinical cases, the liver deformation contains large rotations and small deformations. This analysis justified the use of linear elastic theory in our image registration method. We also proposed a region-based neuro-fuzzy transformation model to seamlessly stitch together local affine and local rigid models in different regions. We have performed the experiments on a liver MRI image set and showed the effectiveness of the proposed registration method. We have also compared the performance of the proposed method with the previous method on tissues with large rotations and showed that the proposed method outperformed the previous method when dealing with the combination of pure deformation and large rotations. Validation results show that we can achieve a target registration error of 1.87±0.87  mm and an average centerline distance error of 1.28±0.78  mm. The proposed technique has the potential to significantly improve registration capabilities and the quality of intraoperative image guidance. To the best of our knowledge, this is the first time that the complex displacement of the liver is explicitly separated into local pure deformation and rigid motion. PMID:28149924

  16. Impact of large field angles on the requirements for deformable mirror in imaging satellites

    NASA Astrophysics Data System (ADS)

    Kim, Jae Jun; Mueller, Mark; Martinez, Ty; Agrawal, Brij

    2018-04-01

    For certain imaging satellite missions, a large aperture with wide field-of-view is needed. In order to achieve diffraction limited performance, the mirror surface Root Mean Square (RMS) error has to be less than 0.05 waves. In the case of visible light, it has to be less than 30 nm. This requirement is difficult to meet as the large aperture will need to be segmented in order to fit inside a launch vehicle shroud. To reduce this requirement and to compensate for the residual wavefront error, Micro-Electro-Mechanical System (MEMS) deformable mirrors can be considered in the aft optics of the optical system. MEMS deformable mirrors are affordable and consume low power, but are small in size. Due to the major reduction in pupil size for the deformable mirror, the effective field angle is magnified by the diameter ratio of the primary and deformable mirror. For wide field of view imaging, the required deformable mirror correction is field angle dependant, impacting the required parameters of a deformable mirror such as size, number of actuators, and actuator stroke. In this paper, a representative telescope and deformable mirror system model is developed and the deformable mirror correction is simulated to study the impact of the large field angles in correcting a wavefront error using a deformable mirror in the aft optics.

  17. Full field study of strain distribution near the crack tip in the fracture of solid propellants via large strain digital image correlation and optical microscopy

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier

    A full field method for visualizing deformation around the crack tip in a fracture process with large strains is developed. A digital image correlation program (DIC) is used to incrementally compute strains and displacements between two consecutive images of a deformation process. Values of strain and displacements for consecutive deformations are added, this way solving convergence problems in the DIC algorithm when large deformations are investigated. The method developed is used to investigate the strain distribution within 1 mm of the crack tip in a particulate composite solid (propellant) using microscopic visualization of the deformation process.

  18. Integration of Space-borne SAR and Ground-Based Radar for 3D Deformation Mapping of the Central Calaveras Fault at Coyote Dam

    NASA Astrophysics Data System (ADS)

    Werner, C. L.; Baker, B.; Milillo, P.; Magnard, C.; Strozzi, T.; Wegmüller, U.

    2017-12-01

    The Central Calaveras Fault (CCF) passes directly through Coyote Dam located southeast of Morgan Hill, California. This earthen embankment dam owned and operated by the Santa Clara Valley Water District (District), has experienced over 80 cm of accumulated fault creep since its construction in 1936. The average slip rate is 10 to 15 mm/year as measured using surveying, GPS, and more recently, terrestrial radar interferometry (TRI). The CCF is a right-lateral strike-slip fault that has the potential for a M7.25 earthquake resulting in meter scale displacement. In 2015, the District initiated a geological analysis of the CCF integrating past surveying, GPS data, TRI deformation mapping, paleoseismic trenching, and boreholes. The initial TRI survey included dam measurements from two locations, imaging the upstream and downstream embankments over the period from February to July 2015. The TRI data from the downstream embankment data showed a complex deformation pattern not consistent with a strike-slip fault model. A second measurement campaign was initiated utilizing multiple radar viewpoints with the aim of resolving the 3D deformation field of the downstream embankment. The campaign occurred between May and November 2016 and showed an unexpected strong westward and downward movement exceeding 2 cm/year (see Figure). TRI data were acquired from 4 separate observation points every 2 to 4 weeks during this campaign. Point target analysis methods were used to avoid contamination of the deformation data by vegetation and radar shadow. Deformation uncertainty in the downstream fault zone was relatively high due to the nearly coplanar arrangement of the TRI observation points. To better constrain the vertical deformation, in this report we integrate spaceborne measurements from the Cosmo-SkyMed (CS) radar satellite in the 3D deformation solution. The LOS to the satellite has a large vertical component not present in the TRI measurement geometry that facilitates the inversion. The CS 3-meter resolution data have been acquired every 16 days between 2011 and 2017. These data are used to test the consistency of the TRI results and the long observation period permits identification of periodic hydrologic signals suggested in the TRI measurements.

  19. Finite element analysis of large transient elastic-plastic deformations of simple structures, with application to the engine rotor fragment containment/deflection problem

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.

  20. Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran

    NASA Astrophysics Data System (ADS)

    Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza

    2016-04-01

    Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or arc magmatism. During the Jurassic to Eocene rifting, this belt acted as the southern boundary of the Amu Darya Basin with normal faulting, which is also widespread in the South Caspian Sea and the Black Sea. Moreover, such an extended area became a relatively weak zone within the Eurasian Plate, and could be easily reworked. Because of the collision in the Zagros Belt, the intracontinental compression commenced as early as Late Eocene to Early Oligocene, which is interpreted as tectonic inversion along this weak zone. The western zone of the Kopeh Dagh Belt was also affected by southerly indentation/extrusion of the South Caspian block since middle Miocene, possibly resulting in the different deformation patterns between the western and eastern zones.

  1. Misalignment of Lava Flows from Topographic Slope Directions Reveals Late Amazonian Deformation at Arsia Mons, Mars

    NASA Astrophysics Data System (ADS)

    Waring, B. A.; Chadwick, J.; McGovern, P. J., Jr.; Tucker, W.

    2017-12-01

    Arsia Mons is the southernmost of the three large Tharsis Montes near the equator of Mars and one of the largest volcanoes in the solar system. The main edifice of Arsia is about 440 km in diameter, the summit is over 9 km above the surrounding plains and has a pronounced 110 km caldera. Like the other Tharsis volcanoes, Arsia has a large, Late Amazonian glacial deposit on its NW flank. Previous crater retention studies for lava flows on Arsia have shown that the volcano experienced significant volcanic activity in the past 200 Ma. In this study, numerous long (>25 km), thin lava flows on the plains surrounding Arsia were mapped and used as indicators of the topographic slope direction at the time of their emplacement. The azimuthal orientation of each flow was compared with the present-day slope directions on the surrounding plains, derived from Mars Orbiter Laser Altimeter (MOLA) topographic data. The results reveal regions around Arsia where the flows no longer conform to the topography, indicating deformation in the time since the flows where emplaced. In a region of Daedalia Planum to the SE of Arsia, modern slope directions adjacent to 40 long lava flows are consistently misaligned from the paleo-slopes indicated by the lava flow orientations, with an angular offset that averages 7.2° in the clockwise direction. Crater size-frequency measurements for these tilted plains using CraterStats software indicate that the deformation responsible for the misaligned flows took place since 330 ± 10 Ma. Conversely, part of Daedalia Planum to the southwest of Arsia is younger, with a crater retention age of 160 ± 6 Ma, and this area shows no consistent flow-topography misalignments. These observations suggest that extensive regional deformation occurred between the two dates, consistent with other evidence for significant volcanism at Arsia in the Late Amazonian at about 200 Ma. Geophysical modelling using the finite element program COMSOL Multiphysics is planned to characterize the source and magnitude of the observed deformation. Similar methods were successfully used in a previous study to identify and measure subsidence of Olympus Mons. The goal of the study is to refine the timing of the contemporaneous Late Amazonian volcanic, tectonic, and glacial events on Arsia Mons and to understand their relationships.

  2. Single-step scanner-based digital image correlation (SB-DIC) method for large deformation mapping in rubber

    NASA Astrophysics Data System (ADS)

    Goh, C. P.; Ismail, H.; Yen, K. S.; Ratnam, M. M.

    2017-01-01

    The incremental digital image correlation (DIC) method has been applied in the past to determine strain in large deformation materials like rubber. This method is, however, prone to cumulative errors since the total displacement is determined by combining the displacements in numerous stages of the deformation. In this work, a method of mapping large strains in rubber using DIC in a single-step without the need for a series of deformation images is proposed. The reference subsets were deformed using deformation factors obtained from the fitted mean stress-axial stretch ratio curve obtained experimentally and the theoretical Poisson function. The deformed reference subsets were then correlated with the deformed image after loading. The recently developed scanner-based digital image correlation (SB-DIC) method was applied on dumbbell rubber specimens to obtain the in-plane displacement fields up to 350% axial strain. Comparison of the mean axial strains determined from the single-step SB-DIC method with those from the incremental SB-DIC method showed an average difference of 4.7%. Two rectangular rubber specimens containing circular and square holes were deformed and analysed using the proposed method. The resultant strain maps from the single-step SB-DIC method were compared with the results of finite element modeling (FEM). The comparison shows that the proposed single-step SB-DIC method can be used to map the strain distribution accurately in large deformation materials like rubber at much shorter time compared to the incremental DIC method.

  3. Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter

    NASA Astrophysics Data System (ADS)

    Liu, Junjie; Chen, Zhe; Liang, Xueya; Huang, Xiaoqiang; Mao, Guoyong; Hong, Wei; Yu, Honghui; Qu, Shaoxing

    2018-03-01

    Soft elastomeric membrane structures are widely used and commonly found in engineering and biological applications. Puncture is one of the primary failure modes of soft elastomeric membrane at large deformation when indented by rigid objects. In order to investigate the puncture failure mechanism of soft elastomeric membrane with large deformation, we study the deformation and puncture failure of silicone rubber membrane that results from the continuous axisymmetric indentation by cylindrical steel indenters experimentally and analytically. In the experiment, effects of indenter size and the friction between the indenter and the membrane on the deformation and puncture failure of the membrane are investigated. In the analytical study, a model within the framework of nonlinear field theory is developed to describe the large local deformation around the punctured area, as well as to predict the puncture failure of the membrane. The deformed membrane is divided into three parts and the friction contact between the membrane and indenter is modeled by Coulomb friction law. The first invariant of the right Cauchy-Green deformation tensor I1 is adopted to predict the puncture failure of the membrane. The experimental and analytical results agree well. This work provides a guideline in designing reliable soft devices featured with membrane structures, which are present in a wide variety of applications.

  4. The effects of needle deformation during lumbar puncture

    PubMed Central

    Özdemir, Hasan Hüseyin; Demir, Caner F.; Varol, Sefer; Arslan, Demet; Yıldız, Mustafa; Akil, Eşref

    2015-01-01

    Objective: The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP). Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. Materials and Methods: The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. Results: A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1%) of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3%) of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%). Forty-seven (41.5%) patients experienced post lumbar puncture headache (PLPH) and 13 (11.5%) patients experienced intracranial hypotension (IH). No statistically significant correlation between the degree of deflection and headache was found (P > 0.05). Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Conclusion: Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH. PMID:25883480

  5. Triangles bridge the scales: Quantifying cellular contributions to tissue deformation

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Etournay, Raphaël; Popović, Marko; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    2017-03-01

    In this article, we propose a general framework to study the dynamics and topology of cellular networks that capture the geometry of cell packings in two-dimensional tissues. Such epithelia undergo large-scale deformation during morphogenesis of a multicellular organism. Large-scale deformations emerge from many individual cellular events such as cell shape changes, cell rearrangements, cell divisions, and cell extrusions. Using a triangle-based representation of cellular network geometry, we obtain an exact decomposition of large-scale material deformation. Interestingly, our approach reveals contributions of correlations between cellular rotations and elongation as well as cellular growth and elongation to tissue deformation. Using this triangle method, we discuss tissue remodeling in the developing pupal wing of the fly Drosophila melanogaster.

  6. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n <10-13 m- 2/3). An intelligent correction algorithm can then be developed to reconstruct the perturbed wavefront and use this information to drive a deformable mirror capable of correcting the major distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  7. Coulomb stress interactions among M≥5.9 earthquakes in the Gorda deformation zone and on the Mendocino Fracture Zone, Cascadia megathrust, and northern San Andreas fault

    USGS Publications Warehouse

    Rollins, John C.; Stein, Ross S.

    2010-01-01

    The Gorda deformation zone, a 50,000 km2 area of diffuse shear and rotation offshore northernmost California, has been the site of 20 M ≥ 5.9 earthquakes on four different fault orientations since 1976, including four M ≥ 7 shocks. This is the highest rate of large earthquakes in the contiguous United States. We calculate that the source faults of six recent M ≥ 5.9 earthquakes had experienced ≥0.6 bar Coulomb stress increases imparted by earthquakes that struck less than 9 months beforehand. Control tests indicate that ≥0.6 bar Coulomb stress interactions between M ≥ 5.9 earthquakes separated by Mw = 7.3 Trinidad earthquake are consistent with the locations of M ≥ 5.9 earthquakes in the Gorda zone until at least 1995, as well as earthquakes on the Mendocino Fault Zone in 1994 and 2000. Coulomb stress changes imparted by the 1980 earthquake are also consistent with its distinct elbow-shaped aftershock pattern. From these observations, we derive generalized static stress interactions among right-lateral, left-lateral and thrust faults near triple junctions.

  8. Laser irradiation effects on thin aluminum plates subjected to surface flow

    NASA Astrophysics Data System (ADS)

    Jiang, Houman; Zhao, Guomin; Chen, Minsun; Peng, Xin

    2016-10-01

    The irradiation effects of LD laser on thin aluminum alloy plates are studied in experiments characterized by relatively large laser spot and the presence of 0.3Ma surface airflow. A high speed profilometer is used to record the profile change along a vertical line in the rear surface of the target, and the history of the displacement along the direction of thickness of the central point at the rear surface is obtained. The results are compared with those without airflow and those by C. D. Boley. We think that it is the temperature rise difference along the direction of thickness instead of the pressure difference caused by the airflow that makes the thin target bulge into the incoming beam, no matter whether the airflow is blown or not, and that only when the thin aluminum target is heated thus softened enough by the laser irradiation, can the aerodynamic force by the surface airflow cause non-ignorable localized plastic deformation and result a burn-through without melting in the target. However, though the target isn't softened enough in terms of the pressure difference, it might have experienced notable deformation as it is heated from room temperature to several hundred degree centigrade.

  9. Weakly shocked and deformed CM microxenoliths in the Pułtusk H chondrite

    NASA Astrophysics Data System (ADS)

    KrzesińSka, Agata; Fritz, JöRg

    2014-04-01

    The Pułtusk meteorite is a brecciated H4-5 chondrite cut by darkened cataclastic zones. Within the breccia, relict type IA, IB, and IIA chondrules, and microxenoliths of carbonaceous CM chondrite lithology occur. This is the first description of foreign clasts in the Pułtusk meteorite. The matrix of the xenoliths was identified by usage of microprobe and Raman spectroscopic analyses. Raman spectra show distinct bands related to the presence of slightly ordered carbonaceous matter at approximately 1320 and 1580-1584 cm-1. Bands related to serpentine group minerals are also visible, especially a peak at 692 cm-1 and moreover other weak bands are interpreted as evidence for tochilinite. We decipher the metamorphic and deformational history of the xenoliths. They experienced aqueous alteration before being incorporated into the unaltered and well-equilibrated parent rock of the Pułtusk chondrite. The xenoliths are weakly shocked as indicated by defects in the crystal structure of silicates and carbonates, but hydrated minerals (serpentine and tochilinite) are still present in the matrix. The carbonaceous matter within the clasts' matrix displays first order D and G Raman bands that suggests it is only slightly ordered as a result of mild thermal processing. Distinct shear bands are present in both the xenoliths and the surrounding rock, which testifies that the xenoliths were affected by a deformational event along with host rock. The host rock was brittly deformed, but the clasts experienced more ductile deformation revealed by semibrittle faulting of minerals, kinking of the tochilinite-cronstedtite matrix, and injections of xenolithic material into the adjacent breccia. We argue that both processes, the high strain-rate shear deformation and the incorporation of the xenoliths into the host Pułtusk breccia, could have been impact-related. The Pułtusk xenoliths are, thus, rather spalled collisional fragments, than trapped fossil micrometeorites.

  10. Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation

    PubMed Central

    Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb

    2015-01-01

    It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires. PMID:26087445

  11. Seismic investigation of the Kunlun Fault: Analysis of the INDEPTH IV 2-D active-source seismic dataset

    NASA Astrophysics Data System (ADS)

    Seelig, William George

    The Tibetan Plateau has experienced significant crustal thickening and deformation since the continental subduction and collision of the Asian and Indian plates in the Eocene. Deformation of the northern Tibetan Plateau is largely accommodated by strike-slip faulting. The Kunlun Fault is a 1000-km long strike-slip fault near the northern boundary of the Plateau that has experienced five magnitude 7.0 or greater earthquakes in the past 100 years and represents a major rheological boundary. Active-source, 2-D seismic reflection/refraction data, collected as part of project INDEPTH IV (International Deep Profiling of Tibet and the Himalaya, phase IV) in 2007, was used to examine the structure and the dip of the Kunlun fault. The INDEPTH IV data was acquired to better understand the tectonic evolution of the northeastern Tibetan Plateau, such as the far-field deformation associated with the continent-continent collision and the potential subduction of the Asian continent beneath northern Tibet. Seismic reflection common depth point (CDP) stacks were examined to look for reflectivity patterns that may be associated with faulting. A possible reflection from the buried North Kunlun Thrust (NKT) is identified at 18-21 km underneath the East Kunlun Mountains, with an estimated apparent dip of 15°S and thrusting to the north. Minimally-processed shot gathers were also inspected for reflections off near-vertical structures such as faults and information on first-order velocity structure. Shot offset and nearest receiver number to reflection was catalogued to increase confidence of picks. Reflections off the North Kunlun (NKF) and South Kunlun Faults (SKF) were identified and analyzed for apparent dip and subsurface geometry. Fault reflection analysis found that the North Kunlun Fault had an apparent dip of approximately 68ºS to an estimated depth of 5 km, while the South Kunlun Fault dipped at approximately 78ºN to an estimated 3.5 km depth. Constraints on apparent dip and geometry of the NKF/SKF and NKT provide information valuable for seismic hazard analysis.

  12. Elastically stretchable thin film conductors on an elastomeric substrate

    NASA Astrophysics Data System (ADS)

    Jones Harris, Joyelle Elizabeth

    Imagine a large, flat screen television that can be rolled into a small cylinder after purchase in the store and then unrolled and mounted onto the wall of a home. The electronic devices within the television must be able to withstand large deformation and tensile strain. Consider a robot that is covered with an electronic skin that simulates human skin. The skin would enable the machine to lift an elderly person with care and sensitivity. The skin will endure repeated deformation with the highest tensile strains being experienced at the robot's joints. These applications and many others will benefit from stretchable electronic circuitry. While several different methods have been employed to create stretchable electronics, all methods use a common tool -- stretchable conductors. Therefore, the goal of this thesis work was to fabricate elastically stretchable conductors that can be used in stretchable electronics. We deposited Au thin films on an elastomeric substrate, and the resulting conductors remained electrically continuous when stretched by 30% and more. We developed photolithographic processes that can be used to pattern elastically stretchable conductors with a 10 mum resolution. We fabricated bi-level stretchable conductors that are separated by an elastomeric insulator and are electrically connected through via holes in the insulator. We applied our bi-level conductors to create a stretchable resistor-inductor-capacitor (RLC) circuit with a tunable resonant frequency. We also used stretchable conductors to measure action potentials in biological samples. This thesis describes the fabrication and application of our elastically stretchable conductors.

  13. Seperating Long-term Hydrological Loading and Tectonic Deformation Observed with Multi-temporal SAR Interferometry and GPS in Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    LI, G.; Lin, H.

    2014-12-01

    From 2000 till present, most endorheic lakes in Tibetan plateau experienced quick increasing. Several largest lakes, gathered several meters depth water during one decade. Such massive mass increasing will lead to elastic and visco-elastic deformation of the ground. Qinghai-Tibetan Plateau is one the most active tectonic places in the world; monitoring its ground deformation is essential, when loading effect is a nuisance item. Due to the sparse distribution of GPS sites and most are roving sites, it is hard to distinguish tectonic component from mass loading effect. In this research we took Selin Co Lake located at Nujiang-Bangoin suture zone and evaluated long time ground deformation at hundred kilometers scale by multi-temporal SAR interferometry and simulate the ground deformation by loading history evaluated by multi mission satellite altimetry and optical images observation. At Nujiang-Bangoin suture zone, where GPS presented the maximum ground subsidence in Qinghai-Tibetan Plateau of 3.6mm/a which was found at the shore of Selin Co Lake from 1999 to 2011, when it experienced water level increasing of 0.7m/a. A model of elastic plate lying over Newtonian viscous half-space matches well with the results of multi-temporal SAR interferometry and GPS observations. We concluded that near Selin Co Lake area, ground deformation is composed by both tectonic and hydrological loading part. As SAR image coverage is much smaller than tectonic scale, we contribute the deformation detected by InSAR to loading effect. After evaluating and removing the hydrological loading effect, we founds that Nujiang-Bangoin suture zone did not experience quick subsidence, but only limited to 0.5mm/a. Selin Co Lake's quick volume increasing caused 3mm/a subsidence rate to the nearest GPS site. The Second nearest site showed the 1.4mm/a subsidence totally, which were composed by 1.05mm/a hydrological loading effect and the rest was tectonic. We also found that Young's Modulus is the most essential parameter for loading effect simulation, and our simulation gave the similar Young's Modulus as the previous seismic tomographic INDEPTH III program did. Therefore with accurate seismic tomographic results and loading history detected by remote sensing could accurately simulate ground deformation caused by hydrological loading.

  14. Correlation between elevation change and groundwater level following the termination of salt exploitation in the city of Tuzla (BiH)

    NASA Astrophysics Data System (ADS)

    Mancini, F.; Stecchi, F.; Gabbianelli, G.

    2012-04-01

    Ground subsidence triggered by salt mining from deposits located beneath the city of Tuzla (Bosnia & Herzegovina) is one of the major dangerous factor acting on a very densely urbanized area since 1950, when the salt deposits exploitation by means of boreholes began. As demonstrated in previous work, subsidence induced several hazard factors such as a severe ground deformation, the arising of deep and superficial fractures and very fast water table fluctuations depending on the net amount of brine extraction. The historical ground deformation rates have been investigated by means of traditional geodetic surveys carried out within two periods. The first leg spans from 1956 to 1991, when measurements were ceased due to the Balkans' conflict, and the second from 1996 to 2003. More recently, the monitoring of ground deformation processes is being performed by the use of novel geomatic methodologies and subsequent analysis of geospatial data. The analysis of the historical dataset revealed a cumulative subsidence as high as 12 meters during the whole period, causing damage to buildings and infrastructures within an area that includes a large portion of the historical town, nowadays almost entirely destroyed. In this study we present a detailed analysis and correlation between the water table fluctuation under the city of Tuzla and recent surface deformation processes detected by close and accurate elevation surveys. The analysis highlighted a very complex spatial and temporal pattern of surface deformation. From 2006 and 2010 various stages in the deformation processes were observed in the spatial and temporal domains. The main subsidence trend show significant rates at the beginning of the time period, with gradual stabilization that, somewhere, turns to a significant ground uplift rate. This behavior seems to be strongly correlated to the water table movement that, after a reduction in the brine exploitation experienced in the first part of the mentioned period, shows a sudden rise of piezometric levels. The new hydrostatic equilibrium is now counterbalancing the sinking phenomena and the vertical displacements are nowadays ranging from -100mm/yr to +20mm/yr. Final conclusions focus on the strict relationship between the two investigated phenomena, pointing out the importance of control the water table movements to identify and prevent further ground deformations.

  15. Hemi-wedge osteotomy in the management of large angular deformities around the knee joint.

    PubMed

    El-Alfy, Barakat Sayed

    2016-08-01

    Angular deformity around the knee joint is a common orthopedic problem. Many options are available for the management of such problem with varying degrees of success and failure. The aim of the present study was to assess the results of hemi-wedge osteotomy in the management of big angular deformities about the knee joint. Twenty-eight limbs in 21 patients with large angular deformities around the knee joint were treated by the hemi-wedge osteotomy technique. The ages ranged from 12 to 43 years with an average of 19.8 years. The deformity ranged from 20° to 40° with a mean of 30.39° ± 5.99°. The deformities were genu varum in 12 cases and genu valgum in 9 cases. Seven cases had bilateral deformities. Small wedge was removed from the convex side of the bone and put in the gap created in the other side after correction of the deformity. At the final follow-up, the deformity was corrected in all cases except two. Full range of knee movement was regained in all cases. The complications included superficial wound infection in two cases, overcorrection in one case, pain along the lateral aspect of the knee in one case and recurrence of the deformity in one case. No cases were complicated by nerve injury or vascular injury. Hemi-wedge osteotomy is a good method for treatment of deformities around the knee joint. It can correct large angular deformities without major complications.

  16. Large strain deformation behavior of polymeric gels in shear- and cavitation rheology

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.

  17. Quantification of Fluvial Response to Tectonic Deformation and Climate in the Central Pontides, Turkey; Inferences from OSL Dating of Fluvial Terraces

    NASA Astrophysics Data System (ADS)

    McClain, K.; Yildirim, C.; Çiner, A.; Sahin, S.; Sarıkaya, A.; Ozturk, T.; Kıyak, N. G.; Ozcan, O.

    2016-12-01

    This study intends to improve the understanding of the topographic evolution and fluvial processes responding to tectonics and climate within the high-relief and deeply-incised Karabük Range of the Central Pontides, a large transpressional wedge at the northern margin of the Central Anatolian Plateau. Insight into these interactions can be obtained through the dating of fluvial sediment and understanding of geomorphic features. From Late Miocene to present, Anatolia's rapid counterclockwise movement, which increases in velocity towards the Hellenic Arc, has formed the North Anatolian Fault (NAF), a dextral transform fault along the Anatolia-Eurasia boundary. North of the transpressional zone of the NAF's massive restraining bend, an area that had experienced previous uplift due to the closure of the Intra-Pontide Ocean, the landscape experienced further uplift and the development of a detached flower structure. In the west side of this zone of transpression, the Filyos River deeply incises a gorge while bisecting the Karabük Range. This created an area with an abundance of indicators of tectonic deformation to map, such as hanging valleys, wind gaps, bedrock gorges, landslides, steep v-shaped channels, as well as an abundance of fluvial strath terraces. In particular, the village of Bolkuş lies among strath terraces of at least 8 ages within just 1.5 km of horizontal distance. In Bolkuş, we used optically stimulated luminescence dating (OSL dating) to estimate five deposition ages of fluvial strath terrace sediment, or their last exposure to daylight, leading to an estimation of incision and uplift rates over time. After collecting three samples from each terrace, with strath elevations of 246, 105.49, 43.6, 15.3 and 3.6 m.a.s.l., we determined corresponding ages of 841 ±76, 681 ±49, 386 ±18, 88 ±5.1 and 50.9 ±2.8 ka. These ages are older than expected for an area of active vertical deformation. Incision rates over time (highest/oldest terrace to lowest/youngest) suggest uplift of 0.29, 0.15, 0.12, 0.17 and 0.07 mm/y. When compared to the mean 0.06 mm/y uplift rate of the Central Anatolian Plateau, the results suggest not only that uplift has slowed, but that the restraining bend transpression of the NAF may no longer cause vertical deformation at this location within the Central Pontides.

  18. WE-G-BRD-07: Investigation of Distal Lung Atelectasis Following Stereotactic Body Radiation Therapy Using Regional Lung Volume Changes Between Pre- and Post- Treatment CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Q; Kavanagh, B; Miften, M

    2014-06-15

    Purpose: To propose a quantitative method using lung deformations to differentiate between radiation-induced fibrosis and potential airway stenosis with distal atelectasis in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Twenty-four lung patients with large radiation-induced density increases outside the high dose region had their pre- and post-treatment CT scans manually registered. They received SBRT treatments at our institution between 2002 and 2009 in 3 or 5 fractions, to a median total dose of 54Gy (range, 30–60). At least 50 anatomical landmarks inside the lung (airway branches) were paired for the pre- and post-treatment scans tomore » guide the deformable registration of the lung structure, which was then interpolated to the whole lung using splines. Local volume changes between the planning and follow-up scans were calculated using the deformation field Jacobian. Hyperdense regions were classified as atelectatic or fibrotic based on correlations between regional density increases and significant volume contractions compared to the surrounding tissues. Results: Out of 24 patients, only 7 demonstrated a volume contraction that was at least one σ larger than the remaining lung average. Because they did not receive high doses, these shrunk hyperdense regions were likely showing distal atelectasis resulting from radiation-induced airway stenosis rather than conventional fibrosis. On average, the hyperdense regions extended 9.2 cm farther than the GTV contours but not significantly more than 8.6 cm for the other patients (p>0.05), indicating that a large offset between the radiation and hyperdense region centers is not a good surrogate for atelectasis. Conclusion: A method based on the relative comparison of volume changes between different dates was developed to identify potential lung regions experiencing distal atelectasis. Such a tool is essential to study which lung structures need to be avoided to prevent atelectasis and limit lung function loss.« less

  19. Quantifying the Erlenmeyer flask deformity

    PubMed Central

    Carter, A; Rajan, P S; Deegan, P; Cox, T M; Bearcroft, P

    2012-01-01

    Objective Erlenmeyer flask deformity is a common radiological finding in patients with Gaucher′s disease; however, no definition of this deformity exists and the reported prevalence of the deformity varies widely. To devise an easily applied definition of this deformity, we investigated a cohort of knee radiographs in which there was consensus between three experienced radiologists as to the presence or absence of Erlenmeyer flask morphology. Methods Using the presence or absence of Erlenmeyer flask morphology as a benchmark, we measured the diameter of the femur at the level of the physeal scar and serially at defined intervals along the metadiaphysis. Results A measured ratio in excess of 0.57 between the diameter of the femoral shaft 4 cm from the physis to the diameter of the physeal baseline itself on a frontal radiograph of the knee predicted the Erlenmeyer flask deformity with 95.6% sensitivity and 100% specificity in our series of 43 independently diagnosed adults with Gaucher′s disease. Application of this method to the distal femur detected the Erlenmeyer flask deformity reproducibly and was simple to carry out. Conclusion Unlike diagnostic assignments based on subjective review, our simple procedure for identifying the modelling deformity is based on robust quantitative measurement: it should facilitate comparative studies between different groups of patients, and may allow more rigorous exploration of the pathogenesis of the complex osseous manifestations of Gaucher′s disease to be undertaken. PMID:22010032

  20. Influence of rotational speed, torque and operator's proficiency on ProFile failures.

    PubMed

    Yared, G M; Bou Dagher, F E; Machtou, P

    2001-01-01

    The purpose of this study was to evaluate the influence of rotational speed, torque, and operator experience with a specific Ni-Ti rotary instrumentation technique on the incidence of locking, deformation and separation of instruments. ProFile Ni-Ti rotary instruments (PRI) sizes 40-15 with a 6% taper were used in a crown-down technique. In one group of canals (n = 300) speeds of 150, 250 and 350 rpm (subgroups 1, 2 and 3) were used. Each one of the subgroups included 100 canals. In a second group (n = 300) torque was set at 20, 30 and 55 Ncm (subgroups 4, 5 and 6). In the third group (n = 300) three operators with varying experience (subgroups 7, 8 and 9) were also compared. Each subgroup included the use of 10 sets of PRI and 100 canals of extracted human molars. Each set of PRI was used in up to 10 canals and then sterilized before each case. NaOCl 2.5% was used as an irrigant. The number of locked, deformed, and separated instruments for the different groups, and within each part of the study was analysed statistically for significance with chi-squared tests. In group 1 only one instrument was deformed in the 150-rpm group and no instruments separated or locked. In the 250-rpm group instrument separation did not occur, however, a high incidence of locking, deformation and separation was noted in the 350-rpm group. In general, instrument sizes 30-15 locked, deformed and separated. Chi-squared statistics showed a significant difference between the 150 and 350 rpm groups but no difference between the 150 and 250 rpm groups with regard to instrument separation. Overall, there was a trend toward a higher incidence of instrument deformation and separation in smaller instruments. Locking and separation occurred during the final passage of the instruments, in the last (tenth) canal in each subgroup. In the second group, neither separation nor deformation and locking occurred during the use of the ProFile instruments, at 150 rpm, and at the different torque values. In the third group, chi-squared analysis demonstrated that significantly more instruments separated with the least experienced operator. Instrument locking, deformation, and separation did not occur with the most experienced operator. Preclinical training in the use of the PRI technique with crown-down at 150 rpm were crucial in avoiding instrument separation and reducing the incidence of instrument locking and deformation.

  1. Procedures for experimental measurement and theoretical analysis of large plastic deformations

    NASA Technical Reports Server (NTRS)

    Morris, R. E.

    1974-01-01

    Theoretical equations are derived and analytical procedures are presented for the interpretation of experimental measurements of large plastic strains in the surface of a plate. Orthogonal gage lengths established on the metal surface are measured before and after deformation. The change in orthogonality after deformation is also measured. Equations yield the principal strains, deviatoric stresses in the absence of surface friction forces, true stresses if the stress normal to the surface is known, and the orientation angle between the deformed gage line and the principal stress-strain axes. Errors in the measurement of nominal strains greater than 3 percent are within engineering accuracy. Applications suggested for this strain measurement system include the large-strain-stress analysis of impact test models, burst tests of spherical or cylindrical pressure vessels, and to augment small-strain instrumentation tests where large strains are anticipated.

  2. Modeling High Temperature Deformation Behavior of Large-Scaled Mg-Al-Zn Magnesium Alloy Fabricated by Semi-continuous Casting

    NASA Astrophysics Data System (ADS)

    Li, Jianping; Xia, Xiangsheng

    2015-09-01

    In order to improve the understanding of the hot deformation and dynamic recrystallization (DRX) behaviors of large-scaled AZ80 magnesium alloy fabricated by semi-continuous casting, compression tests were carried out in the temperature range from 250 to 400 °C and strain rate range from 0.001 to 0.1 s-1 on a Gleeble 1500 thermo-mechanical machine. The effects of the temperature and strain rate on the hot deformation behavior have been expressed by means of the conventional hyperbolic sine equation, and the influence of the strain has been incorporated in the equation by considering its effect on different material constants for large-scaled AZ80 magnesium alloy. In addition, the DRX behavior has been discussed. The result shows that the deformation temperature and strain rate exerted remarkable influences on the flow stress. The constitutive equation of large-scaled AZ80 magnesium alloy for hot deformation at steady-state stage (ɛ = 0.5) was The true stress-true strain curves predicted by the extracted model were in good agreement with the experimental results, thereby confirming the validity of the developed constitutive relation. The DRX kinetic model of large-scaled AZ80 magnesium alloy was established as X d = 1 - exp[-0.95((ɛ - ɛc)/ɛ*)2.4904]. The rate of DRX increases with increasing deformation temperature, and high temperature is beneficial for achieving complete DRX in the large-scaled AZ80 magnesium alloy.

  3. Three-dimensional virtual operations can facilitate complicated surgical planning for the treatment of patients with jaw deformities associated with facial asymmetry: a case report.

    PubMed

    Hara, Shingo; Mitsugi, Masaharu; Kanno, Takahiro; Nomachi, Akihiko; Wajima, Takehiko; Tatemoto, Yukihiro

    2013-09-01

    This article describes a case we experienced in which good postsurgical facial profiles were obtained for a patient with jaw deformities associated with facial asymmetry, by implementing surgical planning with SimPlant OMS. Using this method, we conducted LF1 osteotomy, intraoral vertical ramus osteotomy (IVRO), sagittal split ramus osteotomy (SSRO), mandibular constriction and mandibular border genioplasty. Not only did we obtain a class I occlusal relationship, but the complicated surgery also improved the asymmetry of the frontal view, as well as of the profile view, of the patient. The virtual operation using three-dimensional computed tomography (3D-CT) could be especially useful for the treatment of patients with jaw deformities associated with facial asymmetry.

  4. Three-dimensional virtual operations can facilitate complicated surgical planning for the treatment of patients with jaw deformities associated with facial asymmetry: a case report

    PubMed Central

    Hara, Shingo; Mitsugi, Masaharu; Kanno, Takahiro; Nomachi, Akihiko; Wajima, Takehiko; Tatemoto, Yukihiro

    2013-01-01

    This article describes a case we experienced in which good postsurgical facial profiles were obtained for a patient with jaw deformities associated with facial asymmetry, by implementing surgical planning with SimPlant OMS. Using this method, we conducted LF1 osteotomy, intraoral vertical ramus osteotomy (IVRO), sagittal split ramus osteotomy (SSRO), mandibular constriction and mandibular border genioplasty. Not only did we obtain a class I occlusal relationship, but the complicated surgery also improved the asymmetry of the frontal view, as well as of the profile view, of the patient. The virtual operation using three-dimensional computed tomography (3D-CT) could be especially useful for the treatment of patients with jaw deformities associated with facial asymmetry. PMID:23907678

  5. 3D full-field quantification of cell-induced large deformations in fibrillar biomaterials by combining non-rigid image registration with label-free second harmonic generation.

    PubMed

    Jorge-Peñas, Alvaro; Bové, Hannelore; Sanen, Kathleen; Vaeyens, Marie-Mo; Steuwe, Christian; Roeffaers, Maarten; Ameloot, Marcel; Van Oosterwyck, Hans

    2017-08-01

    To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 μm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Large-deformation modal coordinates for nonrigid vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Fleischer, G. E.

    1972-01-01

    The derivation of minimum-dimension sets of discrete-coordinate and hybrid-coordinate equations of motion of a system consisting of an arbitrary number of hinge-connected rigid bodies assembled in tree topology is presented. These equations are useful for the simulation of dynamical systems that can be idealized as tree-like arrangements of substructures, with each substructure consisting of either a rigid body or a collection of elastically interconnected rigid bodies restricted to small relative rotations at each connection. Thus, some of the substructures represent elastic bodies subjected to small strains or local deformations, but possibly large gross deformations, in the hybrid formulation, distributed coordinates referred to herein as large-deformation modal coordinates, are used for the deformations of these substructures. The equations are in a form suitable for incorporation into one or more computer programs to be used as multipurpose tools in the simulation of spacecraft and other complex electromechanical systems.

  7. Large poroelastic deformation of a soft material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2014-11-01

    Flow through a porous material will drive mechanical deformation when the fluid pressure becomes comparable to the stiffness of the solid skeleton. This has applications ranging from hydraulic fracture for recovery of shale gas, where fluid is injected at high pressure, to the mechanics of biological cells and tissues, where the solid skeleton is very soft. The traditional linear theory of poroelasticity captures this fluid-solid coupling by combining Darcy's law with linear elasticity. However, linear elasticity is only volume-conservative to first order in the strain, which can become problematic when damage, plasticity, or extreme softness lead to large deformations. Here, we compare the predictions of linear poroelasticity with those of a large-deformation framework in the context of two model problems. We show that errors in volume conservation are compounded and amplified by coupling with the fluid flow, and can become important even when the deformation is small. We also illustrate these results with a laboratory experiment.

  8. Actin and microtubule networks contribute differently to cell response for small and large strains

    NASA Astrophysics Data System (ADS)

    Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.

    2017-09-01

    Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.

  9. Oceanic Remnants In The Caribbean Plate: Origin And Loss Of Related LIPs.

    NASA Astrophysics Data System (ADS)

    Giunta, G.

    2005-12-01

    The modern Caribbean Plate is an independent lithospheric entity, occupying more than 4 Mkm2 and consisting of the remnants of little deformed Cretaceous oceanic plateau of the Colombia and Venezuela Basins (almost 1 Mkm2) and the Palaeozoic-Mesozoic Chortis continental block (about 700,000 km2), both bounded by deformed marginal belts. The northern (Guatemala and Greater Antilles) and the southern (northern Venezuela) plate margins are marked by collisional zones, whereas the western (Central America Isthmus) and the eastern (Lesser Antilles) margins are represented by convergent boundaries and their magmatic arcs, all involving ophiolitic terranes. The evolutionary history of the Caribbean Plate since the Jurassic-Early Cretaceous encompasses plume, accretionary, and collisional tectonics, the evidence of which has been recorded in the oceanic remnants of lost LIPs, as revealed in: i) the MORB to OIB thickened crust of the oceanic plateau, including its un-deformed or little deformed main portion, and scattered deformed tectonic units; ii) ophiolitic tectonic units of MORB affinity and the rock blocks in ophiolitic melanges; iii) intra-oceanic, supra subduction magmatic sequences with IAT and CA affinities. The Mesozoic oceanic LIPs, from which the remnants of the Caribbean Plate have been derived, have been poorly preserved during various episodes of the intra-oceanic convergence, either those related to the original proto-Caribbean oceanic realm or those connected with two eo-Caribbean stages of subduction. The trapped oceanic plateau of the Colombia and Venezuela Basins is likely to be an unknown portion of a bigger crustal element of a LIP, similar to the Ontong-Java plateau. The Jurassic-Early Cretaceous proto-Caribbean oceanic domain consists of oceanic crust generated at multiple spreading centres; during the Cretaceous, part of this crust was thickened to form an oceanic plateau with MORB and OIB affinities. At the same time, both South and North American continental margins, inferred to be close to the oceanic realm, were affected by rifting and within-plate tholeiitic magmatism (WPT); this interpretation supports a near mid-America original location of the "proto-Caribbean" LIP. The MORB magmatic sections and rock blocks in the ophiolitic melanges are interpreted as exhumed tectonic sheets of the normal proto-Caribbean oceanic lithosphere, or part of a back-arc crust, both deformed in the eo-Caribbean stages. The SSZ complexes, considered as Cordilleran-type deformed ophiolites, were derived from a LIP that experienced two superimposed eo-Caribbean stages of intra-oceanic subduction. The older (Mid-Cretaceous) stage involved the eastward subduction of the un-thickened proto-Caribbean lithosphere, resulting in IAT and CA magmatism accompanied by HP-LT metamorphism and melange formation. The second, Late Cretaceous stage involved a westward dipping intra-oceanic subduction, which generated tonalitic arc magmatism. The eastward wedging of the Caribbean Plateau between the North and South American plates progressively trapped remnants of the Colombia and Venezuela Basins between the Atlantic and Pacific subduction zones and their new volcanic arcs (Aves-Lesser Antilles and Central American Isthmus). Unlike the proto-Caribbean, it appears that this LIP did not involve the main continental margins, even though the northern and southern Caribbean borders experienced different evolutionary paths. It was largely lost by superimposed accretionary and collisional events producing the marginal belts of the Caribbean Plate; its evolution has been dominated by a strongly oblique tectonic regime, constraining seafloor spreading, subduction, crustal exhumation, emplacement, and dismembering processes.

  10. Enhancing workability in sheet production of high silicon content electrical steel through large shear deformation

    DOE PAGES

    Kustas, Andrew B.; Johnson, David R.; Trumble, Kevin P.; ...

    2018-07-01

    Enhanced workability, as characterized by the magnitude and heterogeneity of accommodated plastic strains during sheet processing, is demonstrated in high Si content Fe-Si alloys containing 4 and 6.5 wt% Si using two single-step, simple-shear deformation techniques – peeling and large strain extrusion machining (LSEM). The model Fe-Si material system was selected for its intrinsically poor material workability, and well-known applications potential in next-generation electric machines. In a comparative study of the deformation characteristics of the shear processes with conventional rolling, two distinct manifestations of workability are observed. For rolling, the relatively diffuse and unconfined deformation zone geometry leads to crackingmore » at low strains, with sheet structures characterized by extensive deformation twinning and banding. Workpiece pre-heating is required to improve the workability in rolling. In contrast, peeling and LSEM produce continuous sheet at large plastic strains without cracking, the result of more confined deformation geometries that enhances the workability. Peeling, however, results in heterogeneous, shear-banded microstructures, pointing to a second type of workability issue – flow localization – that limits sheet processing. This shear banding is to a large extent facilitated by unrestricted flow at the sheet surface, unavoidable in peeling. With additional confinement of this free surface deformation and appropriately designed deformation zone geometry, LSEM is shown to suppress shear banding, resulting in continuous sheet with homogeneous microstructure. Thus LSEM is shown to produce the greatest enhancement in process workability for producing sheet. In conclusion, these workability findings are explained and discussed based on differences in process mechanics and deformation zone geometry.« less

  11. Enhancing workability in sheet production of high silicon content electrical steel through large shear deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustas, Andrew B.; Johnson, David R.; Trumble, Kevin P.

    Enhanced workability, as characterized by the magnitude and heterogeneity of accommodated plastic strains during sheet processing, is demonstrated in high Si content Fe-Si alloys containing 4 and 6.5 wt% Si using two single-step, simple-shear deformation techniques – peeling and large strain extrusion machining (LSEM). The model Fe-Si material system was selected for its intrinsically poor material workability, and well-known applications potential in next-generation electric machines. In a comparative study of the deformation characteristics of the shear processes with conventional rolling, two distinct manifestations of workability are observed. For rolling, the relatively diffuse and unconfined deformation zone geometry leads to crackingmore » at low strains, with sheet structures characterized by extensive deformation twinning and banding. Workpiece pre-heating is required to improve the workability in rolling. In contrast, peeling and LSEM produce continuous sheet at large plastic strains without cracking, the result of more confined deformation geometries that enhances the workability. Peeling, however, results in heterogeneous, shear-banded microstructures, pointing to a second type of workability issue – flow localization – that limits sheet processing. This shear banding is to a large extent facilitated by unrestricted flow at the sheet surface, unavoidable in peeling. With additional confinement of this free surface deformation and appropriately designed deformation zone geometry, LSEM is shown to suppress shear banding, resulting in continuous sheet with homogeneous microstructure. Thus LSEM is shown to produce the greatest enhancement in process workability for producing sheet. In conclusion, these workability findings are explained and discussed based on differences in process mechanics and deformation zone geometry.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasmer, O.; Ulusay, R.

    One of the major problems in surface mining of coal is the stability of disposed overburden materials. Geotechnical considerations are thus very important in rational planning for disposal, reclamation, treatment, and utilization of mine waste material. The subject of this study is the stability of spoil piles at open pit coal mines located in the Central Anatolia, Turkey. The coal is produced from two adjacent open pits. While a large portion of the spoil piles dumped at the Central Pit has experienced slope failure, no spoil pile instability has been experienced at the South Pit. This article outlines the resultsmore » of field and laboratory investigations to describe the mechanism of the spoil pile failure in the Central Pit and the geotechnical design considerations for the spoil piles at the South Pit based on the experience gained from the previous spoil failures. Limit equilibrium analysis carried out for the large-scale spoil failure indicated that deep-seated sliding along the interface between underclay and dragline spoil piles and rotational slip through the overburden spoil material may be all occurring simultaneously as water migrates through these areas. Sensitivity analyses revealed that spoil pile instability is not expected at the South Pit when the current spoil placement method is used as long as the generation of high water pressures in the spoil piles is not permitted. Comparisons between the results of finite element analysis and long-term monitoring data also confirmed the results of sensitivity analyses and indicated a vertical deformation associated with compaction of the spoil material.« less

  13. Automated registration of large deformations for adaptive radiation therapy of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godley, Andrew; Ahunbay, Ergun; Peng Cheng

    2009-04-15

    Available deformable registration methods are often inaccurate over large organ variation encountered, for example, in the rectum and bladder. The authors developed a novel approach to accurately and effectively register large deformations in the prostate region for adaptive radiation therapy. A software tool combining a fast symmetric demons algorithm and the use of masks was developed in C++ based on ITK libraries to register CT images acquired at planning and before treatment fractions. The deformation field determined was subsequently used to deform the delivered dose to match the anatomy of the planning CT. The large deformations involved required that themore » bladder and rectum volume be masked with uniform intensities of -1000 and 1000 HU, respectively, in both the planning and treatment CTs. The tool was tested for five prostate IGRT patients. The average rectum planning to treatment contour overlap improved from 67% to 93%, the lowest initial overlap is 43%. The average bladder overlap improved from 83% to 98%, with a lowest initial overlap of 60%. Registration regions were set to include a volume receiving 4% of the maximum dose. The average region was 320x210x63, taking approximately 9 min to register on a dual 2.8 GHz Linux system. The prostate and seminal vesicles were correctly placed even though they are not masked. The accumulated doses for multiple fractions with large deformation were computed and verified. The tool developed can effectively supply the previously delivered dose for adaptive planning to correct for interfractional changes.« less

  14. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  15. FEM modeling of postseismic deformation of poroelastic material

    NASA Astrophysics Data System (ADS)

    Kawamoto, S.; Ito, T.; Hirahara, K.

    2004-12-01

    Following a large earthquake, postseismic deformation in the focal region has been observed by GPS, leveling measurements and the other geodetic measurements. To explain the postseismic deformation, researchers have proposed and well investigated two physical mechanisms of afterslip and viscoelastic relaxation. In some cases, however, there have been observed postseismic deformation which can not be explained by these mechanisms. Therefore, another mechanism has been proposed, where the crust is treated as "poroelastic material". This concept is called "poroelasticity". In this concept, postseismic deformation is caused by pore fluid flow due to the coseismic stress redistribution. We explored, therefore, the postseismic deformation due to pore fluid flow in a poroelastic material using finite element method (FEM), which can easily handle lateral variations of hydraulic diffusivity and elastic or plastic property. We used the FEM program 'CAMBIOT3D' originally developed by Geotech. Lab. Gunma University, Japan (2003). Because this program was developed for soil mechanics, we must have modified so as to calculate deformation due to earthquake faulting. We implemented the 'split node technique' (Melosh and Refsky, 1981) to calculate the coseismic deformation. In addition to this, we modified the program to calculate the deformation taking into account the Skempton's B. This coefficient B determines what fraction of the coseismic stress due to an earthquake is allotted to pore pressure. Without Skempton's B, coseismic pore pressure becomes too large and hence postseismic deformation is calculated too large. We evaluated the postseismic deformation in a poroelastic material to show that the poroelastic deformation is quite different from that of afterslip and viscoelastic relaxation models. In this presentation, we show the postseismic deformation due to pore fluids flow in a poroelastic material and the effect of Skempton's B. Especially, we discuss what different pattern of postseismic deformation is produced depending on the lateral variation of hydraulic diffusivity structures in and around the fault zone, which structures have been differently inferred from fault zone core sampling researches and so on.

  16. The finite element method in the deformation and consolidation of porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, R.W.; Schrefler, B.A.

    1987-01-01

    The authors start with an introduction to the concepts involved in physics giving the equations of flow through porous media and the deformation characteristics of soils and rocks. Succeeding chapters deal with the practical implications of these phenomena and explain the application of theory in both experimental and field work. Details are given of actual incidents, such as the subsidence experienced in Venice and Ravenna. The authors have also formulated a consolidation code, which is detailed at the end of the book, and provide instructions on how to modify the given program.

  17. Large-Amplitude Deformation and Bond Breakage in Shock-Induced Reactions of Explosive Molecules

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey

    The response of explosive molecules to large-amplitude mechanical deformation plays an important role in shock-induced reactions and the initiation of detonation in explosive materials. In this presentation, the response of a series of explosive molecules (nitromethane, 2,4,6-trinitrotoluene [TNT], and 2,4,6-triamino-1,3,5-trinitrobenzene [TATB]) to a variety of large-amplitude deformations are examined using ab initio quantum chemical calculations. Large-amplitude motions that result in bond breakage are described, and the insights these results provide into both previous experimental observations and previous theoretical predictions of shock-induced reactions are discussed.

  18. A multi-organ biomechanical model to analyze prostate deformation due to large deformation of the rectum

    NASA Astrophysics Data System (ADS)

    Brock, Kristy K.; Ménard, Cynthia; Hensel, Jennifer; Jaffray, David A.

    2006-03-01

    Magnetic resonance imaging (MRI) with an endorectal receiver coil (ERC) provides superior visualization of the prostate gland and its surrounding anatomy at the expense of large anatomical deformation. The ability to correct for this deformation is critical to integrate the MR images into the CT-based treatment planning for radiotherapy. The ability to quantify and understand the physiological motion due to large changes in rectal filling can also improve the precision of image-guided procedures. The purpose of this study was to understand the biomechanical relationship between the prostate, rectum, and bladder using a finite element-based multi-organ deformable image registration method, 'Morfeus' developed at our institution. Patients diagnosed with prostate cancer were enrolled in the study. Gold seed markers were implanted in the prostate and MR scans performed with the ERC in place and its surrounding balloon inflated to varying volumes (0-100cc). The prostate, bladder, and rectum were then delineated, converted into finite element models, and assigned appropriate material properties. Morfeus was used to assign surface interfaces between the adjacent organs and deform the bladder and rectum from one position to another, obtaining the position of the prostate through finite element analysis. This approach achieves sub-voxel accuracy of image co-registration in the context of a large ERC deformation, while providing a biomechanical understanding of the multi-organ physiological relationship between the prostate, bladder, and rectum. The development of a deformable registration strategy is essential to integrate the superior information offered in MR images into the treatment planning process.

  19. Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow

    NASA Astrophysics Data System (ADS)

    Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick

    2015-11-01

    In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.

  20. New insights into earthquake precursors from InSAR.

    PubMed

    Moro, Marco; Saroli, Michele; Stramondo, Salvatore; Bignami, Christian; Albano, Matteo; Falcucci, Emanuela; Gori, Stefano; Doglioni, Carlo; Polcari, Marco; Tallini, Marco; Macerola, Luca; Novali, Fabrizio; Costantini, Mario; Malvarosa, Fabio; Wegmüller, Urs

    2017-09-20

    We measured ground displacements before and after the 2009 L'Aquila earthquake using multi-temporal InSAR techniques to identify seismic precursor signals. We estimated the ground deformation and its temporal evolution by exploiting a large dataset of SAR imagery that spans seventy-two months before and sixteen months after the mainshock. These satellite data show that up to 15 mm of subsidence occurred beginning three years before the mainshock. This deformation occurred within two Quaternary basins that are located close to the epicentral area and are filled with sediments hosting multi-layer aquifers. After the earthquake, the same basins experienced up to 12 mm of uplift over approximately nine months. Before the earthquake, the rocks at depth dilated, and fractures opened. Consequently, fluids migrated into the dilated volume, thereby lowering the groundwater table in the carbonate hydrostructures and in the hydrologically connected multi-layer aquifers within the basins. This process caused the elastic consolidation of the fine-grained sediments within the basins, resulting in the detected subsidence. After the earthquake, the fractures closed, and the deep fluids were squeezed out. The pre-seismic ground displacements were then recovered because the groundwater table rose and natural recharge of the shallow multi-layer aquifers occurred, which caused the observed uplift.

  1. A moisture and electric coupling stimulated ionic polymer-metal composite actuator with controllable deformation behavior

    NASA Astrophysics Data System (ADS)

    Ru, Jie; Zhu, Zicai; Wang, Yanjie; Chen, Hualing; Bian, Changsheng; Luo, Bin; Li, Dichen

    2018-02-01

    Ionic polymer-metal composite (IPMC) actuator can generate large and rapid deformation based on ion migration under a relatively low driving voltage. Under full hydrated conditions, the deformation is always prone to relaxation. At room humidity conditions, the deformation increases substantially at the early stage of actuation, and then decreases gradually. Generally, most researchers considered that the change of water content or relative humidity mainly leads to the deformation instabilities, which severely limits the practical applications of IPMC. In this Letter, a novel actuation mode is proposed to control the deformation behavior of IPMC by employing moisture as an independent or collaborative incentive source together with the electric field. The deformation response is continuously measured under electric field, electric field-moisture coupling stimulus and moisture stimulus. The result shows that moisture can be a favorable driving factor for IPMC actuation. Such an electric field-moisture coupling stimulus can avoid the occurrence of deformation instabilities and guarantee a superior controllable deformation in IPMC actuation. This research provides a new method to obtain stable and large deformation of IPMC, which is of great significance for the guidance of material design and application for IPMC and IPMC-type iEAP materials.

  2. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric resistivity survey: 2D resistivity modeling

    NASA Astrophysics Data System (ADS)

    Yamaya, Y.; Alanis, P. K. B.; Takeuchi, A.; Cordon, J. M.; Mogi, T.; Hashimoto, T.; Sasai, Y.; Nagao, T.

    2013-07-01

    Taal Volcano, located in the southwestern part of Luzon Island, Philippines, has frequently experienced catastrophic eruptions from both the Main Crater on Volcano Island and flank eruptions. These eruptions have been magmatic, phreatomagmatic, and hydrothermal, with the latter implying the existence of a large-scale hydrothermal system beneath the volcano. We conducted an electrical resistivity survey using the magnetotelluric method in order to identify the location and geometry of the hydrothermal reservoir and sealing cap rock. Two-dimensional inversion using the observed data indicates four similar resistivity sections. The structure at shallow depths corresponds to volcanic deposits and an aquifer. Below 1 km, the structure features a relatively resistive zone beneath the main crater surrounded by a conductive shell. We interpreted these to be a large hydrothermal reservoir with an impermeable cap rock sealing it. Recent ground deformation detected by GPS measurements suggests that the hydrothermal reservoir is active. The interpreted cap rock thins just beneath the main crater and could easily be destroyed by an imbalance in the hydrothermal system. We conclude that this hydrothermal reservoir plays a significant role in driving catastrophic eruptions that begin with a hydrothermal explosion at the main crater.

  3. An improved evaluation of the seismic/geodetic deformation-rate ratio for the Zagros Fold-and-Thrust collisional belt

    NASA Astrophysics Data System (ADS)

    Palano, Mimmo; Imprescia, Paola; Agnon, Amotz; Gresta, Stefano

    2018-04-01

    We present an improved picture of the ongoing crustal deformation field for the Zagros Fold-and-Thrust Belt continental collision zone by using an extensive combination of both novel and published GPS observations. The main results define the significant amount of oblique Arabia-Eurasia convergence currently being absorbed within the Zagros: right-lateral shear along the NW trending Main Recent fault in NW Zagros and accommodated between fold-and-thrust structures and NS right-lateral strike-slip faults on Southern Zagros. In addition, taking into account the 1909-2016 instrumental seismic catalogue, we provide a statistical evaluation of the seismic/geodetic deformation-rate ratio for the area. On Northern Zagros and on the Turkish-Iranian Plateau, a moderate to large fraction (˜49 and >60 per cent, respectively) of the crustal deformation occurs seismically. On the Sanandaj-Sirjan zone, the seismic/geodetic deformation-rate ratio suggests that a small to moderate fraction (<40 per cent) of crustal deformation occurs seismically; locally, the occurrence of large historic earthquakes (M ≥ 6) coupled with the high geodetic deformation, could indicate overdue M ≥ 6 earthquakes. On Southern Zagros, aseismic strain dominates crustal deformation (the ratio ranges in the 15-33 per cent interval). Such aseismic deformation is probably related to the presence of the weak evaporitic Hormuz Formation which allows the occurrence of large aseismic motion on both subhorizontal faults and surfaces of décollement. These results, framed into the seismotectonic framework of the investigated region, confirm that the fold-and-thrust-dominated deformation is driven by buoyancy forces; by contrast, the shear-dominated deformation is primary driven by plate stresses.

  4. Meso-Cenozoic intraplate contraction in Central and Western Europe: a unique tectonic event?

    NASA Astrophysics Data System (ADS)

    Kley, Jonas; Jähne, Fabian; Malz, Alexander

    2014-05-01

    From the British Isles to Poland, Europe experienced contractional deformation in Late Cretaceous and Paleogene time. The closest contemporaneous plate margins were the incipient Mid-Atlantic rift in the west and northwest, and the Mediterranean system of subduction zones in the south. Each of these plate margins was located more than 1000 km away from the site of deformation. This tectonic event thus represents an outstanding example of large-scale intraplate shortening and may serve as a template for comparison with modern examples. Its effects are seen in a ca. 500 km wide strip that stretches in NW-SE-direction along the Tornquist Line, a regional fault zone separating thick lithosphere of the Baltic Shield from much thinner lithosphere to the southwest. Most faults and folds also trend NW-SE, but some are linked by large N-S-striking transfer zones. In the southeast, the shortening structures are truncated by the Neogene Carpathian thrust front; their original extent is unknown. In the west, the fault zones fan out into more northerly trends in the Central North Sea and more easterly trends in the Channel area before dying out on the shelf. Late Cretaceous (ca. 90-70 Ma) shortening dominates from Poland to the North Sea, while the main shortening event in Southern Britain is of Paleogene age. Many Late Cretaceous to Paleogene structures have been conditioned by Permian or Triassic through Early Cretaceous extensional faulting, whereas some large basement uplifts and reverse faults have no demonstrable inheritance from earlier extension. The thick, mobile Zechstein salt has modified extensional and contractional structures, but both extend beyond its depositional borders. Even where thick evaporates underlie the Mesozoic sedimentary cover, the basement is typically involved in the deformation, except for localized thin-skinned imbricate thrusting and salt-cored anticlines. Different structural styles do not appear to correlate with the magnitude of shortening which is similar for transects across the inverted Lower Saxony Basin and areas of predominant basement thrusting. Bulk contraction of the entire deformed belt is unlikely to exceed a few tens of kilometers, corresponding to <<10% of horizontal shortening. Shortening rate estimates are around 1 mm/yr both for well-constrained local structures and for order-of-magnitude estimates of the entire belt, suggesting that a limited number of faults were active at any given time. Space geodetic data indicate similar modern shortening rates across Central Europe on a decade scale, but there is no geologic evidence for focused deformation comparable to the Mesozoic event. Fold orientations, fault slip data and stylolite teeth indicate relatively uniform, SSW-NNE-directed shortening. This direction is consistent with the convergence direction of Africa, Iberia and Eurasia that was established between ca. 120 Ma and 85 Ma in the course of global plate motion reorganization. The European short-lived pulse of intraplate deformation was apparently caused by a switch to near-orthogonal convergence across former transform boundaries, whereas modern examples of intraplate shortening seem to be bound to coeval orogens.

  5. Design of composite scaffolds and three-dimensional shape analysis for tissue-engineered ear

    PubMed Central

    Cervantes, Thomas M.; Bassett, Erik K.; Tseng, Alan; Kimura, Anya; Roscioli, Nick; Randolph, Mark A.; Vacanti, Joseph P.; Hadlock, Theresa A.; Gupta, Rajiv; Pomerantseva, Irina; Sundback, Cathryn A.

    2013-01-01

    Engineered cartilage is a promising option for auricular reconstruction. We have previously demonstrated that a titanium wire framework within a composite collagen ear-shaped scaffold helped to maintain the gross dimensions of the engineered ear after implantation, resisting the deformation forces encountered during neocartilage maturation and wound healing. The ear geometry was redesigned to achieve a more accurate aesthetic result when implanted subcutaneously in a nude rat model. A non-invasive method was developed to assess size and shape changes of the engineered ear in three dimensions. Computer models of the titanium framework were obtained from CT scans before and after implantation. Several parameters were measured including the overall length, width and depth, the minimum intrahelical distance and overall curvature values for each beam section within the framework. Local curvature values were measured to gain understanding of the bending forces experienced by the framework structure in situ. Length and width changed by less than 2%, whereas the depth decreased by approximately 8% and the minimum intrahelical distance changed by approximately 12%. Overall curvature changes identified regions most susceptible to deformation. Eighty-nine per cent of local curvature measurements experienced a bending moment less than 50 µN-m owing to deformation forces during implantation. These quantitative shape analysis results have identified opportunities to improve shape fidelity of engineered ear constructs. PMID:23904585

  6. Design of composite scaffolds and three-dimensional shape analysis for tissue-engineered ear.

    PubMed

    Cervantes, Thomas M; Bassett, Erik K; Tseng, Alan; Kimura, Anya; Roscioli, Nick; Randolph, Mark A; Vacanti, Joseph P; Hadlock, Theresa A; Gupta, Rajiv; Pomerantseva, Irina; Sundback, Cathryn A

    2013-10-06

    Engineered cartilage is a promising option for auricular reconstruction. We have previously demonstrated that a titanium wire framework within a composite collagen ear-shaped scaffold helped to maintain the gross dimensions of the engineered ear after implantation, resisting the deformation forces encountered during neocartilage maturation and wound healing. The ear geometry was redesigned to achieve a more accurate aesthetic result when implanted subcutaneously in a nude rat model. A non-invasive method was developed to assess size and shape changes of the engineered ear in three dimensions. Computer models of the titanium framework were obtained from CT scans before and after implantation. Several parameters were measured including the overall length, width and depth, the minimum intrahelical distance and overall curvature values for each beam section within the framework. Local curvature values were measured to gain understanding of the bending forces experienced by the framework structure in situ. Length and width changed by less than 2%, whereas the depth decreased by approximately 8% and the minimum intrahelical distance changed by approximately 12%. Overall curvature changes identified regions most susceptible to deformation. Eighty-nine per cent of local curvature measurements experienced a bending moment less than 50 µN-m owing to deformation forces during implantation. These quantitative shape analysis results have identified opportunities to improve shape fidelity of engineered ear constructs.

  7. Large-scale deformation associated with ridge subduction

    USGS Publications Warehouse

    Geist, E.L.; Fisher, M.A.; Scholl, D. W.

    1993-01-01

    Continuum models are used to investigate the large-scale deformation associated with the subduction of aseismic ridges. Formulated in the horizontal plane using thin viscous sheet theory, these models measure the horizontal transmission of stress through the arc lithosphere accompanying ridge subduction. Modelling was used to compare the Tonga arc and Louisville ridge collision with the New Hebrides arc and d'Entrecasteaux ridge collision, which have disparate arc-ridge intersection speeds but otherwise similar characteristics. Models of both systems indicate that diffuse deformation (low values of the effective stress-strain exponent n) are required to explain the observed deformation. -from Authors

  8. SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-09-01

    This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.

  9. Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformations.

    PubMed

    Clausen, Anders; Wang, Fengwen; Jensen, Jakob S; Sigmund, Ole; Lewis, Jennifer A

    2015-10-07

    Topology optimized architectures are designed and printed with programmable Poisson's ratios ranging from -0.8 to 0.8 over large deformations of 20% or more. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cervical Disc Deformation During Flexion–Extension in Asymptomatic Controls and Single-Level Arthrodesis Patients

    PubMed Central

    Anderst, William; Donaldson, William; Lee, Joon; Kang, James

    2016-01-01

    The aim of this study was to characterize cervical disc deformation in asymptomatic subjects and single-level arthrodesis patients during in vivo functional motion. A validated model-based tracking technique determined vertebral motion from biplane radiographs collected during dynamic flexion–extension. Level-dependent differences in disc compression–distraction and shear deformation were identified within the anterior and posterior annulus (PA) and the nucleus of 20 asymptomatic subjects and 15 arthrodesis patients using a mixed-model statistical analysis. In asymptomatic subjects, disc compression and shear deformation per degree of flexion–extension progressively decreased from C23 to C67. The anterior and PA experienced compression–distraction deformation of up to 20%, while the nucleus region was compressed between 0% (C67) and 12% (C23). Peak shear deformation ranged from 16% (at C67) to 33% (at C45). In the C5–C6 arthrodesis group, C45 discs were significantly less compressed than in the control group in all disc regions (all p ≤ 0.026). In the C6–C7 arthrodesis group, C56 discs were significantly less compressed than the control group in the nucleus (p = 0.023) and PA (p = 0.014), but not the anterior annulus (AA; p = 0.137). These results indicate in vivo disc deformation is level-dependent, and single-level anterior arthrodesis alters the compression–distraction deformation in the disc immediately superior to the arthrodesis. PMID:23861160

  11. Mineral Replacement Reactions as a Precursor to Strain Localisation: an (HR-)EBSD approach

    NASA Astrophysics Data System (ADS)

    Gardner, J.; Wheeler, J.; Wallis, D.; Hansen, L. N.; Mariani, E.

    2017-12-01

    Much remains to be learned about the links between metamorphism and deformation. Our work investigates the behaviour of fluid-mediated mineral replacement reaction products when exposed to subsequent shear stresses. We focus on albite from a metagabbro that has experienced metamorphism and subsequent deformation at greenschist facies, resulting in a reduction in grain size and associated strain localisation. EBSD maps show that prior to grain size reduction, product grains are highly distorted, yet they formed, and subsequently deformed, at temperatures at which extensive dislocation creep is unlikely. The Weighted Burgers Vector can be used to quantitatively describe the types of Burgers vectors present in geometrically necessary dislocation (GND) populations derived from 2-D EBSD map data. Application of this technique to the distorted product grains reveals the prominence of, among others, dislocations with apparent [010] Burgers vectors. This supports (with some caveats) the idea that dislocation creep is not responsible for the observed lattice distortion, as there are no known slip systems in plagioclase with a [010] Burgers vector. Distortion in a replacement microstructure has also been attributed to the presence of nanoscale product grains, which share very similar, but not identical, orientations due to topotactic nucleation from adjacent sites on the same substrate. As a precipitate, the product grains should be expected to be largely free of elastic strain. However, high angular resolution EBSD results demonstrate that product grains contain both elastic strains (> 10-3) and residual stresses (several hundred MPa), as well as GND densities on the order of 1014-1015 m-2. Thus we suggest the observed distortion (elastic strain plus rotations) in the lattice is produced during the mineral replacement reaction by a lattice mismatch and volume change between parent and product. Stored strain energy then provides a driving force for recovery and recrystallization. Recrystallization produces smaller grains with high angle boundaries, reducing the strength of, and allowing deformation to localise in, the albite phase. Grain size reduction in turn facilitates shear deformation to high strains by a grain size sensitive mechanism (fluid-assisted diffusion creep).

  12. Exhumation History of an Oblique Plate Boundary: Investigating Kaikoura Mountain-building within the Marlborough Fault System, NE South Island New Zealand

    NASA Astrophysics Data System (ADS)

    Collett, C.; Duvall, A. R.; Flowers, R. M.; Tucker, G. E.

    2015-12-01

    The Kaikoura Mountains stand high as topographic anomalies in the oblique Pacific-Australian plate boundary zone known as the Marlborough Fault System (MFS), NE South Island New Zealand. The base of both the Inland and Seaward Kaikoura Ranges are bound on the SE by major, steeply NW-dipping, right lateral, active strike-slips (Clarence and Hope faults of the MFS, respectively). Previous geologic mapping, observations of predominantly horizontal fault slip at the surface from GPS and offset Quaternary deposits, and uplift of marine terraces, provide evidence for shortening and mountain-building via distributed deformation off of the main MFS strike-slip faults. However, quantitative estimates of the magnitude and spatial patterns of exhumation and of the timing of mountain-building in the Kaikouras are needed to understand more fully the nature of oblique deformation in the MFS. We present new apatite and zircon (U-Th)/He ages from opposite sides of the Hope and Clarence faults, spanning over 2 km of relief within the Kaikoura Mountains to identify spatial and temporal changes in exhumation rates in relation to the adjacent faults. Young (~3 Ma) apatite He ages and rapid (potentially > 1 mm/yr) exhumation rates from opposite sides of the faults are consistent with previously mentioned evidence of recent, regional, distributed deformation off of the main MFS faults. Moreover, early Miocene zircon He ages imply that parts of this region experienced an earlier phase of fault-related exhumation. Large changes in zircon He ages across the faults from ~20 Ma to > 100 Ma support hypotheses that portions of the Marlborough Faults may be re-activated, early Miocene thrusts. The zircon data are also consistent with the hypothesis of an early Miocene initiation of the oblique Pacific-Australian plate boundary in this region. Evidence for this comes from a change in sedimentation during this time from fine marine sediments to coarse, terrigenous conglomerates. Observing more than one phase of deformation in this active, oblique tectonic setting provides a new quantitative assessment of the evolution of the Pacific-Australian plate boundary in this region and how the accommodation of deformation may change over time.

  13. Foam rheology at large deformation

    NASA Astrophysics Data System (ADS)

    Géminard, J.-C.; Pastenes, J. C.; Melo, F.

    2018-04-01

    Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.

  14. Determining Volcanic Deformation at San Miguel Volcano, El Salvador by Integrating Radar Interferometry and Seismic Analyses

    NASA Astrophysics Data System (ADS)

    Schiek, C. G.; Hurtado, J. M.; Velasco, A. A.; Buckley, S. M.; Escobar, D.

    2008-12-01

    From the early 1900's to the present day, San Miguel volcano has experienced many small eruptions and several periods of heightened seismic activity, making it one of the most active volcanoes in the El Salvadoran volcanic chain. Prior to 1969, the volcano experienced many explosive eruptions with Volcano Explosivity Indices (VEI) of 2. Since then, eruptions have decreased in intensity to an average VEI of 1. Eruptions mostly consist of phreatic explosions and central vent eruptions. Due to the explosive nature of this volcano, it is important to study the origins of the volcanism and its relationship to surface deformation and earthquake activity. We analyze these interactions by integrating interferometric synthetic aperture radar (InSAR) results with earthquake source location data from a ten-month (March 2007-January 2008) seismic deployment. The InSAR results show a maximum of 7 cm of volcanic inflation from March 2007 to mid-October 2007. During this time, seismic activity increased to a Real-time Seismic-Amplitude Measurement (RSAM) value of >400. Normal RSAM values for this volcano are <50. A period of quiescence began in mid-October 2007, and a maximum of 6 cm of deflation was observed in the interferometry results from 19 October 2007 to 19 January 2008. A clustering of at least 25 earthquakes that occurred between March 2007 and January 2008 suggests a fault zone through the center of the San Miguel volcanic cone. This fault zone is most likely where dyke propagation is occurring. Source mechanisms will be determined for the earthquakes associated with this fault zone, and they will be compared to the InSAR deformation field to determine if the mid-October seismic activity and observed surface deformation are compatible.

  15. Latest Neoproterozoic basin inversion of the Beardmore Group, central Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Goodge, John W.

    1997-08-01

    Structural and age relationships in Beardmore Group rocks in the central Transantarctic Mountains of Antarctica indicate that they experienced a single deformation in latest Neoproterozoic to early Paleozoic time. New structural data contrast with earlier suggestions that Beardmore rocks record two orogenic deformations, one of the early Paleozoic Ross orogeny and a distinct earlier tectonic event of presumed Neoproterozoic age referred to as the Beardmore orogeny. In the Nimrod Glacier area, Beardmore metasedimentary rocks contain only a single set of geometrically related regional structures associated with the development of upright, large- and small-scale flexural-slip folds. Deformation of Beardmore strata involved west directed contraction of modest regional strain at relatively high crustal levels. Existing ages of detrital zircons from the Cobham and Goldie formations constrain Beardmore Group deposition to be younger than ˜600 Ma. This is significantly younger than previous age estimates and suggests that Beardmore deposition may be closely linked to a latest Neoproterozoic East Antarctic rift margin. The lack of structural evidence for polyphase deformation and the relatively young depositional age for the Beardmore Group thus raises the question of a temporally and/or technically unique Beardmore orogeny. Here I suggest that Beardmore shortening may be related to tectonic inversion of East Antarctic marginal-basin strata because of localized compression during proto-Pacific seafloor spreading. Basin inversion is but one stage in a protracted Ross tectonic cycle of rifting, tectonic inversion, subduction initiation, and development of a mature convergent continental margin during latest Neoproterozoic and early Paleozoic time. The term "Beardmore orogeny" has little meaning as an event of orogenic status, and it should be abandoned. Recognition of this latest Neoproterozoic history reinforces the view that the broader Ross orogeny was not a single event but rather was a long-lived postrifting tectonic process along the East Antarctic margin of Gondwanaland.

  16. Microstructural Evolution during Mid-Crustal Shear Zone Thickening and Thinning, Mount Irene Detachment Zone, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Negrini, M.; Smith, S. A. F.; Scott, J.; Rooney, J. S.; Demurtas, M.

    2016-12-01

    Recent work has shown that ductile shear zones experience cyclic variations in stress and strain rate due to, for example, elastic loading from earthquake slip on brittle faults or the presence of rigid particles and asperities within the shear zone. Such non-steady state flow conditions can promote microstructural changes including a decrease in grain sizes followed by a switch in the main deformation mechanisms. Understanding the microstructural changes that occur during non steady-state deformation is therefore critical in evaluating shear zone rheology. The Mount Irene shear zone formed during Cretaceous extension in the middle crust and was active at temperatures of 600°C and pressures of 6 kbar. The shear zone localized in a basal calcite marble layer typically 3-5 m thick containing hundreds of thin (mm-cm) calc-silicate bands that are now parallel to the shear zone boundaries. The lower boundary of the shear zone preserves meter-scale undulations that cause the shear zone to be squeezed in to regions that are <1.5 m thick. The calc-silicate bands act as "flow markers" and allow individual shear zone layers to be traced continuously through thick and thin regions, implying that the mylonites experienced cyclic variations in stress and strain rate. Calc-mylonite samples collected from the same layer close to the base of the shear zone reveal that layer thinning was accompanied by progressive microstructural changes including intense twinning, stretching and flattening of large calcite porphyroclasts as well as the development of interconnected networks of recrystallized calcite aggregates. EBSD analysis shows that the recrystallized aggregates contain polygonal calcite grains with microstructures (e.g. grain quadruple junctions) similar to those reported for neighbor-switching processes associated with grain boundary sliding and superplasticity. Ongoing and future work will utilize samples from across the full thickness of the shear zone to determine key microstructural changes and deformation mechanisms that accommodated shear zone thinning and thickening during non-steady state deformation.

  17. Crustal anisotropy from Moho converted Ps wave splitting and geodynamic implications in Northeastern margin of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Wu, Q.; Zhang, R.

    2017-12-01

    Collision between Indian and Eurasian result in intense deformation and crustal shortening in the Tibetan Plateau. NE margin of Tibetan Plateau experienced complex deformation between Qilian orogen and its adjacent blocks, Alxa Block in the north and Ordos Block in the east. We focus on if there any evidences exist in the NE margin of Tibetan Plateau, which can support crustal channel flow model. China Earthquake Administration had deployed temporary seismic array which is called ChinaArray Phase Ⅱ, dense seismic stations covered NE margin of Tibetan Plateau. Seismic data recorded by 81 seismic stations is applied in this research. We calculated receiver functions with time-domain deconvolution. We selected RFs which have clear Ps phase both in radial and transverse components to measure Ps splitting owing to crustal anisotropy, and 130 pairs of anisotropy parameters of 51 seismic stations were obtained. We would like to discuss about dynamic mechanism of this area using crustal anisotropy associated with the result of SKS-splitting and surface constrains like GPS velocity. The result can be summarized as follows. The large scale of delay time imply that the crustal anisotropy mainly derives from middle to lower crust rather than upper crust. In the southeastern part of the research area, crustal anisotropy is well agree with the result computed form SKS-splitting and GPS velocity directions trending NWW-SEE or E-W direction. This result imply a vertically coherent deformation in the area as the directions of crustal anisotropy trend to be perpendicular to the direction of normal stress. In the middle and north part of the research area, the fast polarization direction of crustal anisotropy is NEE-SWW or E-W direction, parallels with direction of GPS velocity, but differ to the direction of the result of SKS-splitting. This result may imply that decoupled deformation in this area associated with middle to lower crustal flow.

  18. Large-deformation and high-strength amorphous porous carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  19. Macroscopic inhomogeneous deformation behavior arising in single crystal Ni-Mn-Ga foils under tensile loading

    NASA Astrophysics Data System (ADS)

    Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred

    2016-12-01

    This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.

  20. Auxetic hexachiral structures with wavy ligaments for large elasto-plastic deformation

    NASA Astrophysics Data System (ADS)

    Zhu, Yilin; Wang, Zhen-Pei; Hien Poh, Leong

    2018-05-01

    The hexachiral structure is in-plane isotropic in small deformation. When subjected to large elasto-plastic deformation, however, the hexachiral structure tends to lose its auxeticity and/or isotropy—properties which are desirable in many potential applications. The objective of this study is to improve these two mechanical properties, without significantly compromising the effective yield stress, in the regime with significant material and geometrical nonlinearity effects. It is found that the deformation mechanisms underlying the auxeticity and isotropy properties of a hexachiral structure are largely influenced by the extent of rotation of the central ring in a unit cell. To facilitate the development of this deformation mechanism, an improved design with wavy ligaments is proposed. The improved performance of the proposed hexachiral structure is demonstrated. An initial study on possible applications as a protective material is next carried out, where the improved hexachiral design is shown to exhibit higher specific energy absorption capacity compared to the original design, as well as standard honeycomb structures.

  1. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    DOE PAGES

    Wang, Shan; Cui, Lishan; Hao, Shijie; ...

    2014-10-24

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strainmore » of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.« less

  2. Gravitational slope-deformation of a resurgent caldera: New insights from the mechanical behaviour of Mt. Nuovo tuffs (Ischia Island, Italy)

    NASA Astrophysics Data System (ADS)

    Marmoni, G. M.; Martino, S.; Heap, M. J.; Reuschlé, T.

    2017-10-01

    Ischia Island (Italy) is an impressive example of the rare phenomenon of caldera resurgence. The emplacement and replenishment of magmas at shallow depth resulted in a vertical uplift of about 900 m, concentrated in the western portion of Mt. Epomeo (789 m a.s.l.). As a consequence of this uplift, the island has experienced several slope instabilities at different scales since the Holocene, from shallow mass movements to large rock and debris avalanches. These mass wasting events, which mobilised large volumes of greenish alkali-trachytic tuff (the Mt. Epomeo Green Tuff, MEGT), were strictly related to volcano-tectonic activity and the interaction between the volcanic slopes and the hydrothermal system beneath the island. Deep-Seated Gravitational Slope Deformation (DSGSD) at Mt. Nuovo, located adjacent to densely populated coastal villages, is an ongoing process that covers an area of 1.6 km2. The Mt. Nuovo DSGSD involves a rock mass volume of 190 Mm3 and is accommodated by a main shear zone and a series of sub-vertical fault zones associated with high-angle joint sets. To improve our understanding of this gravity-induced process, we performed a physical (porosity and permeability) and mechanical (uniaxial and triaxial deformation experiments) characterisation of two ignimbrite deposits - both from the MEGT - that form a significant component of the NW sector of Mt. Epomeo. The main conclusions drawn from our experiments are twofold. First, the presence of water dramatically reduces the strength of the tuffs, suggesting that the movement of fluids within the hydrothermal system could greatly impact slope stability. Second, the transition from brittle (dilatant) to ductile (compactant) behaviour in the tuffs of the MEGT occurs at a very low effective pressure, analogous to a depth of a couple of hundred metres, and that this transition is likely moved closer to the surface in the presence of water. We hypothesise that compactant (porosity decreasing) behaviour at the base of the layer could therefore facilitate slope instability. Although our results show that transient exposure to 300 °C does not influence the short-term strength of the tuff, we speculate that the high in-situ temperature could increase the efficiency of brittle and compactant creep and therefore increase the rate of slope deformation. Taken together, our experimental data highlight a potentially important role for the hydrothermal system (that reaches a minimum depth of 1 km) in dictating the DSGSD at Mt. Nuovo. An understanding of this deformation process is not only important for the proximal coastal villages, at risk of engulfment by a large debris avalanche, but also for the towns and cities along the coast of the Gulf of Naples that are at risk to a secondary consequence of such an avalanche - a tsunami wave.

  3. Cratering motions and structural deformation in the rim of the Prairie Flat multiring explosion crater

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Ullrich, G. W.; Sauer, F. M.; Jones, G. H. S.

    1977-01-01

    Cratering motions and structural deformation are described for the rim of the Prairie Flat multiring crater, 85.5 m across and 5.3 m deep, which was formed by the detonation of a 500-ton TNT surface-tangent sphere. The terminal displacement and motion data are derived from marker cans and velocity gages emplaced in drill holes in a three-dimensional matrix radial to the crater. The integration of this data with a detailed geologic cross section, mapped from deep trench excavations through the rim, provides a composite view of the general sequence of motions that formed a transiently uplifted rim, overturned flap, inverted stratigraphy, downfolded rim, and deformed strata in the crater walls. Preliminary comparisons with laboratory experimental cratering and with numerical simulations indicate that explosion craters of the Prairie Flat-type generated by surface and near-surface energy sources tend to follow predictable motion sequences and produce comparable structural deformation. More specifically, central uplift and multiring impact craters with morphologies and structures comparable to Prairie Flat are inferred to have experienced similar deformational histories of the rim, such as uplift, overturning, terracing, and downfolding.

  4. Isogeometric analysis of free-form Timoshenko curved beams including the nonlinear effects of large deformations

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Farhad; Hashemian, Ali; Moetakef-Imani, Behnam; Hadidimoud, Saied

    2018-03-01

    In the present paper, the isogeometric analysis (IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature. Based on the isoparametric concept, the shape functions of the field variables (displacement and rotation) in a finite element analysis are considered to be the same as the non-uniform rational basis spline (NURBS) basis functions defining the geometry. The validity of the presented formulation is tested in five case studies covering a wide range of engineering curved structures including from straight and constant curvature to variable curvature beams. The nonlinear deformation results obtained by the presented method are compared to well-established benchmark examples and also compared to the results of linear and nonlinear finite element analyses. As the nonlinear load-deflection behavior of Timoshenko beams is the main topic of this article, the results strongly show the applicability of the IGA method to the large deformation analysis of free-form curved beams. Finally, it is interesting to notice that, until very recently, the large deformations analysis of free-form Timoshenko curved beams has not been considered in IGA by researchers.

  5. Nonlinear Geometric Effects in Mechanical Bistable Morphing Structures

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Majidi, Carmel; Chen, Wenzhe; Srolovitz, David J.; Haataja, Mikko P.

    2012-09-01

    Bistable structures associated with nonlinear deformation behavior, exemplified by the Venus flytrap and slap bracelet, can switch between different functional shapes upon actuation. Despite numerous efforts in modeling such large deformation behavior of shells, the roles of mechanical and nonlinear geometric effects on bistability remain elusive. We demonstrate, through both theoretical analysis and tabletop experiments, that two dimensionless parameters control bistability. Our work classifies the conditions for bistability, and extends the large deformation theory of plates and shells.

  6. Thermodynamically consistent constitutive equations for nonisothermal large strain, elasto-plastic, creep behavior

    NASA Technical Reports Server (NTRS)

    Riff, R.; Carlson, R. L.; Simitses, G. J.

    1985-01-01

    The paper is concerned with the development of constitutive relations for large nonisothermal elastic-viscoplastic deformations for metals. The kinematics of elastic-plastic deformation, valid for finite strains and rotations, is presented. The resulting elastic-plastic uncoupled equations for the deformation rate combined with use of the incremental elasticity law permits a precise and purely deductive development of elastic-viscoplastic theory. It is shown that a phenomenological thermodynamic theory in which the elastic deformation and the temperature are state variables, including few internal variables, can be utilized to construct elastic-viscoplastic constitutive equations, which are appropriate for metals. The limiting case of inviscid plasticity is examined.

  7. The Afar rift zone deformation dynamics retrieved through phase and amplitude SAR data

    NASA Astrophysics Data System (ADS)

    Casu, F.; Pagli, C.; Paglia, L.; Wang, H.; Wright, T. J.; Lanari, R.

    2011-12-01

    The Dabbahu rift segment of the Afar depression has been active since 2005 when a 2.5 km3 dyke intrusion and hundreds of earthquakes marked the onset a rifting episode which continues to date. Since 2003, the Afar depression has been repeatedly imaged by the ENVISAT satellite, generating a large SAR archive which allow us to study the ongoing deformation processes and the dynamics of magma movements. We combine sets of small baseline interferograms through the advanced DInSAR algorithm referred to as Small BAseline Subset (SBAS), and we generate both ground deformation maps and time series along the satellite Line-Of-Sight (LOS), with accuracies on the order of 5 mm. The main limitation of DInSAR applications is that large and rapid deformations, such as those caused by dyke intrusions and eruptions in Afar, cannot be fully measured. The phase information often degrades and some areas of the interferograms are affected by high fringe rates, leading to difficulties in the phase unwrapping, and/or to complete loss of coherence due to significant misregistration errors. This limitation can be overcome by exploiting the SAR image amplitude information instead of the phase, and by calculating the Pixel-Offset (PO) field of a given SAR image pair, for both range and azimuth directions. Moreover, after computing the POs for each image pair, it is possible to combine them, following the same rationale of the SBAS technique, to finally retrieve the offset-based deformation time series. Such technique, named PO-SBAS, permits to retrieve the deformation field in areas affected by very large displacements at an accuracy that, for ENVISAT data, correspond to 30cm and 15 cm for the range and azimuth, respectively. In this work, we study the Afar rift region deformations by using both the phase and amplitude information of several sets of SAR images acquired from ascending and descending ENVISAT tracks. In particular, we use the phase information to construct dense and accurate deformation maps and time series in areas not affected by large displacements. While in areas where the deformation gradient causes loss of coherence, we retrieve the displacement field through the amplitude information. This approach allows us to obtain a spatially detailed deformation map of the study area. In addition, by combining ascending and descending data we reconstruct the vertical and East-West components of deformation field. Furthermore, in areas affected by large deformations, we can also retrieve the full 3D deformation field, by using the North-South displacement component obtained from the azimuth PO information. Distinct sources of deformations interact in Afar. Fault movements and magma chamber deflation have accompanied dyke intrusions but quantifying each contribution to the total deformation has been challenging, also due to loss of coherence in the central part of the rift. Here we combined the phase and amplitude information in order to retrieve the full deformation field of repeated intrusions. This allows us to better constrain the fault movements that occur as the dyke propagates as well as the magma movements from individual magma chambers.

  8. Large Scale Deformation of the Western U.S. Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2002-01-01

    Over the past couple of years, with support from NASA, we used a large collection of data from GPS, VLBI, SLR, and DORIS networks which span the Western U.S. Cordillera (WUSC) to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work was roughly divided into an analysis of these space geodetic observations to infer the deformation field across and within the entire plate boundary zone, and an investigation of the implications of this deformation field regarding plate boundary dynamics. Following the determination of the first generation WUSC velocity solution, we placed high priority on the dissemination of the velocity estimates. With in-kind support from the Smithsonian Astrophysical Observatory, we constructed a web-site which allows anyone to access the data, and to determine their own velocity reference frame.

  9. Large Scale Deformation of the Western U.S. Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2002-01-01

    Over the past couple of years, with support from NASA, we used a large collection of data from GPS, VLBI, SLR, and DORIS networks which span the Westem U.S. Cordillera (WUSC) to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work was roughly divided into an analysis of these space geodetic observations to infer the deformation field across and within the entire plate boundary zone, and an investigation of the implications of this deformation field regarding plate boundary dynamics. Following the determination of the first generation WUSC velocity solution, we placed high priority on the dissemination of the velocity estimates. With in-kind support from the Smithsonian Astrophysical Observatory, we constructed a web-site which allows anyone to access the data, and to determine their own velocity reference frame.

  10. EBSD characterization of twinning in cold-rolled CP-Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X., E-mail: csulixu@hotmail.com; Duan, Y.L., E-mail: 876270744@qq.com; Xu, G.F., E-mail: csuxgf66@csu.edu.cn

    2013-10-15

    This work presents the use of a mechanical testing system and the electron backscatter diffraction technique to study the mechanical properties and twinning systems of cold-rolled commercial purity titanium, respectively. The dependence of twinning on the matrix orientation is analyzed by the distribution map of Schmid factor. The results showed that the commercial purity titanium experienced strong strain hardening and had excellent formability during rolling. Both the (112{sup ¯}2)<112{sup ¯}3{sup ¯}> compressive twins and (101{sup ¯}2)<101{sup ¯}1{sup ¯}> tensile twins were dependent on the matrix orientation. The Schmid factor of a grain influenced the activation of a particular twinning system.more » The specific rolling deformation of commercial purity titanium controlled the number and species of twinning systems and further changed the mechanical properties. - Highlights: • CP-Ti experienced strain hardening and had excellent formability. • Twins were dependent on the matrix orientation. • Schmid factor of a grain influenced the activation of a twinning system. • Rolling deformation controlled twinning systems and mechanical properties.« less

  11. The response of equine cortical bone to loading at strain rates experienced in vivo by the galloping horse.

    PubMed

    Evans, G P; Behiri, J C; Vaughan, L C; Bonfield, W

    1992-03-01

    The behaviour of cortical bone under load is strain rate-dependent, i.e. it is dependent on the rate at which the load is applied. This is particularly relevant in the galloping horse since the strain rates experienced by the bone are far in excess of those recorded for any other species. In this study the effect of strain rates between 0.0001 and 1 sec-1 on the mechanical properties of equine cortical bone were assessed. Initially, increasing strain rates resulted in increased mechanical properties. Beyond a critical value, however, further increases in strain rate resulted in lower strain to failure and energy absorbing capacity. This critical rate occurred around 0.1 sec-1 which is within the in vivo range for a galloping racehorse. Analysis of the stress-strain curves revealed a transition in the type of deformation at this point from pseudo-ductile to brittle. Bones undergoing brittle deformation are more likely to fail under load, leading to catastrophic fracture and destruction of the animal.

  12. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  13. Seismology: tectonic strain in plate interiors?

    PubMed

    Calais, E; Mattioli, G; DeMets, C; Nocquet, J-M; Stein, S; Newman, A; Rydelek, P

    2005-12-15

    It is not fully understood how or why the inner areas of tectonic plates deform, leading to large, although infrequent, earthquakes. Smalley et al. offer a potential breakthrough by suggesting that surface deformation in the central United States accumulates at rates comparable to those across plate boundaries. However, we find no statistically significant deformation in three independent analyses of the data set used by Smalley et al., and conclude therefore that only the upper bounds of magnitude and repeat time for large earthquakes can be inferred at present.

  14. The influence of melting on the kinematic development of the Himalayan crystalline core

    NASA Astrophysics Data System (ADS)

    Webb, Alexander

    2016-04-01

    Current hypotheses for the development and emplacement of the Himalayan crystalline core are 1) models with intense upper plate out-of-sequence activity (i.e., tunneling of channel flow, and some modes of critical taper wedge behavior) and 2) models in which the upper plate mainly records basal accretion of horses (i.e., duplexing). The two concepts can be considered end-members. A signal difference between these two models is the role of melting. The intense upper plate deformation envisioned in the first set of models has been hypothesized to be largely a product of partial melting, particularly in channel flow models. Specifically, the persistent presence of melt in the middle crust of the upper plate may dramatically lower the viscosity of these rocks, allowing distributed deformation. The second set of models - duplexing - predicts in-sequence thrusting with only minor out-of-sequence deformation. Stacking of a duplex acts like a deli cheese-slicing machine: slice after slice is cut from the intact block to a stack of slices, but neither the block (~down-going plate) nor the stack (~upper plate) features much internal deformation. In this model, partial melting produces no significant kinematic impact. The dominant preserved structural elements across the Himalayan crystalline core rocks are flattening and L-S fabrics. Structurally high portions of the crystalline core locally display complex outcrop-scale deformation associated with migmatitic rocks, and contain km-scale leucogranite bodies; both features developed in the early to middle Miocene. The flattening and L-S fabrics have been interpreted to record either (A) southwards channel tunneling across the upper plate, or (B) fabric development during metamorphism of the down-going plate, prior to accretion to the upper plate. The deformation of migmatitic rock and emplacement of leucogranite have been interpreted in support of widespread distributed deformation. Alternatively, these features may have accumulated from increments of melting and crystallization which did not produce sufficient melt during any one period to significantly alter viscosity at >100 m scales. Recent work integrating monazite and zircon geochronology with structural records shows that the Himalayan middle crust has been assembled along a series of mainly southwards-younging thrust faults throughout the early to middle Miocene. The thrust faults separate 1-5 km thick panels that experienced similar metamorphic cycles during different time periods. At this scale, out-of-sequence deformation is rare, with its apparent significance enhanced because of the high throw-to-heave ratio of out-of-sequence thrusting. These findings support the duplexing model and indicate that melting did not have a significant impact on the kinematic development of the Himalayan crystalline core.

  15. Collision-induced rotation in an arc-continent collision: Constrained by continuous GPS observations in Mindoro, Philippines

    NASA Astrophysics Data System (ADS)

    Rau, R.; Hung, H.; Yang, C.; Tsai, M.; Ching, K.; Bacolcol, T.; Solidum, R.; Chang, W.

    2012-12-01

    The Mindoro Island, situated at the southern end of the Manila trench, is a modern arc-continent collision. Seismic activity in Mindoro concentrates mainly in the northern segment of the island as part of the Manila subduction processes; in contrast, seismicity in the middle and the southern parts of the island is rather diffuse. Although the Mindoro Island has been experiencing intense seismic activities and is a type example of arc-continent collision, the modern mode of deformation of the Mindoro collision remains unclear. We have installed eight dual-frequency continuous GPS stations in the island since May 2010. The questions we want to address by using continuous GPS observations are (1) if there are still compressions within the Mindoro collision? Have they ceased as seen by the diffuse seismicity, or are the thrust faults locked? (2) What is the mode of deformation in the Mindoro collision and what are the roles of thrust and strike-slip faults playing in the collision? (3) How does the Mindoro collision compare with the other collision, such as the Taiwan orogen? Do they share similar characteristics for the subduction-collision transition zone? For the results of the first two years GPS measurements, if we take the Sablayan site near the southern end of the Manila trench as the reference station, a large counterclockwise rotation from south to north, with horizontal velocities of 1.9-31.1 mm/yr from 165 to 277 degrees, are found in the island. The deformation of the Mindoro is similar to the pattern of the transition zone from collision to subduction in northeastern Taiwan. This result suggests that collision-induced rotation is occurring in the Mindoro Island and the Mindoro arc-continent collision is still active.

  16. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    NASA Astrophysics Data System (ADS)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-03-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  17. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    USGS Publications Warehouse

    Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.

    2009-01-01

    Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.

  18. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    NASA Astrophysics Data System (ADS)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-06-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  19. Planar dynamics of large-deformation rods under moving loads

    NASA Astrophysics Data System (ADS)

    Zhao, X. W.; van der Heijden, G. H. M.

    2018-01-01

    We formulate the problem of a slender structure (a rod) undergoing large deformation under the action of a moving mass or load motivated by inspection robots crawling along bridge cables or high-voltage power lines. The rod is described by means of geometrically exact Cosserat theory which allows for arbitrary planar flexural, extensional and shear deformations. The equations of motion are discretised using the generalised-α method. The formulation is shown to handle the discontinuities of the problem well. Application of the method to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable problem we find that large deformations have a resonance detuning effect on cable dynamics. The problem also offers a compelling illustration of the Timoshenko paradox. For the arch problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure suppressed entirely at sufficiently high speed.

  20. Gravity and thermal deformation of large primary mirror in space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong

    2016-10-01

    The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.

  1. Proximal junctional kyphosis following adult spinal deformity surgery.

    PubMed

    Cho, Samuel K; Shin, John I; Kim, Yongjung J

    2014-12-01

    Proximal junctional kyphosis (PJK) is a common radiographic finding following long spinal fusions. Whether PJK leads to negative clinical outcome is currently debatable. A systematic review was performed to assess the prevalence, risk factors, and treatments of PJK. Literature search was conducted on PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials using the terms 'proximal junctional kyphosis' and 'proximal junctional failure'. Excluding reviews, commentaries, and case reports, we analyzed 33 studies that reported the prevalence rate, risk factors, and discussions on PJK following spinal deformity surgery. The prevalence rates varied widely from 6 to 61.7%. Numerous studies reported that clinical outcomes for patients with PJK were not significantly different from those without, except in one recent study in which adult patients with PJK experienced more pain. Risk factors for PJK included age at operation, low bone mineral density, shorter fusion constructs, upper instrumented vertebrae below L2, and inadequate restoration of global sagittal balance. Prevalence of PJK following long spinal fusion for adult spinal deformity was high but not clinically significant. Careful and detailed preoperative planning and surgical execution may reduce PJK in adult spinal deformity patients.

  2. How deformed are the TSD bands in odd Lu isotopes?

    NASA Astrophysics Data System (ADS)

    Ragnarsson, I.

    2017-12-01

    The experimental fingerprints for large deformation in the triaxial strongly deformed (TSD) bands of 163,165,167Lu are discussed. It is argued that these fingerprints are not very convincing. On the contrary, especially the fact that there exist strong interactions between the TSD bands and normal-deformed (ND) bands indicates that the deformation of the TSD bands cannot be very different from that of the ND bands. The need for detailed new experimental data is underlined.

  3. Predicting Welding Distortion in a Panel Structure with Longitudinal Stiffeners Using Inherent Deformations Obtained by Inverse Analysis Method

    PubMed Central

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results. PMID:25276856

  4. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    PubMed

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  5. Deformation and annealing response of TD-nickel chromium sheet

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Ebert, L. J.

    1973-01-01

    The deformation and annealing response of TD-nickel chromium (TD-NiCr) 0.1 inch thick sheet was examined using various cold-rolling and annealing treatments. Upon annealing (above 816 C (1500 F), the as-received material was converted from an initially ultra-fine grain size (average grain dimension 0.51 micron) to a large grain structure. Increases in grain size by a factor of 100 to 200 were observed for this transformation. However, in those material states where the large grain transformation was absent, a fine grain recrystallized structure formed upon annealing (above 732 C (1350 F)). The deformation and annealing response of TD-NiCr sheet was evaluated with respect to the processing related variables as mode and severity of deformation and annealing temperature. Results indicate that the large grain transformation, classical primary recrystallization occurs. Using selected materials produced during the deformation and annealing study, the elevated temperature tensile properties of TD-NiCr sheet were examined in the temperature range 593 C (1100 F) to 1093 C (2000 F). It was observed that the elevated temperature tensile properties of TD-NiCr sheet could be optimized by the stabilization of a large grain size in this material using the cold working and/or annealing treatments developed during the present investigation.

  6. Ground-state properties of neutron-rich Mg isotopes

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Minomo, K.; Shimada, M.; Tagami, S.; Kimura, M.; Takechi, M.; Fukuda, M.; Nishimura, D.; Suzuki, T.; Matsumoto, T.; Shimizu, Y. R.; Yahiro, M.

    2014-04-01

    We analyze recently measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics (AMD). The folding model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24-38Mg are then deduced from the measured reaction cross sections by fine tuning the parameters of the def-WS model. The deduced matter radii are largely enhanced by nuclear deformation. Fully microscopic AMD calculations with no free parameter well reproduce the deduced matter radii for 24-36Mg, but still considerably underestimate them for 37,38Mg. The large matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing measured ground-state properties (spin parity, total binding energy, and one-neutron separation energy) of Mg isotopes. Neutron-number (N) dependence of deformation parameter is predicted by AMD. Large deformation is seen from 31Mg with N =19 to a drip-line nucleus 40Mg with N =28, indicating that both the N =20 and 28 magicities disappear. N dependence of neutron skin thickness is also predicted by AMD.

  7. Anomalous Seismic Radiation in the Shallow Subduction Zone Explained by Extensive Poroplastic Deformation in the Overriding Wedge

    NASA Astrophysics Data System (ADS)

    Hirakawa, E. T.; Ma, S.

    2012-12-01

    The deficiency of high-frequency seismic radiation from shallow subduction zone earthquakes was first recognized in tsunami earthquakes (Kanamori, 1972), which produce larger tsunamis than expected from short-period (20 s) surface wave excitation. Shallow subduction zone earthquakes were also observed to have unusually low energy-to-moment ratios compared to regular subduction zone earthquakes (e.g., Newman and Okal, 1998; Venkataraman and Kanamori, 2004; Lay et al., 2012). What causes this anomalous radiation and how it relates to large tsunami generation has remained unclear. Here we show that these anomalous observations can be due to extensive poroplastic deformation in the overriding wedge, which provides a unifying interpretation. Ma (2012) showed that the pore pressure increase in the wedge due to up-dip rupture propagation significantly weakens the wedge, leading to widespread Coulomb failure in the wedge. Widespread failure gives rise to slow rupture velocity and large seafloor uplift (landward from the trench) in the case of a shallow fault dip. Here we extend this work and demonstrate that the large seafloor uplift due to the poroplastic deformation significantly dilates the fault behind the rupture front, which reduces the normal stress on the fault and increases the stress drop, slip, and rupture duration. The spectral amplitudes of the moment-rate time function is significantly less at high frequencies than those from elastic simulations. Large tsunami generation and deficiency of high-frequency radiation are thus two consistent manifestations of the same mechanism (poroplastic deformation). Although extensive poroplastic deformation in the wedge represents a significant portion of total seismic moment release, the plastic deformation is shown to act as a large energy sink, leaving less energy to be radiated and leading to low energy-to-moment ratios as observed for shallow subduction zone earthquakes.

  8. Paleomagnetic Constraints From the Baoshan Area on the Deformation of the Qiangtang-Sibumasu Terrane Around the Eastern Himalayan Syntaxis

    NASA Astrophysics Data System (ADS)

    Li, Shihu; van Hinsbergen, Douwe J. J.; Deng, Chenglong; Advokaat, Eldert L.; Zhu, Rixiang

    2018-02-01

    The Sibumasu Block in SE Asia represents the eastward continuation of the Qiangtang Block. Here we report a detailed rock magnetic and paleomagnetic study on the Middle Jurassic and Paleocene rocks from northern Sibumasu, to document the crustal deformation during the India-Asia collision since the Paleocene and reconstruct the overall strike of the Qiangtang/Sibumasu elements before the India-Asia collision. Although the fold test is inconclusive based solely on our data, a positive reversal test, a positive regional fold test with previous paleomagnetic results, and a detrital origin of hematite in the red beds as indicated by scanning electron microscopy suggest that the magnetizations obtained from the Jurassic and Paleocene rocks are most likely primary, showing an 80° clockwise rotation since Paleocene. These results, together with previously published paleomagnetic data, suggest that the northern Sibumasu and northern Simao elements experienced a 60-80° clockwise rotation since Paleocene. This large clockwise rotation is also consistent with the surface GPS velocity field and NE-SW fault networks, suggesting a rotational motion of crustal material from southeastern Tibet during late Cenozoic. We infer that the large clockwise rotation is a sum of rotation in the Eocene to Middle Miocene time associated with Indochina extrusion and rotation after the Middle Miocene associated with the E-W extension in central Tibet. This suggests that the eastward motion of Tibetan crustal material along the Xianshuihe-Xiaojiang fault after Middle Miocene is transmitted to the southwest toward Myanmar. Jurassic and Cretaceous paleomagnetic results suggest that the Qiangtang/northern Sibumasu was originally a curved structure with an orientation of N60°W in Tibet and changes to N10°W in southern Sibumasu.

  9. Characterizing Wheel-Soil Interaction Loads Using Meshfree Finite Element Methods: A Sensitivity Analysis for Design Trade Studies

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Trease, Brian P.; Bojanowski, Cezary; Kulakx, Ronald F.

    2013-01-01

    A wheel experiencing sinkage and slippage events poses a high risk to planetary rover missions as evidenced by the mobility challenges endured by the Mars Exploration Rover (MER) project. Current wheel design practice utilizes loads derived from a series of events in the life cycle of the rover which do not include (1) failure metrics related to wheel sinkage and slippage and (2) performance trade-offs based on grouser placement/orientation. Wheel designs are rigorously tested experimentally through a variety of drive scenarios and simulated soil environments; however, a robust simulation capability is still in development due to myriad of complex interaction phenomena that contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree nite element approaches enable simulations that capture su cient detail of wheel-soil interaction while remaining computationally feasible. This study implements the JPL wheel-soil benchmark problem in the commercial code environment utilizing the large deformation modeling capability of Smooth Particle Hydrodynamics (SPH) meshfree methods. The nominal, benchmark wheel-soil interaction model that produces numerically stable and physically realistic results is presented and simulations are shown for both wheel traverse and wheel sinkage cases. A sensitivity analysis developing the capability and framework for future ight applications is conducted to illustrate the importance of perturbations to critical material properties and parameters. Implementation of the proposed soil-wheel interaction simulation capability and associated sensitivity framework has the potential to reduce experimentation cost and improve the early stage wheel design proce

  10. Radial deformation of the solar current sheet as a cause of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1979-01-01

    It is suggested that the solar current sheet, extending from a coronal streamer, develops a large-scale radial deformation, at times with a very steep gradient at the earth's distance. The associated magnetic field lines (namely, the interplanetary magnetic field (IMF) lines) are expected to have also a large gradient in the vicinity of the current sheet. It is also suggested that some of the major geomagnetic storms occur when the earth is located in the region where IMF field lines have a large dip angle with respect to the ecliptic plane for an extended period (6-48 h), as a result of a steep radial deformation of the current sheet.

  11. Soft-sediment deformation structures in Cambrian Series 2 tidal deposits (NW Estonia): implications for identifying endogenic triggering mechanisms in ancient sedimentary record

    NASA Astrophysics Data System (ADS)

    Põldsaar, Kairi

    2015-04-01

    Soft-sediment deformation structures (SSDS) are documented in several horizons within silt- and sandstones of the Cambrian Series 2 (Dominopolian Stage) Tiskre Formation, and some in the below-deposited argillaceous deposits of the Lükati Formation (northern part of the Baltoscandian Palaeobasin, NW Estonia). The aim of this study was to map, describe, and analyze these deformation features, discuss their deformation mechanism and possible triggers. Load structures (simple load casts, pillows, flame structures, convoluted lamination) with varying shapes and sizes occur in the Tiskre Fm in sedimentary interfaces within medium-bedded peritidal rhythmites (siltstone-argillaceous material) as well as within up to 3 m thick slightly seaward inclined stacked sandstone sequences. Homogenized beds, dish-and-pillar structures, and severely deformed bedding are also found within these stacked units and within a large tidal runoff channel infill. Autoclastic breccias and water-escape channels are rare and occur only in small-scale -- always related to thin, horizontal tidal laminae. Profound sedimentary dykes, sand volcanoes, and thrust faults, which are often related to earthquake triggered soft sediment deformation, were not observed within the studied intervals. Deformation horizon or horizons with large flat-topped pillows often with elongated morphologies occur at or near the boundary between the Tiskre and Lükati formations. Deformation mechanisms identified in this study for the various deformation types are gravitationally unstable reversed density gradient (especially in case of load features that are related to profound sedimentary interfaces) and lateral shear stress due to sediment current drag (in case of deformation structures that not related to loading at any apparent sedimentary interface). Synsedimentary liquefaction was identified as the primary driving force in most of the observed deformation horizons. Clay thixotropy may have contributed in the formation of large sandstone pillows within the Tiskre-Lükati boundary interval at some localities. It is discussed here that the formation of the observed SSDS is genetically related to the restless dynamics of the storm-influenced open marine tidal depositional environment. The most obvious causes of deformation were rapid-deposition, shear and slumping caused by tidal surges, and storm-wave loading.

  12. Timing and Magnitude of Upper Crustal Shortening in the Gonghe Basin Region of the Northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Craddock, W. H.; Kirby, E.; Harkins, N.; Zhang, H.

    2008-12-01

    Characterizing the space-time patterns of the growth of high topography in Asia is an important step toward a deeper understanding of the mechanics of intracontinental deformation and its influence on global climate. In northeastern Tibet, there is emerging evidence that a number of ranges around the margins of the plateau experienced a pulse of deformation in the Late Miocene (ca. 12-8 Ma). It remains uncertain, however, whether this event was confined to the margins of the plateau, or whether interior regions deformed synchronously. Here we present a preliminary assessment of the timing and magnitude of upper crustal shortening along the margins of the Gonghe-Tongde basin complex. The Gonghe basin is located at the boundary between the high plateau of central Tibet and the southern flank of the Qilian Shan, and as such it is well-suited as a site to begin reconstructing patterns of plateau growth. The basin is overthrust by two regionally-extensive fault systems, the Qinghai Nan Shan (QNS) fault system on the north side and the Gonghe Nan Shan (GNS) fault system on the south side. Both fault systems are associated with deformation of Tertiary strata; variations in dip, sedimentary facies, and provenance are used to interpret the onset of growth along the margins of the Gonghe basin. A combination of the architecture of pre- and syntectonic basin strata, field measurements of fault dip, fault plane solutions, and topographic analysis of fold backlimbs for the GNS and QNS leads us to infer that the fault systems are a) trishear fault propagation style thrust faults and b) south vergent, with ~30 degree fault ramps soleing into a gently dipping decollement. Reconstructions of fold evolution suggest that the area has experienced > 5 km of upper crustal shortening in the late Cenozoic. A combination of magnetostratigraphy, biostratigraphy and cosmogenic burial ages provides preliminary age control. South of the GNS, a 250 m thick package of growth related strata are found to be 3.4 - 0.5 Ma. A 500 m thick exposure of growth strata on the north side of the range is also interpreted to be Plio-Quaternary in age. At present, however, we can only place a minimum bound on the onset of deformation of ca. 4-5 Ma. In light of a companion study interpreting the onset of deformation along the QNS at >= 5-7 Ma (Zhang H., in review), deformation of the Gonghe region appears to be slightly more recent than at the plateau margins. Historic seismicity and deformation of late-Quaternary alluvial surfaces on both fault systems indicate that these structures have remained active into the Pleistocene.

  13. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Pueyo, Laurent A. (Inventor); Norman, Colin A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  14. Localized geohazards in West Texas, captured by multi-temporal Sentinel-1A/B interferometry

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lu, Z.

    2017-12-01

    West Texas contains the Permian Basin and is particularly composed of three major geologic sedimentary basins: Delaware Basin, Central Basin Platform, and Midland Basin. Because the vast region was once covered by a shallow sea and had experienced long-lasting evaporation million years ago, the West Texas is underlain by a thick layer of water soluble rocks including the carbonate and evaporite rocks. In addition, the geologic composition provided abundant hydrocarbons in the depth of several kilometers, but the human activities exploiting the massive oil and gas from the subsurface made negative impacts on the stability of underground and ground surface. Most deformation and localized geohazards have been unnoticed by means of field measurements or remote sensing methods, because the West Texas is located in the low populated, remote region. The Sentinel-1A/B has continuously acquired the SAR imagery with a large swath of 250 km over the region, and its multi-temporal measurements can provide clues on what are really taking place on the ground surface, what are the causes to trigger the localized subsidence/uplift, and what should be done to prevent more severe disasters in the future. We have established an automated Sentinel-1A/B InSAR processing system on SMU supercomputer (Maneframe), its continuous monitoring will help us unveil the current status of deformation occurring in West Texas.

  15. Modern Geodynamics of South Yenisei Ridge to Result of the GPS/GLONASS Observations

    NASA Astrophysics Data System (ADS)

    Tatarinov, Viktor; Kaftan, Vladimir; Tatarinova, Tatiana; Manevich, Alexander

    2017-12-01

    Yenisei Ridge is located at the junction of major tectonic structures - Siberian Platform and West Siberian Plate. Its southern part is characterized by stable tectonic regime, the average speed of uplift according to geological data is 0.2-0.3 mm per year with the total amplitude of 400-500 m. However, the speed of modern movements of the Earth’s crust is by more than an order of magnitude higher due to the temporary effect of large-scale geodynamic movements. The Yenisei river divides the area into two parts. The left bank is characterized by predominantly negative vertical movements and the right bank by positive ones. The major tectonic disturbances occur in the areas of the Muratovsky, Atamanovsky, Pravoberezhny and Bolshetelsky submeridional faults. It was investigated the dynamics of changes in the lengths of ΔL baselines for separate epochs of observations. In 2010-2013 the absolute values of ΔL were significantly lower than for the periods 2013-2014 and 2014-2015. For the entire observation period the average value of the differences of the line lengths is 3.8 mm. This suggests that in general the area experienced strain during the period 2010-2015. Maps of the Earth’s surface dilatation zones (deformation rate) showed that the maximum deformations were recorded in the area of Muratovsky and Atamanovsky faults located at the junction of Siberian Platform and West Siberian plate.

  16. Analysis of Layered Composite Plates Accounting for Large Deflections and Transverse Shear Strains.

    DTIC Science & Technology

    1981-05-01

    composite plates than isotropic plates. The classical thin- plate theory (CPT) assumes that normals to the midsurface before deformation remain straight...and normal to the midsurface after deformation, implying that thickness shear deformation effects are negligible. As a result, the natural

  17. Revealing the deformational anomalies based on GNSS data in relation to the preparation and stress release of large earthquakes

    NASA Astrophysics Data System (ADS)

    Kaftan, V. I.; Melnikov, A. Yu.

    2018-01-01

    The results of Global Navigational Satellite System (GNSS) observations in the regions of large earthquakes are analyzed. The characteristics of the Earth's surface deformations before, during, and after the earthquakes are considered. The obtained results demonstrate the presence of anomalous deformations close to the epicenters of the events. Statistical estimates of the anomalous strains and their relationship with measurement errors are obtained. Conclusions are drawn about the probable use of local GNSS networks to assess the risk of the occurrence of strong seismic events.

  18. Deformation of the Augustine Volcano, Alaska, 1992-2005, measured by ERS and ENVISAT SAR interferometry

    USGS Publications Warehouse

    Lee, Chang-Wook; Lu, Zhong; Kwoun, Oh-Ig; Won, Joong-Sun

    2008-01-01

    The Augustine Volcano is a conical-shaped, active stratovolcano located on an island of the same name in Cook Inlet, about 290 km southwest of Anchorage, Alaska. Augustine has experienced seven significant explosive eruptions - in 1812, 1883, 1908, 1935, 1963, 1976, 1986, and in January 2006. To measure the ground surface deformation of the Augustine Volcano before the 2006 eruption, we applied satellite radar interferometry using Synthetic Aperture Radar (SAR) images from three descending and three ascending satellite tracks acquired by European Remote Sensing Satellite (ERS) 1 and 2 and the Environment Satellite (ENVISAT). Multiple interferograms were stacked to reduce artifacts caused by atmospheric conditions, and we used a singular value decomposition method to retrieve the temporal deformation history from several points on the island. Interferograms during 1992 and 2005 show a subsidence of about 1-3 cm/year, caused by the contraction of pyroclastic flow deposits from the 1986 eruption. Subsidence has decreased exponentially with time. Multiple interferograms between 1992 and 2005 show no significant inflation around the volcano before the 2006 eruption. The lack of a pre-eruption deformation signal suggests that the deformation signal from 1992 to August 2005 must have been very small and may have been obscured by atmospheric delay artifacts. 

  19. Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper

    NASA Astrophysics Data System (ADS)

    Satheesh Kumar, S. S.; Raghu, T.

    2015-02-01

    Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.

  20. A coupled deformation-diffusion theory for fluid-saturated porous solids

    NASA Astrophysics Data System (ADS)

    Henann, David; Kamrin, Ken; Anand, Lallit

    2012-02-01

    Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.

  1. Dielectric elastomer membranes undergoing inhomogeneous deformation

    NASA Astrophysics Data System (ADS)

    He, Tianhu; Zhao, Xuanhe; Suo, Zhigang

    2009-10-01

    Dielectric elastomers are capable of large deformation subject to an electric voltage and are promising for use as actuators, sensors, and generators. Because of large deformation, nonlinear equations of states, and diverse modes of failure, modeling the process of electromechanical transduction has been challenging. This paper studies a membrane of a dielectric elastomer deformed into an out-of-plane axisymmetric shape, a configuration used in a family of commercial devices known as the universal muscle actuators. The kinematics of deformation and charging, together with thermodynamics, leads to equations that govern the state of equilibrium. Numerical results indicate that the field in the membrane can be very inhomogeneous, and that the membrane is susceptible to several modes of failure, including electrical breakdown, loss of tension, and rupture by stretch. Care is needed in the design to balance the requirements of averting various modes of failure while using the material efficiently.

  2. Deformation analysis of boron/aluminum specimens by moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, Daniel; Guo, Yifan; Czarnek, Robert

    1989-01-01

    Whole-field surface deformations were measured for two slotted tension specimens from multiply laminates, one with 0 deg fiber orientation in the surface ply and the other with 45 deg orientation. Macromechanical and micromechanical details were revealed using high-sensitivity moire interferometry. Although global deformations of all plies were essentially equal, numerous random or anomalous features were observed. Local deformations of adjacent 0 deg and 45 deg plies were very different, both near the slot and remote from it, requiring large interlaminar shear strains for continuity. Shear strains were concentrated in the aluminum matrix. For 45 deg plies, a major portion of the deformation was by shear; large plastic slip of matrix occurred at random locations in 45 deg plies, wherein groups of fibers slipped relative to other groups. Shear strains in the interior, between adjacent fibers, were larger than the measured surface strains.

  3. Influences of rolling method on deformation force in cold roll-beating forming process

    NASA Astrophysics Data System (ADS)

    Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan

    2018-03-01

    In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.

  4. High-Temperature Deformation Behavior of HCP Alloys -- An Internal Variable Approach

    DTIC Science & Technology

    2006-05-31

    successfully to characterize the high temperature deformation behavior of various metallic materials such as Al alloys, Pb-Sn hyper- eutectic alloy, and...implying dynamic recrystallization (DRX) and GBS as the major deformation mechanisms at 523 K and 10-4 /s. Large cavities are observed at the

  5. An efficient predictor-corrector-based dynamic mesh method for multi-block structured grid with extremely large deformation and its applications

    NASA Astrophysics Data System (ADS)

    Guo, Tongqing; Chen, Hao; Lu, Zhiliang

    2018-05-01

    Aiming at extremely large deformation, a novel predictor-corrector-based dynamic mesh method for multi-block structured grid is proposed. In this work, the dynamic mesh generation is completed in three steps. At first, some typical dynamic positions are selected and high-quality multi-block grids with the same topology are generated at those positions. Then, Lagrange interpolation method is adopted to predict the dynamic mesh at any dynamic position. Finally, a rapid elastic deforming technique is used to correct the small deviation between the interpolated geometric configuration and the actual instantaneous one. Compared with the traditional methods, the results demonstrate that the present method shows stronger deformation ability and higher dynamic mesh quality.

  6. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  7. The effect of pre-tectonic reaction and annealing extent on behaviour during subsequent deformation: Insights from paired shear zones in the lower crust of Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Piazolo, Sandra; Daczko, Nathan R.; Smith, James R.; Evans, Lynn

    2015-04-01

    The effect of pre-tectonic reaction and annealing extent on the rheology of lower crustal rocks during a subsequent deformation event was studied using field and detailed microstructural analyses combined with numerical simulations to examine. In the studied rocks (Pembroke granulite, South Island, New Zealand) granulite facies two-pyroxene-pargasite orthogneiss partially to completely reacted to garnet bearing granulite either side of felsic dykes. The metamorphic reaction not only changed the abundance of phases but also their shape and grain size distribution. The reaction is most advanced close to the dykes, whereas further away the reaction is incomplete. As a consequence, grain size and the abundance of the rheologically hard phase garnet decreases away from the felsic dykes. Aspect ratios of mafic clusters which may include garnet decrease from high in the host, to near equidimensional close to the dyke. Post-reaction deformation localized in those areas that experienced minor to moderate reaction extent producing two spaced "paired" shear zones within the garnet-bearing reaction zone at either side of the felsic dykes. Our study shows how rock flow properties are governed by the pre-deformation history of a rock in terms of reaction and coupled annealing extent. If the grain size is sufficiently reduced by metamorphic reaction, deformation localizes in the partially finer grained rock domains, where deformation dominantly occurs by grain size sensitive deformation flow. Even if the reaction produces a nominally stronger phase (e.g. garnet) than the reactants, a local switch in dominant deformation behaviour from a grain size insensitive to a grain size sensitive in reaction induced fine-grained portions of the rock may occur and result in significant strain localization.

  8. Results of a bone splint technique for the treatment of lower limb deformities in children with type I osteogenesis imperfecta

    PubMed Central

    Lin, Dasheng; Zhai, Wenliang; Lian, Kejian; Ding, Zhenqi

    2013-01-01

    Background: Children with osteogenesis imperfecta (OI) can suffer from frequent fractures and limb deformities, resulting in impaired ambulation. Osteopenia and thin cortices complicate orthopedic treatment in this group. This study evaluates the clinical results of a bone splint technique for the treatment of lower limb deformities in children with type I OI. The technique consists of internal plating combined with cortical strut allograft fixation. Materials and Methods: We prospectively followed nine children (five boys, four girls) with lower limb deformities due to type I OI, who had been treated with the bone splint technique (11 femurs, four tibias) between 2003 and 2006. The fracture healing time, deformity improvement, ambulation ability and complications were recorded to evaluate treatment effects. Results: At the time of surgery the average age in our study was 7.7 years (range 5-12 years). The average length of followup was 69 months (range 60-84 months). All patients had good fracture healing with an average healing time of 14 weeks (range 12-16 weeks) and none experienced further fractures, deformity, or nonunion. The fixation remained stable throughout the procedure in all cases, with no evidence of loosening or breakage of screws and the deformity and mobility significantly improved after surgery. Of the two children confined to bed before surgery, one was able to walk on crutches and the other needed a wheelchair. The other seven patients could walk without walking aids or support like crutches. Conclusions: These findings suggest that the bone splint technique provides good mechanical support and increases the bone mass. It is an effective treatment for children with OI and lower limb deformities. PMID:23960282

  9. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    PubMed Central

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal. PMID:25126601

  10. Brittle-viscous deformation of vein quartz under fluid-rich lower greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.

    2015-06-01

    We studied by Electron BackScatter Diffraction (EBSD) and optical microscopy a coarse-grained (ca. 0.5-6 mm) quartz vein embedded in a phyllonitic matrix to gain insights into the recrystallization mechanisms and the processes of strain localization in quartz deformed under lower greenschist facies conditions, broadly coincident with the brittle-viscous transition. The vein deformed during faulting along a phyllonitic thrust of Caledonian age within the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The phyllonite hosting the vein formed at the expense of a metabasaltic protolith through feldspar breakdown to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the quartz vein acted as a relatively rigid body. Viscous deformation in the vein was initially accommodated by quartz basal slip. Under the prevailing deformation conditions, however, dislocation glide- and possibly creep-accommodated deformation of quartz was inefficient, and this resulted in localized strain hardening. In response to the (1) hardening, (2) progressive and cyclic increase of the fluid pressure, and (3) increasing competence contrast between the vein and the weakly foliated host phyllonite, vein quartz crystals began to deform by brittle processes along specific, suitably oriented lattice planes, creating microgouges along microfractures. Nucleated new grains rapidly sealed these fractures as fluids penetrated the actively deforming system. The grains grew initially by solution precipitation and later by grain boundary migration. We suggest that the different initial orientation of the vein crystals led to strain accommodation by different mechanisms in the individual crystals, generating remarkably different microstructures. Crystals suitably oriented for basal slip, for example, accommodated strain mainly viscously and experienced only minor fracturing. Instead, crystals misoriented for basal slip hardened and deformed predominantly by domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms may vary through time in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.

  11. Female patients' and parents' assessment of deformity- and brace-related stress in the conservative treatment of adolescent idiopathic scoliosis.

    PubMed

    Misterska, Ewa; Glowacki, Maciej; Latuszewska, Joanna

    2012-06-15

    A cross-sectional analysis of parents' and patients' perceptions of deformity- and brace-related stress regarding conservative treatment of adolescent idiopathic scoliosis. The purpose of this study was to determine the agreement between patients' and parents' assessments of emotional stress and to compare these assessments with radiographical measurements of spinal deformity. Conservative treatment in patients with scoliosis may cause emotional stress. To our knowledge, no group has ever reported patient and parental estimation of stress related to wearing a brace and spinal deformity in girls with adolescent idiopathic scoliosis. Sixty-three pairs of parents and girls with adolescent idiopathic scoliosis treated with a Cheneau brace were separately asked to complete the Bad Sobberheim Stress Questionnaire-Deformity and the Bad Sobberheim Stress Questionnaire-Brace. The age range of the patients was from 10 to 17 years. Patients were assessed at a mean of 14.12 (SD, 10.99) months after the start of the conservative treatment. Patients thought that a moderate level of stress was connected with conservative treatment; however, the stress level, related to perceived trunk deformation, was low. From the parents' perspective, patients experienced a moderate level of stress during conservative treatment and related to spinal deformity. The study groups differ in their perception of stress levels due to body disfigurement but not during the conservative treatment. Parent-patient stress-level disparities were not related to body mass index, age of the patient, brace application, and radiographical measurements of spinal deformity. Patients and parents perceive the emotional stress related to brace treatment in the same way; however, parents overestimate the assessment of stress levels related to body deformity. From the perspective of patients and parents, brace wearing increased the level of stress induced by the deformity alone. Complete assessment of conservative treatment should include evaluation of emotional stress from the perspective of patients and parents.

  12. Tectonic History of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1993-01-01

    The topics covered include the following: patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus; aspects of modeling the tectonics of large volcanoes on the terrestrial planets; state of stress, faulting, and eruption characteristics of large volcanoes on Mars; origin and thermal evolution of Mars; geoid-to-topography ratios on Venus; a tectonic resurfacing model for Venus; the resurfacing controversy for Venus; and the deformation belts of Lavinia Planitia.

  13. A morphing-based scheme for large deformation analysis with stereo-DIC

    NASA Astrophysics Data System (ADS)

    Genovese, Katia; Sorgente, Donato

    2018-05-01

    A key step in the DIC-based image registration process is the definition of the initial guess for the non-linear optimization routine aimed at finding the parameters describing the pixel subset transformation. This initialization may result very challenging and possibly fail when dealing with pairs of largely deformed images such those obtained from two angled-views of not-flat objects or from the temporal undersampling of rapidly evolving phenomena. To address this problem, we developed a procedure that generates a sequence of intermediate synthetic images for gradually tracking the pixel subset transformation between the two extreme configurations. To this scope, a proper image warping function is defined over the entire image domain through the adoption of a robust feature-based algorithm followed by a NURBS-based interpolation scheme. This allows a fast and reliable estimation of the initial guess of the deformation parameters for the subsequent refinement stage of the DIC analysis. The proposed method is described step-by-step by illustrating the measurement of the large and heterogeneous deformation of a circular silicone membrane undergoing axisymmetric indentation. A comparative analysis of the results is carried out by taking as a benchmark a standard reference-updating approach. Finally, the morphing scheme is extended to the most general case of the correspondence search between two largely deformed textured 3D geometries. The feasibility of this latter approach is demonstrated on a very challenging case: the full-surface measurement of the severe deformation (> 150% strain) suffered by an aluminum sheet blank subjected to a pneumatic bulge test.

  14. Biophysical isolation and identification of circulating tumor cells.

    PubMed

    Che, James; Yu, Victor; Garon, Edward B; Goldman, Jonathan W; Di Carlo, Dino

    2017-04-11

    Isolation and enumeration of circulating tumor cells (CTCs) from blood is important for determining patient prognosis and monitoring treatment. Methods based on affinity to cell surface markers have been applied to both purify (via immunoseparation) and identify (via immunofluorescence) CTCs. However, variability of cell biomarker expression associated with tumor heterogeneity and evolution and cross-reactivity of antibody probes have long complicated CTC enrichment and immunostaining. Here, we report a truly label-free high-throughput microfluidic approach to isolate, enumerate, and characterize the biophysical properties of CTCs using an integrated microfluidic device. Vortex-mediated deformability cytometry (VDC) consists of an initial vortex region which enriches large CTCs, followed by release into a downstream hydrodynamic stretching region which deforms the cells. Visualization and quantification of cell deformation with a high-speed camera revealed populations of large (>15 μm diameter) and deformable (aspect ratio >1.2) CTCs from 16 stage IV lung cancer samples, that are clearly distinguished by increased deformability compared to contaminating blood cells and rare large cells isolated from healthy patients. The VDC technology demonstrated a comparable positive detection rate of putative CTCs above healthy baseline (93.8%) with respect to standard immunofluorescence (71.4%). Automation allows full enumeration of CTCs from a 10 mL vial of blood within <1 h after sample acquisition, compared with 4+ hours with standard approaches. Moreover, cells are released into any collection vessel for further downstream analysis. VDC shows potential for accurate CTC enumeration without labels and confirms the unique highly deformable biophysical properties of large CTCs circulating in blood.

  15. Scaling properties of the Arctic sea ice Deformation from Buoy Dispersion Analysis

    NASA Astrophysics Data System (ADS)

    Weiss, J.; Rampal, P.; Marsan, D.; Lindsay, R.; Stern, H.

    2007-12-01

    A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over time scales from 3 hours to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate -the Arctic sea ice cover- stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e. it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multi-scale fracturing/faulting processes.

  16. Scaling properties of sea ice deformation from buoy dispersion analysis

    NASA Astrophysics Data System (ADS)

    Rampal, P.; Weiss, J.; Marsan, D.; Lindsay, R.; Stern, H.

    2008-03-01

    A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over timescales from 3 h to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate (the Arctic sea ice cover) stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e., it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multiscale fracturing/faulting processes.

  17. Local Deformation Precursors of Large Earthquakes Derived from GNSS Observation Data

    NASA Astrophysics Data System (ADS)

    Kaftan, Vladimir; Melnikov, Andrey

    2017-12-01

    Research on deformation precursors of earthquakes was of immediate interest from the middle to the end of the previous century. The repeated conventional geodetic measurements, such as precise levelling and linear-angular networks, were used for the study. Many examples of studies referenced to strong seismic events using conventional geodetic techniques are presented in [T. Rikitake, 1976]. One of the first case studies of geodetic earthquake precursors was done by Yu.A. Meshcheryakov [1968]. Rare repetitions, insufficient densities and locations of control geodetic networks made difficult predicting future places and times of earthquakes occurrences. Intensive development of Global Navigation Satellite Systems (GNSS) during the recent decades makes research more effective. The results of GNSS observations in areas of three large earthquakes (Napa M6.1, USA, 2014; El Mayor Cucapah M7.2, USA, 2010; and Parkfield M6.0, USA, 2004) are treated and presented in the paper. The characteristics of land surface deformation before, during, and after earthquakes have been obtained. The results prove the presence of anomalous deformations near their epicentres. The temporal character of dilatation and shear strain changes show existence of spatial heterogeneity of deformation of the Earth’s surface from months to years before the main shock close to it and at some distance from it. The revealed heterogeneities can be considered as deformation precursors of strong earthquakes. According to historical data and proper research values of critical deformations which are offered to be used for seismic danger scale creation based on continuous GNSS observations are received in a reference to the mentioned large earthquakes. It is shown that the approach has restrictions owing to uncertainty of the moment in the beginning of deformation accumulation and the place of expectation of another seismic event. Verification and clarification of the derived conclusions are proposed.

  18. The effect of strain rate on the evolution of microstructure in aluminium alloys.

    PubMed

    Leszczyńska-Madej, B; Richert, M

    2010-03-01

    Intensive deformations influence strongly microstructure. The very well-known phenomenon is the diminishing dimension of grain size by the severe plastic deformation (SPD) methods. The nanometric features of microstructure were discovered after the SPD deformation of various materials, such as aluminium alloys, iron and others. The observed changes depended on the kind of the deformed material, amount of deformation, strain rate, existence of different phases and stacking fault energy. The influence of the strain and strain rate on the microstructure is commonly investigated nowadays. It was found that the high strain rates activate deformation in shear bands, microbands and adiabatic shear bands. It was observed that bands were places of the nucleation of nanograins in the material deformed by SPD methods. In the work, the refinement of microstructure of the aluminium alloys influenced by the high strain rate was investigated. The samples were compressed by a specially designed hammer to the deformation of phi= 0/0.62 with the strain rate in the range of [Formula in text]. The highest reduction of microbands width with the increase of the strain was found in the AlCu4Zr alloy. The influence of the strain rate on the microstructure refinement indicated that the increase of the strain rate caused the reduction of the microbands width in the all investigated materials (Al99.5, AlCu4Zr, AlMg5, AlZn6Mg2.5CuZr). A characteristic feature of the microstructure of the compressed material was large density of the shear bands and microbands. It was found that the microbands show a large misorientation to the surrounds and, except Al99.5, the large density of dislocation.

  19. Motion of deformable drops through granular media and other confined geometries.

    PubMed

    Davis, Robert H; Zinchenko, Alexander Z

    2009-06-15

    This article features recent simulation studies of the flow of emulsions containing deformable drops through pores, constrictions, and granular media. The flow is assumed to be at low Reynolds number, so that viscous forces dominate, and boundary-integral methods are used to determine interfacial velocities and, hence, track the drop motion and shapes. A single drop in a flat channel migrates to the channel centerplane due to deformation-induced drift, which increases its steady-state velocity along the channel. A drop moving towards a smaller interparticle constriction squeezes through the constriction if the capillary number (ratio of viscous deforming forces and interfacial tension forces) is large enough, but it becomes trapped when the capillary number is below a critical value. These concepts then influence the flow of an emulsion through a granular medium, for which the drop phase moves faster than the suspending liquid at large capillary numbers but slower than the suspending liquid at smaller capillary numbers. The permeabilities of the granular medium to both phases increase with increasing capillary number, due to the reduced resistance to squeezing of easily deformed drops, though drop breakup must also be considered at large capillary numbers.

  20. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borra, E. F., E-mail: borra@phy.ulaval.ca

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror usesmore » a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.« less

  1. Verification of the FBR fuel bundle-duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo

    2014-09-01

    The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.

  2. Coal Mine Roadway Stability in Soft Rock: A Case Study

    NASA Astrophysics Data System (ADS)

    Shen, Baotang

    2014-11-01

    Roadway instability has always been a major concern in deep underground coal mines where the surrounding rock strata and coal seams are weak and the in situ stresses are high. Under the high overburden and tectonic stresses, roadways could collapse or experience excessive deformation, which not only endangers mining personnel but could also reduce the functionality of the roadway and halt production. This paper describes a case study on the stability of roadways in an underground coal mine in Shanxi Province, China. The mine was using a longwall method to extract coal at a depth of approximately 350 m. Both the coal seam and surrounding rock strata were extremely weak and vulnerable to weathering. Large roadway deformation and severe roadway instabilities had been experienced in the past, hence, an investigation of the roadway failure mechanism and new support designs were needed. This study started with an in situ stress measurement programme to determine the stress orientation and magnitude in the mine. It was found that the major horizontal stress was more than twice the vertical stress in the East-West direction, perpendicular to the gateroads of the longwall panel. The high horizontal stresses and low strength of coal and surrounding rock strata were the main causes of roadway instabilities. Detailed numerical modeling was conducted to evaluate the roadway stability and deformation under different roof support scenarios. Based on the modeling results, a new roadway support design was proposed, which included an optimal cable/bolt arrangement, full length grouting, and high pre-tensioning of bolts and cables. It was expected the new design could reduce the roadway deformation by 50 %. A field experiment using the new support design was carried out by the mine in a 100 m long roadway section. Detailed extensometry and stress monitorings were conducted in the experimental roadway section as well as sections using the old support design. The experimental section produced a much better roadway profile than the previous roadway sections. The monitoring data indicated that the roadway deformation in the experimental section was at least 40-50 % less than the previous sections. This case study demonstrated that through careful investigation and optimal support design, roadway stability in soft rock conditions can be significantly improved.

  3. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland

    USGS Publications Warehouse

    Glaser, P.H.; Chanton, J.P.; Morin, P.; Rosenberry, D.O.; Siegel, D.I.; Ruud, O.; Chasar, L.I.; Reeve, A.S.

    2004-01-01

    Peatlands deform elastically during precipitation cycles by small (??3 cm) oscillations in surface elevation. In contrast, we used a Global Positioning System network to measure larger oscillations that exceeded 20 cm over periods of 4-12 hours during two seasonal droughts at a bog and fen site in northern Minnesota. The second summer drought also triggered 19 depressuring cycles in an overpressured stratum under the bog site. The synchronicity between the largest surface deformations and the depressuring cycles indicates that both phenomena are produced by the episodic release of large volumes of gas from deep semi-elastic compartments confined by dense wood layers. We calculate that the three largest surface deformations were associated with the release of 136 g CH4 m-2, which exceeds by an order of magnitude the annual average chamber fluxes measured at this site. Ebullition of gas from the deep peat may therefore be a large and previously unrecognized source of radiocarbon depleted methane emissions from northern peatlands. Copyright 2004 by the American Geophysical Union.

  4. Large-scale deformational systems in the South Polar Layered Deposits (Promethei Lingula, Mars): "Soft-sediment" and Deep-Seated Gravitational Slope Deformations Mechanisms

    NASA Astrophysics Data System (ADS)

    Guallini, Luca; Brozzetti, Francesco; Marinangeli, Lucia

    2012-08-01

    The present study is the first attempt at a detailed structural and kinematic analysis of large-scale deformational systems observed in the South Polar Layered Deposits (SPLDs) in the Promethei Lingula (PL) margins (Mars). By systematically collecting attitude data referable to previously unknown deformational structures and defining the cross-cut relationships of the structures, we reconstructed a deformational history consisting of two superimposed, well-defined stages. The first stage is dominated by large-scale strike-slip and transtensional faults arranged into conjugate systems and delimiting shear zones that show a wide range of subsidiary structures, including normal and reverse faults, drag folds, boudins, S-C tectonites and sub-horizontal interstratal shear planes marked by sygmoidal boudins. Other typical structures referable to this event are ductile folds (locally true convolute folds) and lobes (ball-and-pillow structures) affecting certain marker beds of the succession. We suggest that the structural assemblage might be the expression of a shallow soft-sediment tectonics that possibly occurred during warm periods of the South Pole climate. The second stage seems to affect the weaker and in certain cases pre-deformed stratigraphic levels of the SPLD succession. This stage is mainly characterized by extensional deformations caused by gravity. The consequence of the deformations is the nucleation of Deep-Seated Gravitational Slope Deformations (DSGSDs) marked by typical morphostructures, such as scarps, trenches and bulging basal contractant zones. These phenomena were never observed within an ice cap. According to terrestrial modeling, these slow collapses were caused by (1) the presence of detachment levels (i.e., subhorizontal bedding planes) along which the ice-sheet margins can slide and (2) the development of listric faults within the glacial mass, which merge with sub-horizontal shear planes in the subsurface. The presence of complex deformational systems in the SPLD necessarily implies that a large-scale dynamics of the ice-sheet occurred in the past. The relatively fast internal creep and basal/internal sliding, inferable from the structure assemblage, can be due to partial melting of the ice possibly caused by climatic changes in the Promethei Lingula region. In this manner, we believe that climate heating (which, according to the literature, is likely caused by orbital variations) softened some of the SPLD layers, triggering or accelerating the ice sheet's outward movement. The evidence of a marked disharmonic deformational style through the SPLD succession suggests the possibility of local periodic compositional variations in the sequence.

  5. Strategic Alliances: Making a Difference One Warfighter At a Time

    DTIC Science & Technology

    2011-03-12

    Prototype Integration Planning Machining / CNC / Metals Welding Assembly / Paint Integration •Field-Experienced Veterans •Component, Subsystems...Wiring Harness •CAD/CAM CNC Programming •Quick reaction of parts - CNC , Lathes, Mills, Water Jet/Laser Cutting Design •Mechanical, Electrical...DEFORMATION RESISTANCE WELDING • Tubular Structural welding, Light weight structures COMBINED PLASMA -MIG ARC WELDING • Faster than any other

  6. Effects of Structural Deformation and Tube Chirality on Electronic Conductance of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anantram, M. P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    A combination of large scale classical force-field (UFF), density functional theory (DFT), and tight-binding Green's function transport calculations is used to study the electronic properties of carbon nanotubes under the twist, bending, and atomic force microscope (AFM)-tip deformation. We found that in agreement with experiment a significant change in electronic conductance can be induced by AFM-tip deformation of metallic zigzag tubes and by twist deformation of armchair tubes. The effect is explained in terms of bandstructure change under deformation.

  7. Elasticity of entangled polymer loops: Olympic gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilgis, T.A.; Otto, M.

    1997-08-01

    In this Rapid Communication we present a scaling theory for the elasticity of olympic gels, i.e., gels where the elasticity is a consequence of topology only. It is shown that two deformation regimes exist. The first is the nonaffine deformation regime where the free energy scales linear with the deformation. In the large (affine) deformation regime the free energy is shown to scale as F{proportional_to}{lambda}{sup 5/2} where {lambda} is the deformation ratio. Thus a highly non-Hookian stress-strain relation is predicted. {copyright} {ital 1997} {ital The American Physical Society}

  8. Cyclic Stable-Unstable Slip Preserved along an Appalachian Fault

    NASA Astrophysics Data System (ADS)

    Wells, R. K.; Newman, J.; Holyoke, C. W., III; Wojtal, S. F.

    2017-12-01

    The inactive Copper Creek thrust, southern Appalachians, TN, preserves evidence suggesting cyclic aseismic and unstable slip. The Copper Creek thrust is a low-temperature (4-6 km burial depth) foreland thrust with an estimated net slip of 15-20 km. Immediately below the 2 cm thick calcite-shale fault zone, the footwall is composed of shale with cross-cutting calcite veins and is separated from the fault zone by a 300 µm thick layered calcite vein. Optical and electron microscopy indicates that this complex vein layer experienced grain size reduction by plasticity-induced fracturing followed by aseismic diffusion creep. The fault zone calcite exhibits interpenetrating grain boundaries and four-grain junctions suggesting diffusion creep, but also contains nanoscale grains (7 nm), vesicular calcite, and partially-coated clasts indicating unstable, possibly seismic, slip. Well-preserved clasts of deformed calcite vein layer material within the fault zone indicate repeated cycle(s) of aseismic diffusion creep. In addition, nanoscale calcite grains, 30 nm, with straight grain boundaries that form triple junctions, may represent earlier nanoscale grains formed during unstable slip that have experienced grain growth during periods of aseismic creep. Based on the spatial and temporal relations of these preserved microstructures, we propose a sequence of deformation processes consistent with cyclic episodes of unstable slip separated by intervals of aseismic creep. Formation of calcite-filled veins is followed by grain size reduction in vein calcite by plasticity-induced fracturing and aseismic grain-size sensitive diffusion creep deformation in fine-grained calcite. During aseismic creep, the combination of grain growth, resulting in fault strengthening, and an increase in pore fluid pressure, reducing the effective fault strength, leads to new fractures and/or an unstable slip event. During unstable slip, nanograins and vesicular calcite form as a result of thermal decomposition and coated clasts form as a result of fluidization of the fault zone, and are then incorporated within ductilely deforming calcite during a new interval of aseismic creep.

  9. Impact of Clinically Relevant Elliptical Deformations on the Damage Patterns of Sagging and Stretched Leaflets in a Bioprosthetic Heart Valve.

    PubMed

    Sritharan, Deepa; Fathi, Parinaz; Weaver, Jason D; Retta, Stephen M; Wu, Changfu; Duraiswamy, Nandini

    2018-06-12

    After implantation of a transcatheter bioprosthetic heart valve its original circular circumference may become distorted, which can lead to changes in leaflet coaptation and leaflets that are stretched or sagging. This may lead to early structural deterioration of the valve as seen in some explanted transcatheter heart valves. Our in vitro study evaluates the effect of leaflet deformations seen in elliptical configurations on the damage patterns of the leaflets, with circular valve deformation as the control. Bovine pericardial tissue heart valves were subjected to accelerated wear testing under both circular (N = 2) and elliptical (N = 4) configurations. The elliptical configurations were created by placing the valve inside custom-made elliptical holders, which caused the leaflets to sag or stretch. The hydrodynamic performance of the valves was monitored and high resolution images were acquired to evaluate leaflet damage patterns over time. In the elliptically deformed valves, sagging leaflets experienced more damage from wear compared to stretched leaflets; the undistorted leaflets of the circular valves experienced the least leaflet damage. Free-edge thinning and tearing were the primary modes of damage in the sagging leaflets. Belly region thinning was seen in the undistorted and stretched leaflets. Leaflet and fabric tears at the commissures were seen in all valve configurations. Free-edge tearing and commissure tears were the leading cause of valve hydrodynamic incompetence. Our study shows that mechanical wear affects heart valve pericardial leaflets differently based on whether they are undistorted, stretched, or sagging in a valve configuration. Sagging leaflets are more likely to be subjected to free-edge tear than stretched or undistorted leaflets. Reducing leaflet stress at the free edge of non-circular valve configurations should be an important factor to consider in the design and/or deployment of transcatheter bioprosthetic heart valves to improve their long-term performance.

  10. Internal friction peaks observed in explosively deformed polycrystalline Mo, Nb, and Cu

    NASA Technical Reports Server (NTRS)

    Rieu, G. E.; Grimes, H. H.; Romain, J. P.; Defouquet, J.

    1974-01-01

    Explosive deformation (50 kbar range) induced, in Cu, Mo and Nb, internal friction peaks identical to those observed after large normal deformation. The variation of the peaks with pressure for Mo and Nb lead to an explanation of these processes in terms of double kink generation in screw and edge dislocations.

  11. A paleomagnetic investigation of vertical-axis rotations in coastal Sonora, Mexico: Evidence for distributed transtensional deformation during the Proto-Gulf shift from a subduction-dominated to transform-dominated plate boundary in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Herman, Scott William

    The history of late Miocene (Proto-Gulf) deformation on the Sonoran margin of the Gulf of California is key to understanding how Baja California was captured by the Pacific plate and how strain was partitioned during the Proto-Gulf period (12.5-6 Ma). The Sierra el Aguaje and Sierra Tinajas del Carmen are located in southwestern coastal Sonora, Mexico, and represent the eastern rifted margin of the central Gulf of California. The ranges are composed of volcanic units and their corresponding volcaniclastic units which are the result of persistent magmatic activity between 20 and 8.8 Ma, including three packages of basalt and andesite that make excellent paleomagnetic recorders. Based on cross cutting relations and geochronologic data for pre-, syn-, and post-tectonic volcanic units, most of the faulting and tilting in the Sierra El Aguaje is bracketed between 11.9 and 9.0 Ma, thus falling entirely within Proto-Gulf time. A paleomagnetic investigation into possible vertical axis rotations in the Sierra el Aguaje has uncovered evidence of clockwise rotations between ~13º and ~105º with possible translations. These results are consistent with existing field relations, which suggest the presence of large (>45°) vertical axis rotations in this region. This evidence includes: a) abrupt changes in the strike of tilted strata in different parts of the range, including large domains characterized by E-W strikes b) ubiquitous NE-SW striking faults with left lateral-normal oblique slip, that terminate against major NW-trending right lateral faults, and c) obliquity between the general strike of tilted strata and the strike of faults. These rotations occurred after 12 Ma and largely prior to 9 Ma, thus falling into the Proto-Gulf period. Such large-scale rotations lend credence to the theory that the area inboard of Baja California was experiencing transtension during the Proto-Gulf period, rather than the pure extension that would be the result of strain partitioning between Sonora and the Tosco-Abreojos fault offshore Baja California.

  12. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    NASA Technical Reports Server (NTRS)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  13. Comparison of femoropopliteal artery stents under axial and radial compression, axial tension, bending, and torsion deformations.

    PubMed

    Maleckis, Kaspars; Deegan, Paul; Poulson, William; Sievers, Cole; Desyatova, Anastasia; MacTaggart, Jason; Kamenskiy, Alexey

    2017-11-01

    High failure rates of Peripheral Arterial Disease (PAD) stenting appear to be associated with the inability of certain stent designs to accommodate severe biomechanical environment of the femoropopliteal artery (FPA) that bends, twists, and axially compresses during limb flexion. Twelve Nitinol stents (Absolute Pro, Supera, Lifestent, Innova, Zilver, Smart Control, Smart Flex, EverFlex, Viabahn, Tigris, Misago, and Complete SE) were quasi-statically tested under bench-top axial and radial compression, axial tension, bending, and torsional deformations. Stents were compared in terms of force-strain behavior, stiffness, and geometrical shape under each deformation mode. Tigris was the least stiff stent under axial compression (6.6N/m axial stiffness) and bending (0.1N/m) deformations, while Smart Control was the stiffest (575.3N/m and 105.4N/m, respectively). Under radial compression Complete SE was the stiffest (892.8N/m), while Smart Control had the lowest radial stiffness (211.0N/m). Viabahn and Supera had the lowest and highest torsional stiffness (2.2μNm/° and 959.2μNm/°), respectively. None of the 12 PAD stents demonstrated superior characteristics under all deformation modes and many experienced global buckling and diameter pinching. Though it is yet to be determined which of these deformation modes might have greater clinical impact, results of the current analysis may help guide development of new stents with improved mechanical characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The choice of a constitutive formulation for modeling limb flexion-induced deformations and stresses in the human femoropopliteal arteries of different ages.

    PubMed

    Desyatova, Anastasia; MacTaggart, Jason; Poulson, William; Deegan, Paul; Lomneth, Carol; Sandip, Anjali; Kamenskiy, Alexey

    2017-06-01

    Open and endovascular treatments for peripheral arterial disease are notorious for high failure rates. Severe mechanical deformations experienced by the femoropopliteal artery (FPA) during limb flexion and interactions between the artery and repair materials play important roles and may contribute to poor clinical outcomes. Computational modeling can help optimize FPA repair, but these simulations heavily depend on the choice of constitutive model describing the arterial behavior. In this study finite element model of the FPA in the standing (straight) and gardening (acutely bent) postures was built using computed tomography data, longitudinal pre-stretch and biaxially determined mechanical properties. Springs and dashpots were used to represent surrounding tissue forces associated with limb flexion-induced deformations. These forces were then used with age-specific longitudinal pre-stretch and mechanical properties to obtain deformed FPA configurations for seven age groups. Four commonly used invariant-based constitutive models were compared to determine the accuracy of capturing deformations and stresses in each age group. The four-fiber FPA model most accurately portrayed arterial behavior in all ages, but in subjects younger than 40 years, the performance of all constitutive formulations was similar. In older subjects, Demiray (Delfino) and classic two-fiber Holzapfel-Gasser-Ogden formulations were better than the Neo-Hookean model for predicting deformations due to limb flexion, but both significantly overestimated principal stresses compared to the FPA or Neo-Hookean models.

  15. Large-scale deformed QRPA calculations of the gamma-ray strength function based on a Gogny force

    NASA Astrophysics Data System (ADS)

    Martini, M.; Goriely, S.; Hilaire, S.; Péru, S.; Minato, F.

    2016-01-01

    The dipole excitations of nuclei play an important role in nuclear astrophysics processes in connection with the photoabsorption and the radiative neutron capture that take place in stellar environment. We present here the results of a large-scale axially-symmetric deformed QRPA calculation of the γ-ray strength function based on the finite-range Gogny force. The newly determined γ-ray strength is compared with experimental photoabsorption data for spherical as well as deformed nuclei. Predictions of γ-ray strength functions and Maxwellian-averaged neutron capture rates for Sn isotopes are also discussed.

  16. Topology guided demons registration with local rigidity preservation.

    PubMed

    Chaojie Zheng; Xiuying Wang; Dagan Feng

    2016-08-01

    Demons has been well recognized for its deformable registration capability. However, it might lead to misregistration due to the large spatial distance between the expected corresponding contents or erroneous diffusion tendency. In this paper, we propose a new energy function with topology energy, distance function and demons energy for deformable registration. The new energy function incorporates topological relationships to guide the correct diffusion and deformation, and contributes to local rigidity preservation. The distance function contributes to pulling the corresponding regions into accurate alignment despite of a possible large distance gap. The method was validated on synthetic, phantom and real medical image data.

  17. Warpage of Large Curved Composite Panels due to Manufacturing Anomalies

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr. (Technical Monitor); Ambur, Damadar (Technical Monitor); Ochinero, T. T.; Hyer, M. W.

    2002-01-01

    This paper discusses the influences of a misaligned layer, a resin-rich slightly thicker layer, and a small thermal gradient on the thermally-induced deformations of large curved composite panels during cooldown from their cure temperature. The deformations represent warpage of the panels due to anomalies that occur during layup, consolidation, and cure. Two-dimensional finite element analyses are used The deformations are categorized as to their impact on circumferential and twist warpage metrics. The results are intended to highlight the sensitivity of manufactured panel shape to the various unwanted effects that can occur during manufacturing.

  18. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  19. Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation

    NASA Astrophysics Data System (ADS)

    Barchiesi, Emilio; Ganzosch, Gregor; Liebold, Christian; Placidi, Luca; Grygoruk, Roman; Müller, Wolfgang H.

    2018-01-01

    Due to the latest advancements in 3D printing technology and rapid prototyping techniques, the production of materials with complex geometries has become more affordable than ever. Pantographic structures, because of their attractive features, both in dynamics and statics and both in elastic and inelastic deformation regimes, deserve to be thoroughly investigated with experimental and theoretical tools. Herein, experimental results relative to displacement-controlled large deformation shear loading tests of pantographic structures are reported. In particular, five differently sized samples are analyzed up to first rupture. Results show that the deformation behavior is strongly nonlinear, and the structures are capable of undergoing large elastic deformations without reaching complete failure. Finally, a cutting edge model is validated by means of these experimental results.

  20. Bistable electroactive polymers (BSEP): large-strain actuation of rigid polymers

    NASA Astrophysics Data System (ADS)

    Yu, Zhibin; Niu, Xiaofan; Brochu, Paul; Yuan, Wei; Li, Huafeng; Chen, Bin; Pei, Qibing

    2010-04-01

    Reversible, large-strain, bistable actuation has been a lasting puzzle in the pursuit of smart materials and structures. Conducting polymers are bistable, but the achievable strain is small. Large deformations have been achieved in dielectric elastomers at the expense of mechanical strength. The gel or gel-like soft polymers generally have elastic moduli around or less than 10 MPa. The deformed polymer relaxes to its original shape once the applied electric field is removed. We report new, bistable electroactive polymers (BSEP) that are capable of electrically actuated strains as high as 335% area strain. The BSEP could be useful for constructing rigid structures. The structures can support high mechanical loads, and be actuated to large-strain deformations. We will present one unique application of the BSEP for Braille displays that can be quickly refreshed and maintain the displayed contents without a bias voltage.

  1. A Novel Bioreactor System for the Assessment of Endothelialization on Deformable Surfaces

    PubMed Central

    Bachmann, Björn J.; Bernardi, Laura; Loosli, Christian; Marschewski, Julian; Perrini, Michela; Ehrbar, Martin; Ermanni, Paolo; Poulikakos, Dimos; Ferrari, Aldo; Mazza, Edoardo

    2016-01-01

    The generation of a living protective layer at the luminal surface of cardiovascular devices, composed of an autologous functional endothelium, represents the ideal solution to life-threatening, implant-related complications in cardiovascular patients. The initial evaluation of engineering strategies fostering endothelial cell adhesion and proliferation as well as the long-term tissue homeostasis requires in vitro testing in environmental model systems able to recapitulate the hemodynamic conditions experienced at the blood-to-device interface of implants as well as the substrate deformation. Here, we introduce the design and validation of a novel bioreactor system which enables the long-term conditioning of human endothelial cells interacting with artificial materials under dynamic combinations of flow-generated wall shear stress and wall deformation. The wall shear stress and wall deformation values obtained encompass both the physiological and supraphysiological range. They are determined through separate actuation systems which are controlled based on validated computational models. In addition, we demonstrate the good optical conductivity of the system permitting online monitoring of cell activities through live-cell imaging as well as standard biochemical post-processing. Altogether, the bioreactor system defines an unprecedented testing hub for potential strategies toward the endothelialization or re-endothelialization of target substrates. PMID:27941901

  2. [The minimally invasive Chevron and Akin osteotomy (MICA)].

    PubMed

    Altenberger, Sebastian; Kriegelstein, Stefanie; Gottschalk, Oliver; Dreyer, Florian; Mehlhorn, Alexander; Röser, Anke; Walther, Markus

    2018-04-18

    Percutaneous correction of a hallux valgus deformity with or without transfer metatarsalgia. Hallux valgus deformity up to 20° intermetatarsal angle, without instability of the first tarsometatarsal joint. Symptomatic arthritis of the first metatarsophalangeal joint, as well as instability of the first tarsometatarsal joint. Percutaneous performed osteotomy of the distal metatarsal 1 in combination with a medial closing wedge osteotomy of the proximal phalanx of the first toe. The use of a postoperative shoe with a rigid sole allows adapted weight bearing in the first 6 weeks. Active and passive mobilization can start immediately after surgery. The method is very effective to treat even severe deformities with or without metatarsalgia. The amount of correction is similar to open procedures. We recommend cadaver training to become familiar with this technique. Thus, complications such as nerve, vessel or tendon injuries can be avoided. The intraoperative radiation exposure remains significantly elevated even for experienced surgeons. In addition to the aesthetic benefits, there is less soft tissue traumatization compared to conventional open procedures. There is no need of bloodlessness. The minimally invasive Chevron and Akin osteotomy is a safe and powerful technique for the treatment of hallux valgus deformity.

  3. The effect of high tibial osteotomy on osteoarthritis of the knee : Clinical and histological observations.

    PubMed

    Koshino, T; Tsuchiya, K

    1979-03-01

    High tibial osteotomies were performed on 136 osteoarthritic knees for correction of varus deformity. Before osteotomy all patients experienced moderate or severe pain, and the knees showed lateral thrust on weight-bearing. The patients were followed up for one to five years. Marked relief of pain was obtained in 112 knees, and the patients were satisfied with the result of operation in 122. These painless knees showed no lateral thrust, and in the majority the deformity had been adequately corrected, with post-operative femoro-tibial angles (standing) ranging from 165° to 174°. Four of 28 knees with femoro-tibial angles of 175° to 179°, when measured one year after operation, showed recurrence of varus deformity three years after osteotomy. Preoperative ranges of knee motion were well maintained after osteotomy even when arthrotomy had also been undertaken. Intra-articular assessment in two patients, several years after operation, showed that the most degenerated portions of the articular surface were completely covered by a fibrocartilagenous layer, with no bare bone.High tibial osteotomy is most effective in osteoarthritic knees with varus deformity, when correction is made to a femoro-tibial angle (standing) of 170° (10° valgus).

  4. The effect of high tibial osteotomy on osteoarthritis of the knee. Clinical and histological observations.

    PubMed

    Koshino, T; Tsuchiya, K

    1979-01-01

    High tibial osteotomies were performed on 136 osteoarthritic knees for correction of varus deformity. Before osteotomy all patients experienced moderate or severe pain, and the knees showed lateral thrust on weight-bearing. The patients were followed up for one to five years. Marked relief of pain was obtained in 112 knees, and the patients were satisfied with the result of operation in 122. These painless knees showed no lateral thrust, and in the majority the deformity had been adequately corrected, with post-operative femoro-tibial angles (standing) ranging from 165 degrees to 174 degrees. Four of 28 knees with femoro-tibial angles of 175 degrees to 179 degrees, when measured one year after operation, showed recurrence of varus deformity three years after osteotomy. Preoperative ranges of knee motion were well maintained after osteotomy even when arthrotomy had also been undertaken. Intra-articular assessment in two patients, several years after operation, showed that the most degenerated portions of the articular surface were completely covered by a fibrocartilagenous layer, with no bare bone. High tibial osteotomy is most effective in osteoarthritic knees with varus deformity, when correction is made to a femoro-tibial angle (standing) of 170 degrees (10 degrees valgus).

  5. Shock-induced deformation features in terrestrial peridot and lunar dunite

    NASA Technical Reports Server (NTRS)

    Snee, L. W.; Ahrens, T. J.

    1975-01-01

    Single crystals of terrestrial olivine were experimentally shock-loaded along the 010 line to peak pressures 280, 330, and 440 kbar, and the resulting deformation features were compared to those in olivine from lunar dunite 72415. Recovered fragments were examined to determine the orientation of the planar fractures. With increasing pressure the percentage of pinacoids and prisms decreases, whereas the percentage of bipyramids increases. The complexity of the distribution of bipyramids also increases with increasing pressure. Other shock-induced deformation features, including varying degrees of recrystallization, are found to depend on pressure, as observed by others. Lunar dunite 72415 was examined and found to contain olivine with well-developed shock-deformation features. The relative proportion of pinacoid, prism, and bipyramid planar fractures measured for olivine from 72415 indicates that this rock appears to have undergone shock pressure in the range 330-440 kbar. If this dunite was brought to the surface of the moon as a result of excavation of an Imbrium event-sized impact crater, the shock-pressure range experienced by the sample and the results of cratering calculations suggest that it could have originated no deeper than 50-150 km.

  6. Extension of electronic speckle correlation interferometry to large deformations

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Sciammarella, Federico M.

    1998-07-01

    The process of fringe formation under simultaneous illumination in two orthogonal directions is analyzed. Procedures to extend the applicability of this technique to large deformation and high density of fringes are introduced. The proposed techniques are applied to a number of technical problems. Good agreement is obtained when the experimental results are compared with results obtained by other methods.

  7. Stability of surface plastic flow in large strain deformation of metals

    NASA Astrophysics Data System (ADS)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  8. Post Deformation at Room and Cryogenic Temperature Cooling Media on Severely Deformed 1050-Aluminum

    NASA Astrophysics Data System (ADS)

    Khorrami, M. Sarkari; Kazeminezhad, M.

    2018-03-01

    The annealed 1050-aluminum sheets were initially subjected to the severe plastic deformation through two passes of constrained groove pressing (CGP) process. The obtained specimens were post-deformed by friction stir processing at room and cryogenic temperature cooling media. The microstructure evolutions during mentioned processes in terms of grain structure, misorientation distribution, and grain orientation spread (GOS) were characterized using electron backscattered diffraction. The annealed sample contained a large number of "recrystallized" grains and relatively large fraction (78%) of high-angle grain boundaries (HAGBs). When CGP process was applied on the annealed specimen, the elongated grains with interior substructure were developed, which was responsible for the formation of 80% low-angle grain boundaries. The GOS map of the severely deformed specimen manifested the formation of 43% "distorted" and 51% "substructured" grains. The post deformation of severely deformed aluminum at room temperature led to the increase in the fraction of HAGBs from 20 to 60%. Also, it gave rise to the formation of "recrystallized" grains with the average size of 13 μm, which were coarser than the grains predicted by Zener-Hollomon parameter. This was attributed to the occurrence of appreciable grain growth during post deformation. In the case of post deformation at cryogenic temperature cooling medium, the grain size was decreased, which was in well agreement with the predicted grain size. The cumulative distribution of misorientation was the same for both processing routes. Mechanical properties characterizations in terms of nano-indentation and tensile tests revealed that the post deformation process led to the reduction in hardness, yield stress, and ultimate tensile strength of the severely deformed aluminum.

  9. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.

    PubMed

    Wang, Rongyang; Wei, Yikun; Wu, Chuanyu; Sun, Liang; Zheng, Wenguang

    2018-01-01

    The immersed boundary-lattice Boltzmann method (IB-LBM) was used to examine the motion and deformation of three elastic red blood cells (RBCs) during Poiseuille flow through constricted microchannels. The objective was to determine the effects of the degree of constriction and the Reynolds (Re) number of the flow on the physical characteristics of the RBCs. It was found that, with decreasing constriction ratio, the RBCs experienced greater forced deformation as they squeezed through the constriction area compared to at other parts of the microchannel. It was also observed that a longer time was required for the RBCs to squeeze through a narrower constriction. The RBCs subsequently regained a stable shape and gradually migrated toward the centerline of the flow beyond the constriction area. However, a sick RBC was observed to be incapable of passing through a constricted vessel with a constriction ratio ≤1/3 for Re numbers below 0.40.

  10. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM

    PubMed Central

    Sun, Liang; Zheng, Wenguang

    2018-01-01

    The immersed boundary-lattice Boltzmann method (IB-LBM) was used to examine the motion and deformation of three elastic red blood cells (RBCs) during Poiseuille flow through constricted microchannels. The objective was to determine the effects of the degree of constriction and the Reynolds (Re) number of the flow on the physical characteristics of the RBCs. It was found that, with decreasing constriction ratio, the RBCs experienced greater forced deformation as they squeezed through the constriction area compared to at other parts of the microchannel. It was also observed that a longer time was required for the RBCs to squeeze through a narrower constriction. The RBCs subsequently regained a stable shape and gradually migrated toward the centerline of the flow beyond the constriction area. However, a sick RBC was observed to be incapable of passing through a constricted vessel with a constriction ratio ≤1/3 for Re numbers below 0.40. PMID:29681999

  11. Large Deformation Characteristics and Reinforcement Measures for a Rock Pillar in the Houziyan Underground Powerhouse

    NASA Astrophysics Data System (ADS)

    Xiao, Xin-hong; Xiao, Pei-wei; Dai, Feng; Li, Hai-bo; Zhang, Xue-bin; Zhou, Jia-wen

    2018-02-01

    The underground powerhouse of the Houziyan Hydropower Station is under the conditions of high geo-stress and a low strength/stress ratio, which leads to significant rock deformation and failures, especially for rock pillars due to bidirectional unloading during the excavation process. Damages occurred in thinner rock pillars after excavation due to unloading and stress concentration, which will reduce the surrounding rock integrity and threaten the safety of the underground powerhouse. By using field investigations and multi-source monitoring data, the deformation and failure characteristics of a rock pillar are analyzed from the tempo-spatial distribution features. These results indicate that significant deformation occurred in the rock pillar when the powerhouse was excavated to the fourth layer, and the maximum displacement reached 107.57 mm, which occurred on the main transformer chamber upstream sidewall at an elevation of 1721.20 m. The rock deformation surrounding the rock pillar is closely related to the excavation process and has significant time-related characteristics. To control large deformation of the rock pillar, thru-anchor cables were used to reinforce the rock pillar to ensure the stability of the powerhouse. The rock deformation surrounding the rock pillar decreases gradually and forms a convergent trend after reinforcement measures are installed based on the analysis of the temporal characteristics and the rock pillar deformation rate.

  12. What Do Observations of Postseismic Deformation Tell us About the Rheology of the Lithoshpere?

    NASA Astrophysics Data System (ADS)

    Fialko, Y.

    2006-12-01

    Geodetic observations in epicentral areas of large shallow earthquakes reveal transient displacements that typically have the same sense as the coseismic ones, but are about an order of magnitude smaller. A number of different mechanisms has been proposed to explain the observed time-dependent deformation, including afterslip on a deep extension of the seismic rupture, viscous-like response of a substrate below the brittle-ductile transition (e.g., the lower crust or upper mantle), and re-distribution of pore fluids in the upper crust. Distinguishing the relative contributions of these relaxation mechanisms is important before one can make robust inferences about the effective rheology of the upper part of the continental lithosphere. Either the bulk visco-elastic relaxation or afterslip is required to explain large horizontal displacements observed in the aftermath of large strike-slip earthquakes. Both temporal and spatial signatures of postseismic deformation were used to demonstrate that simple linear Maxwell rheologies are not adequate. For non-linear (e.g., powerlaw) rheologies, the surface deformation field may be indistinguishable from that due to afterslip at the early stages of relaxation, when the deformation is localized in high stress areas on the downdip continuation of the earthquake fault. However, at later stages of relaxation visco-elastic models predict appreciable changes in the displacement pattern. In particular, vertical velocities may change sign after viscous flow in the ductile substrate becomes more diffuse. Thus afterslip and non-linear visco-elastic models can be in principle distinguished given a sufficiently long observation period. Fluid flow and poro-elastic effects are incapable of explaining the observed horizontal deformation, but may substantially contribute to vertical postseismic motions, further complicating a discrimination between afterslip and visco-elastic relaxation. I will present space geodetic measurements of postseismic deformation due to several large earthquakes in California and Asia, and discuss implications from these measurements for the crust and upper mantle rheology. The main conclusion is that the deformation patterns are not consistent between different events, suggesting either various contributions from different relaxation mechanisms, or significant variations in crustal rheologies.

  13. Analysis of temperature and pressure distribution of containers for nuclear waste material disposal in space

    NASA Technical Reports Server (NTRS)

    Vanbibber, L. E.; Parker, W. G.

    1973-01-01

    A computer program was adapted from a previous generation program to analyze the temperature and internal pressure response of a radioactive nuclear waste material disposal container following impact on the earth. This program considers component melting, LiH dissociation, temperature dependent properties and pressure and container stress response. Analyses were performed for 21 cases with variations in radioactive power level, container geometry, degree of deformation of the container, degree of burial and soil properties. Results indicated that the integrity of SS-316 containers could be maintained with partial burials of either underformed or deformed containers. Results indicated that completely buried waste containers, with power levels above 5 kW, experienced creep stress rupture failures in 4 to 12 days.

  14. Infrastructure stability surveillance with high resolution InSAR

    NASA Astrophysics Data System (ADS)

    Balz, Timo; Düring, Ralf

    2017-02-01

    The construction of new infrastructure in largely unknown and difficult environments, as it is necessary for the construction of the New Silk Road, can lead to a decreased stability along the construction site, leading to an increase in landslide risk and deformation caused by surface motion. This generally requires a thorough pre-analysis and consecutive surveillance of the deformation patterns to ensure the stability and safety of the infrastructure projects. Interferometric SAR (InSAR) and the derived techniques of multi-baseline InSAR are very powerful tools for a large area observation of surface deformation patterns. With InSAR and deriver techniques, the topographic height and the surface motion can be estimated for large areas, making it an ideal tool for supporting the planning, construction, and safety surveillance of new infrastructure elements in remote areas.

  15. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils - Large Deformation Analysis Via Finite Element Method

    NASA Astrophysics Data System (ADS)

    Konkol, Jakub; Bałachowski, Lech

    2017-03-01

    In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  16. Proliferation of twinning in hexagonal close-packed metals: Application to magnesium

    NASA Astrophysics Data System (ADS)

    Sun, D.; Ponga, M.; Bhattacharya, K.; Ortiz, M.

    2018-03-01

    Plastic deformation of metallic alloys usually takes place through slip, but occasionally involves twinning. In particular, twinning is important in hexagonal close packed (HCP) materials where the easy slip systems are insufficient to accommodate arbitrary deformations. While deformation by slip mechanisms is reasonably well understood, comparatively less is known about deformation by twinning. Indeed, the identification of relevant twinning modes remains an art. In this paper, we develop a framework combining a fundamental kinematic definition of twins with large-scale atomistic calculations to predict twinning modes of crystalline materials. We apply this framework to magnesium where there are two accepted twin modes, tension and compression, but a number of anomalous observations. Remarkably, our framework shows that there is a very large number of twinning modes that are important in magnesium. Thus, in contrast to the traditional view that plastic deformation is kinematically partitioned between a few modes, our results suggest that deformation in HCP materials is the result of an energetic and kinetic competition between numerous possibilities. Consequently, our findings suggest that the commonly used models of deformation need to be extended in order to take into account a broader and richer variety of twin modes, which, in turn, opens up new avenues for improving the mechanical properties.

  17. Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity

    NASA Astrophysics Data System (ADS)

    Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.

    2014-09-01

    As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.

  18. Emotional and behavioral reactions to facially deformed patients before and after craniofacial surgery.

    PubMed

    Barden, R C; Ford, M E; Wilhelm, W M; Rogers-Salyer, M; Salyer, K E

    1988-09-01

    The present experiment investigated whether observers' emotional and behavioral reactions to facially deformed patients could be substantially improved by surgical procedures conducted by well-trained specialists in an experienced multidisciplinary team. Also investigated was the hypothesis that emotional states mediate the effects of physical attractiveness and facial deformity on social interaction. Twenty patients between the ages of 3 months and 17 years were randomly selected from over 2000 patients' files of Kenneth E. Salyer of Dallas, Texas. Patient diagnoses included facial clefts, hypertelorism, Treacher Collins syndrome, and craniofacial dysostoses (Crouzon's and Apert's syndromes). Rigorously standardized photographs of patients taken before and after surgery were shown to 22 "naive" raters ranging in age from 18 to 54 years. Raters were asked to predict their emotional and behavioral responses to the patients. These ratings indicated that observers' behavioral reactions to facially deformed children and adolescents would be more positive following craniofacial surgery. Similarly, the ratings indicated that observers' emotional reactions to these patients would be more positive following surgery. The results are discussed in terms of current sociopsychologic theoretical models for the effects of attractiveness on social interaction. A new model is presented that implicates induced emotional states as a mediating process in explaining the effects of attractiveness and facial deformity on the quality of social interactions. Limitations of the current investigation and directions for future research are also discussed.

  19. NMR study on mechanisms of ionic polymer-metal composites deformation with water content

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Chen, Hualing; Wang, Yongquan; Luo, Bin; Chang, Longfei; Li, Bo; Chen, Luping

    2011-10-01

    Ionic polymer-metal composites (IPMCs) exhibit a large dynamic bending deformation under exterior electric field. The states and proportions of water within the IPMCs have great effect on the IPMCs deformation properties. This letter investigates the influence of the proportion changes of different types of water on the deformation, which may disclose the working mechanisms of the IPMCs. We give a deformation trend of IPMCs with the reduction of water content firstly. Then by the method of nuclear magnetic resonance, various water types (water bonded to sulfonates, loosely bound water and free water) of IPMCs and their proportions are investigated in the drying process which corresponds to their different deformation states. It is obtained that the deformation properties of IPMCs depend strongly on their water content and the excess free water is responsible for the relaxation deformation.

  20. Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust

    NASA Astrophysics Data System (ADS)

    Kirst, Frederik; Leiss, Bernd

    2017-01-01

    Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.

  1. Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR)

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Righini, Gaia; Sani, Federico; Luzi, Guido; Feyzullayev, Akper A.; Aliyev, Chingiz S.

    2014-12-01

    Mud volcanism is a process that leads to the extrusion of subsurface mud, fragments of country rocks, saline waters and gases. This mechanism is typically linked to hydrocarbon traps, and the extrusion of this material builds up a variety of conical edifices with a similar morphology to those of magmatic volcanoes, though smaller in size. The Differential Interferometry Synthetic Aperture Radar (DInSAR) technique has been used to investigate the ground deformation related to the activity of the mud volcanoes of Azerbaijan. The analysis of a set of wrapped and unwrapped interferograms, selected according to their coherence, allowed the detection of significant superficial deformation related to the activity of four mud volcanoes. The ground displacement patterns observed during the period spanning from October 2003 to November 2005 are dominated by uplift, which reach a cumulative value of up to 20 and 10 cm at the Ayaz-Akhtarma and Khara-Zira Island mud volcanoes, respectively. However, some sectors of the mud volcano edifices are affected by subsidence, which might correspond to deflation zones that coexist with the inflation zones characterized by the dominant uplift. Important deformation events, caused by fluid pressure and volume variations, have been observed both (1) in connection with main eruptive events in the form of pre-eruptive uplift, and (2) in the form of short-lived deformation pulses that interrupt a period of quiescence. Both deformation patterns show important similarities to those identified in some magmatic systems. The pre-eruptive uplift has been observed in many magmatic volcanoes as a consequence of magma intrusion or hydrothermal fluid injection. Moreover, discrete short-duration pulses of deformation are also experienced by magmatic volcanoes and are repeated over time as multiple inflation and deflation events.

  2. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  3. Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test

    NASA Astrophysics Data System (ADS)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane; Lavenant, Nicolas

    2015-12-01

    Fractured aquifers which bear valuable water resources are often difficult to characterize with classical hydrogeological tools due to their intrinsic heterogeneities. Here we implement ground surface deformation tools (tiltmetry and optical leveling) to monitor groundwater pressure changes induced by a classical hydraulic test at the Ploemeur observatory. By jointly analyzing complementary time constraining data (tilt) and spatially constraining data (vertical displacement), our results strongly suggest that the use of these surface deformation observations allows for estimating storativity and structural properties (dip, root depth, and lateral extension) of a large hydraulically active fracture, in good agreement with previous studies. Hence, we demonstrate that ground surface deformation is a useful addition to traditional hydrogeological techniques and opens possibilities for characterizing important large-scale properties of fractured aquifers with short-term well tests as a controlled forcing.

  4. Large Area Stress Distribution in Crystalline Materials Calculated from Lattice Deformation Identified by Electron Backscatter Diffraction

    NASA Astrophysics Data System (ADS)

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-08-01

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.

  5. Large area stress distribution in crystalline materials calculated from lattice deformation identified by electron backscatter diffraction.

    PubMed

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-08-05

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.

  6. Large Area Stress Distribution in Crystalline Materials Calculated from Lattice Deformation Identified by Electron Backscatter Diffraction

    PubMed Central

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-01-01

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data. PMID:25091314

  7. The post-buckling behavior of a beam constrained by springy walls

    NASA Astrophysics Data System (ADS)

    Katz, Shmuel; Givli, Sefi

    2015-05-01

    The post-buckling behavior of a beam subjected to lateral constraints is of practical importance in a variety of applications, such as stent procedures, filopodia growth in living cells, endoscopic examination of internal organs, and deep drilling. Even though in reality the constraining surfaces are often deformable, the literature has focused mainly on rigid and fixed constraints. In this paper, we make a first step to bridge this gap through a theoretical and experimental examination of the post-buckling behavior of a beam constrained by a fixed wall and a springy wall, i.e. one that moves laterally against a spring. The response exhibited by the proposed system is much richer compared to that of the fixed-wall system, and can be tuned by choosing the spring stiffness. Based on small-deformation analysis, we obtained closed-form analytical solutions and quantitative insights. The accuracy of these results was examined by comparison to large-deformation analysis. We concluded that the closed-form solution of the small-deformation analysis provides an excellent approximation, except in the highest attainable mode. There, the system exhibits non-intuitive behavior and non-monotonous force-displacement relations that can only be captured by large-deformation theories. Although closed-form solutions cannot be derived for the large-deformation analysis, we were able to reveal general properties of the solution. In the last part of the paper, we present experimental results that demonstrate various features obtained from the theoretical analysis.

  8. Earth Surface Deformation in the North China Plain Detected by Joint Analysis of GRACE and GPS Data

    PubMed Central

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C.K.; Li, Zhao

    2014-01-01

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1–4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1–2 mm/year and a correlation of 85.0%–98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements. PMID:25340454

  9. Earth surface deformation in the North China Plain detected by joint analysis of GRACE and GPS data.

    PubMed

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C K; Li, Zhao

    2014-10-22

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1-4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1-2 mm/year and a correlation of 85.0%-98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements.

  10. Influence of rotational speed, torque and operator proficiency on failure of Greater Taper files.

    PubMed

    Yared, G M; Dagher, F E Bou; Machtou, P; Kulkarni, G K

    2002-01-01

    The purpose of this study was to evaluate the influence of rotational speed. torque, and operator experience on the incidence of locking, deformation, and separation of instruments when using a specific Ni-Ti rotary instrumentation technique in extracted human teeth. Greater Taper Ni-Ti rotary instruments (GT) were used in a crown-down technique. In one group (rotational speed evaluation) of canals (n = 300) speeds of 150, 2 50 and 350 r.p.m. (subgroups 1, 2 and 3) were used. Each one of the subgroups included 100 canals. In a second group (evaluation of torque) (n = 300) torque was set at 20, 30 and 55 Ncm (subgroups 4, 5 and 6). In the third group (evaluation of operator proficiency) (n = 300 three operators with varying experience (subgroups 7, 8 and 9) were also compared. Each subgroup included the use of 10 sets of GT rotary instruments and 100 canals of extracted human molars. Each set of instruments was used in up to 10 canals and sterilized before each case. NaOCl 2.5% was used as an irrigant. The number of locked, deformed, and separated instruments was recorded for each group. Statistical analysis was carried out with pairwise comparisons using Fisher's exact tests for each of the failure type. When the influence of rotational speed was evaluated, instrument deformation and separation did not occur in subgroups 1 (150) r.p.m.), 2 (250 r.p.m.), and 3 (350) r.p.m.). Instrument locking occurred in subgroup 3 only. Statistical analysis demonstrated a significant difference between the 150 and 350 r.p.m. groups and between the 250 and 350 r.p.m. groups with respect to instrument locking. In torque evaluation, neither separation, deformation nor locking occurred during the use of the instruments, at 150 r.p.m., and at the different torque values. When the operators were compared, although two instruments were separated in canals prepared by the least experienced operator. Fisher's exact tests did not demonstrate a significant difference between the three subgroups. Instrument locking, deformation, and separation did not occur with the most experienced operator. None of the instruments separated with the trained operator. Preclinical training in the use of the GT rotary instruments when used with a crown-down technique at 150 r.p.m. was crucial in avoiding instrument separation and reducing the incidence of instrument locking and deformation.

  11. Dark solitons, modulation instability and breathers in a chain of weakly nonlinear oscillators with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.

    2018-01-01

    In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.

  12. Design of High Altitude Long Endurance UAV: Structural Analysis of Composite Wing using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kholish Rumayshah, Khodijah; Prayoga, Aditya; Mochammad Agoes Moelyadi, Ing., Dr.

    2018-04-01

    Research on a High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) is currently being conducted at Bandung Institute of Technology (ITB). Previously, the 1st generation of HALE UAV ITB used balsa wood for most of its structure. Flight test gave the result of broken wings due to extreme side-wind that causes large bending to its high aspect ratio wing. This paper conducted a study on designing the 2nd generation of HALE UAV ITB which used composite materials in order to substitute balsa wood at some critical parts of the wing’s structure. Finite element software ABAQUS/CAE is used to predict the stress and deformation that occurred. Tsai-Wu and Von-Mises failure criteria were applied to check whether the structure failed or not. The initial configuration gave the results that the structure experienced material failure. A second iteration was done by proposing a new configuration and it was proven safe against the load given.

  13. Innovative Solutions Shockproof Protection In Occupations Associated With An Increased Risk Of Injury

    NASA Astrophysics Data System (ADS)

    Denisov, O. V.; Buligin, Y. I.; Ponomarev, A. E.; Ponomareva, I. A.; Lebedeva, V. V.

    2017-01-01

    An important direction in the development of the shockproof devices for occupations associated with an increased risk of injury is reducing their overall size with the preservation the ability of energy absorption. The fixture protection of large joints, with the brace in the coils of an elastic-plastic material with shape memory effect, can effectively protect people from injury and can be used in the domain of occupational safety to reduce injuries by shocks or jolts. In innovative anti-shock device as elastic-plastic material applied equiatomic Titanium-Nickel alloy which has acceptable temperature phase transitions that is necessary to restore shape. As an experienced model first approximation was adopted shockproof device, having in its composition a bandage in coils of elastic-plastic material with shape memory effect and with electric contacts at the ends. This solution allows the punches to plastically deform with the absorption of the impact energy, and then recover the original shape, including at the expense of electric heating.

  14. Large-Deformation Displacement Transfer Functions for Shape Predictions of Highly Flexible Slender Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2013-01-01

    Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.

  15. Deformation and Breakup of Two Fluid Jets

    NASA Astrophysics Data System (ADS)

    Doshi, Pankaj; Ramkrishna, Doraiswamy; Basaran, Osman

    2001-11-01

    Two fluid jets consists of an inner liquid core surrounded by an annulus of outer immiscible liquid. The perturbation in the inner and outer interphase could cause capillary instability resulting in large deformation and breakup of the jet into drops. The jet breakup and drop size distribution is largely influenced by the properties of inner and outer fluid phases. Out of the various jet breakup phenomena one with most technological importance is the one in which inner interphase ruptures followed by the outer interphase resulting in the formation of compound drops. The compound drop formation is very useful for the microencapsulation technology, which find use in diverse pharmaceutical and chemical industry applications. In this paper we present a computational analysis of non-linear deformation and breakup of two fluid jets of Newtonian fluids. The analysis involves study of capillary instability driven deformation of a free jet with periodic boundary conditions. Although small amplitude deformation of two fluid jets have previously been studied, large amplitude deformation exhibiting interesting nonlinear dynamics and eventual breakup of the two fluid jets have been beyond the reach of previously used analytical and computational techniques. The computational difficulties result from the facts that (1) the inner and outer interphase can overturn during the motion and (2) pressure and normal stress are discontinuous at the inner interphase. We overcome both of these difficulties by using a new Galerkin/finite element algorithm that relies on a powerful elliptic mesh generation technique. The results to be presented includes jet deformation and breakup time as a function of inner and outer fluid phase properties. The highlight of the results will be prediction of drop size distribution which is of critical importance for microencapsulation technology.

  16. Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan

    2007-01-01

    Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion

  17. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock.

    PubMed

    Li, Qinghai; Shi, Weiping; Yang, Renshu

    2016-01-01

    The problem of roadway support in swelling soft rock was one of the challenging problems during mining. For most geological conditions, combinations of two or more supporting approaches could meet the requirements of most roadways; however, in extremely swelling soft rock, combined approaches even could not control large deformations. The purpose of this work was to probe the roadway deformation mechanisms in extremely swelling soft rock. Based on the main return air-way in a coal mine, deformation monitoring and geomechanical analysis were conducted, as well as plastic zone mechanical model was analysed. Results indicated that this soft rock was potentially very swelling. When the ground stress acted alone, the support strength needed in situ was not too large and combined supporting approaches could meet this requirement; however, when this potential released, the roadway would undergo permanent deformation. When the loose zone reached 3 m within surrounding rock, remote stress p ∞ and supporting stress P presented a linear relationship. Namely, the greater the swelling stress, the more difficult it would be in roadway supporting. So in this extremely swelling soft rock, a better way to control roadway deformation was to control the releasing of surrounding rock's swelling potential.

  18. A Maxwell elasto-brittle rheology for sea ice modelling

    NASA Astrophysics Data System (ADS)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe

    2016-07-01

    A new rheological model is developed that builds on an elasto-brittle (EB) framework used for sea ice and rock mechanics, with the intent of representing both the small elastic deformations associated with fracturing processes and the larger deformations occurring along the faults/leads once the material is highly damaged and fragmented. A viscous-like relaxation term is added to the linear-elastic constitutive law together with an effective viscosity that evolves according to the local level of damage of the material, like its elastic modulus. The coupling between the level of damage and both mechanical parameters is such that within an undamaged ice cover the viscosity is infinitely large and deformations are strictly elastic, while along highly damaged zones the elastic modulus vanishes and most of the stress is dissipated through permanent deformations. A healing mechanism is also introduced, counterbalancing the effects of damaging over large timescales. In this new model, named Maxwell-EB after the Maxwell rheology, the irreversible and reversible deformations are solved for simultaneously; hence drift velocities are defined naturally. First idealized simulations without advection show that the model reproduces the main characteristics of sea ice mechanics and deformation: strain localization, anisotropy, intermittency and associated scaling laws.

  19. Quantifying large scale deformation and aquifer properties over Central Valley, California using a combination of InSAR, GPS and hydraulic head level data

    NASA Astrophysics Data System (ADS)

    Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D. F.

    2016-12-01

    California's Central Valley is one of the largest productive agricultural regions in the world, which heavily relies on the underground water supply. As a result of pumping and recharge processes, the aquifer systems compact and expand, which is manifested in quasi-cyclic changes in the surface elevation and observations of hydraulic head levels. On the other hand, over last century, due to overdrafting of aquifer systems the volume of groundwater has substantially reduced, which causes irreversible decline in surface elevation. The aquifer storativity, characterizing the capacity of an aquifer to release groundwater, is affected by the excess vertical strain and permanent deformation. To quantify the capacity of the Central Valley aquifer systems to release fresh water, a valley-wide estimate of the storativity is required. Hence, we performed a joint analysis of large set of interferometric SAR and GPS data sets in conjunction with well data across the valley. In this context, we used L-band set of 420 ALOS-PALSAR SAR images. The data has been processed to generate 1604 SAR interferograms, using a pixel dimension of about 100 m x 100 m and imposing a maximum spatial and temporal baseline threshold of 2000 meter and 1500 days, respectively. In this study we rigorously integrate >500 permanent GPS stations and InSAR data to determine a time series of line of sight changes in a reference frame fixed to (CM) the center of mass of solid Earth. The result highlights an overall map of surface deformation over the entire Central valley region, due to interseismic strain accumulation along San Andreas fault system and compaction of aquifer systems. In the southern part of Central Valley i.e., San Joaquin Valley, which includes the San Joaquin and Tulare Basins, has experienced large changes in groundwater storage during the drought period. As a result, total land subsidence of 0.30-0.50 m has observed [Farr and Liu 2015], adjacent to creeping rate of 20-30 mm/year along nearby faults. The Tulare Basin has subsided at a rate of 20-100 mm/year. We have also measured a broader uplift of about 1-3 mm/year surrounding the southern San Joaquin Valley. However, the northern part of Central Valley i.e., Sacramento Valley has relatively lower subsidence rate of 10-20 mm/year due to abundance of surface water which cause less pumping in the region.

  20. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  1. Fiber-Reinforced Rocks Akin to Roman Concrete Help Explain Ground Deformation at Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Vanorio, Tiziana; Kanitpanyacharoen, Waruntorn

    2016-04-01

    The caldera of Campi Flegrei is one of the active hydrothermal systems of the Mediterranean region experiencing notable unrest episodes in a densely populated area. During the last crisis of 1982-1984, nearly 40,000 people were evacuated for almost two years from the main town of Pozzuoli, the Roman Puteoli, due to the large uplifts (~2 m over two years) and the persistent seismic activity. The evacuation severely hampered the economy and the social make-up of the community, which included the relocation of schools and commercial shops as well as the harbor being rendered useless for docking. Despite the large uplifts, the release of strain appears delayed. Seismicity begins and reaches a magnitude of 4.0 only upon relatively large uplifts (~ 70-80 cm) contrary to what is generally observed for calderas exhibiting much lower deformation levels. Over and above the specific mechanism causing the unrest and the lack of identification of a shallow magmatic reservoir (< 4 km) by seismic data, there is a core question of how the subsurface rocks of Campi Flegrei withstand a large strain and have high strength. We performed a series of direct measurements on deep well cores by combining high-resolution microstructural and mineralogical analyses with the elastic and mechanical properties of well cores from the deep wells drilled in the area right before the unrest of 1982-1984 - San Vito (SV1 and SV2) and Mofete (MF1, MF2, MF5). The rock physics analysis of the well cores provides evidence for the existence of two horizons, above and below the seismogenic area, underlying a natural, coupled process. The basement is a calc-silicate rock housing hydrothermal decarbonation reactions, which provide lime-rich fluids. The caprock above the seismogenic area has a pozzolanic composition and a fibril-rich matrix made of intertwining filaments of ettringite and tobemorite, resulting from lime-pozzolanic reactions. These findings provide evidence for a natural process reflecting that engineering the mortar of the Roman concrete. The formation of fibrous minerals by intertwining filaments confers shear and tensile strength to the caprock, contributing to its ductility and increased resistance to fracture. The importance of the findings reported in this study lies not only on the fibrous and compositionally nature of the caprock but also on its possible physicochemical deterioration. Given the P-T-XCO2 conditions regulating the decarbonation reactions, the influx of new fluids into the Campi Flegrei system lowers the temperature of the decarbonation reaction and dilutes the existing CO2, thus triggering additional CO2, methane, and steam to form. As these gases rise toward the surface, the natural cement layer halts them, leading to pore pressure increase and subsequent ground deformations.

  2. A Flexure-Guided Piezo Drill for Penetrating the Zona Pellucida of Mammalian Oocytes.

    PubMed

    Johnson, Wesley; Dai, Changsheng; Liu, Jun; Wang, Xian; Luu, Devin K; Zhang, Zhuoran; Ru, Changhai; Zhou, Chao; Tan, Min; Pu, Huayan; Xie, Shaorong; Peng, Yan; Luo, Jun; Sun, Yu

    2018-03-01

    Mammalian oocytes such as mouse oocytes have a highly elastic outer membrane, zona pellucida (ZP) that cannot be penetrated without significantly deforming the oocyte, even with a sharp micropipette. Piezo drill devices leverage lateral and axial vibration of the micropipette to accomplish ZP penetration with greatly reduced oocyte deformation. However, existing piezo drills all rely on a large lateral micropipette vibration amplitude ( 20 ) and a small axial vibration amplitude (0.1 ). The very large lateral vibration amplitude has been deemed to be necessary for ZP penetration although it also induces larger oocyte deformation and more oocyte damage. This paper reports on a new piezo drill device that uses a flexure guidance mechanism and a systematically designed pulse train with an appropriate base frequency. Both simulation and experimental results demonstrate that a small lateral vibration amplitude (e.g., 2 ) and an axial vibration amplitude as large as 1.2 were achieved. Besides achieving 100% effectiveness in the penetration of mouse oocytes (n = 45), the new piezo device during ZP penetration induced a small oocyte deformation of 3.4 versus larger than 10 using existing piezo drill devices.

  3. LiDAR monitoring of retrogressive processes on the steep rockslope of a large landslide in the Japanese Alps

    NASA Astrophysics Data System (ADS)

    Nishii, R.; Imaizumi, F.; Murakami, W.; Daimaru, H.; Miyamae, T.; Ogawa, Y.

    2012-04-01

    Akakuzure landslide in Japanese Alps is located in a steep mountain slope experienced deep-seated gravitational slope deformation. The landslide is 700 m high (1200-1900 m a.s.l.), 700 m wide and 400000 m2 in area with post-collapsed sediment ca 27 million m3 in volume. The steep rockslope (>40°) in the landslide shows anaclinal structure consisting of sandstone interbedding with shale. Large volume of sediment produced from the landslide has actively formed an alluvial fan on the outlet of the landslide. The volume and processes of the sediment production in the upper part (ca.40000 m^2) of the landslide were evaluated by geodetic surveys using techniques of airborne and ground-based LiDAR (Light Detection and Ranging). The airborne and ground-based LiDAR surveys were performed twice (2003 and 2007) and 3 times (2010-2011), respectively. Ground surface temperatures were monitored at 3 locations within the landslide from 2010 to 2011. Precipitation and air temperature have been also observed on a meteorological station near the study site. The average erosion depths in the observed rockslope reached 0.89 m (0.22 m/yr) during the first 4 years (2003-2007) and 0.55 m (0.18 m/yr) during the later 3 years (2007-2010). The erosion mainly occurred within the landslide rather than on the edge of the landslide (i.e. no significant retreat of the main scarp). Such large sediment production can be divided into three processes based on the depth of detachment. Deep detachment (>5 m in depth), significantly contributing to the retreat of the rockslope, happened to large blocks had located just above knick lines. During the observation period, at least five large blocks fell down, which appears to originate from sliding along the detachment zone steeper than 30°. Second, anaclinal bedding-parallel blocks (1-2 m in depth) fell down, which mainly occurred around sandstone layers. Finally, thin detachment (<1 m in depth) widely occurred on the rockslope. On one part of shale layers, the erosion depth reached 0.35 m from 2010 to 2011. In Akakuzure landside, numerous fractures of the bedrock, probably produced by gravitational deformation, play an important role to promote the rapid erosion, in addition to external triggers such as heavy rainfalls and frost actions.

  4. Quantifying Quaternary Deformation in the Eastern Cordillera of the Colombian Andes Using Cosmogenic Nuclide Geochronology and Fluvial Geomorphology

    NASA Astrophysics Data System (ADS)

    Dalman, E.; Taylor, M. H.; Veloza-fajardo, G.; Mora, A.

    2014-12-01

    Northwest South America is actively deforming through the interaction between the Nazca, South American, and Caribbean plates. Though the Colombian Andes are well studied, much uncertainty remains in the rate of Quaternary deformation along the east directed frontal thrust faults hundreds of kilometers in board from the subduction zones. The eastern foothills of the Eastern Cordillera (EC) preserve deformed landforms, allowing us to quantify incision rates. Using 10Be in-situ terrestrial cosmogenic nuclide (TCN) geochronology, we dated 2 deformed fluvial terraces in the hanging wall of the Guaicaramo thrust fault. From the 10Be concentration and terrace profile relative to local base level, we calculated incision rates. We present a reconstructed slip history of the Guaicaramo thrust fault and its Quaternary slip rate. Furthermore, to quantify the regional Quaternary deformation, we look at the fluvial response to tectonic uplift. Approximately 20 streams along the eastern foothills of the Eastern Cordillera (EC) were studied using a digital elevation model (DEM). From the DEM, longitudinal profiles were created and normalized channel steepness (Ksn) values calculated from plots of drainage area vs. slope. Knickpoints in the longitudinal profiles can record transient perturbations or differential uplift. Calculated Ksn values indicate that the EC is experiencing high rates of uplift, with the highest mean Ksn values occurring in the Cocuy region. Mean channel steepness values along strike of the foothills are related to increasing uplift rates from south to north. In contrast, we suggest that high channel steepness values in the south appear to be controlled by high rates of annual precipitation.

  5. The nature of a deformation zone and fault rock related to a recent rockburst at Western Deep Levels Gold Mine, Witwatersrand Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Stewart, R. A.; Reimold, W. U.; Charlesworth, E. G.; Ortlepp, W. D.

    2001-07-01

    In August 1998, a major deformation zone was exposed over several metres during mining operations on 87 Level (2463 m below surface) at Western Deep Levels Gold Mine, southwest of Johannesburg, providing a unique opportunity to study the products of a recent rockburst. This zone consists of three shear zones, with dip-slip displacements of up to 15 cm, that are oriented near-parallel to the advancing stope face. Jogs and a highly pulverised, cataclastic 'rock-flour' are developed on the displacement surfaces, and several sets of secondary extensional fractures occur on either side of the shear zones. A set of pinnate (feather) joints intersects the fault surfaces perpendicular to the slip vector. Microscopically, the shear zones consist of two pinnate joint sets that exhibit cataclastic joint fillings; quartz grains display intense intragranular fracturing. Secondary, intergranular extension fractures are associated with the pinnate joints. Extensional deformation is also the cause of the breccia fill of the pinnate joints. The initial deformation experienced by this zone is brittle and tensile, and is related to stresses induced by mining. This deformation has been masked by later changes in the stress field, which resulted in shearing. This deformation zone does not appear to be controlled by pre-existing geological features and, thus, represents a 'burst fracture', which is believed to be related to a seismic event of magnitude ML=2.1 recorded in July 1998, the epicentre of which was located to within 50 m of the study locality.

  6. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    NASA Astrophysics Data System (ADS)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than prototypical orthotropic variable stiffness composites. This design allows us to create composite materials that have high stiffness in the cold state below SMP T g (4-14GPa) and yet achieve large composite shear strains (5-20%) in the hot state (above SMP T g).

  7. The advancement of the high precision stress polishing

    NASA Astrophysics Data System (ADS)

    Li, Chaoqiang; Lei, Baiping; Han, Yu

    2016-10-01

    The stress polishing is a kind of large-diameter aspheric machining technology with high efficiency. This paper focuses on the principle, application in the processing of large aspheric mirror, and the domestic and foreign research status of stress polishing, aimed at the problem of insufficient precision of mirror surface deformation calculated by some traditional theories and the problem that the output precision and stability of the support device in stress polishing cannot meet the requirements. The improvement methods from these three aspects are put forward, the characterization method of mirror's elastic deformation in stress polishing, the deformation theory of influence function and the calculation of correction force, the design of actuator's mechanical structure. These improve the precision of stress polishing and provide theoretical basis for the further application of stress polishing in large-diameter aspheric machining.

  8. Evaluation of Strains and Thicknesses of Pipe Elbows on the Basis of Expressions Resulting from the Eudirective for the Case of Large and Small Deformations

    NASA Astrophysics Data System (ADS)

    Śloderbach, Z.

    2017-12-01

    The relations to calculate the maximum value of strains in processes of bending tubes on benders, in stretched layers of tubes, are presented in this work on the basis of the EU-Directive concerning production of pressure equipment. It has been shown that for large deformations that occur during bending of the pipes on knees, logarithmic strain measures (real) and relative strain measures give different values of strain but equal wall thicknesses in the bending zone. Logarithmic measures are frequently used in engineering practice and are valid for large and small deformations. Reverse expressions were also derived to calculate the required initial wall thickness of the tube to be bent, in order to obtain the desired wall thickness of the knee after bending.

  9. Sensing surface mechanical deformation using active probes driven by motor proteins

    PubMed Central

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-01-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937

  10. Anatomy of an ancient subduction interface at 40 km depth: Insights from P-T-t-d data, and geodynamic implications (Dent Blanche, Western Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Glodny, Johannes; Oncken, Onno; Chopin, Christian

    2014-05-01

    An exhumed metamorphic suture zone over 40 km long is exposed in the Dent Blanche Region of the Western Alps belt, along the Swiss-Italian border. In this region, the metasediment-bearing ophiolitic remnants of the Liguro-Piemontese ocean (Tsaté complex) are overthrusted by a continental, km-sized complex (Dent Blanche Tectonic System: DBTS) of Austro-Alpine affinity. The DBTS represents a strongly deformed composite terrane with independent tectonic slices of continental and oceanic origin. In order to better understand the nature and the geodynamic meaning of the shear zone at the base of the DBTS (Dent Blanche Thrust, DBT) we re-evaluated the pressure-temperature-time-deformation (P-T-t-d) history of these two units using modern thermobarometric tools, Rb/Sr deformation ages and field relationships. Our results show that the Tsaté complex is formed by a stack of km-thick calcschists-bearing tectonic slices, having experienced variable maximum burial temperatures of between 360°C and 490°C at depths of ca. 25-40 km, between 41 Ma and 37 Ma. The Arolla gneissic mylonites constituting the base of the DBTS experienced a continuous record of protracted high-pressure (12-14 kbar), top-to-NW D1 deformation at 450-500°C between 43 and 55 Ma. Some of these primary, peak metamorphic fabrics have been sheared (top-to-SE D2) and backfolded during exhumation and collisional overprint (20 km depth, 35-40 Ma) leading to the regional greenschist facies retrogression particularly prominent within Tsaté metasediments. The final juxtaposition of the DBTS with the Tsaté complex occurred between 350 and 500°C during this later, exhumation-related D2 event. Although some exhumation-related deformation partially reworked D1 primary features, we emphasize that the DBT can be viewed as a remnant of the Alpine early Eocene blueschist-facies subduction interface region. The DBT therefore constitutes the deeper equivalent of some shallower portions of the Alpine subduction interface exposed 200 km eastwards in eastern Switzerland (e.g. Bachmann et al., 2009). Our results shed light on deep (25-45 km) subduction zone structures and dynamics and are therefore of major interest for geophysical studies imaging the plate interface region in active subduction zones.

  11. Study of the deformation in Central Afar using InSAR NSBAS chain

    NASA Astrophysics Data System (ADS)

    Deprez, A.; Doubre, C.; Grandin, R.; Saad, I.; Masson, F.; Socquet, A.

    2013-12-01

    The Afar Depression (East Africa) connects all three continental plates of Arabia, Somalia and Nubia plates. For over 20 Ma, the divergent motion of these plates has led to the formation of large normal faults building tall scarps between the high plateaus and the depression, and the development of large basins and an incipient seafloor spreading along a series of active volcano-tectonic rift segments within the depression. The space-time evolution of the active surface deformation over the whole Afar region remains uncertain. Previous tectonic and geodetic studies confirm that a large part of the current deformation is concentrated along these segments. However, the amount of extension accommodated by other non-volcanic basins and normal faulting remains unclear, despite significant micro-seismic activity. Due to the active volcanism, large transient displacements related to dyking sequence, notably in the Manda Hararo rift (2005-2010), increase the difficulty to characterize the deformation field over simple time and space scales. In this study, we attempt to obtain a complete inventory of the deformation within the whole Afar Depression and to understand the associated phenomena, which occurred in this singular tectonic environment. We study in particular, the behavior of the structures activated during the post-dyking stage of the rift segments. For this purpose, we conduct a careful processing of a large set of SAR ENVISAT images over the 2004-2010 period, we also use previous InSAR results and GPS data from permanent stations and from campaigns conducted in 1999, 2003, 2010, 2012 within a GPS network particularly dense along the Asal-Ghoubbet segment. In one hand, in the western part of Afar, the far-field response of the 2005-2010 dyke sequence appears to be the dominant surface motion on the mean velocity field. In an other hand, more eastward across the Asal-Ghoubbet rift, strong gradients of deformation are observed. The time series analysis of both InSAR and GPS data allow us to (1) point out the role of volcano activity on the localization of the extensive deformation within these rifts, (2) describe the temporal evolution of the mostly aseismic fault slips, and eventually (3) characterize the behavior of the crust after the dyking events in relation to visco-elastic relaxation. Moreover, we analyze several interesting small patches of localized deformation revealing transient displacements by combining time series results and seismic data collected by the Arta Geophysical Observatory in Djibouti. In particular, a specific clear deformation pattern on the northern margin of the Tadjoura Bay could be associated with a seismic swarm, probably resulting from the occurrence of an offshore dyking event sequence along the immerged Tadjoura rift segment.

  12. Deformation of leaky-dielectric fluid globules under strong electric fields: Boundary layers and jets at large Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Frankel, Itzchak; Yariv, Ehud

    2013-11-01

    In Taylor's theory of electrohydrodynamic drop deformation (Proc. R. Soc. Lond. A, vol. 291, 1966, pp. 159-166), inertia is neglected at the outset, resulting in fluid velocity that scales as the square of the applied-field magnitude. For large drops, with increasing field strength the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number investigation. Balancing viscous stresses and electrical shear forces in this limit reveals a different velocity scaling, with the 4/3-power of the applied-field magnitude. We focus here on the flow over a gas bubble. It is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. At leading order in the Capillary number, the bubble deforms due to (i) Maxwell stresses; (ii) the hydrodynamic boundary-layer pressure associated with centripetal acceleration; and (iii) the intense pressure distribution acting over the narrow equatorial deflection zone, appearing as a concentrated load. Remarkably, the unique flow topology and associated scalings allow to obtain a closed-form expression for this deformation through application of integral mass and momentum balances. On the bubble scale, the concentrated pressure load is manifested in the appearance of a non-smooth equatorial dimple.

  13. Thermocapillary-Induced Phase Separation with Coalescence

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2003-01-01

    Research has been undertaken on interactions of two or more deformable drops (or bubbles) in a viscous fluid and subject to a temperature, gravitational, or flow field. An asymptotic theory for nearly spherical drops shows that small deformations reduce the coalescence and phase separation rates. Boundary-integral simulations for large deformations show that bubbles experience alignment and enhanced coalescence, whereas more viscous drops may break as a result of hydrodynamic interactions. Experiments for buoyancy motion confirm these observations. Simulations of the sedimentation of many drops show clustering phenomena due to deformations, which lead to enhanced phase separation rates, and simulations of sheared emulsions show that deformations cause a reduction in the effective viscosity.

  14. Performance verification and environmental testing of a unimorph deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2017-11-01

    Concepts for future large space telescopes require an active optics system to mitigate aberrations caused by thermal deformation and gravitational release. Such a system would allow on-site correction of wave-front errors and ease the requirements for thermal and gravitational stability of the optical train. In the course of the ESA project "Development of Adaptive Deformable Mirrors for Space Instruments" we have developed a unimorph deformable mirror designed to correct for low-order aberrations and dedicated to be used in space environment. We briefly report on design and manufacturing of the deformable mirror and present results from performance verifications and environmental testing.

  15. Improved initial guess with semi-subpixel level accuracy in digital image correlation by feature-based method

    NASA Astrophysics Data System (ADS)

    Zhang, Yunlu; Yan, Lei; Liou, Frank

    2018-05-01

    The quality initial guess of deformation parameters in digital image correlation (DIC) has a serious impact on convergence, robustness, and efficiency of the following subpixel level searching stage. In this work, an improved feature-based initial guess (FB-IG) scheme is presented to provide initial guess for points of interest (POIs) inside a large region. Oriented FAST and Rotated BRIEF (ORB) features are semi-uniformly extracted from the region of interest (ROI) and matched to provide initial deformation information. False matched pairs are eliminated by the novel feature guided Gaussian mixture model (FG-GMM) point set registration algorithm, and nonuniform deformation parameters of the versatile reproducing kernel Hilbert space (RKHS) function are calculated simultaneously. Validations on simulated images and real-world mini tensile test verify that this scheme can robustly and accurately compute initial guesses with semi-subpixel level accuracy in cases with small or large translation, deformation, or rotation.

  16. Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials

    PubMed Central

    Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek

    2016-01-01

    A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties. PMID:27694856

  17. Structural evolution of the Semail Ophiolite metamorphic sole, Wadi Hawasina and Northern Jebel Nakhl Culmination, Oman

    NASA Astrophysics Data System (ADS)

    Hurtado, C.; Bailey, C.; Visokay, L.; Scharf, A.

    2017-12-01

    The Semail ophiolite is the world's largest and best-exposed ophiolite sequence, however the processes associated with both oceanic detachment and later emplacement onto the Arabian continental margin remain enigmatic. This study examines the upper mantle section of the ophiolite, its associated metamorphic sole, and the autochthonous strata beneath the ophiolite at two locations in northern Oman. Our purpose is to understand the structural history of ophiolite emplacement and evaluate the deformation kinematics of faulted and sheared rocks in the metamorphic sole. At Wadi Hawasina, the base of the ophiolite is defined by a 5- to 15-m thick zone of penetratively-serpentinized mylonitic peridotite. Kinematic indicators record top-to-the SW (reverse) sense-of-shear with a triclinic deformation asymmetry. An inverted metamorphic grade is preserved in the 300- to 500-m thick metamorphic sole that is thrust over deep-water sedimentary rocks of the Hawasina Group. The study site near Buwah, in the northern Jebel Nakhl culmination, contains a N-to-S progression of mantle peridotite, metamorphic sole, and underlying Jurassic carbonates. Liswanite crops out in NW-SE trending linear ridges in the peridotite. The metamorphic sole includes well-foliated quartzite, metachert, and amphibolite. Kinematic evidence indicates that the liswanite and a serpentinized mélange experienced top to-the north (normal) sense-of-shear. Two generations of E-W striking, N-dipping normal faults separate the autochthonous sequence from the metamorphic sole, and also cut out significant sections of the metamorphic sole. Fabric analysis reveals that the metamorphic sole experienced flattening strain (K<0.2) that accumulated during pure shear-dominated general shear (Wk<0.4). Normal faulting and extension at the Buwah site indicates that post-ophiolite deformation is significant in the Jebel Akhdar and Jebel Nakhl culminations.

  18. A closed form large deformation solution of plate bending with surface effects.

    PubMed

    Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen

    2017-01-04

    We study the effect of surface stress on the pure bending of a finite thickness plate under large deformation. The surface is assumed to be isotropic and its stress consists of a part that can be interpreted as a residual stress and a part that stiffens as the surface increases its area. Our results show that residual surface stress and surface stiffness can both increase the overall bending stiffness but through different mechanisms. For sufficiently large residual surface tension, we discover a new type of instability - the bending moment reaches a maximum at a critical curvature. Effects of surface stress on different stress components in the bulk of the plate are discussed and the possibility of self-bending due to asymmetry of the surface properties is also explored. The results of our calculations provide insights into surface stress effects in the large deformation regime and can be used as a test for implementation of finite element methods for surface elasticity.

  19. Chain dynamics and nanoparticle motion in attractive polymer nanocomposites subjected to large deformations.

    PubMed

    Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath; Narayanan, Suresh; Faraone, Antonio

    2017-11-08

    The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasi-elastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. In addition, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that the level of chain-chain entanglements is not significantly affected. The shear-induced changes in the interparticle bridging reflect the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.

  20. Chain dynamics and nanoparticle motion in attractive polymer nanocomposites subjected to large deformations

    DOE PAGES

    Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath; ...

    2017-09-28

    The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasielastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. Additionally, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that themore » level of chain-chain entanglements is not significantly affected. The shearinduced changes in the interparticle bridging reflects on the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.« less

  1. Chain dynamics and nanoparticle motion in attractive polymer nanocomposites subjected to large deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath

    The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasielastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. Additionally, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that themore » level of chain-chain entanglements is not significantly affected. The shearinduced changes in the interparticle bridging reflects on the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.« less

  2. Risk of thoracic injury from direct steering wheel impact in frontal crashes.

    PubMed

    Chen, Rong; Gabler, Hampton C

    2014-06-01

    The combination of airbag and seat belt is considered to be the most effective vehicle safety system. However, despite the widespread availability of airbags and a belt use rate of more than 85%, US drivers involved in crashes continue to be at risk of serious thoracic injury. The objective of this study was to determine the influence of steering wheel deformation on driver injury risk in frontal automobile crash. The analysis is based on cases extracted from the National Automotive Sampling System Crashworthiness Data System database for case years 1993 to 2011. The approach was to compare the adjusted odds of frontal crash injury experienced by drivers in vehicles with and without steering wheel deformation. Among frontal crash cases with belted drivers, observable steering wheel deformation occurred in less than 4% of all cases but accounted for 30% of belted drivers with serious (Abbreviated Injury Scale [AIS] score, 3+) thoracic injuries. Similarly, steering wheel deformation occurred in approximately 13% of unbelted drivers but accounted for 60% of unbelted drivers with serious thoracic injuries. Belted drivers in frontal crashes with steering wheel deformation were found to have two times greater odds of serious thoracic injury. Unbelted drivers were found to have four times greater odds of serious thoracic injury in crashes with steering wheel deformation. In frontal crashes, steering wheel deformation was more likely to occur in unbelted drivers than belted drivers, as well as higher severity crashes and with heavier drivers. The results of the present study show that airbag deployment and seat belt restraint do not completely eliminate the possibility of steering wheel contact. Even with the most advanced restraint systems, there remains an opportunity for further reduction in thoracic injury by continued enhancement to the seat belt and airbag systems. Furthermore, the results showed that steering wheel deformation is an indicator of potential serious thoracic injury and can be useful to prehospital personnel in improving the diagnosis of serious injuries. Prognostic study, level III.

  3. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes.

    PubMed

    Pritchard, Matthew E; Simons, Mark

    2002-07-11

    Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Stratovolcanoes tend to exhibit a complex relationship between deformation and eruptive behaviour. The characteristically long time spans between such eruptions requires a long time series of observations to determine whether deformation without an eruption is common at a given edifice. Such studies, however, are logistically difficult to carry out in most volcanic arcs, as these tend to be remote regions with large numbers of volcanoes (hundreds to even thousands). Here we present a satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc, a region formed by subduction of the Nazca oceanic plate beneath continental South America. Spanning the years 1992 to 2000, our survey reveals the background level of activity of about 900 volcanoes, 50 of which have been classified as potentially active. We find four centres of broad (tens of kilometres wide), roughly axisymmetric surface deformation. None of these centres are at volcanoes currently classified as potentially active, although two lie within about 10 km of volcanoes with known activity. Source depths inferred from the patterns of deformation lie between 5 and 17 km. In contrast to the four new sources found, we do not observe any deformation associated with recent eruptions of Lascar, Chile.

  4. Three-dimensional motion and deformation of a red blood cell in bifurcated microvessels

    NASA Astrophysics Data System (ADS)

    Ye, Ting; Peng, Lina; Li, Yu

    2018-02-01

    Microvessels are generally not simple straight tubes, but rather they continually bifurcate (namely, diverging bifurcation) and merge with other microvessels (namely, converging bifurcation). This paper presents a simulation study on the three-dimensional motion and deformation of a red blood cell (RBC) in a bifurcated microvessel with both diverging and converging bifurcations. The motion of the fluids inside and outside of the RBC is modeled by smooth dissipative particle dynamics. The RBC membrane is modeled as a triangular network, having the ability to not only resist the stretching and bending deformations, but also to conserve the RBC volume and surface area. The bifurcation configurations have been studied, including the bifurcated angle and the branch diameter, as well as the RBC properties, including the initial shape, shear modulus, and bending modulus. The simulation results show that the RBC deformation can be divided into five stages, when the RBC flows through a diverging-converging bifurcated microvessel. In these five stages, the RBCs have similar deformation trends but different deformation indices, subject to different bifurcation configurations or different RBC properties. If the shear modulus is large enough, the RBC membrane presents several folds; if the bending modulus is large enough, the RBC loses the symmetry completely with the long shape. These results are helpful in understanding the motion and deformation of healthy or unhealthy cells in blood microcirculation.

  5. A novel approach for evaluation of prostate deformation and associated dosimetric implications in IGRT of the prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayyas, Essa, E-mail: emayyas1@hfhs.org, E-mail: ortonc@comcast.net; Kim, Jinkoo; Kumar, Sanath

    2014-09-15

    Purpose: Prostate deformation is assumed to be a secondary correction and is typically ignored in the planning target volume (PTV) margin calculations. This assumption needs to be tested, especially when planning margins are reduced with daily image-guidance. In this study, deformation characteristics of the prostate and seminal vesicles were determined, and the dosimetric impact on treatment plans with different PTV margins was investigated. Methods: Ten prostate cancer patients were retrospectively selected for the study, each with three fiducial markers implanted in the prostate. Two hundred CBCT images were registered to respective planning CT images using a B-spline-based deformable image registrationmore » (DIR) software. A manual bony anatomy-based match was first applied based on the alignment of the pelvic bones and fiducial landmarks. DIR was then performed. For each registration, deformation vector fields (DVFs) of the prostate and seminal vesicles (SVs) were quantified using deformation-volume histograms. In addition, prostate rotation was evaluated and compared with prostate deformation. For a patient demonstrating small and large prostate deformations, target coverage degradation was analyzed in each of three treatment plans with PTV margins of 10 mm (6 mm at the prostate/rectum interface), as well as 5, and 3 mm uniformly. Results: Deformation of the prostate was most significant in the anterior direction. Maximum prostate deformation of greater than 10, 5, and 3 mm occurred in 1%, 17%, and 76% of the cases, respectively. Based on DVF-histograms, DVF magnitudes greater than 5 and 3 mm occurred in 2% and 27% of the cases, respectively. Deformation of the SVs was most significant in the posterior direction, and it was greater than 5 and 3 mm in 7.5% and 44.9% of the cases, respectively. Prostate deformation was found to be poorly correlated with rotation. Fifty percent of the cases showed rotation with negligible deformation and 7% of the cases showed significant deformation with minimal rotation (<3°). Average differences in the D{sub 95} dose to the prostate + SVs between the planning CT and CBCT images was 0.4% ± 0.5%, 3.0% ± 2.8%, and 6.6% ± 6.1%, respectively, for the plans with 10/6, 5, and 3 mm margins. For the case with both a large degree of prostate deformation (≈10% of the prostate volume) and rotation (≈8°), D{sub 95} was reduced by 0.5% ± 0.1%, 6.8% ± 0.6%, and 20.9% ± 1.6% for 10/6, 5, and 3 mm margin plans, respectively. For the case with large prostate deformation but negligible rotation (<1°), D{sub 95} was reduced by 0.4 ± 0.3, 3.9 ± 1.0, and 11.5 ± 2.5 for 10/6, 5, and 3 mm margin plans, respectively. Conclusions: Prostate deformation over a course of fractionated prostate radiotherapy may not be insignificant and may need to be accounted for in the planning margin design. A consequence of these results is that use of highly reduced planning margins must be viewed with caution.« less

  6. Hi-speed compact deformable mirror: status, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Rooms, F.; Camet, S.; Curis, J.-F.

    2010-02-01

    Membrane deformable mirrors based on magnetic actuators have been known for years. State-of-the-art deformable mirrors usually have large strokes but low bandwidth. Furthermore, this bandwidth decreases with the diameter. In this paper, we present the results of a new actuator principle based on magnetic forces allowing high bandwidth (up to a few kHz), very large stroke (>30μm) with a record pitch of 1.5mm. The benefits of this technology will be presented for three applications: astronomy, vision science and microscopy. The parameters of the mirrors have been tuned such that the inter-actuator stroke of the deformable (more than 2.0μm) in order to fit the atmosphere turbulence characteristics. In vision science, efforts have been made to correct both simultaneously the low and high order aberrations (more than 45μm of wavefront correction on astigmatism and focus). Finally, we will demonstrate how we have developed a deformable mirror able to correct spherical aberrations (microscopy). The last part of the article is devoted to give some perspectives about this technology.

  7. Biaxial deformation behaviour of poly-ether-ether-ketone

    NASA Astrophysics Data System (ADS)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  8. An experimental platform for real-time measurement of the deformation of nuclear fuel rod claddings submitted to thermal transients

    NASA Astrophysics Data System (ADS)

    Gallais, L.; Burla, R.; Martin, F.; Richaud, J. C.; Volle, G.; Pontillon, M.; Capdevila, H.; Pontillon, Y.

    2018-01-01

    We report on experimental development and qualification of a system developed to detect and quantify the deformations of the cladding surface of nuclear fuel pellet assemblies submitted to heat transient conditions. The system consists of an optical instrument, based on 2 wavelengths speckle interferometry, associated with an induction furnace and a model pellet assembly used to simulate the radial thermal gradient experienced by fuel pellets in pressurized water reactors. We describe the concept, implementation, and first results obtained with this system. We particularly demonstrate that the optical system is able to provide real time measurements of the cladding surface shape during the heat transients from ambient to high temperatures (up to a cladding surface temperature of 600 °C) with micrometric resolution.

  9. An experimental platform for real-time measurement of the deformation of nuclear fuel rod claddings submitted to thermal transients.

    PubMed

    Gallais, L; Burla, R; Martin, F; Richaud, J C; Volle, G; Pontillon, M; Capdevila, H; Pontillon, Y

    2018-01-01

    We report on experimental development and qualification of a system developed to detect and quantify the deformations of the cladding surface of nuclear fuel pellet assemblies submitted to heat transient conditions. The system consists of an optical instrument, based on 2 wavelengths speckle interferometry, associated with an induction furnace and a model pellet assembly used to simulate the radial thermal gradient experienced by fuel pellets in pressurized water reactors. We describe the concept, implementation, and first results obtained with this system. We particularly demonstrate that the optical system is able to provide real time measurements of the cladding surface shape during the heat transients from ambient to high temperatures (up to a cladding surface temperature of 600 °C) with micrometric resolution.

  10. Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

    PubMed Central

    Wei, Hsiang-Chun; Su, Guo-Dung John

    2012-01-01

    Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM) provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC) is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young's modulus and Poisson's ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens. PMID:23112648

  11. Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean

    NASA Astrophysics Data System (ADS)

    Likhanov, Igor I.; Régnier, Jean-Luc; Santosh, M.

    2018-04-01

    The tectonic evolution of the Siberian Cratonic margins offers important clues for global paleogeographic reconstructions, particularly with regard to the complex geological history of Central Asia. The Yenisey Ridge fold-and-thrust belt at the western margin of the Siberian Craton forms part of the Central Asian Orogenic Belt (CAOB) and is a key to understand the Precambrian tectonic evolution of the Siberian Craton and crustal growth in the CAOB, the world's largest Phanerozoic accretionary orogenic belt. Here we report for the first time, the occurrence of glaucophane schist relics in tectonites within the Yenisey shear zone which provides insights on Chilean-type convergent boundary. We present results from isotope geochronology (SHRIMP zircon analysis and mica 40Ar/39Ar dating), coupled with P-T calculations derived from conventional geothermobarometry and pseudosections in the system NCKFMASH that suggest two superimposed metamorphic events. During the first stage, glaucophane schists formed at around 640-620 Ma at P-T conditions of 8-10 kbar and 400-450 °C. In the second stage, the rocks experienced dynamic metamorphism (c. 600 Ma) at 11-15 kbar/550-640 °C. The differences in P-T parameters between weakly deformed rocks and intensely deformed tectonites and P-T paths suggest distinct tectonic processes. Geochemical features of the mafic tectonites suggest N-MORB and E-MORB affinity, and the zircon U-Pb ages suggest formation of the protoliths at 701.6 ± 8.4. The sequence of spreading, subduction and shear deformation identified in our study correlate with the early stages of development of the Paleo-Asian Ocean at the western margin of the Siberian Craton and supports the spatial proximity of Siberia and Laurentia at 700-600 Ma, as proposed for the Late Neoproterozoic paleogeographic reconstructions and as robustly constrained from large igneous province (LIP) record.

  12. Deformation of the Durom Acetabular Component and Its Impact on Tribology in a Cadaveric Model—A Simulator Study

    PubMed Central

    Gu, Yanqing; Wang, Qing; Cui, Weiding; Fan, Weimin

    2012-01-01

    Background Recent studies have shown that the acetabular component frequently becomes deformed during press-fit insertion. The aim of this study was to explore the deformation of the Durom cup after implantation and to clarify the impact of deformation on wear and ion release of the Durom large head metal-on-metal (MOM) total hips in simulators. Methods Six Durom cups impacted into reamed acetabula of fresh cadavers were used as the experimental group and another 6 size-paired intact Durom cups constituted the control group. All 12 Durom MOM total hips were put through a 3 million cycle (MC) wear test in simulators. Results The 6 cups in the experimental group were all deformed, with a mean deformation of 41.78±8.86 µm. The average volumetric wear rate in the experimental group and in the control group in the first million cycle was 6.65±0.29 mm3/MC and 0.89±0.04 mm3/MC (t = 48.43, p = 0.000). The ion levels of Cr and Co in the experimental group were also higher than those in the control group before 2.0 MC. However there was no difference in the ion levels between 2.0 and 3.0 MC. Conclusions This finding implies that the non-modular acetabular component of Durom total hip prosthesis is likely to become deformed during press-fit insertion, and that the deformation will result in increased volumetric wear and increased ion release. Clinical Relevance This study was determined to explore the deformation of the Durom cup after implantation and to clarify the impact of deformation on wear and ion release of the prosthesis. Deformation of the cup after implantation increases the wear of MOM bearings and the resulting ion levels. The clinical use of the Durom large head prosthesis should be with great care. PMID:23144694

  13. Deformation of the Durom acetabular component and its impact on tribology in a cadaveric model--a simulator study.

    PubMed

    Liu, Feng; Chen, Zhefeng; Gu, Yanqing; Wang, Qing; Cui, Weiding; Fan, Weimin

    2012-01-01

    Recent studies have shown that the acetabular component frequently becomes deformed during press-fit insertion. The aim of this study was to explore the deformation of the Durom cup after implantation and to clarify the impact of deformation on wear and ion release of the Durom large head metal-on-metal (MOM) total hips in simulators. Six Durom cups impacted into reamed acetabula of fresh cadavers were used as the experimental group and another 6 size-paired intact Durom cups constituted the control group. All 12 Durom MOM total hips were put through a 3 million cycle (MC) wear test in simulators. The 6 cups in the experimental group were all deformed, with a mean deformation of 41.78 ± 8.86 µm. The average volumetric wear rate in the experimental group and in the control group in the first million cycle was 6.65 ± 0.29 mm(3)/MC and 0.89 ± 0.04 mm(3)/MC (t = 48.43, p = 0.000). The ion levels of Cr and Co in the experimental group were also higher than those in the control group before 2.0 MC. However there was no difference in the ion levels between 2.0 and 3.0 MC. This finding implies that the non-modular acetabular component of Durom total hip prosthesis is likely to become deformed during press-fit insertion, and that the deformation will result in increased volumetric wear and increased ion release. This study was determined to explore the deformation of the Durom cup after implantation and to clarify the impact of deformation on wear and ion release of the prosthesis. Deformation of the cup after implantation increases the wear of MOM bearings and the resulting ion levels. The clinical use of the Durom large head prosthesis should be with great care.

  14. Inventory of anthropogenic surface deformation measured by InSAR in the western U.S./Mexico and possible impacts on GPS measurements

    NASA Astrophysics Data System (ADS)

    Semple, A.; Pritchard, M. E.; Taylor, H.

    2014-12-01

    The western US and Mexico are deforming at several spatial scales that can be measured by ground and satellite observations like GPS and Interferometric Synthetic Aperture Radar (InSAR). Many GPS stations have been installed throughout this area to monitor ground deformation caused by large scale tectonic processes; however, several studies have noted that the data recorded at a GPS station can be contaminated by local, non-tectonic ground deformation. In this study, we use InSAR to examine deformation from various sources in the western US and Mexico. We chose this method due to the spatially large study area and the availability and temporal coverage of SAR imagery. We use SAR images acquired by the satellites Envisat, ERS-1 and ERS-2 over a time period from 1992-2010 to create several time series. Data from the ALOS satellite between 2006-2011 are also used in some areas. We use these time series analysis along with previously published results to observe and catalogue various sources of surface deformation in the western US and Mexico - from groundwater pumping, geothermal activity, mining, hydrocarbon production, and other sources. We then use these results to identify GPS stations that have potentially been contaminated by non-tectonic deformation signals. We document more than 150 distinct regions of non-tectonic and likely anthropogenic deformation. We have located 82 GPS stations within 20km of the center of at least one of the non-tectonic deformation signals we have identified. It is likely that the data from these 82 GPS stations have been contaminated by local anthropogenic deformation. Some examples of previously unpublished non-tectonic deformation we have seen in this study include but are not limited to, subsidence due to groundwater extraction in Jesus Garcia, Mexico, both uplift and subsidence due to natural gas extraction at Jonah Field in Sublette County, WY, and uplift due to a water recharge project in Tonopah, AZ.

  15. SU-E-J-109: Accurate Contour Transfer Between Different Image Modalities Using a Hybrid Deformable Image Registration and Fuzzy Connected Image Segmentation Method.

    PubMed

    Yang, C; Paulson, E; Li, X

    2012-06-01

    To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.

  16. Sewage sludge pasteurization by gamma radiation: Financial viability case studies

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Kotler, Jiri

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1) Small volume sewage treatment plant experiencing high sludge disposal costs. 2) Large volume sewage treatment plant experiencing low sludge disposal costs. 3) Large volume sewage treatment plant experiencing high sludge disposal costs.

  17. In-vivo spinal cord deformation in flexion

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.

    1997-05-01

    Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.

  18. PICTURES (Pisagua/Iquique Crustal Tomography to Understand the Region of the Earthquake Source): seismic imaging of the source region of the April 1, 2014 Mw 8.2 earthquake offshore northern Chile

    NASA Astrophysics Data System (ADS)

    Trehu, A. M.

    2017-12-01

    The 2014 event partially filled a well-recognized seismic gap that had not experienced a large earthquake since a pair of devastating M9 events in 1868 and 1877. The rupture sequence was marked by an unusually long and distinct precursory period that was well recorded by onshore seismic and geodetic instruments of the Integrated Plate Boundary Observatory Chile (IPOC). The pattern of foreshock activity, which defined a "classic" Mogi donut, is correlated with a circular residual gravity high that surrounds the patch of greatest slip during the main shock. Aftershocks generally propagated to the south and stopped in a region of relatively low pre-earthquake coupling. The remaining nearly 300-km long seismic gap is correlated with a distinct forearc residual gravity high. The correlation between the pre-, syn- and post-earthquake deformation patterns and the residual gravity anomalies indicates that crustal structure affects the distribution of seismic and aseismic deformation in response to plate convergence. Because the non-uniqueness inherent in modeling gravity data does not allow for a detailed geologic interpretation of the correlation between structure and slip, we conducted an ambitious seismic experiment using the R/V Marcus Langseth to acquire 5000 km of multichannel seismic seismic data using an 8-12.5-km long streamer and a 6600 cubic inch tuned air-gun array. The 45000 shots were also recorded on 70 ocean-bottom and 50 land-based seismometers. Shipboard analysis of the data indicates that the Moho of the Nazca plate is well imaged west of the trench, that deformation is distributed throughout the outer 10 km of the accretionary wedge as the rough topography of the Nazca plate is subducted, and that a reflection tentatively interpreted to be the plate boundary can be imaged continuously from the trench to the coast on at least one transect across the margin. Post-cruise data analysis is underway to process the MCS data using various techniques to determine along-strike continuity of plate boundary reflectivity and to use OBS and onshore large-aperture data to obtain high-resolution models of the crustal velocity structure of the subducting and overriding plates. The PICTURES Science Team incudes investigators in the US, Chile, Germany, France and the UK.

  19. Coating of large-sized optics for the instruments of observation

    NASA Astrophysics Data System (ADS)

    Mouricaud, Daniel

    2008-07-01

    SAGEM has developed a line of product specific to the large-sized parts. The means available make it possible today to coat substrates of dimensions going until 1m50. Current developments address coating of substrate up to 2m20. A specific focus has been held on the wavefront deformation due to the coating. Principle contributors of this deformation are introduced and analyzed as well as some experimental results.

  20. Field Investigation of a Roof Fall Accident and Large Roadway Deformation Under Geologically Complex Conditions in an Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Xue, Sheng; Jiang, Yaodong; Deng, Daixin; Shi, Suzhen; Zhang, Dengqiang

    2018-06-01

    An investigation was undertaken to study the characteristics of large roadway deformation and driving force of roof fall in a geologically complex zone at Huangyanhui underground coal mine, Shanxi Province, China, and to determine the main factors contributing to a roof fall accident that occurred in this mine. A series of field tests were conducted in the mine to study the geological structures, in situ stress, excavation-damaged zones of the roadway, roof-to-floor and sidewall convergences, roof separation, bolts loading and island coal pillar stress. The results of these tests have revealed that the driving force of the large roadway deformation and roof fall was not the activation of the karst collapsed pillars or concentration stress in island coal pillar, but high levels of horizontal tectonic stress and fault slip were induced by mining activities.

  1. Vibrations of beams and rods carrying a moving mass

    NASA Astrophysics Data System (ADS)

    Zhao, X. W.; van der Heijden, G. H. M.; Hu, Z. D.

    2016-05-01

    We study the vibration of slender one-dimensional elastic structures (beams, cables, wires, rods) under the effect of a moving mass or load. We first consider the classical small- deflection (Euler-Bernoulli) beam case, where we look at tip vibrations of a cantilever as a model for a barreled launch system. Then we develop a theory for large deformations based on Cosserat rod theory. We illustrate the effect of moving loads on large-deformation structures with a few cable and arch problems. Large deformations are found to have a resonance detuning effect on the cable. For the arch we find different failure modes depending on its depth: a shallow arch fails by in-plane collapse, while a deep arch fails by sideways flopping. In both cases the speed of the traversing load is found to have a stabilising effect on the structure, with failure suppressed entirely at sufficiently high speed.

  2. 3D displacement time series in the Afar rift zone computed from SAR phase and amplitude information

    NASA Astrophysics Data System (ADS)

    Casu, Francesco; Manconi, Andrea

    2013-04-01

    Large and rapid deformations, such as those caused by earthquakes, eruptions, and landslides cannot be fully measured by using standard DInSAR applications. Indeed, the phase information often degrades and some areas of the interferograms are affected by high fringe rates, leading to difficulties in the phase unwrapping, and/or to complete loss of coherence due to significant misregistration errors. This limitation can be overcome by exploiting the SAR image amplitude information instead of the phase, and by calculating the Pixel-Offset (PO) field SAR image pairs, for both range and azimuth directions. Moreover, it is possible to combine the PO results by following the same rationale of the SBAS technique, to finally retrieve the offset-based deformation time series. Such technique, named PO-SBAS, permits to retrieve the deformation field in areas affected by very large displacements at an accuracy that, for ENVISAT data, correspond to 30 cm and 15 cm for the range and azimuth, respectively [1]. Moreover, the combination of SBAS and PO-SBAS time series can help to better study and model deformation phenomena characterized by spatial and temporal heterogeneities [2]. The Dabbahu rift segment of the Afar depression has been active since 2005 when a 2.5 km3 dyke intrusion and hundreds of earthquakes marked the onset a rifting episode which continues to date. The ENVISAT satellite has repeatedly imaged the Afar depression since 2003, generating a large SAR archive. In this work, we study the Afar rift region deformations by using both the phase and amplitude information of several sets of SAR images acquired from ascending and descending ENVISAT tracks. We combined sets of small baseline interferograms through the SBAS algorithm, and we generate both ground deformation maps and time series along the satellite Line-Of-Sight (LOS). In areas where the deformation gradient causes loss of coherence, we retrieve the displacement field through the amplitude information. Furthermore, we could also retrieve the full 3D deformation field, by considering the North-South displacement component obtained from the azimuth PO information. The combination of SBAS and PO-SBAS information permits to better retrieve and constrain the full deformation field due to repeated intrusions, fault movements, as well as the magma movements from individual magma chambers. [1] Casu, F., A. Manconi, A. Pepe and R. Lanari, 2011. Deformation time-series generation in areas characterized by large displacement dynamics: the SAR amplitude Pixel-Offset SBAS technique, IEEE Transaction on Geosciences and Remote Sensing. [2] Manconi, A. and F. Casu, 2012. Joint analysis of displacement time series retrieved from SAR phase and amplitude: impact on the estimation of volcanic source parameters, Geophysical Research Letters, doi:10.1029/2012GL052202.

  3. Faulting at Thebes Gap, Mo. -Ill. : Implications for New Madrid tectonism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, R.W.; Schultz, A.P.

    1992-01-01

    Recent geologic mapping in the Thebes Gap area has identified numerous NNE- and NE-striking faults having a long-lived and complex structural history. The faults are located in an area of moderate recent seismicity at the northern margin of the Mississippi embayment, approximately 45 km north of the New Madrid seismic zone. Earliest deformation occurred along dextral strike-slip faults constrained as post-Devonian and pre-Cretaceous. Uplift and erosion of all Carboniferous strata suggest that this faulting is related to development of the Pascola arch (Ouachita orogeny). This early deformation is characterized by strongly faulted and folded Ordovician through Devonian rocks overlain inmore » places with angular unconformity by undeformed Cretaceous strata. Elsewhere, younger deformation involves Paleozoic, Cretaceous, Paleocene, and Eocene formations. These units have experienced both minor high-angle normal faulting and major, dextral strike-slip faulting. Quaternary-Tertiary Mounds Gravel is also involved in the latest episode of strike-slip deformation. Enechelon north-south folds, antithetic R[prime] shears, and drag folds indicate right-lateral motion. Characteristic positive and negative flower structures are commonly revealed in cross section. Right-stepping fault strands have produced pull-apart basins where Ordovician, Silurian, Devonian, Cretaceous, and Tertiary units are downdropped several hundreds of meters and occur in chaotic orientations. Similar fault orientations and kinematics, as well as recent seismicity and close proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.« less

  4. Clinical experience of repair of pectus excavatum and carinatum deformities.

    PubMed

    Oncel, Murat; Tezcan, Bekir; Akyol, Kazim Gurol; Dereli, Yüksel; Sunam, Güven Sadi

    2013-09-01

    We present the results of surgical correction of pectus excavatum (PE) and pectus carinatum (PC) deformities in adults, and also report a new method of sternal support used in surgery for PE deformities. We present the results of 77 patients between the ages of 10 and 29 years (mean 17) with PE (n = 46) or PC (n = 31) deformities undergoing corrective surgery from 2004 to 2011, using the Ravitch repair method. Symptoms of the patients included chest pain (15%) and tachycardia (8%). Three patients underwent repair of recurrent surgical conditions. All of the patients with dyspnoea with exercise experienced marked improvement at five months post operation. Complications included pneumothorax in 5.1% (n = 4), haemothorax in 2.6% (n = 2), chest discomfort in 57% (n = 44), pleural effusion in 2.6% (n = 2), and sternal hypertrophic scar in 27% (n = 21) of patients. Mean hospitalisation was eight days. Pain was mild and intravenous analgesics were used for a mean of four days. There were no deaths. Results after surgical correction were very good or excellent in 62 patients (80%) at a mean follow up of three years. Three patients had recurrent PE and were repaired with the Nuss procedure. In three patients who underwent the Ravitch procedure, a stainless steel bar was used for sternal support instead of Kirschner wire. Pectus deformities may be repaired with no mortality, low morbidity, very good cosmetic results and improvement in cardiological and respiratory symptoms.

  5. Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation

    NASA Astrophysics Data System (ADS)

    Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai

    2018-01-01

    In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.

  6. Global organization of tectonic deformation on Venus

    NASA Astrophysics Data System (ADS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1993-03-01

    The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the direct result of poleward compression. The trends of wrinkle ridges have been mapped over the planet and several large, sweeping patterns evidently reflect long-wavelength topography. Using wrinkle ridges as paleostress indicators, we have developed local and regional stress trajectory maps.

  7. Global organization of tectonic deformation on Venus

    NASA Technical Reports Server (NTRS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1993-01-01

    The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the direct result of poleward compression. The trends of wrinkle ridges have been mapped over the planet and several large, sweeping patterns evidently reflect long-wavelength topography. Using wrinkle ridges as paleostress indicators, we have developed local and regional stress trajectory maps.

  8. Modeling of macrosegregation caused by volumetric deformation in a coherent mushy zone

    NASA Astrophysics Data System (ADS)

    Nicolli, Lilia C.; Mo, Asbjørn; M'hamdi, Mohammed

    2005-02-01

    A two-phase volume-averaged continuum model is presented that quantifies macrosegregation formation during solidification of metallic alloys caused by deformation of the dendritic network and associated melt flow in the coherent part of the mushy zone. Also, the macrosegregation formation associated with the solidification shrinkage (inverse segregation) is taken into account. Based on experimental evidence established elsewhere, volumetric viscoplastic deformation (densification/dilatation) of the coherent dendritic network is included in the model. While the thermomechanical model previously outlined (M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081-93) has been used to calculate the temperature and velocity fields associated with the thermally induced deformations and shrinkage driven melt flow, the solute conservation equation including both the liquid and a solid volume-averaged velocity is solved in the present study. In modeling examples, the macrosegregation formation caused by mechanically imposed as well as by thermally induced deformations has been calculated. The modeling results for an Al-4 wt pct Cu alloy indicate that even quite small volumetric strains (≈2 pct), which can be associated with thermally induced deformations, can lead to a macroscopic composition variation in the final casting comparable to that resulting from the solidification shrinkage induced melt flow. These results can be explained by the relatively large volumetric viscoplastic deformation in the coherent mush resulting from the applied constitutive model, as well as the relatively large difference in composition for the studied Al-Cu alloy in the solid and liquid phases at high solid fractions at which the deformation takes place.

  9. Soft tissue modelling through autowaves for surgery simulation.

    PubMed

    Zhong, Yongmin; Shirinzadeh, Bijan; Alici, Gursel; Smith, Julian

    2006-09-01

    Modelling of soft tissue deformation is of great importance to virtual reality based surgery simulation. This paper presents a new methodology for simulation of soft tissue deformation by drawing an analogy between autowaves and soft tissue deformation. The potential energy stored in a soft tissue as a result of a deformation caused by an external force is propagated among mass points of the soft tissue by non-linear autowaves. The novelty of the methodology is that (i) autowave techniques are established to describe the potential energy distribution of a deformation for extrapolating internal forces, and (ii) non-linear materials are modelled with non-linear autowaves other than geometric non-linearity. Integration with a haptic device has been achieved to simulate soft tissue deformation with force feedback. The proposed methodology not only deals with large-range deformations, but also accommodates isotropic, anisotropic and inhomogeneous materials by simply changing diffusion coefficients.

  10. The Evolution of In-Grain Misorientation Axes (IGMA) During Deformation of Wrought Magnesium Alloy AZ31

    NASA Astrophysics Data System (ADS)

    Chun, Y. B.; Davies, C. H. J.

    Understanding deformation mechanisms is a prerequisite for the development of more formable magnesium alloys. We have developed a novel approach based on analysis of in-grain misorientation axes which allows identification of the dominant slip system for a large number of grains. We investigated the effects of orientations and temperatures on active deformation mechanisms during the rolling of AZ31, including slip, deformation twinning and deformation banding. The IGMA analysis suggests that increasing rolling temperature promotes activation of prism slip which enhances the rollability of the plate favorably oriented for this slip mode. The approach also reveals an orientation-dependent occurrence of deformation banding and its crystallographic relationship with parent grain. It is concluded that IGMA analysis can be effectively used to study deformation mechanism in hcp metals, and can be used as a criterion for validating some crystal plasticity models.

  11. Mechanical stability of the cell nucleus: roles played by the cytoskeleton in nuclear deformation and strain recovery.

    PubMed

    Wang, Xian; Liu, Haijiao; Zhu, Min; Cao, Changhong; Xu, Zhensong; Tsatskis, Yonit; Lau, Kimberly; Kuok, Chikin; Filleter, Tobin; McNeill, Helen; Simmons, Craig A; Hopyan, Sevan; Sun, Yu

    2018-05-18

    Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformation increases the risk of disrupting the nuclear envelope's integrity and causing DNA damage. Mechanical stability of the nucleus defines its capability of maintaining nuclear shape by minimizing nuclear deformation and recovering strain when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin. © 2018. Published by The Company of Biologists Ltd.

  12. Development of Experimental Techniques Using LVP (Large Volume Press) at GSECARS Beamlines, Advanced Photon Source (in Japanese with English abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishiyama, N.; Wang, Y.

    GSECARS (GeoSoilEnviroCARS, the University of Chicago) operates a bending magnet and an undulator beamlines at Sector 13, Advanced Photon Source. Experimental technique for High Pressure X-ray Tomographic Microscope (HPXTM) using monochromatized X-rays has been developed. The module for HPXTM also has shear deformation capability, which enables us to perform HPXTM experiments for microstructure developed by shear deformation under high pressure. A combination of Deformation DIA (D-DIA) and monochromatic X-rays has been developed for quantitative deformation experiments under pressure above 10 GPa. Deformation experiments of e-iron was performed at pressures up to 19 GPa and temperatures up to 700 K.

  13. Correlation of phonatory behavior with vocal fold structure, observed in a physical model

    NASA Astrophysics Data System (ADS)

    Krane, Michael; Walters, Gage; McPhail, Michael

    2017-11-01

    The effect of vocal fold shape and internal structure on phonation was studied experimentally using a physical model of the human airway. Model folds used a ``M5'' or a swept ellipse coronal cross-section shape. Models were molded in either 2 or three layers. Two-layer models included a more stiff ``body'' layer and a much softer ``cover'' layer, while the 3-layer models also incorporated an additional, thin, ``ligament/conus'' layer stiffer than the body layer. The elliptical section models were all molded in 3 such layers. Measurements of transglottal pressure, volume flow, mouth sound pressure, and high-speed imaging of vocal fold vibration were performed. These show that models with the ``ligament'' layer experienced much attenuated vertical deformation, that glottal closure was more likely, and that phonation was much easier to initiate. These findings suggest that the combination of the vocal ligament and the conus elasticus stabilize the vocal fold for efficient phonation by limiting vertical deformation, while allowing transverse deformations to occur. Acknowledge support from NIH DC R01005642-11.

  14. Localization in Naturally Deformed Systems - the Default State?

    NASA Astrophysics Data System (ADS)

    Clancy White, Joseph

    2017-04-01

    Based on the extensive literature on localized rock deformation, conventional wisdom would interpret it to be a special behaviour within an anticipated background of otherwise uniform deformation. The latter notwithstanding, the rock record is so rife with transient (cyclic), heterogeneous deformation, notably shear localization, as to characterize localization as the anticipated 'normal' behaviour. The corollary is that steady, homogeneous deformation is significantly less common, and if achieved must reflect some special set of conditions that are not representative of the general case. An issue central to natural deformation is then not the existance of localized strain, but rather how the extant deformation processes scale across tectonic phenomena and in turn organize to enable a coherent(?) descripion of Earth deformation. Deformation is fundamentally quantized, discrete (diffusion, glide, crack propagation) and reliant on the defect state of rock-forming minerals. The strain energy distribution that drives thermo-mechanical responses is in the first instance established at the grain-scale where the non-linear interaction of defect-mediated micromechanical processes introduces heterogeneous behaviour described by various gradient theories, and evidenced by the defect microstructures of deformed rocks. Hence, the potential for non-uniform response is embedded within even quasi-uniform, monomineralic materials, seen, for example, in the spatially discrete evolution of dynamic recrystallization. What passes as homogeneous or uniform deformation at various scales is the aggregation of responses at some characteristic dimension at which heterogeneity is not registered or measured. Nevertheless, the aggregate response and associated normalized parameters (strain, strain rate) do not correspond to any condition actually experienced by the deforming material. The more common types of macroscopic heterogeneity promoting localization comprise mechanically contrasting materials typical of most rocks. Such perturbations are of themselves only larger examples of variation in the fundamental defect distribution and response; that is the boundary conditions that induce heterogeneous response are reflections of the microphysical behaviour seen in aggregate as strain accommodating softening or stabilization processes such as grain size reduction and independent grain displacements. Additionally, cyclic interplay between inelastic rupture and subsequent plastic material softening resulting from the concomitant introduction of exogenous material in the form of igneous melts, deformation-induced melts and fluid precipitates (veins). This two-stage process determines the siting and temporary stabilization of the shear phenomena, and indicates that material hardening and non-associated flow over some characteristic time are precursors to any particular instability, with stabilization of localized shear correlated with system softening tied to redistribution of strain energy dissipation within what is effectively a reconstituted material.

  15. Tertiary uplift of the Mt. Doonerak antiform, central Brooks Range, Alaska: Apatite fission track evidence from the Trans-Alaska Crustal Transect

    USGS Publications Warehouse

    O'Sullivan, P. B.; Moore, Thomas E.; Murphy, J.M.; Oldow, J.S.; Ave Lallemant, H.G.

    1998-01-01

    The Mt. Doonerak antiform is a northeast-trending, doubly plunging antiform located along the axial part of the central Brooks Range. This antiform is a crustal-scale duplex estimated to have a vertical displacement of ~15 km. The antiform folds the Amawk thrust, which separates relatively less displaced lower plate rocks in a window in the core of the antiform from allochthonous upper plate rocks of the Endicott Mountains allochthon. Because regional geological relations indicate that displacement on the Amawk thrust occurred between early Neocomian and early Albian time, uplift of the antiform is post-early Neocomian in age.Zircon fission-track data from the Mt. Doonerak antiform suggest -8-12 km of vertical denudation has occurred within the antiform region since -70-65 Ma. whereas apatite fission-track data indicate the antiform has experienced a minimum of -46 km of denudation since late Oligocene time. Following rapid denudation at -24 + 3 Ma, the rocks have experienced continued denudation to present surface conditions at a slower rate.We conclude from the relative relations and timing that the Mt. Doonerak duplex was constructed in part during the late Oligocene by reactivation of an older duplex formed during the latest Cretaceous to Paleocene. Deformation and uplift of Oligocene age for the axial part of the Brooks Range orogen is anomalously young, but it is the same age as the youngest episode of north-vergent contractional uplift in the northeastern Brooks Range. Because the Mt. Doonerak antiform displays structural characteristics similar to those of antiforms in the northeastern Brooks Range and because both regions experienced simultaneous rapid denudation, we suggest that the Mt. Doonerak antiform formed in response to an episode of contractional deformation that affected both areas in the late Oligocene.

  16. Bioinspired legged-robot based on large deformation of flexible skeleton.

    PubMed

    Mayyas, Mohammad

    2014-11-11

    In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot's leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot.

  17. New design strategy for reversible plasticity shape memory polymers with deformable glassy aggregates.

    PubMed

    Lin, Tengfei; Tang, Zhenghai; Guo, Baochun

    2014-12-10

    Reversible plasticity shape memory (RPSM) is a new concept in the study of shape memory performance behavior and describes a phenomenon in which shape memory polymers (SMPs) can undergo a large plastic deformation at room temperature and subsequently recover their original shape upon heating. To date, RPSM behavior has been demonstrated in only a few polymers. In the present study, we implement a new design strategy, in which deformable glassy hindered phenol (AO-80) aggregates are incorporated into an amorphous network of epoxidized natural rubber (ENR) cured with zinc diacrylate (ZDA), in order to achieve RPSM properties. We propose that AO-80 continuously tunes the glass transition temperature (Tg) and improves the chain mobility of the SMP, providing traction and anchoring the ENR chains by intermolecular hydrogen bonding interactions. The RPSM behavior of the amorphous SMPs is characterized, and the results demonstrate good fixity at large deformations (up to 300%) and excellent recovery upon heating. Large energy storage capacities at Td in these RPSM materials are demonstrated compared with those achieved at elevated temperature in traditional SMPs. Interestingly, the further revealed self-healing properties of these materials are closely related to their RPSM behavior.

  18. Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations

    USGS Publications Warehouse

    Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.

    2007-01-01

    Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.

  19. Multiscale analysis of bamboo deformation mechanisms following NaOH treatment using X-ray and correlative microscopy.

    PubMed

    Salvati, E; Brandt, L R; Uzun, F; Zhang, H; Papadaki, C; Korsunsky, A M

    2018-05-01

    For hundreds of years, bamboo has been employed for a variety of applications ranging from load-bearing structures to textiles. Thanks to its hierarchical structure that is functionally graded and naturally optimised, bamboo displays a variation in properties across its stem that ensures exceptional flexural performance. Often, alkaline solutions are employed for the treatment of bamboo in order to alter its natural elastic behaviour and make it suitable for particular applications. In this work we study the effect of NaOH solutions of five different concentrations (up to 25%) on the elastic properties of bamboo. By exploiting the capabilities of modern experimental techniques such as in situ synchrotron X-ray scattering and Digital Image Correlation, we present detailed analysis of the deformation mechanisms taking place in the main constituents of bamboo, i.e. fibres and matrix (Parenchyma). The principal achievement of this study is the elucidation of the deformation mechanisms at the fibre scale, where the relative sliding of fibrils plays a crucial role in the property modification of the whole bamboo stem. Furthermore, we shed light on the parenchyma toughness variation as a consequence of alkali treatments. Alkaline solutions are often employed for the treatment of bamboo in order to alter its natural elastic behaviour. In this work we study the effect of alkaline solutions on the elastic properties of bamboo. Using state of the art experimental techniques allowed shedding light on the deformation mechanisms occurring in the bamboo main constituents, i.e. fibres and matrix (parenchyma cells). Enhancement of fibre stiffness was experienced when up to 20% NaOH solution was employed, while for higher concentration a decay was observed. This effect was imputed to the modification of adhesion between fibrils induced by disruption of ligand elements (e.g. lignin). Modification of the matrix toughness was also experienced, that indicated an improved resistance to cracking when the concentration of NaOH is 25%, while reduction of toughness was revealed for lower concentrations. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Transient deformation from daily GPS displacement time series: postseismic deformation, ETS and evolving strain rates

    NASA Astrophysics Data System (ADS)

    Bock, Y.; Fang, P.; Moore, A. W.; Kedar, S.; Liu, Z.; Owen, S. E.; Glasscoe, M. T.

    2016-12-01

    Detection of time-dependent crustal deformation relies on the availability of accurate surface displacements, proper time series analysis to correct for secular motion, coseismic and non-tectonic instrument offsets, periodic signatures at different frequencies, and a realistic estimate of uncertainties for the parameters of interest. As part of the NASA Solid Earth Science ESDR System (SESES) project, daily displacement time series are estimated for about 2500 stations, focused on tectonic plate boundaries and having a global distribution for accessing the terrestrial reference frame. The "combined" time series are optimally estimated from independent JPL GIPSY and SIO GAMIT solutions, using a consistent set of input epoch-date coordinates and metadata. The longest time series began in 1992; more than 30% of the stations have experienced one or more of 35 major earthquakes with significant postseismic deformation. Here we present three examples of time-dependent deformation that have been detected in the SESES displacement time series. (1) Postseismic deformation is a fundamental time-dependent signal that indicates a viscoelastic response of the crust/mantle lithosphere, afterslip, or poroelastic effects at different spatial and temporal scales. It is critical to identify and estimate the extent of postseismic deformation in both space and time not only for insight into the crustal deformation and earthquake cycles and their underlying physical processes, but also to reveal other time-dependent signals. We report on our database of characterized postseismic motions using a principal component analysis to isolate different postseismic processes. (2) Starting with the SESES combined time series and applying a time-dependent Kalman filter, we examine episodic tremor and slow slip (ETS) in the Cascadia subduction zone. We report on subtle slip details, allowing investigation of the spatiotemporal relationship between slow slip transients and tremor and their underlying physical mechanisms. (3) We present evolving strain dilatation and shear rates based on the SESES velocities for regional subnetworks as a metric for assigning earthquake probabilities and detection of possible time-dependent deformation related to underlying physical processes.

  1. Large Deformation Analysis of a High Steep Slope Relating to the Laxiwa Reservoir, China

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Liu, Xiaoli; Hu, Senying; Li, Pujian

    2016-06-01

    The unstable rock slope in the Laxiwa reservoir area of the Yellow River upstream, China, shows the signs of gravitational and water-impounding induced large deformations over an area of 1.15 × 105 m2. Slope movements have been measured daily at more than 560 observation points since 2009, when the reservoir was first impounded. At two of these points, an average daily movement of around 60-80 mm has ever been observed since the beginning of the impounding. Based on the observed deformations and the geology of the site, a fluid-solid coupling model was then adopted to investigate the existing rockslide activity to better understand the mechanism underlying the large deformations. The results from the field observation, kinematic analysis and numerical modeling indicate that the slope instability is dominated by the strong structurally controlled unstable rock mass. Based on an integrated overview of these analyses, a new toppling mode, i.e. the so-called `conjugate block' mode, is proposed to explain the large deformation mechanism of the slope. The conjugate block is formed by a `dumping block' and toppling blocks. The large deformation of the slope is dominated by (1) a toppling component and (2) a subsiding bilinear wedge induced by planar sliding along the deep-seated faults. Following a thorough numerical analysis, it is concluded that small collapses of rock blocks along the slope will be more frequent with the impounding process continuing and the water level fluctuating during the subsequent operation period. Based on a shear strength reduction method and field monitoring, four controlling faults are identified and the instability of the loose structure in the surface layer is analyzed and discussed. The factor of safety against the sliding failure along the deep seated fractures in the slope is 1.72, which reveals that (1) the collapse of the free-standing fractured blocks cannot be ruled out and the volume of the unstable blocks may be greater than 100,000 m3; (2) the collapse of the whole slope, i.e. with the volume being greater than 92 million m3, or a very large collapse involving several million m3, is considered to be of very low likelihood, unless there are extreme conditions, such as earthquakes and exceptionally heavy rain.

  2. Reconstruction of caldera collapse and resurgence processes in the offshore sector of the Campi Flegrei caldera (Italy)

    NASA Astrophysics Data System (ADS)

    Steinmann, Lena; Spiess, Volkhard; Sacchi, Marco

    2015-04-01

    Large collapse calderas are associated with exceptionally explosive volcanic eruptions, which are capable of triggering a global catastrophe second only to that from a giant meteorite impact. Therefore, active calderas have attracted significant attention in both scientific communities and governmental institutions worldwide. One prime example of a large collapse caldera can be found in southern Italy, more precisely in the northern Bay of Naples within the Campi Flegrei Volcanic Area. The Campi Flegrei caldera covers an area of approximately 200 km² defined by a quasi-circular depression, half onland, half offshore. It is still under debate whether the caldera formation was related to only one ignimbritic eruption namely the Neapolitan Yellow Tuff (NYT) eruption at 15 ka or if it is a nested-caldera system related to the NYT and the Campanian Ignimbrite eruption at 39 ka. During the last 40 years, the Campi Flegrei caldera has experienced episodes of unrest involving significant ground deformation and seismicity, which have nevertheless not yet led to an eruption. Besides these short-term episodes of unrest, long-term ground deformation with rates of several tens of meters within a few thousand years can be observed in the central part of the caldera. The source of both short-term and long-term deformation is still under debate and possibly related to a shallow hydrothermal system and caldera resurgence attributed to a deeper magma chamber, respectively. Understanding the mechanisms for unrest and eruptions is of paramount importance as a future eruption of the Campi Flegrei caldera would expose more than 500,000 people to the risk of pyroclastic flows. This study is based on a dense grid (semi-3D) of high-resolution multi-channel seismic profiles acquired in the offshore sector of the Campi Flegrei caldera. The seismic lines show evidence for the escape of fluids and/or gases along weak zones such as faults, thereby supporting the existence of a hydrothermal system. Moreover, a dome-like structure associated with a cluster of normal faults and an apical depression was identified in the center of the caldera, which corresponds very well with the on land observed location of the long-term uplift. Based on the seismic dataset, a conceptual reconstruction of the caldera deformation and depositional processes was developed. Furthermore, the seismic data show indications for a shallow ring-fault system associated with the collapse of the NYT caldera. In addition, major stratigraphic units such as the CI and NYT could be traced on a regional scale, thereby providing information about the eruptive processes and vent locations. Besides the volcano-tectonic aspects, a system tract analysis was carried out in order to reveal the interplay between eustatic sea-level variations and tectonically induced uplift and subsidence.

  3. Hippo/crates-in-situ deformation strain and testure studies using neutron time-of-flight diffraction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, S. C.; Hartig, C.; Brissier, T. D.

    2005-01-01

    In situ deformation studies by diffraction allow studying of deformation mechanisms and provide valuable data to validate and improve deformation models. In particular, deformation studies using time-of-flight neutrons provide averages over large numbers of grains and allow to probing the response of lattice planes parallel and perpendicular to the applied load simultaneously. In this paper we describe the load-frame CRATES, designed for the HIPPO neutron time-of-flight diffractometer at LANSCE. The HIPPO/CRATES combination allows probing up to 20 diffraction vectors simultaneously and provides rotation of the sample in the beam while under load. With this, deformation texture, i.e. the change ofmore » grain orientation due to plastic deformation, or strain pole figures may be measured. We report initial results of a validation experiment, comparing deformation of a Zircaloy specimen measured using the NPD neutron diffractometer with results obtained for the same material using HIPPO/CRATES.« less

  4. Determination of accuracy of winding deformation method using kNN based classifier used for 3 MVA transformer

    NASA Astrophysics Data System (ADS)

    Ahmed, Mustafa Wasir; Baishya, Manash Jyoti; Sharma, Sasanka Sekhor; Hazarika, Manash

    2018-04-01

    This paper presents a detecting system on power transformer in transformer winding, core and on load tap changer (OLTC). Accuracy of winding deformation is determined using kNN based classifier. Winding deformation in power transformer can be measured using sweep frequency response analysis (SFRA), which can enhance the diagnosis accuracy to a large degree. It is suggested that in the results minor deformation faults can be detected at frequency range of 1 mHz to 2 MHz. The values of RCL parameters are changed when faults occur and hence frequency response of the winding will change accordingly. The SFRA data of tested transformer is compared with reference trace. The difference between two graphs indicate faults in the transformer. The deformation between 1 mHz to 1kHz gives winding deformation, 1 kHz to 100 kHz gives core deformation and 100 kHz to 2 MHz gives OLTC deformation.

  5. Building Consensus: Development of Best Practice Guidelines on Wrong Level Surgery in Spinal Deformity.

    PubMed

    Vitale, Michael; Minkara, Anas; Matsumoto, Hiroko; Albert, Todd; Anderson, Richard; Angevine, Peter; Buckland, Aaron; Cho, Samuel; Cunningham, Matthew; Errico, Thomas; Fischer, Charla; Kim, Han Jo; Lehman, Ronald; Lonner, Baron; Passias, Peter; Protopsaltis, Themistocles; Schwab, Frank; Lenke, Lawrence

    Consensus-building using the Delphi and nominal group technique. To establish best practice guidelines using formal techniques of consensus building among a group of experienced spinal deformity surgeons to avert wrong-level spinal deformity surgery. Numerous previous studies have demonstrated that wrong-level spinal deformity occurs at a substantial rate, with more than half of all spine surgeons reporting direct or indirect experience operating on the wrong levels. Nevertheless, currently, guidelines to avert wrong-level spinal deformity surgery have not been developed. The Delphi process and nominal group technique were used to formally derive consensus among 16 fellowship-trained spine surgeons. Surgeons were surveyed for current practices, presented with the results of a systematic review, and asked to vote anonymously for or against item inclusion during three iterative rounds. Agreement of 80% or higher was considered consensus. Items near consensus (70% to 80% agreement) were probed in detail using the nominal group technique in a facilitated group meeting. Participants had a mean of 13.4 years of practice (range: 2-32 years) and 103.1 (range: 50-250) annual spinal deformity surgeries, with a combined total of 24,200 procedures. Consensus was reached for the creation of best practice guidelines (BPGs) consisting of 17 interventions to avert wrong-level surgery. A final checklist consisting of preoperative and intraoperative methods, including standardized vertebral-level counting and optimal imaging criteria, was supported by 100% of participants. We developed consensus-based best practice guidelines for the prevention of wrong-vertebral-level surgery. This can serve as a tool to reduce the variability in preoperative and intraoperative practices and guide research regarding the effectiveness of such interventions on the incidence of wrong-level surgery. Level V. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  6. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.

    PubMed

    Ehrampoosh, Shervin; Dave, Mohit; Kia, Michael A; Rablau, Corneliu; Zadeh, Mehrdad H

    2013-01-01

    This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.

  7. General framework for dynamic large deformation contact problems based on phantom-node X-FEM

    NASA Astrophysics Data System (ADS)

    Broumand, P.; Khoei, A. R.

    2018-04-01

    This paper presents a general framework for modeling dynamic large deformation contact-impact problems based on the phantom-node extended finite element method. The large sliding penalty contact formulation is presented based on a master-slave approach which is implemented within the phantom-node X-FEM and an explicit central difference scheme is used to model the inertial effects. The method is compared with conventional contact X-FEM; advantages, limitations and implementational aspects are also addressed. Several numerical examples are presented to show the robustness and accuracy of the proposed method.

  8. Advances in Projection Moire Interferometry Development for Large Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Soto, Hector L.; South, Bruce W.; Bartram, Scott M.

    1999-01-01

    An instrument development program aimed at using Projection Moire Interferometry (PMI) for acquiring model deformation measurements in large wind tunnels was begun at NASA Langley Research Center in 1996. Various improvements to the initial prototype PMI systems have been made throughout this development effort. This paper documents several of the most significant improvements to the optical hardware and image processing software, and addresses system implementation issues for large wind tunnel applications. The improvements have increased both measurement accuracy and instrument efficiency, promoting the routine use of PMI for model deformation measurements in production wind tunnel tests.

  9. Thermal behavior of copper processed by ECAP at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Gonda, Viktor

    2018-05-01

    Large amount of strengthening can be achieved by equal channel angular pressing (ECAP), by the applied severe plastic deformation during the processing. For pure metals, this high strength is accompanied with low thermal stability due to the large activation energy for recrystallization. In the present paper, the chosen technological route was elevated temperature single pass ECAP processing of copper, and its effect on the thermal behavior during the restoration processes of the deformed samples was studied.

  10. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  11. A large deformation viscoelastic model for double-network hydrogels

    NASA Astrophysics Data System (ADS)

    Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit

    2017-03-01

    We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.

  12. Modeling the behaviour of shape memory materials under large deformations

    NASA Astrophysics Data System (ADS)

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  13. Compensation of Gravity-Induced Structural Deformations on a Beam- Waveguide Antenna Using a Deformable Mirror

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.

    1995-01-01

    At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.

  14. The Remote Detection of Incipient Catastrophic Failure in Large Landslides

    NASA Astrophysics Data System (ADS)

    Petley, D.; Bulmer, M. H.; Murphy, W.; Mantovani, F.

    2001-12-01

    Landslide movement is commonly associated with brittle failure and ductile deformation. Kilburn and Petley (2001) proposed that cracking in landslides occurs due to downslope stress acting on the deforming horizon. If the assumption that a given crack event breaks a fixed distance of unbroken rock or soil the rate of cracking becomes equivalent to the number of crack events per unit time. Where crack growth (not nucleation) is occurring, the inverse rate of displacement changes linearly with time. Failure can be assumed to be the time at which displacement rates become infinitely large. Thus, for a slope heading towards catastrophic failure due to the development of a failure plane, this relationship would be linear, with the point at which failure will occur being the time when the line intercepts the x-axis. Increasing rates of deformation associated with ductile processes of crack nucleation would yield a curve with a negative gradient asymptopic to the x-axis. This hypothesis is being examined. In the 1960 movement of the Vaiont slide, Italy, although the rate of movement was accelerating, the plot of 1/deformation against time shows that it was increasing towards a steady state deformation. This movement has been associated with a low accumulated strain ductile phase of movement. In the 1963 movement event, the trend is linear. This was associated with a brittle phase of movement. A plot of 1/deformation against time for movement of the debris flow portion of the Tessina landslide (1998) shows a curve with a negative gradient asymptopic to the x-axis. This indicates that the debris flow moved as a result of ductile deformation processes. Plots of movement data for the Black Ven landslide over 1999 and 2001 also show curves that correlate with known deformation and catastrophic phases. The model results suggest there is a definable deformation pattern that is diagnostic of landslides approaching catastrophic failure. This pattern can be differentiated from landslides that are undergoing ductile deformation and those that are suffering crack nucleation.

  15. Detection of surface deformation and ionospheric perturbation by the North Korea nuclear test

    NASA Astrophysics Data System (ADS)

    Park, S. C.; Lee, W. J.; Sohn, D. H.; Lee, D. K.; Jung, H. S.

    2017-12-01

    We used remote sensing data to detect the changes on surface and ionosphere due to the North Korea nuclear test. To analyze the surface deformation before and after the 6th North Korea (NK) nuclear test, we used Satellite Aperture Radar (SAR) images. It was reported that there were some surface deformation with about 10 cm by the 4th test (Wei, 2017) and the 5th test (Jo, 2017) using Interferometric SAR (InSAR) technique. However we could not obtain surface deformation by the 6th test using InSAR with Advanced Land Observation Satellite 2 (ALOS-2) data because of low coherence in the area close to the epicenter. Although the low coherence can be occurred due to several reasons, the main reason may be large deformation in this particular case. Therefore we applied pixel offset method to measure the amount of surface deformation in the area with low coherence. Pixel offset method calculates the deformation in the directions along track and Line-of-Sight (LOS) using cross correlation of intensity of two SAR images before and after the event for a pixel and is used frequently to obtain large deformation of glacier (e.g. Lee et al., 2015). Applying pixel offset method to the area of the 6th NK nuclear test, we obtained about 3 m surface deformation in maximum. It seems that the larger deformation occurs as the mountain slope is steeper.We then analyzed ionospheric perturbation using Global Navigation Satellite System (GNSS) data. If acoustic wave by a nuclear test goes up to the ionosphere and disturbs electron density, then the changes in slant total electron content (STEC) may be detected by GNSS satellites. STEC perturbation has been reported in the previous NK nuclear tests (e.g. Park et al., 2011). We analyzed the third order derivatives of STEC for 51 GNSS stations in South Korea and found that some perturbation were appeared at 4 stations about 20 40 minutes after the test.

  16. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  17. Large-scale displacement following the 2016 Kaikōura earthquake

    NASA Astrophysics Data System (ADS)

    Wang, T.; Peng, D.; Barbot, S.; Wei, S.; Shi, X.

    2017-12-01

    The 2016 Mw 7.9 Kaikōura earthquake occurred near the southern termination of the Hikurangi subduction system, where a transition from subduction to strike-slip motion dominates the pre-seismic strain accumulation. Dense spatial coverage of the GPS measurements and large amount of Interferometric Synthetic Aperture Radar (InSAR) images provide valuable constraints, from the near field to the far field, to study how the slip is distributed among the subduction interface and the overlying fault system before, during and after the earthquake. We extract time-series deformation from the New Zealand continuous GPS network, and SAR images acquired from Japanese ALOS-2 and European Sentinel-1A/B satellites to image the surface deformation related to the 2016 Kaikōura earthquake. Both GPS and InSAR data, which cover the entire New Zealand region, show that the co-seismic and post-seismic deformations are distributed in an extraordinary large area, as far as to the north tip of the North Island. Based on a coseismic slip model derived from seismic and geodetic observations, we calculate the stress perturbation incurred by the earthquake. We explore a range of possibilities of friction laws and rheology via a linear combination of strain rate in finite volumes and slip velocity on ruptured faults. We obtain the slip distribution that can best explain our geodetic measurements using outlier-insensitive hierarchical Bayesian model, to better understand different mechanisms behind the localized shallow after slip and distributed deformation. Our results indicate that complex interactions between the subduction interface and the overlying fault system play an important role in causing such large-scale deformation during and after the earthquake event.

  18. How broad and deep is the region of chemical alteration of oceanic plates at trenches?

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Grevemeyer, I.; Barckhausen, U.

    2017-12-01

    Different lines of evidence indicate that oceanic plates are affected by pervasive bending-related deformation approaching ocean trenches. Results from active-seismic work support that deformation provides paths for exchange between hydrosphere and lithosphere, possibly causing chemical alteration of the incoming lithosphere. Much work focused on the potential transformation of peridotite to serpentine in the uppermost mantle of incoming plates, but there is no consensus on the region where it may occur or the intensity of alteration, let alone on limiting factors for the process. Teleseismic (large-great) earthquakes with normal-fault mechanism in the outer rise region have been often called to speculate on the depth of penetration of plate hydration. However, large-great outer-rise earthquakes may be related to stress changes due to slab pull after decoupling along the inter-plate boundary, and not necessarily controlled by bending stresses only. If so, the majority of the time the depth of water percolation may be related to local bending stresses expressed by micro-earthquakes rather than large events. Seismic images and multibeam bathymetry from lithosphere of similar thermal thickness from different trenches display a remarkable variability of the intensity of bending-related deformation along the subduction zones where plate age does not change significantly indicating that the intensity of deformation (not the depth) and perhaps hydration is very variable in space and not controlled by plate age. Seismic images showing hundreds of kilometers perpendicular to the trench into the incoming plate show that the bending-related deformation reaches mantle under the outer rise, well before the lithosphere plunges into the trench and develops the marked bend-faulting fabric observable in bathymetric maps. Thus, alteration occurs in a hundreds-of-km wide area, with deformation intensity related to local characteristics, and deformation depth to plate age.

  19. The decomposition of deformation: New metrics to enhance shape analysis in medical imaging.

    PubMed

    Varano, Valerio; Piras, Paolo; Gabriele, Stefano; Teresi, Luciano; Nardinocchi, Paola; Dryden, Ian L; Torromeo, Concetta; Puddu, Paolo E

    2018-05-01

    In landmarks-based Shape Analysis size is measured, in most cases, with Centroid Size. Changes in shape are decomposed in affine and non affine components. Furthermore the non affine component can be in turn decomposed in a series of local deformations (partial warps). If the extent of deformation between two shapes is small, the difference between Centroid Size and m-Volume increment is barely appreciable. In medical imaging applied to soft tissues bodies can undergo very large deformations, involving large changes in size. The cardiac example, analyzed in the present paper, shows changes in m-Volume that can reach the 60%. We show here that standard Geometric Morphometrics tools (landmarks, Thin Plate Spline, and related decomposition of the deformation) can be generalized to better describe the very large deformations of biological tissues, without losing a synthetic description. In particular, the classical decomposition of the space tangent to the shape space in affine and non affine components is enriched to include also the change in size, in order to give a complete description of the tangent space to the size-and-shape space. The proposed generalization is formulated by means of a new Riemannian metric describing the change in size as change in m-Volume rather than change in Centroid Size. This leads to a redefinition of some aspects of the Kendall's size-and-shape space without losing Kendall's original formulation. This new formulation is discussed by means of simulated examples using 2D and 3D platonic shapes as well as a real example from clinical 3D echocardiographic data. We demonstrate that our decomposition based approaches discriminate very effectively healthy subjects from patients affected by Hypertrophic Cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. SU-E-J-44: A Novel Approach to Quantify Patient Setup and Target Motion for Real-Time Image-Guided Radiotherapy (IGRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S; Charpentier, P; Sayler, E

    2015-06-15

    Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection andmore » principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable targets. NIH grant for the first author as cionsultant and the last author as the PI.« less

  1. InSAR and GPS Time Series Analysis in Areas with Large Scale Hydrological Deformation: Separating Signal From Noise at Varying Length Scales in the San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Murray, K. D.; Lohman, R.

    2017-12-01

    Areas of large-scale subsidence are observed over much of the San Joaquin Valley of California due to the extraction of groundwater and hydrocarbons from the subsurface.These signals span regions with spatial extents of up to 100 km and have rates of up to 45 cm/yr or more. InSAR and GPS are complementary methods commonly used to measure such ground displacements and can provide important constraints on crustal deformation models, support groundwater studies, and inform water resource management efforts. However, current standard methods for processing these data sets and creating displacement time series are suboptimal for the deformation observed in areas like the San Joaquin Valley because (1) the ground surface properties are constantly changing due largely to agricultural activity, resulting in low coherence in half or more of a SAR frame, and (2) the deformation signals are distributed throughout the SAR frames, and are comparable to the size of the frames themselves. Therefore, referencing areas of deformation to non-deforming areas and correcting for long wavelength signals (e.g. atmospheric delays, orbital errors) is particularly difficult. We address these challenges by exploiting pixels that are stable in space and time, and use them for weighted spatial averaging and selective filtering before unwrapping. We then compare a range of methods for both long wavelength corrections and referencing via automatic partitioning of non-deforming areas, then benchmark results against continuous GPS measurements. Our final time series consist of nearly 15 years of displacement measurements from continuous GPS data, and Envisat, ALOS-1, Sentinel SAR data, and show significant temporal and spatial variations. We find that the choice of reference and long wavelength corrections can significantly bias long-term rate and seasonal amplitude estimates, causing variations of as much as 100% of the mean estimate. As we enter an era with free and open data access and regular observations plans from missions such as NISAR and the Sentinel constellation, our approach will help users evaluate the significance of observed deformation at a range of spatial scales and in areas with challenging surface properties.

  2. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.

    PubMed

    Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian

    2018-04-03

    Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.

  3. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  4. Modeling coupled Thermo-Hydro-Mechanical processes including plastic deformation in geological porous media

    NASA Astrophysics Data System (ADS)

    Kelkar, S.; Karra, S.; Pawar, R. J.; Zyvoloski, G.

    2012-12-01

    There has been an increasing interest in the recent years in developing computational tools for analyzing coupled thermal, hydrological and mechanical (THM) processes that occur in geological porous media. This is mainly due to their importance in applications including carbon sequestration, enhanced geothermal systems, oil and gas production from unconventional sources, degradation of Arctic permafrost, and nuclear waste isolation. Large changes in pressures, temperatures and saturation can result due to injection/withdrawal of fluids or emplaced heat sources. These can potentially lead to large changes in the fluid flow and mechanical behavior of the formation, including shear and tensile failure on pre-existing or induced fractures and the associated permeability changes. Due to this, plastic deformation and large changes in material properties such as permeability and porosity can be expected to play an important role in these processes. We describe a general purpose computational code FEHM that has been developed for the purpose of modeling coupled THM processes during multi-phase fluid flow and transport in fractured porous media. The code uses a continuum mechanics approach, based on control volume - finite element method. It is designed to address spatial scales on the order of tens of centimeters to tens of kilometers. While large deformations are important in many situations, we have adapted the small strain formulation as useful insight can be obtained in many problems of practical interest with this approach while remaining computationally manageable. Nonlinearities in the equations and the material properties are handled using a full Jacobian Newton-Raphson technique. Stress-strain relationships are assumed to follow linear elastic/plastic behavior. The code incorporates several plasticity models such as von Mises, Drucker-Prager, and also a large suite of models for coupling flow and mechanical deformation via permeability and stresses/deformations. In this work we present several example applications of such models.

  5. Testing device subjects elastic materials to biaxial deformations

    NASA Technical Reports Server (NTRS)

    Becker, G. W.

    1965-01-01

    Testing device stretches elastic materials biaxially over large deformation ranges and varies strain ratios in two perpendicular directions. The device is used in conjunction with a tensile testing machine, which holds the specimen and permits control over the direction and magnitude of the stresses applied.

  6. Finite Element Analysis of Magnetoelastic Plate Problems.

    DTIC Science & Technology

    1981-08-01

    deformation and in the incremental large deformation analysis, respectively. The classical Kirchhoff assumption of the undeformable normal to the midsurface is...current density , is constant across the thickness of the plate and is parallel to the midsurface of the plate; (2) the normal component of the

  7. Comparative experimental investigation on the actuation mechanisms of ionic polymer–metal composites with different backbones and water contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zicai; Chang, Longfei; Wang, Yanjie

    2014-03-28

    Water-based ionic polymer–metal composites (IPMCs) exhibit complex deformation properties, especially when the water content changes. To explore the general actuation mechanisms, both Nafion and Flemion membranes are used as the polymer backbones. IPMC deformation includes three stages: fast anode deformation, relaxation deformation, and slow anode deformation, which is mainly dependent on the water content and the backbone. When the water content decreases from 21 to 14 wt. %, Nafion–IPMC exhibits a large negative relaxation deformation, zero deformation, a positive relaxation deformation, and a positive steady deformation without relaxation in sequence. Despite the slow anode deformation, Flemion–IPMC also shows a slight relaxation deformation,more » which disappears when the water content is less than 13 wt. %. The different water states are investigated at different water contents using nuclear magnetic resonance spectroscopy. The free water, which decreases rapidly at the beginning through evaporation, is proven to be critical for relaxation deformation. For the backbone, indirect evidence from the steady current response is correlated with the slow anode deformation of Flemion-IPMC. The latter is explained by the secondary dissociation of the weak acid group –COOH. Finally, we thoroughly explain not only the three deformations by swelling but also their evolvement with decreasing water content. A fitting model is also presented based on a multi-diffusion equation to reveal the deformation processes more clearly, the results from which are in good agreement with the experimental results.« less

  8. An automated landmark-based elastic registration technique for large deformation recovery from 4-D CT lung images

    NASA Astrophysics Data System (ADS)

    Negahdar, Mohammadreza; Zacarias, Albert; Milam, Rebecca A.; Dunlap, Neal; Woo, Shiao Y.; Amini, Amir A.

    2012-03-01

    The treatment plan evaluation for lung cancer patients involves pre-treatment and post-treatment volume CT imaging of the lung. However, treatment of the tumor volume lung results in structural changes to the lung during the course of treatment. In order to register the pre-treatment volume to post-treatment volume, there is a need to find robust and homologous features which are not affected by the radiation treatment along with a smooth deformation field. Since airways are well-distributed in the entire lung, in this paper, we propose use of airway tree bifurcations for registration of the pre-treatment volume to the post-treatment volume. A dedicated and automated algorithm has been developed that finds corresponding airway bifurcations in both images. To derive the 3-D deformation field, a B-spline transformation model guided by mutual information similarity metric was used to guarantee the smoothness of the transformation while combining global information from bifurcation points. Therefore, the approach combines both global statistical intensity information with local image feature information. Since during normal breathing, the lung undergoes large nonlinear deformations, it is expected that the proposed method would also be applicable to large deformation registration between maximum inhale and maximum exhale images in the same subject. The method has been evaluated by registering 3-D CT volumes at maximum exhale data to all the other temporal volumes in the POPI-model data.

  9. Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.

  10. Ice stream motion facilitated by a shallow-deforming and accreting bed

    PubMed Central

    Spagnolo, Matteo; Phillips, Emrys; Piotrowski, Jan A.; Rea, Brice R.; Clark, Chris D.; Stokes, Chris R.; Carr, Simon J.; Ely, Jeremy C.; Ribolini, Adriano; Wysota, Wojciech; Szuman, Izabela

    2016-01-01

    Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system. PMID:26898399

  11. Compaction of granular materials composed of deformable particles

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Hai; Nezamabadi, Saeid; Delenne, Jean-Yves; Radjai, Farhang

    2017-06-01

    In soft particle materials such as metallic powders the particles can undergo large deformations without rupture. The large elastic or plastic deformations of the particles are expected to strongly affect the mechanical properties of these materials compared to hard particle materials more often considered in research on granular materials. Herein, two numerical approaches are proposed for the simulation of soft granular systems: (i) an implicit formulation of the Material Point Method (MPM) combined with the Contact Dynamics (CD) method to deal with contact interactions, and (i) Bonded Particle Model (BPM), in which each deformable particle is modeled as an aggregate of rigid primary particles using the CD method. These two approaches allow us to simulate the compaction of an assembly of elastic or plastic particles. By analyzing the uniaxial compaction of 2D soft particle packings, we investigate the effects of particle shape change on the stress-strain relationship and volume change behavior as well as the evolution of the microstructure.

  12. Precisions Measurement for the Grasp of Welding Deformation amount of Time Series for Large-Scale Industrial Products

    NASA Astrophysics Data System (ADS)

    Abe, R.; Hamada, K.; Hirata, N.; Tamura, R.; Nishi, N.

    2015-05-01

    As well as the BIM of quality management in the construction industry, demand for quality management of the manufacturing process of the member is higher in shipbuilding field. The time series of three-dimensional deformation of the each process, and are accurately be grasped strongly demanded. In this study, we focused on the shipbuilding field, will be examined three-dimensional measurement method. The shipyard, since a large equipment and components are intricately arranged in a limited space, the installation of the measuring equipment and the target is limited. There is also the element to be measured is moved in each process, the establishment of the reference point for time series comparison is necessary to devise. In this paper will be discussed method for measuring the welding deformation in time series by using a total station. In particular, by using a plurality of measurement data obtained from this approach and evaluated the amount of deformation of each process.

  13. A Nonlinear Elasticity Model of Macromolecular Conformational Change Induced by Electrostatic Forces

    PubMed Central

    Zhou, Y. C.; Holst, Michael; McCammon, J. Andrew

    2008-01-01

    In this paper we propose a nonlinear elasticity model of macromolecular conformational change (deformation) induced by electrostatic forces generated by an implicit solvation model. The Poisson-Boltzmann equation for the electrostatic potential is analyzed in a domain varying with the elastic deformation of molecules, and a new continuous model of the electrostatic forces is developed to ensure solvability of the nonlinear elasticity equations. We derive the estimates of electrostatic forces corresponding to four types of perturbations to an electrostatic potential field, and establish the existance of an equilibrium configuration using a fixed-point argument, under the assumption that the change in the ionic strength and charges due to the additional molecules causing the deformation are sufficiently small. The results are valid for elastic models with arbitrarily complex dielectric interfaces and cavities, and can be generalized to large elastic deformation caused by high ionic strength, large charges, and strong external fields by using continuation methods. PMID:19461946

  14. A dielectric elastomer actuator coupled with water: snap-through instability and giant deformation

    NASA Astrophysics Data System (ADS)

    Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian

    2015-04-01

    A dielectric elastomer actuator is one class of soft actuators which can deform in response to voltage. Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we conduct experiments to investigate the performance of a dielectric elastomer actuator which is coupled with water. The membrane is subject to a constant water pressure, which is found to significantly affect the electromechanical behaviour of the membrane. When the pressure is small, the membrane suffers electrical breakdown before snap-through instability, and achieves a small voltage-induced deformation. When the pressure is higher to make the membrane near the verge of the instability, the membrane can achieve a giant voltage-induced deformation, with an area strain of 1165%. When the pressure is large, the membrane suffers pressure-induced snap-through instability and may collapse due to a large amount of liquid enclosed by the membrane. Theoretical analyses are conducted to interpret these experimental observations.

  15. Parameter determination of hereditary models of deformation of composite materials based on identification method

    NASA Astrophysics Data System (ADS)

    Kayumov, R. A.; Muhamedova, I. Z.; Tazyukov, B. F.; Shakirzjanov, F. R.

    2018-03-01

    In this paper, based on the analysis of some experimental data, a study and selection of hereditary models of deformation of reinforced polymeric composite materials, such as organic plastic, carbon plastic and a matrix of film-fabric composite, was pursued. On the basis of an analysis of a series of experiments it has been established that organo-plastic samples behave like viscoelastic bodies. It is shown that for sufficiently large load levels, the behavior of the material in question should be described by the relations of the nonlinear theory of heredity. An attempt to describe the process of deformation by means of linear relations of the theory of heredity leads to large discrepancies between the experimental and calculated deformation values. The use of the theory of accumulation of micro-damages leads to much better description of the experimental results. With the help of the hierarchical approach, a good approximation of the experimental values was successful only in the first three sections of loading.

  16. Deformation Behavior of Cementite in Deformed High Carbon Steel Observed by X-ray Diffraction with Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Taniyama, Akira; Takayama, Toru; Arai, Masahiro; Hamada, Takanari

    2017-10-01

    The deformation behavior of cementite in drawn pearlitic steel and spheroidal cementite steel, which have hypereutectoid composition, was investigated by X-ray diffraction using synchrotron radiation. A detailed analysis of diffraction peak profiles reveals that the deformation behavior strongly depends on the shape of cementite in steel. The unit cell volume of the cementite in the drawn pearlitic steel compressively and elastically deforms by 1.5 to 2 pct of the initial volume at the early stage of drawing, whereas that in the drawn spheroidal cementite steel is compressed by 1 pct of the initial volume even at a large true strain. The cementite in the drawn pearlitic steel fragments into small pieces with increasing the true strain, and these pieces change to amorphous cementite. The dislocation densities of the cementite in the drawn pearlitic steel and in the drawn spheroidal cementite steel are estimated to be 1013/m2 before drawing and 1014/m2 after drawing. Although the large strain is induced in the cementite by drawing, the maximum strain energy in the cementite is too small to contribute to the dissolution of the cementite.

  17. Formation of fold-and-thrust belts on Venus by thick-skinned deformation

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Parmentier, E. M.

    1995-10-01

    ON Venus, fold-and-thrust belts—which accommodate large-scale horizontal crustal convergence—are often located at the margins of kilometre-high plateaux1-5. Such mountain belts, typically hundreds of kilometres long and tens to hundreds of kilometres wide, surround the Lakshmi Planum plateau in the Ishtar Terra highland (Fig. 1). In explaining the origin of fold-and-thrust belts, it is important to understand the relative importance of thick-skinned deformation of the whole lithosphere and thin-skinned, large-scale overthrusting of near-surface layers. Previous quantitative analyses of mountain belts on Venus have been restricted to thin-skinned models6-8, but this style of deformation does not account for the pronounced topographic highs at the plateau edge. We propose that the long-wavelength topography of these venusian fold-and-thrust belts is more readily explained by horizontal shortening of a laterally heterogeneous lithosphere. In this thick-skinned model, deformation within the mechanically strong outer layer of Venus controls mountain building. Our results suggest that lateral variations in either the thermal or mechanical structure of the interior provide a mechanism for focusing deformation due to convergent, global-scale forces on Venus.

  18. The Effect of Matrix Composition on the Deformation and Failure Mechanisms in Metal Matrix Syntactic Foams during Compression

    PubMed Central

    Kádár, Csilla; Máthis, Kristián; Knapek, Michal; Chmelík, František

    2017-01-01

    The influence of the matrix material on the deformation and failure mechanisms in metal matrix syntactic foams was investigated in this study. Samples with commercially pure Al (Al) and Al-12 wt % Si (AlSi12) eutectic aluminum matrix, reinforced by hollow ceramic spheres, were compressed at room temperature. Concurrently, the acoustic emission response and the strain field development on the surface were monitored in-situ. The results indicate that the plastic deformation of the cell walls is the governing mechanism in the early stage of straining for both types of foams. At large stresses, deformation bands form both in the Al and AlSi12 foam. In Al foam, cell walls collapse in a large volume. In contrast, the AlSi12 foam is more brittle; therefore, the fracture of precipitates and the crushing of the matrix take place within a distinctive deformation band, along with an occurrence of a significant stress drop. The onset stress of ceramic sphere failure was shown to be not influenced by the matrix material. The in-situ methods provided complementary data which further support these results. PMID:28772556

  19. The Effect of Matrix Composition on the Deformation and Failure Mechanisms in Metal Matrix Syntactic Foams during Compression.

    PubMed

    Kádár, Csilla; Máthis, Kristián; Knapek, Michal; Chmelík, František

    2017-02-17

    The influence of the matrix material on the deformation and failure mechanisms in metal matrix syntactic foams was investigated in this study. Samples with commercially pure Al (Al) and Al-12 wt % Si (AlSi12) eutectic aluminum matrix, reinforced by hollow ceramic spheres, were compressed at room temperature. Concurrently, the acoustic emission response and the strain field development on the surface were monitored in-situ. The results indicate that the plastic deformation of the cell walls is the governing mechanism in the early stage of straining for both types of foams. At large stresses, deformation bands form both in the Al and AlSi12 foam. In Al foam, cell walls collapse in a large volume. In contrast, the AlSi12 foam is more brittle; therefore, the fracture of precipitates and the crushing of the matrix take place within a distinctive deformation band, along with an occurrence of a significant stress drop. The onset stress of ceramic sphere failure was shown to be not influenced by the matrix material. The in-situ methods provided complementary data which further support these results.

  20. The coupling effects of kinematics and flexibility on the Lagrangian dynamic formulation of open chain deformable links

    NASA Technical Reports Server (NTRS)

    Changizi, Koorosh

    1989-01-01

    A nonlinear Lagrangian formulation for the spatial kinematic and dynamic analysis of open chain deformable links consisting of cylindrical joints that connect pairs of flexible links is developed. The special cases of revolute or prismatic joint can also be obtained from the kinematic equations. The kinematic equations are described using a 4x4 matrix method. The configuration of each deformable link in the open loop kinematic chain is identified using a coupled set of relative joint variables, constant geometric parameters, and elastic coordinates. The elastic coordinates define the link deformation with respect to a selected joint coordinate system that is consistent with the kinematic constraints on the boundary of the deformable link. These coordinates can be introduced using approximation techniques such as Rayleigh-Ritz method, finite element technique or any other desired approach. The large relative motion between two neighboring links are defined by a set of joint coordinates which describes the large relative translational and rotational motion between two neighboring joint coordinate systems. The origin of these coordinate systems are rigidly attached to the neighboring links at the joint definition points along the axis of motion.

  1. Regional deformation of late Quaternary fluvial sediments in the Apennines foreland basin (Emilia, Italy)

    NASA Astrophysics Data System (ADS)

    Stefani, Marco; Minarelli, Luca; Fontana, Alessandro; Hajdas, Irka

    2018-04-01

    Our research is aimed at estimating the vertical deformation affecting late Quaternary units accumulated into the foreland basin of the Northern Apennines chain. Beneath the study alluvial plain, compressive fault-fold structures are seismically active. We reconstructed the stratigraphic architecture and the depositional evolution of the alluvial deposits, which accumulated in the first 40 m of subsurface, through the last 45,000 years, from before the Last Glacial Maximum to the present. A 58 km-long stratigraphic profile was correlated from the foothill belt near Bologna to the vicinity of the Po River. The analysis of the profile documents subsidence movements through the last 12,000 years, exceeding - 18 m in syncline areas, with subsidence rates of at least 1.5 m/ka. Anticlines areas experienced a much lower subsidence than the syncline ones.

  2. Effects of freezing-induced cell-fluid-matrix interactions on the cells and extracellular matrix of engineered tissues.

    PubMed

    Teo, Ka Yaw; DeHoyos, Tenok O; Dutton, J Craig; Grinnell, Frederick; Han, Bumsoo

    2011-08-01

    The two most significant challenges for successful cryopreservation of engineered tissues (ETs) are preserving tissue functionality and controlling highly tissue-type dependent preservation outcomes. In order to address these challenges, freezing-induced cell-fluid-matrix interactions should be understood, which determine the post-thaw cell viability and extracellular matrix (ECM) microstructure. However, the current understanding of this tissue-level biophysical interaction is still limited. In this study, freezing-induced cell-fluid-matrix interactions and their impact on the cells and ECM microstructure of ETs were investigated using dermal equivalents as a model ET. The dermal equivalents were constructed by seeding human dermal fibroblasts in type I collagen matrices with varying cell seeding density and collagen concentration. While these dermal equivalents underwent an identical freeze/thaw condition, their spatiotemporal deformation during freezing, post-thaw ECM microstructure, and cellular level cryoresponse were characterized. The results showed that the extent and characteristics of freezing-induced deformation were significantly different among the experimental groups, and the ETs with denser ECM microstructure experienced a larger deformation. The magnitude of the deformation was well correlated to the post-thaw ECM structure, suggesting that the freezing-induced deformation is a good indicator of post-thaw ECM structure. A significant difference in the extent of cellular injury was also noted among the experimental groups, and it depended on the extent of freezing-induced deformation of the ETs and the initial cytoskeleton organization. These results suggest that the cells have been subjected to mechanical insult due to the freezing-induced deformation as well as thermal insult. These findings provide insight on tissue-type dependent cryopreservation outcomes, and can help to design and modify cryopreservation protocols for new types of tissues from a pre-developed cryopreservation protocol. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    NASA Astrophysics Data System (ADS)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  4. Deformation and thermal histories of ordinary chondrites: Evidence for post-deformation annealing and syn-metamorphic shock

    NASA Astrophysics Data System (ADS)

    Ruzicka, Alex; Hugo, Richard; Hutson, Melinda

    2015-08-01

    We show that olivine microstructures in seven metamorphosed ordinary chondrites of different groups studied with optical and transmission electron microscopy can be used to evaluate the post-deformation cooling setting of the meteorites, and to discriminate between collisions affecting cold and warm parent bodies. The L6 chondrites Park (shock stage S1), Bruderheim (S4), Leedey (S4), and Morrow County (S5) were affected by variable shock deformation followed by relatively rapid cooling, and probably cooled as fragments liberated by impact in near-surface settings. In contrast, Kernouvé (H6 S1), Portales Valley (H6/7 S1), and MIL 99301 (LL6 S1) appear to have cooled slowly after shock, probably by deep burial in warm materials. In these chondrites, post-deformation annealing lowered apparent optical strain levels in olivine. Additionally, Kernouvé, Morrow County, Park, MIL 99301, and possibly Portales Valley, show evidence for having been deformed at an elevated temperature (⩾800-1000 °C). The high temperatures for Morrow County can be explained by dynamic heating during intense shock, but Kernouvé, Park, and MIL 99301 were probably shocked while the H, L and LL parent bodies were warm, during early, endogenically-driven thermal metamorphism. Thus, whereas the S4 and S5 chondrites experienced purely shock-induced heating and cooling, all the S1 chondrites examined show evidence for static heating consistent with either syn-metamorphic shock (Kernouvé, MIL 99301, Park), post-deformation burial in warm materials (Kernouvé, MIL 99301, Portales Valley), or both. The results show the pitfalls in relying on optical shock classification alone to infer an absence of shock and to construct cooling stratigraphy models for parent bodies. Moreover, they provide support for the idea that "secondary" metamorphic and "tertiary" shock processes overlapped in time shortly after the accretion of chondritic planetesimals, and that impacts into warm asteroidal bodies were common.

  5. Large deformation frictional contact analysis with immersed boundary method

    NASA Astrophysics Data System (ADS)

    Navarro-Jiménez, José Manuel; Tur, Manuel; Albelda, José; Ródenas, Juan José

    2018-01-01

    This paper proposes a method of solving 3D large deformation frictional contact problems with the Cartesian Grid Finite Element Method. A stabilized augmented Lagrangian contact formulation is developed using a smooth stress field as stabilizing term, calculated by Zienckiewicz and Zhu Superconvergent Patch Recovery. The parametric definition of the CAD surfaces (usually NURBS) is considered in the definition of the contact kinematics in order to obtain an enhanced measure of the contact gap. The numerical examples show the performance of the method.

  6. Effects of membrane deformability and bond formation/dissociation rates on adhesion dynamics of a spherical capsule in shear flow.

    PubMed

    Zhang, Ziying; Du, Jun; Wei, Zhengying; Wang, Zhen; Li, Minghui

    2018-02-01

    Cellular adhesion plays a critical role in biological systems and biomedical applications. Cell deformation and biophysical properties of adhesion molecules are of significance for the adhesion behavior. In the present work, dynamic adhesion of a deformable capsule to a planar substrate, in a linear shear flow, is numerically simulated to investigate the combined influence of membrane deformability (quantified by the capillary number) and bond formation/dissociation rates on the adhesion behavior. The computational model is based on the immersed boundary-lattice Boltzmann method for the capsule-fluid interaction and a probabilistic adhesion model for the capsule-substrate interaction. Three distinct adhesion states, detachment, rolling adhesion and firm adhesion, are identified and presented in a state diagram as a function of capillary number and bond dissociation rate. The impact of bond formation rate on the state diagram is further investigated. Results show that the critical bond dissociation rate for the transition of rolling or firm adhesion to detachment is strongly related to the capsule deformability. At the rolling-adhesion state, smaller off rates are needed for larger capillary number to increase the rolling velocity and detach the capsule. In contrast, the critical off rate for firm-to-detach transition slightly increases with the capillary number. With smaller on rate, the effect of capsule deformability on the critical off rates is more pronounced and capsules with moderate deformability are prone to detach by the shear flow. Further increasing of on rate leads to large expansion of both rolling-adhesion and firm-adhesion regions. Even capsules with relatively large deformability can maintain stable rolling adhesion at certain off rate.

  7. Perioperative Major Non-neurological Complications in 105 Patients Undergoing Posterior Vertebral Column Resection Procedures for Severe Rigid Deformities.

    PubMed

    Wang, Yingsong; Xie, Jingming; Zhao, Zhi; Zhang, Ying; Li, Tao; Bi, Ni; Liu, Zhou; Chen, Leijie; Shi, Zhiyue

    2015-08-15

    Retrospective study. To analyze the perioperative major non-neurological complications (MNNCs) in posterior vertebral column resection (PVCR) procedures for severe rigid deformities and to identify the factors that may increase the risk. Although surgeons constantly attempted to increase the corrective efficacy and neurological safety after PVCR, there are still significant risks of major and potentially life-threatening complications. A total of 105 consecutive patients with severe rigid deformity who underwent 1-stage PVCR at a single center from 2004 to 2013 were reviewed. The demographic data, medical and surgical histories, perioperative and final follow-up radiographical measurements, and prevalence of perioperative MNNCs were reviewed. The mean age of patients at the time of surgery was 18.9 years (range: 10-45 yr). The major curve of scoliosis was 108.9 ± 25.5 preoperatively and 37.2 ± 16.8 at the final follow-up, and segmental kyphosis was from 89.8 ± 31.1 to 30.4 ± 15.3. There were 31 MNNCs in 24 patients: 16 respiratory complications in 13 patients, 9 cardiovascular adverse events in 7 cases, 1 malignant hyperthermia, and 1 optic deficit. There were 3 patients with wound infection, and 1 of them had to undergo partial removal of the implant for infection control. One patient with neurofibromatosis died 1 day after operation. Factors that showed no relationships with an increased prevalence of MNNCs were age, sex, presence of cardiac disease or neural axis malformation, and both sagittal and coronal correction rate. Patients with T6 and upper resected level, undergoing PVCR at the early period, showed a trend toward more MNNCs encountered. Moreover, nonidiopathic deformity, large scoliotic curve greater than 150°, percent predicated forced vital capacity and forced expiratory volume in 1 second (FEV1.0) less than 40%, and estimated blood loss volume more than 5000 mL were identified as risk factors associated with MNNCs. Patients who had undergone PVCR experienced expected higher rate of MNNCs, with an overall prevalence of 22.9%. When considering PVCR, it is important to recognize the significantly higher inherent risks and provide appropriate preoperative counseling on the risks and benefits of surgery. 3.

  8. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junsong; Hao, Shijie; Jiang, Daqiang

    This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrixmore » and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.« less

  9. Review of severe deformation recommended practice through analyses - comparison of two cab car end frame designs

    DOT National Transportation Integrated Search

    2005-03-16

    Non-linear large deformation analyses have been conducted : to evaluate the performance of the cab car corner and collision : posts of the Federal Railroad Administration's (FRA) : sponsored state-of-the-art (SOA) end frame design and the : Bombardie...

  10. Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Bastow, I. D.; Gilligan, A.; Watson, E.; Darbyshire, F. A.; Levin, V. L.; Menke, W. H.; Lane, V.; Boyce, A.; Liddell, M. V.; Petrescu, L.; Hawthorn, D.

    2016-12-01

    Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (φ ) and the delay time between the fast and slow split shear waves (δt ) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (φ , δt ) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥ 100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of > 1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.

  11. Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Gilligan, Amy; Bastow, Ian D.; Watson, Emma; Darbyshire, Fiona A.; Levin, Vadim; Menke, William; Lane, Victoria; Hawthorn, David; Boyce, Alistair; Liddell, Mitchell V.; Petrescu, Laura

    2016-08-01

    Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (ϕ) and the delay time between the fast and slow split shear waves (δt) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (ϕ, δt) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of >1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.

  12. Fabrics and geochronology of the Wushan ductile shear zone: Tectonic implications for the Shangdan suture zone in the Qinling orogen, Central China

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Sun, Shengshi; Dong, Yunpeng; Yang, Zhao; Liu, Xiaoming; He, Dengfeng

    2017-04-01

    The ductile shearing along the Shangdan suture zone during the Paleozoic time is a key to understand the collisional deformation and tectonic regime of amalgamation between the North China Block and the South China Blocks. The Wushan ductile shear zone, a branch of the Shangdan suture, records mylonitic deformation that affected granitic and felsic rocks outcropping in an over 1 km wide belt in the western Qinling Orogenic belt. Shear sense indicators and kinematic vorticity number (0.79-0.99) of the mylonites reveal a dextral shear deformation. The quartz c-axis fabrics indicate activation of combined basal and rhomb slip, prism slip and prism slip. The dynamic recrystallization of quartz is accommodated by combined subgrain rotation and grain boundary migration. These characteristics suggest that the mylonites experienced ductile shear deformation under amphibolite facies conditions at temperatures of 500-650 C. Zircons from granitic mylonite yield a U-Pb age of 910 ± 4.8 Ma, which represents the formation age of the protolith of the mylonite. The ductile shear zone was intruded by a granitic dyke, which yields a zircon U-Pb age of 403 ± 3.5 Ma constraining the minimum age of the ductile shear deformation. Together with regional geology and available geochronological data, these structural characteristics and ages indicate that the Wushan ductile shear zone was formed by dextral shearing following the N-S shortening as a result of collision between the North China and South China blocks along the Shangdan suture.

  13. Fabrics and geochronology of the Wushan ductile shear zone: Tectonic implications for the Shangdan suture zone in the Qinling orogen, Central China

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Sun, Shengsi; Dong, Yunpeng; Yang, Zhao; Liu, Xiaoming; He, Dengfeng

    2017-05-01

    The ductile shearing along the Shangdan suture zone during the Paleozoic time is a key to understand the collisional deformation and tectonic regime of amalgamation between the North China Block and the South China Blocks. The Wushan ductile shear zone, a branch of the Shangdan suture, records mylonitic deformation that affected granitic and felsic rocks outcropping in an over 1 km wide belt in the western Qinling Orogenic belt. Shear sense indicators and kinematic vorticity number (0.79-0.99) of the mylonites reveal a dextral shear deformation. The quartz c-axis fabrics indicate activation of combined basal and rhomb slip, prism slip and prism slip. The dynamic recrystallization of quartz is accommodated by combined subgrain rotation and grain boundary migration. These characteristics suggest that the mylonites experienced ductile shear deformation under amphibolite facies conditions at temperatures of ∼500-650 °C. Zircons from granitic mylonite yield a U-Pb age of 910 ± 4.8 Ma, which represents the formation age of the protolith of the mylonite. The ductile shear zone was intruded by a granitic dyke, which yields a zircon U-Pb age of 403 ± 3.5 Ma constraining the minimum age of the ductile shear deformation. Together with regional geology and available geochronological data, these structural characteristics and ages indicate that the Wushan ductile shear zone was formed by dextral shearing following the N-S shortening as a result of collision between the North China and South China blocks along the Shangdan suture.

  14. A 2D Fourier tool for the analysis of photo-elastic effect in large granular assemblies

    NASA Astrophysics Data System (ADS)

    Leśniewska, Danuta

    2017-06-01

    Fourier transforms are the basic tool in constructing different types of image filters, mainly those reducing optical noise. Some DIC or PIV software also uses frequency space to obtain displacement fields from a series of digital images of a deforming body. The paper presents series of 2D Fourier transforms of photo-elastic transmission images, representing large pseudo 2D granular assembly, deforming under varying boundary conditions. The images related to different scales were acquired using the same image resolution, but taken at different distance from the sample. Fourier transforms of images, representing different stages of deformation, reveal characteristic features at the three (`macro-`, `meso-` and `micro-`) scales, which can serve as a data to study internal order-disorder transition within granular materials.

  15. Progressive damage and rupture in polymers

    NASA Astrophysics Data System (ADS)

    Talamini, Brandon; Mao, Yunwei; Anand, Lallit

    2018-02-01

    Progressive damage, which eventually leads to failure, is ubiquitous in biological and synthetic polymers. The simplest case to consider is that of elastomeric materials which can undergo large reversible deformations with negligible rate dependence. In this paper we develop a theory for modeling progressive damage and rupture of such materials. We extend the phase-field method, which is widely used to describe the damage and fracture of brittle materials, to elastomeric materials undergoing large deformations. A central feature of our theory is the recognition that the free energy of elastomers is not entirely entropic in nature - there is also an energetic contribution from the deformation of the bonds in the chains. It is the energetic part in the free energy which is the driving force for progressive damage and fracture.

  16. Recent advances in understanding the characteristics of seismogenic intraplate deformation in Australia, and the potential for using global analogues

    NASA Astrophysics Data System (ADS)

    Clark, Dan; McPherson, Andrew

    2017-04-01

    Continental intraplate Australia can be divided according to crustal type in terms of seismogenic potential and fault characteristics. Three 'superdomains' are recognized, representing cratonic, non-cratonic and extended crust. In the Australian context, cratonic crust is Archaean to Proterozoic in age and has not been significantly tectonically reactivated during the Phanerozoic Eon. Non-cratonic crust includes Phanerozoic accretionary terranes and older crust significantly deformed during Phanerozoic tectonic events. Extended crust includes any crustal type that has been significantly extended during the Mesozoic and Cenozoic, and often to a lesser degree in the Paleozoic. Aulacogens and passive margins fit into this category. Cratonic crust is characterized by the thickest lithosphere and has the lowest seismogenic potential, despite all eight documented historic surface ruptures in Australia having occurred within this category. Little strain accumulation is observed on individual faults and isolated single-rupture scarps are common. Where recurrence has been demonstrated, average slip rates of only a few metres per million years are indicated. In contrast, extended crust is associated with thinner lithosphere, better connection between faults, and strain localization on faults which can result in regional relief-building. The most active faults have accumulated several hundred metres of slip under the current crustal stress regime at rates of several tens of metres per million years. Non-cratonic crust is typically intermediate in lithospheric thickness and seismogenic character. The more active faults have accumulated tens to a couple of hundreds of metres of slip, at rates of a few to a few tens of metres per million years. Across all superdomains paleoseismological data suggest that the largest credible earthquakes are likely to exceed those experienced in historic times. In general, the concept of large earthquake recurrence might only be meaningful in relation to individual faults in non-cratonic and extended superdomains. However, large earthquake recurrence and slip are demonstrably not evenly distributed in time. Within the limitations of the sparse paleoseismological data, temporal clustering of large events appears to be a common (perhaps ubiquitous?) characteristic. Over the last few decades, permanent and campaign GPS studies have failed to detect a tectonic deformation signal from which a strain budget could be calculated. Recent studies have used these observations, amongst others, to propose an orders of magnitude difference in the timescales of strain accumulation and seismogenic strain release in intraplate environments - i.e. clusters of large events deplete long-lived pools of lithospheric strain. The recognition of a relationship between crustal type/lithospheric thickness and seismogenic potential in Australia provides a framework for assessing whether ergodic substitution (i.e. global analogue studies) might be warranted as a tool to better understand intraplate seismicity worldwide. Further research is required to assess how variation in crustal stress regime may influence faulting characteristics within different superdomains.

  17. Material parameters that determine the surface accuracy of large astronomical mirrors

    NASA Astrophysics Data System (ADS)

    Amur, G. I.

    1983-03-01

    The design and manufacture of large astronomical mirrors are examined from both theoretical and practical perspectives. The effects of birefringence, tool-load relief, cord position, and temperature gradient on the surface quality are assessed quantitatively and discussed in terms of material choice and fabrication technique. It is shown that a single cord positioned horizontally produces only minimum image distortion. Formulas for calculating the deformation of the wave front by the mirror surface due to birefringence difference, the optimum load relief, and the deformation temperature, are presented. Graphs of important relationships and a table listing the diameters and surface parameters of recently built large telescopes are provided.

  18. Influence of multiple clinical use on fatigue resistance of ProTaper rotary nickel-titanium instruments.

    PubMed

    Vieira, E P; França, E C; Martins, R C; Buono, V T L; Bahia, M G A

    2008-02-01

    To examine the influence of clinical use on the occurrence of deformation and fracture and on the fatigue resistance of ProTaper rotary instruments. Root canal treatments were performed on patients using the ProTaper rotary system. Ten sets of instruments were used by an experienced endodontist, each set in five molars. Another 10 sets of instruments were used by the same operator, each set in eight molars. In addition, 10 sets of instruments were used, each set in five molars, by undergraduate students with no clinical experience with the system. After clinical use, S1, S2, F1 and F2 instruments were analysed for damage by optical and scanning electron microscopy. The used sets, along with a control group of 12 sets of new instruments, were then tested in a bench device for fatigue resistance. The use of the ProTaper rotary instruments by an experienced endodontist allowed for the cleaning and shaping of the root canal system of up to eight molars without fracture. During the students work, six instruments fractured. Fatigue resistance decreased upon clinical use for all instruments analysed. Fatigue resistance of used instruments was reduced, but no significant change was observed amongst the instruments used for shaping the canals of five and eight molars. Operator experience affected the occurrence of fracture and plastic deformation during shaping.

  19. u-w formulation for dynamic problems in large deformation regime solved through an implicit meshfree scheme

    NASA Astrophysics Data System (ADS)

    Navas, Pedro; Sanavia, Lorenzo; López-Querol, Susana; Yu, Rena C.

    2017-12-01

    Solving dynamic problems for fluid saturated porous media at large deformation regime is an interesting but complex issue. An implicit time integration scheme is herein developed within the framework of the u-w (solid displacement-relative fluid displacement) formulation for the Biot's equations. In particular, liquid water saturated porous media is considered and the linearization of the linear momentum equations taking into account all the inertia terms for both solid and fluid phases is for the first time presented. The spatial discretization is carried out through a meshfree method, in which the shape functions are based on the principle of local maximum entropy LME. The current methodology is firstly validated with the dynamic consolidation of a soil column and the plastic shear band formulation of a square domain loaded by a rigid footing. The feasibility of this new numerical approach for solving large deformation dynamic problems is finally demonstrated through the application to an embankment problem subjected to an earthquake.

  20. A comprehensive study of bubble inflation in vacuum-assisted thermoforming based on whole-field strain measurements

    NASA Astrophysics Data System (ADS)

    Ayadi, A.; Lacrampe, M.-F.; Krawczak, P.

    2018-05-01

    This paper focuses on the potential use of stereo-DIC in thermoforming conditions to monitor large deformations of softened thermoplastic sheets posteriori to the sagging phenomenon. The study concerns HIPS sheets which are softened by the radiative heat-transfer mode then stretched by inflation of compressed-air for 1.5 s to form a large and quasi-spherical dome of 250 mm in diameter. While the bubble-inflation operation leads to large deformations of the softened sheet, it shows transitional geometrical instabilities due to the initial surface sagging. When the temperature-induced surface deformations are inaccessible by the stereoscopic system during the heating operation, the geometrical instabilities limit the identification of the reference of displacements which affects the accuracy of results based on image-correlation computations. To compare between the principal strains assessed from bubble-inflation tests conducted at different thermal conditions, a method for filtering these instabilities is developed in this study.

  1. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment.

    PubMed

    Mietke, Alexander; Otto, Oliver; Girardo, Salvatore; Rosendahl, Philipp; Taubenberger, Anna; Golfier, Stefan; Ulbricht, Elke; Aland, Sebastian; Guck, Jochen; Fischer-Friedrich, Elisabeth

    2015-11-17

    Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment

    PubMed Central

    Mietke, Alexander; Otto, Oliver; Girardo, Salvatore; Rosendahl, Philipp; Taubenberger, Anna; Golfier, Stefan; Ulbricht, Elke; Aland, Sebastian; Guck, Jochen; Fischer-Friedrich, Elisabeth

    2015-01-01

    Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible. PMID:26588562

  3. An electromechanical based deformable model for soft tissue simulation.

    PubMed

    Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan

    2009-11-01

    Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.

  4. Deformable and conformal silk hydrogel inverse opal

    PubMed Central

    Kim, Sookyoung; Kim, Sunghwan

    2017-01-01

    Photonic crystals (PhCs) efficiently manipulate photons at the nanoscale. Applying these crystals to biological tissue that has been subjected to large deformation and humid environments can lead to fascinating bioapplications such as in vivo biosensors and artificial ocular prostheses. These applications require that these PhCs have mechanical durability, deformability, and biocompatibility. Herein, we introduce a deformable and conformal silk hydrogel inverse opal (SHIO); the photonic lattice of this 3D PhC can be deformed by mechanical strain. This SHIO is prepared by the UV cross-linking of a liquid stilbene/silk solution, to give a transparent and elastic hydrogel. The pseudophotonic band gap (pseudo-PBG) of this material can be stably tuned by deformation of the photonic lattice (stretching, bending, and compressing). Proof-of-concept experiments demonstrate that the SHIO can be applied as an ocular prosthesis for better vision, such as that provided by the tapeta lucida of nocturnal or deep-sea animals. PMID:28559327

  5. Role of hexadecapole deformation of projectile 28Si in heavy-ion fusion reactions near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Hagino, K.; Rowley, N.

    2018-06-01

    The vast knowledge regarding the strong influence of quadrupole deformation β2 of colliding nuclei in heavy-ion sub-barrier fusion reactions inspires a desire to quest the sensitivity of fusion dynamics to higher order deformations, such as β4 and β6 deformations. However, such studies have rarely been carried out, especially for deformation of projectile nuclei. In this article, we investigated the role of β4 of the projectile nucleus in the fusion of the 28Si+92Zr system. We demonstrated that the fusion barrier distribution is sensitive to the sign and value of the β4 parameter of the projectile, 28Si, and confirmed that the 28Si nucleus has a large positive β4. This study opens an indirect way to estimate deformation parameters of radioactive nuclei using fusion reactions, which is otherwise difficult because of experimental constraints.

  6. Features of structural response of mechanically loaded crystallites to irradiation

    NASA Astrophysics Data System (ADS)

    Korchuganov, Aleksandr V.

    2015-10-01

    A molecular dynamics method is employed to investigate the origin and evolution of plastic deformation in elastically deformed iron and vanadium crystallites due to atomic displacement cascades. Elastic stress states of crystallites result from different degrees of specimen deformation. Crystallites are deformed under constant-volume conditions. Atomic displacement cascades with the primary knock-on atom energy up to 50 keV are generated in loaded specimens. It is shown that irradiation may cause not only the Frenkel pair formation but also large-scale structural rearrangements outside the irradiated area, which prove to be similar to rearrangements proceeding by the twinning mechanism in mechanically loaded specimens.

  7. MEMS deformable mirror for wavefront correction of large telescopes

    NASA Astrophysics Data System (ADS)

    Manhart, Sigmund; Vdovin, Gleb; Collings, Neil; Sodnik, Zoran; Nikolov, Susanne; Hupfer, Werner

    2017-11-01

    A 50 mm diameter membrane mirror was designed and manufactured at TU Delft. It is made from bulk silicon by micromachining - a technology primarily used for micro-electromechanical systems (MEMS). The mirror unit is equipped with 39 actuator electrodes and can be electrostatically deformed to correct wavefront errors in optical imaging systems. Performance tests on the deformable mirror were carried out at Astrium GmbH using a breadboard setup with a wavefront sensor and a closed-loop control system. It was found that the deformable membrane mirror is well suited for correction of low order wavefront errors as they must be expected in lightweighted space telescopes.

  8. Deformable Hollow Periodic Mesoporous Organosilica Nanocapsules for Significantly Improved Cellular Uptake.

    PubMed

    Teng, Zhaogang; Wang, Chunyan; Tang, Yuxia; Li, Wei; Bao, Lei; Zhang, Xuehua; Su, Xiaodan; Zhang, Fan; Zhang, Junjie; Wang, Shouju; Zhao, Dongyuan; Lu, Guangming

    2018-01-31

    Mesoporous solids have been widely used in various biomedical areas such as drug delivery and tumor therapy. Although deformability has been recognized as a prime important characteristic influencing cellular uptake, the synthesis of deformable mesoporous solids is still a great challenge. Herein, deformable thioether-, benzene-, and ethane-bridged hollow periodic mesoporous organosilica (HPMO) nanocapsules have successfully been synthesized for the first time by a preferential etching approach. The prepared HPMO nanocapsules possess uniform diameters (240-310 nm), high surface areas (up to 878 m 2 ·g -1 ), well-defined mesopores (2.6-3.2 nm), and large pore volumes (0.33-0.75 m 3 ·g -1 ). Most importantly, the HPMO nanocapsules simultaneously have large hollow cavities (164-270 nm), thin shell thicknesses (20-38 nm), and abundant organic moiety in the shells, which endow a lower Young's modulus (E Y ) of 3.95 MPa than that of solid PMO nanoparticles (251 MPa). The HPMOs with low E Y are intrinsically flexible and deformable in the solution, which has been well-characterized by liquid cell electron microscopy. More interestingly, it is found that the deformable HPMOs can easily enter into human breast cancer MCF-7 cells via a spherical-to-oval morphology change, resulting in a 26-fold enhancement in cellular uptake (43.1% cells internalized with nanocapsules versus 1.65% cells with solid counterparts). The deformable HPMO nanocapsules were further loaded with anticancer drug doxorubicin (DOX), which shows high killing effects for MCF-7 cells, demonstrating the promise for biomedical applications.

  9. Heterotic flux tubes in N=2 supersymmetric QCD with N=1 preserving deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300

    2008-06-15

    We consider non-Abelian Bogomol'nyi-Prasad-Sommerfield-saturated flux tubes (strings) in N=2 supersymmetric QCD deformed by superpotential terms of a special type breaking N=2 supersymmetry down to N=1. Previously it was believed that world sheet supersymmetry is accidentally enhanced due to the facts that N=(1,1) supersymmetry is automatically elevated up to N=(2,2) on CP(N-1) and, at the same time, there are no N=(0,2) generalizations of the bosonic CP(N-1) model. Edalati and Tong noted that the target space is in fact CP(N-1)xC rather than CP(N-1). This allowed them to suggest a heterotic N=(0,2) sigma model, with the CP(N-1) target space for bosonic fields andmore » an extra right-handed fermion which couples to the fermion fields of the N=(2,2) CP(N-1) model. We derive the heterotic N=(0,2) world sheet model directly from the bulk theory. The relation between the bulk and world sheet deformation parameters we obtain does not coincide with that suggested by Edalati and Tong at large values of the deformation parameter. For polynomial deformation superpotentials in the bulk we find nonpolynomial response in the world sheet model. We find a geometric representation for the heterotic model. Supersymmetry is proven to be spontaneously broken for small deformations (at the quantum level). This confirms Tong's conjecture. A proof valid for large deformations will be presented in the subsequent publication.« less

  10. Viscoelastic-cycle model of interseismic deformation in the northwestern United States

    USGS Publications Warehouse

    Pollitz, F.F.; McCrory, Patricia; Wilson, Doug; Svarc, Jerry; Puskas, Christine; Smith, Robert B.

    2010-01-01

    We apply a viscoelastic cycle model to a compilation of GPS velocity fields in order to address the kinematics of deformation in the northwestern United States. A viscoelastic cycle model accounts for time-dependent deformation following large crustal earthquakes and is an alternative to block models for explaining the interseismic crustal velocity field. Building on the approach taken in Pollitz et al., we construct a deformation model for the entire western United States-based on combined fault slip and distributed deformation-and focus on the implications for the Mendocino triple junction (MTJ), Cascadia megathrust, and western Washington. We find significant partitioning between strike-slip and dip-slip motion near the MTJ as the tectonic environment shifts from northwest-directed shear along the San Andreas fault system to east-west convergence along the Juan de Fuca Plate. By better accounting for the budget of aseismic and seismic slip along the Cascadia subduction interface in conjunction with an assumed rheology, we revise a previous model of slip for the M~ 9 1700 Cascadia earthquake. In western Washington, we infer slip rates on a number of strike-slip and dip-slip faults that accommodate northward convergence of the Oregon Coast block and northwestward convergence of the Juan de Fuca Plate. Lateral variations in first order mechanical properties (e.g. mantle viscosity, vertically averaged rigidity) explain, to a large extent, crustal strain that cannot be rationalized with cyclic deformation on a laterally homogeneous viscoelastic structure. Our analysis also shows that present crustal deformation measurements, particularly with the addition of the Plate Boundary Observatory, can constrain such lateral variations.

  11. Use of Geophysical and Remote Sensing Data for Assessment of Aquifer Depletion and Related Land Deformation

    NASA Astrophysics Data System (ADS)

    Othman, Abdullah; Sultan, Mohamed; Becker, Richard; Alsefry, Saleh; Alharbi, Talal; Gebremichael, Esayas; Alharbi, Hassan; Abdelmohsen, Karem

    2018-01-01

    An integrated approach [field, Interferometric Synthetic Aperture Radar (InSAR), hydrogeology, geodesy, and spatial analysis] was adopted to identify the nature, intensity, and spatial distribution of deformational features (sinkholes, fissures, differential settling) reported over fossil aquifers in arid lands, their controlling factors, and possible remedies. The Lower Mega Aquifer System (area 2 × 106 km2) in central and northern Arabia was used as a test site. Findings suggest that excessive groundwater extraction from the fossil aquifer is the main cause of deformation: (1) deformational features correlated spatially and/or temporally with increased agricultural development and groundwater extraction, and with a decline in water levels and groundwater storage (- 3.7 ± 0.6 km3/year); (2) earthquake events (years 1985-2016; magnitude 1-5) are largely (65% of reported earthquakes) shallow (1-5 km) and increased from 1 event/year in the early 1980s (extraction 1 km3/year), up to 13 events/year in the 1990s (average annual extraction > 6.4 km3). Results indicate that faults played a role in localizing deformation given that deformational sites and InSAR-based high subsidence rates (- 4 to - 15 mm/year) were largely found within, but not outside of, NW-SE-trending grabens bound by the Kahf fault system. Findings from the analysis of Gravity Recovery and Climate Experiment solutions indicate that sustainable extraction could be attained if groundwater extraction was reduced by 3.5-4 km3/year. This study provides replicable and cost-effective methodologies for optimum utilization of fossil aquifers and for minimizing deformation associated with their use.

  12. Measuring Crustal Deformation in the American West.

    ERIC Educational Resources Information Center

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    Suggests that there is a close relationship between deformation in the western United States and the large-scale motions of tectonic plates. Introduces very-long-baseline interferometry (VLBI) as one of the space-geodetic techniques, vector addition of the VLBI data and geological data, and a new geodetic network. (YP)

  13. Binary asteroid orbit evolution due to primary shape deformation

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Jacobson, Seth A.; Davis, Alex

    2017-10-01

    About a sixth of all small asteroid systems are binary [Margot et al., Science, 2002]. Many binary asteroids consist of an elongated synchronous secondary body orbiting a fast-rotating spheroidal primary body with ridges on its equator. The primary in such systems has experienced a long-term spin-up due to the YORP effect [Vokrouhlick'y et al., Asteroid IV, 2015]. This spin-up process can make the primary reach its spin barrier inducing shape deformation processes that ease the structural condition for failure inside the primary [e.g., Holsapple, Icarus, 2010]. Earlier works have shown that structural heterogeneities in the primary such as the shape and density distribution induce asymmetric deformation [Sánchez and Scheeres, Icarus, 2016]. Here, we investigate how asymmetric shape deformation in the primary affects the mutual motion of a binary system. We use a dynamics model for an irregularly shaped binary system that accounts for possible deformation of the primary [Hirabayashi et al., LPSC, 2017]. In this model, we consider asymmetric deformation that occurs based on structural failure in the primary and thus it modifies the location of the center of mass of the system. Using 1999 KW4 as an example, we study a hypothetical case in which the primary is initially identical to the current shape [Ostro et al., Science, 2006] with an aspect ratio (AR) of 0.83 and then suddenly changes its shape to an AR of 0.76. The results show that the asymmetric deformation process and the shift of the center of mass excite the eccentricity of the mutual orbit. Considering that the original mutual orbit has an eccentricity of 0.0004, after the primary shape change the eccentricity reaches values up to 0.15. Also, since the gravity field is modified after deformation, the secondary’s spin is desynchronized from the mutual orbit. Since synchronicity is a requirement for the binary YORP (BYORP) effect, which modifies the semi-major axis of binary asteroids, a primary shape change temporarily pauses the BYORP effect, in effect lengthening the effective BYORP timescale.

  14. Insights on fluid-rock interaction evolution during deformation from fracture network geochemistry at reservoir-scale

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2015-04-01

    Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system. The lengthscale of the migration and the nature of invading fluids during these connections is different in every studied example, and can be related to the tectonic nature of the fold, along with the burial depth at the time of deformation. Thus, to decipher fluid-fracture relationships provides insights to better reconstruct the mechanisms of deformation at reservoir-scale.

  15. Studies of volcanoes of Alaska by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Z.; Wicks, C.; Dzurisin, D.; Thatcher, W.; Power, J.; ,

    2000-01-01

    Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes. This paper summarizes our recent: InSAR studies over the Alaska-Aleutian volcanoes, which include New Trident, Okmok, Akutan, Augustine, Shishaldin, and Westdahl volcanoes. The first InSAR surface deformation over the Alaska volcanoes was applied to New Trident. Preliminary InSAR study suggested that New Trident volcano experienced several centimeters inflation from 1993 to 1995. Using the InSAR technique, we studied the 1997 eruption of Okmok. We have measured ???1.4 m deflation during the eruption, ???20 cm pre-eruptive inflation during 1992 to 1995, and >10 cm post-eruptive inflation within a year after the eruption, and modeled the deformations using Mogi sources. We imaged the ground surface deformation associated with the 1996 seismic crisis over Akutan volcano. Although seismic swarm did not result in an eruption, we found that the western part of the volcano uplifted ???60 cm while the eastern part of the island subsided. The majority of the complex deformation field at the Akutan volcano was modeled by dike intrusion and Mogi inflation sources. Our InSAR results also indicate that the pyroclastic flows from last the last eruption have been undergoing contraction/subsidence at a rate of about 3 cm per year since 1992. InSAR measured no surface deformation before and during the 1999 eruption of Shishaldin and suggested the eruption may be a type of open system. Finally, we applied satellite radar interferometry to Westdahl volcano which erupted 1991 and has been quiet since. We discovered this volcano had inflated about 15 cm from 1993 to 1998. In summary, satellite radar interferometry can not only be used to study a volcanic eruption, but also to detect aseismic deformation at quiescent volcanoes preceding a seismic swarm; it is a useful technique to study volcanic eruptions as well as to guide scientists to better focus their monitoring efforts.

  16. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often in the range of millimetres to a very few centimetres and can be linked to annual groundwater fluctuations. Due to pore pressure variations HM coupling can influence seepage forces and effective stresses in the rock mass. Effective stress changes can adversely affect the stability and deformation behaviour of deep-seated rock slides by influencing the shear strength or the time dependent (viscous) material behaviour of the basal shear zone. The shear strength of active shear zones is often reasonably well described by Coulomb's law. In Coulomb's law the operative normal stresses to the shear surface/zone are effective stresses and hence pore pressures which should be taken into account reduces the shear strength. According to the time dependent material behaviour a few effective stress based viscous models exists which are able to consider pore pressures. For slowly moving rock slides HM coupling could be highly relevant when low-permeability clayey-silty shear zones (fault gouges) are existing. An important parameters therefore is the hydraulic diffusivity, which is controlled by the permeability and fluid-pore compressibility of the shear zone, and by fluid viscosity. Thus time dependent pore pressure diffusion in the shear zone can either control the stability condition or the viscous behaviour (creep) of the rock slide. Numerous cases studies show that HM coupling can effect deformability, shear strength and time dependent behaviour of fractured rock masses. A process-based consideration can be important to avoid unexpected impacts on infrastructures and to understand complex rock mass as well rock slide behaviour.

  17. Matrix deformation mechanisms in HP-LT tectonic mélanges — Microstructural record of jadeite blueschist from the Franciscan Complex, California

    NASA Astrophysics Data System (ADS)

    Wassmann, Sara; Stöckhert, Bernhard

    2012-09-01

    Exhumed high pressure-low temperature metamorphic mélanges of tectonic origin are believed to reflect high strain accumulated in large scale interplate shear zones during subduction. Rigid blocks of widely varying size are embedded in a weak matrix, which takes up the deformation and controls the rheology of the composite. The microfabrics of a highly deformed jadeite-blueschist from the Franciscan Complex, California, are investigated to help understand deformation mechanisms at depth. The specimen shows a transposed foliation with dismembered fold hinges and boudinage structures. Several generations of open fractures have been sealed to become veins at high-pressure metamorphic conditions. The shape of these veins, frequently restricted to specific layers, indicates distributed host rock deformation during and after sealing. Small cracks in jadeite and lawsonite are healed, with tiny quartz inclusions aligned along the former fracture surface. Large jadeite porphyroblasts show strain caps and strain shadows. Open fractures are sealed by quartz and new jadeite epitactically grown on the broken host. Monophase glaucophane aggregates consist of undeformed needles with a diameter between 0.1 and 2 μm, grown after formation of isoclinal folds. Only quartz microfabrics indicate some stage of crystal-plastic deformation, followed by annealing and grain growth. Aragonite in the latest vein generation shows retrogression to calcite along its rims. The entire deformation happened under HP-LT metamorphic conditions in the stability field of jadeite and quartz, at temperatures between 300 and 450 °C and pressures exceeding 1-1.4 GPa. The microfabrics indicate that dissolution precipitation creep was the predominant deformation mechanism, accompanied by brittle failure and vein formation at quasi-lithostatic pore fluid pressure. This indicates low flow strength and, combined with high strain rates expected for localized deformation between the plates, a very low viscosity of material in the interplate shear zone at a depth > 30-45 km.

  18. Perceived functional impact of abnormal facial appearance.

    PubMed

    Rankin, Marlene; Borah, Gregory L

    2003-06-01

    Functional facial deformities are usually described as those that impair respiration, eating, hearing, or speech. Yet facial scars and cutaneous deformities have a significant negative effect on social functionality that has been poorly documented in the scientific literature. Insurance companies are declining payments for reconstructive surgical procedures for facial deformities caused by congenital disabilities and after cancer or trauma operations that do not affect mechanical facial activity. The purpose of this study was to establish a large, sample-based evaluation of the perceived social functioning, interpersonal characteristics, and employability indices for a range of facial appearances (normal and abnormal). Adult volunteer evaluators (n = 210) provided their subjective perceptions based on facial physical appearance, and an analysis of the consequences of facial deformity on parameters of preferential treatment was performed. A two-group comparative research design rated the differences among 10 examples of digitally altered facial photographs of actual patients among various age and ethnic groups with "normal" and "abnormal" congenital deformities or posttrauma scars. Photographs of adult patients with observable congenital and posttraumatic deformities (abnormal) were digitally retouched to eliminate the stigmatic defects (normal). The normal and abnormal photographs of identical patients were evaluated by the large sample study group on nine parameters of social functioning, such as honesty, employability, attractiveness, and effectiveness, using a visual analogue rating scale. Patients with abnormal facial characteristics were rated as significantly less honest (p = 0.007), less employable (p = 0.001), less trustworthy (p = 0.01), less optimistic (p = 0.001), less effective (p = 0.02), less capable (p = 0.002), less intelligent (p = 0.03), less popular (p = 0.001), and less attractive (p = 0.001) than were the same patients with normal facial appearances. Facial deformity caused by trauma, congenital disabilities, and postsurgical sequelae present with significant adverse functional consequences. Facial deformities have a significant negative effect on perceptions of social functionality, including employability, honesty, and trustworthiness. Adverse perceptions of patients with facial deformities occur regardless of sex, educational level, and age of evaluator.

  19. Somma-Vesuvius ground deformation over the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Marturano, Aldo; Aiello, Giuseppe; Barra, Diana

    2013-04-01

    Vertical ground movements at Somma-Vesuvius during the last glacial cycle have been inferred from micropalaeontological and petrochemical analyses of rock samples from boreholes drilled at the archaeological sites of Herculaneum and Pompeii as well as on the apron of the volcano and the adjacent Sebeto and Sarno Valleys. Opposing movements occurred during the periods preceding and following the Last Glacial Maximum (LGM). The uplift began 20 ka ago with marine deposits rising several tens of metres up to 25 m a.s.l., recovering previous subsidence which occurred during the Late glacial period, suggesting a strict connection between volcano-tectonic and glacial cycles. Here we present the analysis of deposits predating the LGM, which confirms subsidence of the Campanian Plain where Mt. Somma-Vesuvius is located, shows variable surface loading effects and highlights the volcano-tectonic stages experienced by the volcano. The self-balancing mechanism of the volcanic system, evolving towards an explosive, subaerial activity 60 ka ago, is testified to by a large ground oscillation in phase with sea level change during the last glacial cycle.

  20. Experimental Techniques for Evaluating the Effects of Aging on Impact and High Strain Rate Properties of Triaxial Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas

    2010-01-01

    An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.

  1. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the GIII Swept-Wing Structure

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    The displacement transfer functions (DTFs) were applied to the GIII swept wing for the deformed shape prediction. The calculated deformed shapes are very close to the correlated finite element results as well as the measured data. The convergence study showed that using 17 strain stations, the wing-tip displacement prediction error was 1.6 percent, and that there is no need to use a large number of strain stations for G-III wing shape predictions.

  2. Weakening associated with the diaspore corundum dehydration reaction in metabauxites: an example from Naxos (Greece)

    NASA Astrophysics Data System (ADS)

    Urai, Janos L.; Feenstra, Anne

    2001-06-01

    Metabauxite lenses embedded in marble on Naxos consist of diasporites below the 420°C isograd, and dehydrate into corundum-rich rocks with increasing grades of metamorphism. While the diasporites are essentially undeformed, the corundum-rich rocks are strongly deformed, even though both diasporites and corundum-rich rocks are much stronger than the surrounding intensely deformed marbles. The observed structures can be explained as an effect of high fluid pressures during the prograde diaspore-corundum dehydration reaction, which causes dramatic temporary weakening of the metabauxites (to a strength comparable to that of the surrounding deforming marbles). Deformation of the metabauxite is thus largely restricted to the time span the phase transformation occurred, allowing the dehydrating bauxite mass to deform together with the surrounding marbles.

  3. a Research on Monitoring Surface Deformation and Relationships with Surface Parameters in Qinghai Tibetan Plateau Permafrost

    NASA Astrophysics Data System (ADS)

    Mi, S. J.; Li, Y. T.; Wang, F.; Li, L.; Ge, Y.; Luo, L.; Zhang, C. L.; Chen, J. B.

    2017-09-01

    The Qinghai Tibetan Plateau permafrost has been the largest permafrost region in middle-low latitude in the world for its high altitude. For the large area permafrost, especially surface deformation brought by it, have serious influence on the road engineering, road maintaining and regional economic development. Consequently, it is essential to monitor the surface deformation and study factors that influent it. We monitored an area named Wudaoliang from July 25, 2015 to June 1, 2016 and 15 Sentinel images were obtained during this time. The area we chose is about 35 kilometers long and 2 kilometers wide, and the national road 109 of China passes through the area. The traditional PS-INSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) method is not suitable because less historical images in the research area and leading to the number of PS (Persistent Scatterer) points is not enough to obtain accurate deformation results. Therefore, in this paper, we used another method which named QUASI-PSInSAR (QUASI Persistent Scatterer Interferometric Synthetic Aperture Radar) to acquire deformation for it has the advantage to weaken or eliminate the effects of spatial and temporal correlation, which has proved by other scholar. After processing 15 images in the SARproz software, we got the conclusions that, 1) the biggest deformation velocity in the whole area was about 127.9mm/year and about 109.3 mm/year in the road; 2) apparent deformation which have surface deformation more than 30mm/year was about 1.7Km in the road. Meanwhile, soil moisture(SM), Land surface temperature (LST) and surface water(SW), which are primary parameters of the land surface over the same time were reversed by using Sentinel data, Landsat data and ZY-3 data, respectively. After analyzing SM, LST , SW and deformation, we obtained that wet areas which had bigger SM, lower LST and more SW, had greater percentage of severe deformation than arid areas; besides, deformation pattern were different in arid areas and wet areas. During the research time, frost heaving firstly accounted for a large proportion both in the arid and wet areas with the decrease of downward radiation from July to December; after December, thaw settlement came into prominence with the increase downward radiation in the arid areas, while in the wet areas, surface put into diverse situations because of water transformation leading to severe deformation. In summary, soil moisture is an important factor that influences the surface deformation. This relationship between deformation process and soil moisture will be researched more in our further work.

  4. Dynamic model of intrusion of magma and/or magmatic fluids in the large-scale deformation source of the Campi Flegrei caldera (Italy).

    NASA Astrophysics Data System (ADS)

    Crescentini, Luca; Amoruso, Antonella; Luongo, Annamaria

    2015-04-01

    The Campi Flegrei (CF) caldera is located in a densely populated area close to Naples (Southern Italy). It is renowned as a site of continual slow vertical movements. After the last eruption in 1538, the caldera generally subsided until 1969 when minor uplift occurred. In the early 1970s this uplift became significant (~1.5 m max). A further large uplift episode occurred from 1982 to 1984 (~1.8 m max), and subsequently smaller uplift episodes have occurred since then. Amoruso et al. (2014a,b) have recently shown that the CF surface deformation field from 1980 to 2013 can be decomposed into two stationary parts. Large-scale deformation can be explained by a quasi-horizontal source, oriented NW to SE and mathematically represented by a pressurized finite triaxial ellipsoid (PTE) ~4 km deep, possibly related to the injection of magma and/or magmatic fluids from a deeper magma chamber into a sill, or pressurization of interconnected (micro)cavities. Residual deformation not accounted for by PTE is confined to the Solfatara fumarolic area and can be mathematically explained by a small (point) pressurized oblate spheroid (PS) ~2 km below the Solfatara fumarolic field, that has been equated with a poroelastic response of the substratum to pore pressure increases near the injection point of hot magmatic fluids into the hydrothermal system. A satisfying feature of this double source model is that the geometric source parameters of each are constant over the period 1980-2013 with the exception of volume changes (potencies). Several papers have ascribed CF deformation to the injection of magmatic fluids at the base of the hydrothermal system. All models predict complex spatial and temporal evolution of the deformation pattern and consequently contrast with the observed deformation pattern stationarity. Also recently proposed dynamic models of sill intrusion in a shallow volcanic environment do not satisfy the observed CF deformation pattern stationarity. We have developed an analytical dynamic model of intrusion of magma or injection of supercritical fluids in the PTE. Propagation is governed by a Navier-Stokes equation for magma intrusion and modelled as creeping flow in porous media (Darcy's law) for supercritical fluids injection. In both cases the ground deformation pattern is constant over time. Using Finite Element Modeling, we also show that the presence of a viscoelastic shell surrounding the PTE amplifies ground deformation, with no appreciable effect on the ground deformation pattern. Thus, our model satisfies the observed CF deformation pattern stationarity both using a purely elastic medium or allowing for stress relaxation close to the PTE, caused by the rock temperature. Amoruso et al. (2014a), J. Geophys. Res., 119 (2), 858-879 Amoruso et al. (2014b), Geophys. Res. Lett., 41 (9), 3081-3088

  5. Deformation behavior of carbon-fiber reinforced shape-memory-polymer composites used for deployable structures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft-material-based composites under pure bending deformation, we expect to uniformly explain the whole process of buckling occurrence, evolution and finally failure, especially for the early evolution characteristics of fiber microbuckling inside the microstructures. The research results are meaningful for the practical applications for SMPC deployable structures in space. Considering the deformation mechanisms of SMPCs, the local post-microbuckling is required for the unidirectional fiber reinforced composite materials, at the conditions of its large geometrical deflection. The cross section of SMPC is divided into three areas: non-buckling stretching area, non-buckling compressive area, and buckling compressive area. Three variables are considered: critical buckling position, and neutral plane, the fiber buckling half-wavelength. Considering the condition of the small strain and large displacement, the strain energy expression of the SMP/fiber system was derived, which contains two types, e.g., strain energy of SMP and fiber. According to the minimum energy principle, the expression for all key parameters were derived, including the critical buckling curvature, neutral plane position, the buckling half-wavelength, fiber buckling amplitude, and strain.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, W.T.; Siebers, J.V.; Bzdusek, K.

    Purpose: To introduce methods to analyze Deformable Image Registration (DIR) and identify regions of potential DIR errors. Methods: DIR Deformable Vector Fields (DVFs) quantifying patient anatomic changes were evaluated using the Jacobian determinant and the magnitude of DVF curl as functions of tissue density and tissue type. These quantities represent local relative deformation and rotation, respectively. Large values in dense tissues can potentially identify non-physical DVF errors. For multiple DVFs per patient, histograms and visualization of DVF differences were also considered. To demonstrate the capabilities of methods, we computed multiple DVFs for each of five Head and Neck (H'N) patientsmore » (P1–P5) via a Fast-symmetric Demons (FSD) algorithm and via a Diffeomorphic Demons (DFD) algorithm, and show the potential to identify DVF errors. Results: Quantitative comparisons of the FSD and DFD registrations revealed <0.3 cm DVF differences in >99% of all voxels for P1, >96% for P2, and >90% of voxels for P3. While the FSD and DFD registrations were very similar for these patients, the Jacobian determinant was >50% in 9–15% of soft tissue and in 3–17% of bony tissue in each of these cases. The volumes of large soft tissue deformation were consistent for all five patients using the FSD algorithm (mean 15%±4% volume), whereas DFD reduced regions of large deformation by 10% volume (785 cm{sup 3}) for P4 and by 14% volume (1775 cm{sup 3}) for P5. The DFD registrations resulted in fewer regions of large DVF-curl; 50% rotations in FSD registrations averaged 209±136 cm{sup 3} in soft tissue and 10±11 cm{sup 3} in bony tissue, but using DFD these values were reduced to 42±53 cm{sup 3} and 1.1±1.5 cm{sup 3}, respectively. Conclusion: Analysis of Jacobian determinant and curl as functions of tissue density can identify regions of potential DVF errors by identifying non-physical deformations and rotations. Collaboration with Phillips Healthcare, as indicated in authorship.« less

  7. Preliminary results constraining the kinematics of subduction and exhumation processes on Skopelos island, Northern Sporades (Aegean Domain)

    NASA Astrophysics Data System (ADS)

    Porkolab, Kristof; Willingshofer, Ernst; Sokoutis, Dimitrios; Creton, Iverna

    2017-04-01

    Extension in the Aegean region is a process driven by slab rollback since 45 Ma (e.g. Brun and Sokoutis, 2007; Brun et al. 2016). These and other studies dominantly focused on the northern Aegean/Rhodope or the Cycladic tectonic systems, yielding abundant kinematic, structural, petrologic and geochronological data to constrain their geodynamic evolution. This contrasts with the region of the Northern Sporades, which have not yet been thoroughly studied in the light of subduction-exhumation processes. In particular, a detailed kinematic analysis, the focus of this study, is missing that allows for establishing the relation between the deformation structures on the island, and the large-scale tectonic events in the Aegean domain. The Northern Sporades consist of three major (area ≥ 50km2) islands (Skiathos, Skopelos, and Alonnisos) and a number of smaller islands. As the first phase of exploring the structural evolution of the Northern Sporades, this work reports the results of field work performed on the island of Skopelos, and aims to provide a preliminary model for the deformation history of the island. Skopelos consists from bottom to top of three structural units, which are separated by thrust contacts (Jacobshagen and Wallbrecher, 1984; Matarangas, 1992; Jacobshagen and Matarangas, 2004): the Pelagonian, the Eohellenic, and the Palouki unit. The age of the formations constituting these units ranges from Paleozoic to Paleogene, and all formations have been metamorphosed under lower greenschist or possibly also blueschist facies conditions (Mposkos and Liati, 1991) and experienced polyphase deformation. Based on our field kinematic and structural analysis we suggest the following deformation sequence on Skopelos island: D1 is characterized by tight to isoclinal folding (F1) and the formation of a penetrative foliation (S1), which is the axial plane cleavage to the F1 folds. S1 planes carry a NE-SW trending stretching lineation, along which top-SW shear has been inferred. The second phase of deformation (D2) is defined by top-NE to E shear using the already existing S1 foliation planes in many cases. D2 folding (F2) entails the formation of sheath folds with their axes being sub-parallel to the dominantly NE-SW trending stretching lineation in zones of high strain, upright folds with NE-SW trending axes as well as recumbent folds that affected the already tilted penetrative foliation. The D3 phase is semi-brittle to brittle and is defined by outcrop-to regional-scale fault (and fault-related fold) systems, which have shaped the geometry and elevation of islands and basins of the region until present days. We interpret D1 to reflect prograde metamorphism and top-SW deformation during subduction of the Pelagonian continental block. In contrast, D2 records progressive and distributed top-NE to E extensional deformation and provides the main mechanism for exhuming the previously buried rocks. This phase of deformation was probably triggered by the southward retreat of the Hellenic trench. The emplacement of the Eohellenic and the Palouki units by thrusting (D3) is post-metamorphic and in our view related to the dextral displacement along the fault that borders the North Aegean Trough.

  8. A novel model-based evolutionary algorithm for multi-objective deformable image registration with content mismatch and large deformations: benchmarking efficiency and quality

    NASA Astrophysics Data System (ADS)

    Bouter, Anton; Alderliesten, Tanja; Bosman, Peter A. N.

    2017-02-01

    Taking a multi-objective optimization approach to deformable image registration has recently gained attention, because such an approach removes the requirement of manually tuning the weights of all the involved objectives. Especially for problems that require large complex deformations, this is a non-trivial task. From the resulting Pareto set of solutions one can then much more insightfully select a registration outcome that is most suitable for the problem at hand. To serve as an internal optimization engine, currently used multi-objective algorithms are competent, but rather inefficient. In this paper we largely improve upon this by introducing a multi-objective real-valued adaptation of the recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) for discrete optimization. In this work, GOMEA is tailored specifically to the problem of deformable image registration to obtain substantially improved efficiency. This improvement is achieved by exploiting a key strength of GOMEA: iteratively improving small parts of solutions, allowing to faster exploit the impact of such updates on the objectives at hand through partial evaluations. We performed experiments on three registration problems. In particular, an artificial problem containing a disappearing structure, a pair of pre- and post-operative breast CT scans, and a pair of breast MRI scans acquired in prone and supine position were considered. Results show that compared to the previously used evolutionary algorithm, GOMEA obtains a speed-up of up to a factor of 1600 on the tested registration problems while achieving registration outcomes of similar quality.

  9. Modelling highly deformable metal extrusion using SPH

    NASA Astrophysics Data System (ADS)

    Prakash, Mahesh; Cleary, Paul W.

    2015-05-01

    Computational modelling is often used to reduce trial extrusions through accurate defect prediction. Traditionally, metal extrusion is modelled using mesh based finite element methods. However, large plastic deformations can lead to heavy re-meshing and numerical diffusion. Here we use the mesh-less smoothed particle hydrodynamics method since it allows simulation of large deformations without re-meshing and the tracking of history dependent properties such as plastic strain making it suitable for defect prediction. The variation in plastic strain and deformation for aluminium alloy in a cylindrical 3D geometry with extrusion ratio and die angle is evaluated. The extrusion process is found to have three distinct phases consisting of an initial sharp rise in extrusion force, a steady phase requiring constant force and terminating in a sharp decline in force as metal is completely extruded. Deformation and plastic strain increased significantly with extrusion ratio but only moderately with die angle. Extrusion force increased by 150 % as the extrusion ratio increased from 2:1 to 4:1 but had only a marginal change with die angle. A low strain zone in the centre of the extruded product was found to be a function of extrusion ratio but was persistent and did not vary with die angle. Simulation of a complex 3D building industry component showed large variations in plastic strain along the length of the product at two scales. These were due to change in metal behaviour as extrusion progressed from phase 1 to phase 2. A stagnation zone at the back of the die was predicted that could lead to the "funnel" or "pipe" defect.

  10. Large-scale glacitectonic deformation in response to active ice sheet retreat across Dogger Bank (southern central North Sea) during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Phillips, Emrys; Cotterill, Carol; Johnson, Kirstin; Crombie, Kirstin; James, Leo; Carr, Simon; Ruiter, Astrid

    2018-01-01

    High resolution seismic data from the Dogger Bank in the central southern North Sea has revealed that the Dogger Bank Formation records a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonic deformation. These processes led to the development of a large thrust-block moraine complex which is buried beneath a thin sequence of Holocene sediments. This buried glacitectonic landsystem comprises a series of elongate, arcuate moraine ridges (200 m up to > 15 km across; over 40-50 km long) separated by low-lying ice marginal to proglacial sedimentary basins and/or meltwater channels, preserving the shape of the margin of this former ice sheet. The moraines are composed of highly deformed (folded and thrust) Dogger Bank Formation with the lower boundary of the deformed sequence (up to 40-50 m thick) being marked by a laterally extensive décollement. The ice-distal parts of the thrust moraine complex are interpreted as a "forward" propagating imbricate thrust stack developed in response to S/SE-directed ice-push. The more complex folding and thrusting within the more ice-proximal parts of the thrust-block moraines record the accretion of thrust slices of highly deformed sediment as the ice repeatedly reoccupied this ice marginal position. Consequently, the internal structure of the Dogger Bank thrust-moraine complexes can be directly related to ice sheet dynamics, recording the former positions of a highly dynamic, oscillating Weichselian ice sheet margin as it retreated northwards at the end of the Last Glacial Maximum.

  11. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers.

    PubMed

    Wognum, S; Heethuis, S E; Rosario, T; Hoogeman, M S; Bel, A

    2014-07-01

    The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images of ex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Five excised porcine bladders with a grid of 30-40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100-400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100-400 ml). In general, for the small volume difference (100-150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.

  12. Aseismic transient during the 2010-2014 seismic swarm: evidence for longer recurrence of M ≥ 6.5 earthquakes in the Pollino gap (Southern Italy)?

    PubMed

    Cheloni, Daniele; D'Agostino, Nicola; Selvaggi, Giulio; Avallone, Antonio; Fornaro, Gianfranco; Giuliani, Roberta; Reale, Diego; Sansosti, Eugenio; Tizzani, Pietro

    2017-04-12

    In actively deforming regions, crustal deformation is accommodated by earthquakes and through a variety of transient aseismic phenomena. Here, we study the 2010-2014 Pollino (Southern Italy) swarm sequence (main shock M W 5.1) located within the Pollino seismic gap, by analysing the surface deformation derived from Global Positioning System and Synthetic Aperture Radar data. Inversions of geodetic time series show that a transient slip, with the same mechanism of the main shock, started about 3-4 months before the main shock and lasted almost one year, evolving through time with acceleration phases that correlate with the rate of seismicity. The moment released by the transient slip is equivalent to M W 5.5, significantly larger than the seismic moment release revealing therefore that a significant fraction of the overall deformation is released aseismically. Our findings suggest that crustal deformation in the Pollino gap is accommodated by infrequent "large" earthquakes (M W  ≥ 6.5) and by aseismic episodes releasing a significant fraction of the accrued strain. Lower strain rates, relative to the adjacent Southern Apennines, and a mixed seismic/aseismic strain release are in favour of a longer recurrence for large magnitude earthquakes in the Pollino gap.

  13. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  14. An automated, quantitative, and case-specific evaluation of deformable image registration in computed tomography images

    NASA Astrophysics Data System (ADS)

    Kierkels, R. G. J.; den Otter, L. A.; Korevaar, E. W.; Langendijk, J. A.; van der Schaaf, A.; Knopf, A. C.; Sijtsema, N. M.

    2018-02-01

    A prerequisite for adaptive dose-tracking in radiotherapy is the assessment of the deformable image registration (DIR) quality. In this work, various metrics that quantify DIR uncertainties are investigated using realistic deformation fields of 26 head and neck and 12 lung cancer patients. Metrics related to the physiologically feasibility (the Jacobian determinant, harmonic energy (HE), and octahedral shear strain (OSS)) and numerically robustness of the deformation (the inverse consistency error (ICE), transitivity error (TE), and distance discordance metric (DDM)) were investigated. The deformable registrations were performed using a B-spline transformation model. The DIR error metrics were log-transformed and correlated (Pearson) against the log-transformed ground-truth error on a voxel level. Correlations of r  ⩾  0.5 were found for the DDM and HE. Given a DIR tolerance threshold of 2.0 mm and a negative predictive value of 0.90, the DDM and HE thresholds were 0.49 mm and 0.014, respectively. In conclusion, the log-transformed DDM and HE can be used to identify voxels at risk for large DIR errors with a large negative predictive value. The HE and/or DDM can therefore be used to perform automated quality assurance of each CT-based DIR for head and neck and lung cancer patients.

  15. Influence of transverse-shear and large-deformation effects on the low-speed impact response of laminated composite plates

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Starnes, James H., Jr.; Prasad, Chunchu B.

    1993-01-01

    An analytical procedure is presented for determining the transient response of simply supported, rectangular laminated composite plates subjected to impact loads from airgun-propelled or dropped-weight impactors. A first-order shear-deformation theory is included in the analysis to represent properly any local short-wave-length transient bending response. The impact force is modeled as a locally distributed load with a cosine-cosine distribution. A double Fourier series expansion and the Timoshenko small-increment method are used to determine the contact force, out-of-plane deflections, and in-plane strains and stresses at any plate location due to an impact force at any plate location. The results of experimental and analytical studies are compared for quasi-isotropic laminates. The results indicate that using the appropriate local force distribution for the locally loaded area and including transverse-shear-deformation effects in the laminated plate response analysis are important. The applicability of the present analytical procedure based on small deformation theory is investigated by comparing analytical and experimental results for combinations of quasi-isotropic laminate thicknesses and impact energy levels. The results of this study indicate that large-deformation effects influence the response of both 24- and 32-ply laminated plates, and that a geometrically nonlinear analysis is required for predicting the response accurately.

  16. Analysis of the effects of non-supine sleeping positions on the stress, strain, deformation and intraocular pressure of the human eye

    NASA Astrophysics Data System (ADS)

    Volpe, Peter A.

    This thesis presents analytical models, finite element models and experimental data to investigate the response of the human eye to loads that can be experienced when in a non-supine sleeping position. The hypothesis being investigated is that non-supine sleeping positions can lead to stress, strain and deformation of the eye as well as changes in intraocular pressure (IOP) that may exacerbate vision loss in individuals who have glaucoma. To investigate the quasi-static changes in stress and internal pressure, a Fluid-Structure Interaction simulation was performed on an axisymmetrical model of an eye. Common Aerospace Engineering methods for analyzing pressure vessels and hyperelastic structural walls are applied to developing a suitable model. The quasi-static pressure increase was used in an iterative code to analyze changes in IOP over time.

  17. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass

    USGS Publications Warehouse

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.

    2015-01-01

    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  18. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 3: Kinematics of Great Basin intraplate extension from earthquake, geodetic and geologic information. Final Technical Report, 15 Apr. 1981 - 31 Jan. 1986 M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Eddington, P. K.

    1986-01-01

    Strain rates assessed from brittle fracture, associated with earthquakes, and total brittle-ductile deformation measured from geodetic data were compared to paleostrain from Quaternary geology for the intraplate Great Basin of the western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced in the last 5 to 10 million years. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions. Contemporary deformation of the Great Basin occurs principally along the active seismic zones. The earthquake related strain shows that the Great Basin is characterized by regional E-W extension at 8.4 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum extension correspond to belts of shallow crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through an effect such as a stress relaxation allowing bouyant uplift and ascension of magmas.

  19. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 1: Kinematics of Basin-Range intraplate extension

    NASA Technical Reports Server (NTRS)

    Eddington, P. K.; Smith, R. B.; Renggli, C.

    1986-01-01

    Strain rates assessed from brittle fracture and total brittle-ductile deformation measured from geodetic data were compared to estimates of paleo-strain from Quaternary geology for the intraplate Great Basin part of the Basin-Range, western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced from the past few million years to the present. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions for sub-regions of homogeneous strain. Contemporary deformation in the Great Basin occurs principally along the active seismic zones. The integrated opening rate across the entire Great Basin is accommodated by E-E extension at 8 to 10 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum lithospheric extension correspond to belts of thin crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through mechanism of extension such as a stress relaxation, allowing bouyant uplift and ascension of magmas.

  20. Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation.

    PubMed

    Murdock, Kyle; Martin, Caitlin; Sun, Wei

    2018-01-01

    Flexure is an important mode of deformation for native and bioprosthetic heart valves. However, mechanical characterization of bioprosthetic leaflet materials has been done primarily through planar tensile testing. In this study, an integrated experimental and computational cantilever beam bending test was performed to characterize the flexural properties of glutaraldehyde-treated bovine and porcine pericardium of different thicknesses. A strain-invariant based structural constitutive model was used to model the pericardial mechanical behavior quantified through the bending tests of this study and the planar biaxial tests previously performed. The model parameters were optimized through an inverse finite element (FE) procedure in order to describe both sets of experimental data. The optimized material properties were implemented in FE simulations of transcatheter aortic valve (TAV) deformation. It was observed that porcine pericardium TAV leaflets experienced significantly more flexure than bovine when subjected to opening pressurization, and that the flexure may be overestimated using a constitutive model derived from purely planar tensile experimental data. Thus, modeling of a combination of flexural and biaxial tensile testing data may be necessary to more accurately describe the mechanical properties of pericardium, and to computationally investigate bioprosthetic leaflet function and design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Minimally invasive repair of pectus excavatum

    PubMed Central

    Calder, Bennett W.; Lesher, Aaron

    2016-01-01

    Pectus excavatum, an acquired or congenital depression of the anterior chest wall, is the most commonly occurring chest wall deformity. Patients with pectus excavatum experience psychosocial and physiologic consequences such as impaired social development and pulmonary and/or cardiac dysfunction as a result of the deformity. Traditionally, repair of the defect was performed with a major open operation, the most common being based on modifications of the Ravitch procedure. In the late 1990’s, the operative approach was challenged with a new minimally invasive technique described by Dr. Donald Nuss. This approach utilizes thoracoscopic visualization with small incisions and placement of a temporary metal bar positioned behind the sternum for support it while the costal cartilages remodel. Since introduction, the minimally invasive repair of pectus excavatum (MIRPE) has become accepted in many centers as the procedure of choice for repair of pectus excavatum. In experienced hands, the procedure has excellent outcomes, shorter procedural length, and outstanding cosmetic results. However, proper patient selection and attention to technical details are essential to achieve optimal outcomes and prevent significant complications. In the following, we describe our perspective on pectus excavatum deformities, operative planning, and technical details of the MIRPE procedure. PMID:29078501

  2. Postseismic Deformations of the Aceh, Nias and Benkulu Earthquakes and the Viscoelastic Properties of the Mantle

    NASA Astrophysics Data System (ADS)

    Fleitout, L.; Garaud, J.; Cailletaud, G.; Vigny, C.; Simons, W. J.; Ambrosius, B. A.; Trisirisatayawong, I.; Satirapod, C.; Geotecdi Song

    2011-12-01

    The giant seism of Aceh (december 2004),followed by the Nias and Bengkulu earthquakes, broke a large portion of the boundary between the Indian ocean and the Sunda block. For the first time in history, the deformations associated with a very large earthquake can be followed by GPS, in particular by the SEAMERGE (far-field) and SUGAR (near-field) GPS networks. A 3D finite element code (Zebulon-Zset) is used to model both the cosismic and the postseismic deformations. The modeled zone is a large portion of spherical shell around Sumatra extanding over more than 60 degrees in latitude and longitude and from the Earth's surface to the core-mantle boundary. The mesh is refined close to the subduction zone. First, the inverted cosismic displacements on the subduction plane are inverted for and provide a very good fit to the GPS data for the three seisms. The observed postseismic displacements, non-dimensionalized by the cosismic displacements, present three very different patterns as function of time: For GPS stations in the far-field, the total horizontal post-seismic displacement after 4 years is as large as the cosismic displacement. The velocities vary slowly over 4 years. A large subsidence affects Thailand and Malaysia. In the near-field, the postseismic displacement reaches only some 15% of the cosismic displacement and it levels off after 2 years. In the middle-field (south-west coast of Sumatra), the postseismic displacement also levels-off with time but more slowly and it reaches more than 30% of the cosismic displacement after four years. In order to fit these three distinct displacement patterns, we need to invoke both viscoelastic deformation in the asthenosphere and a low-viscosity wedge: Neither the vertical subsidence nor the amplitude of the far-field horizontal velocities could be explained by postseismic sliding on the subduction interface. The low viscosity wedge permits to explain the large middle-field velocities. The viscoelastic properties of the asthenosphere are consistent with a Burger rheology with a transient creep represented by a Kelvin-Voigt element with a viscosity of 3.1018Pas and μ Kelvin}=μ {elastic/3. A second Kelvin-Voigt element with very limited amplitude may explain some characteristics of the short time-scale signal. The viscosity of the low viscosity wedge is also of the order of 3. 1018 Pas. The near-field displacements are not explained by viscoelastic relaxation and post-seismic slip on the fault plane (15% of the cosismic slip) occured in the months after the earthquakes. These large post-seismic deformations affect the deviatoric stresses in the whole Sunda-block. They also imply sizable far-field interseismic deformations.

  3. Analysis of Large Quasistatic Deformations of Inelastic Solids by a New Stress Based Finite Element Method. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Reed, Kenneth W.

    1992-01-01

    A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.

  4. Precise deformation measurement of prestressed concrete beam during a strain test using the combination of intersection photogrammetry and micro-network measurement

    NASA Astrophysics Data System (ADS)

    Urban, Rudolf; Braun, Jaroslav; Štroner, Martin

    2015-05-01

    The prestressed thin-walled concrete elements enable the bridge a relatively large span. These structures are advantageous in economic and environmental way due to their thickness and lower consumption of materials. The bending moments can be effectively influenced by using the pre-stress. The experiment was done to monitor deformation of the under load. During the experiment the discrete points were monitored. To determine a large number of points, the intersection photogrammetry combined with precise micro-network were chosen. Keywords:

  5. Localisation of deformations of the midfacial complex in subjects with class III malocclusions employing thin-plate spline analysis

    PubMed Central

    SINGH, G. D.; McNAMARA JR, J. A.; LOZANOFF, S.

    1997-01-01

    This study determines deformations of the midface that contribute to a class III appearance, employing thin-plate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P<0.05) between the averaged class I and class III morphologies. Thin-plate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. Large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile. PMID:9449078

  6. Localisation of deformations of the midfacial complex in subjects with class III malocclusions employing thin-plate spline analysis.

    PubMed

    Singh, G D; McNamara, J A; Lozanoff, S

    1997-11-01

    This study determines deformations of the midface that contribute to a class III appearance, employing thinplate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P < 0.05) between the averaged class I and class III morphologies. Thinplate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile.

  7. Large Deformation Behavior of Long Shallow Cylindrical Composite Panels

    NASA Technical Reports Server (NTRS)

    Carper, Douglas M.; Hyer, Michael W.; Johnson, Eric R.

    1991-01-01

    An exact solution is presented for the large deformation response of a simply supported orthotropic cylindrical panel subjected to a uniform line load along a cylinder generator. The cross section of the cylinder is circular and deformations up to the fully snapped through position are investigated. The orthotropic axes are parallel to the generator and circumferential directions. The governing equations are derived using laminated plate theory, nonlinear strain-displacement relations, and applying variational principles. The response is investigated for the case of a panel loaded exactly at midspan and for a panel with the load offset from midspan. The mathematical formulation is one dimensional in the circumferential coordinate. Solutions are obtained in closed-form. An experimental apparatus was designed to load the panels. Experimental results of displacement controlled tests performed on graphite-epoxy curved panels are compared with analytical predictions.

  8. Novel unimorph deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Verpoort, Sven; Rausch, Peter; Wittrock, Ulrich

    2017-11-01

    We have developed a new type of unimorph deformable mirror, designed to correct for low-order Zernike modes. The mirror has a clear optical aperture of 50 mm combined with large peak-to-valley Zernike amplitudes of up to 35 μm. Newly developed fabrication processes allow the use of prefabricated super-polished and coated glass substrates. The mirror's unique features suggest the use in several astronomical applications like the precompensation of atmospheric aberrations seen by laser beacons and the use in woofer-tweeter systems. Additionally, the design enables an efficient correction of the inevitable wavefront error imposed by the floppy structure of primary mirrors in future large space-based telescopes. We have modeled the mirror by using analytical as well as finite element models. We will present design, key features and manufacturing steps of the deformable mirror.

  9. Dense granular flow around a rigid or flexible intruder

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Adda-Bedia, Mokhtar

    2012-02-01

    We experimentally studied the flow of a dense granular material around an obstacle (rigid cylinder or flexible plate) placed in a 2 dimensional confined cell at a packing fraction near the 2D jamming threshold. In the case of the rigid obstacle, the displacement field of grains as well as the drag force experienced by the obstacle were simultaneously recorded and a parametric study was done by changing the cell size, the intruder diameter or the packing fraction. The drag force experienced by the intruder and the formation of a wake behind the obstacle were very sensitive to the approach to jamming. The same experimental set-up was adapted to a flexible intruder and coupling between the granular flow and fibre deflexion were imaged. The deformation of the fibre could be compared with theoretical predictions from elastica.

  10. Simulation of Blast Loading on an Ultrastructurally-based Computational Model of the Ocular Lens

    DTIC Science & Technology

    2013-10-01

    gradient components in the axial ( F22 ) and radial (F11) directions. One can observe the very large deformation (approaching 800%) and 5 Figure 5...and (bottom left) show deformation gradient in axial ( F22 ) and radial (F11) directions. (bottom right) normalized force versus displacement curve for

  11. Large deformation of uniaxially loaded slender microbeams on the basis of modified couple stress theory: Analytical solution and Galerkin-based method

    NASA Astrophysics Data System (ADS)

    Kiani, Keivan

    2017-09-01

    Large deformation regime of micro-scale slender beam-like structures subjected to axially pointed loads is of high interest to nanotechnologists and applied mechanics community. Herein, size-dependent nonlinear governing equations are derived by employing modified couple stress theory. Under various boundary conditions, analytical relations between axially applied loads and deformations are presented. Additionally, a novel Galerkin-based assumed mode method (AMM) is established to solve the highly nonlinear equations. In some particular cases, the predicted results by the analytical approach are also checked with those of AMM and a reasonably good agreement is reported. Subsequently, the key role of the material length scale on the load-deformation of microbeams is discussed and the deficiencies of the classical elasticity theory in predicting such a crucial mechanical behavior are explained in some detail. The influences of slenderness ratio and thickness of the microbeam on the obtained results are also examined. The present work could be considered as a pivotal step in better realizing the postbuckling behavior of nano-/micro- electro-mechanical systems consist of microbeams.

  12. Simultaneous correction of large low-order and high-order aberrations with a new deformable mirror technology

    NASA Astrophysics Data System (ADS)

    Rooms, F.; Camet, S.; Curis, J. F.

    2010-02-01

    A new technology of deformable mirror will be presented. Based on magnetic actuators, these deformable mirrors feature record strokes (more than +/- 45μm of astigmatism and focus correction) with an optimized temporal behavior. Furthermore, the development has been made in order to have a large density of actuators within a small clear aperture (typically 52 actuators within a diameter of 9.0mm). We will present the key benefits of this technology for vision science: simultaneous correction of low and high order aberrations, AO-SLO image without artifacts due to the membrane vibration, optimized control, etc. Using recent papers published by Doble, Thibos and Miller, we show the performances that can be achieved by various configurations using statistical approach. The typical distribution of wavefront aberrations (both the low order aberration (LOA) and high order aberration (HOA)) have been computed and the correction applied by the mirror. We compare two configurations of deformable mirrors (52 and 97 actuators) and highlight the influence of the number of actuators on the fitting error, the photon noise error and the effective bandwidth of correction.

  13. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  14. Cenozoic mountain building on the northeastern Tibetan Plateau

    USGS Publications Warehouse

    Lease, Richard O.

    2014-01-01

    Northeastern Tibetan Plateau growth illuminates the kinematics, geodynamics, and climatic consequences of large-scale orogenesis, yet only recently have data become available to outline the spatiotemporal pattern and rates of this growth. I review the tectonic history of range growth across the plateau margin north of the Kunlun fault (35°–40°N) and east of the Qaidam basin (98°–107°E), synthesizing records from fault-bounded mountain ranges and adjacent sedimentary basins. Deformation began in Eocene time shortly after India-Asia collision, but the northeastern orogen boundary has largely remained stationary since this time. Widespread middle Miocene–Holocene range growth is portrayed by accelerated deformation, uplift, erosion, and deposition across northeastern Tibet. The extent of deformation, however, only expanded ~150 km outward to the north and east and ~150 km laterally to the west. A middle Miocene reorganization of deformation characterized by shortening at various orientations heralds the onset of the modern kinematic regime where shortening is coupled to strike slip. This regime is responsible for the majority of Cenozoic crustal shortening and thickening and the development of the northeastern Tibetan Plateau.

  15. Flexible Foam Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented intomore » SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.« less

  16. Masses and β -Decay Spectroscopy of Neutron-Rich Odd-Odd Eu,162160 Nuclei: Evidence for a Subshell Gap with Large Deformation at N =98

    NASA Astrophysics Data System (ADS)

    Hartley, D. J.; Kondev, F. G.; Orford, R.; Clark, J. A.; Savard, G.; Ayangeakaa, A. D.; Bottoni, S.; Buchinger, F.; Burkey, M. T.; Carpenter, M. P.; Copp, P.; Gorelov, D. A.; Hicks, K.; Hoffman, C. R.; Hu, C.; Janssens, R. V. F.; Klimes, J. W.; Lauritsen, T.; Sethi, J.; Seweryniak, D.; Sharma, K. S.; Zhang, H.; Zhu, S.; Zhu, Y.

    2018-05-01

    The structure of deformed neutron-rich nuclei in the rare-earth region is of significant interest for both the astrophysics and nuclear structure fields. At present, a complete explanation for the observed peak in the elemental abundances at A ˜160 eludes astrophysicists, and models depend on accurate quantities, such as masses, lifetimes, and branching ratios of deformed neutron-rich nuclei in this region. Unusual nuclear structure effects are also observed, such as the unexpectedly low energies of the first 2+ levels in some even-even nuclei at N =98 . In order to address these issues, mass and β -decay spectroscopy measurements of the Eu97 160 and Eu99 162 nuclei were performed at the Californium Rare Isotope Breeder Upgrade radioactive beam facility at Argonne National Laboratory. Evidence for a gap in the single-particle neutron energies at N =98 and for large deformation (β2˜0.3 ) is discussed in relation to the unusual phenomena observed at this neutron number.

  17. Planation surfaces as a record of medium to large wavelength deformation: the example of the Lake Albert Rift (Uganda) on the East African Dome

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Jean, Braun; Olivier, Dauteuil; Massimo, Dall'Asta

    2016-04-01

    African relief is characterized by planation surfaces, some of them of continental scale. These surfaces are slightly deformed according to different wavelengths (x10 km; x100 km, x1000 km) which record both mantle dynamics (very long wavelength, x 1000 km) and lithosphere deformation (long wavelength deformation, x 100 km). Different types of these planation surfaces are recognized: - Etchplains capped by iron-duricrust which correspond to erosional nearly flat weathered surfaces resulting from the growth of laterites under warm and humid conditions. - Pediments which define mechanical erosional surfaces with concave or rectilinear profiles delimited by upslope scarps connected upstream with the upper landforms. We here focused on the Lake Albert Rift at the northern termination of the western branch of the East African Rift System of which the two branches are surimposed on the East-African Dome. Different wavelengths of deformation were characterized based on the 3D mapping of stepped planation surfaces: (1) very long wavelength deformations resulting from the uplift of the East African Dome; (2) long wavelength deformations resulting from the opening of the eastern branch and (3) medium wavelength deformations represented by the uplift of rift shoulders like the Rwenzori Mountains. The paleo-landscape reconstruction of Uganda shows the existence of four generations of landforms dated according to their geometrical relationships with volcanic rocks. A four stepped evolution of the Ugandan landforms is proposed: • 70 - 22 Ma: generation of two weathered planation surfaces (etchplain Uw and Iw). The upper one (Uw) records a very humid period culminating at time of the Early Eocene Climatic Optimum (70-45 Ma). It corresponds to the African Surface. A first uplift of the East African Dome generates a second lower planation surface (Iw) connected to the Atlantic Ocean base level; • 17-2.7 Ma: planation of large pediplains connected to the local base level induced by the birth of the Albertine Rift System and the formation of the proto-Lake Albert; • 2.7-0.4 Ma: uplift of the Ruwenzori Mountains and degradation by river incision of the previous large pediplains; • 0.4-0 Ma: long wavelength downwarping of the Tanzania Craton between the two branches of the rift, creation of the Victoria Lake, inversion of the drainage and formation of the fault-bounded scarps of Albert Rift.

  18. SU-F-J-97: A Joint Registration and Segmentation Approach for Large Bladder Deformations in Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derksen, A; Koenig, L; Heldmann, S

    Purpose: To improve results of deformable image registration (DIR) in adaptive radiotherapy for large bladder deformations in CT/CBCT pelvis imaging. Methods: A variational multi-modal DIR algorithm is incorporated in a joint iterative scheme, alternating between segmentation based bladder matching and registration. Using an initial DIR to propagate the bladder contour to the CBCT, in a segmentation step the contour is improved by discrete image gradient sampling along all surface normals and adapting the delineation to match the location of each maximum (with a search range of +−5/2mm at the superior/inferior bladder side and step size of 0.5mm). An additional graph-cutmore » based constraint limits the maximum difference between neighboring points. This improved contour is utilized in a subsequent DIR with a surface matching constraint. By calculating an euclidean distance map of the improved contour surface, the new constraint enforces the DIR to map each point of the original contour onto the improved contour. The resulting deformation is then used as a starting guess to compute a deformation update, which can again be used for the next segmentation step. The result is a dense deformation, able to capture much larger bladder deformations. The new method is evaluated on ten CT/CBCT male pelvis datasets, calculating Dice similarity coefficients (DSC) between the final propagated bladder contour and a manually delineated gold standard on the CBCT image. Results: Over all ten cases, an average DSC of 0.93±0.03 is achieved on the bladder. Compared with the initial DIR (0.88±0.05), the DSC is equal (2 cases) or improved (8 cases). Additionally, DSC accuracy of femoral bones (0.94±0.02) was not affected. Conclusion: The new approach shows that using the presented alternating segmentation/registration approach, the results of bladder DIR in the pelvis region can be greatly improved, especially for cases with large variations in bladder volume. Fraunhofer MEVIS received funding from a research grant by Varian Medical Systems.« less

  19. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskowiak, J; Ahmad, S; Ali, I

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were usedmore » to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased significantly and that limited image quality and poor correlation between the motion amplitude and DVF was obtained.« less

  20. Observation of ground deformation associated with hydraulic fracturing and seismicity in the Western Canadian Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Kubanek, J.; Liu, Y.; Harrington, R. M.; Samsonov, S.

    2017-12-01

    In North America, the number of induced earthquakes related to fluid injection due to the unconventional recovery of oil and gas resources has increased significantly within the last five years. Recent studies demonstrate that InSAR is an effective tool to study surface deformation due to large-scale wastewater injection, and highlight the value of surface deformation monitoring with respect to understanding evolution of pore pressure and stress at depth - vital parameters to forecast fault reactivation, and thus, induced earthquakes. In contrast to earthquakes related to the injection of large amounts of wastewater, seismic activity related to the hydraulic fracturing procedure itself was, until recently, considered to play a minor role without significant hazard. In the Western Canadian Sedimentary Basin (WCSB), however, Mw>4 earthquakes have recently led to temporary shutdown of industrial injection activity, causing multi-million dollar losses to operators and raising safety concerns with the local population. Recent studies successfully utilize seismic data and modeling to link seismic activity with hydraulic fracturing in the WCSB. Although the study of surface deformation is likely the most promising tool for monitoring integrity of a well and to derive potential signatures prior to moderate or large induced events, InSAR has, to date, not been utilized to detect surface deformation related to hydraulic fracturing and seismicity. We therefore plan to analyze time-series of SAR data acquired between 1991 to present over two target sites in the WCSB that will enable the study of long- and short-term deformation. Since the conditions for InSAR are expected to be challenging due to spatial and temporal decorrelation, we have designed corner reflectors that will be installed at one target site to improve interferometric performance. The corner reflectors will be collocated with broadband seismometers and Trimble SeismoGeodetic Systems that simultaneously measure GNSS positioning and acceleration. We expect the joint data analysis of dense seismic and geodetic observations to give new insights about the correlation between surface deformation, fluid injection, and induced seismicity that can be used to assess the hazard potential of hydraulic fracturing in the WCSB.

  1. Constraining the thermal and tectonic evolution of a greenschist facies shear zone on Syros, Greece by using stable isotopes and mineral chemistry.

    NASA Astrophysics Data System (ADS)

    Cisneros, M.; Barnes, J.; Behr, W. M.

    2016-12-01

    Retrograde metamorphic rocks are key to understanding the exhumation history of high-pressure/low-temperature terranes. The Cycladic Blueschist Unit of Syros, Greece experienced peak metamorphic conditions of 15 kbar and 500 °C at 50 Ma and was subsequently exhumed to the shallow-crust ( 1-3 km) by 15 Ma; however, the processes associated with exhumation from mantle depths to the mid-crust remain poorly understood. We present structural, microstructural, and geochemical analyses of greenschist facies metamafic rocks exposed on Lotos beach in Syros that help to constrain the early exhumation history of these rocks. The outcrop preserves two main fabrics: 1) an early transposition foliation (Ss) defined by tight, isoclinal folds with shallow hingelines, and 2) upright open folds with a steep axial-planar cleavage (Sc). Ss is associated with viscous deformation and alignment of both amphibole and epidote into the foliation plane, whereas Sc is associated with semi-brittle deformation, amphibole overgrowths, and boudinage in elongate epidote (ep). Amphiboles display a progressive evolution from Na-to-Ca-rich end-members and exhibit continuous crystallization throughout Ss and Sc, as evidenced by new amphibole growth and overgrowths oriented parallel to foliation. Cal-qtz precipitates in ep boudin necks and chl + cal pseudomorphs after actinolite represent the last stage of lower greenschist facies metamorphism. These results indicate that foliation-forming deformation initiated prior-to or during blueschist facies and continued through lowermost greenschist facies. Oxygen isotope thermometry indicates that qtz-cal pairs equilibrated at 187 °C. Carbon and oxygen isotope values of fluids in equilibrium with qtz-cal pairs (δ18O and δ13C ≈ 0 ‰) indicate a seawater-derived fluid source. Preliminary results suggest this shear zone experienced cooling during decompression, followed by interaction with fluids transferred along a low-angle detachment.

  2. Constrained Laboratory vs. Unconstrained Steering-Induced Rollover Crash Tests.

    PubMed

    Kerrigan, Jason R; Toczyski, Jacek; Roberts, Carolyn; Zhang, Qi; Clauser, Mark

    2015-01-01

    The goal of this study was to evaluate how well an in-laboratory rollover crash test methodology that constrains vehicle motion can reproduce the dynamics of unconstrained full-scale steering-induced rollover crash tests in sand. Data from previously-published unconstrained steering-induced rollover crash tests using a full-size pickup and mid-sized sedan were analyzed to determine vehicle-to-ground impact conditions and kinematic response of the vehicles throughout the tests. Then, a pair of replicate vehicles were prepared to match the inertial properties of the steering-induced test vehicles and configured to record dynamic roof structure deformations and kinematic response. Both vehicles experienced greater increases in roll-axis angular velocities in the unconstrained tests than in the constrained tests; however, the increases that occurred during the trailing side roof interaction were nearly identical between tests for both vehicles. Both vehicles experienced linear accelerations in the constrained tests that were similar to those in the unconstrained tests, but the pickup, in particular, had accelerations that were matched in magnitude, timing, and duration very closely between the two test types. Deformations in the truck test were higher in the constrained than the unconstrained, and deformations in the sedan were greater in the unconstrained than the constrained as a result of constraints of the test fixture, and differences in impact velocity for the trailing side. The results of the current study suggest that in-laboratory rollover tests can be used to simulate the injury-causing portions of unconstrained rollover crashes. To date, such a demonstration has not yet been published in the open literature. This study did, however, show that road surface can affect vehicle response in a way that may not be able to be mimicked in the laboratory. Lastly, this study showed that configuring the in-laboratory tests to match the leading-side touchdown conditions could result in differences in the trailing side impact conditions.

  3. Indentation recovery in GdPO 4 and observation of deformation twinning

    DOE PAGES

    Wilkinson, Taylor M.; Musselman, Matthew A.; Boatner, Lynn A.; ...

    2016-09-30

    A series of nanoindentation tests on both single and polycrystalline specimens of a monazite rare-earth orthophosphate, GdPO 4, revealed frequent observation of anomalous unloading behavior with a large degree of recovery, where previously this behavior had only been observed in xenotime-structure rare-earth orthophosphates. An indentation site in the polycrystalline sample was examined using TEM to identify the deformation mechanism responsible for recovery. Finally, the presence of a twin along the (100) orientation, along with a series of stacking faults contained within the deformation site, provide evidence that the mechanism of recovery in GdPO 4 is the collapse of deformation twinsmore » during unloading.« less

  4. Sliding inclusions and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mura, T.

    It is found that when an ellipsoidal inclusion undergoes a shear eigenstrain and the inclusion is free to slip along the interface, the stress field vanishes everywhere in the inclusion and the matrix. It is assumed in the analysis that the inclusion interface cannot sustain any shear traction. There exists a shear deformation which transforms an ellipsoid into the identical ellipsoid without changing its orientation (ellipsoid invariant transformation). Therefore, no resistance for shear deformation is expected. This may be a characteristic of deformation seen in superplasticity alloys and granular materials. The theory is valid even for large deformations when incrementalmore » strains (or strain rates) are considered instead of strains themselves.« less

  5. Deformation of the Engle-Livine-Pereira-Rovelli spin foam model by a cosmological constant

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Rabuffo, Giovanni

    2018-04-01

    In this article, we consider an ad hoc deformation of the Engle-Livine-Pereira-Rovelli model for quantum gravity by a cosmological constant term. This sort of deformation was first introduced by Han for the case of the 4-simplex. In this article, we generalize the deformation to the case of arbitrary vertices, and compute its large-j asymptotics. We show that, if the boundary data correspond to a four-dimensional polyhedron P , then the asymptotic formula gives the usual Regge action plus a cosmological constant term. We pay particular attention to the determinant of the Hessian matrix, and show that it can be related to that of the undeformed vertex.

  6. Indentation recovery in GdPO 4 and observation of deformation twinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, Taylor M.; Musselman, Matthew A.; Boatner, Lynn A.

    A series of nanoindentation tests on both single and polycrystalline specimens of a monazite rare-earth orthophosphate, GdPO 4, revealed frequent observation of anomalous unloading behavior with a large degree of recovery, where previously this behavior had only been observed in xenotime-structure rare-earth orthophosphates. An indentation site in the polycrystalline sample was examined using TEM to identify the deformation mechanism responsible for recovery. Finally, the presence of a twin along the (100) orientation, along with a series of stacking faults contained within the deformation site, provide evidence that the mechanism of recovery in GdPO 4 is the collapse of deformation twinsmore » during unloading.« less

  7. Speckle interferometry with temporal phase evaluation for measuring large-object deformation.

    PubMed

    Joenathan, C; Franze, B; Haible, P; Tiziani, H J

    1998-05-01

    We propose a new method for measuring large-object deformations byusing temporal evolution of the speckles in speckleinterferometry. The principle of the method is that by deformingthe object continuously, one obtains fluctuations in the intensity ofthe speckle. A large number of frames of the object motion arecollected to be analyzed later. The phase data for whole-objectdeformation are then retrieved by inverse Fourier transformation of afiltered spectrum obtained by Fourier transformation of thesignal. With this method one is capable of measuring deformationsof more than 100 mum, which is not possible using conventionalelectronic speckle pattern interferometry. We discuss theunderlying principle of the method and the results of theexperiments. Some nondestructive testing results are alsopresented.

  8. Deformation and kinematics of the central Kirthar Fold Belt, Pakistan

    NASA Astrophysics Data System (ADS)

    Hinsch, Ralph; Hagedorn, Peter; Asmar, Chloé; Nasim, Muhammad; Aamir Rasheed, Muhammad; Kiely, James M.

    2017-04-01

    The Kirthar Fold Belt is part of the lateral mountain belts in Pakistan linking the Himalaya orogeny with the Makran accretionary wedge. This region is deforming very oblique/nearly parallel to the regional plate motion vector. The study area is situated between the prominent Chaman strike-slip fault in the West and the un-deformed foreland (Kirthar Foredeep/Middle Indus Basin) in the East. The Kirthar Fold Belt is subdivided into several crustal blocks/units based on structural orientation and deformation style (e.g. Kallat, Khuzdar, frontal Kirthar). This study uses newly acquired and depth-migrated 2D seismic lines, surface geology observations and Google Earth assessments to construct three balanced cross sections for the frontal part of the fold belt. Further work was done in order to insure the coherency of the built cross-sections by taking a closer look at the regional context inferred from published data, simple analogue modelling, and constructed regional sketch sections. The Khuzdar area and the frontal Kirthar Fold Belt are dominated by folding. Large thrusts with major stratigraphic repetitions are not observed. Furthermore, strike-slip faults in the Khuzdar area are scarce and not observed in the frontal Kirthar Fold Belt. The regional structural elevation rises from the foreland across the Kirthar Fold Belt towards the hinterland (Khuzdar area). These observations indicate that basement-involved deformation is present at depth. The domination of folding indicates a weak decollement below the folds (soft-linked deformation). The fold pattern in the Khuzdar area is complex, whereas the large folds of the central Kirthar Fold Belt trend SSW-NNE to N-S and are best described as large detachment folds that have been slightly uplifted by basement involved transpressive deformation underneath. Towards the foreland, the deformation is apparently more hard-linked and involves fault-propagation folding and a small triangle zone in Cretaceous sediments. Shortening is in the order of 21-24% for the frontal structures. The deformation above the weak Eocene Ghazij shales is partly decoupled from the layers underneath, especially where the Ghazij shales are thick. Thus, not all structures visible at surface level in the Kirthar Fold Belt are also present in the deeper section, and vice versa (disharmonic folding). The structural architecture in the frontal central Kirthar Fold Belt shows only convergent structures nearly parallel to the regional plate motion vector of the Indian plate and thus represents an example of extreme strain partitioning.

  9. Deformation and evolution of an experimental drainage network subjected to oblique deformation: Insight from chi-maps

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Goren, Liran; Dominguez, Stéphane; Malavieille, Jacques; Castelltort, Sébastien

    2017-04-01

    The morphology of a fluvial landscape reflects a balance between its own dynamics and external forcings, and therefore holds the potential to reveal local or large-scale tectonic patterns. Commonly, particular focus has been cast on the longitudinal profiles of rivers as they constitute sensitive recorders of vertical movements, that can be recovered based on models of bedrock incision. However, several recent studies have suggested that maps of rescaled distance along channel called chi (χ), derived from the commonly observed power law relation between the slope and the drainage area , could reveal transient landscapes in state of reorganization of basin geometry and location of water divides. If river networks deforms in response to large amount of distributed strain, then they might be used to reconstruct the mode and rate of horizontal deformation away from major active structures through the use of the parameter χ. To explore how streams respond to tectonic horizontal deformation, we develop an experimental model for studying river pattern evolution over a doubly-vergent orogenic wedge growing in a context of oblique convergence. We use a series of sprinklers located about the experimental table to activate erosion, sediment transport and river development on the surface of the experimental wedge. At the end of the experiment, the drainage network is statistically rotated clockwise, confirming that rivers can record the distribution of motion along the wedge. However, the amount of rotation does not match with the imposed deformation, and thus we infer that stream networks are not purely passive markers. Based on the comparison between the observed evolution of the fluvial system and the predictions made from χ maps, we show that the plan-view morphology of the streams results from the competition between the imposed deformation and fluvial processes of drainage reorganization.

  10. Cluster Analysis of Velocity Field Derived from Dense GNSS Network of Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Hashimoto, M.

    2015-12-01

    Dense GNSS networks have been widely used to observe crustal deformation. Simpson et al. (2012) and Savage and Simpson (2013) have conducted cluster analyses of GNSS velocity field in the San Francisco Bay Area and Mojave Desert, respectively. They have successfully found velocity discontinuities. They also showed an advantage of cluster analysis for classifying GNSS velocity field. Since in western United States, strike-slip events are dominant, geometry is simple. However, the Japanese Islands are tectonically complicated due to subduction of oceanic plates. There are many types of crustal deformation such as slow slip event and large postseismic deformation. We propose a modified clustering method of GNSS velocity field in Japan to separate time variant and static crustal deformation. Our modification is performing cluster analysis every several months or years, then qualifying cluster member similarity. If a GNSS station moved differently from its neighboring GNSS stations, the station will not belong to in the cluster which includes its surrounding stations. With this method, time variant phenomena were distinguished. We applied our method to GNSS data of Japan from 1996 to 2015. According to the analyses, following conclusions were derived. The first is the clusters boundaries are consistent with known active faults. For examples, the Arima-Takatsuki-Hanaore fault system and the Shimane-Tottori segment proposed by Nishimura (2015) are recognized, though without using prior information. The second is improving detectability of time variable phenomena, such as a slow slip event in northern part of Hokkaido region detected by Ohzono et al. (2015). The last one is the classification of postseismic deformation caused by large earthquakes. The result suggested velocity discontinuities in postseismic deformation of the Tohoku-oki earthquake. This result implies that postseismic deformation is not continuously decaying proportional to distance from its epicenter.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shan; Cui, Lishan; Hao, Shijie

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strainmore » of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.« less

  12. Cyclic hardening behavior of extruded ZK60 magnesium alloy with different grain sizes

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Wang, Wenke

    2018-04-01

    Montonic and fully reversed strain-controlled cyclic deformation experiments were conducted on extruded ZK60 magnesium alloy with two different grain sizes in ambient air. Results revealed that the hardening rates of the ZK60 magnesium alloy rods with fine grain and coarse grain in the monotonic deformation and the fully reversed strain-controlled cyclic deformation were opposite along the extrusion direction. Electron Backscatter Diffration analysis revealed that fine grains were more easily rotated than coarse grains under the cyclic deformation. Under the twinning and detwinning process of the cyclic deformation at a large strain amplitude, the coarse grained ZK60 magnesium alloys were more prone to tension twinning {10-12}<10-11> and more residual twins were observed. Texture hardening of coarse grained magnesium alloy was more obvious in cyclic defromation than fine-grained magnesium alloy.

  13. Deformation and failure mechanism of secondary cell wall in Spruce late wood

    NASA Astrophysics Data System (ADS)

    Adusumalli, Ramesh-Babu; Raghavan, Rejin; Ghisleni, Rudy; Zimmermann, Tanja; Michler, Johann

    2010-08-01

    The deformation and failure of the secondary cell wall of Spruce wood was studied by in-situ SEM compression of micropillars machined by the focused ion beam technique. The cell wall exhibited yield strength values of approximately 160 MPa and large scale plasticity. High resolution SEM imaging post compression revealed bulging of the pillars followed by shear failure. With additional aid of cross-sectional analysis of the micropillars post compression, a model for deformation and failure mechanism of the cell wall has been proposed. The cell wall consists of oriented cellulose microfibrils with high aspect ratio embedded in a hemicellulose-lignin matrix. The deformation of the secondary wall occurs by asymmetric out of plane bulging because of buckling of the microfibrils. Failure of the cell wall following the deformation occurs by the formation of a shear or kink band.

  14. Challenges in Rheological Characterization of Highly Concentrated Suspensions — A Case Study for Screen-printing Silver Pastes

    PubMed Central

    Yüce, Ceren; Willenbacher, Norbert

    2017-01-01

    A comprehensive rheological characterization of highly concentrated suspensions or pastes is mandatory for a targeted product development meeting the manifold requirements during processing and application of such complex fluids. In this investigation, measuring protocols for a conclusive assessment of different process relevant rheological parameters have been evaluated. This includes the determination of yield stress, viscosity, wall slip velocity, structural recovery after large deformation and elongation at break as well as tensile force during filament stretching. The importance of concomitant video recordings during parallel-plate rotational rheometry for a significant determination of rheological quantities is demonstrated. The deformation profile and flow field at the sample edge can be determined using appropriate markers. Thus, measurement parameter settings and plate roughness values can be identified for which yield stress and viscosity measurements are possible. Slip velocity can be measured directly and measuring conditions at which plug flow, shear banding or sample spillover occur can be identified clearly. Video recordings further confirm that the change in shear moduli observed during three stage oscillatory shear tests with small deformation amplitude in stage I and III but large oscillation amplitude in stage II can be directly attributed to structural break down and recovery. For the pastes investigated here, the degree of irreversible, shear-induced structural change increases with increasing deformation amplitude in stage II until a saturation is reached at deformations corresponding to the crossover of G' and G'', but the irreversible damage is independent of the duration of large amplitude shear. A capillary breakup elongational rheometer and a tensile tester have been used to characterize deformation and breakup behavior of highly filled pastes in uniaxial elongation. Significant differences were observed in all experiments described above for two commercial screen-printing silver pastes used for front side metallization of Si-solar cells. PMID:28448043

  15. Challenges in Rheological Characterization of Highly Concentrated Suspensions - A Case Study for Screen-printing Silver Pastes.

    PubMed

    Yüce, Ceren; Willenbacher, Norbert

    2017-04-10

    A comprehensive rheological characterization of highly concentrated suspensions or pastes is mandatory for a targeted product development meeting the manifold requirements during processing and application of such complex fluids. In this investigation, measuring protocols for a conclusive assessment of different process relevant rheological parameters have been evaluated. This includes the determination of yield stress, viscosity, wall slip velocity, structural recovery after large deformation and elongation at break as well as tensile force during filament stretching. The importance of concomitant video recordings during parallel-plate rotational rheometry for a significant determination of rheological quantities is demonstrated. The deformation profile and flow field at the sample edge can be determined using appropriate markers. Thus, measurement parameter settings and plate roughness values can be identified for which yield stress and viscosity measurements are possible. Slip velocity can be measured directly and measuring conditions at which plug flow, shear banding or sample spillover occur can be identified clearly. Video recordings further confirm that the change in shear moduli observed during three stage oscillatory shear tests with small deformation amplitude in stage I and III but large oscillation amplitude in stage II can be directly attributed to structural break down and recovery. For the pastes investigated here, the degree of irreversible, shear-induced structural change increases with increasing deformation amplitude in stage II until a saturation is reached at deformations corresponding to the crossover of G' and G'', but the irreversible damage is independent of the duration of large amplitude shear. A capillary breakup elongational rheometer and a tensile tester have been used to characterize deformation and breakup behavior of highly filled pastes in uniaxial elongation. Significant differences were observed in all experiments described above for two commercial screen-printing silver pastes used for front side metallization of Si-solar cells.

  16. 49 CFR 178.980 - Stacking test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Packaging unsafe for transportation and no loss of contents. (2) For flexible Large Packagings, there may be no deterioration which renders the Large Packaging unsafe for transportation and no loss of contents... required load, there is no permanent deformation to the Large Packaging which renders the whole Large...

  17. Large landslides induced by the 2008 Wenchuan earthquake and their precursory gravitational slope deformation

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Wu, Xiyong; Wang, Gonghui; Uchida, Osamu

    2010-05-01

    2008 Wenchuan earthquake induced numerous large landslides, of which many large landslides had been preceded by gravitational deformation. The deformation could be detected by linear depressions and convex slopes observed on satellite images taken before the earthquake. Ground truth survey after the earthquake also found the gravitational deformation of rocks, which could be predated before the earthquake. The Daguanbao landslide, the largest landslide induced by this earthquake, occurred on a slope of bedded carbonate rocks. The area of the landslide, based on measurements made from the ALOS/PRISM images is 7.353 km2. Its volume is estimated to be 0.837 km3 based on the comparison of the PRISM data and the SRTM DEM. It had an open V-shaped main scarp, of which one linear part was along a high angle fault and the other was approximately parallel to the bedding strike. The upslope edge of the V-shaped main scarp was observed as 2- km long linear depressions along the ridge-top on satellite image before the landslide. This indicates that this slope had been already destabilized and small movement occurred along the bedding planes and along the fault before the event. The Wenchuan earthquake pulled the final trigger of this landslide. The major sliding surface was along the bedding plane, which was observed to dip 35° or slightly gentler. It was warped convex upward and the beds were fractured, which suggests that the beds were slightly buckled before the landslide. This deformation may correspond to the formation of the linear depression. The Tangjiashan landslide in Beichuan, which produced the largest landslide dam during the earthquake, occurred on a dip slope of shale and slate. The geologic structures of the landslide was observed on the side flanks of the landslide, which indicated that the beds had been buckled gravitationally beforehand and the sliding surface was made along the bedding plane and a joint parallel to the slope surface. The buckling deformation was brittle deformation and different from the ductile deformation that accompanied the nearby tectonic folds. The Formosat II and SPOT images on Google Earth indicate that this landslide occurred on a slope with spur-crossing depressions with upslope-convex traces. This topography also indicates that this slope had been deforming by slow rock creep before the earthquake. The gravitational deformation before the landslides above stated appeared as linear depressions or spur-crossing depressions, both of which expressed small displacement in comparison with the size of the whole slope. This may suggest that they were at a critical state just before the catastrophic failure.

  18. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response

    PubMed Central

    Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-01-01

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process. PMID:29027925

  19. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response.

    PubMed

    Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-10-13

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  20. The Development and Delivery of On-Demand RADARSAT Constellation Mission Ground Deformation Products Based on Advanced Insar Technology

    NASA Astrophysics Data System (ADS)

    Samsonov, S. V.; Feng, W.

    2017-12-01

    InSAR-based mapping of surface deformation (displacement) has proven valuable to a variety of geoscience applications within NRCan. Conventional approaches to InSAR analysis require significant expert intervention to separate useful signal from noise and are not suited to the address the opportunities and challenges presented by the large multi-temporal SAR datasets provided by future radar constellations. The Canada Centre for Mapping and Earth Observation (CCMEO) develops, in support of NRCAN and Government of Canada priorities a framework for automatic generation of standard and advanced deformation products based on Interferometric Synthetic Aperture Radar (InSAR) technology from RADARSAT Constellation Mission (RCM) Synthetic Aperture Radar data. We utilize existing processing algorithms that are currently used for processing RADARSAT-2 data and adapt them to RCM specifications. In addition we develop novel advanced processing algorithms that address large data sets made possible by the satellites' rapid revisit cycle and expand InSAR functionality to regional and national scales across a wide range of time scales. Through automation the system makes it possible to extend the mapping of surface deformation to non-SAR experts. The architecture is scalable and expandable to serve large number of clients and simultaneously address multiple application areas including: natural and anthropogenic hazards, natural resource development, permafrost and glacier monitoring, coastal and environmental change and wetlands mapping.

  1. Large-deformation electrohydrodynamics of an elastic capsule in a DC electric field

    NASA Astrophysics Data System (ADS)

    Das, Sudip; Thaokar, Rochish M.

    2018-04-01

    The dynamics of a spherical elastic capsule, containing a Newtonian fluid bounded by an elastic membrane and immersed in another Newtonian fluid, in a uniform DC electric field is investigated. Discontinuity of electrical properties such as conductivities of the internal and external fluid media as well as capacitance and conductance of the membrane lead to a net interfacial Maxwell stress which can cause the deformation of such an elastic capsule. We investigate this problem considering well established membrane laws for a thin elastic membrane, with fully resolved hydrodynamics in the Stokes flow limit and describe the electrostatics using the capacitor model. In the limit of small deformation, the analytical theory predicts the dynamics fairly satisfactorily. Large deformations at high capillary number though necessitate a numerical approach (Boundary element method in the present case) to solve this highly non-linear problem. Akin to vesicles, at intermediate times, highly nonlinear biconcave shapes along with squaring and hexagon like shapes are observed when the outer medium is more conducting. The study identifies the essentiality of parameters such as high membrane capacitance, low membrane conductance, low hydrodynamic time scales and high capillary number for observation of these shape transitions. The transition is due to large compressive Maxwell stress at the poles at intermediate times. Thus such shape transition can be seen in spherical globules admitting electrical capacitance, possibly, irrespective of the nature of the interfacial restoring force.

  2. Effect of Alloying Elements on Nano-ordered Wear Property of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Yagi, Takahiro; Hirayama, Tomoko; Matsuoka, Takashi; Somekawa, Hidetoshi

    2017-03-01

    The effect of alloying elements on nano-ordered wear properties was investigated using fine-grained pure magnesium and several types of 0.3 at. pct X (X = Ag, Al, Ca, Li, Mn, Y, and Zn) binary alloys. They had an average grain size of 3 to 5 μm and a basal texture due to their production by the extrusion process. The specific wear rate was influenced by the alloying element; the Mg-Ca and Mg-Mn alloys showed the best and worst wear property, respectively, among the present alloying elements, which was the same trend as that for indentation hardness. Deformed microstructural observations revealed no formation of deformation twins, because of the high activation of grain boundary-induced plasticity. On the contrary, according to scratched surface observations, when grain boundary sliding partially contributed to deformation, these alloys had large specific wear rates. These results revealed that the wear property of magnesium alloys was closely related to the plastic deformation mechanism. The prevention of grain boundary sliding is important to improve the wear property, which is the same as that of a large-scale wearing configuration. One of the influential factors is the change in the lattice parameter with the chemical composition, i.e., ∂( c/ a)/∂ C. An alloying element that has a large value of ∂( c/ a)/∂ C effectively enhances the wear property.

  3. A nonaffine network model for elastomers undergoing finite deformations

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2013-08-01

    In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.

  4. Monitoring of Large Scale Volcanic Deformations in the Andes Using Geodetic Time Series (DInSAR, GPS and Microgravity)

    NASA Astrophysics Data System (ADS)

    Remy, D.; Froger, J. L.; Bonvalot, S.; Gabalda, G.; Albino, F.; Byrdina, S.

    2010-03-01

    Lastarria (25°10'S, 68°31'W, 5706 m) and Cordon del Azufre (25°18'S, 68°33'W, 5480 m) are part of a broad polygenic quaternary volcanic complex lying on the Altiplano, on the border of Chile and Argentina. This large scale volcanic area attracted particular attention in recent years because of its relatively intense unrest characterised by a peculiar style of on-going ground deformation, apparently begun in 1998. Interferometric Synthetic Aperture Radar (InSAR) data collected between 1998 and 2009 revealed two scales of inflation: a large elliptical area (50 km NNE- SSW major axis and a 40 minor axis), which has been inflating at a rate of around 3 cm.yr-1; and a short wavelength inflation (6 km wide), which is located at Lastarria volcano on the northern margin of the large elliptical area. The temporal evolution of these two distinct inflating signals suggests that they could be linked. The origin of this inflation period is still debated and various source mechanisms have been proposed to explain the observed deformation. Here, we present new observations of surface deformation in the Lastarria-Cordon del Azufre complex based on InSAR, levelling global positioning system (GPS), and microgravity data. Ascending and descending ASAR interferograms are combined to determine vertical and the EW horizontal component of displacement. Geodetic data are discussed from the standpoint of providing better constraints to understand the mechanics of the observed process at the volcanic complex.

  5. Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere

    NASA Technical Reports Server (NTRS)

    Raftopoulos, D. D.; Spicer, A. L.

    1976-01-01

    An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.

  6. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOEpatents

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  7. Nonlinear Deformation of a Piecewise Homogeneous Cylinder Under the Action of Rotation

    NASA Astrophysics Data System (ADS)

    Akhundov, V. M.; Kostrova, M. M.

    2018-05-01

    Deformation of a piecewise cylinder under the action of rotation is investigated. The cylinder consists of an elastic matrix with circular fibers of square cross section made of a more rigid elastic material and arranged doubly periodically in the cylinder. Behavior of the cylinder under large displacements and deformations is examined using the equations of a nonlinear elasticity theory for cylinder constituents. The problem posed is solved by the finite-difference method using the method of continuation with respect to the rotational speed of the cylinder.

  8. Management of post burn hand deformities

    PubMed Central

    Sabapathy, S. Raja; Bajantri, Babu; Bharathi, R. Ravindra

    2010-01-01

    The hand is ranked among the three most frequent sites of burns scar contracture deformity. One of the major determinants of the quality of life in burns survivors is the functionality of the hands. Burns deformities, although largely preventable, nevertheless do occur when appropriate treatment is not provided in the acute situation or when they are part of a major burns. Reconstructive procedures can greatly improve the function of the hands. Appropriate choice of procedures and timing of surgery followed by supervised physiotherapy can be a boon for a burns survivor. PMID:21321661

  9. A Versatile Method for Nanostructuring Metals, Alloys and Metal Based Composites

    NASA Astrophysics Data System (ADS)

    Gurau, G.; Gurau, C.; Bujoreanu, L. G.; Sampath, V.

    2017-06-01

    A new severe plastic deformation method based on High Pressure Torsion is described. The method patented as High Speed High Pressure Torsion (HSHPT) shows a wide scope and excellent adaptability assuring large plastic deformation degree on metals, alloys even on hard to deform or brittle alloys. The paper present results obtained on aluminium, magnesium, titan, iron and coper alloys. In addition capability of HSHPT to process metallic composites is described. OM SEM, TEM, DSC, RDX and HV investigation methods were employed to confirm fine and ultrafine structure.

  10. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.

    PubMed

    Jungreuthmayer, C; Jaasma, M J; Al-Munajjed, A A; Zanghellini, J; Kelly, D J; O'Brien, F J

    2009-05-01

    Tissue-engineered bone shows promise in meeting the huge demand for bone grafts caused by up to 4 million bone replacement procedures per year, worldwide. State-of-the-art bone tissue engineering strategies use flow perfusion bioreactors to apply biophysical stimuli to cells seeded on scaffolds and to grow tissue suitable for implantation into the patient's body. The aim of this study was to quantify the deformation of cells seeded on a collagen-GAG scaffold which was perfused by culture medium inside a flow perfusion bioreactor. Using a microCT scan of an unseeded collagen-GAG scaffold, a sequential 3D CFD-deformation model was developed. The wall shear stress and the hydrostatic wall pressure acting on the cells were computed through the use of a CFD simulation and fed into a linear elastostatics model in order to calculate the deformation of the cells. The model used numerically seeded cells of two common morphologies where cells are either attached flatly on the scaffold wall or bridging two struts of the scaffold. Our study showed that the displacement of the cells is primarily determined by the cell morphology. Although cells of both attachment profiles were subjected to the same mechanical load, cells bridging two struts experienced a deformation up to 500 times higher than cells only attached to one strut. As the scaffold's pore size determines both the mechanical load and the type of attachment, the design of an optimal scaffold must take into account the interplay of these two features and requires a design process that optimizes both parameters at the same time.

  11. Seafloor Geodetic Monitoring of the Central Andean Subduction Zone: The Geosea Array

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Lange, D.; Contreras Reyes, E.; Behrmann, J. H.; McGuire, J. J.; Flueh, E. R.

    2014-12-01

    Seafloor geodesy has been identified as one of the central tools in marine geosciences to monitor seafloor deformation at high resolution. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising a total of 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distance. Vertical motion is obtained from pressure gauges. Integrated inclinometers monitor station settlement in two horizontal directions. Travel time between instruments and the local water sound velocity will be recorded autonomously subsea without system or human intervention for up to 3.5 years. Data from the autonomous network on the seafloor can be retrieved via the integrated high-speed acoustic telemetry link without recovering the seafloor units. In late 2015 GeoSEA will be installed on the Iquique segment of the South America - Nazca convergent plate boundary to monitor crustal deformation. The Iquique seismic gap experienced the 2014 Mw 8.1 Pisagua earthquake, which apparently occurred within a local locking minimum. It is thus crucial to better resolve resolve strain in the forearc between the mainland and the trench in order to improve our understanding of forearc deformation required for hazard assessment. Mobile autonomous seafloor arrays for continuous measurement of active seafloor deformation in hazard zones have the potential to lead to transformative discoveries of plate boundary/fault zone tectonic processes and address a novel element of marine geophysical research.

  12. Vertebral column resection in children with neuromuscular spine deformity.

    PubMed

    Sponseller, Paul D; Jain, Amit; Lenke, Lawrence G; Shah, Suken A; Sucato, Daniel J; Emans, John B; Newton, Peter O

    2012-05-15

    Retrospective analysis. To determine, in pediatric patients with neuromuscular deformity undergoing vertebral column resection (VCR), the (1) characteristics of the surgery performed; (2) amount of pelvic obliquity restoration, and coronal and sagittal correction achieved; (3) associated blood loss and complications; and (4) extent to which curve type and VCR approach influenced correction, blood loss, and complications. VCR allows for correction of severe, rigid spinal deformity. This technique has not been previously reported in children with neuromuscular disorders. We retrospectively reviewed the records of 23 children with neuromuscular disorders (mean age, 15 years) and spinal deformities (severe scoliosis, 9; global kyphosis or angular kyphosis, 4; kyphoscoliosis, 10) who underwent VCR. The Student t test was used to compare correction differences (statistical significance, P < 0.05). A mean 1.5 vertebrae (27 thoracic and 6 lumbar) were resected per patient. Significant corrections were achieved in pelvic obliquity (11°, from 19° ± 13° to 8° ± 7°), in major coronal curve (56°, from 94° ± 36° to 38° ± 20°), and in major sagittal curve (46°, from 86° ± 37° to 40° ± 19°). There was no difference in correction between various curve types. VCR was associated with substantial blood loss (mean, 76% [estimated blood loss per total blood volume]), which correlated with patient weight and operating time. Overall, 6 patients experienced major complications: spinal cord injury, pleural effusion requiring chest tube insertion, pneumonia, pancreatitis, deep wound infection, and prominent implant requiring revision surgery. There were no deaths or permanent neurological injuries. VCR achieved significant pelvic obliquity restoration and coronal and sagittal correction in children with neuromuscular disorders and severe, rigid spinal deformity. However, this challenging procedure involves the potential for major complications.

  13. Juxtaposition of Neoproterozoic units along the Baruda - Tulu Dimtu shear-belt in the East African Orogen of western Ethiopia

    USGS Publications Warehouse

    Braathen, A.; Grenne, Tor; Selassie, M.G.; Worku, T.

    2001-01-01

    Amalgamation of East and West Gondwanaland during the Neoproterozoic East African Orogen is recorded by several shear-belts or 'suture zones', some of which are associated with ultramafic and mafic complexes that have been interpreted as ophiolite fragments. The Baruda shear-belt is a major structure of this type that belongs to the N-S trending Barka - Tulu Dimtu zone. The significance of this zone has been studied within a transect in western Ethiopia which covers a variety of metasedimentary and metavolcanic sequences, ultramafic rocks and synkinematic intrusive complexes. All rocks participated in the regional D1 event as reflected in a penetrative steep foliation in supracrustal rocks and marginal parts of the intrusions. Highly strained rocks contain a stretching lineation that plunge to the east. The several-km thick Baruda shear-belt, comprising mylonitic supracrustal and plutonic rocks including mafic-ultramafic mega-lenses, is the most prominent expression of this event. Shear-sense indicators demonstrate top-to-the-west shear. Subsequent D2 deformation is recorded in 2-300 m wide, N-S striking, subvertical shear-zones with subhorizontal stretching lineation relatable to sinistral transcurrent movements. Our data indicate that rock units on either side of the Baruda shear-belt are related, rather than being exotic to each other as implied in suture zone models, since there is no major lithologic or metamorphic difference, geochemical data on metavolcanic rocks and pre-tectonic intrusions suggest a paleotectonic link, and style and extent of deformation is similar across the shear-belt. A tentative model for the transect suggests an arc and back-arc setting which experienced later continental collision and tectonic shortening. The initial setting was that of a shallow marine platform characterised by carbonates and sandstones, which covered extensive areas prior to break-up of a pre-existing supercontinent. Continental convergence is first recorded in high-K calc-alkaline volcanism characterised by pyroclastic deposits of andesitic composition, at an active continental margin at about 800 Ma. Subaerial arc volcanism was temporally and spatially overlapping with limited arc rifting, represented by submarine basalts compositionally transitional between enriched MORB and calc-alkaline magmas, and associated dyke swarms in the older carbonate-sandstone platform sequence. It is suggested that the large, mafic-ultramafic, bodies relate to this event and were originally formed as intrusions along one or more propagating rift axis within the arc complex. The regional Baruda shear-belt formed in response to contractional D1 deformation, and its location may have been largely controlled by competence contrasts between the array of rift-related intrusions and the marble-dominated lithologies. Associated shortening of the arc and back-arc region led to crustal thickening and emplacement of synkinematic, composite, batholiths at about 570-550 Ma. These are composed of moderately peraluminous granite and coeval, intermediate to mafic intrusions of shoshonitic affinity. D2 sinistral movements succeeded the contractional deformation. ?? 2001 Elsevier Science B.V.

  14. Fluid Surface Deformation by Objects in the Cheerios Effect

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoi; Miller, Michael; Mandre, Shreyas; Mandre Lab Team

    2012-11-01

    Small objects floating on a fluid/air interface deform of the surface depending on material surface properties, density, and geometry. These objects attract each other through capillary interactions, a phenomenon dubbed the ``cheerios effect.'' The attractive force and torque exerted on these objects by the interface can be estimated if the meniscus deformation is known. In addition, the floating objects can also rotate due to such an interaction. We present a series of experiments focused on visualizing the the motions of the floating objects and the deformation of the interface. The experiments involve thin laser-cut acrylic pieces attracting each other on water in a large glass petri dish and a camera set-up to capture the process. Furthermore, optical distortion of a grid pattern is used to visualize the water surface deformation near the edge of the objects. This study of the deformation of the water surface around a floating object, of the attractive/repulsive forces, and of post-contact rotational dynamics are potentially instrumental in the study of colloidal self-assembly.

  15. Seismic anisotropy and large-scale deformation of the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Bokelmann, Götz; Qorbani, Ehsan; Bianchi, Irene

    2013-12-01

    Mountain chains at the Earth's surface result from deformation processes within the Earth. Such deformation processes can be observed by seismic anisotropy, via the preferred alignment of elastically anisotropic minerals. The Alps show complex deformation at the Earth's surface. In contrast, we show here that observations of seismic anisotropy suggest a relatively simple pattern of internal deformation. Together with earlier observations from the Western Alps, the SKS shear-wave splitting observations presented here show one of the clearest examples yet of mountain chain-parallel fast orientations worldwide, with a simple pattern nearly parallel to the trend of the mountain chain. In the Eastern Alps, the fast orientations do not connect with neighboring mountain chains, neither the present-day Carpathians, nor the present-day Dinarides. In that region, the lithosphere is thin and the observed anisotropy thus resides within the asthenosphere. The deformation is consistent with the eastward extrusion toward the Pannonian basin that was previously suggested based on seismicity and surface geology.

  16. Volcanic deformation in the Andes

    NASA Astrophysics Data System (ADS)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  17. Contrasting styles of large-scale displacement of unconsolidated sand: examples from the early Jurassic Navajo Sandstone on the Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Bryant, Gerald

    2015-04-01

    Large-scale soft-sediment deformation features in the Navajo Sandstone have been a topic of interest for nearly 40 years, ever since they were first explored as a criterion for discriminating between marine and continental processes in the depositional environment. For much of this time, evidence for large-scale sediment displacements was commonly attributed to processes of mass wasting. That is, gravity-driven movements of surficial sand. These slope failures were attributed to the inherent susceptibility of dune sand responding to environmental triggers such as earthquakes, floods, impacts, and the differential loading associated with dune topography. During the last decade, a new wave of research is focusing on the event significance of deformation features in more detail, revealing a broad diversity of large-scale deformation morphologies. This research has led to a better appreciation of subsurface dynamics in the early Jurassic deformation events recorded in the Navajo Sandstone, including the important role of intrastratal sediment flow. This report documents two illustrative examples of large-scale sediment displacements represented in extensive outcrops of the Navajo Sandstone along the Utah/Arizona border. Architectural relationships in these outcrops provide definitive constraints that enable the recognition of a large-scale sediment outflow, at one location, and an equally large-scale subsurface flow at the other. At both sites, evidence for associated processes of liquefaction appear at depths of at least 40 m below the original depositional surface, which is nearly an order of magnitude greater than has commonly been reported from modern settings. The surficial, mass flow feature displays attributes that are consistent with much smaller-scale sediment eruptions (sand volcanoes) that are often documented from modern earthquake zones, including the development of hydraulic pressure from localized, subsurface liquefaction and the subsequent escape of fluidized sand toward the unconfined conditions of the surface. The origin of the forces that produced the lateral, subsurface movement of a large body of sand at the other site is not readily apparent. The various constraints on modeling the generation of the lateral force required to produce the observed displacement are considered here, along with photodocumentation of key outcrop relationships.

  18. Comparison of microstructure of superplastically deformed synthetic materials and ultramylonite: Coalescence of secondary mineral grains via grain boundary sliding

    NASA Astrophysics Data System (ADS)

    Hiraga, T.; Miyazaki, T.; Tasaka, M.; Yoshida, H.

    2011-12-01

    Using very fine-grained aggregates of forsterite containing ~10vol% secondary mineral phase such as periclase and enstatite, we have been able to demonstrate their superplascity, that is, achievement of more than a few 100 % tensile strain (Hiraga et al. 2010). Superplastic deformation is commonly considered to proceed via grain boundary sliding (GBS) which results in grain switching in the samples. Hiraga et al. (2010) succeeded in detecting the operation of GBS from observing the coalescence of grains of secondary phase in superplastically deformed samples. The secondary phase pins the motion of grain boundaries of the primary phase; however, the reduction of the number of the grains of secondary phase due to their coalescence allows grain growth of the primary phase. We analyzed the relationships between grain size of the primary and secondary phases, between strain and grain size, and between strain and the number of coalesced grains in the superplastically deformed samples. The results supports participation of all the grains of the primary phase in grain switching process indicating that the grain boundary sliding accommodates almost entire strain during the deformation. Mechanical properties of these materials such as their stress and grain size exponents of 1-2 do not conflict this conclusion. We applied the relationships obtained from analyzing superplastic materials to the microstructure of the natural samples, which has been considered to have deformed via grain boundary sliding, that is, ultramylonite. The microstructure of greenschist-grade ultramylonite reported by Fliervoet et al. (1997) was analyzed. Distributions of the mineral phases (i.e., quartz, plagioclase, K-feldspar and biotite) show distinct coalescence of the same mineral phases in the direction almost perpendicular to the foliation of the rock. The number of coalesced grains indicates that the strain that rock experienced is > 2. [reference] Hiraga et al. (2010) Nature 468, 1091-1094; Fliervoet et al. (1997) Journal of Structural Geology 19, 1495-1520

  19. Distributed deformation and block rotation in 3D

    NASA Technical Reports Server (NTRS)

    Scotti, Oona; Nur, Amos; Estevez, Raul

    1990-01-01

    The authors address how block rotation and complex distributed deformation in the Earth's shallow crust may be explained within a stationary regional stress field. Distributed deformation is characterized by domains of sub-parallel fault-bounded blocks. In response to the contemporaneous activity of neighboring domains some domains rotate, as suggested by both structural and paleomagnetic evidence. Rotations within domains are achieved through the contemporaneous slip and rotation of the faults and of the blocks they bound. Thus, in regions of distributed deformation, faults must remain active in spite of their poor orientation in the stress field. The authors developed a model that tracks the orientation of blocks and their bounding faults during rotation in a 3D stress field. In the model, the effective stress magnitudes of the principal stresses (sigma sub 1, sigma sub 2, and sigma sub 3) are controlled by the orientation of fault sets in each domain. Therefore, adjacent fault sets with differing orientations may be active and may display differing faulting styles, and a given set of faults may change its style of motion as it rotates within a stationary stress regime. The style of faulting predicted by the model depends on a dimensionless parameter phi = (sigma sub 2 - sigma sub 3)/(sigma sub 1 - sigma sub 3). Thus, the authors present a model for complex distributed deformation and complex offset history requiring neither geographical nor temporal changes in the stress regime. They apply the model to the Western Transverse Range domain of southern California. There, it is mechanically feasible for blocks and faults to have experienced up to 75 degrees of clockwise rotation in a phi = 0.1 strike-slip stress regime. The results of the model suggest that this domain may first have accommodated deformation along preexisting NNE-SSW faults, reactivated as normal faults. After rotation, these same faults became strike-slip in nature.

  20. Correlation between pore fluid pressures and DInSAR post-seismic deformation of the May 20, 2012 Emilia-Romagna (Italy) earthquake

    NASA Astrophysics Data System (ADS)

    Moro, M.; Stramondo, S.; Albano, M.; Barba, S.; Solaro, G.; Saroli, M.; Bignami, C.

    2015-12-01

    The present work focuses on the detection and analysis of the postseismic surface deformations following the two earthquakes that hit the Emilia Romagna region (Italy) on May 20 and 29, 2012. The 2012 Emilia earthquake sequence struck the central sector of the Ferrara arc, which represents the external fold-and-thrust system of the Northern Apennines thrust belt buried below the Po plain. The May 20 event occurred on the Ferrara basal thrust at depth, at about 6-7 km, while, during the May 29 event, the rupture jumped on an inner splay of the Ferrara system. The analysis of the postseismic displacements was carried out thanks to a dataset of SAR COSMO­ SkyMed images covering a time span of about one year (May 20, 2012 - May 11, 2013) after the May 20 event. The DInSAR results revealed the presence of two deformation patches: the first one is located in the area that experienced the coseismic uplift. Here the postseismic displacements point out a further ground uplift occurring along the first three months after the 20 May event. The second deformation patch is located in the villages of San Carlo and Mirabello, where ground subsidence lasting about four months was detected. We hypothesized that both the observed phenomena are related to the pore pressure perturbation caused by the coseismic deformation. In particular, the ground uplift is due to the deep crustal deformations caused by the pore fluid diffusion at depth to re-establish the initial hydrostatic stresses. Instead, the ground subsidence is related to the compaction of the shallow sandy layers caused by the liquefaction phenomena, which widely affected the San Carlo and Mirabello area. Preliminary numerical analyses performed with the Finite Element Method and empirical relations confirmed our hypothesis.

  1. A CBCT study of the gravity-induced movement in rotating rabbits

    NASA Astrophysics Data System (ADS)

    Barber, Jeffrey; Shieh, Chun-Chien; Counter, William; Sykes, Jonathan; Bennett, Peter; Ahern, Verity; Corde, Stéphanie; Heng, Soo-Min; White, Paul; Jackson, Michael; Liu, Paul; Keall, Paul J.; Feain, Ilana

    2018-05-01

    Fixed-beam radiotherapy systems with subjects rotating about a longitudinal (horizontal) axis are subject to gravity-induced motion. Limited reports on the degree of this motion, and any deformation, has been reported previously. The purpose of this study is to quantify the degree of anatomical motion caused by rotating a subject around a longitudinal axis, using cone-beam CT (CBCT). In the current study, a purpose-made longitudinal rotating was aligned to a Varian TrueBeam kV imaging system. CBCT images of three live rabbits were acquired at fixed rotational offsets of the cradle. Rigid and deformable image registrations back to the original position were used to quantify the motion experienced by the subjects under rotation. In the rotation offset CBCTs, the mean magnitude of rigid translations was 5.7  ±  2.7 mm across all rabbits and all rotations. The translation motion was reproducible between multiple rotations within 2.1 mm, 1.1 mm, and 2.8 mm difference for rabbit 1, 2, and 3, respectively. The magnitude of the mean and absolute maximum deformation vectors were 0.2  ±  0.1 mm and 5.4  ±  2.0 mm respectively, indicating small residual deformations after rigid registration. In the non-rotated rabbit 4DCBCT, respiratory diaphragm motion up to 5 mm was observed, and the variation in respiratory motion as measured from a series of 4DCBCT scans acquired at each rotation position was small. The principle motion of the rotated subjects was rigid translational motion. The deformation of the anatomy under rotation was found to be similar in scale to normal respiratory motion. This indicates imaging and treatment of rotated subjects with fixed-beam systems can use rigid registration as the primary mode of motion estimation. While the scaling of deformation from rabbits to humans is uncertain, these proof-of-principle results indicate promise for fixed-beam treatment systems.

  2. Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer

    NASA Astrophysics Data System (ADS)

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu

    2014-10-01

    A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m-1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP.

  3. Plate motions and deformations from geologic and geodetic data

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.

    1990-01-01

    An analysis of geodetic data in the vicinity of the Crustal Dynamics Program (CDP) site at Vandenberg Air Force Base (VNDN) is presented. The utility of space-geodetic data in the monitoring of transient strains associated with earthquakes in tectonically active areas like California is investigated. Particular interest is in the possibility that space-geodetic methods may be able to provide critical new data on deformations precursory to large seismic events. Although earthquake precursory phenomena are not well understood, the monitoring of small strains in the vicinity of active faults is a promising technique for studying the mechanisms that nucleate large earthquakes and, ultimately, for earthquake prediction. Space-geodetic techniques are now capable of measuring baselines of tens to hundreds of kilometers with a precision of a few parts in 108. Within the next few years, it will be possible to record and analyze large-scale strain variations with this precision continuously in real time. Thus, space-geodetic techniques may become tools for earthquake prediction. In anticipation of this capability, several questions related to the temporal and spatial scales associated with subseismic deformation transients are examined.

  4. Long-term deformation in the Mississippi Embayment (Central USA) imaged by high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Hao, Yanjun

    Large magnitude intraplate earthquakes are a puzzling exception to plate tectonic theory. Unlike earthquakes occurring along plate boundaries, large continental intraplate earthquakes are a rare occurrence and are often distributed over broad regions. Albeit rare, their occurrence can cause widespread damage because of the low attenuation of seismic energy typical of plate interiors [Hanks and Johnston, 1992]. In the Central USA, most of the recent tectonic intraplate seismicity concentrates along the New Madrid seismic zone (NMSZ), where three large (M>7) earthquakes occurred between 1811--1812 [Johnston and Schweig, 1996]. Here the low surface deformation rates [Calais and Stein, 2009] conflict with the elevated instrument-recorded seismicity and the occurrence of historical and prehistorical large magnitude events [Tuttle et al., 2002]. One of the promising hypotheses proposed to reconcile this apparent contradiction is that intraplate earthquakes may be temporally clustered, episodic or cyclic, and may migrate spatially at the regional or continental scale across multiple faults or fault systems. In order to test this hypothesis and to understand how and where the long-term deformation is accommodated in the Mississippi Embayment, Central USA, I utilize high-resolution seismic reflection data acquired by the Mississippi River Project [Magnani and McIntosh, 2009] and by a 2010 survey across the Meeman-Shelby fault [Magnani, 2011; Hao et al., 2013]. To identify the location of Quaternary deformation and characterize deformation history, I acquired, processed, and interpreted the seismic reflection data and integrated them with other available geophysical (e.g. seismicity, crustal and lithospheric models) and geological (e.g. magmatism and borehole) data. For my research, I focus on three regions in the Mississippi Embayment: 1) the Meeman-Shelby fault west of Memphis, Tennessee, 2) the eastern Reelfoot rift margin north of Memphis, Tennessee, and 3) the area in southeastern Arkansas along the Alabama-Oklahoma transform zone. Quaternary deformation and prolonged history of activity of the imaged faults is documented at all sites. The results show that Quaternary seismic activity in the Mississippi Embayment is accommodated by faults additional to the NMSZ fault system, and that fault activity is controlled by certain paleotectonic structures inherited from the Proterozoic and Paleozoic history of the North American continent. The identification of Quaternary seismogenic faults outside the footprint of the NMSZ and of the lower crustal anomaly (i.e. "rift pillow") supports seismotectonic models that predict deformation over a large area (e.g. Forte et al., 2007) and calls into questions in models that predict concentration of strain in the NMSZ region (e.g. Pollitz et al., 2001). A comparison between the newly imaged faults and the NMSZ faults shows that the former are indistinguishable from the latter except for the occurrence of instrumental seismicity. Based on the analysis of the location and sense of displacement of Quaternary deformation in the northern Mississippi Embayment, I propose a new fault network to reconcile the wide distribution of Quaternary faults with concentration of instrumental seismicity along the NMSZ. The fault network consists of three distinct trends of faults: ~N45°E right-lateral strike-slip faults, ~N20°W reverse faults, and ~N25°E right-lateral strike-slip faults. Different faults in the fault network appear to have been active at different times across the northern embayment. The available age data suggest a northward migration of the deformation, with the NMSZ representing the latest and youngest fault system.

  5. Analysis of 3-D Tongue Motion from Tagged and Cine Magnetic Resonance Images

    ERIC Educational Resources Information Center

    Xing, Fangxu; Woo, Jonghye; Lee, Junghoon; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2016-01-01

    Purpose: Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during…

  6. Optimisation and Validation of the ARAMIS Digital Image Correlation System for Use in Large-scale High-strain-rate Events

    DTIC Science & Technology

    2013-08-01

    enamel paint. Under extreme plastic deformation, the relative deformation of the coating could cause the coating to separate resulting in loss of...point for one to be found. If a discontinuity, such as a crack , occurs through the object separating speckle pattern, then the strain data will only

  7. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation.

    PubMed

    Rizvi, Mohd Suhail; Pal, Anupam

    2014-09-01

    The fibrous matrices are widely used as scaffolds for the regeneration of load-bearing tissues due to their structural and mechanical similarities with the fibrous components of the extracellular matrix. These scaffolds not only provide the appropriate microenvironment for the residing cells but also act as medium for the transmission of the mechanical stimuli, essential for the tissue regeneration, from macroscopic scale of the scaffolds to the microscopic scale of cells. The requirement of the mechanical loading for the tissue regeneration requires the fibrous scaffolds to be able to sustain the complex three-dimensional mechanical loading conditions. In order to gain insight into the mechanical behavior of the fibrous matrices under large amount of elongation as well as shear, a statistical model has been formulated to study the macroscopic mechanical behavior of the electrospun fibrous matrix and the transmission of the mechanical stimuli from scaffolds to the cells via the constituting fibers. The study establishes the load-deformation relationships for the fibrous matrices for different structural parameters. It also quantifies the changes in the fiber arrangement and tension generated in the fibers with the deformation of the matrix. The model reveals that the tension generated in the fibers on matrix deformation is not homogeneous and hence the cells located in different regions of the fibrous scaffold might experience different mechanical stimuli. The mechanical response of fibrous matrices was also found to be dependent on the aspect ratio of the matrix. Therefore, the model establishes a structure-mechanics interdependence of the fibrous matrices under large deformation, which can be utilized in identifying the appropriate structure and external mechanical loading conditions for the regeneration of load-bearing tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Structure of Hole 1256D: The role of mechanical deformation in superfast-spread crust

    NASA Astrophysics Data System (ADS)

    Tartarotti, P.; Hayman, N. W.; Anma, R.; Crispini, L.; Veloso Espinosa, E. A.; Galli, L.

    2006-12-01

    One view of seafloor spreading is that mechanical deformation is not significant at high spreading rates. With recovery of up to 37%, and the vertical axis known for many pieces, shipboard visual core descriptions from Hole 1256D provide an opportunity to evaluate the significance of deformational structures in EPR-, superfast- (~220 mm-yr) spread crust. From top to bottom, the structural characteristics of crustal units are: (1) A relatively flat-lying, ~100-m thick "lava pond" that is largely free of deformational structures; (2) ~184 m of shallowly dipping lava flows remarkable for hyaloclastites and a cooling-related fracture system; (3) ~466 m of massive and sheet flows with flow-related fractures, hydrothermal veins, and (fault-related) cataclastic domains; (3) A ~61 m thick transition zone that contains a well-developed (fault-related) cataclastic domain; (4) A ~346 m thick sheeted dike complex, with abundant hydrothermal veins, local breccias, and magmatic flow features. Recovered chilled dike margins have a mean dip of 70° and range from 41-88°; (5) A ~100 m thick plutonic suite contains gabbroic rocks that intrude the sheeted dikes. Gabbros contain some local brittle structures and minor (largely static) recrystallized domains, but are more noteworthy for their magmatic features: dike/gabbro contacts and flow foliations are modestly dipping (e.g., ~45°) with leucocratic melt patches concentrated toward the top of the section. Brittle structures were subordinate to magmatic processes in accommodating large extensional strain. Brittle deformation was important, however, in accommodating magmatism and hydrothermal fluid flow, thereby affecting the variation of crustal physical properties and the distribution of oceanic alteration.

  9. Computational Study of Uniaxial Deformations in Silica Aerogel Using a Coarse-Grained Model.

    PubMed

    Ferreiro-Rangel, Carlos A; Gelb, Lev D

    2015-07-09

    Simulations of a flexible coarse-grained model are used to study silica aerogels. This model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792), consists of spherical particles which interact through weak nonbonded forces and strong interparticle bonds that may form and break during the simulations. Small-deformation simulations are used to determine the elastic moduli of a wide range of material models, and large-deformation simulations are used to probe structural evolution and plastic deformation. Uniaxial deformation at constant transverse pressure is simulated using two methods: a hybrid Monte Carlo approach combining molecular dynamics for the motion of individual particles and stochastic moves for transverse stress equilibration, and isothermal molecular dynamics simulations at fixed Poisson ratio. Reasonable agreement on elastic moduli is obtained except at very low densities. The model aerogels exhibit Poisson ratios between 0.17 and 0.24, with higher-density gels clustered around 0.20, and Young's moduli that vary with aerogel density according to a power-law dependence with an exponent near 3.0. These results are in agreement with reported experimental values. The models are shown to satisfy the expected homogeneous isotropic linear-elastic relationship between bulk and Young's moduli at higher densities, but there are systematic deviations at the lowest densities. Simulations of large compressive and tensile strains indicate that these materials display a ductile-to-brittle transition as the density is increased, and that the tensile strength varies with density according to a power law, with an exponent in reasonable agreement with experiment. Auxetic behavior is observed at large tensile strains in some models. Finally, at maximum tensile stress very few broken bonds are found in the materials, in accord with the theory that only a small fraction of the material structure is actually load-bearing.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, S.; Schaffer, J. E.; Yu, C.

    In situ synchrotron X-ray diffraction testing was carried out on a martensitic and an austenitic NiTi wire to study the evolution of internal stresses and the stress-induced martensite (SIM) phase transformation during room temperature tensile deformation. From the point of lattice strain evolution, it is concluded that (1) for the martensitic NiTi wire, detwinning of the [011](B19') type II twins and the {010}(B19') compound twins is responsible for internal strains formed at the early stage of deformation. (2) The measured diffraction moduli of individual martensite families show large elastic anisotropy and strong influences of texture. (3) For the austenitic NiTimore » wire, internal residual stresses were produced due to transformation-induced plasticity, which is more likely to occur in austenite families that have higher elastic moduli than their associated martensite families. (4) Plastic deformation was observed in the SIM at higher stresses, which largely decreased the lower plateau stresses.« less

  11. Using the DP-190 glue for adhesive attachment of a large space mirror and its rim

    NASA Astrophysics Data System (ADS)

    Vlasenko, Oleg; Zverev, Alexey; Sachkov, Mikhail

    2014-07-01

    The glue DP-190 is widely used for adhesive attachment of astrositall (zerodur) lightweight large-size space astronomical mirrors (diameter of 1.7 m and more) with elements of their frames of invar. Peculiarities of physicalmechanical behavior of the glue DP-190 when exposed to the environment during the ground operation and in orbit cause instability of the reflective surface quality of mirrors. In this report we show that even a small (around 1%-5%) volumetric deformation of a cylindrical adhesive layer with a thickness of 0.8 mm between the mirror and the rim element causes significant mirrors deformation. We propose to use adhesive layer of special form that allows to reduce volumetric deformations of the glue DP-190 up to three times. Here we present results based on primary mirror tests of the WSO-UV project.

  12. Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.

    2016-12-01

    A complete kinematics measurement of the two fission fragments was used for the first time to investigate fission dynamics at small and large deformations. Fissioning systems with high excitation energies, compact shapes, and low angular momenta were produced in inverse kinematics by using spallation reactions of lead projectiles. A new generation experimental setup allowed for the first full and unambiguous identification in mass and atomic number of both fission fragments. This measurement permitted us to accurately determine fission cross sections, the charge distribution, and the neutron excess of the fission fragments as a function of the atomic number of the fissioning system. These data are compared with different model calculations to extract information on the value of the dissipation parameter at small and large deformations. The present results do not show any sizable dependence of the nuclear dissipation parameter on temperature or deformation.

  13. Ductile fracture theories for pressurised pipes and containers

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Two mechanisms of fracture are distinguished. Plane strain fractures occur in materials which do not undergo large-scale plastic deformations prior to and during a possible fracture deformation. Plane stress or high energy fractures are generally accompanied by large inelastic deformations. Theories for analyzing plane stress are based on the concepts of critical crack opening stretch, K(R) characterization, J-integral, and plastic instability. This last is considered in some detail. The ductile fracture process involves fracture initiation followed by a stable crack growth and the onset of unstable fracture propagation. The ductile fracture propagation process may be characterized by either a multiparameter (discrete) model, or some type of a resistance curve which may be considered as a continuous model expressed graphically. These models are studied and an alternative model is also proposed for ductile fractures which cannot be modeled as progressive crack growth phenomena.

  14. 6th International Conference on Nanomaterials by Severe Plastic Deformation (NanoSPD6)

    NASA Astrophysics Data System (ADS)

    2014-08-01

    ''NanoSPD'' means Nano-material by Severe Plastic Deformation (SPD), which is an efficient way to obtain bulk nano-structured materials. During SPD, the microstructure of the material is transformed into a very fine structure consisting of ultra fine grains (UFG) approaching even the nano-scale. SPD is different from classical large strain forming processes in two aspects: 1. The sample undergoes extremely large strains without significant change in its dimensions, 2. In most SPD processes high hydrostatic stress is applied which makes it possible to deform difficult-to-form materials. This conference is part of a series of conferences taking place every third year; the history of NanoSPD conferences began in 1999 in Moscow (Russia), followed by Vienna in 2002 (Austria), Fukuoka in 2005 (Japan), Goslar in 2008 (Germany), Nanjing in 2011 (China), and Metz in 2014 (France). The preface continues in the pdf.

  15. Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray

    NASA Technical Reports Server (NTRS)

    Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.

    2010-01-01

    A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.

  16. Large Strain Behaviour of ZEK100 Magnesium Alloy at Various Strain Rates

    NASA Astrophysics Data System (ADS)

    Lévesque, Julie; Kurukuri, Srihari; Mishra, Raja; Worswick, Michael; Inal, Kaan

    A constitutive framework based on a rate-dependent crystal plasticity theory is employed to simulate large strain deformation in hexagonal closed-packed metals that deform by slip and twinning. The model allows the twinned zones and the parent matrix to rotate independently. ZEK100 magnesium alloy sheets which significant texture weakening compared to AZ31 sheets are investigated using the model. There is considerable in-plane anisotropy and tension compression asymmetry in the flow behavior of ZEK100. Simulations of uniaxial tension in different directions at various strain rates and the accompanying texture evolution are performed and they are in very good agreement with experimental measurements. The effect of strain rate on the activation of the various slip systems and twinning show that differences in the strain rate dependence of yield stress and Rvalues in ZEK100 have their origin in the activation of different deformation mechanisms.

  17. An Adjoint-Based Approach to Study a Flexible Flapping Wing in Pitching-Rolling Motion

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Wei, Mingjun; Xu, Min; Li, Chengyu; Dong, Haibo

    2017-11-01

    Flapping-wing aerodynamics, with advantages in agility, efficiency, and hovering capability, has been the choice of many flyers in nature. However, the study of bio-inspired flapping-wing propulsion is often hindered by the problem's large control space with different wing kinematics and deformation. The adjoint-based approach reduces largely the computational cost to a feasible level by solving an inverse problem. Facing the complication from moving boundaries, non-cylindrical calculus provides an easy extension of traditional adjoint-based approach to handle the optimization involving moving boundaries. The improved adjoint method with non-cylindrical calculus for boundary treatment is first applied on a rigid pitching-rolling plate, then extended to a flexible one with active deformation to further increase its propulsion efficiency. The comparison of flow dynamics with the initial and optimal kinematics and deformation provides a unique opportunity to understand the flapping-wing mechanism. Supported by AFOSR and ARL.

  18. Anisotropic frictional heating and defect generation in cyclotrimethylene-trinitramine molecular crystals

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2018-05-01

    Anisotropic frictional response and corresponding heating in cyclotrimethylene-trinitramine molecular crystals are studied using molecular dynamics simulations. The nature of damage and temperature rise due to frictional forces is monitored along different sliding directions on the primary slip plane, (010), and on non-slip planes, (100) and (001). Correlations between the friction coefficient, deformation, and frictional heating are established. We find that the friction coefficients on slip planes are smaller than those on non-slip planes. In response to sliding on a slip plane, the crystal deforms easily via dislocation generation and shows less heating. On non-slip planes, due to the inability of the crystal to deform via dislocation generation, a large damage zone is formed just below the contact area, accompanied by the change in the molecular ring conformation from chair to boat/half-boat. This in turn leads to a large temperature rise below the contact area.

  19. Classical Dynamics of Fullerenes

    NASA Astrophysics Data System (ADS)

    Sławianowski, Jan J.; Kotowski, Romuald K.

    2017-06-01

    The classical mechanics of large molecules and fullerenes is studied. The approach is based on the model of collective motion of these objects. The mixed Lagrangian (material) and Eulerian (space) description of motion is used. In particular, the Green and Cauchy deformation tensors are geometrically defined. The important issue is the group-theoretical approach to describing the affine deformations of the body. The Hamiltonian description of motion based on the Poisson brackets methodology is used. The Lagrange and Hamilton approaches allow us to formulate the mechanics in the canonical form. The method of discretization in analytical continuum theory and in classical dynamics of large molecules and fullerenes enable us to formulate their dynamics in terms of the polynomial expansions of configurations. Another approach is based on the theory of analytical functions and on their approximations by finite-order polynomials. We concentrate on the extremely simplified model of affine deformations or on their higher-order polynomial perturbations.

  20. Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections

    NASA Technical Reports Server (NTRS)

    Atilgan, Ali R.; Hodges, Dewey H.

    1991-01-01

    A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.

Top