NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Pond, J. E.; Spradley, J. W.; Johnson, M. H.
1976-01-01
The Dendrite Remelting Rocket Experiment was performed aboard a Black Brant VC Sounding Rocket during a period which gravity levels of approximately 0.00001 g prevailed. The experiment consisted of cooling an aqueous ammonium chloride solution in a manner such that crystallization of ammonium chloride crystals proceeded throughout a three minute period of zero-g. The crystallization process during flight was recorded on 35 mm panatomic-x film. A number of ground crystallizations were similarly recorded for comparison purposes. The convective and thermal conditions in aqueous and metallic liquid systems were assessed under conditions of the flight experiment to help establish the relevance of the rocket experiment to metals casting phenomena. The results indicate that aqueous or metallic convective velocities in the Dendrite Remelting Rocket Experiment cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the Rocket Experiment, therefore, may be indicative of how metals will solidify in low-g.
Consort 1 sounding rocket flight
NASA Technical Reports Server (NTRS)
Wessling, Francis C.; Maybee, George W.
1989-01-01
This paper describes a payload of six experiments developed for a 7-min microgravity flight aboard a sounding rocket Consort 1, in order to investigate the effects of low gravity on certain material processes. The experiments in question were designed to test the effect of microgravity on the demixing of aqueous polymer two-phase systems, the electrodeposition process, the production of elastomer-modified epoxy resins, the foam formation process and the characteristics of foam, the material dispersion, and metal sintering. The apparatuses designed for these experiments are examined, and the rocket-payload integration and operations are discussed.
1957-10-03
America’s first scientific satellite, the Explorer I, carried the radiation detection experiment designed by Dr. James Van Allen and discovered the Van Allen Radiation Belt. It was launched aboard a modified redstone rocket known as the Jupiter C, developed by Dr. von Braun’s rocket team at Redstone Arsenal in Huntsville, Alabama. The satellite launched on January 31, 1958, just 3 months after the the von Braun team received the go-ahead.
The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
Looking like a Roman candle, the exhaust from the Boeing Delta II rocket with the Mars Polar Lander aboard lights up the clouds as it hurtles skyward. The rocket was launched at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
NASA, Rockets, and the International Space Station
NASA Technical Reports Server (NTRS)
Marsell, Brandon
2015-01-01
General overview of NASA, Launch Services Program, and the Slosh experiment aboard the International Space Station. This presentation is designed to be presented in front of university level students in hopes of inspiring them to go into STEM careers.
1959-10-21
This image is a cutaway illustration of the Explorer I satellite with callouts. The Explorer I satellite was America's first scientific satellite launched aboard the Jupiter C launch vehicle on January 31, 1958. The Explorer I carried the radiation detection experiment designed by Dr. James Van Allen and discovered the Van Allen Radiation Belt.
NASA Technical Reports Server (NTRS)
1976-01-01
Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.
2011-10-04
The Dynamic Ionosphere Cubesat Experiment DICE is prepared for launch aboard the Delta II rocket that will carry NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project NPP spacecraft. DICE is a National Science Foundation Project conducted by Utah State University in conjunction with the Atmospheric and Space Technology Research Associates ASTRA. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System JPSS, to be launched in 2016. NPP is the bridge between NASA's Earth Observing System EOS satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 28 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB
Shape-Memory-Alloy Actuator For Flight Controls
NASA Technical Reports Server (NTRS)
Barret, Chris
1995-01-01
Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.
National Report on the NASA Sounding Rocket and Balloon Programs
NASA Technical Reports Server (NTRS)
Eberspeaker, Philip; Fairbrother, Debora
2013-01-01
The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to conduct supersonic decelerator tests. An overview of NASA's Sounding Rockets and Balloon Operations, Technology Development and Science support activities will be presented.
1999-01-03
KENNEDY SPACE CENTER, FLA. -- Looking like a Roman candle, the exhaust from the Boeing Delta II rocket with the Mars Polar Lander aboard lights up the clouds as it hurtles skyward. The rocket was launched at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
2018-05-24
The Gravity Recovery and Climate Experiment Follow-On mission, or GRACE-FO, began with a successful launch aboard a SpaceX Falcon 9 rocket from California’s Vandenberg Air Force Base on May 22, 2018. NASA’s Launch Services Program, based at Kennedy, served in an advisory role for the mission. Meanwhile, preparations continue for the upcoming launch of the Ionospheric Connection Explorer, or ICON.
Space Experiments Aboard Rockets: SPEAR III
1994-03-01
writing of this paper would not have been possible. I would also like to express appreciation to John Antoniades, Paul Rodriguez, Carl Seifring, and...Committee. Washington D.C.: American Physical Society, 1987. pp. 21-22. 2Ibid. ’Pake, pp. 23-34. 4Ibid. ’ Neubert , T., Mandell, M. J., Sasaki, S...experiment high-voltage effects on space charging in the ionosphere," IEEE Transactions on Nuclear Science. 35(6). December 6, 1988. p. 1386. ’ Neubert , pp
Antares Orbital-2 Mission Launch
2014-07-13
NASA Administrator Charles Bolden (left), speaks with Gina Burgin, Deputy Secretary of Administration, Commonwealth of Virginia, prior to the launch of the Orbital Sciences Corporation Antares rocket, with the Cygnus cargo spacecraft aboard, Sunday, July 13, 2014, at NASA’s Wallops Flight Facility in Virginia. Cygnus will deliver over 3,000 pounds of cargo to the Expedition 40 crew at the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. Photo Credit: (NASA/Aubrey Gemignani)
46 CFR 160.040-3 - Materials, construction, workmanship, and performance requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Appliance, Impulse-Projected Rocket Type (and Equipment) § 160.040-3 Materials, construction, workmanship...-projected rocket type line-throwing appliances and equipment shall be of good quality suitable for the... operation aboard vessels at sea. (c) Workmanship. Impulse-projected rocket type line-throwing appliances...
46 CFR 160.040-3 - Materials, construction, workmanship, and performance requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Appliance, Impulse-Projected Rocket Type (and Equipment) § 160.040-3 Materials, construction, workmanship...-projected rocket type line-throwing appliances and equipment shall be of good quality suitable for the... operation aboard vessels at sea. (c) Workmanship. Impulse-projected rocket type line-throwing appliances...
46 CFR 160.040-3 - Materials, construction, workmanship, and performance requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Appliance, Impulse-Projected Rocket Type (and Equipment) § 160.040-3 Materials, construction, workmanship...-projected rocket type line-throwing appliances and equipment shall be of good quality suitable for the... operation aboard vessels at sea. (c) Workmanship. Impulse-projected rocket type line-throwing appliances...
46 CFR 160.040-3 - Materials, construction, workmanship, and performance requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Appliance, Impulse-Projected Rocket Type (and Equipment) § 160.040-3 Materials, construction, workmanship...-projected rocket type line-throwing appliances and equipment shall be of good quality suitable for the... operation aboard vessels at sea. (c) Workmanship. Impulse-projected rocket type line-throwing appliances...
46 CFR 160.040-3 - Materials, construction, workmanship, and performance requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Appliance, Impulse-Projected Rocket Type (and Equipment) § 160.040-3 Materials, construction, workmanship...-projected rocket type line-throwing appliances and equipment shall be of good quality suitable for the... operation aboard vessels at sea. (c) Workmanship. Impulse-projected rocket type line-throwing appliances...
Experimenter's data package for the descending layers rocket
NASA Technical Reports Server (NTRS)
Earle, Greg; Herrero, Fred; Foster, John; Buonsanto, Mike; Satya-Narayana, P.
1992-01-01
In response to a proposal from Science Applications International Corporation (SAIC), NASA Headquarters has approved a sounding rocket mission designed to study the physics of intermediate layers in the Earth's ionosphere at middle latitudes. The experiment will be carried out by a team of scientists and engineers from the NASA Wallops Flight Facility, SAIC, the NASA Goddard Space Flight Center, and the Millstone Hill radar observatory. The mission will involve the launch of an instrumented sounding rocket from the Wallops Island rocket range in the summer of 1994, with the objective of penetrating a descending ionized layer in the E-region between altitudes of 115 and 140 km. Instrumentation aboard the rocket will measure the ion and neutral composition of the layer, its plasma density, driving wind and electric field forces, the thermal ion distribution function, and electron temperature. Depending on payload weight constraints and subject to availability, a particle detector to measure energetic ion and/or electron fluxes near the layer may also be included. This document was prepared as a reference for the NASA payload development and experiment teams, for distribution at the Project Initiation Conference (PIC). The design specifications discussed herein are therefore of a preliminary nature; the intent is to promote open discussions between experimenters and NASA engineers that will lead to a final design capable of achieving the experiment objectives.
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
2013-02-27
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is being mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
The solid rocket motor is lifted on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
Space-to-Ground: Rocket and Groot: 01/12/2018
2018-01-11
The SpaceX Dragon will depart the station...it's always growing season on ISS...and "Rocket and Groot" powers a student challenge! NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.
Suprathermal electrons associated with a plasma discharge on an active sounding rocket experiment
NASA Astrophysics Data System (ADS)
Bale, S. D.; Kellogg, P. J.; Monson, S. J.; Anderson, H. R.; Potter, D. W.
1995-12-01
Electrons with energies up to 600 eV are observed with the retarding potential analyzer (RPA) instrument aboard the Several Compatible Experiments (SCEX) III sounding rocket. The electrons are concomitant with high-energy (2-6 keV) electron gun injections and also evidence themselves by luminosity observed with 3805 Å and 3914 Å photometers. Both the collected electron flux and luminosity measurements are strongly nonlinear with gun injection current. For a typical event, the electron distribution is similar to laboratory beam-plasma discharge (BPD) distributions reported by Sharp (1982) and when backed by HF electric field observations (Goerke et al., 1992; Llobet et al., 1985), the BPD mechanism becomes a most likely explanation. Strong turbulence theories of BPD predict a power law tail in the electron distribution, and we compare our spectral index with some previous observations.
Pegasus XL CYGNSS Prepared for Launch Aboard Orbital ATK's L-101
2016-12-10
At Cape Canaveral Air Force Station's Skid Strip the Orbital ATK L-1011 Stargazer aircraft is being prepared to launch NASA's Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The eight micro satellites are aboard an Orbital ATK Pegasus XL rocket strapped to the underside of the Stargazer. CYGNSS is scheduled for its airborne launch aboard the Pegasus XL rocket from the Skid Strip on Dec. 12. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
The solid rocket motor has been lifted to the vertical position and moved into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida for mating to the United Launch Alliance Atlas V rocket. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Preparations are underway to lift the solid rocket motor up from its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
The solid rocket motor has been lifted to the vertical position for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Technicians with United Launch Alliance (ULA) assist as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Technicians with United Launch Alliance (ULA) monitor the progress as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
Parin, V V; Gazenko, O G
1963-01-01
Results are given of biological experiments on space ship-satellites II, III, IV and V, and of scientific investigations made during the flights of Cosmonauts Gagarin and Titov aboard space ships Vostok I and Vostok II. Physiological reactions to the action of the flight stress-factors are not of a pathological character. In the post-flight period no alterations in health conditions of either cosmonauts or animals were observed. At the same time some peculiarities which were revealed while analyzing physiological reactions and a number of biological indices require further investigations. The most important tasks remaining are to study the influence of protracted weightlessness, of the biological action of space radiation, of the action of acceleration stresses after prolonged stay under zero-gravity conditions and also to analyze the influence on the organism of the whole combination of spaceflight factors, including emotional strain. In the Soviet Union, a great number of biological experiments have been conducted with a view to elucidating the action of space flight factors on living organisms and the design of systems necessary to ensure healthy activity during flight aboard rocket space vehicles. The first flight experiments with animals were conducted by means of geophysical rockets. The next step in this direction was made by the launching of Sputnik II in 1957 and by experiments on space ship-satellites in 1960-61. The main purpose of flight and laboratory investigations was to obtain the objective scientific criteria essential for ensuring the safety of manned space flight.
1998-09-29
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers complete the insulation of Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-22
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility maneuver a second solar panel to attach it to Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-29
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, KSC workers place insulating blankets on Deep Space 1 to prepare it for launch. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-29
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility install blanket insulation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-29
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility get ready to attach a second solar panel to Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-29
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility begin installing blanket insulation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-29
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility finish installing blanket insulation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
2018-04-10
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is inspected shortly after arrival. ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.
2018-04-10
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is removed from its shipping container. ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard rolls to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard rolls to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard rolls to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
The solid rocket motor has been lifted to the vertical position on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-S Countdown to T-Zero, Episode 3: Rocket Science
2018-02-27
The United Launch Alliance Atlas V rocket reaches another major milestone on the road to T-Zero, as NOAA's GOES-S spacecraft prepares for launch. Stacking the rocket begins with the booster - the largest component - and continues with the addition of four solid rocket motors and the Centaur upper stage. GOES-S, the next in a series of advanced weather satellites, is slated to launch aboard the Atlas V from Cape Canaveral Air Force Station in Florida.
Shuttle Boosters stacked in the VAB
2007-01-04
Workers continue stacking the solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.
Shuttle Boosters stacked in the VAB
2007-01-04
Workers continue stacking the twin solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.
2018-04-10
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers removed protective wrapping from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.
2012-08-22
CAPE CANAVERAL, Fla. – Workers help guide the United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard as it moves to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard is readied for rollout to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard is readied for rollout to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard is readied for rollout to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – Workers help guide the United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard as it moves to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – Workers help guide the United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard as it moves to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard is readied for rollout to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
PhoneSat 2.4 Launches to Orbit aboard Minotaur-1 Rocket (Reporter Package)
2013-11-21
On November 19, NASA's PhoneSat 2.4 successfully launched into space on board a Minotaur-1 rocket from the Wallops Flight Facility in Virginia. Built at NASA's Ames Research Center, the smartphone-based cubesat is an improved version of the previous PhoneSat satellites.
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
Mars Polar Lander is mated with Boeing Delta II rocket
NASA Technical Reports Server (NTRS)
1998-01-01
At Launch Complex 17B, Cape Canaveral Air Station, workers get ready to remove the protective wrapping on the Mars Polar Lander to be launched aboard a Boeing Delta II rocket on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
1998-09-22
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility maneuver a solar panel and rack to be attached to Deep Space 1 (background). The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-22
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility check fittings for the solar panel (right) they are attaching to Deep Space 1, preparing it for flight in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-29
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, Tom Shain, project manager on Deep Space 1, displays a CD containing 350,000 names of KSC workers that he will place in a pouch and insert inside the spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
Shuttle Boosters stacked in the VAB
2007-01-04
Lighting inside Kennedy Space Center's Vehicle Assembly Building seems to bathe the highbay 1 area in a golden hue as workers continue stacking the twin solid rocket boosters. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
SpaceX CRS-14 What's On Board Science Briefing
2018-04-01
Howard Levine, at left, chief scientist in the Utilization and Life Sciences Office at NASA's Kennedy Space Center, and Dave Reid, a project manager with Techshot, discuss continuing research on growing food in space, as the Veggie Passive Orbital Nutrient Delivery System (PONDS) experiment tests a new way to deliver nutrients to plants. PONDS is one of the experiments that will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.
The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
Amid clouds of exhaust, a Boeing Delta II expendable launch vehicle with NASA's Mars Polar Lander clears Launch Complex 17B, Cape Canaveral Air Station, after launch at 3:21:10 p.m. EST. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
Silhouetted against the gray sky, a Boeing Delta II expendable launch vehicle with NASA's Mars Polar Lander lifts off from Launch Complex 17B, Cape Canaveral Air Station, at 3:21:10 p.m. EST. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
Amid clouds of exhaust and into a gray-clouded sky , a Boeing Delta II expendable launch vehicle lifts off with NASA's Mars Polar Lander at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
A Boeing Delta II expendable launch vehicle lifts off with NASA's Mars Polar Lander into a cloud-covered sky at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
Measurements in atmospheric electricity designed to improve launch safety during the Apollo series
NASA Technical Reports Server (NTRS)
Nanevicz, J. E.; Pierce, E. T.; Whitson, A. L.
1972-01-01
Ground test measurements were made during the launches of Apollo 13 and 14 in an effort to better define the electrical characteristics of a large launch vehicle. Of particular concern was the effective electrical length of the vehicle and plume since this parameter markedly affects the likelihood of a lightning stroke being triggered by a launch during disturbed weather conditions. Since no instrumentation could be carried aboard the launch vehicle, the experiments were confined to LF radio noise and electrostatic-field measurements on the ground in the vicinity of the launch pad. The philosophy of the experiment and the instrumentation and layout are described. From the results of the experiment it is concluded that the rocket and exhaust do not produce large-scale shorting of the earth's field out to distances of thousands of feet from the launch pad. There is evidence, however, that the plume does add substantially to the electrical length of the rocket. On this basis, it was recommended that there be no relaxation of launch rules for launches during disturbed weather.
Burkhalter, B B; McLean, J E; Curtis, J P; James, G S
1991-12-01
Space education is a discipline that has evolved at an unprecedented rate over the past 25 years. Although program proceedings, research literature, and historical documentation have captured fragmented pieces of information about student space experiments, the field lacks a valid comprehensive study that measures the educational impact of sounding rockets, Skylab, Ariane, AMSAT, and Space Shuttle. The lack of this information is a problem for space educators worldwide which led to a national study with classroom teachers. Student flown experiments continue to offer a unique experiential approach to teach students thinking and reasoning skills that are imperative in the current international competitive environment in which they live and will work. Understanding the history as well as the current status and educational spin-offs of these experimental programs strengthens the teaching capacity of educators throughout the world to develop problem solving skills and various higher mental processes in the schools. These skills and processes enable students to use their knowledge more effectively and efficiently long after they leave the classroom. This paper focuses on student space experiments as a means of motivating students to meet this educational goal successfully.
2007-01-05
KENNEDY SPACE CENTER, FLA. -- Lighting inside Kennedy Space Center's Vehicle Assembly Building seems to bathe the highbay 1 area in a golden hue as workers continue stacking the twin solid rocket boosters. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007. Photo credit: NASA/George Shelton
Field aligned currents and the auroral spectrum below 1 keV
NASA Technical Reports Server (NTRS)
Arnoldy, R. L.
1973-01-01
Measurements during auroral events were conducted with the aid of detectors flown aboard three Nike-Tomahawk rocket flights. The detectors used to measure the auroral spectrum below 1 keV consisted of electrostatic analyzers positioned in the rocket to measure particles moving up and down the magnetic field lines. The analyzers measured electrons and protons simultaneously during a given sweep.
Twilight airglow. II - N2/+/ emission at 3914 A
NASA Technical Reports Server (NTRS)
Sharp, W. E.
1974-01-01
One of the experiments aboard a rocket flight carrying instruments to measure the dawn airglow, the ion and electron densities, and the photoelectron spectrum is reported. For a solar zenith angle of 90 deg the emission at 3914 A from N2(+) peaks at about 260 km. The integrated intensity from model calculations suggests that resonance scattering of 3914-A solar photons off N2(+) produces 90% of the emission, whereas simultaneous photoionization excitation of N2(+) produces less than 10% of the emission. Photoelectron impact excitation is found to contribute about 1%.
1997-07-07
The Space Shuttle Orbiter Discovery rolls over from Orbiter Processing Facility 2 on top of the orbiter transporter to the Vehicle Assembly Building for mating with its external tank and solid rocket boosters in preparation for the STS-85 mission. Several payloads will be aboard Discovery during the 11-day mission, including the Manipulator Flight Demonstration (MFD) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2), as well as the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker (IEH-2) experiments
1997-07-07
The Space Shuttle Orbiter Discovery rolls over from Orbiter Processing Facility 2 on top of the orbiter transporter to the Vehicle Assembly Building for mating with its external tank and solid rocket boosters in preparation for the STS-85 mission. Several payloads will be aboard Discovery during the 11-day mission, including the Manipulator Flight Demonstration (MFD) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2), as well as the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker (IEH-2) experiments
1997-07-07
The Space Shuttle Orbiter Discovery in Orbiter Processing Facility 2 begins its rollover on top of the orbiter transporter to the Vehicle Assembly Building for mating with its external tank and solid rocket boosters in preparation for the STS-85 mission. Several payloads will be aboard Discovery during the 11-day mission, including the Manipulator Flight Demonstration (MFD) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2), as well as the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker (IEH-2) experiments
ECOSTRESS Arrival and Processing
2018-04-09
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) has arrived in its shipping container. The container is being inspected and thoroughly cleaned prior to opening. ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.
SpaceX CRS-12 "What's on Board?" Science Briefing
2017-08-13
Michael Delp of Florida State University in Tallahassee, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. He is principal investigator for the Rodent Research-9 experiment. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.
Spacecraft-plasma interaction codes: NASCAP/GEO, NASCAP/LEO, POLAR, DynaPAC, and EPSAT
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Jongeward, G. A.; Cooke, D. L.
1992-01-01
Development of a computer code to simulate interactions between the surfaces of a geometrically complex spacecraft and the space plasma environment involves: (1) defining the relevant physical phenomena and formulating them in appropriate levels of approximation; (2) defining a representation for the 3-D space external to the spacecraft and a means for defining the spacecraft surface geometry and embedding it in the surrounding space; (3) packaging the code so that it is easy and practical to use, interpret, and present the results; and (4) validating the code by continual comparison with theoretical models, ground test data, and spaceflight experiments. The physical content, geometrical capabilities, and application of five S-CUBED developed spacecraft plasma interaction codes are discussed. The NASA Charging Analyzer Program/geosynchronous earth orbit (NASCAP/GEO) is used to illustrate the role of electrostatic barrier formation in daylight spacecraft charging. NASCAP/low Earth orbit (LEO) applications to the CHARGE-2 and Space Power Experiment Aboard Rockets (SPEAR)-1 rocket payloads are shown. DynaPAC application to the SPEAR-2 rocket payloads is described. Environment Power System Analysis Tool (EPSAT) is illustrated by application to Tethered Satellite System 1 (TSS-1), SPEAR-3, and Sundance. A detailed description and application of the Potentials of Large Objects in the Auroral Region (POLAR) Code are presented.
2012-10-23
Expedition 33/34 Russian Cosmonaut and Soyuz Commander Oleg Novitskiy is escorted to the Soyuz rocket by President of the S.P. Korolev Rocket and Space Corporation Energia Vitaly Lopota, prior to his launch onboard a Soyuz TMA-06M spacecraft with fellow crew members, NASA Astronaut and Flight Engineer Kevin Ford, and, Russian Cosmonaut and Flight Engineer Evgeny Tarelkin, Tuesday, October 23, 2012, in Baikonur, Kazakhstan. Launch of the Soyuz rocket will send Ford, Novitskiy and Tarelkin on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
1998-10-01
Workers at this clean room facility, Cape Canaveral Air Station, prepare to lift the protective can that covered Deep Space 1 during transportation from KSC. The spacecraft will undergo spin testing at the site. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-30
KENNEDY SPACE CENTER, FLA. -- Deep Space 1 is lifted from its work platform, giving a closeup view of the experimental solar-powered ion propulsion engine. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
2002-12-21
Kennedy Space Center, Florida. - Deep Space 1 is lifted from its work platform, giving a closeup view of the experimental solar-powered ion propulsion engine. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. http://photojournal.jpl.nasa.gov/catalog/PIA04232
1998-09-29
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the media (below), dressed in "bunny" suits, learn about Deep Space 1 from Leslie Livesay (facing cameras), Deep Space 1 spacecraft manager from the Jet Propulsion Laboratory. In the background, KSC workers place insulating blankets on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
Project Explorer - Student experiments aboard the Space Shuttle
NASA Technical Reports Server (NTRS)
Buckbee, E.; Dannenberg, K.; Driggers, G.; Orillion, A.
1979-01-01
Project Explorer, a program of high school student experiments in space in a Space Shuttle self-contained payload unit (Getaway Special), sponsored by the Alabama Space and Rocket Center (ASRC) in cooperation with four Alabama universities is presented. Organizations aspects of the project, which is intended to promote public awareness of the space program and encourage space research, are considered, and the proposal selection procedure is outlined. The projects selected for inclusion in the self-contained payload canister purchased in 1977 and expected to be flown on an early shuttle mission include experiments on alloy solidification, electric plating, whisker growth, chick embryo development and human blood freezing, and an amateur radio experiment. Integration support activities planned and underway are summarized, and possible uses for a second payload canister purchased by ASRC are discussed.
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, John Carver, a project manager with Jacobs Technology checks the Advanced Plant Experiment, or APEX, experiment as it is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Donald Houzer, a QinetiQ North America mechanical technician checks out the Advanced Plant Experiment, or APEX, experiment as it is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
Two UV colours of the central part of M 31
NASA Technical Reports Server (NTRS)
Deharveng, J. M.; Laget, M.; Monnet, G.; Vuillemin, A.
1976-01-01
Two photographs of the galaxy M 31 have been obtained in the far UV with a Faust rocket experiment and in the near UV with the S 183 experiment aboard Skylab. Only the central part of the galaxy is detected. Reductions provide both the energy received and the angular area over M 31 from which it is emitted. The UV flux is brighter than expected from extrapolation of the visible spectrum. The distribution below 300 A is rather flat and different from previous OAO-2 observations. These results, combined with Lyman continuum flux evaluation, are used to discuss the temperature and the age of the stars which may be responsible for this anomalous UV distribution.
IRVE-II Post-Flight Trajectory Reconstruction
NASA Technical Reports Server (NTRS)
O'Keefe, Stephen A.; Bose, David M.
2010-01-01
NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations
Design and qualification of an UHV system for operation on sounding rockets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosse, Jens, E-mail: jens.grosse@dlr.de; Braxmaier, Claus; Seidel, Stephan Tobias
The sounding rocket mission MAIUS-1 has the objective to create the first Bose–Einstein condensate in space; therefore, its scientific payload is a complete cold atom experiment built to be launched on a VSB-30 sounding rocket. An essential part of the setup is an ultrahigh vacuum system needed in order to sufficiently suppress interactions of the cooled atoms with the residual background gas. Contrary to vacuum systems on missions aboard satellites or the international space station, the required vacuum environment has to be reached within 47 s after motor burn-out. This paper contains a detailed description of the MAIUS-1 vacuum system, asmore » well as a description of its qualification process for the operation under vibrational loads of up to 8.1 g{sub RMS} (where RMS is root mean square). Even though a pressure rise dependent on the level of vibration was observed, the design presented herein is capable of regaining a pressure of below 5 × 10{sup −10} mbar in less than 40 s when tested at 5.4 g{sub RMS}. To the authors' best knowledge, it is the first UHV system qualified for operation on a sounding rocket.« less
SpaceX CRS-12 "What's on Board?" Science Briefing
2017-08-13
Sebastian Mathea of the University of Oxford in England, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. Mathea is principal investigator for the Crystallization of LRRK2 Under Microgravity Conditions experiment. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.
1998-09-17
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility prepare Deep Space 1 for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby
SpaceX CRS-13 "What's on Board?" Mission Science Briefing
2017-12-11
Chris Wolverton, Ph.D., professor of botany/microbiology at Ohio Wesleyan University, speaks on the Plant Gravity Perception experiment with members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 11:46 a.m. EST, on Dec. 12, 2017. The SpaceX Falcon 9 rocket will launch the company's 13th Commercial Resupply Services mission to the space station.
Deep Space 1 is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Payload Hazardous Servicing Facility prepare Deep Space 1 for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near- Earth asteroid, 1992 KD, has also been selected for a possible flyby.
2007-02-17
KENNEDY SPACE CENTER, FLA. -- At Cape Canaveral Air Force Station, clouds of smoke envelop the Delta II rocket with NASA's THEMIS spacecraft aboard as it blasts off Pad 17-B at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Jerry Cannon
Delta II Launch with the THEMIS satellite payload from pad 17B C
2007-02-17
At Cape Canaveral Air Force Station, clouds of smoke envelop the Delta II rocket with NASA's THEMIS spacecraft aboard as it blasts off Pad 17-B at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color.
2007-02-17
KENNEDY SPACE CENTER, FLA. -- At Cape Canaveral Air Force Station, clouds of smoke form around the Delta II rocket with NASA's THEMIS spacecraft aboard as it blasts off Pad 17-B at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Jerry Cannon
Delta II Launch with the THEMIS satellite payload from pad 17B C
2007-02-17
At Cape Canaveral Air Force Station, the Delta II rocket with NASA's THEMIS spacecraft aboard begins its ascent from Pad 17-B, in sight of the Atlantic Ocean, at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color.
2007-02-17
KENNEDY SPACE CENTER, FLA. -- At Cape Canaveral Air Force Station, the Delta II rocket with NASA's THEMIS spacecraft aboard lifts off Pad 17-B on a crisp Florida evening at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Kim Shiflett
2007-02-17
KENNEDY SPACE CENTER, FLA. -- Clouds of smoke encompass the Delta II rocket with NASA's THEMIS spacecraft aboard as it blasts off Pad 17-B at Cape Canaveral Air Force Station at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Sandra Joseph, Ralph Hernandez
2007-02-17
KENNEDY SPACE CENTER, FLA. -- At Cape Canaveral Air Force Station, the Delta II rocket with NASA's THEMIS spacecraft aboard begins its ascent from Pad 17-B on a crisp Florida evening at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Sandra Joseph, Ralph Hernandez
Delta II Launch with the THEMIS satellite payload from pad 17B C
2007-02-17
Amid billows of smoke, the Delta II rocket with NASA's THEMIS spacecraft aboard blasts off Pad 17-B at Cape Canaveral Air Force Station at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color.
Delta II Launch with the THEMIS satellite payload from pad 17B C
2007-02-17
At Cape Canaveral Air Force Station, clouds of smoke form around the Delta II rocket with NASA's THEMIS spacecraft aboard as it blasts off Pad 17-B at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color.
2007-02-17
KENNEDY SPACE CENTER, FLA. -- The Delta II rocket with NASA's THEMIS spacecraft aboard begins its journey to orbit at 6:01 p.m. EST from Pad 17-B at Cape Canaveral Air Force Station. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Ken Thornsley
2007-02-17
KENNEDY SPACE CENTER, FLA. -- Amid billows of smoke, the Delta II rocket with NASA's THEMIS spacecraft aboard lifts off Pad 17-B at Cape Canaveral Air Force Station at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Kim Shiflett
2007-02-17
KENNEDY SPACE CENTER, FLA. -- Amid billows of smoke, the Delta II rocket with NASA's THEMIS spacecraft aboard lifts off Pad 17-B at Cape Canaveral Air Force Station at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Kim Shiflett
2007-02-17
KENNEDY SPACE CENTER, FLA. -- Amid billows of smoke, the Delta II rocket with NASA's THEMIS spacecraft aboard blasts off Pad 17-B at Cape Canaveral Air Force Station at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Sandra Joseph, Ralph Hernandez
2007-02-17
KENNEDY SPACE CENTER, FLA. -- At Cape Canaveral Air Force Station, the Delta II rocket with NASA's THEMIS spacecraft aboard lifts off Pad 17-B on a crisp Florida evening at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Jerry Cannon
2007-02-17
KENNEDY SPACE CENTER, FLA. -- Amid billows of smoke, the Delta II rocket with NASA's THEMIS spacecraft aboard blasts off Pad 17-B at Cape Canaveral Air Force Station at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Jerry Cannon
2007-02-17
KENNEDY SPACE CENTER, FLA. -- Clouds of smoke encompass the Delta II rocket with NASA's THEMIS spacecraft aboard as it blasts off Pad 17-B at Cape Canaveral Air Force Station at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Sandra Joseph, Ralph Hernandez
Delta II Launch with the THEMIS satellite payload from pad 17B C
2007-02-17
Clouds of smoke encompass the Delta II rocket with NASA's THEMIS spacecraft aboard as it blasts off Pad 17-B at Cape Canaveral Air Force Station at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color
1998-12-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17B, Cape Canaveral Air Station, workers get ready to remove the protective wrapping on the Mars Polar Lander to be launched aboard a Boeing Delta II rocket on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998
1998-12-21
KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander spacecraft is lifted off the trailer of that transported it to the gantry at Launch Complex 17B, Cape Canaveral Air Station. The lander, which will be launched aboard a Boeing Delta II rocket on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998
Ultrastable, Zerodur-based optical benches for quantum gas experiments.
Duncker, Hannes; Hellmig, Ortwin; Wenzlawski, André; Grote, Alexander; Rafipoor, Amir Jones; Rafipoor, Mona; Sengstock, Klaus; Windpassinger, Patrick
2014-07-10
Operating ultracold quantum gas experiments outside of a laboratory environment has so far been a challenging goal, largely due to the lack of sufficiently stable optical systems. In order to increase the thermal stability of free-space laser systems, the application of nonstandard materials such as glass ceramics is required. Here, we report on Zerodur-based optical systems which include single-mode fiber couplers consisting of multiple components jointed by light-curing adhesives. The thermal stability is thoroughly investigated, revealing excellent fiber-coupling efficiencies between 0.85 and 0.92 in the temperature range from 17°C to 36°C. In conjunction with successfully performed vibration tests, these findings qualify our highly compact systems for atom interferometry experiments aboard a sounding rocket as well as various other quantum information and sensing applications.
The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, a solid rocket booster hangs in place between two other rocket boosters waiting to be mated with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
2012-10-21
Pad workers install a safety railing at the launch pad shortly after the Soyuz rocket is erected into position, on Sunday, October 21, 2012, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for October 23 and will send Expedition 33/34 Flight Engineer Kevin Ford of NASA, Soyuz Commander Oleg Novitskiy and Flight Engineer Evgeny Tarelkin of ROSCOSMOS on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
A summary of results from solar monitoring rocket flights
NASA Technical Reports Server (NTRS)
Duncan, C. H.
1981-01-01
Three rocket flights to measure the solar constant and provide calibration data for sensors aboard Nimbus 6, 7, and Solar Maximum Mission (SMM) spacecraft were accomplished. The values obtained by the rocket instruments for the solar constant in SI units are: 1367 w/sq m on 29 June 1976; 1372 w/sq m on 16 November 1978; and 1374 w/sq m on 22 May 1980. The uncertainty of the rocket measurements is + or - 0.5%. The values obtained by the Hickey-Frieden sensor on Nimbus 7 during the second and third flights was 1376 w/sq m. The value obtained by the Active Cavity Radiometer Model IV (ACR IV) on SMM during the flight was 1368 w/sq m.
Astronaut Shane Kimbrough Visits Marshall Space Flight Center
2017-08-31
NASA astronaut Shane Kimbrough presents highlights from his Expedition 49-50 mission aboard the International Space Station Sept. 19 to students from theU.S. Space & Rocket Center's Space Camp and team members at NASA's Marshall Space Flight Center. While serving as commander of the station, Kimbrough conducted four spacewalks, during which he installed new batteries and relay boxes, and helped move a pressurized mating adapter for future commercial crew spacecraft visiting the outpost. He also contributed to hundreds of experiments in biology, biotechnology, physical science and Earthobservations. One of these experiments was the Microgravity Expanded Stem Cells investigation, results of which could lead to the treatment of diseases andinjury in space and provide a way to improve stem cell production for medical therapies on Earth.
Expedition 33 Crew Waves Farewell
2012-10-23
Expedition 33/34 crew members, Soyuz Commander Oleg Novitskiy, bottom, Flight Engineer Kevin Ford of NASA, and Flight Engineer Evgeny Tarelkin of ROSCOSMOS, top, wave farewell before boarding their Soyuz rocket just a few hours before their launch to the International Space Station on Tuesday, October 23, 2012, in Baikonur, Kazakhstan. Launch of a Soyuz rocket later in the afternoon will send Ford, Novitskiy and Tarelkin on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Delta II Launch with the THEMIS satellite payload from pad 17B C
2007-02-17
At Cape Canaveral Air Force Station, clouds of smoke encompass the Delta II rocket with NASA's THEMIS spacecraft aboard as it blasts off Pad 17-B, in sight of the Atlantic Ocean, at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color.
2007-02-17
KENNEDY SPACE CENTER, FLA. -- At Cape Canaveral Air Force Station, the Delta II rocket with NASA's THEMIS spacecraft aboard begins its ascent from Pad 17-B, in sight of the Atlantic Ocean, at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Regina MItchell-Ryall, Robert Murray, Tony Gray
2007-02-17
KENNEDY SPACE CENTER, FLA. -- At Cape Canaveral Air Force Station, clouds of smoke encompass the Delta II rocket with NASA's THEMIS spacecraft aboard as it blasts off Pad 17-B, in sight of the Atlantic Ocean, at 6:01 p.m. EST. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Regina Mitchell-Ryall, Robert Murray, Tony Gray
2008-06-12
VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason-2, spacecraft is getting final checkouts after mating to the Delta II rocket on the Space Launch Complex 2 at Vandenberg Air Force Base in California. The launch of the OSTM/Jason 2 aboard the Delta II rocket is scheduled for June 20. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity.
Mars Polar Lander arrives at Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Polar Landerspacecraft is lifted off the trailer of that transported it to the gantry at Launch Complex 17B, Cape Canaveral Air Station. The lander, which will be launched aboard a Boeing Delta II rocket on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use a lift to uncover and inspect the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket.rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-02-06
VANDENBERG AIR FORCE BASE, Calif. – In an environmental enclosure in processing facility 1555 at Vandenberg Air Force Base in California, twin segments of a Pegasus payload fairing for NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) mission are cleaned and inspected before the spacecraft is encapsulated. The fairing will protect the spacecraft from the heat and aerodynamic pressure generated during ascent to orbit aboard an Orbital Sciences Pegasus XL rocket in March. Once processing of the rocket and spacecraft are completed at Vandenberg, they will be flown aboard an L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. NuSTAR, a high-energy x-ray telescope, will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
2012-02-06
VANDENBERG AIR FORCE BASE, Calif. – In an environmental enclosure in processing facility 1555 at Vandenberg Air Force Base in California, cleaning and inspection of half of a Pegasus payload fairing for NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) mission is under way. The fairing will protect the spacecraft from the heat and aerodynamic pressure generated during ascent to orbit aboard an Orbital Sciences Pegasus XL rocket in March. Once processing of the rocket and spacecraft are completed at Vandenberg, they will be flown aboard an L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. NuSTAR, a high-energy x-ray telescope, will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
2012-02-06
VANDENBERG AIR FORCE BASE, Calif. – In processing facility 1555 at Vandenberg Air Force Base in California, segments of a Pegasus payload fairing for NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) mission have been cleaned and inspected, a milestone in launch preparations. The fairing will protect the spacecraft from the heat and aerodynamic pressure generated during ascent to orbit aboard an Orbital Sciences Pegasus XL rocket in March. Once processing of the rocket and spacecraft are completed at Vandenberg, they will be flown aboard an L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. NuSTAR, a high-energy x-ray telescope, will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
1998-10-02
KENNEDY SPACE CENTER, FLA. -- KSC workers prepare Deep Space 1 for a spin test on the E6R Spin Balance Machine at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-10-01
Workers at this clean room facility, Cape Canaveral Air Station, maneuver the protective can that covered Deep Space 1 during transportation from KSC away from the spacecraft. Deep Space 1 will undergo spin testing at the site. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-10-02
KENNEDY SPACE CENTER, FLA. -- KSC workers give a final check to Deep Space 1 before starting a spin test on the spacecraft at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-30
KENNEDY SPACE CENTER, FLA. -- KSC workers lower the "can" over Deep Space 1. The can will protect the spacecraft during transport to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, for testing. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
Deep Space 1 moves to CCAS for testing
NASA Technical Reports Server (NTRS)
1998-01-01
KSC workers lower the 'can' over Deep Space 1. The can will protect the spacecraft during transport to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, for testing. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non- chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.
Deep Space 1 is prepared for spin test at CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
KSC workers give a final check to Deep Space 1 before starting a spin test on the spacecraft at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.
Deep Space 1 is prepared for spin test at CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
KSC workers prepare Deep Space 1 for a spin test on the E6R Spin Balance Machine at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.
STS-106 orbiter Atlantis rolls over to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
The orbiter Atlantis is moved aboard an orbiter transporter from the Orbiter Processing Facility (OPF) bay 3 over to the Vehicle Assembly Building (VAB). In the background (right) are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.
2004-11-16
NASA X-43A Monitor Station Operator Brad Neal performs final checks and pre-flight preparations aboard the B-52 for the third X-43A research vehicle Mach 10 flight on November 16, 2004. Takeoff of the B-52B mothership carrying the X-43A took place at 1 p.m., PST, with launch of the booster rocket/X-43A approximately an hour later.
STS-106 orbiter Atlantis rolls over to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
KSC employees accompany the orbiter Atlantis as it is moved aboard an orbiter transporter to the Vehicle Assembly Building (VAB). In the background are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.
2009-06-18
LCROSS launch public viewing event held at Ames Research Center, Moffett Field, CA NRP tenant Ecliptic Enterprises Corporation is playing a crucial role in the LCROSS (Lunar Crater Observation and Sensing Satellite) mission to search for the signature of water, a lunar resource that can be used for future human exploration, at the Moon’s rugged South Pole. Ecliptic’s signature product, RocketCam™, transmitted video from three camera perspectives of the picture-perfect launch from Cape Canaveral aboard an ATLAS V rocket on June 18. RocketCam™, a family of onboard imaging systems
Aerial views of the STS-2 launch from Pad 39A at Kennedy Space Center
1981-11-12
S81-39440 (12 Nov. 1981) --- The tiny image of the space shuttle Columbia, its two solid rocket boosters and an external fuel tank feeding Columbia?s engines was captured on camera by one who can truly relate to the thoughts of the astronauts aboard ? John W. Young who was aboard the same spacecraft for its successful debut in April of this year. Young was flying NASA?s shuttle training aircraft (STA) when he used a hand-held camera to record this scene on 70mm film. Astronauts Joe H. Engle, STS-2 commander, and Richard H. Truly, pilot, were aboard Columbia. Photo credit: NASA
Deep Space 1 is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Payload Hazardous Servicing Facility test equipment on Deep Space 1 to prepare it for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby.
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Allison Caron, a QinetiQ mechanical engineer, checks out part of the Biotube experiment which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
SpaceX CRS-14 What's On Board Science Briefing
2018-04-01
Rich Boling, vice president for corporate advancement at Techshot Inc., discusses the Multi-purpose Variable-g Platform, developed, owned and operated by Techshot. The new test bed will be able to host six separate experiment modules with samples such as plants, cells, protein crystals and fruit flies. The test bed is one of the scientific investigations that will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.
SpaceX CRS-14 What's On Board Science Briefing
2018-04-01
Sharmila Bhattacharya, a senior scientist at NASA's Ames Research Center, discusses the Multi-purpose Variable-g Platform, developed, owned and operated by Techshot. The new test bed will be able to host six separate experiment modules with samples such as plants, cells, protein crystals and fruit flies. The test bed is one of the scientific investigations that will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.
2001-02-12
KENNEDY SPACE CENTER, Fla. -- As Space Shuttle Discovery, on its Mobile Launcher Platform, nears Launch Pad 39B, fog rolls over the top of the external tank and solid rocket boosters. Discovery will be flying on mission STS-102 to the International Space Station. Its payload is the Multi-Purpose Logistics Module Leonardo, a “moving van,” to carry laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The flight will also carry the Expedition Two crew up to the Space Station, replacing Expedition One, who will return to Earth on Discovery. Launch is scheduled for March 8 at 6:45 a.m. EST
SpaceX CRS-14 What's On Board Science Briefing
2018-04-01
During the SpaceX CRS-14 "What's On Board?" Science Briefing inside the Kennedy Space Center Press Site Auditorium, members of the media learned about the research headed to the International Space Station aboard the Dragon spacecraft. The briefing focused on several science projects including the Metabolic Tracking experiment; Atmosphere-Space Interactions Monitor (ASIM); Multi-purpose Variable-g Platform (MVP), and Veggie PONDS Validation. The Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 14th Commercial Resupply Services mission to the space station.
Deep Space 1 is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Payload Hazardous Servicing Facility check equipment on Deep Space 1 to prepare it for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby.
Deep Space 1 is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Payload Hazardous Servicing Facility remove a solar panel from Deep Space 1 as part of the preparations for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near- Earth asteroid, 1992 KD, has also been selected for a possible flyby.
Deep Space 1 is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Payload Hazardous Servicing Facility check out Deep Space 1 to prepare it for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby.
1998-09-17
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility remove a solar panel from Deep Space 1 as part of the preparations for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby
1998-09-17
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility check equipment on Deep Space 1 to prepare it for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby
1998-09-17
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility check out Deep Space 1 to prepare it for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby
1998-09-17
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility test equipment on Deep Space 1 to prepare it for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby
1998-12-02
KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster hangs in place between two other rocket boosters waiting to be mated with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, a solid rocket booster is raised to a vertical position for mating with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, a solid rocket booster waits for mating with the Delta II rocket (in background) carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, workers monitor the solid rocket booster before its being lifted to mate with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, the gantry holding the solid rocket boosters is moved into place next to the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
2013-11-05
Police walk along railroad tracks, along with a bomb sniffing dog, ahead of the roll out of the Soyuz TMA-11M rocket to the launch pad on Tuesday, Nov. 5, 2013, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for November 7 and will send Expedition 38 Soyuz Commander Mikhail Tyurin of Roscosmos, Flight Engineer Rick Mastracchio of NASA and Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency on a six-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
UTC LIBERTY AND FREEDOM RETURN - SOLID ROCKET BOOSTER (SRB) - PORT CANAVERAL, FL
1981-04-14
S81-31319 (14 April 1981) --- One of the STS-1 solid rocket boosters (SRB) is towed back to shore after landing in the Atlantic Ocean following the jettisoning of both of Columbia?s SRB en route to her Earth-orbital mission. The UTC Freedom and Liberty (pictured) were involved in the recovery of the reusable boosters. Astronauts John W. Young, commander, and Robert L. Crippen, pilot, are orbiting Earth for approximately two and a third days aboard Columbia. Photo credit: NASA
2013-09-23
Large gantry mechanisms on either side of the Soyuz TMA-10M spacecraft are raised into position to secure the rocket at the launch pad on Monday, Sept. 23, 2013 at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for September 26 and will send Expedition 37 Soyuz Commander Oleg Kotov, NASA Flight Engineer Michael Hopkins and Russian Flight Engineer Sergei Ryazansky on a five and a half-month mission aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)
2009-05-28
CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, workers check out the Lunar Reconnaissance Orbiter, or LRO, after its lift into the mobile service tower. The LRO/LCROSS will be mated to the Atlas V rocket for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis
2009-05-28
CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are moved into the mobile service tower. The LRO will be mated to the Atlas V rocket for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis
2009-05-28
CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are mated with the Atlas V rocket inside the mobile service tower for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis
2009-05-28
CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, workers prepare the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, for mating inside the mobile service tower with the Atlas V rocket for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis
2009-05-28
CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are mated with the Atlas V rocket inside the mobile service tower for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis
2004-06-24
KENNEDY SPACE CENTER, FLA. - Reporters (left) take notes during an informal briefing concerning NASA’s Cassini spacecraft, launched aboard an Air Force Titan IV rocket from Cape Canaveral Air Force Station Oct. 15, 1997. Cassini launch team members at right discussed the challenge and experience of preparing Cassini for launch, integrating it with the Titan IV rocket and the countdown events of launch day. From left are Ron Gillett, NASA Safety and Lead Federal Agency official; Omar Baez, mechanical and propulsion systems engineer; Ray Lugo, NASA launch manager; Chuck Dovale, chief, Avionics Branch; George Haddad, Integration and Ground Systems mechanical engineer; and Ken Carr, Cassini assistant launch site support manager. Approximately 10:36 p.m. EDT, June 30, the Cassini-Huygens spacecraft will arrive at Saturn. After nearly a seven-year journey, it will be the first mission to orbit Saturn. The international cooperative mission plans a four-year tour of Saturn, its rings, icy moons, magnetosphere, and Titan, the planet’s largest moon.
2004-06-24
KENNEDY SPACE CENTER, FLA. - Reporters (bottom) take notes during an informal briefing concerning NASA’s Cassini spacecraft, launched aboard an Air Force Titan IV rocket from Cape Canaveral Air Force Station Oct. 15, 1997. Cassini launch team members seen here discussed the challenge and experience of preparing Cassini for launch, integrating it with the Titan IV rocket and the countdown events of launch day. Facing the camera (from left) are Ron Gillett, NASA Safety and Lead Federal Agency official; Omar Baez, mechanical and propulsion systems engineer; Ray Lugo, NASA launch manager; Chuck Dovale, chief, Avionics Branch; George Haddad, Integration and Ground Systems mechanical engineer; and Ken Carr, Cassini assistant launch site support manager. Approximately 10:36 p.m. EDT, June 30, the Cassini-Huygens spacecraft will arrive at Saturn. After nearly a seven-year journey, it will be the first mission to orbit Saturn. The international cooperative mission plans a four-year tour of Saturn, its rings, icy moons, magnetosphere, and Titan, the planet’s largest moon.
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, equipment supporting the Advanced Plant Experiment, or APEX, experiment is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. The APEX investigation examines white spruce, picea glauca, to understand the influence of gravity on plant physiology, growth, and on the genetics of wood formation. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
GOES-S Countdown to T-Zero, Episode 1: Launch Fever
2018-01-23
NOAA’s GOES-S spacecraft, the next in a series of advanced weather satellites, arrives at NASA’s Kennedy Space Center aboard a U.S. Air Force C-5 Super Galaxy aircraft. The satellite’s arrival at the Florida spaceport, followed by its move into the Astrotech Space Operations processing facility in nearby Titusville, signal the start of the final journey to T-zero. GOES-S is slated to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.
Magnetospheric MultiScale Mission (MMS) Overview
NASA Technical Reports Server (NTRS)
Schiff, Conrad
2015-01-01
The MMS mission was launched on March 13, 2015 aboard an Atlas V rocket from Space Launch Complex 40, Cape Canaveral, Florida Each of the four observatories were successfully released at five minute intervals spinning at 3 rpm approximately 1.5 hours after launch.
1998-12-02
KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster waits for mating with the Delta II rocket (in background) carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
Solar Radiation and Climate Experiment (SORCE) Satellite
NASA Technical Reports Server (NTRS)
2003-01-01
This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).
Experiments on the properties of superfluid helium in zero gravity
NASA Technical Reports Server (NTRS)
Mason, P.; Collins, D.; Petrac, D.; Yang, L.; Edeskuty, F.; Williamson, K.
1976-01-01
The paper describes a research program designed to study the behavior of superfluid liquid helium in low and zero gravity in order to determine the properties which are critically important to its use as a stored cryogen for cooling scientific instruments aboard spacecraft for periods up to several months. The experiment program consists of a series of flights of an experiment package on a free-fall trajectory both on an aircraft and on a rocket. The objectives are to study thickness of thin films of helium as a function of acceleration, heat transfer in thin films, heat transfer across copper-liquid helium interfaces, fluid dynamics of bulk helium in high and low accelerations and under various conditions of rotations, alternate methods of separation of liquid and vapor phases and of efficient venting of the vapor, and undesirable thermomechanical oscillations in the vent pipes. Preliminary results from aircraft tests are discussed.
STS-52 deployment of LAGEOS / IRIS spacecraft from OV-102's payload bay (PLB)
NASA Technical Reports Server (NTRS)
1992-01-01
During STS-52 deployment activities, the Italian Research Interim Stage (IRIS), a spinning solid fuel rocket, lifts the Laser Geodynamic Satellite II (LAGEOS II) out of its support cradle and above the thermal shield aboard Columbia, Orbiter Vehicle (OV) 102. The remote manipulator system (RMS) arm, with Material Exposure in Low Earth Orbit (MELEO), is positioned above the port side sill longeron. On the mission-peculiar equipment support structure (MPESS) carriers in the center foreground is the United States (U.S.) Microgravity Payload 1 (USMP-1) with Space Acceleration Measurement System (SAMS), MEPHISTO (its French abbreviation), Lambda Point Experiment (LPE) cryostat assembly (identified by JPL insignia), and LPE vacuum maintenance assembly. Other payload bay (PLB) experiments visible in this image include: (on the starboard wall (left)) the Canadian Experiments 2 (CANEX-2) Space Vision System (SVS) Canadian Target Assembly (CTA) (foreground) and the Attitude Sensor Package (ASP);
Cellular Satellites: Joint Communications With Integrated Acquisition
2015-04-01
cellphone towers in space, providing smartphone-like service that keeps users connected while on the move and in challenging urban, jungle or mountainous... cellphone technology. The first satellite, MUOS-1, was launched from Cape Ca- naveral, Fla., in February 2012 aboard an Atlas rocket, and
2012-02-18
CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Bob Cabana talks to guests about the Mercury Project's Atlas rocket in the Vehicle Assembly Building. At the space center in Florida, Cabana is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston
2012-02-18
CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Bob Cabana talks to a guest about the Mercury Project's Atlas rocket in the Vehicle Assembly Building. At the space center in Florida, Cabana is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston
1998-09-30
KENNEDY SPACE CENTER, FLA. -- Deep Space 1 is lifted from its work platform, giving a closer view of the experimental solar-powered ion propulsion engine. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Above the engine is one of the two solar wings, folded for launch, that will provide the power for it. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-30
KENNEDY SPACE CENTER, FLA. -- Deep Space 1 rests on its work platform after being fitted with thermal insulation. The reflective insulation is designed to protect the spacecraft as this side faces the sun. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
Deep Space 1 moves to CCAS for testing
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Payload Hazardous Servicing Facility lower Deep Space 1 onto its transporter, for movement to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, where it will undergo testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.
1998-09-30
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility lower Deep Space 1 onto its transporter, for movement to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, where it will undergo testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-30
KENNEDY SPACE CENTER, FLA. -- Deep Space 1 rests on its work platform after being fitted with thermal insulation. The dark insulation is designed to protect the side of the spacecraft that faces away from the sun. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
2010-12-08
The Dragon capsule that launched from Launch Complex-40 at Cape Canaveral Air Force Station aboard a SpaceX Falcon 9 rocket is recovered in the Pacific Ocean about 500 miles west of the coast of Mexico. The rocket lifted off at 10:43 a.m. EST. The spacecraft went through several maneuvers before it re-entered the atmosphere and splashed down at about 2 p.m. EST. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: Courtesy SpaceX
1962-02-20
CAPE CANAVERAL, Fla. -- Astronaut John H. Glenn Jr. enters his Mercury capsule, "Friendship 7," as he prepares for launch of the Mercury-Atlas rocket. On February 20, 1962, Glenn lifted off into space aboard his Mercury Atlas 6 MA-6 rocket and became the first American to orbit the Earth. After orbiting the Earth 3 times, Friendship 7 landed in the Atlantic Ocean 4 hours, 55 minutes and 23 seconds later, just East of Grand Turk Island in the Bahamas. Glenn and his capsule were recovered by the Navy Destroyer Noa, 21 minutes after splashdown. Photo credit: NASA
2009-05-28
CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are lifted into the mobile service tower. The LRO/LCROSS will be mated to the Atlas V rocket for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis
2009-05-28
CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a crane is attached to the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, to lift them into the mobile service tower. The LRO/LCROSS will be mated to the Atlas V rocket for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis
2015-01-29
VANDENBERG AIR FORCE BASE, Calif. – The mobile service tower rolls toward the United Launch Alliance Delta II rocket at Space Launch Complex 2 on Vandenberg Air Force Base in California. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2015-01-29
VANDENBERG AIR FORCE BASE, Calif. – Operations are underway at Space Launch Complex 2 on Vandenberg Air Force Base in California to enclose the United Launch Alliance Delta II rocket in the launch gantry. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2015-01-29
VANDENBERG AIR FORCE BASE, Calif. – The mobile service tower rolls toward the United Launch Alliance Delta II rocket at Space Launch Complex 2 on Vandenberg Air Force Base in California. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2015-01-29
VANDENBERG AIR FORCE BASE, Calif. – Operations are underway at Space Launch Complex 2 on Vandenberg Air Force Base in California to enclose the United Launch Alliance Delta II rocket in the launch gantry. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2018-02-28
A United Launch Alliance Atlas V rocket is rolled to Space Launch Complex 41 at Cape Canaveral Air Force Station. The launch vehicle will send the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S, into orbit. The GOES series is designed to significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Terry Tullis, a QinetiQ North America mechanical engineer, places the Biological Research In Canisters, or BRIC, 18-1 and 18-2 experiments with others to be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, QinetiQ North America Project Manager Carole Miller, left, works with Allison Caron, a QinetiQ mechanical engineer in preparing the Biotube experiment which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2
2014-03-07
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Terry Tullis, a QinetiQ North America mechanical engineer, prepares the Biological Research In Canisters, or BRIC, 18-1 and 18-2 experiments which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett
Vacuum ultraviolet imagery of the Virgo cluster region
NASA Astrophysics Data System (ADS)
Onaka, T.; Tanaka, W.; Watanabe, T.; Watanabe, J.; Yamaguchi, A.; Nakagiri, M.; Kodaira, K.; Nakano, M.; Sasaki, M.; Tsujimura, T.; Yamashita, K.
1989-07-01
The results are reported of an experiment using the UV imager aboard an attitude-controlled S520 type sounding rocket. The total UV fluxes of galaxies in the Virgo Cluster as well as the flux level of the diffuse UV background around the cluster were measured. The data on NGC 4486 and NGC 4472 confirm the variation in the degree of the 'turnup' below 200 nm in the energy spectrum of the total light of elliptical galaxies. At two-color diagram of galaxies of visual/near-UV/vacuum UV indicates that colors of spiral galaxies are distributed within a strip and well-correlated with the morphological type, while elliptical galaxies are located differently from spiral galaxies.
SpaceX CRS-10 "What's On Board" Science Briefing
2017-02-17
Jolyn Russell, deputy Robotics program manager at NASA’s Goddard Space Flight Center’s Satellite Servicing Projects Division in Maryland, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on “Raven” research planned for the International Space Station. The Raven investigation studies a real-time robotic spacecraft navigation system that provides the eyes and intelligence to see a target and steer safely toward it. Raven will be part of experiments aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.
Thermospheric neutral wind profile in moonlit midnight by Lithium release experiments in Japan
NASA Astrophysics Data System (ADS)
Yamamoto, M. Y.; Watanabe, S.; Abe, T.; Kakinami, Y.; Habu, H.; Yamamoto, M.
2015-12-01
Neutral wind profiles were observed in lower thermosphere at about between 90 km and 130 km altitude by using resonance scattering light of moonlit Lithium (Li) vapor released from sounding rockets in midnight (with almost full-moon condition) in 2013 in Japan. As a target of the Daytime Dynamo campaign, Li release experiment was operated at Wallops Flight Facility (WFF) of NASA, U.S.A. in July, 2013 (Pfaff et al., 2015, this meeting), while the same kind of rocket-ground observation campaign in midnight was carried out by using S-520-27/S-310-42 sounding rockets in Uchinoura Space Center (USC) of JAXA, Kagoshima, Japan, also in July 2013.Since imaging signal-to-noise (S/N) condition of the experiment was so severe, we conducted to apply airborne observation for imaging the faint moonlit Li tracers so as to reduce the illuminating intensity of the background skies as an order of magnitude. Two independent methods for calculating the wind profile were applied to the Lithium emission image sequences successfully obtained by the airborne imaging by special Li imagers aboard the airplanes in order to derive precise information of Li tracers motion under the condition of single observation site on a moving aircraft along its flight path at about 12 km altitude in lower stratosphere. Slight attitude-feedback motion of the aircraft's 3-axes attitude changes (rolling, yawing and pitching) was considered for obtaining precise coordinates on each snapshot. Another approach is giving a simple mathematic function for wind profile to resolve the shape displacement of the imaged Li tracers. As a result, a wind profile in moonlit thermosphere was calculated in a range up to about 150 m/s with some fluctuated parts possibly disturbed by wind shears. In the same experiment, another sounding rocket S-310-42 with a TMA canister was also launched from USC/JAXA at about 1 hour before the rocket with carrying the Lithium canisters, thus, we can derive the other 2 profiles determined by the TMA chemical releases in up-leg and down-leg of the flight for the comparison. In this paper, we will report the obtained results of the moonlit Lithium emission intensities as well as method of wind profile calculations and final result of the comparison between the TMA and moonlit Lithium chemical releases in midnight lower thermosphere.
Rocket investigations of electron precipitation and VLF waves in the Antarctic upper atmosphere
NASA Technical Reports Server (NTRS)
Sheldon, W. R.; Benbrook, J. R.; Bering, E. A.
1988-01-01
The results of two Antarctic rocket campaigns, primarily initiated to investigate electron precipitation stimulated by signals from the Siple-Station ground-based VLF transmitter, are presented. While the primary objective of the campaigns was not achieved, the Siple VLF transmitter facilitated a study of the wave environment in the ionosphere. Standing wave patterns in the ionosphere were observed for the first time by detectors flown aboard the Nike-Tomahawk rockets; the same detectors monitored a continuous signal from the transmitter through the neutral atmosphere and into the ionosphere, providing unique data for comparison with theoretical studies of wave propagation. The measurements of penetrating electron precipitation were interpreted in terms of a model of energetic electron precipitation from the trapped radiational belts.
2014-04-11
VANDENBERG AIR FORCE BASE, Calif. – A solid rocket motor, or SRM, for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives at the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to attach the Delta II rocket's three SRMs, known as graphite epoxy motors, to the rocket's first stage. OCO-2 is scheduled to launch into a polar Earth orbit aboard a United Launch Alliance Delta II 7320-10C rocket in July. Once in orbit, OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-04-11
VANDENBERG AIR FORCE BASE, Calif. – A solid rocket motor, or SRM, for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is towed to Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to attach the Delta II rocket's three SRMs, known as graphite epoxy motors, to the rocket's first stage. OCO-2 is scheduled to launch into a polar Earth orbit aboard a United Launch Alliance Delta II 7320-10C rocket in July. Once in orbit, OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-04-11
VANDENBERG AIR FORCE BASE, Calif. – A second solid rocket motor, or SRM, for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is towed to Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to attach the Delta II rocket's three SRMs, known as graphite epoxy motors, to the rocket's first stage. OCO-2 is scheduled to launch into a polar Earth orbit aboard a United Launch Alliance Delta II 7320-10C rocket in July. Once in orbit, OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
1998-12-02
KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster is raised to a vertical position for mating with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander arrives at Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
1998-12-02
KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, workers monitor the solid rocket booster before its being lifted to mate with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
1998-12-02
KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, the gantry holding the solid rocket boosters is moved into place next to the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lowered toward the rocket waiting below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is prepared for lowering toward the rocket below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to a vertical position on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
1998-12-02
KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster is raised to a vertical position for mating with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to the top of the gantry on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
Mars Polar Lander is mated with Boeing Delta II rocket
NASA Technical Reports Server (NTRS)
1998-01-01
Workers mate the Mars Polar Lander (top) to the Boeing Delta II rocket at Launch Complex 17B, Cape Canaveral Air Station. The rocket is scheduled to launch Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
2008-03-04
KENNEDY SPACE CENTER, FLA. -- NASA's Gamma-Ray Large Area Space Telescope, or GLAST, arrives at Kennedy Space Center in a shipping container aboard a truck to begin final preparations for launch. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
High Energy Astronomy Observatory (HEAO)
1977-01-01
Managed by the Marshall Space Flight Center and designed by TRW, the first High Energy Astronomy Observatory was launched August 12, 1977 aboard an Atlas Centaur rocket. HEAO-1, devoted to the study of X-rays in space, carried four instruments all used primarily in a scarning mode. The mission lasted seventeen months.
2003-03-07
KENNEDY SPACE CENTER, FLA. -- -- At Building AE, the Space Infrared Telescope Facility (SIRTF) is prepared for testing. SIRTF is scheduled for launch aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space.
2017-08-22
The SpaceX spacesuit that will be worn by astronauts aboard its Crew Dragon spacecraft (in the background) during missions to and from the International Space Station. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the space station.
1998-10-16
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers maneuver the second half of the fairing to encapsulate Deep Space 1, targeted for launch aboard a Boeing Delta II rocket on Oct. 24. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-10-16
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers check make a final check of the fairing encapsulating Deep Space 1, which is targeted for launch aboard a Boeing Delta II rocket on Oct. 24. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-10-16
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers begin encapsulating Deep Space 1 with the fairing (right side). Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
NASA Technical Reports Server (NTRS)
Schulman, Richard; Kirk, Daniel; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul
2013-01-01
The SPHERES Slosh Experiment (SSE) is a free floating experimental platform developed for the acquisition of long duration liquid slosh data aboard the International Space Station (ISS). The data sets collected will be used to benchmark numerical models to aid in the design of rocket and spacecraft propulsion systems. Utilizing two SPHERES Satellites, the experiment will be moved through different maneuvers designed to induce liquid slosh in the experiment's internal tank. The SSE has a total of twenty-four thrusters to move the experiment. In order to design slosh generating maneuvers, a parametric study with three maneuvers types was conducted using the General Moving Object (GMO) model in Flow-30. The three types of maneuvers are a translation maneuver, a rotation maneuver and a combined rotation translation maneuver. The effectiveness of each maneuver to generate slosh is determined by the deviation of the experiment's trajectory as compared to a dry mass trajectory. To fully capture the effect of liquid re-distribution on experiment trajectory, each thruster is modeled as an independent force point in the Flow-3D simulation. This is accomplished by modifying the total number of independent forces in the GMO model from the standard five to twenty-four. Results demonstrate that the most effective slosh generating maneuvers for all motions occurs when SSE thrusters are producing the highest changes in SSE acceleration. The results also demonstrate that several centimeters of trajectory deviation between the dry and slosh cases occur during the maneuvers; while these deviations seem small, they are measureable by SSE instrumentation.
2010-12-08
CAPE CANAVERAL, Fla. -- The Dragon capsule that launched from Launch Complex-40 at Cape Canaveral Air Force Station aboard a SpaceX Falcon 9 rocket is recovered in the Pacific Ocean about 500 miles west of the coast of Mexico. The rocket lifted off at 10:43 a.m. EST. The spacecraft went through several maneuvers before it re-entered the atmosphere and splashed down at about 2 p.m. EST. This is first demonstration flight for NASA's Commercial Orbital Transportation Services (COTS) program, which will provide cargo flights to the International Space Station in the future. Photo credit: Courtesy SpaceX
Pegasus ICON Stage 1 Motor Arrival
2017-02-16
The first stage motor for the Orbital ATK Pegasus XL rocket arrives by truck at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
Pegasus ICON Stage 1 Motor Arrival
2017-02-16
The first stage motor for the Orbital ATK Pegasus XL rocket is offloaded from a truck at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
2017-02-22
The wing for the Orbital ATK Pegasus XL rocket arrives by truck at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
Pegasus ICON Stage 2 & 3 Motor Offload
2017-05-05
The third stage of the Orbital ATK Pegasus XL rocket is offloaded from a transport vehicle at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
2017-02-22
Workers unload the wing for the Orbital ATK Pegasus XL rocket from a truck at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
2017-02-22
Workers transfer the wing for the Orbital ATK Pegasus XL rocket from a truck to a forklift at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
2017-02-22
The wing for the Orbital ATK Pegasus XL rocket was offloaded from a truck and transporter to Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
Pegasus ICON Stage 1 Motor Arrival
2017-02-16
The first stage motor for the Orbital ATK Pegasus XL rocket is moved into Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
Rocket observations of the precipitation of electrons by ground VLF transmitters
NASA Technical Reports Server (NTRS)
Arnoldy, Roger L.; Kintner, Paul M.
1989-01-01
Recent results obtained with electric and magnetic receivers aboard a NASA sounding rocket launched on July 31, 1987 are presented which relate multiple electron spectral peaks observed in the bounce loss cone fluxes to the resonant interaction of electrons with VLF waves from ground transmitters. The correlation of transmitter signals passing through the ionosphere with the precipitated electrons was investigated. The analysis of these in situ wave and particle data addresses the propagation of waves through the ionosphere, and, through an application of the resonant theory, enables an estimation of the cold plasma density in the interaction region.
2012-10-23
Expedition 33/34 crew members, NASA Astronaut and Flight Engineer Kevin Ford, front left, Russian Cosmonaut and Soyuz Commander Oleg Novitskiy, and Russian Cosmonaut and Flight Engineer Evgeny Tarelkin, back left, stop at the base of the Soyuz rocket for a formal farewell from President of the S.P. Korolev Rocket and Space Corporation Energia Vitaly Lopota, back right, General Director of the Russian Federal Space Agency, Roscosmos, Vladimir Popovkin, right center, and NASA Associate Administrator for Human Exploration and Operations William Gerstenmaier prior to the crews launch onboard a Soyuz TMA-06M spacecraft to the International Space Station, Tuesday, October 23, 2012, in Baikonur, Kazakhstan. Launch of the Soyuz rocket will send Ford, Novitskiy and Tarelkin on a five-month mission aboard the International Space Station. Photo Credit: (NASA/GCTC/Andrey Shelepin)
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- A closeup of Orbital Sciences’ Pegasus XL rocket for NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft as it is enroute to the ramp on Vandenberg Air Force Base in California. There, the rocket will be attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
1998-11-28
The first stage of a Delta II rocket is lifted up the gantry at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998
1998-11-28
KENNEDY SPACE CENTER, FLA. -- The first stage of a Delta II rocket arrives at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998
1998-12-21
KENNEDY SPACE CENTER, FLA. -- Workers mate the Mars Polar Lander (top) to the Boeing Delta II rocket at Launch Complex 17B, Cape Canaveral Air Station. The rocket is scheduled to launch Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998
NASA Technical Reports Server (NTRS)
2009-01-01
Astronauts C.J. Sturckow (seated, left) and Pat Forrester (seated, right) sign autographs during their Oct. 7 visit to Stennis Space Center. The astronauts visited the rocket engine testing facility to thank Stennis employees for contributions to their recent STS-128 space shuttle mission. All three of the main engines used on the mission were tested at Stennis. Sturckow served as commander for the STS-128 flight; Forrester was a mission specialist. During a 14-day mission aboard space shuttle discovery, the STS-128 crew delivered equipment and supplies to the International Space Station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and an exercise treadmill. The mission featured three spacewalks to replace experiments and install new equipment at the space station.
Solar EUV irradiance from the San Marco ASSI - A reference spectrum
NASA Technical Reports Server (NTRS)
Schmidtke, Gerhard; Woods, Thomas N.; Worden, John; Rottman, Gary J.; Doll, Harry; Wita, Claus; Solomon, Stanley C.
1992-01-01
The only satellite measurement of the solar EUV irradiance during solar cycle 22 has been obtained with the Airglow Solar Spectrometer Instrument (ASSI) aboard the San Marco 5 satellite flown in 1988. The ASSI in-flight calibration parameters are established by using the internal capabilities of ASSI and by comparing ASSI results to the results from other space-based experiments on the ASSI calibration rocket and the Solar Mesospheric Explorer (SME). A solar EUV irradiance spectrum derived from ASSI observations on November 10, 1988 is presented as a reference spectrum for moderate solar activity for the aeronomy community. This ASSI spectrum should be considered as a refinement and extension of the solar EUV spectrum published for the same day by Woods and Rottman (1990).
JPL-20180522-GRACFOf-0001-NASAs GRACE FO Satellite Launches Aboard a SpaceX Falcon 9 Rocket
2018-05-22
3-2-1 liftoff of Falcon 9 with GRACE-FO! NASA's Gravity Recovery and Climate Experiment Follow-on, or GRACE-FO, launched from Vandenberg Air Force Base on California's Central Coast on May 22, 2018. The twin orbiters shared a ride to space with five Iridium NEXT communications satellites. GRACE-FO will continue a study begun by the original GRACE mission, which proved that water movement can be tracked with high precision by its effect on Earth's gravitational field. GRACE-FO will continue the record of regional variations in gravity, telling us about changes in glaciers, ground water, sea levels and the health of our planet as a whole. For more, visit https://gracefo.jpl.nasa.gov .
2016-08-22
An Air Force C-5 Galaxy transport plane approaches the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida to deliver the GOES-R spacecraft for launch processing. The GOES series are weather satellites operated by NOAA to enhance forecasts. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-08-23
The GOES-R spacecraft is secured on its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
GOES-R Uncrating and Move to Vertical
2016-08-23
The GOES-R spacecraft stands vertically inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2003-01-12
NASA's Ice, Cloud and Land Elevation satellite (ICESat) and Cosmic Hot Interstellar Spectrometer (CHIPS) satellite lifted off from Vandenberg Air Force Base, Calif at 4:45 p.m. PST aboard Boeing's Delta II rocket. ICESat will examine the role that ice plays in global climate change, while CHIPS will explore the composition of our galaxy. Photo Credit: "NASA/Bill Ingalls"
2003-01-12
NASA's Ice, Cloud and Land Elevation satellite (ICESat) and Cosmic Hot Interstellar Spectrometer (CHIPS) satellite lifted off from Vandenberg Air Force Base, Calif at 4:45 p.m. PST aboard Boeing's Delta II rocket. ICESat will examine the role that ice plays in global climate change, while CHIPS will explore the composition of our galaxy. Photo Credit: "NASA/Bill Ingalls"
2003-01-12
NASA's Ice, Cloud and Land Elevation satellite (ICESat) and Cosmic Hot Interstellar Spectrometer (CHIPS) satellite lifted off from Vandenberg Air Force Base, Calif at 4:45 p.m. PST aboard Boeing's Delta II rocket. ICESat will examine the role that ice plays in global climate change, while CHIPS will explore the composition of our galaxy. Photo Credit: "NASA/Bill Ingalls"
2009-01-30
CAPE CANAVERAL, Fla. – NASA's Kepler spacecraft, that will be launched in March aboard a United Launch Alliance Delta II rocket, is photographed by journalists dressed in clean-room suits. Visible are the solar arrays on top and the high-gain antenna at lower left. The event, being held at the Astrotech Space Operations facility in Titusville, Fla., provides media representatives an opportunity to photograph the space telescope and to interview project officials from NASA and Ball Aerospace, builder of the spacecraft. Kepler is designed to survey more that 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently planned for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Troy Cryder
Investigation of Slosh Dynamics on Flight and Ground Platforms
NASA Astrophysics Data System (ADS)
Vergalla, Michael; Zhou, Ran
The slosh dynamics in cryogenic fuel tanks under microgravity is a problem that severely affects the reliability of spacecraft launching. To investigate slosh dynamics and their effects on space vehicle dynamics three levels of testing are presently in progress. Platforms include a 3-DOF ground testing table, parabolic flights, sounding rockets and finally the International Space Station. Ground tests provide an economically viable platform for investigating rotational, translational, and coupled feed-back modes due to repeatable CNC motions. The parabolic flight campaign has conducted four successful flights aboard multiple aircraft using static and tethered slosh packages. Using the PANTHER II student designed rocket, a slosh package was launched as a payload. Finally with collaboration between Florida Institute of Technology and Massachusetts Institute of Technology SPHERES project, two test sessions investigating feedback using partially and fully filled propellant tanks have been completed aboard the In-ternational Space Station. Motion data from all tests will be input to in house Dynamic Mesh Model to further establish confidence in the versatility and accuracy of the method. The results show that it is necessary to construct additional hardware for slosh studies.
2014-04-18
CAPE CANAVERAL, Fla. - An image of SpaceX CEO and chief designer Elon Musk is displayed in the NASA Press Site news auditorium at Kennedy Space Center in Florida during a SpaceX-3 post-launch news conference. Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett
The Polar Night Nitric Oxide Experiment
2017-12-08
The Polar Night Nitric Oxide or PolarNOx experiment from Virginia Tech is launched aboard a NASA Black Brant IX sounding rocket at 8:45 a.m. EST, Jan. 27, from the Poker Flat Research Range in Alaska. PolarNOx is measuring nitric oxide in the polar night sky. Nitric oxide in the polar night sky is created by auroras. Under appropriate conditions it can be transported to the stratosphere where it may destroy ozone resulting in possible changes in stratospheric temperature and wind and may even impact the circulation at Earth’s surface. Credit: NASA/Wallops/Jamie Adkins NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2008-03-05
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility, General Dynamics technicians secure NASA's Gamma-Ray Large Area Space Telescope, or GLAST, onto a work stand. There GLAST will undergo a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-05
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, sits uncovered before its move to a work stand in the facility for a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2014-04-11
VANDENBERG AIR FORCE BASE, Calif. – A crane lifts the solid rocket motor, or SRM, for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, following its delivery to the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to attach the Delta II rocket's three SRMs, known as graphite epoxy motors, to the rocket's first stage. OCO-2 is scheduled to launch into a polar Earth orbit aboard a United Launch Alliance Delta II 7320-10C rocket in July. Once in orbit, OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-04-11
VANDENBERG AIR FORCE BASE, Calif. – A worker inspects the solid rocket motor, or SRM, for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, after it is lifted into a vertical position beside the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to attach the Delta II rocket's three SRMs, known as graphite epoxy motors, to the rocket's first stage. OCO-2 is scheduled to launch into a polar Earth orbit aboard a United Launch Alliance Delta II 7320-10C rocket in July. Once in orbit, OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
2007-06-06
KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, a technician monitors the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett
2007-06-06
KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, a technician monitors the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett
2007-06-06
KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, technicians check data during the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett
2007-06-07
KENNEDY SPACE CENTER, FLA. -- At Astrotech's Hazardous Processing Facility, technicians are loading the Dawn spacecraft with xenon gas for the ion propulsion system. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann
2007-06-06
KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, technicians check data during the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett
2014-04-15
VANDENBERG AIR FORCE BASE, Calif. – At Space Launch Complex 2 on Vandenberg Air Force Base in California, the mobile service tower rolls away from the launch stand supporting the Delta II first stage. Operations are underway to mate the rocket's first and second stages. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The rocket's second stage will insert OCO-2 into a polar Earth orbit. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
1998-12-02
KENNEDY SPACE CENTER, FLA. -- The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander arrives at Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
1998-11-28
KENNEDY SPACE CENTER, FLA. -- The first stage of a Delta II rocket hangs in place in the gantry at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998
1998-11-28
KENNEDY SPACE CENTER, FLA. -- Workers guide the lifting of the first stage of a Delta II rocket up the gantry at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998
1998-12-02
KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lowered toward the rocket waiting below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
1998-12-02
KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is prepared for lowering toward the rocket below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
SHARPI: Solar High Angular Resolution Photometric Imager
NASA Technical Reports Server (NTRS)
Rabin, D.; Davila, J.; Content, D.; Keski-Kuha, R.; Oegerle, William (Technical Monitor)
2002-01-01
Observing the lower solar atmosphere with enough linear resolution (< 100 km) to study individual magnetic flux tubes and other features on scales comparable to the photon mean free path has proven to be a challenging and elusive goal. Space-borne instruments based on conventional heavy optics turned out to be too expensive, and adaptive optics on the ground made slow progress for many years. Nevertheless, the scientific case for high-resolution imaging and magnetography has only become more compelling over the last ten years. Today, ground-based adaptive optics is a promising approach for small fields of view at visible wavelengths. Space experiments will need to employ lightweight optics and low cost platforms. The Sunrise balloon experiment is one example. We describe a concept for a sounding rocket experiment that will achieve 0.1-arcsecond imaging using a lightweight, ultraprecise 55-cm mirror in the far ultraviolet (160 nm continuum, Lyman alpha, and possibly C IV 155 nm). The f/1.2 parabolic primary mirror is entering the final stages of production. The mirror is a ULE honeycomb design with front and back face sheets. The front sheet will be figured to 6.3 nm rms with microroughness 1 nm or better. For the initial proof of concept, we describe a no-frills, high-cadence imager aboard a Black Brant sounding rocket. Development of lightweight UV/EUV optics at Goddard Space Flight Center has been supported by the Internal Research and Development program.
John H Glenn Jr. Wreath Laying Ceremony
2016-12-09
An Atlas rocket and Mercury capsule like the ones that carried Sen. John Glenn into Earth orbit in February 1962 stand in the Rocket Garden at the Kennedy Space Center Visitor Complex adjacent to the Heroes and Legends exhibit hall where Glenn was remembered during a ceremony Dec. 9, 2016. Glenn, one of the Mercury Seven astronauts NASA chose to fly the first missions of the Space Age, passed away on Dec. 8, 2016, at age 95. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves move together to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch the joining of the fairing halves around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves are moved together for another attempt at installation around NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians move the first half of the fairing toward NASA's Lunar Reconnaissance Orbiter, or LRO, with NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, for installation. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves are moved apart for another attempt at installation around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians observe NASA's Lunar Reconnaissance Orbiter, or LRO, with and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, during installation of the fairing. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves come together around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent.The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves have been joined to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves move together to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-02-17
VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at Vandenberg Air Force Base in California, cranes are in position to move the tent where the upper stage of Orbital Sciences' Taurus XL rocket is ready to be moved and lifted into the tower for stacking. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket Feb. 24 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Photo credit: NASA/Randy Beaudoin, VAFB
Pegasus ICON Stage 1 Motor Arrival
2017-02-16
The first stage motor for the Orbital ATK Pegasus XL rocket is moved inside Building 1555 at Vandenberg Air Force Base in California. In the background are the second and third stage segments. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
Pegasus ICON Stage 2 & 3 Motor Offload
2017-05-05
Workers prepare to offload the second and third stages of the Orbital ATK Pegasus XL rocket from a transport vehicle at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
Pegasus ICON Stage 2 & 3 Motor Offload
2017-05-05
The second and third stages of the Orbital ATK Pegasus XL rocket are offloaded from a transport vehicle at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
Pegasus ICON Stage 1 Motor Arrival
2017-02-16
The first stage motor for the Orbital ATK Pegasus XL rocket was moved inside Building 1555 at Vandenberg Air Force Base in California. In the background are the second and third stage segments. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.
2011-02-16
ISS026-E-027303 (16 Feb. 2011) --- The Expedition 26 crew member aboard the International Space Station who snapped this photograph of the Ariane 5 rocket, just after lift off from Europe’s Spaceport in Kourou, French Guiana, and the rest of the crew have a special interest in the occurrence. ESA’s second Automated Transfer Vehicle, Johannes Kepler, was just a short time earlier (21:50 GMT or 18:50 Kourou time on Feb. 16, 2011) launched toward its targeted low orbit and eventual link-up with the ISS. The unmanned supply ship is planned to deliver critical supplies and reboost the space station during its almost four-month mission.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010340 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010263 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010207 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010313 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010333 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010317 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010345 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
2018-02-28
A United Launch Alliance Atlas V rocket exits the Vertical Integration Facility on its way to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. The launch vehicle will send the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S, into orbit. The GOES series is designed to significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.
Stardust Comet Wild 2 Encounter (Artist's Concept)
NASA Technical Reports Server (NTRS)
2005-01-01
Artist's rendering of the Stardust spacecraft. The spacecraft was launched on February 7, 1999, from Cape Canaveral Air Station, Florida, aboard a Delta II rocket. The primary goal of Stardust is to collect dust and carbon-based samples during its closest encounter with Comet Wild 2 -- pronounced 'Vilt 2' after the name of its Swiss discoverer.2013-06-27
VANDENBERG AFB, Calif. – An Orbital Sciences L-1011 carrier aircraft flies over the Pacific Ocean off the California coast on a mission to launch NASA's IRIS spacecraft into low-Earth orbit. IRIS, short for Interface Region Imaging Spectrograph, was launched aboard an Orbital Sciences Pegasus XL rocket released from the bottom of the L-1011.Photo credit: NASA/Lori Losey
2013-06-27
VANDENBERG AFB, Calif. – An Orbital Sciences L-1011 carrier aircraft flies over the Pacific Ocean off the California coast on a mission to launch NASA's IRIS spacecraft into low-Earth orbit. IRIS, short for Interface Region Imaging Spectrograph, was launched aboard an Orbital Sciences Pegasus XL rocket released from the bottom of the L-1011.Photo credit: NASA/Lori Losey
2013-06-27
VANDENBERG AFB, Calif. – An Orbital Sciences L-1011 carrier aircraft flies over the Pacific Ocean off the California coast on a mission to launch NASA's IRIS spacecraft into low-Earth orbit. IRIS, short for Interface Region Imaging Spectrograph, was launched aboard an Orbital Sciences Pegasus XL rocket released from the bottom of the L-1011.Photo credit: NASA/Lori Losey
GOES-R Uncrating and Move to Vertical
2016-08-23
Team members remove a protective plastic covering from the GOES-R spacecraft inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
GOES-R Uncrating and Move to Vertical
2016-08-23
The shipping container is lifted off the GOES-R spacecraft inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-08-23
An overhead crane moves the GOES-R spacecraft toward its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
GOES-R Uncrating and Move to Vertical
2016-08-23
The GOES-R spacecraft is revealed following its uncrating inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-10-21
The two halves of the payload fairing are fully closed around the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2009-02-19
Jon Morse, director, Astrophysics Division at NASA Headquarters talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)
SpaceX/Dragon CRS-12 What's on Board Science Briefing
2017-08-13
The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.
STS-49 Astronaut By Mission Peculiar Equipment Support Structure (MPESS)
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this onboard photo, astronaut Thomas Akers is positioned near the Mission Peculiar Equipment Support Structure (MPESS) in the cargo bay. The MPESS, developed by Marshall Space Flight Center, was used to support experiments.
2002-10-26
KENNEDY SPACE CENTER, FLA. -- A truck containing the Solar Radiation and Climate Experiment (SORCE) spacecraft arrives at KSC. The spacecraft will undergo final processing for launch. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.
2008-03-05
KENNEDY SPACE CENTER, FLA. -- General Dynamics technicians in the Astrotech payload processing facility remove the protective cover over NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The space telescope will be moved to a work stand in the facility for a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-05
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility, General Dynamics technicians secure NASA's Gamma-Ray Large Area Space Telescope, or GLAST, on a work stand as the overhead crane is lifted away. GLAST will undergo a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-05
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility, General Dynamics technicians keep watch as NASA's Gamma-Ray Large Area Space Telescope, or GLAST, is lifted and begins moving toward the work stand in the foreground. There GLAST will undergo a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
Ion propulsion engine installed on Deep Space 1 at CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), attach a strap during installation of the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.
Ion propulsion engine installed on Deep Space 1 at CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) finish installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.
Ion propulsion engine installed on Deep Space 1 at CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), maneuver the ion propulsion engine into place before installation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.
Ion propulsion engine installed on Deep Space 1 at CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), install an ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.
Ion propulsion engine installed on Deep Space 1 at CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.
Ion propulsion engine installed on Deep Space 1 at CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.
Deep Space 1 is encapsulated on launch pad
NASA Technical Reports Server (NTRS)
1998-01-01
On Launch Pad 17A at Cape Canaveral Air Station, released from its protective payload transportation container, Deep Space 1 waits to have the fairing attached before launch. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.
Deep Space 1 is prepared for transport to launch pad
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the payload transportation container for Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.
Deep Space 1 is prepared for transport to launch pad
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), begin attaching the conical section leaves of the payload transportation container on Deep Space 1 before launch, targeted for Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.
1998-10-12
KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) for its trip to Launch Pad 17A. The spacecraft will be launched aboard a Boeing Delta 7326 rocket on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-10-16
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, released from its protective payload transportation container, Deep Space 1 waits to have the fairing attached before launch. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-10-12
KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is lifted out of the transporter that carried it to Launch Pad 17A at Cape Canaveral Air Station. The spacecraft will be launched aboard a Boeing Delta 7326 rocket on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-10-07
KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), attach a strap during installation of the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October
1998-10-10
KENNEDY SPACE CENTER, FLA. - Wrapped in an antistatic blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications System Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) for its trip to Launch Pad 17A. The spacecraft will be launched aboard Boeing's Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including an ion propulsion engine. Propelled by the gas xenon, the engine is being flight tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include softwre that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the firs two months, but will also make a flyby of a near-Earth asteroid, 1992 KD, in July 1999.
1998-10-07
KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October
1998-10-07
KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS
1998-10-10
KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), begin attaching the conical section leaves of the payload transportation container on Deep Space 1 before launch, targeted for Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-10-07
KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), install an ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October
1998-10-16
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers maneuver part of the fairing (viewed from the inside) to encapsulate Deep Space 1. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-10-07
KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) finish installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS
1998-10-07
KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), maneuver the ion propulsion engine into place before installation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October
1998-10-10
KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the payload transportation container for Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS
2010-09-21
POWAY, Calif. – During NASA's Commercial Crew Development Round 1 CCDev1 activities, the rocket motor under development by Sierra Nevada Corp. for its Dream Chaser spacecraft successfully fires at the company's rocket test facility located near San Diego. NASA team members reviewed the motor's system and then watched it fire three times in one day, including one firing under vacuum ignition conditions. The tests, which simulated a complete nominal mission profile, demonstrated the multiple restart capability of Sierra Nevada's hybrid rocket. Two of the company's designed and developed hybrid rocket motors will be used as the main propulsion system on the Dream Chaser after launching aboard an Atlas V rocket. Dream Chaser is one of five systems NASA invested in during CCDev1 in order to aid in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the International Space Station and other low Earth orbit destinations. In 2011, NASA's Commercial Crew Program CCP entered into another funded Space Act Agreement with Sierra Nevada for the second round of commercial crew development CCDev2) so the company could further develop its Dream Chaser spacecraft for NASA transportation services. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Sierra Nevada Corp.
2007-02-16
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B at Cape Canaveral Air Force Station, an unusual view of the Delta II rocket with the THEMIS spacecraft atop gives the solid rocket boosters a "larger than life" appearance as the mobile service tower moves away. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Launch is scheduled for 6:05 p.m. Photo credit: NASA/Kim Shiflett
Pegasus XL CYGNSS Microsats Installation on Deployment Module
2016-10-11
Inside Building 1555 at Vandenberg Air Force Base in California, technicians and engineers install one of eight NASA Cyclone Global Navigation Satellite System (CYGNSS) spacecraft on its deployment module. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to NASA’s Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.
Pegasus XL CYGNSS Spacecraft Mate
2016-10-28
Inside Building 1555 at Vandenberg Air Force Base in California, the eight NASA Cyclone Global Navigation Satellite System (CYGNSS) spacecraft installed on their deployment module undergo inspections prior to NASA’s Kennedy Space Center in Florida. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to Kennedy attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.
Pegasus XL CYGNSS Microsats Installation on Deployment Module
2016-10-11
Inside Building 1555 at Vandenberg Air Force Base in California, one of eight NASA Cyclone Global Navigation Satellite System (CYGNSS) spacecraft is inspected. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to NASA’s Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.
Pegasus XL CYGNSS Microsats Installation on Deployment Module
2016-10-11
Inside Building 1555 at Vandenberg Air Force Base in California, one of eight NASA Cyclone Global Navigation Satellite System (CYGNSS) spacecraft is installed on its deployment module. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to NASA’s Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.
2007-06-07
KENNEDY SPACE CENTER, FLA. -- At Astrotech's Hazardous Processing Facility, technicians look at the connections for loading the Dawn spacecraft with xenon gas for the ion propulsion system. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann
2007-06-07
KENNEDY SPACE CENTER, FLA. -- At Astrotech's Hazardous Processing Facility, a technician checks the connections for loading the Dawn spacecraft with xenon gas for the ion propulsion system. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann
2014-04-15
VANDENBERG AIR FORCE BASE, Calif. – At Space Launch Complex 2 on Vandenberg Air Force Base in California, preparations are underway to mate the Delta II second stage for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, to the first stage of the rocket, already in place on the launch stand. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The rocket's second stage will insert OCO-2 into a polar Earth orbit. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-04-15
VANDENBERG AIR FORCE BASE, Calif. – Workers lower the Delta II second stage for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, into position over the rocket's first stage in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to mate the stages for launch. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The rocket's second stage will insert OCO-2 into a polar Earth orbit. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-04-15
VANDENBERG AIR FORCE BASE, Calif. – The Delta II second stage for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, makes contact with the rocket's first stage in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to mate the stages for launch. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The rocket's second stage will insert OCO-2 into a polar Earth orbit. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-04-15
VANDENBERG AIR FORCE BASE, Calif. – The Delta II second stage for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is positioned atop the rocket's first stage in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to mate the stages for launch. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The rocket's second stage will insert OCO-2 into a polar Earth orbit. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Artist's Concept of the Atlas V-401 Rocket
2018-01-25
Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is scheduled to launch from Vandenberg Air Force Base on California's Pacific coast between May 5 and June 8, 2018. The lander will launch to Mars aboard an Atlas V-401 launch vehicle, one of the biggest rockets available for interplanetary flight. It stands 188 feet (57.3 meters) tall, or about as tall as a 19-story building. Fully stacked, with the spacecraft, the Atlas V-401 weighs about 730,000 pounds (333,000 kilograms). That's about 14 big rigs, fully loaded with cargo! The three numbers in the 401 designation signify: 4: a payload fairing -- or nose cone -- that is about 13 feet (4 meters) in diameter 0: solid-rocket boosters supplementing the main booster 1: the upper stage, which has one engine https://photojournal.jpl.nasa.gov/catalog/PIA22231
1998-12-02
KENNEDY SPACE CENTER, FLA. -- Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
1998-12-02
KENNEDY SPACE CENTER, FLA. -- The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to the top of the gantry on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
Pegasus XL CYGNSS Solar Panel Deployment and Illumination Test
2016-10-02
Inside Building 1555 at Vandenberg Air Force Base in California, solar panels for one of eight NASA's Cyclone Global Navigation Satellite System (CYGNSS) spacecraft has been deployed for illumination testing. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are completed at Vandenberg, the rocket will be transported to NASA's Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft within its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.
OCO-2 - Delta II Install 2nd Stage Nozzle
2014-02-26
VANDENBERG AIR FORCE BASE, Calif. – In the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California, the engine bell is installed around the second-stage nozzle of the Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The rocket's second stage will insert OCO-2 into a polar Earth orbit. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
1998-12-02
KENNEDY SPACE CENTER, FLA. -- Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
Mars Polar Lander is mated with Boeing Delta II rocket
NASA Technical Reports Server (NTRS)
1998-01-01
Inside the gantry at Launch Complex 17B, Cape Canaveral Air Station, the Mars Polar Lander spacecraft is lowered to mate it with the Boeing Delta II rocket that will launch it on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
1998-12-02
KENNEDY SPACE CENTER, FLA. -- The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to a vertical position on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
2011-09-08
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, United Launch Alliance (ULA) personnel in the Delta Operations Building prepare for the launch of NASA's Gravity Recovery and Interior Laboratory mission aboard a ULA Delta II Heavy rocket. Physical control of the rocket is maintained from the building, located about a mile from Space Launch Complex 17B. The room functions as a "soft blockhouse" and is the room from which the computer-generated command to launch the rocket is issued two seconds before liftoff. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
2011-09-08
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, United Launch Alliance (ULA) personnel in the Delta Operations Building prepare for the launch of NASA's Gravity Recovery and Interior Laboratory mission aboard a ULA Delta II Heavy rocket. Physical control of the rocket is maintained from the building, located about a mile from Space Launch Complex 17B. The room functions as a "soft blockhouse" and is the room from which the computer-generated command to launch the rocket is issued two seconds before liftoff. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
2011-09-08
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, United Launch Alliance (ULA) personnel in the Delta Operations Building prepare for the launch of NASA's Gravity Recovery and Interior Laboratory mission aboard a ULA Delta II Heavy rocket. Physical control of the rocket is maintained from the building, located about a mile from Space Launch Complex 17B. The room functions as a "soft blockhouse" and is the room from which the computer-generated command to launch the rocket is issued two seconds before liftoff. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
2007-05-28
KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, the Dawn spacecraft is weighed before fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser
Expedition 37 Press Conference
2013-09-24
NASA backup crewmember Steve Swanson waves hello at a press conference held at the Cosmonaut Hotel, on Tuesday, Sept. 24, 2013, in Baikonur, Kazakhstan. Launch of the Soyuz rocket is scheduled for September 26 and will send Hopkins, Soyuz Commander Oleg Kotov and Russian Flight Engineer Sergei Ryazansky on a five and a half-month mission aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)
GOES-R ITAR Photos for Media Day
2016-09-26
The Geostationary Operational Environmental Satellite (GOES-R) is undergoing final launch preparations prior to fueling inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
GOES-R Uncrating and Move to Vertical
2016-08-23
The GOES-R spacecraft is inspected after being uncrated and raised to vertical inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-09-15
The Geostationary Operational Environmental Satellite (GOES-R) is lifted to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-10-21
Team members with United Launch Alliance (ULA) prepare the Geostationary Operational Environmental Satellite (GOES-R) for encapsulation in the payload fairing inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.
GOES-R Uncrating and Move to Vertical
2016-08-23
Team members monitor progress as the GOES-R spacecraft is lifted from horizontal to vertical inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
GOES-R Uncrating and Move to Vertical
2016-08-23
Team members monitor progress as the GOES-R spacecraft is raised to vertical inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-09-26
Team members with United Launch Alliance (ULA) inspect the first half of the fairing for the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.
2016-09-15
The Geostationary Operational Environmental Satellite (GOES-R) is raised to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-08-23
Team members monitor progress as an overhead crane lowers the GOES-R spacecraft into its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-08-23
Team members monitor progress as an overhead crane lowers the GOES-R spacecraft toward its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-08-23
An overhead crane lifts the GOES-R spacecraft to move it into its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-08-23
An overhead crane is positioned to move the GOES-R spacecraft into its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-09-15
The Geostationary Operational Environmental Satellite (GOES-R) has been secured in the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-08-22
A truck with a specialized transporter drives away from an Air Force C-5 Galaxy transport plane at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida to deliver the GOES-R spacecraft for launch processing. The GOES series are weather satellites operated by NOAA to enhance forecasts. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-09-15
Team members are securing the Geostationary Operational Environmental Satellite (GOES-R) in the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2003-01-12
KENNEDY SPACE CENTER, FLA. - NASA's Ice, Cloud and Land Elevation satellite (ICESat) and Cosmic Hot Interstellar Spectrometer (CHIPS) satellite lifted off from Vandenberg Air Force Base, Calif at 4:45 p.m. PST aboard Boeing's Delta II rocket. ICESat will examine the role that ice plays in global climate change, while CHIPSat will explore the composition of our galaxy. [Photo Credit: NASA/Bill Ingalls
2003-01-12
KENNEDY SPACE CENTER, FLA. - NASA's Ice, Cloud and Land Elevation satellite (ICESat) and Cosmic Hot Interstellar Spectrometer (CHIPS) satellite lifted off from Vandenberg Air Force Base, Calif at 4:45 p.m. PST aboard Boeing's Delta II rocket. ICESat will examine the role that ice plays in global climate change, while CHIPSat will explore the composition of our galaxy. [Photo Credit: NASA/Bill Ingalls
2003-01-12
KENNEDY SPACE CENTER, FLA. - NASA's Ice, Cloud and Land Elevation satellite (ICESat) and Cosmic Hot Interstellar Spectrometer (CHIPS) satellite lifted off from Vandenberg Air Force Base, Calif at 4:45 p.m. PST aboard Boeing's Delta II rocket. ICESat will examine the role that ice plays in global climate change, while CHIPSat will explore the composition of our galaxy. [Photo Credit: NASA/Bill Ingalls
2013-03-28
Expedition 35 Soyuz Commander Pavel Vinogradov and Russian Flight Engineer Alexander Misurkin share a laugh after having their Sokol suits pressure checked, Thursday, March 28, 2013, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket will send Vinogradov, Misurkin and NASA Flight Engineer Chris Cassidy on a five and a half-month mission aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
The United Launch Alliance Atlas V Centaur second stage is lifted up for transfer into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
2009-02-19
Debra Fischer, a professor of Astronomy at San Francisco State University, talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)
2009-02-19
Jim Fanson, Kepler project manager, right, talks about the Kepler mission as William Borucki, left, listens during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)
2014-09-17
SAN DIEGO, Calif. – During the third day of Orion Underway Recovery Test 3 on the USS Anchorage in the Pacific Ocean, two Zodiac boats with U.S. Navy divers aboard, at left, and two rigid hull inflatable boats with Navy and other team personnel aboard, prepare for recovery of the Orion boilerplate test vehicle. NASA, Lockheed Martin and U.S. Navy personnel are conducting recovery tests using the Orion boilerplate test vehicle to prepare for recovery of the Orion crew module on its return from a deep space mission. The test allows the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
THEMIS payload encapsulation at complex 17B
2007-02-08
In the mobile service tower on Pad 17-B at Cape Canaveral Air Force Station, workers observe and help guide the second half of the fairing toward the THEMIS spacecraft. The first half has already been put in place. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. THEMIS is an acronym for Time History of Events and Macroscale Interactions during Substorms. THEMIS consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the tantalizing mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Launch of THEMIS is scheduled for Feb. 15 aboard a Delta II rocket, with the launch service being conducted by the United Launch Alliance.
THEMIS payload encapsulation at complex 17B
2007-02-08
In the mobile service tower on Pad 17-B at Cape Canaveral Air Force Station, the second half of the fairing, at right, moves toward the waiting THEMIS spacecraft. The first half has already been put in place. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. THEMIS is an acronym for Time History of Events and Macroscale Interactions during Substorms. THEMIS consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the tantalizing mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Launch of THEMIS is scheduled for Feb. 15 aboard a Delta II rocket, with the launch service being conducted by the United Launch Alliance.
2007-02-08
KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Pad 17-B at Cape Canaveral Air Force Station, workers prepare to install the fairing around the THEMIS spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. THEMIS is an acronym for Time History of Events and Macroscale Interactions during Substorms. THEMIS consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the tantalizing mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Launch of THEMIS is scheduled for Feb. 15 aboard a Delta II rocket, with the launch service being conducted by the United Launch Alliance. Photo credit: NASA/Jim Grossmann
Deep Space 1 moves to CCAS for testing
NASA Technical Reports Server (NTRS)
1998-01-01
After covering the bulk of Deep Space 1 in thermal insulating blankets, workers in the Payload Hazardous Servicing Facility lift it from its work platform before moving it onto its transporter (behind workers at left). Deep Space 1 is being moved to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, for testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the winds measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.
1998-09-30
KENNEDY SPACE CENTER, FLA. -- After covering the bulk of Deep Space 1 in thermal insulating blankets, workers in the Payload Hazardous Servicing Facility lift it from its work platform before moving it onto its transporter (behind workers at left). Deep Space 1 is being moved to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, for testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
A sounding rocket program in extreme and far ultraviolet interferometry
NASA Technical Reports Server (NTRS)
Chakrabarti, S.
1994-01-01
A self-compensating, all reflection interferometric (SCARI) spectrometer was developed that can provide high resolution measurements of spectral features at any wavelength. Several mechanical components were developed that aid the instrument's performance at the short wavelength range. Examples include an optical bench and modular removable precision mechanisms for alignment. Upon alignment and lock down of the interferometer with the latter, the device is removed to minimize weight. A ray-trace code was developed to simulate the instrument's performance. Interference patterns were obtained at the shortest wavelength: the hydrogen Lyman alpha (1216 A). A laboratory instrument was developed that will be flown aboard a Black Brant sounding rocket to study the very local interstellar medium.
Solar and airglow measurements aboard the two suborbital flights NASA 36.098 and 36.107
NASA Technical Reports Server (NTRS)
Woods, Thomas N.
1994-01-01
This suborbital program, involving the University of Colorado (CU), National Center for Atmospheric Research (NCAR), University of California at Berkeley (UCB), and Boston University (BU), has resulted in two rocket flights from the White Sands Missile Range, one in 1992 and one in 1993 as NASA 36.098 and 36.107 respectively. The rocket payload includes five solar instruments and one airglow instrument from CU/NCAR and one solar instrument and two airglow instruments from UCB/BU. This report discusses results on solar radiation measurements and the study of thermospheric airglow, namely the photoelectron excited emissions from N2 and O, for the CU/NCAR program.
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS,wait for fairing installation. The fairing halves are on left and right of the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2018-02-05
In a clean room at Astrotech Space Operations in Titusville, Florida, technicians and engineers monitor progress as NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, is mated to its payload attach fitting. It soon will be moved to Space Launch Complex 41 at Cape Canaveral Air Force Station for mounting atop the Atlas V rocket that will boost the satellite to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.
2018-02-07
In a clean room at Astrotech Space Operations in Titusville, Florida, technicians and engineers monitor progress as NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, is encapsulated in its payload fairing. It soon will be moved to Space Launch Complex 41 at Cape Canaveral Air Force Station for mounting atop the Atlas V rocket that will boost the satellite to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.
Aerial View: SLS Intertank Arrives at Marshall for Critical Structural Testing
2018-03-08
A structural test version of the intertank for NASA's new deep-space rocket, the Space Launch System, arrives at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4, aboard the barge Pegasus. The intertank is the second piece of structural hardware for the massive SLS core stage built at NASA's Michoud Assembly Facility in New Orleans delivered to Marshall for testing. The structural test article will undergo critical testing as engineers push, pull and bend the hardware with millions of pounds of force to ensure it can withstand the forces of launch and ascent. The test hardware is structurally identical to the flight version of the intertank that will connect the core stage's two colossal propellant tanks, serve as the upper-connection point for the two solid rocket boosters and house critical avionics and electronics. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the flight core stage from Michoud to other NASA centers for tests and launch.
2009-01-14
VANDENBERG AIR FORCE BASE, Calif. -- In Bldg. 1610 at Vandenberg Air Force Base in California, the covered NOAA-N Prime spacecraft is lowered onto a transporter. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite is scheduled to launch Feb. 4 aboard a Delta II rocket from Vandenberg Air Force Base. Photo credit: NASA/ Daniel Liberotti, VAFB
2009-01-13
VANDENBERG AIR FORCE BASE, Calif. -- In Bldg. 1610 at Vandenberg Air Force Base in California, the NOAA-N Prime spacecraft is encased inside a transportation canister. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite is scheduled to launch Feb. 4 aboard a Delta II rocket from Vandenberg Air Force Base. Photo credit: NASA/ Daniel Liberotti, VAFB
2002-06-24
VANDENBERG AIR FORCE BASE, CALIF. -- The National Oceanic and Atmospheric Administration (NOAA) spacecraft (NOAA-M) streaks above a cloud layer after a successful launch at 2:23 p.m. EDT aboard a Titan II rocket from Vandenberg Air Force Base, Calif. NOAA-M is another in a series of polar-orbiting Earth environmental observation satellites that provide global data to NOAA's short- and long-range weather forecasting systems
INTELSAT III LIFTS OFF FROM LC 17A ABOARD A DELTA LAUNCH VEHICLE
NASA Technical Reports Server (NTRS)
1968-01-01
A Delta launch vehicle carrying the Intelsat III spacecraft was launched from Complex 17 at 8:09 p.m. EDT. A malfunction in flight resulted in the rocket breaking up some 102 seconds into the mission. Destruct action was initiated by the Air Force East Test Range some six seconds later when it was apparent that the mission could not succeed.
Excitation of the lower oblique resonance by an artificial plasma jet in the ionosphere
NASA Astrophysics Data System (ADS)
Thiel, J.; Storey, L. R. O.; Bauer, O. H.; Jones, D.
1984-04-01
Aboard the Porcupine rockets, bursts of noise were detected in the electron whistler range during the operation of a xenon plasma gun on a package ejected from the main payload. These observations can be interpreted in terms of excitation of the lower oblique resonance by instabilities associated with the motion of the xenon ion beam through the ionospheric plasma.
1981-04-15
The Space Shuttle Columbia begins a new era of space transportation when it lifts off from NASA Kennedy Space Center (KSC). The reusable Orbiter, its two (2) fuel tanks and two (2) Solid Rocket Boosters (SRB) has just cleared the launch tower. Aboard the spacecraft are Astronauts John W. Young, Commander, and Robert L. Crippen, Pilot . 1. STS-I - LAUNCH KSC, FL KSC, FL Also available in 4x5 BW
2007-05-23
KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers prepare the Dawn spacecraft before test deploying its large solar panels on one side. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton
2016-09-15
Team members assist as the Geostationary Operational Environmental Satellite (GOES-R) is prepared for lifting to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-10-21
Team members with United Launch Alliance (ULA) monitor the progress as the two halves of the payload fairing close around the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.
GOES-R Advanced Base Line Imager Installation
2016-08-30
Team members prepare the Advanced Base Line Imager, the primary optical instrument, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-09-26
Team members with United Launch Alliance (ULA) inspect an clean the first half of the fairing for the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.
2016-11-09
Enclosed in its payload fairing, NOAA's Geostationary Operational Environmental Satellite (GOES-R) is mated to the United Launch Alliance Atlas V Centaur upper stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The satellite will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
2016-09-15
Team members monitor the progress as the Geostationary Operational Environmental Satellite (GOES-R) is lifted to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-08-22
A truck with a specialized transporter drives out of the cargo hold of an Air Force C-5 Galaxy transport plane at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida to deliver the GOES-R spacecraft for launch processing. The GOES series are weather satellites operated by NOAA to enhance forecasts. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
GOES-R Advanced Base Line Imager Installation
2016-08-30
Team members install the Advanced Base Line Imager, the primary optical instrument, on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
GOES-R Advanced Base Line Imager Installation
2016-08-30
The Advanced Base Line Imager, the primary optical instrument, has been installed on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-09-15
Team members check the Geostationary Operational Environmental Satellite (GOES-R) after it was lifted to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-09-26
Both halves of the fairing for the Geostationary Operational Environmental Satellite (GOES-R) are being inspected and cleaned by United Launch Alliance (ULA) team members inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
Operations are underway to stack the United Launch Alliance Atlas V Centaur second stage onto the first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
A close-up view of the United Launch Alliance Atlas V Centaur second stage as it travels to the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
The United Launch Alliance Atlas V Centaur second stage has been lifted up and transferred into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
United Launch Alliance team members assist as operation begin to lift the Atlas V Centaur second stage into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
The United Launch Alliance Atlas V Centaur second stage is lifted up by crane for transfer into Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Centaur Lift and Mate
2016-10-31
The United Launch Alliance Atlas V Centaur second stage has been mated to the first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
1997-08-13
The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA
1997-08-13
The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA
Automated directional solidification system for space processing
NASA Technical Reports Server (NTRS)
Mccreight, L. R. (Compiler)
1981-01-01
The system is to be used under low gravity conditions aboard a sounding rocket. Two complete flight qualified units, each of which includes four individually controllable furnaces capable of operation to as high as 1600 C, were developed with operating and control panels, associated cables, tools, and some spare supplies. Drawings, operating manuals, a user's computer program and reports and papers describing the work and equipment are presented.
2009-02-19
Jim Fanson, Kepler project manager, at NASA's Jet Propulsion Laboratory in Pasadena, Calif. talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)
2009-02-19
William Borucki, principal investigator for Kepler Science at Ames Research Center, Moffett Field, Calif., talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)
2009-02-19
Jim Fanson, Kepler project manager, center, talks about the Kepler mission as William Borucki, left, and Debra Fischer, right, listen during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)
Energy deposition rates by charged particles measured during the energy budget campaign
NASA Technical Reports Server (NTRS)
Urban, A.; Torkar, K. M.; Bjordal, J.; Lundblad, J. A.; Soraas, F.; Grandal, B.; Smith, L. G.; Ulwick, J. C.; Vancour, R. P.
1982-01-01
Measurements of the precipitation of electrons and positive ions (in the keV to MeV range) detected aboard eight rockets launched from Northern Scandinavia are reported together with corresponding satellite data. The downgoing integral fluxes indicate the temporal fluctuations during each flight. Height profiles of the energy deposition into the atmosphere at different levels of geomagnetic disturbance are given.
2007-11-03
KENNEDY SPACE CENTER, FLA. — Looking like a giant bat, space shuttle Atlantis hangs from an overhead crane over the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center. Atlantis will next be lifted into high bay 3 and mated with the external tank and solid rocket boosters designated for mission STS-122, already secured atop a mobile launcher platform. On this mission, Atlantis will deliver the Columbus module to the International Space Station. The European Space Agency's largest contribution to the station, Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony. The module is approximately 23 feet long and 15 feet wide, allowing it to hold 10 large racks of experiments. The laboratory will expand the research facilities aboard the station, providing crew members and scientists from around the world the ability to conduct a variety of experiments in the physical, materials and life sciences. Mission STS-122 is targeted for launch on Dec. 6. Photo credit: NASA/George Shelton
2014-04-18
CAPE CANAVERAL, Fla. - Participating in a SpaceX-3 post-launch news conference in the NASA Press Site television auditorium at Kennedy Space Center in Florida are, from left, William Gersteinmeier, NASA associate administrator for Human Exploration and Operations, and Hans Koenigsmann, SpaceX vice president of Mission Assurance. SpaceX CEO and chief designer Elon Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett
2014-04-18
CAPE CANAVERAL, Fla. - Participating in a SpaceX-3 post-launch news conference in the NASA Press Site television auditorium at Kennedy Space Center in Florida are, from left, Michael Curie, NASA Public Affairs, William Gersteinmeier, NASA associate administrator for Human Exploration and Operations, and Hans Koenigsmann, SpaceX vice president of Mission Assurance. SpaceX CEO and chief designer Elon Musk participated in the conference by telephone. SpaceX-3 launched at 3:25 p.m. EDT aboard a Falcon 9 rocket carrying a Dragon capsule from Space Launch Complex 40 on Cape Canaveral Air Force Station. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Kim Shiflett
2001-02-19
Two Russian scientists look over the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), after its removal from the 2001 Mars Odyssey Orbiter. The HEND was built by Russia’s Space Research Institute (IKI). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The orbiter will carry two other science instruments: THEMIS and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station
2002-09-12
KENNEDY SPACE CENTER, FLA. -- Andy Fish, an SRB retrieval diver and diver medical technician with United Space Alliance, is in the spotlight for helping rescue a diver in distress off Cape Canaveral Sept. 11. Fish and others were on a certification exercise on board Freedom Star, one of the Shuttle Rocket Booster retrieval ships, manned by USA workers. The ship was near the location of a lobster diving boat that radioed the U.S. Coast Guard for help when one of the divers experienced difficulty breathing on his return to the surface. Hearing the call for help, the captain of the Freedom Star offered to help. Fish had experience with distressed divers. He stayed with the diver in the recompression chamber aboard the Freedom Star until the ship reached Port Canaveral where a KSC Occupational Health doctor waited. The diver was stabilized and taken to Florida Hospital. .
OA-7 Media Event in the PHSF; Personnel speak about OA-7 Mission
2017-03-09
Orbital ATK dedicated its next Cygnus spacecraft to Sen. John Glenn, one of NASA’s original seven astronauts and an ardent supporter of spaceflight. NASA, Orbital ATK and United Launch Alliance officials spoke about the importance of the flight during a break in processing work inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida. The spacecraft is targeted to launch March 24 at 9:00 p.m. EDT aboard a United Launch Alliance Atlas V rocket. It will carry more than 7,600 pounds of supplies to the International Space Station including experiments across a wide range of sciences, equipment for the station and supplies for the crew. The mission will be station’s second cargo delivery of 2017 and Orbital ATK’s seventh contracted resupply mission for NASA.
2002-10-26
KENNEDY SPACE CENTER, FLA. -- A container with the Solar Radiation and Climate Experiment (SORCE) spacecraft inside is offloaded at the Multi-Purpose Processing Facility at KSC. The spacecraft will undergo final processing for launch. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.
2002-10-28
KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility at KSC, workers unpack the Solar Radiation and Climate Experiment (SORCE) spacecraft. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.
2002-10-28
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Purpose Processing Facility at KSC help guide the Solar Radiation and Climate Experiment (SORCE) spacecraft onto a workstand. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.
2002-10-28
KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Purpose Processing Facility at KSC look over the Solar Radiation and Climate Experiment (SORCE) spacecraft. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.
Shock-layer-induced ultraviolet emissions measured by rocket payloads
NASA Astrophysics Data System (ADS)
Caveny, Leonard H.; Mann, David M.
1991-08-01
Hypervelocity missiles in the continuum and near-continuum atmosphere produce high temperature shocklayers (i.e., greater than 4000 K at 3.5 km/s and 9000 K at 5.5 km/s). Atmospheric oxygen and nitrogen react and the products are excited to produce nitrogen oxide gamma-band radiation. Analyses and shock tube experiments explored the reaction chemistry and the emissions. Two rocket experiments were conducted to obtain ultraviolet (UV) data under flight conditions using innovative onboard instruments. The first (Bow Shock 1) flew onboard a Terrier-Malemute in April 1990; the second (Bow Shock 2) flew aboard a Strypi XI (Castor 1/Antares IIa/Star 27) in February 1991. The principal instruments were: (1) scanning UV spectrometers, from 190 to 400 nm, (2) quartz fiber-optic coupled photometers to measure selected spectral features, and (3) atomic oxygen (130.4 nm) and hydrogen Lyman-alpha (121.6 nm) detectors. Bow Shock 1 acquired new data on the spectral intensity from UV emissions at 3.5 km/s between 40 and 70 km. For example, at 55 km, the observations included well-defined spectra of nitrogen oxide gamma-band UV emitters with signal strengths more than 10 times stronger than recent theory predicted. Significant signal strength persisted to 70 km, 20 km higher than anticipated. Bow Shock 2 extended the velocity to 5 km/s. An additional scanning spectrometer and 8 photometers observed the downstream shock structures and shock plume interactions. Initial data interpretations indicate that aerodynamic interactions significantly enhance plume emissions.
2009-01-27
VANDENBERG AIR FORCE BASE, Calif. -- The first half of the fairing is moved into place around the NOAA-N Prime spacecraft in the launch service tower on Space Launch Complex 2 at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N that was launched on May 20, 2005. Launch of NOAA-N Prime aboard a Delta II rocket is scheduled for Feb. 4. Photo credit: NASA
2009-01-27
VANDENBERG AIR FORCE BASE, Calif. -- The first half of the fairing is moved into place around the NOAA-N Prime spacecraft in the launch service tower on Space Launch Complex 2 at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N that was launched on May 20, 2005. Launch of NOAA-N Prime aboard a Delta II rocket is scheduled for Feb. 4. Photo credit: NASA
2009-01-27
VANDENBERG AIR FORCE BASE, Calif. -- The first half of the fairing is moved into place around the NOAA-N Prime spacecraft in the launch service tower on Space Launch Complex 2 at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N that was launched on May 20, 2005. Launch of NOAA-N Prime aboard a Delta II rocket is scheduled for Feb. 4. Photo credit: NASA
1999-06-19
A worker in the launch tower at Launch Pad 17A, Cape Canaveral Air Station, watches as the first segment of the fairing is maneuvered around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is scheduled for launch June 24 aboard a Boeing Delta II rocket. At the lower left in the photo can be seen a camera installed on the second stage of the rocket to record the separation of the fairing several minutes after launch. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study those elements to unlock the secrets of how galaxies evolve and to discover what the Universe was like when it was only a few minutes old
1999-06-19
Workers in the launch tower at Launch Pad 17A, Cape Canaveral Air Station, help guide the first segment of the fairing around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is scheduled for launch June 24 aboard a Boeing Delta II rocket. At the lower left can be seen a camera installed on the second stage of the rocket to record the separation of the fairing several minutes after launch. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study those elements to unlock the secrets of how galaxies evolve and to discover what the Universe was like when it was only a few minutes old
After tower rollback, the Boeing Delta II rocket with Mars Polar Lander aboard is ready for liftoff
NASA Technical Reports Server (NTRS)
1999-01-01
After launch tower retraction, the Boeing Delta II rocket carrying NASA's Mars Polar lander waits for liftoff, scheduled for 3:21 p.m. EST, at Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor 98 missions.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At the Atlas V Spaceflight Operations Center, the launch team goes through a wet dress rehearsal for launch of the Mars Reconnaissance Orbiter (MRO), scheduled for Aug. 10. Launch of the MRO aboard an Atlas V rocket will be from Launch Complex 41 at Cape Canaveral Air Force Station in Florida. A wet rehearsal includes pre-liftoff operations and a fueling of the rockets engine. The MRO was built by Lockheed Martin for NASA Jet Propulsion Laboratory in California. It is the next major step in Mars exploration and scheduled for launch from Cape Canaveral Air Force Station. The MRO is an important next step in fulfilling NASAs vision of space exploration and ultimately sending human explorers to Mars and beyond.
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are being prepared for fairing installation. On either side are the two fairing sections that will be installed around the spacecraft for launch. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the first half of the fairing is moved into place for installation around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. At right is the second half. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At the Atlas V Spaceflight Operations Center, the launch team goes through a wet dress rehearsal for launch of the Mars Reconnaissance Orbiter (MRO), scheduled for Aug. 10. Launch of the MRO aboard an Atlas V rocket will be from Launch Complex 41 at Cape Canaveral Air Force Station in Florida. A wet rehearsal includes pre-liftoff operations and a fueling of the rockets engine. The MRO was built by Lockheed Martin for NASA Jet Propulsion Laboratory in California. It is the next major step in Mars exploration and scheduled for launch from Cape Canaveral Air Force Station. The MRO is an important next step in fulfilling NASAs vision of space exploration and ultimately sending human explorers to Mars and beyond.
2012-07-13
CAPE CANAVERAL, Fla. - At Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the first stage of the United Launch Alliance Atlas V rocket has been moved into the Vertical Integration Facility. The Atlas V is being prepared for the Radiation Belt Storm Probes, or RBSP, mission. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Cory Huston
2012-07-13
CAPE CANAVERAL, Fla. - At Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the first stage of the United Launch Alliance Atlas V rocket has been moved into the Vertical Integration Facility. The Atlas V is being prepared for the Radiation Belt Storm Probes, or RBSP, mission. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Cory Huston
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- On the ramp on Vandenberg Air Force Base in California, the Orbital Sciences’ L-1011 aircraft is being prepared to receive the Pegasus XL rocket and NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
2011-02-16
ISS026-E-027267 (16 Feb. 2011) --- The Expedition 26 crew member aboard the International Space Station who snapped this photograph of the Ariane 5 rocket, barely visible in the far background, just after lift off from Europe’s Spaceport in Kourou, French Guiana, and the rest of the crew have a special interest in the occurrence. ESA’s second Automated Transfer Vehicle, Johannes Kepler, was just a short time earlier (21:50 GMT or 18:50 Kourou time on Feb. 16, 2011) launched toward its low orbit destination and eventual link-up with the ISS. The unmanned supply ship is planned to deliver critical supplies and reboost the space station during its almost four-month mission. The elbow of Canadarm2 (Space Station Remote Manipulator System)is in the foreground.
2011-02-16
ISS026-E-027287 (16 Feb. 2011) --- The Expedition 26 crew member aboard the International Space Station who snapped this photograph of the Ariane 5 rocket (faint squiggly vertical form in the midst of darkness above the clouds), just after lift off from Europe’s Spaceport in Kourou, French Guiana, and the rest of the crew have a special interest in the occurrence. ESA’s second Automated Transfer Vehicle, Johannes Kepler, was just a short time earlier (21:50 GMT or 18:50 Kourou time on Feb. 16, 2011) launched toward its approaching low orbit destination and its eventual link-up with the ISS. The unmanned supply ship is planned to deliver critical supplies and reboost the space station during its almost four-month mission.
2011-02-16
ISS026-E-027323 (16 Feb. 2011) --- The Expedition 26 crew member aboard the International Space Station who snapped this photograph of the Ariane 5 rocket, barely visible in the far background, just after lift off from Europe’s Spaceport in Kourou, French Guiana, and the rest of the crew have a special interest in the occurrence. ESA’s second Automated Transfer Vehicle, Johannes Kepler, was just a short time earlier (21:50 GMT or 18:50 Kourou time on Feb. 16, 2011) launched toward its low orbit destination and eventual link-up with the ISS. The unmanned supply ship is planned to deliver critical supplies and reboost the space station during its almost four-month mission. The elbow of Canadarm2 is in the foreground.
Antares Post Launch Press Conference
2013-09-18
Frank Culbertson, executive vice president, Orbital Sciences Corporation, talks during a press conference held after the successful launch of the Antares rocket, with the Cygnus cargo spacecraft aboard, Wednesday, Sept. 18, 2013, NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station. The spacecraft will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew. Photo Credit: (NASA/Bill Ingalls)
2009-01-13
VANDENBERG AIR FORCE BASE, Calif. -- In Bldg. 1610 at Vandenberg Air Force Base in California, a transportation canister is being placed around the NOAA-N Prime spacecraft. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite is scheduled to launch Feb. 4 aboard a Delta II rocket from Vandenberg Air Force Base. Photo credit: NASA/ Daniel Liberotti, VAFB
2009-01-13
VANDENBERG AIR FORCE BASE, Calif. -- In Bldg. 1610 at Vandenberg Air Force Base in California, workers guide an upper segment of the transportation canister toward the NOAA-N Prime spacecraft. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite is scheduled to launch Feb. 4 aboard a Delta II rocket from Vandenberg Air Force Base. Photo credit: NASA/ Daniel Liberotti, VAFB
2009-01-13
VANDENBERG AIR FORCE BASE, Calif. -- In Bldg. 1610 at Vandenberg Air Force Base in California, workers place another lower segment of a transportation canister around the NOAA-N Prime spacecraft. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite is scheduled to launch Feb. 4 aboard a Delta II rocket from Vandenberg Air Force Base. Photo credit: NASA/ Daniel Liberotti, VAFB
2009-01-13
VANDENBERG AIR FORCE BASE, Calif. -- In Bldg. 1610 at Vandenberg Air Force Base in California, two rows of the transportation canister are installed around the NOAA-N Prime spacecraft. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite is scheduled to launch Feb. 4 aboard a Delta II rocket from Vandenberg Air Force Base. Photo credit: NASA/ Daniel Liberotti, VAFB
Expedition 38 State Commission
2013-11-06
President of RSC Energia, Designer General V.A. Lopota, talks during the State Commission meeting to approve the Soyuz rocket launch of Expedition 38 Soyuz Commander Mikhail Tyurin of Roscosmos, Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, and, Flight Engineer Rick Mastracchio of NASA for a six month mission aboard the International Space Station, Wednesday, Nov. 6, 2013 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)
STS-106 orbiter Atlantis rolls over to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
The orbiter Atlantis heads toward the open door of the Vehicle Assembly Building (VAB) on the north side. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.
2013-03-26
Russia security forces and their dog walk along the train track to the Soyuz launch pad, Tuesday, March 26, 2013 at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for March 29 and will send Expedition 35 Soyuz Commander Pavel Vinogradov, and Flight Engineers Chris Cassidy of NASA and Alexander Misurkin of Russia on a five and a half-month mission aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)
2012-10-21
Expedition 33 Flight Engineer Kevin Ford gets his hair cut at the Cosmonaut Hotel, on Sunday, October 21, 2012, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for October 23 and will send Expedition 33/34 Flight Engineer Kevin Ford of NASA, Soyuz Commander Oleg Novitskiy and Flight Engineer Evgeny Tarelkin of ROSCOSMOS on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2012-10-21
Expedition 33 Flight Engineer Evgeny Tarelkin gets his hair cut at the Cosmonaut Hotel, on Sunday, October 21, 2012, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for October 23 and will send Expedition 33/34 Flight Engineer Kevin Ford of NASA, Soyuz Commander Oleg Novitskiy and Flight Engineer Engineer Evgeny Tarelkin of ROSCOSMOS on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2012-10-21
Expedition 33 Soyuz Commander Oleg Novitskiy gets his hair cut at the Cosmonaut Hotel, on Sunday, October 21, 2012, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for October 23 and will send Expedition 33/34 Flight Engineer Kevin Ford of NASA, Soyuz Commander Oleg Novitskiy and Flight Engineer Evgeny Tarelkin of ROSCOSMOS on a five-month mission aboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2007-05-22
KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, the Dawn spacecraft is lowered toward a work stand for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller
2007-05-22
KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft for installation of its solar array panels. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller
2007-05-23
KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers get ready to test deploy the large solar array panels on one side of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton
Antares Post Launch Press Conference
2013-09-18
Robert Lightfoot, associate administrator, NASA, talks during a press conference held after the successful launch of the Antares rocket, with the Cygnus cargo spacecraft aboard, Wednesday, Sept. 18, 2013, NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station. The spacecraft will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew. Photo Credit: (NASA/Bill Ingalls)
2016-11-09
Enclosed in its payload fairing, NOAA's Geostationary Operational Environmental Satellite (GOES-R) is lifted into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch aboard the rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
2016-10-21
Team members with United Launch Alliance (ULA) monitor the progress as the two halves of the payload fairing begin to close around the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.
GOES-R Advanced Base Line Imager Installation
2016-08-30
Team members assist as a crane lifts the Advanced Base Line Imager, the primary optical instrument, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-09-15
Team members assist as the Geostationary Operational Environmental Satellite (GOES-R) is raised and prepared for lifting to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November
GOES-R Advanced Base Line Imager Installation
2016-08-30
Team members assist as a crane moves the Advanced Base Line Imager, the primary optical instruments, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
2016-09-15
Team members assist as the Geostationary Operational Environmental Satellite (GOES-R) is raised and prepared for lifting to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
GOES-S Countdown to T-Zero, Episode 4: Ready to Roll
2018-02-28
NOAA's GOES-S is encapsulated in its payload fairing inside Astrotech Space Operations in Titusville, Florida, and transported to the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station. It was hoisted up and secured to the United Launch Alliance Atlas V rocket. GOES-S, the next in a series of advanced weather satellites, launched aboard the Atlas V on March 1, 2018.
Expedition 37 Press Conference
2013-09-24
Expedition 37 NASA Flight Engineer Michael Hopkins, left, and Soyuz Commander Oleg Kotov share a laugh at a press conference held at the Cosmonaut Hotel, on Tuesday, Sept. 24, 2013, in Baikonur, Kazakhstan. Launch of the Soyuz rocket is scheduled for September 26 and will send Hopkins, Kotov and Russian Flight Engineer Sergei Ryazansky on a five and a half-month mission aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)
Expedition 37 Press Conference
2013-09-24
Expedition 37 Soyuz Commander Oleg Kotov, left, and Russian Flight Engineer Sergey Ryazanskiy share a laugh at a press conference held at the Cosmonaut Hotel, on Tuesday, Sept. 24, 2013, in Baikonur, Kazakhstan. Launch of the Soyuz rocket is scheduled for September 26 and will send Kotov, Ryazanski and NASA Flight Engineer Michael Hopkins on a five and a half-month mission aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)
1997-08-05
The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA
1997-08-05
The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA
1992-05-06
STS-49 Orbiter Endeavour landed at Edwards Air Force Base on May 16, 1992 after a successful nine day mission dedicated to the retrieval, repair, and redeployment of the INTELSAT VI (F-3) satellite. The communication satellite for the International Telecommunication Satellite organization had been stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. The mission marked the first time 3 astronauts worked simultaneously outside the space craft.
STS-106 orbiter Atlantis rolls over to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
Inside the Vehicle Assembly Building (VAB), overhead cranes move above the orbiter Atlantis in order to lift it to vertical. When vertical, the orbiter will be placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, NASA’s MESSENGER spacecraft is secure after transfer to the work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, NASA’s MESSENGER spacecraft is lifted off the pallet for transfer to a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers remove the protective cover from NASA’s MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.