Sample records for experiment cepex design

  1. Teaching fractional factorial experiments via course delegate designed experiments.

    PubMed

    Coleman, S; Antony, J

    1999-01-01

    Industrial experiments are fundamental in enhancing the understanding and knowledge of a process and product behavior. Designed industrial experiments assist people in understanding, investigating, and improving their processes. The purpose of a designed experiment is to understand which factors might influence the process output and then to determine those factor settings that optimize the process output. Teaching "design of experiments" using textbook examples does not fully shed light on how to identify and formulate the problem, identify factors, and determine the performance of the physical experiment. Presented here is an example of how to teach fractional factorial experiments in a course on designed experiments. Also presented is a practical, hands-on experiment that has been found to be extremely successful in instilling confidence and motivation in course delegates. The experiment provides a great stimulus to the delegates for the application of experimental design in their own work environment.

  2. Design Experiments in Educational Research.

    ERIC Educational Resources Information Center

    Cobb, Paul; Confrey, Jere; diSessa, Andrea; Lehrer, Richard; Schauble, Leona

    2003-01-01

    Indicates the range of purposes and variety of settings in which design experiments have been conducted, delineating five crosscutting features that collectively differentiate design experiments from other methodologies. Clarifies what is involved in preparing for and carrying out a design experiment and in conducting a retrospective analysis of…

  3. Supporting Learners' Experiment Design

    ERIC Educational Resources Information Center

    van Riesen, Siswa; Gijlers, Hannie; Anjewierden, Anjo; de Jong, Ton

    2018-01-01

    Inquiry learning is an educational approach in which learners actively construct knowledge and in which performing investigations and conducting experiments is central. To support learners in designing informative experiments we created a scaffold, the Experiment Design Tool (EDT), that provided learners with a step-by-step structure to select…

  4. Designing Successful Proteomics Experiments.

    PubMed

    Ruderman, Daniel

    2017-01-01

    Because proteomics experiments are so complex they can readily fail, and do so without clear cause. Using standard experimental design techniques and incorporating quality control can greatly increase the chances of success. This chapter introduces the relevant concepts and provides examples specific to proteomic workflows. Applying these notions to design successful proteomics experiments is straightforward. It can help identify failure causes and greatly increase the likelihood of inter-laboratory reproducibility.

  5. SEDS experiment design definition

    NASA Technical Reports Server (NTRS)

    Carroll, Joseph A.; Alexander, Charles M.; Oldson, John C.

    1990-01-01

    The Small Expendable-tether Deployment System (SEDS) was developed to design, build, integrate, fly, and safely deploy and release an expendable tether. A suitable concept for an on-orbit test of SEDS was developed. The following tasks were performed: (1) Define experiment objectives and requirements; (2) Define experiment concepts to reach those objectives; (3) Support NASA in experiment concept selection and definition; (4) Perform analyses and tests of SEDS hardware; (5) Refine the selected SEDS experiment concept; and (6) Support interactive SEDS system definition process. Results and conclusions are given.

  6. Adaptive design of visual perception experiments

    NASA Astrophysics Data System (ADS)

    O'Connor, John D.; Hixson, Jonathan; Thomas, James M., Jr.; Peterson, Matthew S.; Parasuraman, Raja

    2010-04-01

    Meticulous experimental design may not always prevent confounds from affecting experimental data acquired during visual perception experiments. Although experimental controls reduce the potential effects of foreseen sources of interference, interaction, or noise, they are not always adequate for preventing the confounding effects of unforeseen forces. Visual perception experimentation is vulnerable to unforeseen confounds because of the nature of the associated cognitive processes involved in the decision task. Some confounds are beyond the control of experimentation, such as what a participant does immediately prior to experimental participation, or the participant's attitude or emotional state. Other confounds may occur through ignorance of practical control methods on the part of the experiment's designer. The authors conducted experiments related to experimental fatigue and initially achieved significant results that were, upon re-examination, attributable to a lack of adequate controls. Re-examination of the original results and the processes and events that led to them yielded a second experimental design with more experimental controls and significantly different results. The authors propose that designers of visual perception experiments can benefit from planning to use a test-fix-test or adaptive experimental design cycle, so that unforeseen confounds in the initial design can be remedied.

  7. Design and Analysis of AN Static Aeroelastic Experiment

    NASA Astrophysics Data System (ADS)

    Hou, Ying-Yu; Yuan, Kai-Hua; Lv, Ji-Nan; Liu, Zi-Qiang

    2016-06-01

    Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141 steels and rigid foam are used to make elastic model. In this paper, the design and manufacturing process of static aeroelastic models is presented and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paper introduces the whole process of the static aeroelastic experiment, and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.

  8. Experiment Design and Analysis Guide - Neutronics & Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  9. Spaceflight payload design flight experience G-408

    NASA Technical Reports Server (NTRS)

    Durgin, William W.; Looft, Fred J.; Sacco, Albert, Jr.; Thompson, Robert; Dixon, Anthony G.; Roberti, Dino; Labonte, Robert; Moschini, Larry

    1992-01-01

    Worcester Polytechnic Institute's first payload of spaceflight experiments flew aboard Columbia, STS-40, during June of 1991 and culminated eight years of work by students and faculty. The Get Away Special (GAS) payload was installed on the GAS bridge assembly at the aft end of the cargo bay behind the Spacelab Life Sciences (SLS-1) laboratory. The Experiments were turned on by astronaut signal after reaching orbit and then functioned for 72 hours. Environmental and experimental measurements were recorded on three cassette tapes which, together with zeolite crystals grown on orbit, formed the basis of subsequent analyses. The experiments were developed over a number of years by undergraduate students meeting their project requirements for graduation. The experiments included zeolite crystal growth, fluid behavior, and microgravity acceleration measurement in addition to environmental data acquisition. Preparation also included structural design, thermal design, payload integration, and experiment control. All of the experiments functioned on orbit and the payload system performed within design estimates.

  10. Tractable Experiment Design via Mathematical Surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brian J.

    This presentation summarizes the development and implementation of quantitative design criteria motivated by targeted inference objectives for identifying new, potentially expensive computational or physical experiments. The first application is concerned with estimating features of quantities of interest arising from complex computational models, such as quantiles or failure probabilities. A sequential strategy is proposed for iterative refinement of the importance distributions used to efficiently sample the uncertain inputs to the computational model. In the second application, effective use of mathematical surrogates is investigated to help alleviate the analytical and numerical intractability often associated with Bayesian experiment design. This approach allows formore » the incorporation of prior information into the design process without the need for gross simplification of the design criterion. Illustrative examples of both design problems will be presented as an argument for the relevance of these research problems.« less

  11. The design of the MEG II experiment

    NASA Astrophysics Data System (ADS)

    Baldini, A. M.; Baracchini, E.; Bemporad, C.; Berg, F.; Biasotti, M.; Boca, G.; Cattaneo, P. W.; Cavoto, G.; Cei, F.; Chiappini, M.; Chiarello, G.; Chiri, C.; Cocciolo, G.; Corvaglia, A.; de Bari, A.; De Gerone, M.; D'Onofrio, A.; Francesconi, M.; Fujii, Y.; Galli, L.; Gatti, F.; Grancagnolo, F.; Grassi, M.; Grigoriev, D. N.; Hildebrandt, M.; Hodge, Z.; Ieki, K.; Ignatov, F.; Iwai, R.; Iwamoto, T.; Kaneko, D.; Kasami, K.; Kettle, P.-R.; Khazin, B. I.; Khomutov, N.; Korenchenko, A.; Kravchuk, N.; Libeiro, T.; Maki, M.; Matsuzawa, N.; Mihara, S.; Milgie, M.; Molzon, W.; Mori, Toshinori; Morsani, F.; Mtchedilishvili, A.; Nakao, M.; Nakaura, S.; Nicolò, D.; Nishiguchi, H.; Nishimura, M.; Ogawa, S.; Ootani, W.; Panareo, M.; Papa, A.; Pepino, A.; Piredda, G.; Popov, A.; Raffaelli, F.; Renga, F.; Ripiccini, E.; Ritt, S.; Rossella, M.; Rutar, G.; Sawada, R.; Signorelli, G.; Simonetta, M.; Tassielli, G. F.; Uchiyama, Y.; Usami, M.; Venturini, M.; Voena, C.; Yoshida, K.; Yudin, Yu. V.; Zhang, Y.

    2018-05-01

    The MEG experiment, designed to search for the {μ ^+ → e^+ γ } decay, completed data-taking in 2013 reaching a sensitivity level of {5.3× 10^{-13}} for the branching ratio. In order to increase the sensitivity reach of the experiment by an order of magnitude to the level of 6× 10^{-14}, a total upgrade, involving substantial changes to the experiment, has been undertaken, known as MEG II. We present both the motivation for the upgrade and a detailed overview of the design of the experiment and of the expected detector performance.

  12. Designing a Hybrid Laminar-Flow Control Experiment: The CFD-Experiment Connection

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    2003-01-01

    The NASA/Boeing hybrid laminar flow control (HLFC) experiment, designed during 1993-1994 and conducted in the NASA LaRC 8-foot Transonic Pressure Tunnel in 1995, utilized computational fluid dynamics and numerical simulation of complex fluid mechanics to an unprecedented extent for the design of the test article and measurement equipment. CFD was used in: the design of the test wing, which was carried from definition of desired disturbance growth characteristics, through to the final airfoil shape that would produce those growth characteristics; the design of the suction-surface perforation pattern that produced enhanced crossflow-disturbance growth: and in the design of the hot-wire traverse system that produced minimal influence on measured disturbance growth. These and other aspects of the design of the test are discussed, after the historical and technical context of the experiment is described.

  13. Design of Orion Soil Impact Study using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2010-01-01

    Two conventional One Factor At a Time (OFAT) test matrices under consideration for an Orion Landing System subscale soil impact study are reviewed. Certain weaknesses in the designs, systemic to OFAT experiment designs generally, are identified. An alternative test matrix is proposed that is based in the Modern Design of Experiments (MDOE), which achieves certain synergies by combining the original two test matrices into one. The attendant resource savings are quantified and the impact on uncertainty is discussed.

  14. DEM Calibration Approach: design of experiment

    NASA Astrophysics Data System (ADS)

    Boikov, A. V.; Savelev, R. V.; Payor, V. A.

    2018-05-01

    The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.

  15. Advanced ISDN satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The research performed by GTE Government Systems and the University of Colorado in support of the NASA Satellite Communications Applications Research (SCAR) Program is summarized. Two levels of research were undertaken. The first dealt with providing interim services Integrated Services Digital Network (ISDN) satellite (ISIS) capabilities that accented basic rate ISDN with a ground control similar to that of the Advanced Communications Technology Satellite (ACTS). The ISIS Network Model development represents satellite systems like the ACTS orbiting switch. The ultimate aim is to move these ACTS ground control functions on-board the next generation of ISDN communications satellite to provide full-service ISDN satellite (FSIS) capabilities. The technical and operational parameters for the advanced ISDN communications satellite design are obtainable from the simulation of ISIS and FSIS engineering software models of the major subsystems of the ISDN communications satellite architecture. Discrete event simulation experiments would generate data for analysis against NASA SCAR performance measure and the data obtained from the ISDN satellite terminal adapter hardware (ISTA) experiments, also developed in the program. The Basic and Option 1 phases of the program are also described and include the following: literature search, traffic mode, network model, scenario specifications, performance measures definitions, hardware experiment design, hardware experiment development, simulator design, and simulator development.

  16. Optimal design of isotope labeling experiments.

    PubMed

    Yang, Hong; Mandy, Dominic E; Libourel, Igor G L

    2014-01-01

    Stable isotope labeling experiments (ILE) constitute a powerful methodology for estimating metabolic fluxes. An optimal label design for such an experiment is necessary to maximize the precision with which fluxes can be determined. But often, precision gained in the determination of one flux comes at the expense of the precision of other fluxes, and an appropriate label design therefore foremost depends on the question the investigator wants to address. One could liken ILE to shadows that metabolism casts on products. Optimal label design is the placement of the lamp; creating clear shadows for some parts of metabolism and obscuring others.An optimal isotope label design is influenced by: (1) the network structure; (2) the true flux values; (3) the available label measurements; and, (4) commercially available substrates. The first two aspects are dictated by nature and constrain any optimal design. The second two aspects are suitable design parameters. To create an optimal label design, an explicit optimization criterion needs to be formulated. This usually is a property of the flux covariance matrix, which can be augmented by weighting label substrate cost. An optimal design is found by using such a criterion as an objective function for an optimizer. This chapter uses a simple elementary metabolite units (EMU) representation of the TCA cycle to illustrate the process of experimental design of isotope labeled substrates.

  17. Designing Effective Undergraduate Research Experiences

    NASA Astrophysics Data System (ADS)

    Severson, S.

    2010-12-01

    I present a model for designing student research internships that is informed by the best practices of the Center for Adaptive Optics (CfAO) Professional Development Program. The dual strands of the CfAO education program include: the preparation of early-career scientists and engineers in effective teaching; and changing the learning experiences of students (e.g., undergraduate interns) through inquiry-based "teaching laboratories." This paper will focus on the carry-over of these ideas into the design of laboratory research internships such as the CfAO Mainland internship program as well as NSF REU (Research Experiences for Undergraduates) and senior-thesis or "capstone" research programs. Key ideas in maximizing student learning outcomes and generating productive research during internships include: defining explicit content, scientific process, and attitudinal goals for the project; assessment of student prior knowledge and experience, then following up with formative assessment throughout the project; setting reasonable goals with timetables and addressing motivation; and giving students ownership of the research by implementing aspects of the inquiry process within the internship.

  18. Affective loop experiences: designing for interactional embodiment.

    PubMed

    Höök, Kristina

    2009-12-12

    Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves-the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for 'open' surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a 'unity' of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and experienced

  19. Affective loop experiences: designing for interactional embodiment

    PubMed Central

    Höök, Kristina

    2009-01-01

    Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves—the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for ‘open’ surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a ‘unity’ of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and

  20. A Model for Designing Adaptive Laboratory Evolution Experiments.

    PubMed

    LaCroix, Ryan A; Palsson, Bernhard O; Feist, Adam M

    2017-04-15

    The occurrence of mutations is a cornerstone of the evolutionary theory of adaptation, capitalizing on the rare chance that a mutation confers a fitness benefit. Natural selection is increasingly being leveraged in laboratory settings for industrial and basic science applications. Despite increasing deployment, there are no standardized procedures available for designing and performing adaptive laboratory evolution (ALE) experiments. Thus, there is a need to optimize the experimental design, specifically for determining when to consider an experiment complete and for balancing outcomes with available resources (i.e., laboratory supplies, personnel, and time). To design and to better understand ALE experiments, a simulator, ALEsim, was developed, validated, and applied to the optimization of ALE experiments. The effects of various passage sizes were experimentally determined and subsequently evaluated with ALEsim, to explain differences in experimental outcomes. Furthermore, a beneficial mutation rate of 10 -6.9 to 10 -8.4 mutations per cell division was derived. A retrospective analysis of ALE experiments revealed that passage sizes typically employed in serial passage batch culture ALE experiments led to inefficient production and fixation of beneficial mutations. ALEsim and the results described here will aid in the design of ALE experiments to fit the exact needs of a project while taking into account the resources required and will lower the barriers to entry for this experimental technique. IMPORTANCE ALE is a widely used scientific technique to increase scientific understanding, as well as to create industrially relevant organisms. The manner in which ALE experiments are conducted is highly manual and uniform, with little optimization for efficiency. Such inefficiencies result in suboptimal experiments that can take multiple months to complete. With the availability of automation and computer simulations, we can now perform these experiments in an optimized

  1. OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING

    PubMed Central

    Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.

    2017-01-01

    Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance. PMID:28268369

  2. Optimal experiment design for magnetic resonance fingerprinting.

    PubMed

    Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L

    2016-08-01

    Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.

  3. Maximum projection designs for computer experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, V. Roshan; Gul, Evren; Ba, Shan

    Space-filling properties are important in designing computer experiments. The traditional maximin and minimax distance designs only consider space-filling in the full dimensional space. This can result in poor projections onto lower dimensional spaces, which is undesirable when only a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can improve one-dimensional projections, but cannot guarantee good space-filling properties in larger subspaces. We propose designs that maximize space-filling properties on projections to all subsets of factors. We call our designs maximum projection designs. As a result, our design criterion can be computed at a cost nomore » more than a design criterion that ignores projection properties.« less

  4. Maximum projection designs for computer experiments

    DOE PAGES

    Joseph, V. Roshan; Gul, Evren; Ba, Shan

    2015-03-18

    Space-filling properties are important in designing computer experiments. The traditional maximin and minimax distance designs only consider space-filling in the full dimensional space. This can result in poor projections onto lower dimensional spaces, which is undesirable when only a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can improve one-dimensional projections, but cannot guarantee good space-filling properties in larger subspaces. We propose designs that maximize space-filling properties on projections to all subsets of factors. We call our designs maximum projection designs. As a result, our design criterion can be computed at a cost nomore » more than a design criterion that ignores projection properties.« less

  5. Designing Undergraduate Research Experiences: A Multiplicity of Options

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2001-12-01

    Research experiences for undergraduate students can serve many goals including: developing student understanding of the process of science; providing opportunities for students to develop professional skills or test career plans; completing publishable research; enabling faculty professional development; or enhancing the visibility of a science program. The large range of choices made in the design of an undergraduate research program or opportunity must reflect the goals of the program, the needs and abilities of the students and faculty, and the available resources including both time and money. Effective program design, execution, and evaluation can all be enhanced if the goals of the program are clearly articulated. Student research experiences can be divided into four components: 1) defining the research problem; 2) developing the research plan or experiment design; 3) collecting and interpreting data, and 4) communicating results. In each of these components, the program can be structured in a wide variety of ways and students can be given more or less guidance or freedom. While a feeling of ownership of the research project appears to be very important, examples of successful projects displaying a wide range of design decisions are available. Work with the Keck Geology Consortium suggests that four strategies can enhance the likelihood of successful student experiences: 1) students are well-prepared for research experience (project design must match student preparation); 2) timelines and events are structured to move students through intermediate goals to project completion; 3) support for the emotional, financial, academic and technical challenges of a research project is in place; 4) strong communications between students and faculty set clear expectations and enable mid-course corrections in the program or project design. Creating a research culture for the participants or embedding a project in an existing research culture can also assist students in

  6. Design of experiments for zeroth and first-order reaction rates.

    PubMed

    Amo-Salas, Mariano; Martín-Martín, Raúl; Rodríguez-Aragón, Licesio J

    2014-09-01

    This work presents optimum designs for reaction rates experiments. In these experiments, time at which observations are to be made and temperatures at which reactions are to be run need to be designed. Observations are performed along time under isothermal conditions. Each experiment needs a fixed temperature and so the reaction can be measured at the designed times. For these observations under isothermal conditions over the same reaction a correlation structure has been considered. D-optimum designs are the aim of our work for zeroth and first-order reaction rates. Temperatures for the isothermal experiments and observation times, to obtain the most accurate estimates of the unknown parameters, are provided in these designs. D-optimum designs for a single observation in each isothermal experiment or for several correlated observations have been obtained. Robustness of the optimum designs for ranges of the correlation parameter and comparisons of the information gathered by different designs are also shown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Optimal design of focused experiments and surveys

    NASA Astrophysics Data System (ADS)

    Curtis, Andrew

    1999-10-01

    Experiments and surveys are often performed to obtain data that constrain some previously underconstrained model. Often, constraints are most desired in a particular subspace of model space. Experiment design optimization requires that the quality of any particular design can be both quantified and then maximized. This study shows how the quality can be defined such that it depends on the amount of information that is focused in the particular subspace of interest. In addition, algorithms are presented which allow one particular focused quality measure (from the class of focused measures) to be evaluated efficiently. A subclass of focused quality measures is also related to the standard variance and resolution measures from linearized inverse theory. The theory presented here requires that the relationship between model parameters and data can be linearized around a reference model without significant loss of information. Physical and financial constraints define the space of possible experiment designs. Cross-well tomographic examples are presented, plus a strategy for survey design to maximize information about linear combinations of parameters such as bulk modulus, κ =λ+ 2μ/3.

  8. Interim Service ISDN Satellite (ISIS) hardware experiment design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Design for Advanced Satellite Designs describes the design of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into time division multiple access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the V.35 interface for satellite uplink. The same ISTA converts in the opposite direction the V.35 to U-interface data with a simple switch setting.

  9. A novel method for multifactorial bio-chemical experiments design based on combinational design theory.

    PubMed

    Wang, Xun; Sun, Beibei; Liu, Boyang; Fu, Yaping; Zheng, Pan

    2017-01-01

    Experimental design focuses on describing or explaining the multifactorial interactions that are hypothesized to reflect the variation. The design introduces conditions that may directly affect the variation, where particular conditions are purposely selected for observation. Combinatorial design theory deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of balance and/or symmetry. In this work, borrowing the concept of "balance" in combinatorial design theory, a novel method for multifactorial bio-chemical experiments design is proposed, where balanced templates in combinational design are used to select the conditions for observation. Balanced experimental data that covers all the influencing factors of experiments can be obtianed for further processing, such as training set for machine learning models. Finally, a software based on the proposed method is developed for designing experiments with covering influencing factors a certain number of times.

  10. Functional design to support CDTI/DABS flight experiments

    NASA Technical Reports Server (NTRS)

    Goka, T.

    1982-01-01

    The objectives of this project are to: (1) provide a generalized functional design of CDTI avionics using the FAA developd DABS/ATARS ground system as the 'traffic sensor', (2) specify software modifications and/or additions to the existing DABS/ATARS ground system to support CDTI avionics, (3) assess the existing avionics of a NASA research aircraft in terms of CDTI applications, and (4) apply the generalized functional design to provide research flight experiment capability. DABS Data Link Formats are first specified for CDTI flight experiments. The set of CDTI/DABS Format specifications becomes a vehicle to coordinate the CDTI avionics and ground system designs, and hence, to develop overall system requirements. The report is the first iteration of a system design and development effort to support eventual CDTI flight test experiments.

  11. Application of optimal design methodologies in clinical pharmacology experiments.

    PubMed

    Ogungbenro, Kayode; Dokoumetzidis, Aristides; Aarons, Leon

    2009-01-01

    Pharmacokinetics and pharmacodynamics data are often analysed by mixed-effects modelling techniques (also known as population analysis), which has become a standard tool in the pharmaceutical industries for drug development. The last 10 years has witnessed considerable interest in the application of experimental design theories to population pharmacokinetic and pharmacodynamic experiments. Design of population pharmacokinetic experiments involves selection and a careful balance of a number of design factors. Optimal design theory uses prior information about the model and parameter estimates to optimize a function of the Fisher information matrix to obtain the best combination of the design factors. This paper provides a review of the different approaches that have been described in the literature for optimal design of population pharmacokinetic and pharmacodynamic experiments. It describes options that are available and highlights some of the issues that could be of concern as regards practical application. It also discusses areas of application of optimal design theories in clinical pharmacology experiments. It is expected that as the awareness about the benefits of this approach increases, more people will embrace it and ultimately will lead to more efficient population pharmacokinetic and pharmacodynamic experiments and can also help to reduce both cost and time during drug development. Copyright (c) 2008 John Wiley & Sons, Ltd.

  12. Conceptual design of liquid droplet radiator shuttle-attached experiment

    NASA Technical Reports Server (NTRS)

    Pfeiffer, Shlomo L.

    1989-01-01

    The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.

  13. Optimal color design of psychological counseling room by design of experiments and response surface methodology.

    PubMed

    Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.

  14. Optimal Color Design of Psychological Counseling Room by Design of Experiments and Response Surface Methodology

    PubMed Central

    Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients’ perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients’ impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the ‘central point’, and three color attributes were optimized to maximize the patients’ satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room. PMID:24594683

  15. Sequential Design of Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine Michaela

    2017-06-30

    A sequential design of experiments strategy is being developed and implemented that allows for adaptive learning based on incoming results as the experiment is being run. The plan is to incorporate these strategies for the NCCC and TCM experimental campaigns to be run in the coming months. This strategy for experimentation has the advantages of allowing new data collected during the experiment to inform future experimental runs based on their projected utility for a particular goal. For example, the current effort for the MEA capture system at NCCC plans to focus on maximally improving the quality of prediction of COmore » 2 capture efficiency as measured by the width of the confidence interval for the underlying response surface that is modeled as a function of 1) Flue Gas Flowrate [1000-3000] kg/hr; 2) CO 2 weight fraction [0.125-0.175]; 3) Lean solvent loading [0.1-0.3], and; 4) Lean solvent flowrate [3000-12000] kg/hr.« less

  16. Conceptual design of Dipole Research Experiment (DREX)

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  17. Design of microarray experiments for genetical genomics studies.

    PubMed

    Bueno Filho, Júlio S S; Gilmour, Steven G; Rosa, Guilherme J M

    2006-10-01

    Microarray experiments have been used recently in genetical genomics studies, as an additional tool to understand the genetic mechanisms governing variation in complex traits, such as for estimating heritabilities of mRNA transcript abundances, for mapping expression quantitative trait loci, and for inferring regulatory networks controlling gene expression. Several articles on the design of microarray experiments discuss situations in which treatment effects are assumed fixed and without any structure. In the case of two-color microarray platforms, several authors have studied reference and circular designs. Here, we discuss the optimal design of microarray experiments whose goals refer to specific genetic questions. Some examples are used to illustrate the choice of a design for comparing fixed, structured treatments, such as genotypic groups. Experiments targeting single genes or chromosomic regions (such as with transgene research) or multiple epistatic loci (such as within a selective phenotyping context) are discussed. In addition, microarray experiments in which treatments refer to families or to subjects (within family structures or complex pedigrees) are presented. In these cases treatments are more appropriately considered to be random effects, with specific covariance structures, in which the genetic goals relate to the estimation of genetic variances and the heritability of transcriptional abundances.

  18. Some experiences in aircraft aeroelastic design using Preliminary Aeroelastic Design of Structures (PAD)

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1984-01-01

    The design experience associated with a benchmark aeroelastic design of an out of production transport aircraft is discussed. Current work being performed on a high aspect ratio wing design is reported. The Preliminary Aeroelastic Design of Structures (PADS) system is briefly summarized and some operational aspects of generating the design in an automated aeroelastic design environment are discussed.

  19. Advances in Experiment Design for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Morelli, Engene A.

    1998-01-01

    A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.

  20. Flexible Multi-Body Spacecraft Simulator: Design, Construction, and Experiments

    DTIC Science & Technology

    2017-12-01

    BODY SPACECRAFT SIMULATOR: DESIGN , CONSTRUCTION, AND EXPERIMENTS by Adam L. Atwood December 2017 Thesis Advisor: Mark Karpenko Second...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FLEXIBLE MULTI-BODY SPACECRAFT SIMULATOR: DESIGN , CONSTRUCTION, AND EXPERIMENTS 5...spacecraft simulator for use in testing optimal control-based slew and maneuver designs . The simulator is modified from an earlier prototype, which

  1. The HEAO experience - design through operations

    NASA Technical Reports Server (NTRS)

    Hoffman, D. P.

    1983-01-01

    The design process and performance of the NASA High Energy Astronomy Observatories (HEAO-1, 2, and 3) are surveyed from the initiation of the program in 1968 through the end of HEAO-3 operation in May, 1981, with a focus on the attitude control and determination subsystem (ACDS). The science objectives, original and revised overall design concepts, final design for each spacecraft, and details of the ACDS designs are discussed, and the stages of the ACDS design process, including redefinition to achieve 50 percent cost reduction, detailed design of common and mission-unique hardware and software, unit qualification, subsystem integration, and observatory-level testing, are described. Overall and ACDS performance is evaluated for each mission and found to meet or exceed design requirements despite some difficulties arising from errors in startracker-ACDS-interface coordination and from gyroscope failures. These difficulties were resolved by using the flexibility of the software design. The implicationns of the HEAO experience for the design process of future spacecraft are suggested.

  2. Transforming the Enrollment Experience Using Design Thinking

    ERIC Educational Resources Information Center

    Apel, Aaron; Hull, Phil; Owczarek, Scott; Singer, Wren

    2018-01-01

    In an effort to simplify the advising and registration process and provide students with a more intuitive enrollment experience, especially at orientation, the University of Wisconsin-Madison's Office of the Registrar and Office of Undergraduate Advising co-sponsored a project to transform the enrollment experience. Using design thinking has…

  3. Learning Experience as Transaction: A Framework for Instructional Design

    ERIC Educational Resources Information Center

    Parrish, Patrick E.; Wilson, Brent G.; Dunlap, Joanna C.

    2011-01-01

    This article presents a framework for understanding learning experience as an object for instructional design--as an object for design as well as research and understanding. Compared to traditional behavioral objectives or discrete cognitive skills, the object of experience is more holistic, requiring simultaneous attention to cognition, behavior,…

  4. Selecting the best design for nonstandard toxicology experiments.

    PubMed

    Webb, Jennifer M; Smucker, Byran J; Bailer, A John

    2014-10-01

    Although many experiments in environmental toxicology use standard statistical experimental designs, there are situations that arise where no such standard design is natural or applicable because of logistical constraints. For example, the layout of a laboratory may suggest that each shelf serve as a block, with the number of experimental units per shelf either greater than or less than the number of treatments in a way that precludes the use of a typical block design. In such cases, an effective and powerful alternative is to employ optimal experimental design principles, a strategy that produces designs with precise statistical estimates. Here, a D-optimal design was generated for an experiment in environmental toxicology that has 2 factors, 16 treatments, and constraints similar to those described above. After initial consideration of a randomized complete block design and an intuitive cyclic design, it was decided to compare a D-optimal design and a slightly more complicated version of the cyclic design. Simulations were conducted generating random responses under a variety of scenarios that reflect conditions motivated by a similar toxicology study, and the designs were evaluated via D-efficiency as well as by a power analysis. The cyclic design performed well compared to the D-optimal design. © 2014 SETAC.

  5. Bayesian cross-entropy methodology for optimal design of validation experiments

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Mahadevan, S.

    2006-07-01

    An important concern in the design of validation experiments is how to incorporate the mathematical model in the design in order to allow conclusive comparisons of model prediction with experimental output in model assessment. The classical experimental design methods are more suitable for phenomena discovery and may result in a subjective, expensive, time-consuming and ineffective design that may adversely impact these comparisons. In this paper, an integrated Bayesian cross-entropy methodology is proposed to perform the optimal design of validation experiments incorporating the computational model. The expected cross entropy, an information-theoretic distance between the distributions of model prediction and experimental observation, is defined as a utility function to measure the similarity of two distributions. A simulated annealing algorithm is used to find optimal values of input variables through minimizing or maximizing the expected cross entropy. The measured data after testing with the optimum input values are used to update the distribution of the experimental output using Bayes theorem. The procedure is repeated to adaptively design the required number of experiments for model assessment, each time ensuring that the experiment provides effective comparison for validation. The methodology is illustrated for the optimal design of validation experiments for a three-leg bolted joint structure and a composite helicopter rotor hub component.

  6. Simulator design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerald R.

    1992-01-01

    This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  7. Assay optimization: a statistical design of experiments approach.

    PubMed

    Altekar, Maneesha; Homon, Carol A; Kashem, Mohammed A; Mason, Steven W; Nelson, Richard M; Patnaude, Lori A; Yingling, Jeffrey; Taylor, Paul B

    2007-03-01

    With the transition from manual to robotic HTS in the last several years, assay optimization has become a significant bottleneck. Recent advances in robotic liquid handling have made it feasible to reduce assay optimization timelines with the application of statistically designed experiments. When implemented, they can efficiently optimize assays by rapidly identifying significant factors, complex interactions, and nonlinear responses. This article focuses on the use of statistically designed experiments in assay optimization.

  8. Optimizing an experimental design for an electromagnetic experiment

    NASA Astrophysics Data System (ADS)

    Roux, Estelle; Garcia, Xavier

    2013-04-01

    Most of geophysical studies focus on data acquisition and analysis, but another aspect which is gaining importance is the discussion on acquisition of suitable datasets. This can be done through the design of an optimal experiment. Optimizing an experimental design implies a compromise between maximizing the information we get about the target and reducing the cost of the experiment, considering a wide range of constraints (logistical, financial, experimental …). We are currently developing a method to design an optimal controlled-source electromagnetic (CSEM) experiment to detect a potential CO2 reservoir and monitor this reservoir during and after CO2 injection. Our statistical algorithm combines the use of linearized inverse theory (to evaluate the quality of one given design via the objective function) and stochastic optimization methods like genetic algorithm (to examine a wide range of possible surveys). The particularity of our method is that it uses a multi-objective genetic algorithm that searches for designs that fit several objective functions simultaneously. One main advantage of this kind of technique to design an experiment is that it does not require the acquisition of any data and can thus be easily conducted before any geophysical survey. Our new experimental design algorithm has been tested with a realistic one-dimensional resistivity model of the Earth in the region of study (northern Spain CO2 sequestration test site). We show that a small number of well distributed observations have the potential to resolve the target. This simple test also points out the importance of a well chosen objective function. Finally, in the context of CO2 sequestration that motivates this study, we might be interested in maximizing the information we get about the reservoir layer. In that case, we show how the combination of two different objective functions considerably improve its resolution.

  9. Hypersonic Wind Tunnel Calibration Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Rhode, Matthew N.; DeLoach, Richard

    2005-01-01

    A calibration of a hypersonic wind tunnel has been conducted using formal experiment design techniques and response surface modeling. Data from a compact, highly efficient experiment was used to create a regression model of the pitot pressure as a function of the facility operating conditions as well as the longitudinal location within the test section. The new calibration utilized far fewer design points than prior experiments, but covered a wider range of the facility s operating envelope while revealing interactions between factors not captured in previous calibrations. A series of points chosen randomly within the design space was used to verify the accuracy of the response model. The development of the experiment design is discussed along with tactics used in the execution of the experiment to defend against systematic variation in the results. Trends in the data are illustrated, and comparisons are made to earlier findings.

  10. Principal component analysis for designed experiments.

    PubMed

    Konishi, Tomokazu

    2015-01-01

    Principal component analysis is used to summarize matrix data, such as found in transcriptome, proteome or metabolome and medical examinations, into fewer dimensions by fitting the matrix to orthogonal axes. Although this methodology is frequently used in multivariate analyses, it has disadvantages when applied to experimental data. First, the identified principal components have poor generality; since the size and directions of the components are dependent on the particular data set, the components are valid only within the data set. Second, the method is sensitive to experimental noise and bias between sample groups. It cannot reflect the experimental design that is planned to manage the noise and bias; rather, it estimates the same weight and independence to all the samples in the matrix. Third, the resulting components are often difficult to interpret. To address these issues, several options were introduced to the methodology. First, the principal axes were identified using training data sets and shared across experiments. These training data reflect the design of experiments, and their preparation allows noise to be reduced and group bias to be removed. Second, the center of the rotation was determined in accordance with the experimental design. Third, the resulting components were scaled to unify their size unit. The effects of these options were observed in microarray experiments, and showed an improvement in the separation of groups and robustness to noise. The range of scaled scores was unaffected by the number of items. Additionally, unknown samples were appropriately classified using pre-arranged axes. Furthermore, these axes well reflected the characteristics of groups in the experiments. As was observed, the scaling of the components and sharing of axes enabled comparisons of the components beyond experiments. The use of training data reduced the effects of noise and bias in the data, facilitating the physical interpretation of the principal axes

  11. Design of a spaceflight biofilm experiment

    NASA Astrophysics Data System (ADS)

    Zea, Luis; Nisar, Zeena; Rubin, Phil; Cortesão, Marta; Luo, Jiaqi; McBride, Samantha A.; Moeller, Ralf; Klaus, David; Müller, Daniel; Varanasi, Kripa K.; Muecklich, Frank; Stodieck, Louis

    2018-07-01

    Biofilm growth has been observed in Soviet/Russian (Salyuts and Mir), American (Skylab), and International (ISS) Space Stations, sometimes jeopardizing key equipment like spacesuits, water recycling units, radiators, and navigation windows. Biofilm formation also increases the risk of human illnesses and therefore needs to be well understood to enable safe, long-duration, human space missions. Here, the design of a NASA-supported biofilm in space project is reported. This new project aims to characterize biofilm inside the International Space Station in a controlled fashion, assessing changes in mass, thickness, and morphology. The space-based experiment also aims at elucidating the biomechanical and transcriptomic mechanisms involved in the formation of a "column-and-canopy" biofilm architecture that has previously been observed in space. To search for potential solutions, different materials and surface topologies will be used as the substrata for microbial growth. The adhesion of bacteria to surfaces and therefore the initial biofilm formation is strongly governed by topographical surface features of about the bacterial scale. Thus, using Direct Laser-Interference Patterning, some material coupons will have surface patterns with periodicities equal, above or below the size of bacteria. Additionally, a novel lubricant-impregnated surface will be assessed for potential Earth and spaceflight anti-biofilm applications. This paper describes the current experiment design including microbial strains and substrata materials and nanotopographies being considered, constraints and limitations that arise from performing experiments in space, and the next steps needed to mature the design to be spaceflight-ready.

  12. Model-based design of experiments for cellular processes.

    PubMed

    Chakrabarty, Ankush; Buzzard, Gregery T; Rundell, Ann E

    2013-01-01

    Model-based design of experiments (MBDOE) assists in the planning of highly effective and efficient experiments. Although the foundations of this field are well-established, the application of these techniques to understand cellular processes is a fertile and rapidly advancing area as the community seeks to understand ever more complex cellular processes and systems. This review discusses the MBDOE paradigm along with applications and challenges within the context of cellular processes and systems. It also provides a brief tutorial on Fisher information matrix (FIM)-based and Bayesian experiment design methods along with an overview of existing software packages and computational advances that support MBDOE application and adoption within the Systems Biology community. As cell-based products and biologics progress into the commercial sector, it is anticipated that MBDOE will become an essential practice for design, quality control, and production. Copyright © 2013 Wiley Periodicals, Inc.

  13. Design calculations for NIF convergent ablator experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to providemore » an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.« less

  14. Vestibular Function Research (VFR) experiment. Phase B: Design definition study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.

  15. Power and replication - designing powerful experiments

    USDA-ARS?s Scientific Manuscript database

    Biological research is expensive, with monetary costs to granting agencies and emotional costs to researchers. As such, biological researchers should always follow the mantra, "failure is not an option." A failed experimental design is generally manifested as an experiment with high P-values, leavin...

  16. Design of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Bayliss, R. A.; Forest, C. B.; Nornberg, M. D.; O'Connell, R.; Spence, E. J.

    2003-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ˜100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ˜ 15 m/s. A grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  17. Explorations in Teaching Sustainable Design: A Studio Experience in Interior Design/Architecture

    ERIC Educational Resources Information Center

    Gurel, Meltem O.

    2010-01-01

    This article argues that a design studio can be a dynamic medium to explore the creative potential of the complexity of sustainability from its technological to social ends. The study seeks to determine the impact of an interior design/architecture studio experience that was initiated to teach diverse meanings of sustainability and to engage the…

  18. Design for Engaging Experience and Social Interaction

    ERIC Educational Resources Information Center

    Harteveld, Casper; ten Thij, Eleonore; Copier, Marinka

    2011-01-01

    One of the goals of game designers is to design for an engaging experience and for social interaction. The question is how. We know that games can be engaging and allow for social interaction, but how do we achieve this or even improve on it? This article provides an overview of several scientific approaches that deal with this question. It…

  19. The cryogenics design of the SuperCDMS SNOLAB experiment

    NASA Astrophysics Data System (ADS)

    Hollister, M. I.; Bauer, D. A.; Dhuley, R. C.; Lukens, P.; Martin, L. D.; Ruschman, M. K.; Schmitt, R. L.; Tatkowski, G. L.

    2017-12-01

    The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is a direct detection dark matter experiment intended for deployment to the SNOLAB underground facility in Ontario, Canada. With a payload of up to 186 germanium and silicon crystal detectors operating below 15 mK, the cryogenic architecture of the experiment is complex. Further, the requirement that the cryostat presents a low radioactive background to the detectors limits the materials and techniques available for construction, and heavily influences the design of the cryogenics system. The resulting thermal architecture is a closed cycle (no liquid cryogen) system, with stages at 50 and 4 K cooled with gas and fluid circulation systems and stages at 1 K, 250 mK and 15 mK cooled by the lower temperature stages of a large, cryogen-free dilution refrigerator. This paper describes the thermal design of the experiment, including details of the cooling systems, mechanical designs and expected performance of the system under operational conditions.

  20. Student-Designed Experiments: A Pedagogical Design for Introductory Science Labs

    ERIC Educational Resources Information Center

    Coker, Jeffrey Scott

    2017-01-01

    Despite numerous calls for science education to be driven by authentic investigation, many laboratory experiences continue to consist of disconnected weekly units during which students carry out instructions that lead to some predetermined finding. This study developed and evaluated a pedagogical design for introductory biology labs where students…

  1. Electrical design of payload G-534: The Pool Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1992-01-01

    Payload G-534, the Pool Boiling Experiment (PBE), is a Get Away Special that is scheduled to fly on the shuttle in 1992. This paper will give a brief overall description of the experiment with the main discussion being the electrical design with a detailed description of the power system and interface to the GAS electronics. The batteries used and their interface to the experiment Power Control Unit (PCU) and GAS electronics will be examined. The design philosophy for the PCU will be discussed in detail. The criteria for selection of fuses, relays, power semiconductors and other electrical components along with grounding and shielding policy for the entire experiment will be presented. The intent of this paper is to discuss the use of military tested parts and basic design guidelines to build a quality experiment for minimal additional cost.

  2. Statistical aspects of quantitative real-time PCR experiment design.

    PubMed

    Kitchen, Robert R; Kubista, Mikael; Tichopad, Ales

    2010-04-01

    Experiments using quantitative real-time PCR to test hypotheses are limited by technical and biological variability; we seek to minimise sources of confounding variability through optimum use of biological and technical replicates. The quality of an experiment design is commonly assessed by calculating its prospective power. Such calculations rely on knowledge of the expected variances of the measurements of each group of samples and the magnitude of the treatment effect; the estimation of which is often uninformed and unreliable. Here we introduce a method that exploits a small pilot study to estimate the biological and technical variances in order to improve the design of a subsequent large experiment. We measure the variance contributions at several 'levels' of the experiment design and provide a means of using this information to predict both the total variance and the prospective power of the assay. A validation of the method is provided through a variance analysis of representative genes in several bovine tissue-types. We also discuss the effect of normalisation to a reference gene in terms of the measured variance components of the gene of interest. Finally, we describe a software implementation of these methods, powerNest, that gives the user the opportunity to input data from a pilot study and interactively modify the design of the assay. The software automatically calculates expected variances, statistical power, and optimal design of the larger experiment. powerNest enables the researcher to minimise the total confounding variance and maximise prospective power for a specified maximum cost for the large study. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Adaptive multibeam phased array design for a Spacelab experiment

    NASA Technical Reports Server (NTRS)

    Noji, T. T.; Fass, S.; Fuoco, A. M.; Wang, C. D.

    1977-01-01

    The parametric tradeoff analyses and design for an Adaptive Multibeam Phased Array (AMPA) for a Spacelab experiment are described. This AMPA Experiment System was designed with particular emphasis to maximize channel capacity and minimize implementation and cost impacts for future austere maritime and aeronautical users, operating with a low gain hemispherical coverage antenna element, low effective radiated power, and low antenna gain-to-system noise temperature ratio.

  4. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the

  5. 2011 AERA Presidential Address: Designing Resilient Ecologies--Social Design Experiments and a New Social Imagination

    ERIC Educational Resources Information Center

    Gutiérrez, Kris D.

    2016-01-01

    This article is about designing for educational possibilities--designs that in their inception, social organization, and implementation squarely address issues of cultural diversity, social inequality, and robust learning. I discuss an approach to design-based research, social design experiments, that privileges a social scientific inquiry…

  6. Preliminary design polymeric materials experiment. [for space shuttles and Spacelab missions

    NASA Technical Reports Server (NTRS)

    Mattingly, S. G.; Rude, E. T.; Marshner, R. L.

    1975-01-01

    A typical Advanced Technology Laboratory mission flight plan was developed and used as a guideline for the identification of a number of experiment considerations. The experiment logistics beginning with sample preparation and ending with sample analysis are then overlaid on the mission in order to have a complete picture of the design requirements. The results of this preliminary design study fall into two categories. First specific preliminary designs of experiment hardware which is adaptable to a variety of mission requirements. Second, identification of those mission considerations which affect hardware design and will require further definition prior to final design. Finally, a program plan is presented which will provide the necessary experiment hardware in a realistic time period to match the planned shuttle flights. A bibliography of all material reviewed and consulted but not specifically referenced is provided.

  7. EXPERIMENTAL DESIGN AND INSTRUMENTATION FOR A FIELD EXPERIMENT

    EPA Science Inventory

    This report concerns the design of a field experiment for a military setting in which the effects of carbon monoxide on neurobehavioral variables are to be studied. ield experiment is distinguished from a survey by the fact that independent variables are manipulated, just as in t...

  8. SSSFD manipulator engineering using statistical experiment design techniques

    NASA Technical Reports Server (NTRS)

    Barnes, John

    1991-01-01

    The Satellite Servicer System Flight Demonstration (SSSFD) program is a series of Shuttle flights designed to verify major on-orbit satellite servicing capabilities, such as rendezvous and docking of free flyers, Orbital Replacement Unit (ORU) exchange, and fluid transfer. A major part of this system is the manipulator system that will perform the ORU exchange. The manipulator must possess adequate toolplate dexterity to maneuver a variety of EVA-type tools into position to interface with ORU fasteners, connectors, latches, and handles on the satellite, and to move workpieces and ORUs through 6 degree of freedom (dof) space from the Target Vehicle (TV) to the Support Module (SM) and back. Two cost efficient tools were combined to perform a study of robot manipulator design parameters. These tools are graphical computer simulations and Taguchi Design of Experiment methods. Using a graphics platform, an off-the-shelf robot simulation software package, and an experiment designed with Taguchi's approach, the sensitivities of various manipulator kinematic design parameters to performance characteristics are determined with minimal cost.

  9. Design of Experiments with Multiple Independent Variables: A Resource Management Perspective on Complete and Reduced Factorial Designs

    PubMed Central

    Collins, Linda M.; Dziak, John J.; Li, Runze

    2009-01-01

    An investigator who plans to conduct experiments with multiple independent variables must decide whether to use a complete or reduced factorial design. This article advocates a resource management perspective on making this decision, in which the investigator seeks a strategic balance between service to scientific objectives and economy. Considerations in making design decisions include whether research questions are framed as main effects or simple effects; whether and which effects are aliased (confounded) in a particular design; the number of experimental conditions that must be implemented in a particular design and the number of experimental subjects the design requires to maintain the desired level of statistical power; and the costs associated with implementing experimental conditions and obtaining experimental subjects. In this article four design options are compared: complete factorial, individual experiments, single factor, and fractional factorial designs. Complete and fractional factorial designs and single factor designs are generally more economical than conducting individual experiments on each factor. Although relatively unfamiliar to behavioral scientists, fractional factorial designs merit serious consideration because of their economy and versatility. PMID:19719358

  10. Designing a Field Experience Tracking System in the Area of Special Education

    ERIC Educational Resources Information Center

    He, Wu; Watson, Silvana

    2014-01-01

    Purpose: To improve the quality of field experience, support field experience cooperation and streamline field experience management, the purpose of this paper is to describe the experience in using Activity Theory to design and develop a web-based field experience tracking system for a special education program. Design/methodology/approach: The…

  11. On Design Experiment Teaching in Engineering Quality Cultivation

    ERIC Educational Resources Information Center

    Chen, Xiao

    2008-01-01

    Design experiment refers to that designed and conducted by students independently and is surely an important method to cultivate students' comprehensive quality. According to the development and requirements of experimental teaching, this article carries out a study and analysis on the purpose, significance, denotation, connotation and…

  12. Recent GE BWR fuel experience and design evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, J.E.; Potts, G.A.; Proebstle, R.A.

    1992-01-01

    Reliable fuel operation is essential to the safe, reliable, and economic power production by today's commercial nuclear reactors. GE Nuclear Energy is committed to maximize fuel reliability through the progressive development of improved fuel design features and dedication to provide the maximum quality of the design features and dedication to provide the maximum quality of the design, fabrication, and operation of GE BWR fuel. Over the last 35 years, GE has designed, fabricated, and placed in operation over 82,000 BWR fuel bundles containing over 5 million fuel rods. This experience includes successful commercial reactor operation of fuel assemblies to greatermore » than 45000 MWd/MTU bundle average exposure. This paper reports that this extensive experience base has enabled clear identification and characterization of the active failure mechanisms. With this failure mechanism characterization, mitigating actions have been developed and implemented by GE to provide the highest reliability BWR fuel bundles possible.« less

  13. The Historical and Situated Nature Design Experiments--Implications for Data Analysis

    ERIC Educational Resources Information Center

    Krange, I.; Ludvigsen, Sten

    2009-01-01

    This article is a methodological contribution to the use of design experiments in educational research. We will discuss the implications of a historical and situated interpretation to design experiments, the consequences this has for the analysis of the collected data and empirically based suggestions to improve the designs of the computer-based…

  14. Designing a Curriculum for Clinical Experiences

    ERIC Educational Resources Information Center

    Henning, John E.; Erb, Dorothy J.; Randles, Halle Schoener; Fults, Nanette; Webb, Kathy

    2016-01-01

    The purpose of this article is to describe a collaborative effort among five teacher preparation programs to create a conceptual tool designed to put clinical experiences at the center of our programs. The authors refer to the resulting product as a clinical curriculum. The clinical curriculum describes a developmental sequence of clinical…

  15. Participatory Design of Citizen Science Experiments

    ERIC Educational Resources Information Center

    Senabre, Enric; Ferran-Ferrer, Nuria; Perelló, Josep

    2018-01-01

    This article describes and analyzes the collaborative design of a citizen science research project through co-creation. Three groups of secondary school students and a team of scientists conceived three experiments on human behavior and social capital in urban and public spaces. The study goal is to address how interdisciplinary work and attention…

  16. CMM Interim Check Design of Experiments (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montano, Joshua Daniel

    2015-07-29

    Coordinate Measuring Machines (CMM) are widely used in industry, throughout the Nuclear Weapons Complex and at Los Alamos National Laboratory (LANL) to verify part conformance to design definition. Calibration cycles for CMMs at LANL are predominantly one year in length and include a weekly interim check to reduce risk. The CMM interim check makes use of Renishaw’s Machine Checking Gauge which is an off-the-shelf product simulates a large sphere within a CMM’s measurement volume and allows for error estimation. As verification on the interim check process a design of experiments investigation was proposed to test a couple of key factorsmore » (location and inspector). The results from the two-factor factorial experiment proved that location influenced results more than the inspector or interaction.« less

  17. Designing biomedical proteomics experiments: state-of-the-art and future perspectives.

    PubMed

    Maes, Evelyne; Kelchtermans, Pieter; Bittremieux, Wout; De Grave, Kurt; Degroeve, Sven; Hooyberghs, Jef; Mertens, Inge; Baggerman, Geert; Ramon, Jan; Laukens, Kris; Martens, Lennart; Valkenborg, Dirk

    2016-05-01

    With the current expanded technical capabilities to perform mass spectrometry-based biomedical proteomics experiments, an improved focus on the design of experiments is crucial. As it is clear that ignoring the importance of a good design leads to an unprecedented rate of false discoveries which would poison our results, more and more tools are developed to help researchers designing proteomic experiments. In this review, we apply statistical thinking to go through the entire proteomics workflow for biomarker discovery and validation and relate the considerations that should be made at the level of hypothesis building, technology selection, experimental design and the optimization of the experimental parameters.

  18. The POLARBEAR Experiment: Design and Characterization

    NASA Astrophysics Data System (ADS)

    Kermish, Zigmund David

    We present the design and characterization of the POLARBEAR experiment. POLARBEAR is a millimeter-wave polarimeter that will measure the Cosmic Microwave Background (CMB) polarization. It was designed to have both the sensitivity and angular resolution to detect the expected B-mode polarization due to gravitational lensing at small angular scales while still enabling a search for the degree scale B-mode polarization caused by inflationary gravitational waves. The instrument utilizes the Huan Tran Telescope (HTT), a 2.5-meter primary mirror telescope, coupled to a unique focal plane of 1,274 antenna-coupled transition-edge sensor (TES) detectors to achieve unprecedented sensitivity from angular scales of the experiment's 4 arcminute beam to several degrees. This dissertation focuses on the design, integration and characterization of the cryogenic receiver for the POLARBEAR instrument. The receiver cools the ˜20 cm focal plane to 0.25 Kelvin, with detector readout provided by a digital frequency-multiplexed SQUID system. The POLARBEAR receiver was been successfully deployed on the HTT for an engineering run in the Eastern Sierras of California and is currently deployed on Cerro Toco in the Atacama Dessert of Chile. We present results from lab tests done to characterize the instrument, from the engineering run and preliminary results from Chile.

  19. Topics in the Sequential Design of Experiments

    DTIC Science & Technology

    1992-03-01

    decision , unless so designated by other documentation. 12a. DISTRIBUTION /AVAILABIIUTY STATEMENT 12b. DISTRIBUTION CODE Approved for public release...3 0 1992 D 14. SUBJECT TERMS 15. NUMBER OF PAGES12 Design of Experiments, Renewal Theory , Sequential Testing 1 2. PRICE CODE Limit Theory , Local...distributions for one parameter exponential families," by Michael Woodroofe. Stntca, 2 (1991), 91-112. [6] "A non linear renewal theory for a functional of

  20. Super Spool: An Experiment in Powerplant Design

    ERIC Educational Resources Information Center

    Kesler, Ronald

    1974-01-01

    Discusses the use of rubberbands, an empty wooden thread spool, two wooden matches, a wax washer, and a small nail to conduct an experiment or demonstration in powerplant design. Detailed procedures and suggested activities are included. (CC)

  1. Experience-based design: from redesigning the system around the patient to co-designing services with the patient.

    PubMed

    Bate, Paul; Robert, Glenn

    2006-10-01

    Involving patients in service improvement and listening and responding to what they say has played a key part in the redesign of healthcare processes over the past five years and more. Patients and users have attended stakeholder events, participated in discovery interviews, completed surveys, mapped healthcare processes and even designed new hospitals with healthcare staff. However, to date efforts have not necessarily focused on the patient's experience, beyond asking what was good and what was not. Questions were not asked to find out details of what the experience was or should be like ("experience" being different from "attitudes") and the information then systematically used to co-design services with patients. Knowledge of the experience, held only by the patient, is unique and precious. In this paper, attention is drawn to the burgeoning discipline of the design sciences and experience-based design, in which the traditional view of the user as a passive recipient of a product or service has begun to give way to the new view of users as integral to the improvement and innovation process.

  2. Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun

    2018-02-01

    Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.

  3. Statistical issues in the design and planning of proteomic profiling experiments.

    PubMed

    Cairns, David A

    2015-01-01

    The statistical design of a clinical proteomics experiment is a critical part of well-undertaken investigation. Standard concepts from experimental design such as randomization, replication and blocking should be applied in all experiments, and this is possible when the experimental conditions are well understood by the investigator. The large number of proteins simultaneously considered in proteomic discovery experiments means that determining the number of required replicates to perform a powerful experiment is more complicated than in simple experiments. However, by using information about the nature of an experiment and making simple assumptions this is achievable for a variety of experiments useful for biomarker discovery and initial validation.

  4. Analysis of pre-service physics teacher skills designing simple physics experiments based technology

    NASA Astrophysics Data System (ADS)

    Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.

    2018-03-01

    Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.

  5. Cosmic-ray interaction data for designing biological experiments in space.

    PubMed

    Straume, T; Slaba, T C; Bhattacharya, S; Braby, L A

    2017-05-01

    There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel-type missions. It is the purpose of this paper to provide physical cosmic-ray interaction data and related information useful to biologists who may be planning such experiments. It is not the objective here to actually design such experiments or provide radiobiological response functions, which would be specific for each experiment and biological endpoint. Nuclide-specific flux and dose rates were calculated using OLTARIS and these results were used to determine particle traversal rates and doses in hypothetical biological targets. Comparisons are provided between GCR in interplanetary space and inside the ISS. Calculated probabilistic estimates of dose from solar particle events are also presented. Although the focus here is on biological experiments, the information provided may be useful for designing other payloads as well if the space radiation environment is a factor to be considered. Published by Elsevier Ltd.

  6. Cosmic-ray interaction data for designing biological experiments in space

    NASA Astrophysics Data System (ADS)

    Straume, T.; Slaba, T. C.; Bhattacharya, S.; Braby, L. A.

    2017-05-01

    There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel-type missions. It is the purpose of this paper to provide physical cosmic-ray interaction data and related information useful to biologists who may be planning such experiments. It is not the objective here to actually design such experiments or provide radiobiological response functions, which would be specific for each experiment and biological endpoint. Nuclide-specific flux and dose rates were calculated using OLTARIS and these results were used to determine particle traversal rates and doses in hypothetical biological targets. Comparisons are provided between GCR in interplanetary space and inside the ISS. Calculated probabilistic estimates of dose from solar particle events are also presented. Although the focus here is on biological experiments, the information provided may be useful for designing other payloads as well if the space radiation environment is a factor to be considered.

  7. Investigating a Method of Scaffolding Student-Designed Experiments

    ERIC Educational Resources Information Center

    Morgan, Kelly; Brooks, David W.

    2012-01-01

    The process of designing an experiment is a difficult one. Students often struggle to perform such tasks as the design process places a large cognitive load on students. Scaffolding is the process of providing support for a student to allow them to complete tasks they would otherwise not have been able to complete. This study sought to investigate…

  8. Conceptual Issues in Quantifying Unusualness and Conceiving Stochastic Experiments: Insights from Students' Experiences in Designing Sampling Simulations

    ERIC Educational Resources Information Center

    Saldanha, Luis

    2016-01-01

    This article reports on a classroom teaching experiment that engaged a group of high school students in designing sampling simulations within a computer microworld. The simulation-design activities aimed to foster students' abilities to conceive of contextual situations as stochastic experiments, and to engage them with the logic of hypothesis…

  9. Operational experience and design recommendations for teleoperated flight hardware

    NASA Technical Reports Server (NTRS)

    Burgess, T. W.; Kuban, D. P.; Hankins, W. W.; Mixon, R. W.

    1988-01-01

    Teleoperation (remote manipulation) will someday supplement/minimize astronaut extravehicular activity in space to perform such tasks as satellite servicing and repair, and space station construction and servicing. This technology is being investigated by NASA with teleoperation of two space-related tasks having been demonstrated at the Oak Ridge National Lab. The teleoperator experiments are discussed and the results of these experiments are summarized. The related equipment design recommendations are also presented. In addition, a general discussion of equipment design for teleoperation is also presented.

  10. Being in the Users' Shoes: Anticipating Experience while Designing Online Courses

    ERIC Educational Resources Information Center

    Rapanta, Chrysi; Cantoni, Lorenzo

    2014-01-01

    While user-centred design and user experience are given much attention in the e-learning design field, no research has been found on how users are actually represented in the discussions during the design of online courses. In this paper we identify how and when end-users' experience--be they students or tutors--emerges in designers'…

  11. Structural Optimization of a Force Balance Using a Computational Experiment Design

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; DeLoach, R.

    2002-01-01

    This paper proposes a new approach to force balance structural optimization featuring a computational experiment design. Currently, this multi-dimensional design process requires the designer to perform a simplification by executing parameter studies on a small subset of design variables. This one-factor-at-a-time approach varies a single variable while holding all others at a constant level. Consequently, subtle interactions among the design variables, which can be exploited to achieve the design objectives, are undetected. The proposed method combines Modern Design of Experiments techniques to direct the exploration of the multi-dimensional design space, and a finite element analysis code to generate the experimental data. To efficiently search for an optimum combination of design variables and minimize the computational resources, a sequential design strategy was employed. Experimental results from the optimization of a non-traditional force balance measurement section are presented. An approach to overcome the unique problems associated with the simultaneous optimization of multiple response criteria is described. A quantitative single-point design procedure that reflects the designer's subjective impression of the relative importance of various design objectives, and a graphical multi-response optimization procedure that provides further insights into available tradeoffs among competing design objectives are illustrated. The proposed method enhances the intuition and experience of the designer by providing new perspectives on the relationships between the design variables and the competing design objectives providing a systematic foundation for advancements in structural design.

  12. Preliminary Design Program: Vapor Compression Distillation Flight Experiment Program

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Boyda, R. B.

    1995-01-01

    This document provides a description of the results of a program to prepare a preliminary design of a flight experiment to demonstrate the function of a Vapor Compression Distillation (VCD) Wastewater Processor (WWP) in microgravity. This report describes the test sequence to be performed and the hardware, control/monitor instrumentation and software designs prepared to perform the defined tests. the purpose of the flight experiment is to significantly reduce the technical and programmatic risks associated with implementing a VCD-based WWP on board the International Space Station Alpha.

  13. Resolution of an Orbital Issue: A Designed Experiment

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2011-01-01

    Design of Experiments (DOE) is a systematic approach to investigation of a system or process. A series of structured tests are designed in which planned changes are made to the input variables of a process or system. The effects of these changes on a pre-defined output are then assessed. DOE is a formal method of maximizing information gained while minimizing resources required.

  14. Electromagnetic sunscreen model: design of experiments on particle specifications.

    PubMed

    Lécureux, Marie; Deumié, Carole; Enoch, Stefan; Sergent, Michelle

    2015-10-01

    We report a numerical study on sunscreen design and optimization. Thanks to the combined use of electromagnetic modeling and design of experiments, we are able to screen the most relevant parameters of mineral filters and to optimize sunscreens. Several electromagnetic modeling methods are used depending on the type of particles, density of particles, etc. Both the sun protection factor (SPF) and the UVB/UVA ratio are considered. We show that the design of experiments' model should include interactions between materials and other parameters. We conclude that the material of the particles is a key parameter for the SPF and the UVB/UVA ratio. Among the materials considered, none is optimal for both. The SPF is also highly dependent on the size of the particles.

  15. Linking product design to consumer behavior: the moderating role of consumption experience

    PubMed Central

    Gilal, Naeem Gul; Zhang, Jing; Gilal, Faheem Gul

    2018-01-01

    Background Previous investigations of product design broadly link aesthetic, functional, and symbolic designs to sales growth, high turnover, and market share. However, the effect of product design dimensions on consumer willingness-to-buy (WTB) and word-of-mouth (WOM) is virtually ignored by consumer researchers. Similarly, whether the consumption experience can differentiate the effect of the three product design dimensions on WTB and WOM is completely unknown. Using categorization theory as a lens, our study aims to explore the effect of product design dimensions on consumer WTB and WOM directly and indirectly through the moderation of the consumption experience. Methods A convenience sample of (n=357) Chinese and (n=277) Korean shoppers was utilized to test the hypotheses in the fashion apparel industry. Results Our results showed that the aesthetic design was more prominent in capturing consumer WTB for both Chinese and Koreans. Similarly, the aesthetic design was more salient in enhancing WOM for Chinese, whereas the symbolic design was more promising in terms of improving WOM for Koreans. Further, our moderation results demonstrated that the consumption experience could differentiate the effects of the three product design dimensions on consumer WTB and WOM for Chinese. By contrast, the consumption experience could only interact with the aesthetic design to improve WOM for South Koreans. Conclusion To the best of authors’ knowledge, the present study is one of the initial attempts to link three product design dimensions with consumer WTB and WOM in the fashion apparel context and explored whether consumption experience competes or complement with three product design dimensions to shape consumer WTB and WOM for Chinese and Koreans. PMID:29785145

  16. Linking product design to consumer behavior: the moderating role of consumption experience.

    PubMed

    Gilal, Naeem Gul; Zhang, Jing; Gilal, Faheem Gul

    2018-01-01

    Previous investigations of product design broadly link aesthetic, functional, and symbolic designs to sales growth, high turnover, and market share. However, the effect of product design dimensions on consumer willingness-to-buy (WTB) and word-of-mouth (WOM) is virtually ignored by consumer researchers. Similarly, whether the consumption experience can differentiate the effect of the three product design dimensions on WTB and WOM is completely unknown. Using categorization theory as a lens, our study aims to explore the effect of product design dimensions on consumer WTB and WOM directly and indirectly through the moderation of the consumption experience. A convenience sample of (n=357) Chinese and (n=277) Korean shoppers was utilized to test the hypotheses in the fashion apparel industry. Our results showed that the aesthetic design was more prominent in capturing consumer WTB for both Chinese and Koreans. Similarly, the aesthetic design was more salient in enhancing WOM for Chinese, whereas the symbolic design was more promising in terms of improving WOM for Koreans. Further, our moderation results demonstrated that the consumption experience could differentiate the effects of the three product design dimensions on consumer WTB and WOM for Chinese. By contrast, the consumption experience could only interact with the aesthetic design to improve WOM for South Koreans. To the best of authors' knowledge, the present study is one of the initial attempts to link three product design dimensions with consumer WTB and WOM in the fashion apparel context and explored whether consumption experience competes or complement with three product design dimensions to shape consumer WTB and WOM for Chinese and Koreans.

  17. Shuttle wave experiments. [space plasma investigations: design and instrumentation

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1976-01-01

    Wave experiments on shuttle are needed to verify dispersion relations, to study nonlinear and exotic phenomena, to support other plasma experiments, and to test engineering designs. Techniques based on coherent detection and bistatic geometry are described. New instrumentation required to provide modules for a variety of missions and to incorporate advanced signal processing and control techniques is discussed. An experiment for Z to 0 coupling is included.

  18. Mechanical engineering and design criteria for the Magnetically Insulated Transmission Experiment Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staller, G.E.; Hamilton, I.D.; Aker, M.F.

    1978-02-01

    A single-unit electron beam accelerator was designed, fabricated, and assembled in Sandia's Technical Area V to conduct magnetically insulated transmission experiments. Results of these experiments will be utilized in the future design of larger, more complex accelerators. This design makes optimum use of existing facilities and equipment. When designing new components, possible future applications were considered as well as compatibility with existing facilities and hardware.

  19. Factorial Design: An Eight Factor Experiment Using Paper Helicopters

    NASA Technical Reports Server (NTRS)

    Kozma, Michael

    1996-01-01

    The goal of this paper is to present the analysis of the multi-factor experiment (factorial design) conducted in EG490, Junior Design at Loyola College in Maryland. The discussion of this paper concludes the experimental analysis and ties the individual class papers together.

  20. Staying True to the Core: Designing the Future Academic Library Experience

    ERIC Educational Resources Information Center

    Bell, Steven J.

    2014-01-01

    In 2014, the practice of user experience design in academic libraries continues to evolve. It is typically applied in the context of interactions with digital interfaces. Some academic librarians are applying user experience approaches more broadly to design both environments and services with human-centered strategies. As the competition for the…

  1. Thermal Design and Analysis for the Cryogenic MIDAS Experiment

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth McElroy

    1997-01-01

    The Materials In Devices As Superconductors (MIDAS) spaceflight experiment is a NASA payload which launched in September 1996 on the Shuttle, and was transferred to the Mir Space Station for several months of operation. MIDAS was developed and built at NASA Langley Research Center (LaRC). The primary objective of the experiment was to determine the effects of microgravity and spaceflight on the electrical properties of high-temperature superconductive (HTS) materials. The thermal challenge on MIDAS was to maintain the superconductive specimens at or below 80 K for the entire operation of the experiment, including all ground testing and 90 days of spaceflight operation. Cooling was provided by a small tactical cryocooler. The superconductive specimens and the coldfinger of the cryocooler were mounted in a vacuum chamber, with vacuum levels maintained by an ion pump. The entire experiment was mounted for operation in a stowage locker inside Mir, with the only heat dissipation capability provided by a cooling fan exhausting to the habitable compartment. The thermal environment on Mir can potentially vary over the range 5 to 40 C; this was the range used in testing, and this wide range adds to the difficulty in managing the power dissipated from the experiment's active components. Many issues in the thermal design are discussed, including: thermal isolation methods for the cryogenic samples; design for cooling to cryogenic temperatures; cryogenic epoxy bonds; management of ambient temperature components self-heating; and fan cooling of the enclosed locker. Results of the design are also considered, including the thermal gradients across the HTS samples and cryogenic thermal strap, electronics and thermal sensor cryogenic performance, and differences between ground and flight performance. Modeling was performed in both SINDA-85 and MSC/PATRAN (with direct geometry import from the CAD design tool Pro/Engineer). Advantages of both types of models are discussed

  2. Optimized design and analysis of sparse-sampling FMRI experiments.

    PubMed

    Perrachione, Tyler K; Ghosh, Satrajit S

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase

  3. Recent experience with design and manufacture of cine lenses

    NASA Astrophysics Data System (ADS)

    Thorpe, Michael D.; Dalzell, Kristen E.

    2015-09-01

    Modern cine lenses require a high degree of aberration correction over a large and ever expanding image size. At low to medium volume production levels, these highly corrected designs also require a workable tolerance set and compensation scheme for successful manufacture. In this paper we discuss the design and manufacture of cine lenses with reference to current designs both internal and in the patent literature and some experience in design, tolerancing and manufacturing these lenses in medium volume production.

  4. A Bubble Mixture Experiment Project for Use in an Advanced Design of Experiments Class

    ERIC Educational Resources Information Center

    Steiner, Stefan H.; Hamada, Michael; White, Bethany J.Giddings; Kutsyy, Vadim; Mosesova, Sofia; Salloum, Geoffrey

    2007-01-01

    This article gives an example of how student-conducted experiments can enhance a course in the design of experiments. We focus on a project whose aim is to find a good mixture of water, soap and glycerin for making soap bubbles. This project is relatively straightforward to implement and understand. At its most basic level the project introduces…

  5. Enhancing the Therapy Experience Using Principles of Video Game Design.

    PubMed

    Folkins, John Wm; Brackenbury, Tim; Krause, Miriam; Haviland, Allison

    2016-02-01

    This article considers the potential benefits that applying design principles from contemporary video games may have on enhancing therapy experiences. Six principles of video game design are presented, and their relevance for enriching clinical experiences is discussed. The motivational and learning benefits of each design principle have been discussed in the education literature as having positive impacts on student motivation and learning and are related here to aspects of clinical practice. The essential experience principle suggests connecting all aspects of the experience around a central emotion or cognitive connection. The discovery principle promotes indirect learning in focused environments. The risk-taking principle addresses the uncertainties clients face when attempting newly learned skills in novel situations. The generalization principle encourages multiple opportunities for skill transfer. The reward system principle directly relates to the scaffolding of frequent and varied feedback in treatment. Last, the identity principle can assist clients in using their newly learned communication skills to redefine self-perceptions. These principles highlight areas for research and interventions that may be used to reinforce or advance current practice.

  6. Conceptual design for spacelab pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Lienhard, J. H.; Peck, R. E.

    1978-01-01

    A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.

  7. Human experience and product usability: principles to assist the design of user-product interactions.

    PubMed

    Chamorro-Koc, Marianella; Popovic, Vesna; Emmison, Michael

    2009-07-01

    This paper introduces research that investigates how human experience influences people's understandings of product usability. It describes an experiment that employs visual representation of concepts to elicit participants' ideas of a product's use. Results from the experiment lead to the identification of relationships between human experience, knowledge, and context-of-use--relationships that influence designers' and users' concepts of product usability. These relationships are translated into design principles that inform the design activity with respect to the aspects of experience that trigger people's understanding of a product's use. A design tool (ECEDT) is devised to aid designers in the application of these principles. This tool is then trialled in the context of a design task in order to verify applicability of the findings.

  8. A strategic map for high-impact virtual experience design

    NASA Astrophysics Data System (ADS)

    Faste, Haakon; Bergamasco, Massimo

    2009-02-01

    We have employed methodologies of human centered design to inspire and guide the engineering of a definitive low-cost aesthetic multimodal experience intended to stimulate cultural growth. Using a combination of design research, trend analysis and the programming of immersive virtual 3D worlds, over 250 innovative concepts have been brainstormed, prototyped, evaluated and refined. These concepts have been used to create a strategic map for the development of highimpact virtual art experiences, the most promising of which have been incorporated into a multimodal environment programmed in the online interactive 3D platform XVR. A group of test users have evaluated the experience as it has evolved, using a multimodal interface with stereo vision, 3D audio and haptic feedback. This paper discusses the process, content, results, and impact on our engineering laboratory that this research has produced.

  9. A User-Centered Framework for Deriving A Conceptual Design From User Experiences: Leveraging Personas and Patterns to Create Usable Designs

    NASA Astrophysics Data System (ADS)

    Javahery, Homa; Deichman, Alexander; Seffah, Ahmed; Taleb, Mohamed

    Patterns are a design tool to capture best practices, tackling problems that occur in different contexts. A user interface (UI) design pattern spans several levels of design abstraction ranging from high-level navigation to low-level idioms detailing a screen layout. One challenge is to combine a set of patterns to create a conceptual design that reflects user experiences. In this chapter, we detail a user-centered design (UCD) framework that exploits the novel idea of using personas and patterns together. Personas are used initially to collect and model user experiences. UI patterns are selected based on personas pecifications; these patterns are then used as building blocks for constructing conceptual designs. Through the use of a case study, we illustrate how personas and patterns can act as complementary techniques in narrowing the gap between two major steps in UCD: capturing users and their experiences, and building an early design based on that information. As a result of lessons learned from the study and by refining our framework, we define a more systematic process called UX-P (User Experiences to Pattern), with a supporting tool. The process introduces intermediate analytical steps and supports designers in creating usable designs.

  10. IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments.

    PubMed

    Millard, Pierre; Sokol, Serguei; Letisse, Fabien; Portais, Jean-Charles

    2014-01-01

    The growing demand for (13) C-metabolic flux analysis ((13) C-MFA) in the field of metabolic engineering and systems biology is driving the need to rationalize expensive and time-consuming (13) C-labeling experiments. Experimental design is a key step in improving both the number of fluxes that can be calculated from a set of isotopic data and the precision of flux values. We present IsoDesign, a software that enables these parameters to be maximized by optimizing the isotopic composition of the label input. It can be applied to (13) C-MFA investigations using a broad panel of analytical tools (MS, MS/MS, (1) H NMR, (13) C NMR, etc.) individually or in combination. It includes a visualization module to intuitively select the optimal label input depending on the biological question to be addressed. Applications of IsoDesign are described, with an example of the entire (13) C-MFA workflow from the experimental design to the flux map including important practical considerations. IsoDesign makes the experimental design of (13) C-MFA experiments more accessible to a wider biological community. IsoDesign is distributed under an open source license at http://metasys.insa-toulouse.fr/software/isodes/ © 2013 Wiley Periodicals, Inc.

  11. Design of experiments applications in bioprocessing: concepts and approach.

    PubMed

    Kumar, Vijesh; Bhalla, Akriti; Rathore, Anurag S

    2014-01-01

    Most biotechnology unit operations are complex in nature with numerous process variables, feed material attributes, and raw material attributes that can have significant impact on the performance of the process. Design of experiments (DOE)-based approach offers a solution to this conundrum and allows for an efficient estimation of the main effects and the interactions with minimal number of experiments. Numerous publications illustrate application of DOE towards development of different bioprocessing unit operations. However, a systematic approach for evaluation of the different DOE designs and for choosing the optimal design for a given application has not been published yet. Through this work we have compared the I-optimal and D-optimal designs to the commonly used central composite and Box-Behnken designs for bioprocess applications. A systematic methodology is proposed for construction of the model and for precise prediction of the responses for the three case studies involving some of the commonly used unit operations in downstream processing. Use of Akaike information criterion for model selection has been examined and found to be suitable for the applications under consideration. © 2013 American Institute of Chemical Engineers.

  12. Thinking about "Design Thinking": A Study of Teacher Experiences

    ERIC Educational Resources Information Center

    Retna, Kala S.

    2016-01-01

    Schools are continuously looking for new ways of enhancing student learning to equip students with skills that would enable them to cope with twenty-first century demands. One promising approach focuses on design thinking. This study examines teacher's perceptions, experiences and challenges faced in adopting design thinking. There is a lack of…

  13. Mapping the Journey: Visualising Collaborative Experiences for Sustainable Design Education

    ERIC Educational Resources Information Center

    McMahon, Muireann; Bhamra, Tracy

    2017-01-01

    The paradigm of design is changing. Designers now need to be equipped with the skills and knowledge that will enable them to participate in the global move towards a sustainable future. The challenges arise as Design for Sustainability deals with very complex and often contradictory issues. Collaborative learning experiences recognise that these…

  14. The "Tutorless" Design Studio: A Radical Experiment in Blended Learning

    ERIC Educational Resources Information Center

    Hill, Glen Andrew

    2017-01-01

    This paper describes a pedagogical experiment in which a suite of novel blended learning strategies was used to replace the traditional role of design tutors in a first year architectural design studio. The pedagogical objectives, blended learning strategies and outcomes of the course are detailed. While the quality of the student design work…

  15. Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.; Lin, John C.

    2006-01-01

    This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan-face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan-face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3- Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCP(sub avg), the circumferential distortion level at the

  16. Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R., Jr.; Lin, John C.

    2006-01-01

    This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCPavg, the circumferential distortion level at the engine

  17. Stepped wedge designs: insights from a design of experiments perspective.

    PubMed

    Matthews, J N S; Forbes, A B

    2017-10-30

    Stepped wedge designs (SWDs) have received considerable attention recently, as they are potentially a useful way to assess new treatments in areas such as health services implementation. Because allocation is usually by cluster, SWDs are often viewed as a form of cluster-randomized trial. However, since the treatment within a cluster changes during the course of the study, they can also be viewed as a form of crossover design. This article explores SWDs from the perspective of crossover trials and designed experiments more generally. We show that the treatment effect estimator in a linear mixed effects model can be decomposed into a weighted mean of the estimators obtained from (1) regarding an SWD as a conventional row-column design and (2) a so-called vertical analysis, which is a row-column design with row effects omitted. This provides a precise representation of "horizontal" and "vertical" comparisons, respectively, which to date have appeared without formal description in the literature. This decomposition displays a sometimes surprising way the analysis corrects for the partial confounding between time and treatment effects. The approach also permits the quantification of the loss of efficiency caused by mis-specifying the correlation parameter in the mixed-effects model. Optimal extensions of the vertical analysis are obtained, and these are shown to be highly inefficient for values of the within-cluster dependence that are likely to be encountered in practice. Some recently described extensions to the classic SWD incorporating multiple treatments are also compared using the experimental design framework. Copyright © 2017 John Wiley & Sons, Ltd.

  18. designGG: an R-package and web tool for the optimal design of genetical genomics experiments.

    PubMed

    Li, Yang; Swertz, Morris A; Vera, Gonzalo; Fu, Jingyuan; Breitling, Rainer; Jansen, Ritsert C

    2009-06-18

    High-dimensional biomolecular profiling of genetically different individuals in one or more environmental conditions is an increasingly popular strategy for exploring the functioning of complex biological systems. The optimal design of such genetical genomics experiments in a cost-efficient and effective way is not trivial. This paper presents designGG, an R package for designing optimal genetical genomics experiments. A web implementation for designGG is available at http://gbic.biol.rug.nl/designGG. All software, including source code and documentation, is freely available. DesignGG allows users to intelligently select and allocate individuals to experimental units and conditions such as drug treatment. The user can maximize the power and resolution of detecting genetic, environmental and interaction effects in a genome-wide or local mode by giving more weight to genome regions of special interest, such as previously detected phenotypic quantitative trait loci. This will help to achieve high power and more accurate estimates of the effects of interesting factors, and thus yield a more reliable biological interpretation of data. DesignGG is applicable to linkage analysis of experimental crosses, e.g. recombinant inbred lines, as well as to association analysis of natural populations.

  19. Design of a water electrolysis flight experiment

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Grigger, David J.; Thompson, C. Dean; Cusick, Robert J.

    1993-01-01

    Supply of oxygen (O2) and hydrogen (H2) by electolyzing water in space will play an important role in meeting the National Aeronautics and Space Administration's (NASA's) needs and goals for future space missios. Both O2 and H2 are envisioned to be used in a variety of processes including crew life support, spacecraft propulsion, extravehicular activity, electrical power generation/storage as well as in scientific experiment and manufacturing processes. The Electrolysis Performance Improvement Concept Study (EPICS) flight experiment described herein is sponsored by NASA Headquarters as a part of the In-Space Technology Experiment Program (IN-STEP). The objective of the EPICS is to further contribute to the improvement of the SEF technology, specifially by demonstrating and validating the SFE electromechanical process in microgravity as well as investigating perrformance improvements projected possible in a microgravity environment. This paper defines the experiment objective and presents the results of the preliminary design of the EPICS. The experiment will include testing three subscale self-contained SFE units: one containing baseline components, and two units having variations in key component materials. Tests will be conducted at varying current and thermal condition.

  20. Electrical design of Space Shuttle payload G-534: The pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1993-01-01

    Payload G-534, the Pool Boiling Experiment (PBE), is a Get Away Special (GAS) payload that flew on the Space Shuttle Spacelab Mission J (STS 47) on September 19-21, 1992. This paper will give a brief overall description of the experiment with the main discussion being the electrical design with a detailed description of the power system and interface to the GAS electronics. The batteries used and their interface to the experiment Power Control Unit (PCU) and GAS electronics will be examined. The design philosophy for the PCU will be discussed in detail. The criteria for selection of fuses, relays, power semiconductors, and other electrical components along with grounding and shielding policy for the entire experiment are presented. The intent of this paper is to discuss the use of military tested parts and basic design guidelines to build a quality experiment for minimal additional cost.

  1. Designing Experiments to Discriminate Families of Logic Models.

    PubMed

    Videla, Santiago; Konokotina, Irina; Alexopoulos, Leonidas G; Saez-Rodriguez, Julio; Schaub, Torsten; Siegel, Anne; Guziolowski, Carito

    2015-01-01

    Logic models of signaling pathways are a promising way of building effective in silico functional models of a cell, in particular of signaling pathways. The automated learning of Boolean logic models describing signaling pathways can be achieved by training to phosphoproteomics data, which is particularly useful if it is measured upon different combinations of perturbations in a high-throughput fashion. However, in practice, the number and type of allowed perturbations are not exhaustive. Moreover, experimental data are unavoidably subjected to noise. As a result, the learning process results in a family of feasible logical networks rather than in a single model. This family is composed of logic models implementing different internal wirings for the system and therefore the predictions of experiments from this family may present a significant level of variability, and hence uncertainty. In this paper, we introduce a method based on Answer Set Programming to propose an optimal experimental design that aims to narrow down the variability (in terms of input-output behaviors) within families of logical models learned from experimental data. We study how the fitness with respect to the data can be improved after an optimal selection of signaling perturbations and how we learn optimal logic models with minimal number of experiments. The methods are applied on signaling pathways in human liver cells and phosphoproteomics experimental data. Using 25% of the experiments, we obtained logical models with fitness scores (mean square error) 15% close to the ones obtained using all experiments, illustrating the impact that our approach can have on the design of experiments for efficient model calibration.

  2. How to Teach Engineering and Industrial Design: a U.K. Experience.

    ERIC Educational Resources Information Center

    Sheldon, D. F.

    1988-01-01

    Explored are the possibilities of teaching engineering through a project approach. Discussed are the introduction, clashing cultures of industrial and engineering design, skills required of a designer, teaching approach to the total design activity, CAD/CAM experiences, and conclusions. (Author/YP)

  3. Design space construction of multiple dose-strength tablets utilizing bayesian estimation based on one set of design-of-experiments.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-01-01

    Design spaces for multiple dose strengths of tablets were constructed using a Bayesian estimation method with one set of design of experiments (DoE) of only the highest dose-strength tablet. The lubricant blending process for theophylline tablets with dose strengths of 100, 50, and 25 mg is used as a model manufacturing process in order to construct design spaces. The DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) for theophylline 100-mg tablet. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) of the 100-mg tablet were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. Three experiments under an optimal condition and two experiments under other conditions were performed using 50- and 25-mg tablets, respectively. The response surfaces of the highest-strength tablet were corrected to those of the lower-strength tablets by Bayesian estimation using the manufacturing data of the lower-strength tablets. Experiments under three additional sets of conditions of lower-strength tablets showed that the corrected design space made it possible to predict the quality of lower-strength tablets more precisely than the design space of the highest-strength tablet. This approach is useful for constructing design spaces of tablets with multiple strengths.

  4. Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.

  5. Design of virtual simulation experiment based on key events

    NASA Astrophysics Data System (ADS)

    Zhong, Zheng; Zhou, Dongbo; Song, Lingxiu

    2018-06-01

    Considering complex content and lacking of guidance in virtual simulation experiments, the key event technology in VR narrative theory was introduced for virtual simulation experiment to enhance fidelity and vividness process. Based on the VR narrative technology, an event transition structure was designed to meet the need of experimental operation process, and an interactive event processing model was used to generate key events in interactive scene. The experiment of" margin value of bees foraging" based on Biologic morphology was taken as an example, many objects, behaviors and other contents were reorganized. The result shows that this method can enhance the user's experience and ensure experimental process complete and effectively.

  6. From Content to Context: Videogames as Designed Experience

    ERIC Educational Resources Information Center

    Squire, Kurt

    2006-01-01

    Interactive immersive entertainment, or videogame playing, has emerged as a major entertainment and educational medium. As research and development initiatives proliferate, educational researchers might benefit by developing more grounded theories about them. This article argues for framing game play as a "designed experience." Players'…

  7. Optimized Design and Analysis of Sparse-Sampling fMRI Experiments

    PubMed Central

    Perrachione, Tyler K.; Ghosh, Satrajit S.

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase

  8. Design and preparation of a particle dynamics space flight experiment, SHIVA.

    PubMed

    Trolinger, James D; L'Esperance, Drew; Rangel, Roger H; Coimbra, Carlos F M; Witherow, William K

    2004-11-01

    This paper describes the flight experiment, supporting ground science, and the design rationale for a project on spaceflight holography investigation in a virtual apparatus (SHIVA). SHIVA is a fundamental study of particle dynamics in fluids in microgravity. Gravitation effects and steady Stokes drag often dominate the equations of motion of a particle in a fluid and consequently microgravity provides an ideal environment in which to study the other forces, such as the pressure and viscous drag and especially the Basset history force. We have developed diagnostic recording methods using holography to save all of the particle field optical characteristics, essentially allowing the experiment to be transferred from space back to Earth in what we call the "virtual apparatus" for microgravity experiments on Earth. We can quantify precisely the three-dimensional motion of sets of particles, allowing us to test and apply new analytic solutions developed by members of the team. In addition to employing microgravity to augment the fundamental study of these forces, the resulting data will allow us to quantify and understand the ISS environment with great accuracy. This paper shows how we used both experiment and theory to identify and resolve critical issues and to produce an optimal experimental design that exploits microgravity for the study. We examined the response of particles of specific gravity from 0.1 to 20, with radii from 0.2 to 2 mm, to fluid oscillation at frequencies up to 80 Hz with amplitudes up to 200 microns. To observe some of the interesting effects predicted by the new solutions requires the precise location of the position of a particle in three dimensions. To this end we have developed digital holography algorithms that enable particle position location to a small fraction of a pixel in a CCD array. The spaceflight system will record holograms both on film and electronically. The electronic holograms can be downlinked providing real-time data

  9. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    PubMed

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  10. Skylab SO71/SO72 circadian periodicity experiment. [experimental design and checkout of hardware

    NASA Technical Reports Server (NTRS)

    Fairchild, M. K.; Hartmann, R. A.

    1973-01-01

    The circadian rhythm hardware activities from 1965 through 1973 are considered. A brief history of the programs leading to the development of the combined Skylab SO71/SO72 Circadian Periodicity Experiment (CPE) is given. SO71 is the Skylab experiment number designating the pocket mouse circadian experiment, and SO72 designates the vinegar gnat circadian experiment. Final design modifications and checkout of the CPE, integration testing with the Apollo service module CSM 117 and the launch preparation and support tasks at Kennedy Space Center are reported.

  11. Radiation Information for Designing and Interpreting Biological Experiments Onboard Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Straume, T.; Slaba, T.; Bhattacharya, S.; Braby, L. A.

    2017-01-01

    There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel type missions. Designing such experiments requires knowledge of the radiation environment and its interactions with both the spacecraft and the experimental payload. Information is provided here that is useful for designing such experiments.

  12. The engineering design of the Tokamak Physics Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, J.A.

    A mission and supporting physics objectives have been developed, which establishes an important role for the Tokamak Physics Experiment (TPX) in developing the physic basis for a future fusion reactor. The design of TPX include advanced physics features, such as shaping and profile control, along with the capability of operating for very long pulses. The development of the superconducting magnets, actively cooled internal hardware, and remote maintenance will be an important technology contribution to future fusion projects, such as ITER. The Conceptual Design and Management Systems for TPX have been developed and reviewed, and the project is beginning Preliminary Design.more » If adequately funded the construction project should be completed in the year 2000.« less

  13. Transducer Design Experiments for Ground-Penetrating Acoustic Systems

    DTIC Science & Technology

    1996-03-19

    subsurface imaging experiments have utilized a source (Tx) and receiver (Rx) configuration in which signals produced by a transmitter at the soil surface...development in the field of acoustic subsurface imaging are as follows. First, a transmitter designed to minimize the emission of surface waves, while

  14. Maximize, minimize or target - optimization for a fitted response from a designed experiment

    DOE PAGES

    Anderson-Cook, Christine Michaela; Cao, Yongtao; Lu, Lu

    2016-04-01

    One of the common goals of running and analyzing a designed experiment is to find a location in the design space that optimizes the response of interest. Depending on the goal of the experiment, we may seek to maximize or minimize the response, or set the process to hit a particular target value. After the designed experiment, a response model is fitted and the optimal settings of the input factors are obtained based on the estimated response model. Furthermore, the suggested optimal settings of the input factors are then used in the production environment.

  15. Building international experiences into an engineering curriculum - a design project-based approach

    NASA Astrophysics Data System (ADS)

    Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat

    2014-07-01

    This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural setting that they are likely to encounter in their professional careers. In the broader sense, this programme is described as a model that can be duplicated in other engineering disciplines as a first-year experience. In this study, undergraduate students from Rensselaer Polytechnic Institute (RPI) and Universidad del Turabo (UT) in Puerto Rico collaborated on a substantial design project consisting of designing, fabricating, and flight-testing radio-controlled model aircraft as a capstone experience in a semester-long course on Fundamentals of Flight. The two-week long experience in Puerto Rico was organised into academic and cultural components designed with the following objectives: (i) to integrate students in a multicultural team-based academic and social environment, (ii) to practise team-building skills and develop students' critical thinking and analytical skills, and finally (iii) to excite students about their engineering major through practical applications of aeronautics and help them decide if it is a right fit for them.

  16. Interactive Effects of Environmental Experience and Innovative Cognitive Style on Student Creativity in Product Design

    ERIC Educational Resources Information Center

    Lu, Chia-Chen

    2017-01-01

    Environmental experience can enhance the ideas of design students. Thus, this type of experience may interfere with the influence of design students' cognitive style on creativity. The aim of this study was to examine the influence of environmental experience on the relationship between innovative cognitive style and industrial design students'…

  17. Teachers as Designers: Social Design Experiments as Vehicles for Developing Antideficit English Education

    ERIC Educational Resources Information Center

    Fowler-Amato, Michelle; Warrington, Amber

    2017-01-01

    In this article, we explore data from two studies that demonstrate how inviting teachers to take on the role of codesigners of interventions in social design experiments created opportunities for them to consider their own positionality and privilege as well as negotiate deficit and antideficit discourses underlying and shaping English-language…

  18. Design and implementation of a laboratory-based drug design and synthesis advanced pharmacy practice experience.

    PubMed

    Philip, Ashok; Stephens, Mark; Mitchell, Sheila L; Watkins, E Blake

    2015-04-25

    To provide students with an opportunity to participate in medicinal chemistry research within the doctor of pharmacy (PharmD) curriculum. We designed and implemented a 3-course sequence in drug design or drug synthesis for pharmacy students consisting of a 1-month advanced elective followed by two 1-month research advanced pharmacy practice experiences (APPEs). To maximize student involvement, this 3-course sequence was offered to third-year and fourth-year students twice per calendar year. Students were evaluated based on their commitment to the project's success, productivity, and professionalism. Students also evaluated the course sequence using a 14-item course evaluation rubric. Student feedback was overwhelmingly positive. Students found the experience to be a valuable component of their pharmacy curriculum. We successfully designed and implemented a 3-course research sequence that allows PharmD students in the traditional 4-year program to participate in drug design and synthesis research. Students report the sequence enhanced their critical-thinking and problem-solving skills and helped them develop as independent learners. Based on the success achieved with this sequence, efforts are underway to develop research APPEs in other areas of the pharmaceutical sciences.

  19. National Transonic Facility Wall Pressure Calibration Using Modern Design of Experiments (Invited)

    NASA Technical Reports Server (NTRS)

    Underwood, Pamela J.; Everhart, Joel L.; DeLoach, Richard

    2001-01-01

    The Modern Design of Experiments (MDOE) has been applied to wind tunnel testing at NASA Langley Research Center for several years. At Langley, MDOE has proven to be a useful and robust approach to aerodynamic testing that yields significant reductions in the cost and duration of experiments while still providing for the highest quality research results. This paper extends its application to include empty tunnel wall pressure calibrations. These calibrations are performed in support of wall interference corrections. This paper will present the experimental objectives, and the theoretical design process. To validate the tunnel-empty-calibration experiment design, preliminary response surface models calculated from previously acquired data are also presented. Finally, lessons learned and future wall interference applications of MDOE are discussed.

  20. Design of an automated imaging system for use in a space experiment

    NASA Technical Reports Server (NTRS)

    Hartz, William G.; Bozzolo, Nora G.; Lewis, Catherine C.; Pestak, Christopher J.

    1991-01-01

    An experiment, occurring in an orbiting platform, examines the mass transfer across gas-liquid and liquid-liquid interfaces. It employs an imaging system with real time image analysis. The design includes optical design, imager selection and integration, positioner control, image recording, software development for processing and interfaces to telemetry. It addresses the constraints of weight, volume, and electric power associated with placing the experiment in the Space Shuttle cargo bay. Challenging elements of the design are: imaging and recording of a 200-micron-diameter bubble with a resolution of 2 microns to serve a primary source of data; varying frame rates from 500 per second to 1 frame per second, depending on the experiment phase; and providing three-dimensional information to determine the shape of the bubble.

  1. Automated culture system experiments hardware: developing test results and design solutions.

    PubMed

    Freddi, M; Covini, M; Tenconi, C; Ricci, C; Caprioli, M; Cotronei, V

    2002-07-01

    The experiment proposed by Prof. Ricci University of Milan is funded by ASI with Laben as industrial Prime Contractor. ACS-EH (Automated Culture System-Experiment Hardware) will support the multigenerational experiment on weightlessness with rotifers and nematodes within four Experiment Containers (ECs) located inside the European Modular Cultivation System (EMCS) facility..Actually the Phase B is in progress and a concept design solution has been defined. The most challenging aspects for the design of such hardware are, from biological point of view the provision of an environment which permits animal's survival and to maintain desiccated generations separated and from the technical point of view, the miniaturisation of the hardware itself due to the reduce EC provided volume (160mmx60mmx60mm). The miniaturisation will allow a better use of the available EMCS Facility resources (e.g. volume. power etc.) and to fulfil the experiment requirements. ACS-EH, will be ready to fly in the year 2005 on boar the ISS.

  2. Designing for Motivation, Engagement and Wellbeing in Digital Experience

    PubMed Central

    Peters, Dorian; Calvo, Rafael A.; Ryan, Richard M.

    2018-01-01

    Research in psychology has shown that both motivation and wellbeing are contingent on the satisfaction of certain psychological needs. Yet, despite a long-standing pursuit in human-computer interaction (HCI) for design strategies that foster sustained engagement, behavior change and wellbeing, the basic psychological needs shown to mediate these outcomes are rarely taken into account. This is possibly due to the lack of a clear model to explain these needs in the context of HCI. Herein we introduce such a model: Motivation, Engagement and Thriving in User Experience (METUX). The model provides a framework grounded in psychological research that can allow HCI researchers and practitioners to form actionable insights with respect to how technology designs support or undermine basic psychological needs, thereby increasing motivation and engagement, and ultimately, improving user wellbeing. We propose that in order to address wellbeing, psychological needs must be considered within five different spheres of analysis including: at the point of technology adoption, during interaction with the interface, as a result of engagement with technology-specific tasks, as part of the technology-supported behavior, and as part of an individual's life overall. These five spheres of experience sit within a sixth, society, which encompasses both direct and collateral effects of technology use as well as non-user experiences. We build this model based on existing evidence for basic psychological need satisfaction, including evidence within the context of the workplace, computer games, and health. We extend and hone these ideas to provide practical advice for designers along with real world examples of how to apply the model to design practice. PMID:29892246

  3. Real-time PCR probe optimization using design of experiments approach.

    PubMed

    Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F

    2016-03-01

    Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

  4. Building a Framework for Engineering Design Experiences in High School

    ERIC Educational Resources Information Center

    Denson, Cameron D.; Lammi, Matthew

    2014-01-01

    In this article, Denson and Lammi put forth a conceptual framework that will help promote the successful infusion of engineering design experiences into high school settings. When considering a conceptual framework of engineering design in high school settings, it is important to consider the complex issue at hand. For the purposes of this…

  5. Opto-mechanical design of vacuum laser resonator for the OSQAR experiment

    NASA Astrophysics Data System (ADS)

    Hošek, Jan; Macúchová, Karolina; Nemcová, Šárka; Kunc, Štěpán.; Šulc, Miroslav

    2015-01-01

    This paper gives short overview of laser-based experiment OSQAR at CERN which is focused on search of axions and axion-like particles. The OSQAR experiment uses two experimental methods for axion search - measurement of the ultra-fine vacuum magnetic birefringence and a method based on the "Light shining through the wall" experiment. Because both experimental methods have reached its attainable limits of sensitivity we have focused on designing a vacuum laser resonator. The resonator will increase the number of convertible photons and their endurance time within the magnetic field. This paper presents an opto-mechanical design of a two component transportable vacuum laser resonator. Developed optical resonator mechanical design allows to be used as a 0.8 meter long prototype laser resonator for laboratory testing and after transportation and replacement of the mirrors it can be mounted on the LHC magnet in CERN to form a 20 meter long vacuum laser resonator.

  6. Design Overview of the DM Radio Pathfinder Experiment

    NASA Technical Reports Server (NTRS)

    Silva-Feaver, Maximiliano; Chaudhuri, Saptarshi; Cho, Hsaio-Mei; Dawson, Carl; Graham, Peter; Irwin, Kent; Kuenstner, Stephen; Li, Dale; Mardon, Jeremy; Moseley, Harvey; hide

    2016-01-01

    We introduce the DM Radio, a dual search for axion and hidden photon dark matter using a tunable superconducting lumped-element resonator. We discuss the prototype DM Radio Pathfinder experiment, which will probe hidden photons in the 500 peV (100 kHz)-50 neV (10 MHz) mass range. We detail the design of the various components: the LC resonant detector, the resonant frequency tuning procedure, the differential SQUID readout circuit, the shielding, and the cryogenic mounting structure. We present the current status of the pathfinder experiment and illustrate it's potential science reach in the context of the larger experimental program.

  7. Long baseline neutrino oscillation experiment at the AGS. Physics design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beavis, D.; Carroll, A.; Chiang, I.

    1995-04-01

    The authors present a design for a multi-detector long baseline neutrino oscillation experiment at the BNL AGS. It has been approved by the BNL-HENP-PAC as AGS Experiment 889. The experiment will search for oscillations in the {nu}{sub {mu}}, disappearance channel and the {nu}{sub {mu}} {leftrightarrow} {nu}{sub e} appearance channel by means of four identical neutrino detectors located 1, 3, 24, and 68km from the AGS neutrino source. Observed depletion of the {nu}{sub {mu}} flux (via quasi-elastic muon neutrino events, {nu}{sub {mu}}n {yields} {mu}{sup {minus}}p) in the far detectors not attended by an observed proportional increase of the {nu}{sub e} fluxmore » (via quasi-elastic electron neutrino events, {nu}{sub e}n {yields} e{sup {minus}}p) in those detectors will be prima facie evidence for the oscillation channel {nu}{sub {mu}} {leftrightarrow} {nu}{sub {tau}}. The experiment is directed toward exploration of the region of the neutrino oscillation parameters {Delta}m{sup 2} and sin{sup 2}2{theta}, suggested by the Kamiokande and IMB deep underground detectors but it will also explore a region more than two orders of magnitude larger than that of previous accelerator experiments. The experiment will run in a mode new to BNL. It will receive the fast extracted proton beam on the neutrino target approximately 20 hours per day when the AGS is not filling RHIC. A key aspect of the experimental design involves placing the detectors 1.5 degrees off the center line of the neutrino beam, which has the important advantage that the central value of the neutrino energy ({approx} 1 GeV) and the beam spectral shape are, to a good approximation, the same in all four detectors. The proposed detectors are massive, imaging, water Cherenkov detectors similar in large part to the Kamiokande and IMB detectors. The design has profited from their decade-long experience, and from the detector designs of the forthcoming SNO and SuperKamiokande detectors.« less

  8. Guidelines for the design and statistical analysis of experiments in papers submitted to ATLA.

    PubMed

    Festing, M F

    2001-01-01

    In vitro experiments need to be well designed and correctly analysed if they are to achieve their full potential to replace the use of animals in research. An "experiment" is a procedure for collecting scientific data in order to answer a hypothesis, or to provide material for generating new hypotheses, and differs from a survey because the scientist has control over the treatments that can be applied. Most experiments can be classified into one of a few formal designs, the most common being completely randomised, and randomised block designs. These are quite common with in vitro experiments, which are often replicated in time. Some experiments involve a single independent (treatment) variable, while other "factorial" designs simultaneously vary two or more independent variables, such as drug treatment and cell line. Factorial designs often provide additional information at little extra cost. Experiments need to be carefully planned to avoid bias, be powerful yet simple, provide for a valid statistical analysis and, in some cases, have a wide range of applicability. Virtually all experiments need some sort of statistical analysis in order to take account of biological variation among the experimental subjects. Parametric methods using the t test or analysis of variance are usually more powerful than non-parametric methods, provided the underlying assumptions of normality of the residuals and equal variances are approximately valid. The statistical analyses of data from a completely randomised design, and from a randomised-block design are demonstrated in Appendices 1 and 2, and methods of determining sample size are discussed in Appendix 3. Appendix 4 gives a checklist for authors submitting papers to ATLA.

  9. Design and Fabrication of the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid

    2006-10-01

    The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.

  10. Efficient Testing Combining Design of Experiment and Learn-to-Fly Strategies

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Brandon, Jay M.

    2017-01-01

    Rapid modeling and efficient testing methods are important in a number of aerospace applications. In this study efficient testing strategies were evaluated in a wind tunnel test environment and combined to suggest a promising approach for both ground-based and flight-based experiments. Benefits of using Design of Experiment techniques, well established in scientific, military, and manufacturing applications are evaluated in combination with newly developing methods for global nonlinear modeling. The nonlinear modeling methods, referred to as Learn-to-Fly methods, utilize fuzzy logic and multivariate orthogonal function techniques that have been successfully demonstrated in flight test. The blended approach presented has a focus on experiment design and identifies a sequential testing process with clearly defined completion metrics that produce increased testing efficiency.

  11. Development of display design and command usage guidelines for Spacelab experiment computer applications

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1979-01-01

    Individual Spacelab experiments are responsible for developing their CRT display formats and interactive command scenarios for payload crew monitoring and control of experiment operations via the Spacelab Data Display System (DDS). In order to enhance crew training and flight operations, it was important to establish some standardization of the crew/experiment interface among different experiments by providing standard methods and techniques for data presentation and experiment commanding via the DDS. In order to establish optimum usage guidelines for the Spacelab DDS, the capabilities and limitations of the hardware and Experiment Computer Operating System design had to be considered. Since the operating system software and hardware design had already been established, the Display and Command Usage Guidelines were constrained to the capabilities of the existing system design. Empirical evaluations were conducted on a DDS simulator to determine optimum operator/system interface utilization of the system capabilities. Display parameters such as information location, display density, data organization, status presentation and dynamic update effects were evaluated in terms of response times and error rates.

  12. Experiences of Design-and-Make Interventions with Indian Middle School Students

    ERIC Educational Resources Information Center

    Khunyakari, Ritesh P.

    2015-01-01

    Enabling learning through meaningful classroom experiences has always been a challenge for teachers. Bringing about a balance of the "conceptual" and the "hands-on", along with contextual embeddedness in problem-solving situations, broadly characterises the experience of development and trials of three Design and Technology…

  13. FINAL DESIGN REVIEW REPORT Subcritical Experiments Gen 2, 3-ft Confinement Vessel Weldment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Christopher

    A Final Design Review (FDR) of the Subcritical Experiments (SCE) Gen 2, 3-ft. Confinement Vessel Weldment was held at Los Alamos National Laboratory (LANL) on September 14, 2017. The review was a focused review on changes only to the confinement vessel weldment (versus a system design review). The changes resulted from lessons-learned in fabricating and inspecting the current set of confinement vessels used for the SCE Program. The baseline 3-ft. confinement vessel weldment design has successfully been used (to date) for three (3) high explosive (HE) over-tests, two (2) fragment tests, and five (5) integral HE experiments. The design teammore » applied lessons learned from fabrication and inspection of these vessel weldments to enhance fit-up, weldability, inspection, and fitness for service evaluations. The review team consisted of five (5) independent subject matter experts with engineering design, analysis, testing, fabrication, and inspection experience. The« less

  14. Considerations for Explosively Driven Conical Shock Tube Design: Computations and Experiments

    DTIC Science & Technology

    2017-02-16

    ARL-TR-7953 ● FEB 2017 US Army Research Laboratory Considerations for Explosively Driven Conical Shock Tube Design : Computations...The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized...Considerations for Explosively Driven Conical Shock Tube Designs : Computations and Experiments by Joel B Stewart Weapons and Materials Research Directorate

  15. Recent developments in virtual experience design and production

    NASA Astrophysics Data System (ADS)

    Fisher, Scott S.

    1995-03-01

    Today, the media of VR and Telepresence are in their infancy and the emphasis is still on technology and engineering. But, it is not the hardware people might use that will determine whether VR becomes a powerful medium--instead, it will be the experiences that they are able to have that will drive its acceptance and impact. A critical challenge in the elaboration of these telepresence capabilities will be the development of environments that are as unpredictable and rich in interconnected processes as an actual location or experience. This paper will describe the recent development of several Virtual Experiences including: `Menagerie', an immersive Virtual Environment inhabited by virtual characters designed to respond to and interact with its users; and `The Virtual Brewery', an immersive public VR installation that provides multiple levels of interaction in an artistic interpretation of the brewing process.

  16. Controlled experiments for dense gas diffusion: Experimental design and execution, model comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egami, R.; Bowen, J.; Coulombe, W.

    1995-07-01

    An experimental baseline CO2 release experiment at the DOE Spill Test Facility on the Nevada Test Site in Southern Nevada is described. This experiment was unique in its use of CO2 as a surrogate gas representative of a variety of specific chemicals. Introductory discussion places the experiment in historical perspective. CO2 was selected as a surrogate gas to provide a data base suitable for evaluation of model scenarios involving a variety of specific dense gases. The experiment design and setup are described, including design rationale and quality assurance methods employed. Resulting experimental data are summarized. Data usefulness is examined throughmore » a preliminary comparison of experimental results with simulations performed using the SLAV and DEGADIS dense gas models.« less

  17. Conceptual design of a Moving Belt Radiator (MBR) shuttle-attached experiment

    NASA Technical Reports Server (NTRS)

    Aguilar, Jerry L.

    1990-01-01

    The conceptual design of a shuttle-attached Moving Belt Radiator (MBR) experiment is presented. The MBR is an advanced radiator concept in which a rotating belt is used to radiate thermal energy to space. The experiment is developed with the primary focus being the verification of the dynamic characteristics of a rotating belt with a secondary objective of proving the thermal and sealing aspects in a reduced gravity, vacuum environment. The mechanical design, selection of the belt material and working fluid, a preliminary test plan, and program plan are presented. The strategy used for selecting the basic sizes and materials of the components are discussed. Shuttle and crew member requirements are presented with some options for increasing or decreasing the demands on the STS. An STS carrier and the criteria used in the selection process are presented. The proposed carrier for the Moving Belt Radiator experiment is the Hitchhiker-M. Safety issues are also listed with possible results. This experiment is designed so that a belt can be deployed, run at steady state conditions, run with dynamic perturbations imposed, verify the operation of the interface heat exchanger and seals, and finally be retracted into a stowed position for transport back to earth.

  18. Workspace design for crane cabins applying a combined traditional approach and the Taguchi method for design of experiments.

    PubMed

    Spasojević Brkić, Vesna K; Veljković, Zorica A; Golubović, Tamara; Brkić, Aleksandar Dj; Kosić Šotić, Ivana

    2016-01-01

    Procedures in the development process of crane cabins are arbitrary and subjective. Since approximately 42% of incidents in the construction industry are linked to them, there is a need to collect fresh anthropometric data and provide additional recommendations for design. In this paper, dimensioning of the crane cabin interior space was carried out using a sample of 64 crane operators' anthropometric measurements, in the Republic of Serbia, by measuring workspace with 10 parameters using nine measured anthropometric data from each crane operator. This paper applies experiments run via full factorial designs using a combined traditional and Taguchi approach. The experiments indicated which design parameters are influenced by which anthropometric measurements and to what degree. The results are expected to be of use for crane cabin designers and should assist them to design a cabin that may lead to less strenuous sitting postures and fatigue for operators, thus improving safety and accident prevention.

  19. Sequential Design of Experiments to Maximize Learning from Carbon Capture Pilot Plant Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soepyan, Frits B.; Morgan, Joshua C.; Omell, Benjamin P.

    Pilot plant test campaigns can be expensive and time-consuming. Therefore, it is of interest to maximize the amount of learning and the efficiency of the test campaign given the limited number of experiments that can be conducted. This work investigates the use of sequential design of experiments (SDOE) to overcome these challenges by demonstrating its usefulness for a recent solvent-based CO2 capture plant test campaign. Unlike traditional design of experiments methods, SDOE regularly uses information from ongoing experiments to determine the optimum locations in the design space for subsequent runs within the same experiment. However, there are challenges that needmore » to be addressed, including reducing the high computational burden to efficiently update the model, and the need to incorporate the methodology into a computational tool. We address these challenges by applying SDOE in combination with a software tool, the Framework for Optimization, Quantification of Uncertainty and Surrogates (FOQUS) (Miller et al., 2014a, 2016, 2017). The results of applying SDOE on a pilot plant test campaign for CO2 capture suggests that relative to traditional design of experiments methods, SDOE can more effectively reduce the uncertainty of the model, thus decreasing technical risk. Future work includes integrating SDOE into FOQUS and using SDOE to support additional large-scale pilot plant test campaigns.« less

  20. Pliocene Model Intercomparison Project (PlioMIP): Experimental Design and Boundary Conditions (Experiment 2)

    NASA Technical Reports Server (NTRS)

    Haywood, A. M.; Dowsett, H. J.; Robinson, M. M.; Stoll, D. K.; Dolan, A. M.; Lunt, D. J.; Otto-Bliesner, B.; Chandler, M. A.

    2011-01-01

    The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere only climate models. The second (Experiment 2) utilizes fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.

  1. Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2)

    USGS Publications Warehouse

    Haywood, A.M.; Dowsett, H.J.; Robinson, M.M.; Stoll, D.K.; Dolan, A.M.; Lunt, D.J.; Otto-Bliesner, B.; Chandler, M.A.

    2011-01-01

    The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.

  2. [Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms].

    PubMed

    Cao, Xi-hua; Song, Xiu-xian; Yu, Zhi-ming

    2004-09-01

    Removal efficiencies of Prorocentrum donghaiense (Prorocentrum dentatum) by Hexadecyltrimethylammonium (HDTMA) bromide and organo-clay modified by HDTMA were identified. Moreover the toxicity of the unbound HDTMA and HDTMA plus clay to aquacultural organisms, Penaeus japonicus, was also tested. The results suggested that (1) The unbound HDTMA had an excellent ability to remove the red tide organisms. However, its strong toxicity to Penaeus japonicus would restrict its practical use in red tide control. (2) The toxicity of HDTMA could be remarkably decreased by addition of clay and the organo-clay complex had a good ability to removal red tide organisms. At the same time the availability of organo-clay to remove the red tide of P. donghaiense and Heterosigma akashiwo in the lab-imitated cultures were studied. The results indicated that the organo-clay complex could remove 100% P. donghaiense at the dosage of 0.03 g/L and effectively control H. akashiwo at 0.09 g/L while the survival rate of Penaeus japonicus larvae, which were cultured in the red tide seawater, is kept 100%. According to the results in laboratory, the mesocosm tests (CEPEX) in East China Sea were conducted in April and May of 2003. The removal efficiencies of original clay, organic clay and inorganic clay were compared during the CEPEX tests. The results revealed that both inorganic clay and organic clay could remove red tide organisms more effectively than the original clay.

  3. Students' Design of Experiments: An Inquiry Module on the Conduction of Heat

    ERIC Educational Resources Information Center

    Hatzikraniotis, E.; Kallery, M.; Molohidis, A.; Psillos, D.

    2010-01-01

    This article examines secondary students' design of experiments after engagement in an innovative and inquiry-oriented module on heat transfer. The module consists of an integration of hands-on experiments, simulated experiments and microscopic model simulations, includes a structured series of guided investigative tasks and was implemented for a…

  4. A global parallel model based design of experiments method to minimize model output uncertainty.

    PubMed

    Bazil, Jason N; Buzzard, Gregory T; Rundell, Ann E

    2012-03-01

    Model-based experiment design specifies the data to be collected that will most effectively characterize the biological system under study. Existing model-based design of experiment algorithms have primarily relied on Fisher Information Matrix-based methods to choose the best experiment in a sequential manner. However, these are largely local methods that require an initial estimate of the parameter values, which are often highly uncertain, particularly when data is limited. In this paper, we provide an approach to specify an informative sequence of multiple design points (parallel design) that will constrain the dynamical uncertainty of the biological system responses to within experimentally detectable limits as specified by the estimated experimental noise. The method is based upon computationally efficient sparse grids and requires only a bounded uncertain parameter space; it does not rely upon initial parameter estimates. The design sequence emerges through the use of scenario trees with experimental design points chosen to minimize the uncertainty in the predicted dynamics of the measurable responses of the system. The algorithm was illustrated herein using a T cell activation model for three problems that ranged in dimension from 2D to 19D. The results demonstrate that it is possible to extract useful information from a mathematical model where traditional model-based design of experiments approaches most certainly fail. The experiments designed via this method fully constrain the model output dynamics to within experimentally resolvable limits. The method is effective for highly uncertain biological systems characterized by deterministic mathematical models with limited data sets. Also, it is highly modular and can be modified to include a variety of methodologies such as input design and model discrimination.

  5. Minimizing student’s faults in determining the design of experiment through inquiry-based learning

    NASA Astrophysics Data System (ADS)

    Nilakusmawati, D. P. E.; Susilawati, M.

    2017-10-01

    The purpose of this study were to describe the used of inquiry method in an effort to minimize student’s fault in designing an experiment and to determine the effectiveness of the implementation of the inquiry method in minimizing student’s faults in designing experiments on subjects experimental design. This type of research is action research participants, with a model of action research design. The data source were students of the fifth semester who took a subject of experimental design at Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University. Data was collected through tests, interviews, and observations. The hypothesis was tested by t-test. The result showed that the implementation of inquiry methods to minimize of students fault in designing experiments, analyzing experimental data, and interpret them in cycle 1 students can reduce fault by an average of 10.5%. While implementation in Cycle 2, students managed to reduce fault by an average of 8.78%. Based on t-test results can be concluded that the inquiry method effectively used to minimize of student’s fault in designing experiments, analyzing experimental data, and interpreting them. The nature of the teaching materials on subject of Experimental Design that demand the ability of students to think in a systematic, logical, and critical in analyzing the data and interpret the test cases makes the implementation of this inquiry become the proper method. In addition, utilization learning tool, in this case the teaching materials and the students worksheet is one of the factors that makes this inquiry method effectively minimizes of student’s fault when designing experiments.

  6. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.

    PubMed

    Antoniewicz, Maciek R

    2013-12-01

    Measuring fluxes by 13C metabolic flux analysis (13C-MFA) has become a key activity in chemical and pharmaceutical biotechnology. Optimal design of isotopic labeling experiments is of central importance to 13C-MFA as it determines the precision with which fluxes can be estimated. Traditional methods for selecting isotopic tracers and labeling measurements did not fully utilize the power of 13C-MFA. Recently, new approaches were developed for optimal design of isotopic labeling experiments based on parallel labeling experiments and algorithms for rational selection of tracers. In addition, advanced isotopic labeling measurements were developed based on tandem mass spectrometry. Combined, these approaches can dramatically improve the quality of 13C-MFA results with important applications in metabolic engineering and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effects of Platform Design on the Customer Experience in an Online Solar PV Marketplace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J; Margolis, Robert M; Leibowicz, Benjamin

    Residential solar photovoltaic (PV) customers are increasingly buying PV systems in online marketplaces, where customers can compare multiple quotes from several installers on quote platforms. In this study, we use data from an online marketplace to explore how quote platform design affects customer experiences. We analyze how four design changes affected customer experiences in terms of factors such as prices. We find that three of the four design changes are associated with statistically significant and robust price reductions, even though none of the changes were implemented specifically to reduce prices. The results suggest that even seemingly small platform design changesmore » can affect PV customer experiences in online marketplaces.« less

  8. Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments.

    PubMed

    Canver, Matthew C; Haeussler, Maximilian; Bauer, Daniel E; Orkin, Stuart H; Sanjana, Neville E; Shalem, Ophir; Yuan, Guo-Cheng; Zhang, Feng; Concordet, Jean-Paul; Pinello, Luca

    2018-05-01

    CRISPR (clustered regularly interspaced short palindromic repeats) genome-editing experiments offer enormous potential for the evaluation of genomic loci using arrayed single guide RNAs (sgRNAs) or pooled sgRNA libraries. Numerous computational tools are available to help design sgRNAs with optimal on-target efficiency and minimal off-target potential. In addition, computational tools have been developed to analyze deep-sequencing data resulting from genome-editing experiments. However, these tools are typically developed in isolation and oftentimes are not readily translatable into laboratory-based experiments. Here, we present a protocol that describes in detail both the computational and benchtop implementation of an arrayed and/or pooled CRISPR genome-editing experiment. This protocol provides instructions for sgRNA design with CRISPOR (computational tool for the design, evaluation, and cloning of sgRNA sequences), experimental implementation, and analysis of the resulting high-throughput sequencing data with CRISPResso (computational tool for analysis of genome-editing outcomes from deep-sequencing data). This protocol allows for design and execution of arrayed and pooled CRISPR experiments in 4-5 weeks by non-experts, as well as computational data analysis that can be performed in 1-2 d by both computational and noncomputational biologists alike using web-based and/or command-line versions.

  9. Learning from the Implementers in a Design Experiment

    ERIC Educational Resources Information Center

    Toh, Tin Lam; Dindyal, Jaguthsing; Tay, Eng Guan

    2013-01-01

    In a design experiment, the feedback from the teacher-implementer is crucial to the success of the innovation simply because the teacher is finally the one that brings the innovation to life in front of the students. We describe in this paper the feedback made by the teacher-implementer after teaching one cycle of the problem solving module in a…

  10. A District-Wide High School Formative Experiment Designed to Improve Student Achievement

    ERIC Educational Resources Information Center

    Frey, Nancy; Fisher, Douglas

    2013-01-01

    This study focuses on district leadership designed to improve student achievement. We employed a formative experiment design methodology, a type of design study, to investigate the leadership efforts to improve student and teacher learning. The findings suggest that leadership through professional development and an instructional framework led to…

  11. Aircraft integrated design and analysis: A classroom experience

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1989-01-01

    AAE 451 is the capstone course required of all senior undergraduates in the School of Aeronautics and Astronautics at Purdue University. During the past year the first steps of a long evolutionary process were taken to change the content and expectations of this course. These changes are the result of the availability of advanced computational capabilities and sophisticated electronic media availability at Purdue. This presentation will describe both the long range objectives and this year's experience using the High Speed Commercial Transport design, the AIAA Long Duration Aircraft design and RPV design proposal as project objectives. The central goal of these efforts is to provide a user-friendly, computer-software-based environment to supplement traditional design course methodology. The Purdue University Computer Center (PUCC), the Engineering Computer Network (ECN) and stand-alone PC's are being used for this development. This year's accomplishments center primarily on aerodynamics software obtained from NASA/Langley and its integration into the classroom. Word processor capability for oral and written work and computer graphics were also blended into the course. A total of ten HSCT designs were generated, ranging from twin-fuselage aircraft, forward swept wing aircraft to the more traditional delta and double-delta wing aircraft. Four Long Duration Aircraft designs were submitted, together with one RPV design tailored for photographic surveillance.

  12. Preliminary design of the redundant software experiment

    NASA Technical Reports Server (NTRS)

    Campbell, Roy; Deimel, Lionel; Eckhardt, Dave, Jr.; Kelly, John; Knight, John; Lauterbach, Linda; Lee, Larry; Mcallister, Dave; Mchugh, John

    1985-01-01

    The goal of the present experiment is to characterize the fault distributions of highly reliable software replicates, constructed using techniques and environments which are similar to those used in comtemporary industrial software facilities. The fault distributions and their effect on the reliability of fault tolerant configurations of the software will be determined through extensive life testing of the replicates against carefully constructed randomly generated test data. Each detected error will be carefully analyzed to provide insight in to their nature and cause. A direct objective is to develop techniques for reducing the intensity of coincident errors, thus increasing the reliability gain which can be achieved with fault tolerance. Data on the reliability gains realized, and the cost of the fault tolerant configurations can be used to design a companion experiment to determine the cost effectiveness of the fault tolerant strategy. Finally, the data and analysis produced by this experiment will be valuable to the software engineering community as a whole because it will provide a useful insight into the nature and cause of hard to find, subtle faults which escape standard software engineering validation techniques and thus persist far into the software life cycle.

  13. Effects of Spatial Experiences & Cognitive Styles in the Solution Process of Space-Based Design Problems in the First Year of Architectural Design Education

    ERIC Educational Resources Information Center

    Erkan Yazici, Yasemin

    2013-01-01

    There are many factors that influence designers in the architectural design process. Cognitive style, which varies according to the cognitive structure of persons, and spatial experience, which is created with spatial data acquired during life are two of these factors. Designers usually refer to their spatial experiences in order to find solutions…

  14. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  15. JASMINE project Instrument design and centroiding experiment

    NASA Astrophysics Data System (ADS)

    Yano, Taihei; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki

    JASMINE will study the fundamental structure and evolution of the Milky Way Galaxy. To accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about 10 million stars with a precision of 10 μarcsec at z = 14 mag. In this paper the instrument design (optics, detectors, etc.) of JASMINE is presented. We also show a CCD centroiding experiment for estimating positions of star images. The experimental result shows that the accuracy of estimated distances has a variance of less than 0.01 pixel.

  16. Experimental Design and Power Calculation for RNA-seq Experiments.

    PubMed

    Wu, Zhijin; Wu, Hao

    2016-01-01

    Power calculation is a critical component of RNA-seq experimental design. The flexibility of RNA-seq experiment and the wide dynamic range of transcription it measures make it an attractive technology for whole transcriptome analysis. These features, in addition to the high dimensionality of RNA-seq data, bring complexity in experimental design, making an analytical power calculation no longer realistic. In this chapter we review the major factors that influence the statistical power of detecting differential expression, and give examples of power assessment using the R package PROPER.

  17. Design, construction, and testing of the direct absorption receiver panel research experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, J.M.; Rush, E.E.; Matthews, C.W.

    1990-01-01

    A panel research experiment (PRE) was designed, built, and tested as a scaled-down model of a direct absorption receiver (DAR). The PRE is a 3-MW{sub t}DAR experiment that will allow flow testing with molten nitrate salt and provide a test bed for DAR testing with actual solar heating. In a solar central receiver system DAR, the heat absorbing fluid (a blackened molten nitrate salt) flows in a thin film down a vertical panel (rather than through tubes as in conventional receiver designs) and absorbs the concentrated solar flux directly. The ability of the flowing salt film to absorb flux directly.more » The ability of the flowing salt film to absorb the incident solar flux depends on the panel design, hydraulic and thermal fluid flow characteristics, and fluid blackener properties. Testing of the PRE is being conducted to demonstrate the engineering feasibility of the DAR concept. The DAR concept is being investigated because it offers numerous potential performance and economic advantages for production of electricity when compared to other solar receiver designs. The PRE utilized a 1-m wide by 6-m long absorber panel. The salt flow tests are being used to investigate component performance, panel deformations, and fluid stability. Salt flow testing has demonstrated that all the DAR components work as designed and that there are fluid stability issues that need to be addressed. Future solar testing will include steady-state and transient experiments, thermal loss measurements, responses to severe flux and temperature gradients and determination of peak flux capability, and optimized operation. In this paper, we describe the design, construction, and some preliminary flow test results of the Panel Research Experiment. 11 refs., 8 figs., 2 tabs.« less

  18. Designing With Empathy: Humanizing Narratives for Inspired Healthcare Experiences.

    PubMed

    Carmel-Gilfilen, Candy; Portillo, Margaret

    2016-01-01

    Designers can and should play a critical role in shaping a holistic healthcare experience by creating empathetic design solutions that foster a culture of care for patients, families, and staff. Using narrative inquiry as a design tool, this case study shares strategies for promoting empathy. Designing for patient-centered care infuses empathy into the creative process. Narrative inquiry offers a methodology to think about and create empathetic design that enhances awareness, responsiveness, and accountability. This article shares discoveries from a studio on empathetic design within an outpatient cancer care center. The studio engaged students in narrative techniques throughout the design process by incorporating aural, visual, and written storytelling. Benchmarking, observations, and interviews were merged with data drawn from scholarly evidence-based design literature reviews. Using an empathy-focused design process not only motivated students to be more engaged in the project but facilitated the generation of fresh and original ideas. Design solutions were innovative and impactful in supporting the whole person. Similarities as well as differences defined empathetic cancer care across projects and embodied concepts of design empowerment, design for the whole person, and design for healing. By becoming more conscious of empathy, those who create healthcare environments can better connect holistically to the user to take an experiential approach to design. Explicitly developing a mind-set that raises empathy to the forefront of the design process offers a breakthrough in design thinking that bridges the gap between what might be defined as "good design" and patient-centered care. © The Author(s) 2015.

  19. Diamond anvils with a round table designed for high pressure experiments in DAC

    NASA Astrophysics Data System (ADS)

    Dubrovinsky, Leonid; Koemets, Egor; Bykov, Maxim; Bykova, Elena; Aprilis, Georgios; Pakhomova, Anna; Glazyrin, Konstantin; Laskin, Alexander; Prakapenka, Vitali B.; Greenberg, Eran; Dubrovinskaia, Natalia

    2017-10-01

    Here, we present new Diamond Anvils with a Round Table (DART-anvils) designed for applications in the diamond anvil cell (DAC) technique. The main features of the new DART-anvil design are a spherical shape of both the crown and the table of a diamond and the position of the centre of the culet exactly in the centre of the sphere. The performance of DART-anvils was tested in a number of high pressure high-temperature experiments at different synchrotron beamlines. These experiments demonstrated a number of advantages, which are unavailable with any of the hitherto known anvil designs. Use of DART-anvils enables to realise in situ single-crystal X-ray diffraction experiments with laser heating using stationary laser-heating setups; eliminating flat-plate design of conventional anvils, DART-anvils make the cell alignment easier; working as solid immersion lenses, they provide additional magnification of the sample in a DAC and improve the image resolution.

  20. Analysis of the ORNL/TSF GCFR Grid-Plate Shield Design Confirmation Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, C.O.; Cramer, S.N.; Ingersoll, D.T.

    1979-08-01

    The results of the analysis of the GCFR Grid-Plate Shield Design Confirmation Experiment are presented. The experiment, performed at the ORNL Tower Shielding Facility, was designed to test the adequacy of methods and data used in the analysis of the GCFR design. In particular, the experiment tested the adequacy of methods to calculate: (1) axial neutron streaming in the GCFR core and axial blanket, (2) the amount and location of the maximum fast-neutron exposure to the grid plate, and (3) the neutron source leaving the top of the grid plate and entering the upper plenum. Other objectives of the experimentmore » were to verify the grid-plate shielding effectiveness and to assess the effects of fuel-pin and subassembly spacing on radiation levels in the GCFR. The experimental mockups contained regions representing the GCFR core/blanket region, the grid-plate shield section, and the grid plate. Most core design options were covered by allowing: (1) three different spacings between fuel subassemblies, (2) two different void fractions within a subassembly by variation of the number of fuel pins, and (3) a mockup of a control-rod channel.« less

  1. Design of the NASA Lewis 4-Port Wave Rotor Experiment

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    1997-01-01

    Pressure exchange wave rotors, used in a topping stage, are currently being considered as a possible means of increasing the specific power, and reducing the specific fuel consumption of gas turbine engines. Despite this interest, there is very little information on the performance of a wave rotor operating on the cycle (i.e., set of waves) appropriate for use in a topping stage. One such cycle, which has the advantage of being relatively easy to incorporate into an engine, is the four-port cycle. Consequently, an experiment to measure the performance of a four-port wave rotor for temperature ratios relevant to application as a topping cycle for a gas turbine engine has been designed and built at NASA Lewis. The design of the wave rotor is described, together with the constraints on the experiment.

  2. An industrial approach to design compelling VR and AR experience

    NASA Astrophysics Data System (ADS)

    Richir, Simon; Fuchs, Philippe; Lourdeaux, Domitile; Buche, Cédric; Querrec, Ronan

    2013-03-01

    The convergence of technologies currently observed in the field of VR, AR, robotics and consumer electronic reinforces the trend of new applications appearing every day. But when transferring knowledge acquired from research to businesses, research laboratories are often at a loss because of a lack of knowledge of the design and integration processes in creating an industrial scale product. In fact, the innovation approaches that take a good idea from the laboratory to a successful industrial product are often little known to researchers. The objective of this paper is to present the results of the work of several research teams that have finalized a working method for researchers and manufacturers that allow them to design virtual or augmented reality systems and enable their users to enjoy "a compelling VR experience". That approach, called "the I2I method", present 11 phases from "Establishing technological and competitive intelligence and industrial property" to "Improvements" through the "Definition of the Behavioral Interface, Virtual Environment and Behavioral Software Assistance". As a result of the experience gained by various research teams, this design approach benefits from contributions from current VR and AR research. Our objective is to validate and continuously move such multidisciplinary design team methods forward.

  3. Designing Curricular Experiences that Promote Young Adolescents' Cognitive Growth

    ERIC Educational Resources Information Center

    Brown, Dave F.; Canniff, Mary

    2007-01-01

    One of the most challenging daily experiences of teaching young adolescents is helping them transition from Piaget's concrete to the formal operational stage of cognitive development during the middle school years. Students who have reached formal operations can design and test hypotheses, engage in deductive reasoning, use flexible thinking,…

  4. Vanguard/PLACE experiment system design and test plan

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.

    1973-01-01

    A system design and test plan are described for operational evaluation of the NASA-Goddard position location and aircraft communications equipment (PLACE), at C band (4/6GHz), using NASA's ship, the USNS Vanguard, and the ATS 3 and ATS 5 synchronous satellites. The Sea Test phase, extending from March 29, 1973 to April 15, 1973 was successfully completed; the principal objectives of the experiment were achieved. Typical PLACE-computed, position-location data is shown for the Vanguard. Position location and voice-quality measurements were excellent; ship position was determined within 2 nmi; high-quality, 2-way voice transmissions resulted as determined from audience participation, intelligibility and articulation-index analysis. A C band/L band satellite trilateration experiment is discussed.

  5. Experiences of Computer Science Curriculum Design: A Phenomenological Study

    ERIC Educational Resources Information Center

    Sloan, Arthur; Bowe, Brian

    2015-01-01

    This paper presents a qualitative study of 12 computer science lecturers' experiences of curriculum design of several degree programmes during a time of transition from year-long to semesterised courses, due to institutional policy change. The background to the study is outlined, as are the reasons for choosing the research methodology. The main…

  6. Conceptual design of initial opacity experiments on the national ignition facility

    NASA Astrophysics Data System (ADS)

    Heeter, R. F.; Bailey, J. E.; Craxton, R. S.; Devolder, B. G.; Dodd, E. S.; Garcia, E. M.; Huffman, E. J.; Iglesias, C. A.; King, J. A.; Kline, J. L.; Liedahl, D. A.; McKenty, P. W.; Opachich, Y. P.; Rochau, G. A.; Ross, P. W.; Schneider, M. B.; Sherrill, M. E.; Wilson, B. G.; Zhang, R.; Perry, T. S.

    2017-02-01

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative-convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures eV and electron densities 21~\\text{cm}-3$ . The iron will be probed using continuum X-rays emitted in a ps, diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design, of the NIF beams deliver 500 kJ to the mm diameter hohlraum, and the remaining directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.

  7. Experimental design, power and sample size for animal reproduction experiments.

    PubMed

    Chapman, Phillip L; Seidel, George E

    2008-01-01

    The present paper concerns statistical issues in the design of animal reproduction experiments, with emphasis on the problems of sample size determination and power calculations. We include examples and non-technical discussions aimed at helping researchers avoid serious errors that may invalidate or seriously impair the validity of conclusions from experiments. Screen shots from interactive power calculation programs and basic SAS power calculation programs are presented to aid in understanding statistical power and computing power in some common experimental situations. Practical issues that are common to most statistical design problems are briefly discussed. These include one-sided hypothesis tests, power level criteria, equality of within-group variances, transformations of response variables to achieve variance equality, optimal specification of treatment group sizes, 'post hoc' power analysis and arguments for the increased use of confidence intervals in place of hypothesis tests.

  8. Designing Learning Objects that Afford Learners the Experience of Important Variations in Chinese Characters

    ERIC Educational Resources Information Center

    Lam, H. C.; Ki, W. W.; Chung, A. L. S.; Ko, P. Y.; Lai, A. C. Y.; Lai, S. M. S.; Chou, P. W. Y.; Lau, E. C. C.

    2004-01-01

    Effective teaching should focus the attention of learners to its essential aspects. It follows that instructional software can be designed in such a way that allows learners to experience the important variations in the critical aspects of the content to be learned. This paper reports on the experience of designing such special kinds of…

  9. Preliminary design of two Space Shuttle fluid physics experiments

    NASA Technical Reports Server (NTRS)

    Gat, N.; Kropp, J. L.

    1984-01-01

    The mid-deck lockers of the STS and the requirements for operating an experiment in this region are described. The design of the surface tension induced convection and the free surface phenomenon experiments use a two locker volume with an experiment unique structure as a housing. A manual mode is developed for the Surface Tension Induced Convection experiment. The fluid is maintained in an accumulator pre-flight. To begin the experiment, a pressurized gas drives the fluid into the experiment container. The fluid is an inert silicone oil and the container material is selected to be comparable. A wound wire heater, located axisymmetrically above the fluid can deliver three wattages to a spot on the fluid surface. These wattages vary from 1-15 watts. Fluid flow is observed through the motion of particles in the fluid. A 5 mw He/Ne laser illuminates the container. Scattered light is recorded by a 35mm camera. The free surface phenomena experiment consists of a trapezoidal cell which is filled from the bottom. The fluid is photographed at high speed using a 35mm camera which incorporated the entire cell length in the field of view. The assembly can incorporate four cells in one flight. For each experiment, an electronics block diagram is provided. A control panel concept is given for the surface induced convection. Both experiments are within the mid-deck locker weight and c-g limits.

  10. THE EXPERIMENTAL DESIGN FOR BeO IRAADIATION EXPERIMENTS ORNL 41-8 AND ORNL 41-9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, D.A.

    1962-07-18

    The experimental plan for irradiating BeO pellets in Experiments ORNL 41- 8 and ORNL 41-9 was chosen in accordance with the principles of experimental design. The design is known by statisticians as a 2/sup 5/ factorial experiment confound'' in six replications. Five variables---size, density, grain size, temperature and time--are controlled at two levels to form the basic 2i factorial experiment. The sixth variable, neutron flux, is introduced by confounding on higher-order interactions. An explanation is presented in nontechnical language the means by which the aims of the experimenters and the physical conditions affecting the experiment were utilized in constructing themore » experimental design. (auth)« less

  11. Do We Need to Design Course-Based Undergraduate Research Experiences for Authenticity?

    PubMed Central

    Rowland, Susan; Pedwell, Rhianna; Lawrie, Gwen; Lovie-Toon, Joseph; Hung, Yu

    2016-01-01

    The recent push for more authentic teaching and learning in science, technology, engineering, and mathematics indicates a shared agreement that undergraduates require greater exposure to professional practices. There is considerable variation, however, in how “authentic” science education is defined. In this paper we present our definition of authenticity as it applies to an “authentic” large-scale undergraduate research experience (ALURE); we also look to the literature and the student voice for alternate perceptions around this concept. A metareview of science education literature confirmed the inconsistency in definitions and application of the notion of authentic science education. An exploration of how authenticity was explained in 604 reflections from ALURE and traditional laboratory students revealed contrasting and surprising notions and experiences of authenticity. We consider the student experience in terms of alignment with 1) the intent of our designed curriculum and 2) the literature definitions of authentic science education. These findings contribute to the conversation surrounding authenticity in science education. They suggest two things: 1) educational experiences can have significant authenticity for the participants, even when there is no purposeful design for authentic practice, and 2) the continuing discussion of and design for authenticity in UREs may be redundant. PMID:27909029

  12. Sodium Handling Technology and Engineering Design of the Madison Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Forest, C. B.; O'Connell, R.; Wright, A.; Robinson, K.

    1998-11-01

    A new liquid metal MHD experiment is being constructed at the University of Wisconsin to test several key predictions of dynamo theory: magnetic instabilities driven by sheared flow, the effects of turbulence on current generation, and the back-reaction of the self-generated magnetic field on the fluid motion which brings saturation. This presentation describes the engineering design of the experiment, which is a 0.5 m radius spherical vessel, filled with liquid sodium at 150 degrees Celsius. The experiment is designed to achieve a magnetic Reynolds number in excess of 100, which requires approximately 80 Hp of mechanical drive, producing flow velocities in sodium of 15 m/s through impellers. Handling liquid sodium offers a number of technical challenges, but routine techniques have been developed over the past several decades for safely handling large quantities for the fast breeder reactor. The handling strategy is discussed, technical details concerning seals and pressurazation are presented, and safety elements are highlighted.

  13. PERLE. Powerful energy recovery linac for experiments. Conceptual design report

    NASA Astrophysics Data System (ADS)

    Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.

    2018-06-01

    A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.

  14. In-situ implant containing PCL-curcumin nanoparticles developed using design of experiments.

    PubMed

    Kasinathan, Narayanan; Amirthalingam, Muthukumar; Reddy, Neetinkumar D; Jagani, Hitesh V; Volety, Subrahmanyam M; Rao, Josyula Venkata

    2016-01-01

    Polymeric delivery system is useful in reducing pharmacokinetic limitations viz., poor absorption and rapid elimination associated with clinical use of curcumin. Design of experiment is a precise and cost effective tool useful in analyzing the effect of independent variables and their interaction on the product attributes. To evaluate the effect of process variables involved in preparation of curcumin-loaded polycaprolactone (PCL) nanoparticles (CPN). In the present experiment, CPNs were prepared by emulsification solvent evaporation technique. The effect of independent variables on the dependent variable was analyzed using design of experiments. Anticancer activity of CPN was studied using Ehrlich ascites carcinoma (EAC) model. In-situ implant was developed using PLGA as polymer. The effect of independent variables was studied in two stages. First, the effect of drug-polymer ratio, homogenization speed and surfactant concentration on size was studied using factorial design. The interaction of homogenization speed with homogenization time on mean particle size of CPN was then evaluated using central composite design. In the second stage, the effect of these variables (under the conditions optimized for producing particles <500 nm) on percentage drug encapsulation was evaluated using factorial design. CPN prepared under optimized conditions were able to control the development of EAC in Swiss albino mice and enhanced their survival time. PLGA based in-situ implant containing CPN prepared under optimized conditions showed sustained drug release. This implant could be further evaluated for pharmacological activities.

  15. Apparatus analysis and preliminary design of low gravity porous solids experiment for STS Orbiter mid-deck

    NASA Technical Reports Server (NTRS)

    Fleeter, R. D.; Kropp, J. L.

    1983-01-01

    The apparatus analysis laboratory equipment design and fabrication and the preliminary design of the Combustion of Porous Solids Experiment for operation in the mid-deck area of the Shuttle are described. The apparatus analysis indicated that the mid-deck region of the STS was a feasible region of the Shuttle for operation. A sixteen tube concept was developed with tubes of 75 cm length and up to 5.6 cm accommodated. The experiment is viewed by IR sensors and a 16 mm camera. Laboratory equipment was designed and fabricated to test the parible injection, mixing and venting concepts. This equipment was delivered to NASA/LeRC. A preliminary design was made for the experiment based upon the apparatus analysis. The design incorporated results from the Phase ""O'' Safety Review. This design utilizes a closed tube concept in which the particles are stored, injected and burned with no coupling to the Shuttle environment. Drawings of the major components and an assembly are given. The electronics are described for the experiment. An equipment list is presented and an experiment weight estimate is determined. The mission operation requirements are outlined.

  16. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.; Moridis, G.J.; Pruess, K.

    1994-01-01

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

  17. Revealing Student Thinking about Experimental Design and the Roles of Control Experiments

    ERIC Educational Resources Information Center

    Shi, Jia; Power, Joy M.; Klymkowsky, Michael W.

    2011-01-01

    Well-designed "controls" distinguish experimental from non-experimental studies. Surprisingly, we found that a high percentage of students had difficulty identifying control experiments even after completing three university-level laboratory courses. To address this issue, we designed and ran a revised cell biology lab course in which…

  18. How Instructional Design Experts Use Knowledge and Experience to Solve Ill-Structured Problems

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Stepich, Donald A.; York, Cindy S.; Stickman, Ann; Wu, Xuemei (Lily); Zurek, Stacey; Goktas, Yuksel

    2008-01-01

    This study examined how instructional design (ID) experts used their prior knowledge and previous experiences to solve an ill-structured instructional design problem. Seven experienced designers used a think-aloud procedure to articulate their problem-solving processes while reading a case narrative. Results, presented in the form of four…

  19. Process optimization using combinatorial design principles: parallel synthesis and design of experiment methods.

    PubMed

    Gooding, Owen W

    2004-06-01

    The use of parallel synthesis techniques with statistical design of experiment (DoE) methods is a powerful combination for the optimization of chemical processes. Advances in parallel synthesis equipment and easy to use software for statistical DoE have fueled a growing acceptance of these techniques in the pharmaceutical industry. As drug candidate structures become more complex at the same time that development timelines are compressed, these enabling technologies promise to become more important in the future.

  20. Experiment Design for Complex VTOL Aircraft with Distributed Propulsion and Tilt Wing

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Landman, Drew

    2015-01-01

    Selected experimental results from a wind tunnel study of a subscale VTOL concept with distributed propulsion and tilt lifting surfaces are presented. The vehicle complexity and automated test facility were ideal for use with a randomized designed experiment. Design of Experiments and Response Surface Methods were invoked to produce run efficient, statistically rigorous regression models with minimized prediction error. Static tests were conducted at the NASA Langley 12-Foot Low-Speed Tunnel to model all six aerodynamic coefficients over a large flight envelope. This work supports investigations at NASA Langley in developing advanced configurations, simulations, and advanced control systems.

  1. Science, technology and mission design for LATOR experiment

    NASA Astrophysics Data System (ADS)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L.

    2017-11-01

    The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system - the close proximity to the Sun. By using independent time-series of highly accurate measurements of the Shapiro time-delay (laser ranging accurate to 1 cm) and interferometric astrometry (accurate to 0.1 picoradian), LATOR will measure gravitational deflection of light by the solar gravity with accuracy of 1 part in a billion, a factor {30,000 better than currently available. LATOR will perform series of highly-accurate tests of gravitation and cosmology in its search for cosmological remnants of scalar field in the solar system. We present science, technology and mission design for the LATOR mission.

  2. From the past to the future: Integrating work experience into the design process.

    PubMed

    Bittencourt, João Marcos; Duarte, Francisco; Béguin, Pascal

    2017-01-01

    Integrating work activity issues into design process is a broadly discussed theme in ergonomics. Participation is presented as the main means for such integration. However, a late participation can limit the development of both project solutions and future work activity. This article presents the concept of construction of experience aiming at the articulated development of future activities and project solutions. It is a non-teleological approach where the initial concepts will be transformed by the experience built up throughout the design process. The method applied was a case study of an ergonomic participation during the design of a new laboratory complex for biotechnology research. Data was obtained through analysis of records in a simulation process using a Lego scale model and interviews with project participants. The simulation process allowed for developing new ways of working and generating changes in the initial design solutions, which enable workers to adopt their own developed strategies for conducting work more safely and efficiently in the future work system. Each project decision either opens or closes a window of opportunities for developing a future activity. Construction of experience in a non-teleological design process allows for understanding the consequences of project solutions for future work.

  3. The Design of PSB-VVER Experiments Relevant to Accident Management

    NASA Astrophysics Data System (ADS)

    Nevo, Alessandro Del; D'Auria, Francesco; Mazzini, Marino; Bykov, Michael; Elkin, Ilya V.; Suslov, Alexander

    Experimental programs carried-out in integral test facilities are relevant for validating the best estimate thermal-hydraulic codes(1), which are used for accident analyses, design of accident management procedures, licensing of nuclear power plants, etc. The validation process, in fact, is based on well designed experiments. It consists in the comparison of the measured and calculated parameters and the determination whether a computer code has an adequate capability in predicting the major phenomena expected to occur in the course of transient and/or accidents. University of Pisa was responsible of the numerical design of the 12 experiments executed in PSB-VVER facility (2), operated at Electrogorsk Research and Engineering Center (Russia), in the framework of the TACIS 2.03/97 Contract 3.03.03 Part A, EC financed (3). The paper describes the methodology adopted at University of Pisa, starting form the scenarios foreseen in the final test matrix until the execution of the experiments. This process considers three key topics: a) the scaling issue and the simulation, with unavoidable distortions, of the expected performance of the reference nuclear power plants; b) the code assessment process involving the identification of phenomena challenging the code models; c) the features of the concerned integral test facility (scaling limitations, control logics, data acquisition system, instrumentation, etc.). The activities performed in this respect are discussed, and emphasis is also given to the relevance of the thermal losses to the environment. This issue affects particularly the small scaled facilities and has relevance on the scaling approach related to the power and volume of the facility.

  4. Building International Experiences into an Engineering Curriculum--A Design Project-Based Approach

    ERIC Educational Resources Information Center

    Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat

    2014-01-01

    This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural…

  5. Two-phase reduced gravity experiments for a space reactor design

    NASA Technical Reports Server (NTRS)

    Antoniak, Zenen I.

    1987-01-01

    Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.

  6. An Investigation of Experiment Designs for Applications in Biofeedback-Performance Research Methodologies.

    DTIC Science & Technology

    1980-09-01

    used to accomplish the necessary research . One such experi- ment design and its relationship to validity will be explored next. Nonequivalent Control ...interpreting the results. The non- equivalent control group design is of the quasi-experimental variety and is widely used in educational research . As...biofeed- back research literature is the controlled group outcome study. This design has also been discussed in Chapter III in two forms as the

  7. Aircraft integrated design and analysis: A classroom experience

    NASA Technical Reports Server (NTRS)

    1988-01-01

    AAE 451 is the capstone course required of all senior undergraduates in the School of Aeronautics and Astronautics at Purdue University. During the past year the first steps of a long evolutionary process were taken to change the content and expectations of this course. These changes are the result of the availability of advanced computational capabilities and sophisticated electronic media availability at Purdue. This presentation will describe both the long range objectives and this year's experience using the High Speed Commercial Transport (HSCT) design, the AIAA Long Duration Aircraft design and a Remotely Piloted Vehicle (RPV) design proposal as project objectives. The central goal of these efforts was to provide a user-friendly, computer-software-based, environment to supplement traditional design course methodology. The Purdue University Computer Center (PUCC), the Engineering Computer Network (ECN), and stand-alone PC's were used for this development. This year's accomplishments centered primarily on aerodynamics software obtained from the NASA Langley Research Center and its integration into the classroom. Word processor capability for oral and written work and computer graphics were also blended into the course. A total of 10 HSCT designs were generated, ranging from twin-fuselage and forward-swept wing aircraft, to the more traditional delta and double-delta wing aircraft. Four Long Duration Aircraft designs were submitted, together with one RPV design tailored for photographic surveillance. Supporting these activities were three video satellite lectures beamed from NASA/Langley to Purdue. These lectures covered diverse areas such as an overview of HSCT design, supersonic-aircraft stability and control, and optimization of aircraft performance. Plans for next year's effort will be reviewed, including dedicated computer workstation utilization, remote satellite lectures, and university/industrial cooperative efforts.

  8. How Design Experiments Can Inform Teaching and Learning: Teacher-Researchers as Collaborators in Educational Research

    ERIC Educational Resources Information Center

    Jitendra, Asha K.

    2005-01-01

    In this commentary, I summarize my own research with colleagues to affirm Dr. Gersten's call for considering design experiments prior to conducting intervention research. I describe how design experiments not only can inform teaching and the learning of innovative approaches, but also hold the promise of effectively bridging the…

  9. Implications of Measurement Assay Type in Design of HIV Experiments.

    PubMed

    Cannon, LaMont; Jagarapu, Aditya; Vargas-Garcia, Cesar A; Piovoso, Michael J; Zurakowski, Ryan

    2017-12-01

    Time series measurements of circular viral episome (2-LTR) concentrations enable indirect quantification of persistent low-level Human Immunodeficiency Virus (HIV) replication in patients on Integrase-Inhibitor intensified Combined Antiretroviral Therapy (cART). In order to determine the magnitude of these low level infection events, blood has to be drawn from a patients at a frequency and volume that is strictly regulated by the Institutional Review Board (IRB). Once the blood is drawn, the 2-LTR concentration is determined by quantifying the amount of HIV DNA present in the sample via a PCR (Polymerase Chain Reaction) assay. Real time quantitative Polymerase Chain Reaction (qPCR) is a widely used method of performing PCR; however, a newer droplet digital Polymerase Chain Reaction (ddPCR) method has been shown to provide more accurate quantification of DNA. Using a validated model of HIV viral replication, this paper demonstrates the importance of considering DNA quantification assay type when optimizing experiment design conditions. Experiments are optimized using a Genetic Algorithm (GA) to locate a family of suboptimal sample schedules which yield the highest fitness. Fitness is defined as the expected information gained in the experiment, measured by the Kullback-Leibler Divergence (KLD) between the prior and posterior distributions of the model parameters. We compare the information content of the optimized schedules to uniform schedules as well as two clinical schedules implemented by researchers at UCSF and the University of Melbourne. This work shows that there is a significantly greater gain information in experiments using a ddPCR assay vs. a qPCR assay and that certain experiment design considerations should be taken when using either assay.

  10. System design and animal experiment study of a novel minimally invasive surgical robot.

    PubMed

    Wang, Wei; Li, Jianmin; Wang, Shuxin; Su, He; Jiang, Xueming

    2016-03-01

    Robot-assisted minimally invasive surgery has shown tremendous advances over the traditional technique. However, currently commercialized systems are large and complicated, which vastly raises the system cost and operation room requirements. A MIS robot named 'MicroHand' was developed over the past few years. The basic principle and the key technologies are analyzed in this paper. Comparison between the proposed robot and the da Vinci system is also presented. Finally, animal experiments were carried out to test the performance of MicroHand. Fifteen animal experiments were carried out from July 2013 to December 2013. All animal experiments were finished successfully. The proposed design method is an effective way to resolve the drawbacks of previous generations of the da Vinci surgical system. The animal experiment results confirmed the feasibility of the design. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Searching for Authentic Context in Designing PISA-like Mathematics Problem: From Indoor to Outdoor Field Experience

    NASA Astrophysics Data System (ADS)

    Siswono, T. Y. E.; Kohar, A. W.; Rosyidi, A. H.; Hartono, S.; Masriyah

    2018-01-01

    Designing problem like in PISA is known as a challenging activity for teachers particularly as the use of authentic context within that type of problem. This paper aims to describe the experiences of secondary mathematics teachers in designing PISA-like problems within an innovative training program focusing on building teachers’ understanding on the concept of mathematical literacy. The teachers were engaged in a set of problem-solving and problem-posing activities using PISA-based problem within indoor and outdoor field experiences. Within indoor field experience, the teachers worked collaboratively in groups on designing PISA-like problems with a given context through problem generation and reformulation techniques. Within outdoor field experience, they worked on designing PISA-like problems with self-chosen context from the place where the outdoor field experience took place. Our analysis indicates that there were improvements on the PISA-like problems designed by teachers based on its level use of context from indoor to outdoor experience. Also, the teachers were relatively successful with creating appropriate and motivating contexts by harnessing a variety of context consisting of personal, occupational, societal, and scientific contexts. However, they still experienced difficulties in turning these contexts into an appropriate problem satisfying PISA framework such as regarding authenticity of context use, language structure, and PISA task profile.

  12. On Becoming a Civic-Minded Instructional Designer: An Ethnographic Study of an Instructional Design Experience

    ERIC Educational Resources Information Center

    Yusop, Farrah Dina; Correia, Ana-Paula

    2014-01-01

    This ethnographic study took place in a graduate course at a large research university in the Midwestern United States. It presents an in-depth examination of the experiences and challenges of a group of four students learning to be Instructional Design and Technology professionals who are concerned with the well-being of all members of a society,…

  13. Scaling and design of landslide and debris-flow experiments

    USGS Publications Warehouse

    Iverson, Richard M.

    2015-01-01

    Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using dimensional analysis or – more rigorously – by normalizing differential equations that describe the evolving dynamics of the system. Both of these approaches show that, relative to full-scale natural events, miniaturized landslides and debris flows exhibit disproportionately large effects of viscous shear resistance and cohesion as well as disproportionately small effects of excess pore-fluid pressure that is generated by debris dilation or contraction. This behavioral divergence grows in proportion to H3, where H is the thickness of a moving mass. Therefore, to maximize geomorphological relevance, experiments with wet landslides and debris flows must be conducted at the largest feasible scales. Another important consideration is that, unlike stream flows, landslides and debris flows accelerate from statically balanced initial states. Thus, no characteristic macroscopic velocity exists to guide experiment scaling and design. On the other hand, macroscopic gravity-driven motion of landslides and debris flows evolves over a characteristic time scale (L/g)1/2, where g is the magnitude of gravitational acceleration and L is the characteristic length of the moving mass. Grain-scale stress generation within the mass occurs on a shorter time scale, H/(gL)1/2, which is inversely proportional to the depth-averaged material shear rate. A separation of these two time scales exists if the criterion H/L < < 1 is satisfied, as is commonly the case. This time scale separation indicates that steady-state experiments can be used to study some details of landslide and debris-flow behavior but cannot be used to study macroscopic landslide or debris-flow dynamics.

  14. DIME Students Discuss Final Drop Tower Experiment Design

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Students discuss fine points of their final design for the Drop Tower experiment during the second Dropping in a Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.

  15. PV-Diesel Hybrid SCADA Experiment Network Design

    NASA Technical Reports Server (NTRS)

    Kalu, Alex; Durand, S.; Emrich, Carol; Ventre, G.; Wilson, W.; Acosta, R.

    1999-01-01

    The essential features of an experimental network for renewable power system satellite based supervisory, control and data acquisition (SCADA) are communication links, controllers, diagnostic equipment and a hybrid power system. Required components for implementing the network consist of two satellite ground stations, to satellite modems, two 486 PCs, two telephone receivers, two telephone modems, two analog telephone lines, one digital telephone line, a hybrid-power system equipped with controller and a satellite spacecraft. In the technology verification experiment (TVE) conducted by Savannah State University and Florida Solar Energy Center, the renewable energy hybrid system is the Apex-1000 Mini-Hybrid which is equipped with NGC3188 for user interface and remote control and the NGC2010 for monitoring and basic control tasks. This power system is connected to a satellite modem via a smart interface, RS232. Commands are sent to the power system control unit through a control PC designed as PC1. PC1 is thus connected to a satellite model through RS232. A second PC, designated PC2, the diagnostic PC is connected to both satellite modems via separate analog telephone lines for checking modems'health. PC2 is also connected to PC1 via a telephone line. Due to the unavailability of a second ground station for the ACTS, one ground station is used to serve both the sending and receiving functions in this experiment. Signal is sent from the control PC to the Hybrid system at a frequency f(sub 1), different from f(sub 2), the signal from the hybrid system to the control PC. f(sub l) and f(sub 2) are sufficiently separated to avoid interference.

  16. Experimental Equipment Design and Fabrication Study for Delta-G Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Research Machine Shop at UAH did not develop any new technology in the performance of the following tasks. All tasks were performed as specified.UAH RMS shall design and fabricate a "poor" model of a silicon-carbide high-temperature crucible with dimensions of 8 inches in diameter and 4 inches high-temperature crucible for pouring liquid ceramic materials at 1200 C into molds from heating ovens. The crucible shall also be designed with a manipulation fixture to facilitate holding and pouring of the heated liquid material. UAH RMS shall investigate the availability of 400 Hz, high-current (65 volts @ 100 amperes) power systems for use in high-speed rotating disk experiments, UAH RMS shall investigate, develop a methodology, and experiment on the application of filament-wound carbon fibers to the periphery of ceramic superconductors to withstand high levels of rotational g-forces. UAH RMS shall provide analytical data to verify the resulting improved disc with carbon composite fibers.

  17. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    NASA Astrophysics Data System (ADS)

    Aleong, Richard James Chung Mun

    , relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.

  18. Social Design Experiments: Toward Equity by Design

    ERIC Educational Resources Information Center

    Gutiérrez, Kris D.; Jurow, A. Susan

    2016-01-01

    In this article, we advance an approach to design research that is organized around a commitment to transforming the educational and social circumstances of members of non-dominant communities as a means of promoting social equity and learning. We refer to this approach as social design experimentation. The goals of social design experiments…

  19. Using diagnostic experiences in experience-based innovative design

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sattiraju; Goel, Ashok K.

    1992-03-01

    Designing a novel class of devices requires innovation. Often, the design knowledge of these devices does not identify and address the constraints that are required for their performance in the real world operating environment. So any new design adapted from these devices tend to be similarly sketchy. In order to address this problem, we propose a case-based reasoning method called performance driven innovation (PDI). We model the design as a dynamic process, arrive at a design by adaptation from the known designs, generate failures for this design for some new constraints, and then use this failure knowledge to generate the required design knowledge for the new constraints. In this paper, we discuss two aspects of PDI: the representation of PDI cases and the translation of the failure knowledge into design knowledge for a constraint. Each case in PDI has two components: design and failure knowledge. Both of them are represented using a substance-behavior-function model. Failure knowledge has internal device failure behaviors and external environmental behaviors. The environmental behavior, for a constraint, interacting with the design behaviors, results in the failure internal behavior. The failure adaptation strategy generates functions, from the failure knowledge, which can be addressed using the routine design methods. These ideas are illustrated using a coffee-maker example.

  20. Best Bang for the Buck: Part 1 – The Size of Experiments Relative to Design Performance

    DOE PAGES

    Anderson-Cook, Christine Michaela; Lu, Lu

    2016-10-01

    There are many choices to make, when designing an experiment for a study, such as: what design factors to consider, which levels of the factors to use and which model to focus on. One aspect of design, however, is often left unquestioned: the size of the experiment. When learning about design of experiments, problems are often posed as "select a design for a particular objective with N runs." It’s tempting to consider the design size as a given constraint in the design-selection process. If you think of learning through designed experiments as a sequential process, however, strategically planning for themore » use of resources at different stages of data collection can be beneficial: Saving experimental runs for later is advantageous if you can efficiently learn with less in the early stages. Alternatively, if you’re too frugal in the early stages, you might not learn enough to proceed confidently with the next stages. Therefore, choosing the right-sized experiment is important—not too large or too small, but with a thoughtful balance to maximize the knowledge gained given the available resources. It can be a great advantage to think about the design size as flexible and include it as an aspect for comparisons. Sometimes you’re asked to provide a small design that is too ambitious for the goals of the study. Finally, if you can show quantitatively how the suggested design size might be inadequate or lead to problems during analysis—and also offer a formal comparison to some alternatives of different (likely larger) sizes—you may have a better chance to ask for additional resources to deliver statistically sound and satisfying results« less

  1. User Experience Design of History Game: An Analysis Review and Evaluation Study for Malaysia Context

    ERIC Educational Resources Information Center

    Wong, Seng Yue; Ghavifekr, Simin

    2018-01-01

    User experience (UX) and user interface design of an educational game are important in enhancing and sustaining the utilisation of Game Based Learning (GBL) in learning history. Thus, this article provides a detailed literature review on history learning problems, as well as previous studies on user experience in game design. Future studies on…

  2. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    NASA Technical Reports Server (NTRS)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  3. Porous glass electroosmotic pumps: design and experiments.

    PubMed

    Yao, Shuhuai; Hertzog, David E; Zeng, Shulin; Mikkelsen, James C; Santiago, Juan G

    2003-12-01

    An analytical model for electroosmotic flow rate, total pump current, and thermodynamic efficiency reported in a previous paper has been applied as a design guideline to fabricate porous-structure EO pumps. We have fabricated sintered-glass EO pumps that provide maximum flow rates and pressure capacities of 33 ml/min and 1.3 atm, respectively, at applied potential 100 V. These pumps are designed to be integrated with two-phase microchannel heat exchangers with load capacities of order 100 W and greater. Experiments were conducted with pumps of various geometries and using a relevant, practical range of working electrolyte ionic concentration. Characterization of the pumping performance are discussed in the terms of porosity, tortuosity, pore size, and the dependence of zeta potential on bulk ion density of the working solution. The effects of pressure and flow rate on pump current and thermodynamic efficiency are analyzed and compared to the model prediction. In particular, we explore the important tradeoff between increasing flow rate capacity and obtaining adequate thermodynamic efficiency. This research aims to demonstrate the performance of EOF pump systems and to investigate optimal and practical pump designs. We also present a gas recombination device that makes possible the implementation of this pumping technology into a closed-flow loop where electrolytic gases are converted into water and reclaimed by the system.

  4. Creative Minds Abroad: How Design Students Make Meaning of Their International Education Experiences

    ERIC Educational Resources Information Center

    Johnson, Rachel Sherman

    2016-01-01

    The purpose of this study is to explore the ways in which students majoring in a design discipline make meaning of their study abroad experiences in relation to their creativity and creative design work. Students and recent alumni from the College of Design (CDes) at the University of Minnesota-Twin Cities (UMTC) who had studied abroad formed the…

  5. Design of an Experiment to Observe Laser-Plasma Interactions on NIKE

    NASA Astrophysics Data System (ADS)

    Phillips, L.; Weaver, J.; Manheimer, W.; Zalesak, S.; Schmitt, A.; Fyfe, D.; Afeyan, B.; Charbonneau-Lefort, M.

    2007-11-01

    Recent proposed designs (Obenschain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) that may lead, for example, to the generation of fast electrons. The proposed use of a 248 nm KrF laser to drive these targets is expected to minimize LPI; this is being studied by experiments at NRL's NIKE facility. We used a modification of the FAST code that models laser pulses with arbitrary spatial and temporal profiles to assist in designing these experiments. The goal is to design targets and pulseshapes to create plasma conditions that will produce sufficient growth of LPI to be observable on NIKE. Using, for example, a cryogenic DT target that is heated by a brief pulse and allowed to expand freely before interacting with a second, high-intensity pulse, allows the development of long scalelengths at low electron temperatures and leads to a predicted 20-efold growth in two-plasmon amplitude.

  6. The Design of Learning Experiences: A Connection to Physical Environments.

    ERIC Educational Resources Information Center

    Stueck, Lawrence E.; Tanner, C. Kenneth

    The school environment must create a rich, beautiful, dynamic, meaningful experience for students to learn; however, architects, school boards, and the state focus almost exclusively only on the building when making design decisions. This document lists specific aspects to developing a visionary campus: one that provides a three-dimensional…

  7. Conceptual design of initial opacity experiments on the national ignition facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R.  F.; Bailey, J.  E.; Craxton, R.  S.

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative–convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperaturesmore » $${\\geqslant}150$$ eV and electron densities$${\\geqslant}7\\times 10^{21}~\\text{cm}^{-3}$$. The iron will be probed using continuum X-rays emitted in a$${\\sim}200$$ ps,$${\\sim}200~\\unicode[STIX]{x03BC}\\text{m}$$diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design,$2/3$$of the NIF beams deliver 500 kJ to the$${\\sim}6$$ mm diameter hohlraum, and the remaining$$1/3$directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.« less

  8. An Initial Model for Generative Design Research: Bringing Together Generative Focus Group (GFG) and Experience Reflection Modelling (ERM)

    ERIC Educational Resources Information Center

    Bakirlioglu, Yekta; Ogur, Dilruba; Dogan, Cagla; Turhan, Senem

    2016-01-01

    Understanding people's experiences and the context of use of a product at the earliest stages of the design process has in the last decade become an important aspect of both the design profession and design education. Generative design research helps designers understand user experiences, while also throwing light on their current needs,…

  9. Educational Website Design Process: Changes in TPACK Competencies and Experiences

    ERIC Educational Resources Information Center

    Önal, Nezih; Alemdag, Ecenaz

    2018-01-01

    The number of technological pedagogical and content knowledge (TPACK) studies has been increasing day by day; however, limited number of studies has provided both quantitative and qualitative findings based on teachers' learning by design experiences. This study aimed to reveal the changes in pre-service teachers' TPACK competencies in the…

  10. Best Practices for Operando Battery Experiments: Influences of X-ray Experiment Design on Observed Electrochemical Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkiewicz, O. J.; Wiaderek, Kamila M.; Chupas, Peter J.

    Dynamic properties and multiscale complexities governing electrochemical energy storage in batteries are most ideally interrogated under simulated operating conditions within an electrochemical cell. We assess how electrochemical reactivity can be impacted by experiment design, including the X-ray measurements or by common features or adaptations of electrochemical cells that enable X-ray measurements.

  11. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  12. A differentiable reformulation for E-optimal design of experiments in nonlinear dynamic biosystems.

    PubMed

    Telen, Dries; Van Riet, Nick; Logist, Flip; Van Impe, Jan

    2015-06-01

    Informative experiments are highly valuable for estimating parameters in nonlinear dynamic bioprocesses. Techniques for optimal experiment design ensure the systematic design of such informative experiments. The E-criterion which can be used as objective function in optimal experiment design requires the maximization of the smallest eigenvalue of the Fisher information matrix. However, one problem with the minimal eigenvalue function is that it can be nondifferentiable. In addition, no closed form expression exists for the computation of eigenvalues of a matrix larger than a 4 by 4 one. As eigenvalues are normally computed with iterative methods, state-of-the-art optimal control solvers are not able to exploit automatic differentiation to compute the derivatives with respect to the decision variables. In the current paper a reformulation strategy from the field of convex optimization is suggested to circumvent these difficulties. This reformulation requires the inclusion of a matrix inequality constraint involving positive semidefiniteness. In this paper, this positive semidefiniteness constraint is imposed via Sylverster's criterion. As a result the maximization of the minimum eigenvalue function can be formulated in standard optimal control solvers through the addition of nonlinear constraints. The presented methodology is successfully illustrated with a case study from the field of predictive microbiology. Copyright © 2015. Published by Elsevier Inc.

  13. Nanosatellite optical downlink experiment: design, simulation, and prototyping

    NASA Astrophysics Data System (ADS)

    Clements, Emily; Aniceto, Raichelle; Barnes, Derek; Caplan, David; Clark, James; Portillo, Iñigo del; Haughwout, Christian; Khatsenko, Maxim; Kingsbury, Ryan; Lee, Myron; Morgan, Rachel; Twichell, Jonathan; Riesing, Kathleen; Yoon, Hyosang; Ziegler, Caleb; Cahoy, Kerri

    2016-11-01

    The nanosatellite optical downlink experiment (NODE) implements a free-space optical communications (lasercom) capability on a CubeSat platform that can support low earth orbit (LEO) to ground downlink rates>10 Mbps. A primary goal of NODE is to leverage commercially available technologies to provide a scalable and cost-effective alternative to radio-frequency-based communications. The NODE transmitter uses a 200-mW 1550-nm master-oscillator power-amplifier design using power-efficient M-ary pulse position modulation. To facilitate pointing the 0.12-deg downlink beam, NODE augments spacecraft body pointing with a microelectromechanical fast steering mirror (FSM) and uses an 850-nm uplink beacon to an onboard CCD camera. The 30-cm aperture ground telescope uses an infrared camera and FSM for tracking to an avalanche photodiode detector-based receiver. Here, we describe our approach to transition prototype transmitter and receiver designs to a full end-to-end CubeSat-scale system. This includes link budget refinement, drive electronics miniaturization, packaging reduction, improvements to pointing and attitude estimation, implementation of modulation, coding, and interleaving, and ground station receiver design. We capture trades and technology development needs and outline plans for integrated system ground testing.

  14. Experiment module concepts study. Volume 3: Module and subsystem design

    NASA Technical Reports Server (NTRS)

    Hunter, J. R.; Chiarappa, D. J.

    1970-01-01

    The final common module set exhibiting wide commonality is described. The set consists of three types of modules: one free flying module and two modules that operate attached to the space station. The common module designs provide for the experiment program as defined. The feasibility, economy, and practicality of these modules hinges on factors that do not affect the approach or results of the commonality process, but are important to the validity of the common module concepts. Implementation of the total experiment program requires thirteen common modules: five CM-1, five CM-3, and three CM-4 modules.

  15. Materials Experience as a Foundation for Materials and Design Education

    ERIC Educational Resources Information Center

    Pedgley, Owain; Rognoli, Valentina; Karana, Elvin

    2016-01-01

    An important body of research has developed in recent years, explaining ways in which product materials influence user experiences. A priority now is to ensure that the research findings are adopted within an educational context to deliver contemporary curricula for students studying the subject of materials and design. This paper reports on an…

  16. The Design and Evaluation of Teaching Experiments in Computer Science.

    ERIC Educational Resources Information Center

    Forcheri, Paola; Molfino, Maria Teresa

    1992-01-01

    Describes a relational model that was developed to provide a framework for the design and evaluation of teaching experiments for the introduction of computer science in secondary schools in Italy. Teacher training is discussed, instructional materials are considered, and use of the model for the evaluation process is described. (eight references)…

  17. Estimating parameters with pre-specified accuracies in distributed parameter systems using optimal experiment design

    NASA Astrophysics Data System (ADS)

    Potters, M. G.; Bombois, X.; Mansoori, M.; Hof, Paul M. J. Van den

    2016-08-01

    Estimation of physical parameters in dynamical systems driven by linear partial differential equations is an important problem. In this paper, we introduce the least costly experiment design framework for these systems. It enables parameter estimation with an accuracy that is specified by the experimenter prior to the identification experiment, while at the same time minimising the cost of the experiment. We show how to adapt the classical framework for these systems and take into account scaling and stability issues. We also introduce a progressive subdivision algorithm that further generalises the experiment design framework in the sense that it returns the lowest cost by finding the optimal input signal, and optimal sensor and actuator locations. Our methodology is then applied to a relevant problem in heat transfer studies: estimation of conductivity and diffusivity parameters in front-face experiments. We find good correspondence between numerical and theoretical results.

  18. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Kafka, Gene

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with significant flexibility in mind, but without compromising cost efficiency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of different variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of-flight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  19. Theoretical analysis for the design of the French watt balance experiment force comparator

    NASA Astrophysics Data System (ADS)

    Pinot, Patrick; Genevès, Gerard; Haddad, Darine; David, Jean; Juncar, Patrick; Lecollinet, Michel; Macé, Stéphane; Villar, François

    2007-09-01

    This paper presents a preliminary analysis for designing a force comparator to be used in the French watt balance experiment. The first stage of this experiment consists in a static equilibrium, by means of a mechanical beam balance, between a gravitational force (a weight of an artefact having a known mass submitted to the acceleration due to the gravity) and a vertical electromagnetic force acting on a coil driven by a current subject to the magnetic induction field provided by a permanent magnet. The principle of the force comparison in the French experiment is explained. The general design configuration of the force balance using flexure strips as pivots is discussed and theoretical calculation results based on realistic assumptions of the static and dynamic behaviors of the balance are presented.

  20. Theoretical analysis for the design of the French watt balance experiment force comparator.

    PubMed

    Pinot, Patrick; Genevès, Gerard; Haddad, Darine; David, Jean; Juncar, Patrick; Lecollinet, Michel; Macé, Stéphane; Villar, François

    2007-09-01

    This paper presents a preliminary analysis for designing a force comparator to be used in the French watt balance experiment. The first stage of this experiment consists in a static equilibrium, by means of a mechanical beam balance, between a gravitational force (a weight of an artefact having a known mass submitted to the acceleration due to the gravity) and a vertical electromagnetic force acting on a coil driven by a current subject to the magnetic induction field provided by a permanent magnet. The principle of the force comparison in the French experiment is explained. The general design configuration of the force balance using flexure strips as pivots is discussed and theoretical calculation results based on realistic assumptions of the static and dynamic behaviors of the balance are presented.

  1. Software fault-tolerance by design diversity DEDIX: A tool for experiments

    NASA Technical Reports Server (NTRS)

    Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Lyu, R. T.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.

    1986-01-01

    The use of multiple versions of a computer program, independently designed from a common specification, to reduce the effects of an error is discussed. If these versions are designed by independent programming teams, it is expected that a fault in one version will not have the same behavior as any fault in the other versions. Since the errors in the output of the versions are different and uncorrelated, it is possible to run the versions concurrently, cross-check their results at prespecified points, and mask errors. A DEsign DIversity eXperiments (DEDIX) testbed was implemented to study the influence of common mode errors which can result in a failure of the entire system. The layered design of DEDIX and its decision algorithm are described.

  2. Design and optimization of reverse-transcription quantitative PCR experiments.

    PubMed

    Tichopad, Ales; Kitchen, Rob; Riedmaier, Irmgard; Becker, Christiane; Ståhlberg, Anders; Kubista, Mikael

    2009-10-01

    Quantitative PCR (qPCR) is a valuable technique for accurately and reliably profiling and quantifying gene expression. Typically, samples obtained from the organism of study have to be processed via several preparative steps before qPCR. We estimated the errors of sample withdrawal and extraction, reverse transcription (RT), and qPCR that are introduced into measurements of mRNA concentrations. We performed hierarchically arranged experiments with 3 animals, 3 samples, 3 RT reactions, and 3 qPCRs and quantified the expression of several genes in solid tissue, blood, cell culture, and single cells. A nested ANOVA design was used to model the experiments, and relative and absolute errors were calculated with this model for each processing level in the hierarchical design. We found that intersubject differences became easily confounded by sample heterogeneity for single cells and solid tissue. In cell cultures and blood, the noise from the RT and qPCR steps contributed substantially to the overall error because the sampling noise was less pronounced. We recommend the use of sample replicates preferentially to any other replicates when working with solid tissue, cell cultures, and single cells, and we recommend the use of RT replicates when working with blood. We show how an optimal sampling plan can be calculated for a limited budget. .

  3. A Student Experiment Method for Learning the Basics of Embedded Software Technologies Including Hardware/Software Co-design

    NASA Astrophysics Data System (ADS)

    Kambe, Hidetoshi; Mitsui, Hiroyasu; Endo, Satoshi; Koizumi, Hisao

    The applications of embedded system technologies have spread widely in various products, such as home appliances, cellular phones, automobiles, industrial machines and so on. Due to intensified competition, embedded software has expanded its role in realizing sophisticated functions, and new development methods like a hardware/software (HW/SW) co-design for uniting HW and SW development have been researched. The shortfall of embedded SW engineers was estimated to be approximately 99,000 in the year 2006, in Japan. Embedded SW engineers should understand HW technologies and system architecture design as well as SW technologies. However, a few universities offer this kind of education systematically. We propose a student experiment method for learning the basics of embedded system development, which includes a set of experiments for developing embedded SW, developing embedded HW and experiencing HW/SW co-design. The co-design experiment helps students learn about the basics of embedded system architecture design and the flow of designing actual HW and SW modules. We developed these experiments and evaluated them.

  4. Analysis of Variance in the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Deloach, Richard

    2010-01-01

    This paper is a tutorial introduction to the analysis of variance (ANOVA), intended as a reference for aerospace researchers who are being introduced to the analytical methods of the Modern Design of Experiments (MDOE), or who may have other opportunities to apply this method. One-way and two-way fixed-effects ANOVA, as well as random effects ANOVA, are illustrated in practical terms that will be familiar to most practicing aerospace researchers.

  5. Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems

    PubMed Central

    2013-01-01

    Background There are a number of unresolved issues in the design of experiments in greenhouses. They include whether statistical designs should be used and, if so, which designs should be used. Also, are there thigmomorphogenic or other effects arising from the movement of plants on conveyor belts within a greenhouse? A two-phase, single-line wheat experiment involving four tactics was conducted in a conventional greenhouse and a fully-automated phenotyping greenhouse (Smarthouse) to investigate these issues. Results and discussion Analyses of our experiment show that there was a small east–west trend in total area of the plants in the Smarthouse. Analyses of the data from three multiline experiments reveal a large north–south trend. In the single-line experiment, there was no evidence of differences between trios of lanes, nor of movement effects. Swapping plant positions during the trial was found to decrease the east–west trend, but at the cost of increased error variance. The movement of plants in a north–south direction, through a shaded area for an equal amount of time, nullified the north–south trend. An investigation of alternative experimental designs for equally-replicated experiments revealed that generally designs with smaller blocks performed best, but that (nearly) trend-free designs can be effective when blocks are larger. Conclusions To account for variation in microclimate in a greenhouse, using statistical design and analysis is better than rearranging the position of plants during the experiment. For the relocation of plants to be successful requires that plants spend an equal amount of time in each microclimate, preferably during comparable growth stages. Even then, there is no evidence that this will be any more precise than statistical design and analysis of the experiment, and the risk is that it will not be successful at all. As for statistical design and analysis, it is best to use either (i) smaller blocks, (ii) (nearly) trend

  6. Art & Design Software Development Using IBM Handy (A Personal Experience).

    ERIC Educational Resources Information Center

    McWhinnie, Harold J.

    This paper presents some of the results from a course in art and design. The course involved the use of simple computer programs for the arts. Attention was geared to the development of graphic components for educational software. The purpose of the course was to provide, through lectures and extensive hands on experience, a basic introduction to…

  7. The Usefulness of Systematic Reviews of Animal Experiments for the Design of Preclinical and Clinical Studies

    PubMed Central

    de Vries, Rob B. M.; Wever, Kimberley E.; Avey, Marc T.; Stephens, Martin L.; Sena, Emily S.; Leenaars, Marlies

    2014-01-01

    The question of how animal studies should be designed, conducted, and analyzed remains underexposed in societal debates on animal experimentation. This is not only a scientific but also a moral question. After all, if animal experiments are not appropriately designed, conducted, and analyzed, the results produced are unlikely to be reliable and the animals have in effect been wasted. In this article, we focus on one particular method to address this moral question, namely systematic reviews of previously performed animal experiments. We discuss how the design, conduct, and analysis of future (animal and human) experiments may be optimized through such systematic reviews. In particular, we illustrate how these reviews can help improve the methodological quality of animal experiments, make the choice of an animal model and the translation of animal data to the clinic more evidence-based, and implement the 3Rs. Moreover, we discuss which measures are being taken and which need to be taken in the future to ensure that systematic reviews will actually contribute to optimizing experimental design and thereby to meeting a necessary condition for making the use of animals in these experiments justified. PMID:25541545

  8. The usefulness of systematic reviews of animal experiments for the design of preclinical and clinical studies.

    PubMed

    de Vries, Rob B M; Wever, Kimberley E; Avey, Marc T; Stephens, Martin L; Sena, Emily S; Leenaars, Marlies

    2014-01-01

    The question of how animal studies should be designed, conducted, and analyzed remains underexposed in societal debates on animal experimentation. This is not only a scientific but also a moral question. After all, if animal experiments are not appropriately designed, conducted, and analyzed, the results produced are unlikely to be reliable and the animals have in effect been wasted. In this article, we focus on one particular method to address this moral question, namely systematic reviews of previously performed animal experiments. We discuss how the design, conduct, and analysis of future (animal and human) experiments may be optimized through such systematic reviews. In particular, we illustrate how these reviews can help improve the methodological quality of animal experiments, make the choice of an animal model and the translation of animal data to the clinic more evidence-based, and implement the 3Rs. Moreover, we discuss which measures are being taken and which need to be taken in the future to ensure that systematic reviews will actually contribute to optimizing experimental design and thereby to meeting a necessary condition for making the use of animals in these experiments justified. © The Author 2014. Published by Oxford University Press.

  9. Transonic aerodynamic design experience

    NASA Technical Reports Server (NTRS)

    Bonner, E.

    1989-01-01

    Advancements have occurred in transonic numerical simulation that place aerodynamic performance design into a relatively well developed status. Efficient broad band operating characteristics can be reliably developed at the conceptual design level. Recent aeroelastic and separated flow simulation results indicate that systematic consideration of an increased range of design problems appears promising. This emerging capability addresses static and dynamic structural/aerodynamic coupling and nonlinearities associated with viscous dominated flows.

  10. Design and development status of ETS-7, an RVD and space robot experiment satellite

    NASA Technical Reports Server (NTRS)

    Oda, M.; Inagaki, T.; Nishida, M.; Kibe, K.; Yamagata, F.

    1994-01-01

    ETS-7 (Engineering Test Satellite #7) is an experimental satellite for the in-orbit experiment of the Rendezvous Docking (RVD) and the space robot (RBT) technologies. ETS-7 is a set of two satellites, a chaser satellite and a target satellite. Both satellites will be launched together by NASDA's H-2 rocket into a low earth orbit. Development of ETS-7 started in 1990. Basic design and EM (Engineering Model) development are in progress now in 1994. The satellite will be launched in mid 1997 and the above in-orbit experiments will be conducted for 1.5 years. Design of ETS-7 RBT experiment system and development status are described in this paper.

  11. Optimization of EGFR high positive cell isolation procedure by design of experiments methodology.

    PubMed

    Levi, Ofer; Tal, Baruch; Hileli, Sagi; Shapira, Assaf; Benhar, Itai; Grabov, Pavel; Eliaz, Noam

    2015-01-01

    Circulating tumor cells (CTCs) in blood circulation may play a role in monitoring and even in early detection of metastasis patients. Due to the limited presence of CTCs in blood circulation, viable CTCs isolation technology must supply a very high recovery rate. Here, we implement design of experiments (DOE) methodology in order to optimize the Bio-Ferrography (BF) immunomagnetic isolation (IMI) procedure for the EGFR high positive CTCs application. All consequent DOE phases such as screening design, optimization experiments and validation experiments were used. A significant recovery rate of more than 95% was achieved while isolating 100 EGFR high positive CTCs from 1 mL human whole blood. The recovery achievement in this research positions BF technology as one of the most efficient IMI technologies, which is ready to be challenged with patients' blood samples. © 2015 International Clinical Cytometry Society.

  12. Gettering in multicrystalline silicon: A design-of-experiments approach

    NASA Astrophysics Data System (ADS)

    Schubert, W. K.

    1994-12-01

    Design-of-experiment methods were used to study gettering due to phosphorus diffusion and aluminum alloying in four industrial multicrystalline silicon materials: Silicon-Film material from AstroPower, heat-exchanger method (HEM) material from Crystal Systems, edge-defined film-fed growth (EFG) material from Mobil Solar, and cast material from Solarex. Time and temperature for the diffusion and alloy processes were chosen for a four-factor quadratic interaction experiment. Simple diagnostic devices were used to evaluate the gettering. Only EFG and HEM materials exhibited statistically significant gettering effects within the ranges used for the various parameters. Diffusion and alloying temperature were significant for HEM material; also there was a second-order interaction between the diffusion time and temperature. There was no interaction between the diffusion and alloying processes in HEM material. EFG material showed a first-order dependence on diffusion temperature and a second-order interaction between the diffusion temperature and the alloying time. Gettering recommendations for the HEM material were used to produce the best-yet Sandia cells on this material, but correlation with the gettering experiment was not strong. Some of the discrepancy arises from necessary processing differences between the diagnostic devices and regular solar cells. This issue and other lessons learned concerning this type of experiment are discussed.

  13. Design of laboratory experiments to study radiation-driven implosions

    DOE PAGES

    Keiter, P. A.; Trantham, M.; Malamud, G.; ...

    2017-02-03

    The interstellar medium is heterogeneous with dense clouds amid an ambient medium. Radiation from young OB stars asymmetrically irradiate the dense clouds. Bertoldi (1989) developed analytic formulae to describe possible outcomes of these clouds when irradiated by hot, young stars. One of the critical parameters that determines the cloud’s fate is the number of photon mean free paths in the cloud. For the extreme cases where the cloud size is either much greater than or much less than one mean free path, the radiation transport should be well understood. However, as one transitions between these limits, the radiation transport ismore » much more complex and is a challenge to solve with many of the current radiation transport models implemented in codes. In this paper, we present the design of laboratory experiments that use a thermal source of x-rays to asymmetrically irradiate a low-density plastic foam sphere. The experiment will vary the density and hence the number of mean free paths of the sphere to study the radiation transport in different regimes. Finally, we have developed dimensionless parameters to relate the laboratory experiment to the astrophysical system and we show that we can perform the experiment in the same transport regime.« less

  14. Predictive Model for the Design of Zwitterionic Polymer Brushes: A Statistical Design of Experiments Approach.

    PubMed

    Kumar, Ramya; Lahann, Joerg

    2016-07-06

    The performance of polymer interfaces in biology is governed by a wide spectrum of interfacial properties. With the ultimate goal of identifying design parameters for stem cell culture coatings, we developed a statistical model that describes the dependence of brush properties on surface-initiated polymerization (SIP) parameters. Employing a design of experiments (DOE) approach, we identified operating boundaries within which four gel architecture regimes can be realized, including a new regime of associated brushes in thin films. Our statistical model can accurately predict the brush thickness and the degree of intermolecular association of poly[{2-(methacryloyloxy) ethyl} dimethyl-(3-sulfopropyl) ammonium hydroxide] (PMEDSAH), a previously reported synthetic substrate for feeder-free and xeno-free culture of human embryonic stem cells. DOE-based multifunctional predictions offer a powerful quantitative framework for designing polymer interfaces. For example, model predictions can be used to decrease the critical thickness at which the wettability transition occurs by simply increasing the catalyst quantity from 1 to 3 mol %.

  15. Designing experiments on thermal interactions by secondary-school students in a simulated laboratory environment

    NASA Astrophysics Data System (ADS)

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-07-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and communication technology, and specifically of the simulated virtual laboratory 'ThermoLab'. Design and methods A pre-post comparison was applied. Students' design of experiments was rated in eight dimensions; namely, hypothesis forming and verification, selection of variables, initial conditions, device settings, materials and devices used, process and phenomena description. A three-level ranking scheme was employed for the evaluation of students' answers in each dimension. Results A Wilcoxon signed-rank test revealed a statistically significant difference between the students' pre- and post-test scores. Additional analysis by comparing the pre- and post-test scores using the Hake gain showed high gains in all but one dimension, which suggests that this improvement was almost inclusive. Conclusions We consider that our findings support the statement that there was an improvement in students' ability to design experiments.

  16. Split-plot microarray experiments: issues of design, power and sample size.

    PubMed

    Tsai, Pi-Wen; Lee, Mei-Ling Ting

    2005-01-01

    This article focuses on microarray experiments with two or more factors in which treatment combinations of the factors corresponding to the samples paired together onto arrays are not completely random. A main effect of one (or more) factor(s) is confounded with arrays (the experimental blocks). This is called a split-plot microarray experiment. We utilise an analysis of variance (ANOVA) model to assess differentially expressed genes for between-array and within-array comparisons that are generic under a split-plot microarray experiment. Instead of standard t- or F-test statistics that rely on mean square errors of the ANOVA model, we use a robust method, referred to as 'a pooled percentile estimator', to identify genes that are differentially expressed across different treatment conditions. We illustrate the design and analysis of split-plot microarray experiments based on a case application described by Jin et al. A brief discussion of power and sample size for split-plot microarray experiments is also presented.

  17. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Technical Reports Server (NTRS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-01-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid

  18. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Astrophysics Data System (ADS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-12-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid

  19. Designing and Managing a Strategic Academic Alliance: An Australian University Experience

    ERIC Educational Resources Information Center

    Ryan, Lindsay; Morriss, Ross

    2005-01-01

    Purpose--This article outlines the experience and approach of an Australian university in developing and managing education program partnerships within industry. Design/methodology/approach--Describes how the university has established a specialist Strategic Partnerships unit for managing the customisation and delivery of postgraduate award…

  20. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafka, Gene

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state ofmore » the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.« less

  1. Design Your Own Workup: A Guided-Inquiry Experiment for Introductory Organic Laboratory Courses

    ERIC Educational Resources Information Center

    Mistry, Nimesh; Fitzpatrick, Christopher; Gorman, Stephen

    2016-01-01

    A guided-inquiry experiment was designed and implemented in an introductory organic chemistry laboratory course. Students were given a mixture of compounds and had to isolate two of the components by designing a viable workup procedure using liquid-liquid separation methods. Students were given the opportunity to apply their knowledge of chemical…

  2. Classroom Experiences in an Engineering Design Graphics Course with a CAD/CAM Extension.

    ERIC Educational Resources Information Center

    Barr, Ronald E.; Juricic, Davor

    1997-01-01

    Reports on the development of a new CAD/CAM laboratory experience for an Engineering Design Graphics (EDG) course. The EDG curriculum included freehand sketching, introduction to Computer-Aided Design and Drafting (CADD), and emphasized 3-D solid modeling. Reviews the project and reports on the testing of the new laboratory components which were…

  3. MPRAnator: a web-based tool for the design of massively parallel reporter assay experiments

    PubMed Central

    Georgakopoulos-Soares, Ilias; Jain, Naman; Gray, Jesse M; Hemberg, Martin

    2017-01-01

    Motivation: With the rapid advances in DNA synthesis and sequencing technologies and the continuing decline in the associated costs, high-throughput experiments can be performed to investigate the regulatory role of thousands of oligonucleotide sequences simultaneously. Nevertheless, designing high-throughput reporter assay experiments such as massively parallel reporter assays (MPRAs) and similar methods remains challenging. Results: We introduce MPRAnator, a set of tools that facilitate rapid design of MPRA experiments. With MPRA Motif design, a set of variables provides fine control of how motifs are placed into sequences, thereby allowing the investigation of the rules that govern transcription factor (TF) occupancy. MPRA single-nucleotide polymorphism design can be used to systematically examine the functional effects of single or combinations of single-nucleotide polymorphisms at regulatory sequences. Finally, the Transmutation tool allows for the design of negative controls by permitting scrambling, reversing, complementing or introducing multiple random mutations in the input sequences or motifs. Availability and implementation: MPRAnator tool set is implemented in Python, Perl and Javascript and is freely available at www.genomegeek.com and www.sanger.ac.uk/science/tools/mpranator. The source code is available on www.github.com/hemberg-lab/MPRAnator/ under the MIT license. The REST API allows programmatic access to MPRAnator using simple URLs. Contact: igs@sanger.ac.uk or mh26@sanger.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27605100

  4. Design of interferometer system on Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.

    2012-01-01

    A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.

  5. Learning--Feeling--Doing: Designing Creative Learning Experiences for Elementary Health Education.

    ERIC Educational Resources Information Center

    Scott, Gwendolyn D.; Carlo, Mona W.

    The dynamics of health education are encompassed in understanding human behavior (its causes and consequences), and this book seeks to outline learning experiences that will correspond to specific behavioral objectives relating to health education. The systematic planning and instructional design center around 11 concepts: (1) Growth and…

  6. Laser communication experiment. Volume 1: Design study report: Spacecraft transceiver. Part 3: LCE design specifications

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The requirements for the design, fabrication, performance, and testing of a 10.6 micron optical heterodyne receiver subsystem for use in a laser communication system are presented. The receiver subsystem, as a part of the laser communication experiment operates in the ATS 6 satellite and in a transportable ground station establishing two-way laser communications between the spacecraft and the transportable ground station. The conditions under which environmental tests are conducted are reported.

  7. Providing Guidance in Virtual Lab Experimentation: The Case of an Experiment Design Tool

    ERIC Educational Resources Information Center

    Efstathiou, Charalampos; Hovardas, Tasos; Xenofontos, Nikoletta A.; Zacharia, Zacharias C.; deJong, Ton; Anjewierden, Anjo; van Riesen, Siswa A. N.

    2018-01-01

    The present study employed a quasi-experimental design to assess a computer-based tool, which was intended to scaffold the task of designing experiments when using a virtual lab for the process of experimentation. In particular, we assessed the impact of this tool on primary school students' cognitive processes and inquiry skills before and after…

  8. Optimizing ELISAs for precision and robustness using laboratory automation and statistical design of experiments.

    PubMed

    Joelsson, Daniel; Moravec, Phil; Troutman, Matthew; Pigeon, Joseph; DePhillips, Pete

    2008-08-20

    Transferring manual ELISAs to automated platforms requires optimizing the assays for each particular robotic platform. These optimization experiments are often time consuming and difficult to perform using a traditional one-factor-at-a-time strategy. In this manuscript we describe the development of an automated process using statistical design of experiments (DOE) to quickly optimize immunoassays for precision and robustness on the Tecan EVO liquid handler. By using fractional factorials and a split-plot design, five incubation time variables and four reagent concentration variables can be optimized in a short period of time.

  9. Application of Modern Design of Experiments to CARS Thermometry in a Model Scramjet Engine

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; DeLoach, R.; Cutler, A. D.

    2002-01-01

    We have applied formal experiment design and analysis to optimize the measurement of temperature in a supersonic combustor at NASA Langley Research Center. We used the coherent anti-Stokes Raman spectroscopy (CARS) technique to map the temperature distribution in the flowfield downstream of an 1160 K, Mach 2 freestream into which supersonic hydrogen fuel is injected at an angle of 30 degrees. CARS thermometry is inherently a single-point measurement technique; it was used to map thc flow by translating the measurement volume through the flowfield. The method known as "Modern Design of Experiments" (MDOE) was used to estimate the data volume required, design the test matrix, perform the experiment and analyze the resulting data. MDOE allowed us to match the volume of data acquired to the precision requirements of the customer. Furthermore, one aspect of MDOE, known as response surface methodology, allowed us to develop precise maps of the flowfield temperature, allowing interpolation between measurement points. An analytic function in two spatial variables was fit to the data from a single measurement plane. Fitting with a Cosine Series Bivariate Function allowed the mean temperature to be mapped with 95% confidence interval half-widths of +/- 30 Kelvin, comfortably meeting the confidence of +/- 50 Kelvin specified prior to performing the experiments. We estimate that applying MDOE to the present experiment saved a factor of 5 in data volume acquired, compared to experiments executed in the traditional manner. Furthermore, the precision requirements could have been met with less than half the data acquired.

  10. Rotational fluid flow experiment: WPI/MITRE advanced space design GASCAN 2

    NASA Technical Reports Server (NTRS)

    Daly, Walter F.; Harr, Lee; Paduano, Rocco; Yee, Tony; Eubbani, Eddy; Delprado, Jaime; Khanna, Ajay

    1991-01-01

    The design and implementation is examined of an electro-mechanical system for studying vortex behavior in a microgravity environment. Most of the existing equipment was revised and redesigned as necessary. Emphasis was placed on the documentation and integration of the mechanical and electrical subsystems. Project results include the reconfiguration and thorough testing of all the hardware subsystems, the implementation of an infrared gas entrainment detector, new signal processing circuitry for the ultrasonic fluid circulation device, improved prototype interface circuits, and software for overall control of experiment design operation.

  11. Additive Manufacturing, Design, Testing, and Fabrication: A Full Engineering Experience at JSC

    NASA Technical Reports Server (NTRS)

    Zusack, Steven

    2016-01-01

    I worked on several projects this term. While most projects involved additive manufacturing, I was also involved with two design projects, two testing projects, and a fabrication project. The primary mentor for these was Richard Hagen. Secondary mentors were Hai Nguyen, Khadijah Shariff, and fabrication training from James Brown. Overall, my experience at JSC has been successful and what I have learned will continue to help me in my engineering education and profession long after I leave. My 3D printing projects ranged from less than a 1 cubic centimeter to about 1 cubic foot and involved several printers using different printing technologies. It was exciting to become familiar with printing technologies such as industrial grade FDM (Fused Deposition Modeling), the relatively new SLA (Stereolithography), and PolyJet. My primary duty with the FDM printers was to model parts that came in from various sources to print effectively and efficiently. Using methods my mentor taught me and the Stratasys Insight software, I was able to minimize imperfections, hasten build time, improve strength for specific forces (tensile, shear, etc...), and reduce likelihood of a print-failure. Also using FDM, I learned how to repair a part after it was printed. This is done by using a special kind of glue that chemically melts the two faces of plastic parts together to form a fused interface. My first goal with SLA technology was to bring the printer back to operational readiness. In becoming familiar with the Pegasus SLA printer, I researched the leveling, laser settings, and different vats to hold liquid material. With this research, I was successfully able to bring the Pegasus back online and have successfully printed multiple sample parts as well as functional parts. My experience with PolyJet technology has been focused on an understanding of the abilities/limits, costs, and the maintenance for daily use. Still upcoming will be experience with using a composite printer that uses FDM

  12. Designing Fault-Injection Experiments for the Reliability of Embedded Systems

    NASA Technical Reports Server (NTRS)

    White, Allan L.

    2012-01-01

    This paper considers the long-standing problem of conducting fault-injections experiments to establish the ultra-reliability of embedded systems. There have been extensive efforts in fault injection, and this paper offers a partial summary of the efforts, but these previous efforts have focused on realism and efficiency. Fault injections have been used to examine diagnostics and to test algorithms, but the literature does not contain any framework that says how to conduct fault-injection experiments to establish ultra-reliability. A solution to this problem integrates field-data, arguments-from-design, and fault-injection into a seamless whole. The solution in this paper is to derive a model reduction theorem for a class of semi-Markov models suitable for describing ultra-reliable embedded systems. The derivation shows that a tight upper bound on the probability of system failure can be obtained using only the means of system-recovery times, thus reducing the experimental effort to estimating a reasonable number of easily-observed parameters. The paper includes an example of a system subject to both permanent and transient faults. There is a discussion of integrating fault-injection with field-data and arguments-from-design.

  13. The Design and Analysis of Transposon-Insertion Sequencing Experiments

    PubMed Central

    Chao, Michael C.; Abel, Sören; Davis, Brigid M.; Waldor, Matthew K.

    2016-01-01

    Preface Transposon-insertion sequencing (TIS) is a powerful approach that can be widely applied to genome-wide definition of loci that are required for growth in diverse conditions. However, experimental design choices and stochastic biological processes can heavily influence the results of TIS experiments and affect downstream statistical analysis. Here, we discuss TIS experimental parameters and how these factors relate to the benefits and limitations of the various statistical frameworks that can be applied to computational analysis of TIS data. PMID:26775926

  14. Thermal systems design and analysis for a 10 K Sorption Cryocooler flight experiment

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Bard, Steven

    1993-01-01

    The design, analysis and predicted performance of the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE) is described from a thermal perspective. BETSCE is a shuttle side-wall mounted cryogenic technology demonstration experiment planned for launch in November 1994. BETSCE uses a significant amount of power (about 500 W peak) and the resultant heat must be rejected passively with radiators, as BETSCE has no access to the active cooling capability of the shuttle. It was a major challenge to design and configure the individual hardware assemblies, with their relatively large radiators, to enable them to reject their heat while satisfying numerous severe shuttle-imposed constraints. This paper is a useful case study of a small shuttle payload that needs to reject relatively high heat loads passively in a highly constrained thermal environment. The design approach described is consistent with today's era of 'faster, better, cheaper' small-scale space missions.

  15. Design of experiments (DoE) in pharmaceutical development.

    PubMed

    N Politis, Stavros; Colombo, Paolo; Colombo, Gaia; M Rekkas, Dimitrios

    2017-06-01

    At the beginning of the twentieth century, Sir Ronald Fisher introduced the concept of applying statistical analysis during the planning stages of research rather than at the end of experimentation. When statistical thinking is applied from the design phase, it enables to build quality into the product, by adopting Deming's profound knowledge approach, comprising system thinking, variation understanding, theory of knowledge, and psychology. The pharmaceutical industry was late in adopting these paradigms, compared to other sectors. It heavily focused on blockbuster drugs, while formulation development was mainly performed by One Factor At a Time (OFAT) studies, rather than implementing Quality by Design (QbD) and modern engineering-based manufacturing methodologies. Among various mathematical modeling approaches, Design of Experiments (DoE) is extensively used for the implementation of QbD in both research and industrial settings. In QbD, product and process understanding is the key enabler of assuring quality in the final product. Knowledge is achieved by establishing models correlating the inputs with the outputs of the process. The mathematical relationships of the Critical Process Parameters (CPPs) and Material Attributes (CMAs) with the Critical Quality Attributes (CQAs) define the design space. Consequently, process understanding is well assured and rationally leads to a final product meeting the Quality Target Product Profile (QTPP). This review illustrates the principles of quality theory through the work of major contributors, the evolution of the QbD approach and the statistical toolset for its implementation. As such, DoE is presented in detail since it represents the first choice for rational pharmaceutical development.

  16. Statistical models for the analysis and design of digital polymerase chain (dPCR) experiments

    USGS Publications Warehouse

    Dorazio, Robert; Hunter, Margaret

    2015-01-01

    Statistical methods for the analysis and design of experiments using digital PCR (dPCR) have received only limited attention and have been misused in many instances. To address this issue and to provide a more general approach to the analysis of dPCR data, we describe a class of statistical models for the analysis and design of experiments that require quantification of nucleic acids. These models are mathematically equivalent to generalized linear models of binomial responses that include a complementary, log–log link function and an offset that is dependent on the dPCR partition volume. These models are both versatile and easy to fit using conventional statistical software. Covariates can be used to specify different sources of variation in nucleic acid concentration, and a model’s parameters can be used to quantify the effects of these covariates. For purposes of illustration, we analyzed dPCR data from different types of experiments, including serial dilution, evaluation of copy number variation, and quantification of gene expression. We also showed how these models can be used to help design dPCR experiments, as in selection of sample sizes needed to achieve desired levels of precision in estimates of nucleic acid concentration or to detect differences in concentration among treatments with prescribed levels of statistical power.

  17. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments.

    PubMed

    Uth, Nicholas; Mueller, Jens; Smucker, Byran; Yousefi, Azizeh-Mitra

    2017-02-21

    This study reports the development of biological/synthetic scaffolds for bone tissue engineering (TE) via 3D bioplotting. These scaffolds were composed of poly(L-lactic-co-glycolic acid) (PLGA), type I collagen, and nano-hydroxyapatite (nHA) in an attempt to mimic the extracellular matrix of bone. The solvent used for processing the scaffolds was 1,1,1,3,3,3-hexafluoro-2-propanol. The produced scaffolds were characterized by scanning electron microscopy, microcomputed tomography, thermogravimetric analysis, and unconfined compression test. This study also sought to validate the use of finite-element optimization in COMSOL Multiphysics for scaffold design. Scaffold topology was simplified to three factors: nHA content, strand diameter, and strand spacing. These factors affect the ability of the scaffold to bear mechanical loads and how porous the structure can be. Twenty four scaffolds were constructed according to an I-optimal, split-plot designed experiment (DE) in order to generate experimental models of the factor-response relationships. Within the design region, the DE and COMSOL models agreed in their recommended optimal nHA (30%) and strand diameter (460 μm). However, the two methods disagreed by more than 30% in strand spacing (908 μm for DE; 601 μm for COMSOL). Seven scaffolds were 3D-bioplotted to validate the predictions of DE and COMSOL models (4.5-9.9 MPa measured moduli). The predictions for these scaffolds showed relative agreement for scaffold porosity (mean absolute percentage error of 4% for DE and 13% for COMSOL), but were substantially poorer for scaffold modulus (51% for DE; 21% for COMSOL), partly due to some simplifying assumptions made by the models. Expanding the design region in future experiments (e.g., higher nHA content and strand diameter), developing an efficient solvent evaporation method, and exerting a greater control over layer overlap could allow developing PLGA-nHA-collagen scaffolds to meet the mechanical requirements for

  18. Improving Student Commitment to Healthcare-Related Design Practice by Improving the Studio Learning Experience.

    PubMed

    Tan, Lindsay; Hong, Miyoung; Albert, Taneshia West

    2017-10-01

    This case study explores the influence of the healthcare design studio experience on students' short-term professional goals as measured through rates of healthcare-related certification and internship/employment. The value and relevance of interior design is evident in the healthcare design sector. However, interior design students may not perceive this value if it is not communicated through their design education. Students' experience in the design studio plays a crucial role in determining career choices, and students may be more committed to career goals when there is clear connection between major coursework and professional practice. The authors compared healthcare-related certification and internship/employment levels between two student cohorts in a capstone undergraduate interior design healthcare design studio course. The first cohort was led by the existing curriculum. The second cohort was led by the revised curriculum that specifically aimed at encouraging students to commit to healthcare-related design practice. When measured at 3 months from graduation, the second cohort, led by the revised curriculum, saw a 30% increase in Evidence-based Design Accreditation and Certification exam pass rates and a 40% increase in healthcare-related internship/employment. The challenge of interior design education is to instill in emerging professionals not only professional competence but also those professional attitudes that will make them better prepared to design spaces that improve quality of life, particularly in healthcare environments. The results exceeded the project goals, and so this could be considered a promising practice for courses focused on healthcare design education.

  19. New designs of LMJ targets for early ignition experiments

    NASA Astrophysics Data System (ADS)

    C-Clérouin, C.; Bonnefille, M.; Dattolo, E.; Fremerye, P.; Galmiche, D.; Gauthier, P.; Giorla, J.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Poggi, F.; Seytor, P.

    2008-05-01

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress.

  20. A Case Study of Professors' and Instructional Designers' Experiences in the Development of Online Courses

    ERIC Educational Resources Information Center

    Stevens, Karl B.

    2012-01-01

    The purpose of this qualitative case study was to examine the experiences of instructional designers and professors during the online course development process and to determine if their experiences had an effect on the process itself. To gain an understanding of their experiences, open-ended interviews were conducted, seeking descriptions of…

  1. The influence of car-seat design on its character experience.

    PubMed

    Kamp, Irene

    2012-03-01

    Producing higher efficiency cars with less and lighter materials but without compromising safety, comfort and driving pleasure might give a competitive advantage. In this light, at BMW a new light weight car-seat concept was developed based on the human body contour. A possibility to increase the comfort is using a seat which elicits positive tactile experiences. However, limited information is available on seat characteristics and tactile experiences. Therefore, this study describes the contour of three different car-seat designs, including a light weight seat, and the recorded corresponding emotion and tactile experience of 21 persons sitting in the seats. Results show that the new light weight car-seat concept rated well on experienced relaxedness, even with the lack of a side support. The most important findings are that hard seats with rather high side supports are rated sporty and seats that are softer are rated more luxurious. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Experience-based co-design in an adult psychological therapies service.

    PubMed

    Cooper, Kate; Gillmore, Chris; Hogg, Lorna

    2016-01-01

    Experience-based co-design (EBCD) is a methodology for service improvement and development, which puts service-user voices at the heart of improving health services. The aim of this paper was to implement the EBCD methodology in a mental health setting, and to investigate the challenges which arise during this process. In order to achieve this, a modified version of the EBCD methodology was undertaken, which involved listening to the experiences of the people who work in and use the mental health setting and sharing these experiences with the people who could effect change within the service, through collaborative work between service-users, staff and managers. EBCD was implemented within the mental health setting and was well received by service-users, staff and stakeholders. A number of modifications were necessary in this setting, for example high levels of support available to participants. It was concluded that EBCD is a suitable methodology for service improvement in mental health settings.

  3. Experiments and other methods for developing expertise with design of experiments in a classroom setting

    NASA Technical Reports Server (NTRS)

    Patterson, John W.

    1990-01-01

    The only way to gain genuine expertise in Statistical Process Control (SPC) and the design of experiments (DOX) is with repeated practice, but not on canned problems with dead data sets. Rather, one must negotiate a wide variety of problems each with its own peculiarities and its own constantly changing data. The problems should not be of the type for which there is a single, well-defined answer that can be looked up in a fraternity file or in some text. The problems should match as closely as possible the open-ended types for which there is always an abundance of uncertainty. These are the only kinds that arise in real research, whether that be basic research in academe or engineering research in industry. To gain this kind of experience, either as a professional consultant or as an industrial employee, takes years. Vast amounts of money, not to mention careers, must be put at risk. The purpose here is to outline some realistic simulation-type lab exercises that are so simple and inexpensive to run that the students can repeat them as often as desired at virtually no cost. Simulations also allow the instructor to design problems whose outcomes are as noisy as desired but still predictable within limits. Also the instructor and the students can learn a great deal more from the postmortum conducted after the exercise is completed. One never knows for sure what the true data should have been when dealing only with real life experiments. To add a bit more realism to the exercises, it is sometimes desirable to make the students pay for each experimental result from a make-believe budget allocation for the problem.

  4. Laser communication experiment. Volume 1: Design study report: Spacecraft transceiver. Part 1: Transceiver design

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The ATS-F Laser Communications Experiment (LCE) is the first significant step in the application of laser systems to space communications. The space-qualified laser communications system being developed in this experiment, and the data resulting from its successful deployment in space, will be applicable to the use of laser communications systems in a wide variety of manned as well as unmanned space missions, both near earth and in deep space. Particular future NASA missions which can benefit from this effort are the Tracking and Data Relay Satellite System and the Earth Resources Satellites. The LCE makes use of carbon dioxide lasers to establish simultaneous, two-way communication between the ATS-F synchronous satellite and a ground station. In addition, the LCE is designed to permit communication with a similar spacecraft transceiver proposed to be flown on ATS-G, nominally one year after the launch of ATS-F. This would be the first attempt to employ lasers for satellite-to-satellite communications.

  5. NIF Target Designs and OMEGA Experiments for Shock-Ignition Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.

    2012-10-01

    Shock ignition (SI)footnotetextR. Betti et al., Phys. Rev. Lett. 98, 155001 (2007). is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs require the addition of a high-intensity (˜5 x 10^15 W/cm^2) laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the imploding capsule. Achieving ignition with SI requires the laser spike to generate an ignitor shock with a launching pressure typically in excess of ˜300 Mbar. At the high laser intensities required during the spike pulse, stimulated Raman (SRS) and Brillouin scattering (SBS) could reflect a significant fraction of the incident light. In addition, SRS and the two-plasmon-decay instability can accelerate hot electrons into the shell and preheat the fuel. Since the high-power spike occurs at the end of the pulse when the areal density of the shell is several tens of mg/cm^2, shock-ignition fuel layers are shielded against hot electrons with energies below 150 keV. This paper will present data for a set of OMEGA experiments that were designed to study laser--plasma interactions during the spike pulse. In addition, these experiments were used to demonstrate that high-pressure shocks can be produced in long-scale-length plasmas with SI-relevant intensities. Within the constraints imposed by the hydrodynamics of strong shock generation and the laser--plasma instabilities, target designs for SI experiments on the NIF will be presented. Two-dimensional radiation--hydrodynamic simulations of SI target designs for the NIF predict ignition in the polar-drive beam configuration at sub-MJ laser energies. Design robustness to various 1-D effects and 2-D nonuniformities has been characterized. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  6. Development of a Plastic Melt Waste Compactor for Space Missions Experiments and Prototype Design

    NASA Technical Reports Server (NTRS)

    Pace, Gregory; Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John

    2004-01-01

    This paper describes development at NASA Ames Research Center of a heat melt compactor that can be used on both near term and far term missions. Experiments have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Experiments were conducted to characterize the volume reduction, bonding, encapsulation and biological stability of the waste composite and also to investigate other key design issues such as plastic extrusion, noxious off-gassing and removal of the of the plastic waste product from the processor. The experiments provided the data needed to design a prototype plastic melt waste processor, a description of which is included in the paper.

  7. Experiment Design for Nonparametric Models Based On Minimizing Bayes Risk: Application to Voriconazole1

    PubMed Central

    Bayard, David S.; Neely, Michael

    2016-01-01

    An experimental design approach is presented for individualized therapy in the special case where the prior information is specified by a nonparametric (NP) population model. Here, a nonparametric model refers to a discrete probability model characterized by a finite set of support points and their associated weights. An important question arises as to how to best design experiments for this type of model. Many experimental design methods are based on Fisher Information or other approaches originally developed for parametric models. While such approaches have been used with some success across various applications, it is interesting to note that they largely fail to address the fundamentally discrete nature of the nonparametric model. Specifically, the problem of identifying an individual from a nonparametric prior is more naturally treated as a problem of classification, i.e., to find a support point that best matches the patient’s behavior. This paper studies the discrete nature of the NP experiment design problem from a classification point of view. Several new insights are provided including the use of Bayes Risk as an information measure, and new alternative methods for experiment design. One particular method, denoted as MMopt (Multiple-Model Optimal), will be examined in detail and shown to require minimal computation while having distinct advantages compared to existing approaches. Several simulated examples, including a case study involving oral voriconazole in children, are given to demonstrate the usefulness of MMopt in pharmacokinetics applications. PMID:27909942

  8. Experiment design for nonparametric models based on minimizing Bayes Risk: application to voriconazole¹.

    PubMed

    Bayard, David S; Neely, Michael

    2017-04-01

    An experimental design approach is presented for individualized therapy in the special case where the prior information is specified by a nonparametric (NP) population model. Here, a NP model refers to a discrete probability model characterized by a finite set of support points and their associated weights. An important question arises as to how to best design experiments for this type of model. Many experimental design methods are based on Fisher information or other approaches originally developed for parametric models. While such approaches have been used with some success across various applications, it is interesting to note that they largely fail to address the fundamentally discrete nature of the NP model. Specifically, the problem of identifying an individual from a NP prior is more naturally treated as a problem of classification, i.e., to find a support point that best matches the patient's behavior. This paper studies the discrete nature of the NP experiment design problem from a classification point of view. Several new insights are provided including the use of Bayes Risk as an information measure, and new alternative methods for experiment design. One particular method, denoted as MMopt (multiple-model optimal), will be examined in detail and shown to require minimal computation while having distinct advantages compared to existing approaches. Several simulated examples, including a case study involving oral voriconazole in children, are given to demonstrate the usefulness of MMopt in pharmacokinetics applications.

  9. MPRAnator: a web-based tool for the design of massively parallel reporter assay experiments.

    PubMed

    Georgakopoulos-Soares, Ilias; Jain, Naman; Gray, Jesse M; Hemberg, Martin

    2017-01-01

    With the rapid advances in DNA synthesis and sequencing technologies and the continuing decline in the associated costs, high-throughput experiments can be performed to investigate the regulatory role of thousands of oligonucleotide sequences simultaneously. Nevertheless, designing high-throughput reporter assay experiments such as massively parallel reporter assays (MPRAs) and similar methods remains challenging. We introduce MPRAnator, a set of tools that facilitate rapid design of MPRA experiments. With MPRA Motif design, a set of variables provides fine control of how motifs are placed into sequences, thereby allowing the investigation of the rules that govern transcription factor (TF) occupancy. MPRA single-nucleotide polymorphism design can be used to systematically examine the functional effects of single or combinations of single-nucleotide polymorphisms at regulatory sequences. Finally, the Transmutation tool allows for the design of negative controls by permitting scrambling, reversing, complementing or introducing multiple random mutations in the input sequences or motifs. MPRAnator tool set is implemented in Python, Perl and Javascript and is freely available at www.genomegeek.com and www.sanger.ac.uk/science/tools/mpranator The source code is available on www.github.com/hemberg-lab/MPRAnator/ under the MIT license. The REST API allows programmatic access to MPRAnator using simple URLs. igs@sanger.ac.uk or mh26@sanger.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  10. Numerical Simulation Applications in the Design of EGS Collab Experiment 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; White, Mark D.; Fu, Pengcheng

    The United States Department of Energy, Geothermal Technologies Office (GTO) is funding a collaborative investigation of enhanced geothermal systems (EGS) processes at the meso-scale. This study, referred to as the EGS Collab project, is a unique opportunity for scientists and engineers to investigate the creation of fracture networks and circulation of fluids across those networks under in-situ stress conditions. The EGS Collab project is envisioned to comprise three experiments and the site for the first experiment is on the 4850 Level (4,850 feet below ground surface) in phyllite of the Precambrian Poorman formation, at the Sanford Underground Research Facility, locatedmore » at the former Homestake Gold Mine, in Lead, South Dakota. Principal objectives of the project are to develop a number of intermediate-scale field sites and to conduct well-controlled in situ experiments focused on rock fracture behavior and permeability enhancement. Data generated during these experiments will be compared against predictions of a suite of computer codes specifically designed to solve problems involving coupled thermal, hydrological, geomechanical, and geochemical processes. Comparisons between experimental and numerical simulation results will provide code developers with direction for improvements and verification of process models, build confidence in the suite of available numerical tools, and ultimately identify critical future development needs for the geothermal modeling community. Moreover, conducting thorough comparisons of models, modelling approaches, measurement approaches and measured data, via the EGS Collab project, will serve to identify techniques that are most likely to succeed at the Frontier Observatory for Research in Geothermal Energy (FORGE), the GTO's flagship EGS research effort. As noted, outcomes from the EGS Collab project experiments will serve as benchmarks for computer code verification, but numerical simulation additionally plays an

  11. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    PubMed

    Kimura, Yasumasa; Soma, Takahiro; Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  12. A study on the application of voice interaction in automotive human machine interface experience design

    NASA Astrophysics Data System (ADS)

    Huang, Zhaohui; Huang, Xiemin

    2018-04-01

    This paper, firstly, introduces the application trend of the integration of multi-channel interactions in automotive HMI ((Human Machine Interface) from complex information models faced by existing automotive HMI and describes various interaction modes. By comparing voice interaction and touch screen, gestures and other interaction modes, the potential and feasibility of voice interaction in automotive HMI experience design are concluded. Then, the related theories of voice interaction, identification technologies, human beings' cognitive models of voices and voice design methods are further explored. And the research priority of this paper is proposed, i.e. how to design voice interaction to create more humane task-oriented dialogue scenarios to enhance interactive experiences of automotive HMI. The specific scenarios in driving behaviors suitable for the use of voice interaction are studied and classified, and the usability principles and key elements for automotive HMI voice design are proposed according to the scenario features. Then, through the user participatory usability testing experiment, the dialogue processes of voice interaction in automotive HMI are defined. The logics and grammars in voice interaction are classified according to the experimental results, and the mental models in the interaction processes are analyzed. At last, the voice interaction design method to create the humane task-oriented dialogue scenarios in the driving environment is proposed.

  13. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays

    PubMed Central

    Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J. L.; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download. PMID:26863543

  14. Hot rocket plume experiment - Survey and conceptual design. [of rhenium-iridium bipropellants

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Luan, Taylor W.; Dowdy, Mack W.

    1992-01-01

    Attention is given to a space-borne engine plume experiment study to fly an experiment which will both verify and quantify the reduced contamination from advanced rhenium-iridium earth-storable bipropellant rockets (hot rockets) and provide a correlation between high-fidelity, in-space measurements and theoretical plume and surface contamination models. The experiment conceptual design is based on survey results from plume and contamination technologists throughout the U.S. With respect to shuttle use, cursory investigations validate Hitchhiker availability and adaptability, adequate remote manipulator system (RMS) articulation and dynamic capability, acceptable RMS attachment capability, adequate power and telemetry capability, and adequate flight altitude and attitude/orbital capability.

  15. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  16. A conceptual design for cosmo-biology experiments in Earth's Orbit.

    PubMed

    Hashimoto, H; Greenberg, M; Brack, A; Colangeli, L; Horneck, G; Navarro-Gonzalez, R; Raulin, F; Kouchi, A; Saito, T; Yamashita, M; Kobayashi, K

    1998-06-01

    A conceptual design was developed for a cosmo-biology experiment. It is intended to expose simulated interstellar ice materials deposited on dust grains to the space environment. The experimental system consists of a cryogenic system to keep solidified gas sample, and an optical device to select and amplify the ultraviolet part of the solar light for irradiation. By this approach, the long lasting chemical evolution of icy species could be examined in a much shorter time of exposure by amplification of light intensity. The removal of light at longer wavelength, which is ineffective to induce photochemical reactions, reduces the heat load to the cryogenic system that holds solidified reactants including CO as a constituent species of interstellar materials. Other major hardware components were also defined in order to achieve the scientific objectives of this experiment. Those are a cold trap maintained at liquid nitrogen temperature to prevent the contamination of the sample during the exposure, a mechanism to exchange multiple samples, and a system to perform bake-out of the sample exposure chamber. This experiment system is proposed as a candidate payload implemented on the exposed facility of Japanese Experiment Module on International Space Station.

  17. Modeling and design for a new ionospheric modification experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, G.S.; Platt, I.G.; Haines, D.M.

    1990-10-01

    Plans are now underway to carry out new HF oblique ionospheric modification experiments with increased radiated power using a new high gain antenna system and a 1 MW transmitter. The output of this large transmitting system will approach 90 dBW. An important part of this program is to determine the existence of a threshold for non-linear effects by varying the transmitter output. For these experiments we are introducing a new ET probe system, a low power oblique sounder, to be used along the same propagation path as the high power disturbing transmitter. This concept was first used by soviet researchersmore » to insure that this diagnostic signal always passes through the modified region of the ionosphere. The HF probe system will use a low power (150 W) CW signal shifted by approximately 40 kHz from the frequency used by the high power system. The transmitter for the probe system will be at the same location as the high power transmitter while the probe receiver will be 2400 km down range. The probe receiving system uses multiple antennas to measure the the vertical and azimuthal angle of arrival as well the Doppler frequency shift of the arriving probe signal. The three antenna array will be in an L configuration to measure the phase differences between the antennas. At the midpath point a vertical sounder will provide the ionospheric information necessary for the frequency management of the experiment. Real-time signal processing will permit the site operators to evaluate the performance of the system and make adjustments during the experiment. A special ray tracing computer will be used to provide real-time frequencies and elevation beam steering during the experiment. A description of the system and the analysis used in the design of the experiment are presented.« less

  18. Collaboration in the design and delivery of a mental health Recovery College course: experiences of students and tutors.

    PubMed

    Cameron, Josh; Hart, Angie; Brooker, Saff; Neale, Paul; Reardon, Mair

    2018-05-15

    Recovery Colleges address mental health challenges using an educative approach underpinned by a collaborative recovery orientated philosophy. Research has been limited with no studies identified reporting research on the design and delivery of a specific course. To understand how Recovery College students and tutors experience the design and delivery of a mental health Recovery College course, specifically the "'Building Resilience" course. Thematic analysis of qualitative data related to the experience and process of collaboration in recovery college course design and delivery. Data included 13 qualitative individual interviews with course students and tutors and "naturally occurring" data generated through course preparation and delivery. Findings drew attention to the centrality of: prior experience and design related to students, tutors and the course structure; co-delivery related to tutors and co-learner impacts; and to the course methods and environment. Commitment to collaboration in design and delivery of Recovery College courses can mobilise the diverse experiences and expertise of tutors and students. The environment and methods of learning have a significant impact and should be considered alongside content. Boundaries between people and areas of knowledge and experience that arise can be viewed as sources of creativity that can enrich courses.

  19. How scientific experiments are designed: Problem solving in a knowledge-rich, error-rich environment

    NASA Astrophysics Data System (ADS)

    Baker, Lisa M.

    While theory formation and the relation between theory and data has been investigated in many studies of scientific reasoning, researchers have focused less attention on reasoning about experimental design, even though the experimental design process makes up a large part of real-world scientists' reasoning. The goal of this thesis was to provide a cognitive account of the scientific experimental design process by analyzing experimental design as problem-solving behavior (Newell & Simon, 1972). Three specific issues were addressed: the effect of potential error on experimental design strategies, the role of prior knowledge in experimental design, and the effect of characteristics of the space of alternate hypotheses on alternate hypothesis testing. A two-pronged in vivo/in vitro research methodology was employed, in which transcripts of real-world scientific laboratory meetings were analyzed as well as undergraduate science and non-science majors' design of biology experiments in the psychology laboratory. It was found that scientists use a specific strategy to deal with the possibility of error in experimental findings: they include "known" control conditions in their experimental designs both to determine whether error is occurring and to identify sources of error. The known controls strategy had not been reported in earlier studies with science-like tasks, in which participants' responses to error had consisted of replicating experiments and discounting results. With respect to prior knowledge: scientists and undergraduate students drew on several types of knowledge when designing experiments, including theoretical knowledge, domain-specific knowledge of experimental techniques, and domain-general knowledge of experimental design strategies. Finally, undergraduate science students generated and tested alternates to their favored hypotheses when the space of alternate hypotheses was constrained and searchable. This result may help explain findings of confirmation

  20. CELSS experiment model and design concept of gas recycle system

    NASA Technical Reports Server (NTRS)

    Nitta, K.; Oguchi, M.; Kanda, S.

    1986-01-01

    In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.

  1. The Role of Formal Experiment Design in Hypersonic Flight System Technology Development

    NASA Technical Reports Server (NTRS)

    McClinton, Charles R.; Ferlemann, Shelly M.; Rock, Ken E.; Ferlemann, Paul G.

    2002-01-01

    Hypersonic airbreathing engine (scramjet) powered vehicles are being considered to replace conventional rocket-powered launch systems. Effective utilization of scramjet engines requires careful integration with the air vehicle. This integration synergistically combines aerodynamic forces with propulsive cycle functions of the engine. Due to the highly integrated nature of the hypersonic vehicle design problem, the large flight envelope, and the large number of design variables, the use of a statistical design approach in design is effective. Modern Design-of-Experiments (MDOE) has been used throughout the Hyper-X program, for both systems analysis and experimental testing. Application of MDOE fall into four categories: (1) experimental testing; (2) studies of unit phenomena; (3) refining engine design; and (4) full vehicle system optimization. The MDOE process also provides analytical models, which are also used to document lessons learned, supplement low-level design tools, and accelerate future studies. This paper will discuss the design considerations for scramjet-powered vehicles, specifics of MDOE utilized for Hyper-X, and present highlights from the use of these MDOE methods within the Hyper-X Program.

  2. Exploring Students' Perceptions of Service-Learning Experiences in an Undergraduate Web Design Course

    ERIC Educational Resources Information Center

    Lee, Sang Joon; Wilder, Charlie; Yu, Chien

    2018-01-01

    Service-learning is an experiential learning experience where students learn and develop through active participation in community service to meet the needs of a community. This study explored student learning experiences in a service-learning group project and their perceptions of service-learning in an undergraduate web design course. The data…

  3. A practical approach to automate randomized design of experiments for ligand-binding assays.

    PubMed

    Tsoi, Jennifer; Patel, Vimal; Shih, Judy

    2014-03-01

    Design of experiments (DOE) is utilized in optimizing ligand-binding assay by modeling factor effects. To reduce the analyst's workload and error inherent with DOE, we propose the integration of automated liquid handlers to perform the randomized designs. A randomized design created from statistical software was imported into custom macro converting the design into a liquid-handler worklist to automate reagent delivery. An optimized assay was transferred to a contract research organization resulting in a successful validation. We developed a practical solution for assay optimization by integrating DOE and automation to increase assay robustness and enable successful method transfer. The flexibility of this process allows it to be applied to a variety of assay designs.

  4. Simulation study to determine the impact of different design features on design efficiency in discrete choice experiments

    PubMed Central

    Vanniyasingam, Thuva; Cunningham, Charles E; Foster, Gary; Thabane, Lehana

    2016-01-01

    Objectives Discrete choice experiments (DCEs) are routinely used to elicit patient preferences to improve health outcomes and healthcare services. While many fractional factorial designs can be created, some are more statistically optimal than others. The objective of this simulation study was to investigate how varying the number of (1) attributes, (2) levels within attributes, (3) alternatives and (4) choice tasks per survey will improve or compromise the statistical efficiency of an experimental design. Design and methods A total of 3204 DCE designs were created to assess how relative design efficiency (d-efficiency) is influenced by varying the number of choice tasks (2–20), alternatives (2–5), attributes (2–20) and attribute levels (2–5) of a design. Choice tasks were created by randomly allocating attribute and attribute level combinations into alternatives. Outcome Relative d-efficiency was used to measure the optimality of each DCE design. Results DCE design complexity influenced statistical efficiency. Across all designs, relative d-efficiency decreased as the number of attributes and attribute levels increased. It increased for designs with more alternatives. Lastly, relative d-efficiency converges as the number of choice tasks increases, where convergence may not be at 100% statistical optimality. Conclusions Achieving 100% d-efficiency is heavily dependent on the number of attributes, attribute levels, choice tasks and alternatives. Further exploration of overlaps and block sizes are needed. This study's results are widely applicable for researchers interested in creating optimal DCE designs to elicit individual preferences on health services, programmes, policies and products. PMID:27436671

  5. Analysis on Flexural Strength of A36 Mild Steel by Design of Experiment (DOE)

    NASA Astrophysics Data System (ADS)

    Nurulhuda, A.; Hafizzal, Y.; Izzuddin, MZM; Sulawati, MRN; Rafidah, A.; Suhaila, Y.; Fauziah, AR

    2017-08-01

    Nowadays demand for high quality and reliable components and materials are increasing so flexural tests have become vital test method in both the research and manufacturing process and development to explain in details about the material’s ability to withstand deformation under load. Recently, there are lack research studies on the effect of thickness, welding type and joint design on the flexural condition by DOE approach method. Therefore, this research will come out with the flexural strength of mild steel since it is not well documented. By using Design of Experiment (DOE), a full factorial design with two replications has been used to study the effects of important parameters which are welding type, thickness and joint design. The measurement of output response is identified as flexural strength value. Randomize experiments was conducted based on table generated via Minitab software. A normal probability test was carried out using Anderson Darling Test and show that the P-value is <0.005. Thus, the data is not normal since there is significance different between the actual data with the ideal data. Referring to the ANOVA, only factor joint design is significant since the P-value is less than 0.05. From the main plot and interaction plot, the recommended setting for each of parameters were suggested as high level for welding type, high level for thickness and low level for joint design. The prediction model was developed thru regression in order to measure effect of output response for any changes on parameters setting. In the future, the experiments can be enhanced using Taguchi methods in order to do verification of result.

  6. Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.

    PubMed

    Lestini, Giulia; Mentré, France; Magni, Paolo

    2016-09-01

    Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were (i) to evaluate the importance of including measurements during tumor regrowth and (ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules, and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e., control versus treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e., "short" and "long" studies, respectively. In long studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the experiment was stopped 3 days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected.

  7. Optimal design for informative protocols in xenograft tumor growth inhibition experiments in mice

    PubMed Central

    Lestini, Giulia; Mentré, France; Magni, Paolo

    2016-01-01

    Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were i) to evaluate the importance of including measurements during tumor regrowth; ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e. control vs treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e. “short” and “long” studies, respectively. In long studies, measurements could be taken up to 6 grams of tumor weight, whereas in short studies the experiment was stopped three days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected. PMID:27306546

  8. Students' Sense of Community Based on Experiences with Residence Hall Design

    ERIC Educational Resources Information Center

    Heasley, Christopher L.

    2013-01-01

    This study seeks to determine students' sense of community outcomes based on experiences with different residence hall architectural designs. Sense of community is a "feeling that members have of belonging, a feeling that members matter to one another and to the group, and a shared faith that members' needs will be met through their…

  9. A design for living technology: experiments with the mind time machine.

    PubMed

    Ikegami, Takashi

    2013-01-01

    Living technology aims to help people expand their experiences in everyday life. The environment offers people ways to interact with it, which we call affordances. Living technology is a design for new affordances. When we experience something new, we remember it by the way we perceive and interact with it. Recent studies in neuroscience have led to the idea of a default mode network, which is a baseline activity of a brain system. The autonomy of artificial life must be understood as a sort of default mode that self-organizes its baseline activity, preparing for its external inputs and its interaction with humans. I thus propose a method for creating a suitable default mode as a design principle for living technology. I built a machine called the mind time machine (MTM), which runs continuously for 10 h per day and receives visual data from its environment using 15 video cameras. The MTM receives and edits the video inputs while it self-organizes the momentary now. Its base program is a neural network that includes chaotic dynamics inside the system and a meta-network that consists of video feedback systems. Using this system as the hardware and a default mode network as a conceptual framework, I describe the system's autonomous behavior. Using the MTM as a testing ground, I propose a design principle for living technology.

  10. CRISPR-FOCUS: A web server for designing focused CRISPR screening experiments.

    PubMed

    Cao, Qingyi; Ma, Jian; Chen, Chen-Hao; Xu, Han; Chen, Zhi; Li, Wei; Liu, X Shirley

    2017-01-01

    The recently developed CRISPR screen technology, based on the CRISPR/Cas9 genome editing system, enables genome-wide interrogation of gene functions in an efficient and cost-effective manner. Although many computational algorithms and web servers have been developed to design single-guide RNAs (sgRNAs) with high specificity and efficiency, algorithms specifically designed for conducting CRISPR screens are still lacking. Here we present CRISPR-FOCUS, a web-based platform to search and prioritize sgRNAs for CRISPR screen experiments. With official gene symbols or RefSeq IDs as the only mandatory input, CRISPR-FOCUS filters and prioritizes sgRNAs based on multiple criteria, including efficiency, specificity, sequence conservation, isoform structure, as well as genomic variations including Single Nucleotide Polymorphisms and cancer somatic mutations. CRISPR-FOCUS also provides pre-defined positive and negative control sgRNAs, as well as other necessary sequences in the construct (e.g., U6 promoters to drive sgRNA transcription and RNA scaffolds of the CRISPR/Cas9). These features allow users to synthesize oligonucleotides directly based on the output of CRISPR-FOCUS. Overall, CRISPR-FOCUS provides a rational and high-throughput approach for sgRNA library design that enables users to efficiently conduct a focused screen experiment targeting up to thousands of genes. (CRISPR-FOCUS is freely available at http://cistrome.org/crispr-focus/).

  11. Status and Design Concepts for the Hydrogen On-Orbit Storage and Supply Experiment

    NASA Technical Reports Server (NTRS)

    Chato, David J.; VanDyke, Melissa; Batty, J. Clair; Schick, Scott

    1998-01-01

    This paper studies concepts for the Hydrogen On-Orbit Storage and Supply Experiment (HOSS). HOSS is a space flight experiment whose objectives are: Show stable gas supply for storage and direct gain solar-thermal thruster designs; and evaluate and compare low-g performance of active and passive pressure control via a thermodynamic vent system (TVS) suitable for solar-thermal upper stages. This paper shows that the necessary experimental equipment for HOSS can be accommodated in a small hydrogen dewar of 36 to 80 liter. Thermal designs for these dewars which meet the on-orbit storage requirements can be achieved. Furthermore ground hold insulation and shielding concepts are achieved which enable storing initially subcooled liquid hydrogen in these small dewars without venting in excess of 144 hours.

  12. Detailed design package for design of a video system providing optimal visual information for controlling payload and experiment operations with television

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A detailed description of a video system for controlling space shuttle payloads and experiments is presented in the preliminary design review and critical design review, first and second engineering design reports respectively, and in the final report submitted jointly with the design package. The material contained in the four subsequent sections of the package contains system descriptions, design data, and specifications for the recommended 2-view system. Section 2 contains diagrams relating to the simulation test configuration of the 2-view system. Section 3 contains descriptions and drawings of the deliverable breadboard equipment. A description of the recommended system is contained in Section 4 with equipment specifications in Section 5.

  13. Paragogy and Flipped Assessment: Experience of Designing and Running a MOOC on Research Methods

    ERIC Educational Resources Information Center

    Lee, Yenn; Rofe, J. Simon

    2016-01-01

    This study draws on the authors' first-hand experience of designing, developing and delivering (3Ds) a massive open online course (MOOC) entitled "Understanding Research Methods" since 2014, largely but not exclusively for learners in the humanities and social sciences. The greatest challenge facing us was to design an assessment…

  14. Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.

    PubMed

    Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T

    2016-10-01

    Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Designing an experiment to measure cellular interaction forces

    NASA Astrophysics Data System (ADS)

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  16. Characterizing Variability in Smestad and Gratzel's Nanocrystalline Solar Cells: A Collaborative Learning Experience in Experimental Design

    ERIC Educational Resources Information Center

    Lawson, John; Aggarwal, Pankaj; Leininger, Thomas; Fairchild, Kenneth

    2011-01-01

    This article describes a collaborative learning experience in experimental design that closely approximates what practicing statisticians and researchers in applied science experience during consulting. Statistics majors worked with a teaching assistant from the chemistry department to conduct a series of experiments characterizing the variation…

  17. Statistical power and optimal design in experiments in which samples of participants respond to samples of stimuli.

    PubMed

    Westfall, Jacob; Kenny, David A; Judd, Charles M

    2014-10-01

    Researchers designing experiments in which a sample of participants responds to a sample of stimuli are faced with difficult questions about optimal study design. The conventional procedures of statistical power analysis fail to provide appropriate answers to these questions because they are based on statistical models in which stimuli are not assumed to be a source of random variation in the data, models that are inappropriate for experiments involving crossed random factors of participants and stimuli. In this article, we present new methods of power analysis for designs with crossed random factors, and we give detailed, practical guidance to psychology researchers planning experiments in which a sample of participants responds to a sample of stimuli. We extensively examine 5 commonly used experimental designs, describe how to estimate statistical power in each, and provide power analysis results based on a reasonable set of default parameter values. We then develop general conclusions and formulate rules of thumb concerning the optimal design of experiments in which a sample of participants responds to a sample of stimuli. We show that in crossed designs, statistical power typically does not approach unity as the number of participants goes to infinity but instead approaches a maximum attainable power value that is possibly small, depending on the stimulus sample. We also consider the statistical merits of designs involving multiple stimulus blocks. Finally, we provide a simple and flexible Web-based power application to aid researchers in planning studies with samples of stimuli.

  18. Design Concepts Studied for the Hydrogen On-Orbit Storage and Supply Experiment

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1998-01-01

    The NASA Lewis Research Center, in conjunction with the Utah State University Space Dynamics Laboratory, studied concepts for the Hydrogen On-Orbit Storage and Supply Experiment (HOSS). HOSS is a space flight experiment whose objectives are (1) to show stable gas supply for solar-thermal thruster designs by using both storage and direct-gain approaches and (2) to evaluate and compare the low-gravity performance of active and passive pressure control via a thermodynamic vent system (TVS) suitable for solar-thermal upper stages. This study showed that the necessary experimental equipment for HOSS can be accommodated in a small hydrogen Dewar (36 to 80 liter). Thermal designs can be achieved that meet the on-orbit storage requirements for these Dewars. Furthermore, ground hold insulation concepts are easily achieved that can store liquid hydrogen in these small Dewars for more than 144 hr without venting.

  19. Designing PISA-Like Mathematics Tasks In Indonesia: Experiences and Challenges

    NASA Astrophysics Data System (ADS)

    Zulkardi, Z.; Kohar, A. W.

    2018-01-01

    The insignificant improvement of Indonesian students in PISA mathematics survey triggered researchers in Indonesia to develop PISA-like mathematics tasks. Some development studies have been conducted to produce valid and practical PISA-like problems that potentially effect on improving students’ mathematical literacy. This article describes the experiences of Indonesian task designers in developing PISA-like mathematics tasks as well as the potential future studies regarding to mathematical literacy as challenges for policy makers, researchers, and practitioners to improve students’ mathematical literacy in Indonesia. The results of this research indicate the task designers to consider domains of PISA like: context, mathematical content, and process as the first profiles of their missions. Our analysis shows that the designers mostly experienced difficulties regarding to the authenticity of context use and language structure. Interestingly, many of them used a variety of local wisdom in Indonesia as contexts for designing PISA-like tasks. In addition, the products developed were reported to be potentially effects on students’ interest and elicit students’ mathematical competencies as mentioned in PISA framework. Finally, this paper discusses future studies such as issues in bringing PISA task into an instructional practice.

  20. Experimental Design of a Magnetic Flux Compression Experiment

    NASA Astrophysics Data System (ADS)

    Fuelling, Stephan; Awe, Thomas J.; Bauer, Bruno S.; Goodrich, Tasha; Lindemuth, Irvin R.; Makhin, Volodymyr; Siemon, Richard E.; Atchison, Walter L.; Reinovsky, Robert E.; Salazar, Mike A.; Scudder, David W.; Turchi, Peter J.; Degnan, James H.; Ruden, Edward L.

    2007-06-01

    Generation of ultrahigh magnetic fields is an interesting topic of high-energy-density physics, and an essential aspect of Magnetized Target Fusion (MTF). To examine plasma formation from conductors impinged upon by ultrahigh magnetic fields, in a geometry similar to that of the MAGO experiments, an experiment is under design to compress magnetic flux in a toroidal cavity, using the Shiva Star or Atlas generator. An initial toroidal bias magnetic field is provided by a current on a central conductor. The central current is generated by diverting a fraction of the liner current using an innovative inductive current divider, thus avoiding the need for an auxiliary power supply. A 50-mm-radius cylindrical aluminum liner implodes along glide planes with velocity of about 5 km/s. Inward liner motion causes electrical closure of the toroidal chamber, after which flux in the chamber is conserved and compressed, yielding magnetic fields of 2-3 MG. Plasma is generated on the liner and central rod surfaces by Ohmic heating. Diagnostics include B-dot probes, Faraday rotation, radiography, filtered photodiodes, and VUV spectroscopy. Optical access to the chamber is provided through small holes in the walls.

  1. Predictive design and interpretation of colliding pulse injected laser wakefield experiments

    NASA Astrophysics Data System (ADS)

    Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.

    2010-11-01

    The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.

  2. The Modern Design of Experiments: A Technical and Marketing Framework

    NASA Technical Reports Server (NTRS)

    DeLoach, R.

    2000-01-01

    A new wind tunnel testing process under development at NASA Langley Research Center, called Modern Design of Experiments (MDOE), differs from conventional wind tunnel testing techniques on a number of levels. Chief among these is that MDOE focuses on the generation of adequate prediction models rather than high-volume data collection. Some cultural issues attached to this and other distinctions between MDOE and conventional wind tunnel testing are addressed in this paper.

  3. 'Unconventional' experiments in biology and medicine with optimized design based on quantum-like correlations.

    PubMed

    Beauvais, Francis

    2017-02-01

    In previous articles, a description of 'unconventional' experiments (e.g. in vitro or clinical studies based on high dilutions, 'memory of water' or homeopathy) using quantum-like probability was proposed. Because the mathematical formulations of quantum logic are frequently an obstacle for physicians and biologists, a modified modeling that rests on classical probability is described in the present article. This modeling is inspired from a relational interpretation of quantum physics that applies not only to microscopic objects, but also to macroscopic structures, including experimental devices and observers. In this framework, any outcome of an experiment is not an absolute property of the observed system as usually considered but is expressed relatively to an observer. A team of interacting observers is thus described from an external view point based on two principles: the outcomes of experiments are expressed relatively to each observer and the observers agree on outcomes when they interact with each other. If probability fluctuations are also taken into account, correlations between 'expected' and observed outcomes emerge. Moreover, quantum-like correlations are predicted in experiments with local blind design but not with centralized blind design. No assumption on 'memory' or other physical modification of water is necessary in the present description although such hypotheses cannot be formally discarded. In conclusion, a simple modeling of 'unconventional' experiments based on classical probability is now available and its predictions can be tested. The underlying concepts are sufficiently intuitive to be spread into the homeopathy community and beyond. It is hoped that this modeling will encourage new studies with optimized designs for in vitro experiments and clinical trials. Copyright © 2017 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  4. Population Fisher information matrix and optimal design of discrete data responses in population pharmacodynamic experiments.

    PubMed

    Ogungbenro, Kayode; Aarons, Leon

    2011-08-01

    In the recent years, interest in the application of experimental design theory to population pharmacokinetic (PK) and pharmacodynamic (PD) experiments has increased. The aim is to improve the efficiency and the precision with which parameters are estimated during data analysis and sometimes to increase the power and reduce the sample size required for hypothesis testing. The population Fisher information matrix (PFIM) has been described for uniresponse and multiresponse population PK experiments for design evaluation and optimisation. Despite these developments and availability of tools for optimal design of population PK and PD experiments much of the effort has been focused on repeated continuous variable measurements with less work being done on repeated discrete type measurements. Discrete data arise mainly in PDs e.g. ordinal, nominal, dichotomous or count measurements. This paper implements expressions for the PFIM for repeated ordinal, dichotomous and count measurements based on analysis by a mixed-effects modelling technique. Three simulation studies were used to investigate the performance of the expressions. Example 1 is based on repeated dichotomous measurements, Example 2 is based on repeated count measurements and Example 3 is based on repeated ordinal measurements. Data simulated in MATLAB were analysed using NONMEM (Laplace method) and the glmmML package in R (Laplace and adaptive Gauss-Hermite quadrature methods). The results obtained for Examples 1 and 2 showed good agreement between the relative standard errors obtained using the PFIM and simulations. The results obtained for Example 3 showed the importance of sampling at the most informative time points. Implementation of these expressions will provide the opportunity for efficient design of population PD experiments that involve discrete type data through design evaluation and optimisation.

  5. The Scope and Design of Structured Group Learning Experiences at Community Colleges

    ERIC Educational Resources Information Center

    Hatch, Deryl K.; Bohlig, E. Michael

    2015-01-01

    This study explores through descriptive analysis the similarities of structured group learning experiences such as first-year seminars, learning communities, orientation, success courses, and accelerated developmental education programs, in terms of their design features and implementation at community colleges. The study takes as its conceptual…

  6. Design of experiments (DOE) - history, concepts, and relevance to in vitro culture

    USDA-ARS?s Scientific Manuscript database

    Design of experiments (DOE) is a large and well-developed field for understanding and improving the performance of complex systems. Because in vitro culture systems are complex, but easily manipulated in controlled conditions, they are particularly well-suited for the application of DOE principle...

  7. Injector design for liner-on-target gas-puff experiments

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  8. Injector design for liner-on-target gas-puff experiments.

    PubMed

    Valenzuela, J C; Krasheninnikov, I; Conti, F; Wessel, F; Fadeev, V; Narkis, J; Ross, M P; Rahman, H U; Ruskov, E; Beg, F N

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ∼1 cm radius gas profile that satisfies the theoretical requirement for best performance on ∼1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  9. Multichannel microformulators for massively parallel machine learning and automated design of biological experiments

    NASA Astrophysics Data System (ADS)

    Wikswo, John; Kolli, Aditya; Shankaran, Harish; Wagoner, Matthew; Mettetal, Jerome; Reiserer, Ronald; Gerken, Gregory; Britt, Clayton; Schaffer, David

    Genetic, proteomic, and metabolic networks describing biological signaling can have 102 to 103 nodes. Transcriptomics and mass spectrometry can quantify 104 different dynamical experimental variables recorded from in vitro experiments with a time resolution approaching 1 s. It is difficult to infer metabolic and signaling models from such massive data sets, and it is unlikely that causality can be determined simply from observed temporal correlations. There is a need to design and apply specific system perturbations, which will be difficult to perform manually with 10 to 102 externally controlled variables. Machine learning and optimal experimental design can select an experiment that best discriminates between multiple conflicting models, but a remaining problem is to control in real time multiple variables in the form of concentrations of growth factors, toxins, nutrients and other signaling molecules. With time-division multiplexing, a microfluidic MicroFormulator (μF) can create in real time complex mixtures of reagents in volumes suitable for biological experiments. Initial 96-channel μF implementations control the exposure profile of cells in a 96-well plate to different temporal profiles of drugs; future experiments will include challenge compounds. Funded in part by AstraZeneca, NIH/NCATS HHSN271201600009C and UH3TR000491, and VIIBRE.

  10. Experiences with an adaptive design for a dose-finding study in patients with osteoarthritis.

    PubMed

    Miller, Frank; Björnsson, Marcus; Svensson, Ola; Karlsten, Rolf

    2014-03-01

    Dose-finding studies in non-oncology areas are usually conducted in Phase II of the development process of a new potential medicine and it is key to choose a good design for such a study, as the results will decide if and how to proceed to Phase III. The present article has focus on the design of a dose-finding study for pain in osteoarthritis patients treated with the TRPV1 antagonist AZD1386. We describe different design alternatives in the planning of this study, the reasoning for choosing the adaptive design and experiences with conduct and interim analysis. Three alternatives were proposed: one single dose-finding study with parallel design, a programme with a smaller Phase IIa study followed by a Phase IIb dose-finding study, and an adaptive dose-finding study. We describe these alternatives in detail and explain why the adaptive design was chosen for the study. We give insights in design aspects of the adaptive study, which need to be pre-planned, like interim decision criteria, statistical analysis method and setup of a Data Monitoring Committee. Based on the interim analysis it was recommended to stop the study for futility since AZD1386 showed no significant pain decrease based on the primary variable. We discuss results and experiences from the conduct of the study with the novel design approach. Huge cost savings have been done compared to if the option with one dose-finding design for Phase II had been chosen. However, we point out several challenges with this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Numerical Model of Flame Spread Over Solids in Microgravity: A Supplementary Tool for Designing a Space Experiment

    NASA Technical Reports Server (NTRS)

    Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.

  12. The NASA Langley Laminar-Flow-Control (LFC) experiment on a swept, supercritical airfoil: Design overview

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.

    1988-01-01

    A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.

  13. Statistical Models for the Analysis and Design of Digital Polymerase Chain Reaction (dPCR) Experiments.

    PubMed

    Dorazio, Robert M; Hunter, Margaret E

    2015-11-03

    Statistical methods for the analysis and design of experiments using digital PCR (dPCR) have received only limited attention and have been misused in many instances. To address this issue and to provide a more general approach to the analysis of dPCR data, we describe a class of statistical models for the analysis and design of experiments that require quantification of nucleic acids. These models are mathematically equivalent to generalized linear models of binomial responses that include a complementary, log-log link function and an offset that is dependent on the dPCR partition volume. These models are both versatile and easy to fit using conventional statistical software. Covariates can be used to specify different sources of variation in nucleic acid concentration, and a model's parameters can be used to quantify the effects of these covariates. For purposes of illustration, we analyzed dPCR data from different types of experiments, including serial dilution, evaluation of copy number variation, and quantification of gene expression. We also showed how these models can be used to help design dPCR experiments, as in selection of sample sizes needed to achieve desired levels of precision in estimates of nucleic acid concentration or to detect differences in concentration among treatments with prescribed levels of statistical power.

  14. The UCLA Design Diversity Experiment (DEDIX) system: A distributed testbed for multiple-version software

    NASA Technical Reports Server (NTRS)

    Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.

    1986-01-01

    To establish a long-term research facility for experimental investigations of design diversity as a means of achieving fault-tolerant systems, a distributed testbed for multiple-version software was designed. It is part of a local network, which utilizes the Locus distributed operating system to operate a set of 20 VAX 11/750 computers. It is used in experiments to measure the efficacy of design diversity and to investigate reliability increases under large-scale, controlled experimental conditions.

  15. Conceptual Design for Time-Resolved X-ray Diffraction in a Single Laser-Driven Compression Experiment

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.

    2017-06-01

    Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.

  16. Simulation study to determine the impact of different design features on design efficiency in discrete choice experiments.

    PubMed

    Vanniyasingam, Thuva; Cunningham, Charles E; Foster, Gary; Thabane, Lehana

    2016-07-19

    Discrete choice experiments (DCEs) are routinely used to elicit patient preferences to improve health outcomes and healthcare services. While many fractional factorial designs can be created, some are more statistically optimal than others. The objective of this simulation study was to investigate how varying the number of (1) attributes, (2) levels within attributes, (3) alternatives and (4) choice tasks per survey will improve or compromise the statistical efficiency of an experimental design. A total of 3204 DCE designs were created to assess how relative design efficiency (d-efficiency) is influenced by varying the number of choice tasks (2-20), alternatives (2-5), attributes (2-20) and attribute levels (2-5) of a design. Choice tasks were created by randomly allocating attribute and attribute level combinations into alternatives. Relative d-efficiency was used to measure the optimality of each DCE design. DCE design complexity influenced statistical efficiency. Across all designs, relative d-efficiency decreased as the number of attributes and attribute levels increased. It increased for designs with more alternatives. Lastly, relative d-efficiency converges as the number of choice tasks increases, where convergence may not be at 100% statistical optimality. Achieving 100% d-efficiency is heavily dependent on the number of attributes, attribute levels, choice tasks and alternatives. Further exploration of overlaps and block sizes are needed. This study's results are widely applicable for researchers interested in creating optimal DCE designs to elicit individual preferences on health services, programmes, policies and products. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Exploring a Comprehensive Model for Early Childhood Vocabulary Instruction: A Design Experiment

    ERIC Educational Resources Information Center

    Wang, X. Christine; Christ, Tanya; Chiu, Ming Ming

    2014-01-01

    Addressing a critical need for effective vocabulary practices in early childhood classrooms, we conducted a design experiment to achieve three goals: (1) developing a comprehensive model for early childhood vocabulary instruction, (2) examining the effectiveness of this model, and (3) discerning the contextual conditions that hinder or facilitate…

  18. Designing Learning Personalized to Students' Interests: Balancing Rich Experiences with Mathematical Goals

    ERIC Educational Resources Information Center

    Walkington, Candace; Hayata, Carole A.

    2017-01-01

    Context personalization is an instructional design principle where tasks are presented to students in the context of their interest areas like sports, music, or video games. Personalization allows for understanding of domain principles to be grounded in concrete and familiar experiences. By making connections to prior knowledge, personalization…

  19. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    NASA Technical Reports Server (NTRS)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  20. Understanding pivotal experiences in behavior change for the design of technologies for personal wellbeing.

    PubMed

    Bhattacharya, Arpita; Kolovson, Samantha; Sung, Yi-Chen; Eacker, Mike; Chen, Michael; Munson, Sean A; Kientz, Julie A

    2018-03-01

    Most health technologies are designed to support people who have already decided to work toward better health. Thus, there remains an opportunity to design technologies to help motivate people who have not yet decided to make a change. Understanding the experiences of people who have already started to make a health behavior change and how they made a pivotal decision can be useful in understanding how to design such tools. In this paper, we describe results from data collected in 2 phases. Phase 1 consisted of 127 surveys and 13 interviews with adults who have already accomplished behavior change(s). Phase 2 consisted of 117 surveys and 12 interviews with adults who have either already accomplished their behavior change(s) or are currently working toward them. We identified four factors that lead to pivotal experiences: (1) prolonged discontent and desire to change, (2) significant changes that increase fear or hope of future, (3) increased understanding of one's behavior and personal data, and (4) social accountability. We also describe a design space for designing technology-based interventions for encouraging people to decide to make a change to improve their health. Based on feedback from participants, we discuss opportunities for further exploration of the design space for people who are not yet motivated to change and for ethical considerations for this type of intervention. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Design of experiments for microencapsulation applications: A review.

    PubMed

    Paulo, Filipa; Santos, Lúcia

    2017-08-01

    Microencapsulation techniques have been intensively explored by many research sectors such as pharmaceutical and food industries. Microencapsulation allows to protect the active ingredient from the external environment, mask undesired flavours, a possible controlled release of compounds among others. The purpose of this review is to provide a background of design of experiments in microencapsulation research context. Optimization processes are required for an accurate research in these fields and therefore, the right implementation of micro-sized techniques at industrial scale. This article critically reviews the use of the response surface methodologies in pharmaceutical and food microencapsulation research areas. A survey of optimization procedures in the literature, in the last few years is also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Design of experiments for identification of complex biochemical systems with applications to mitochondrial bioenergetics.

    PubMed

    Vinnakota, Kalyan C; Beard, Daniel A; Dash, Ranjan K

    2009-01-01

    Identification of a complex biochemical system model requires appropriate experimental data. Models constructed on the basis of data from the literature often contain parameters that are not identifiable with high sensitivity and therefore require additional experimental data to identify those parameters. Here we report the application of a local sensitivity analysis to design experiments that will improve the identifiability of previously unidentifiable model parameters in a model of mitochondrial oxidative phosphorylation and tricaboxylic acid cycle. Experiments were designed based on measurable biochemical reactants in a dilute suspension of purified cardiac mitochondria with experimentally feasible perturbations to this system. Experimental perturbations and variables yielding the most number of parameters above a 5% sensitivity level are presented and discussed.

  3. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Thomas; Haase, Jürgen

    2015-12-15

    Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al{sub 2}O{sub 3}), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It ismore » shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures.« less

  4. Design-of-experiments to Reduce Life-cycle Costs in Combat Aircraft Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design- of-Experiments (DOE), to arrive at micro-secondary flow control installation designs that achieve optimal inlet performance for different mission strategies. These statistical design concepts were used to investigate the properties of "low unit strength" micro-effector installation. "Low unit strength" micro-effectors are micro-vanes, set a very low angle-of incidence, with very long chord lengths. They are designed to influence the neat wall inlet flow over an extended streamwise distance. In this study, however, the long chord lengths were replicated by a series of short chord length effectors arranged in series over multiple bands of effectors. In order to properly evaluate the performance differences between the single band extended chord length installation designs and the segmented multiband short chord length designs, both sets of installations must be optimal. Critical to achieving optimal micro-secondary flow control installation designs is the understanding of the factor interactions that occur between the multiple bands of micro-scale vane effectors. These factor interactions are best understood and brought together in an optimal manner through a structured DOE process, or more specifically Response Surface Methods (RSM).

  5. Discussion of “Bayesian design of experiments for industrial and scientific applications via gaussian processes”

    DOE PAGES

    Anderson-Cook, Christine M.; Burke, Sarah E.

    2016-10-18

    First, we would like to commend Dr. Woods on his thought-provoking paper and insightful presentation at the 4th Annual Stu Hunter conference. We think that the material presented highlights some important needs in the area of design of experiments for generalized linear models (GLMs). In addition, we agree with Dr. Woods that design of experiements of GLMs does implicitly require expert judgement about model parameters, and hence using a Bayesian approach to capture this knowledge is a natural strategy to summarize what is known with the opportunity to incorporate associated uncertainty about that information.

  6. Discussion of “Bayesian design of experiments for industrial and scientific applications via gaussian processes”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine M.; Burke, Sarah E.

    First, we would like to commend Dr. Woods on his thought-provoking paper and insightful presentation at the 4th Annual Stu Hunter conference. We think that the material presented highlights some important needs in the area of design of experiments for generalized linear models (GLMs). In addition, we agree with Dr. Woods that design of experiements of GLMs does implicitly require expert judgement about model parameters, and hence using a Bayesian approach to capture this knowledge is a natural strategy to summarize what is known with the opportunity to incorporate associated uncertainty about that information.

  7. Enhancing Research and Practice in Early Childhood through Formative and Design Experiments

    ERIC Educational Resources Information Center

    Bradley, Barbara A.; Reinking, David

    2011-01-01

    This article describes formative and design experiments and how they can advance research and instructional practices in early childhood education. We argue that this relatively new approach to education research closes the gap between research and practice, and it addresses limitations that have been identified in early childhood research. We…

  8. The Development of a Model for Designing Carrel Experiences for Science Students.

    ERIC Educational Resources Information Center

    Russell, James Douglas

    A description of the systems approach to designing of carrel experiences for science students is presented to provide a logical sequence and structure for instructional decisions. A brief historical discussion dating from 1961 and Postlethwait's work at Purdue University is given, and a rationale for the carrel approach is provided. The…

  9. Small-Scale Design Experiments as Working Space for Larger Mobile Communication Challenges

    ERIC Educational Resources Information Center

    Lowe, Sarah; Stuedahl, Dagny

    2014-01-01

    In this paper, a design experiment using Instagram as a cultural probe is submitted as a method for analyzing the challenges that arise when considering the implementation of social media within a distributed communication space. It outlines how small, iterative investigations can reveal deeper research questions relevant to the education of…

  10. Developing Vocabulary and Conceptual Knowledge for Low-Income Preschoolers: A Design Experiment

    ERIC Educational Resources Information Center

    Neuman, Susan B.; Dwyer, Julie

    2011-01-01

    The purpose of this design experiment was to research, test, and iteratively derive principles of word learning and word organization that could help to theoretically advance our understanding of vocabulary development for low-income preschoolers. Six Head Start teachers in morning and afternoon programs and their children (N = 89) were selected…

  11. Statistical properties of the ice particle distribution in stratiform clouds

    NASA Astrophysics Data System (ADS)

    Delanoe, J.; Tinel, C.; Testud, J.

    2003-04-01

    This paper presents an extensive analysis of several microphysical data bases CEPEX, EUCREX, CLARE and CARL to determine statistical properties of the Particle Size Distribution (PSD). The data base covers different type of stratiform clouds : tropical cirrus (CEPEX), mid-latitude cirrus (EUCREX) and mid-latitude cirrus and stratus (CARL,CLARE) The approach for analysis uses the concept of normalisation of the PSD developed by Testud et al. (2001). The normalization aims at isolating three independent characteristics of the PSD : its "intrinsic" shape, the "average size" of the spectrum and the ice water content IWC, "average size" is meant the mean mass weighted diameter. It is shown that concentration should be normalized by N_0^* proportional to IWC/D_m^4. The "intrinsic" shape is defined as F(Deq/D_m)=N(Deq)/N_0^* where Deq is the equivalent melted diameter. The "intrinsic" shape is found to be very stable in the range 001.5, more scatter is observed, but future analysis should decide if it is representative of real physical variation or statistical "error" due to counting problem. Considering an overall statistics over the full data base, a large scatter of the N_0^* against Dm plot is found. But in the case of a particular event or a particular leg of a flight, the N_0^* vs. Dm plot is much less scattered and shows a systematic trend for decaying of N_0^* when Dm increases. This trend is interpreted as the manifestation of the predominance of the aggregation process. Finally an important point for cloud remote sensing is investigated : the normalised relationships IWC/N_0^* against Z/N_0^* is much less scattered that the classical IWC against Z the radar reflectivity factor.

  12. A Simulation Modeling Approach Method Focused on the Refrigerated Warehouses Using Design of Experiment

    NASA Astrophysics Data System (ADS)

    Cho, G. S.

    2017-09-01

    For performance optimization of Refrigerated Warehouses, design parameters are selected based on the physical parameters such as number of equipment and aisles, speeds of forklift for ease of modification. This paper provides a comprehensive framework approach for the system design of Refrigerated Warehouses. We propose a modeling approach which aims at the simulation optimization so as to meet required design specifications using the Design of Experiment (DOE) and analyze a simulation model using integrated aspect-oriented modeling approach (i-AOMA). As a result, this suggested method can evaluate the performance of a variety of Refrigerated Warehouses operations.

  13. Vision Guided Intelligent Robot Design And Experiments

    NASA Astrophysics Data System (ADS)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  14. A designed experiment in stitched/RTM composites

    NASA Technical Reports Server (NTRS)

    Dickinson, Larry C.

    1993-01-01

    The damage tolerance of composite laminates can be significantly improved by the addition of through-the-thickness fibrous reinforcement such as stitching. However, there are numerous stitching parameters which can be independently varied, and their separate and combined effects on mechanical properties need to be determined. A statistically designed experiment (a 2(sup 5-1) fractional factorial, also known as a Taguchi L16 test matrix) used to evaluate five important parameters is described. The effects and interactions of stitch thread material, stitch thread strength, stitch row spacing and stitch pitch are examined for both thick (48 ply) and thin (16 ply) carbon/epoxy (AS4/E905L) composites. Tension, compression and compression after impact tests are described. Preliminary results of completed tension testing are discussed. Larger threads decreased tensile strength. Panel thickness was found not to be an important stitching parameter for tensile properties. Tensile modulus was unaffected by stitching.

  15. Interim Service ISDN Satellite (ISIS) hardware experiment development for advanced ISDN satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Service Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Development for Advanced Satellite Designs describes the development of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into Time Division Multiple Access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the RS-499 interface for satellite uplink. The same ISTA converts in the opposite direction the RS-499 to U-interface data with a simple switch setting.

  16. Lifting off the Ground to Return Anew: Mediated Praxis, Transformative Learning, and Social Design Experiments

    ERIC Educational Resources Information Center

    Gutierrez, Kris D.; Vossoughi, Shirin

    2010-01-01

    This article examines a praxis model of teacher education and advances a new method for engaging novice teachers in reflective practice and robust teacher learning. Social design experiments--cultural historical formations designed to promote transformative learning for adults and children--are organized around expansive notions of learning and…

  17. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  18. Cellular changes in microgravity and the design of space radiation experiments

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.

    1994-01-01

    Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects an macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.

  19. Conducting Design Experiments to Support Teachers' Learning: A Reflection from the Field

    ERIC Educational Resources Information Center

    Cobb, Paul; Zhao, Qing; Dean, Chrystal

    2009-01-01

    This article focuses on 3 conceptual challenges that we sought to address while conducting a design experiment in which we supported the learning of a group of middle school mathematics teachers. These challenges involved (a) situating teachers' activity in the institutional setting of the schools and district in which they worked, (b) developing…

  20. Paradigms for adaptive statistical information designs: practical experiences and strategies.

    PubMed

    Wang, Sue-Jane; Hung, H M James; O'Neill, Robert

    2012-11-10

    design. We highlight the substantial risk of planning the sample size for confirmatory trials when information is very uninformative and stipulate the advantages of adaptive statistical information designs for planning exploratory trials. Practical experiences and strategies as lessons learned from more recent adaptive design proposals will be discussed to pinpoint the improved utilities of adaptive design clinical trials and their potential to increase the chance of a successful drug development. Published 2012. This article is a US Government work and is in the public domain in the USA.

  1. Propagation-related AMT design aspects and supporting experiments

    NASA Technical Reports Server (NTRS)

    Dessouky, Khaled; Estabrook, Polly

    1991-01-01

    The ACTS Mobile Terminal (AMT) is presently being developed with the goal of significantly extending commercial satellite applications and their user base. A thorough knowledge of the Ka-band channel characteristics is essential to the proper design of a commercially viable system that efficiently utilizes the valuable resources. To date, only limited tests have been performed to characterize the Ka-band channel, and they have focused on the needs of fixed terminals. As part of the value of the AMT as a Ka-band test bed is its function as a vehicle through which tests specifically applicable to the mobile satellite communications can be performed. The exact propagation environment with the proper set of elevation angles, vehicle antenna gains and patterns, roadside shadowing, rain, and Doppler is encountered. The ability to measure all of the above, as well as correlate their effects with observed communication system performance, creates an invaluable opportunity to understand in depth Ka-band's potential in supporting mobile and personal communications. This paper discusses the propagation information required for system design, the setup with ACTS that will enable obtaining this information, and finally the types of experiments to be performed and data to be gathered by the AMT to meet this objective.

  2. Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.

    PubMed

    Flassig, R J; Sundmacher, K

    2012-12-01

    Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html. flassig@mpi-magdeburg.mpg.de Supplementary data are are available at Bioinformatics online.

  3. Designing a mixture experiment when the components are subject to a nonlinear multiple-component constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Greg F.; Cooley, Scott K.; Vienna, John D.

    This article presents a case study of developing an experimental design for a constrained mixture experiment when the experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this article. The case study involves a 15-component nuclear waste glass example in which SO3 is one of the components. SO3 has a solubility limit inmore » glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture (PQM) model expressed in the relative proportions of the 14 other components. The PQM model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This article discusses the waste glass example and how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study.« less

  4. Design and implementation of an experiment scheduling system for the ACTS satellite

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.

    1994-01-01

    The Advanced Communication Technology Satellite (ACTS) was launched on the 12th of September 1993 aboard STS-51. All events since that time have proceeded as planned with user operations commencing on December 6th, 1993. ACTS is a geosynchronous satellite designed to extend the state of the art in communication satellite design and is available to experimenters on a 'time/bandwidth available' basis. The ACTS satellite requires the advance scheduling of experimental activities based upon a complex set of resource, state, and activity constraints in order to ensure smooth operations. This paper describes the software system developed to schedule experiments for ACTS.

  5. Efficient design and verification of diagnostics for impurity transport experiments.

    PubMed

    Chilenski, M A; Greenwald, M J; Marzouk, Y M; Rice, J E; White, A E

    2018-01-01

    Recent attempts to measure impurity transport in Alcator C-Mod using an x-ray imaging crystal spectrometer and laser blow-off impurity injector have failed to yield unique reconstructions of the transport coefficient profiles. This paper presents a fast, linearized model which was constructed to estimate diagnostic requirements for impurity transport experiments. The analysis shows that the spectroscopic diagnostics on Alcator C-Mod should be capable of inferring simple profiles of impurity diffusion D Z and convection V Z accurate to better than ±10% uncertainty, suggesting that the failure to infer unique D Z and V Z from experimental data is attributable to an inadequate analysis procedure rather than the result of insufficient diagnostics. Furthermore, the analysis reveals that even a modest spatial resolution can overcome a low time resolution. This approach can be adapted to design and verify diagnostics for transport experiments on any magnetic confinement device.

  6. Design of Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.; Young, R.; Plewa, T.

    2010-05-01

    In many Cataclysmic Binary systems, mass transfer via Roche lobe overflow onto an accretion disk occurs. This produces a hot spot from the heating created by the supersonic impact of the infalling flow with the rotating accretion disk, which can produce a radiative reverse shock in the infalling flow. This collision region has many ambiguities as a radiation hydrodynamic system. Depending upon conditions, it has been argued (Armitgae & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter its structure and emissions. Laboratory experiments have yet to produce colliding flows that create a radiative reverse shock or to produce obliquely incident colliding flows, both of which are aspects of these Binary systems. We have undertaken the design of such an experiment, aimed at the Omega-60 laser facility. The design elements include the production of postshock flows within a dense material layer or ejecta flows by release of material from a shocked layer. Obtaining a radiative reverse shock in the laboratory requires producing a sufficiently fast flow (> 100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. In this poster we will discuss the astrophysical context, the experimental design work we have done, and the challenges of implementing and diagnosing an actual experiment. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, by the National Laser User Facility Program in NNSA-DS and by the Predictive Sciences Academic Alliances Program in NNSA-ASC. The corresponding grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  7. The Impact of Programming Experience on Successfully Learning Systems Analysis and Design

    ERIC Educational Resources Information Center

    Wong, Wang-chan

    2015-01-01

    In this paper, the author reports the results of an empirical study on the relationship between a student's programming experience and their success in a traditional Systems Analysis and Design (SA&D) class where technical skills such as dataflow analysis and entity relationship data modeling are covered. While it is possible to teach these…

  8. Design a Contract: A Simple Principal-Agent Problem as a Classroom Experiment

    ERIC Educational Resources Information Center

    Gachter, Simon; Konigstein, Manfred

    2009-01-01

    The authors present a simple classroom experiment that can be used as a teaching device to introduce important concepts of organizational economics and incentive contracting. First, students take the role of a principal and design a contract that consists of a fixed payment and an incentive component. Second, students take the role of agents and…

  9. Space Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Rayos, Elonsio M.; Campbell, Charles H.; Rickman, Steven L.; Larsen, Curtis E.

    2007-01-01

    Complex computer codes are used to estimate thermal and structural reentry loads on the Shuttle Orbiter induced by ice and foam debris impact during ascent. Such debris can create cavities in the Shuttle Thermal Protection System. The sizes and shapes of these cavities are approximated to accommodate a code limitation that requires simple "shoebox" geometries to describe the cavities -- rectangular areas and planar walls that are at constant angles with respect to vertical. These approximations induce uncertainty in the code results. The Modern Design of Experiments (MDOE) has recently been applied to develop a series of resource-minimal computational experiments designed to generate low-order polynomial graduating functions to approximate the more complex underlying codes. These polynomial functions were then used to propagate cavity geometry errors to estimate the uncertainty they induce in the reentry load calculations performed by the underlying code. This paper describes a methodological study focused on evaluating the application of MDOE to future operational codes in a rapid and low-cost way to assess the effects of cavity geometry uncertainty.

  10. Effect of surgical guide design and surgeon's experience on the accuracy of implant placement.

    PubMed

    Hinckfuss, Simon; Conrad, Heather J; Lin, Lianshan; Lunos, Scott; Seong, Wook-Jin

    2012-08-01

    Implant position is a key determinant of esthetic and functional success. Achieving the goal of ideal implant position may be affected by case selection, prosthodontically driven treatment planning, site preparation, surgeon's experience and use of a surgical guide. The combined effect of surgical guide design, surgeon's experience, and size of the edentulous area on the accuracy of implant placement was evaluated in a simulated clinical setting. Twenty-one volunteers were recruited to participate in the study. They were divided evenly into 3 groups (novice, intermediate, and experienced). Each surgeon placed implants in single and double sites using 4 different surgical guide designs (no guide, tube, channel, and guided) and written instructions describing the ideal implant positions. A definitive typodont was constructed that had 3 implants in prosthetically determined ideal positions of single and double sites. The position and angulation of implants placed by the surgeons in the duplicate typodonts was measured using a computerized coordinate measuring machine and compared to the definitive typodont. The mean absolute positional error for all guides was 0.273, 0.340, 0.197 mm in mesial-distal, buccal-lingual, vertical positions, respectively, with an overall range of 0.00 to 1.81 mm. The mean absolute angle error for all guides was 1.61° and 2.39° in the mesial-distal and buccal-lingual angulations, respectively, with an overall range of 0.01° to 9.7°. Surgical guide design had a statistically significant effect on the accuracy of implant placement regardless of the surgeon's experience level. Experienced surgeons had significantly less error in buccal-lingual angulation. The size of the edentulous sites was found to affect both implant angle and position significantly. The magnitude of error in position and angulation caused by surgical guide design, surgeon's experience, and site size reported in this study are possibly not large enough to be clinically

  11. Design and test of a compact optics system for the pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Laubenthal, James R.

    1990-01-01

    The experiment described seeks to improve the understanding of the fundamental mechanisms that constitute nucleate pool boiling. The vehicle for accomplishing this is an investigation, including tests to be conducted in microgravity and coupled with appropriate analyses, of the heat transfer and vapor bubble dynamics associated with nucleation, bubble growth/collapse and subsequent motion, considering the interrelations between buoyancy, momentum and surface tension which will govern the motion of the vapor and surrounding liquid, as a function of the heating rate at the heat transfer surface and the temperature level and distribution in the bulk liquid. The experiment is designed to be contained within the confines of a Get-Away-Special Canister (GAS Can) installed in the bay of the space shuttle. When the shuttle reaches orbit, the experiment will be turned on and testing will proceed automatically. In the proposed Pool Boiling Experiment a pool of liquid, initially at a precisely defined pressure and temperature, will be subjected to a step imposed heat flux from a semitransparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. Transient measurements of the heater surface and fluid temperatures near the surface will be made, noting especially the conditions at the onset of boiling, along with motion photography of the boiling process in two simultaneous views, from beneath the heating surface and from the side. The conduct of the experiment and the data acquisition will be completely automated and self-contained. For the initial flight, a total of nine tests are proposed, with three levels of heat flux and three levels of subcooling. The design process used in the development and check-out of the compact photographic/optics system for the Pool Boiling Experiment is documented.

  12. Design optimization of RF lines in vacuum environment for the MITICA experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Muri, Michela, E-mail: michela.demuri@igi.cnr.it; Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova; Pavei, Mauro

    This contribution regards the Radio Frequency (RF) transmission line of the Megavolt ITER Injector and Concept Advancement (MITICA) experiment. The original design considered copper coaxial lines of 1″ 5/8, but thermal simulations under operating conditions showed maximum temperatures of the lines at regime not compatible with the prescription of the component manufacturer. Hence, an optimization of the design was necessary. Enhancing thermal radiation and increasing the conductor size were considered for design optimization: thermal analyses were carried out to calculate the temperature of MITICA RF lines during operation, as a function of the emissivity value and of other geometrical parameters.more » Five coating products to increase the conductor surface emissivity were tested, measuring the outgassing behavior of the selected products and the obtained emissivity values.« less

  13. Media milling process optimization for manufacture of drug nanoparticles using design of experiments (DOE).

    PubMed

    Nekkanti, Vijaykumar; Marwah, Ashwani; Pillai, Raviraj

    2015-01-01

    Design of experiments (DOE), a component of Quality by Design (QbD), is systematic and simultaneous evaluation of process variables to develop a product with predetermined quality attributes. This article presents a case study to understand the effects of process variables in a bead milling process used for manufacture of drug nanoparticles. Experiments were designed and results were computed according to a 3-factor, 3-level face-centered central composite design (CCD). The factors investigated were motor speed, pump speed and bead volume. Responses analyzed for evaluating these effects and interactions were milling time, particle size and process yield. Process validation batches were executed using the optimum process conditions obtained from software Design-Expert® to evaluate both the repeatability and reproducibility of bead milling technique. Milling time was optimized to <5 h to obtain the desired particle size (d90 < 400 nm). The desirability function used to optimize the response variables and observed responses were in agreement with experimental values. These results demonstrated the reliability of selected model for manufacture of drug nanoparticles with predictable quality attributes. The optimization of bead milling process variables by applying DOE resulted in considerable decrease in milling time to achieve the desired particle size. The study indicates the applicability of DOE approach to optimize critical process parameters in the manufacture of drug nanoparticles.

  14. Accretion shocks in the laboratory: Design of an experiment to study star formation

    DOE PAGES

    Young, Rachel P.; Kuranz, C. C.; Drake, R. P.; ...

    2017-02-13

    Here, we present the design of a laboratory-astrophysics experiment to study magnetospheric accretion relevant to young, pre-main-sequence stars. Spectra of young stars show evidence of hotspots created when streams of accreting material impact the surface of the star and create shocks. The structures that form during this process are poorly understood, as the surfaces of young stars cannot be spatially resolved. Our experiment would create a scaled "accretion shock" at a major (several kJ) laser facility. The experiment drives a plasma jet (the "accretion stream") into a solid block (the "stellar surface"), in the presence of a parallel magnetic fieldmore » analogous to the star's local field.« less

  15. Spacecraft and mission design for the SP-100 flight experiment

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1988-01-01

    The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kW(e) ammonia arcjet system operating at an experimentally measured specific impulse of 1031 s and an efficiency of 42.3 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kW(e) SRPS is assumed. The spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission, and an orbit raising round trip corresponding to possible orbit transfer vehicle (OTV) missions.

  16. The Impact of School Design and Arrangement on Learning Experiences: A Case Study of an Architecturally Significant Elementary School

    ERIC Educational Resources Information Center

    Churchill, Deirdre Lyne

    2014-01-01

    This qualitative study examined the impact of architectural design and arrangement on the learning experiences of students. Specifically, it examined how school design and arrangement foster interactions and relationships among students and adults relevant to integral learning experiences. This case study was limited to the breadth of knowledge…

  17. Development of Metacognitive Skills: Designing Problem-Based Experiment with Prospective Science Teachers in Biology Laboratory

    ERIC Educational Resources Information Center

    Denis Çeliker, Huriye

    2015-01-01

    The purpose of this study is to investigate the effect of designing problem-based experiments (DPBE) on the level of metacognitive skills of prospective science teachers. For this purpose, pre test-post test design, without control group, was used in the research. The research group of the study comprised 113 second-grade prospective science…

  18. Physical Vapor Transport of Mercurous Chloride Crystals: Design of a Microgravity Experiment

    NASA Technical Reports Server (NTRS)

    Duval, W, M. B.; Singh, N. B.; Glicksman, M. E.

    1997-01-01

    Flow field characteristics predicted from a computational model show that the dynamical state of the flow, for practical crystal growth conditions of mercurous chloride, can range from steady to unsteady. Evidence that the flow field can be strongly dominated by convection for ground-based conditions is provided by the prediction of asymmetric velocity profiles bv the model which show reasonable agreement with laser Doppler velocimetry experiments in both magnitude and planform. Unsteady flow is shown to be correlated with a degradation of crystal quality as quantified by light scattering pattern measurements, A microgravity experiment is designed to show that an experiment performed with parameters which yield an unsteady flow becomes steady (diffusive-advective) in a microgravity environment of 10(exp -3) g(sub 0) as predicted by the model, and hence yields crystals with optimal quality.

  19. Calibration Device Designed for proof ring used in SCC Experiment

    NASA Astrophysics Data System (ADS)

    Hu, X. Y.; Kang, Z. Y.; Yu, Y. L.

    2017-11-01

    In this paper, a calibration device for proof ring used in SCC (Stress Corrosion Cracking) experiment was designed. A compact size loading device was developed to replace traditional force standard machine or a long screw nut. The deformation of the proof ring was measured by a CCD (Charge-Coupled Device) during the calibration instead of digital caliper or a dial gauge. The calibration device was verified at laboratory that the precision of force loading is ±0.1% and the precision of deformation measurement is ±0.002mm.

  20. Design of Field Experiments for Adaptive Sampling of the Ocean with Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Ooi, B. H.; Cho, W.; Dao, M. H.; Tkalich, P.; Patrikalakis, N. M.

    2010-05-01

    Due to the highly non-linear and dynamical nature of oceanic phenomena, the predictive capability of various ocean models depends on the availability of operational data. A practical method to improve the accuracy of the ocean forecast is to use a data assimilation methodology to combine in-situ measured and remotely acquired data with numerical forecast models of the physical environment. Autonomous surface and underwater vehicles with various sensors are economic and efficient tools for exploring and sampling the ocean for data assimilation; however there is an energy limitation to such vehicles, and thus effective resource allocation for adaptive sampling is required to optimize the efficiency of exploration. In this paper, we use physical oceanography forecasts of the coastal zone of Singapore for the design of a set of field experiments to acquire useful data for model calibration and data assimilation. The design process of our experiments relied on the oceanography forecast including the current speed, its gradient, and vorticity in a given region of interest for which permits for field experiments could be obtained and for time intervals that correspond to strong tidal currents. Based on these maps, resources available to our experimental team, including Autonomous Surface Craft (ASC) are allocated so as to capture the oceanic features that result from jets and vortices behind bluff bodies (e.g., islands) in the tidal current. Results are summarized from this resource allocation process and field experiments conducted in January 2009.

  1. Eurodelta-Trends, a Multi-Model Experiment of Air Quality Hindcast in Europe over 1990-2010. Experiment Design and Key Findings

    NASA Astrophysics Data System (ADS)

    Colette, A.; Ciarelli, G.; Otero, N.; Theobald, M.; Solberg, S.; Andersson, C.; Couvidat, F.; Manders-Groot, A.; Mar, K. A.; Mircea, M.; Pay, M. T.; Raffort, V.; Tsyro, S.; Cuvelier, K.; Adani, M.; Bessagnet, B.; Bergstrom, R.; Briganti, G.; Cappelletti, A.; D'isidoro, M.; Fagerli, H.; Ojha, N.; Roustan, Y.; Vivanco, M. G.

    2017-12-01

    The Eurodelta-Trends multi-model chemistry-transport experiment has been designed to better understand the evolution of air pollution and its drivers for the period 1990-2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional scale air quality. The experiment is designed in three tiers with increasing degree of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000 and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions and (iii) meteorology complements it. The most demanding tier consists in two complete time series from 1990 to 2010, simulated using either time varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and six models have completed the 21-year trend simulations. The modelling results are publicly available for further use by the scientific community. We assess the skill of the models in capturing observed air pollution trends for the 1990-2010 time period. The average particulate matter relative trends are well captured by the models, even if they display the usual lower bias in reproducing absolute levels. Ozone trends are also well reproduced, yet slightly overestimated in the 1990s. The attribution study emphasizes the efficiency of mitigation measures in reducing air pollution over Europe, although a strong impact of long range transport is pointed out for ozone trends. Meteorological variability is also an important factor in some regions of Europe. The results of the first health and ecosystem impact studies impacts building upon a regional scale multi-model ensemble over a 20yr time period will also be presented.

  2. Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty.

    PubMed

    Mdluli, Thembi; Buzzard, Gregery T; Rundell, Ann E

    2015-09-01

    This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm's scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements.

  3. Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty

    PubMed Central

    Mdluli, Thembi; Buzzard, Gregery T.; Rundell, Ann E.

    2015-01-01

    This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements. PMID:26379275

  4. Propagation of Computational Uncertainty Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2007-01-01

    This paper describes the use of formally designed experiments to aid in the error analysis of a computational experiment. A method is described by which the underlying code is approximated with relatively low-order polynomial graduating functions represented by truncated Taylor series approximations to the true underlying response function. A resource-minimal approach is outlined by which such graduating functions can be estimated from a minimum number of case runs of the underlying computational code. Certain practical considerations are discussed, including ways and means of coping with high-order response functions. The distributional properties of prediction residuals are presented and discussed. A practical method is presented for quantifying that component of the prediction uncertainty of a computational code that can be attributed to imperfect knowledge of independent variable levels. This method is illustrated with a recent assessment of uncertainty in computational estimates of Space Shuttle thermal and structural reentry loads attributable to ice and foam debris impact on ascent.

  5. Lost in space: design of experiments and scientific exploration in a Hogarth Universe.

    PubMed

    Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R

    2015-11-01

    A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Note: Modified anvil design for improved reliability in DT-Cup experiments.

    PubMed

    Hunt, Simon A; Dobson, David P

    2017-12-01

    The Deformation T-Cup (DT-Cup) is a modified 6-8 multi-anvil apparatus capable of controlled strain-rate deformation experiments at pressures greater than 18 GPa. Controlled strain-rate deformation was enabled by replacing two of the eight cubic "second-stage" anvils with hexagonal cross section deformation anvils and modifying the "first-stage" wedges. However, with these modifications approximately two-thirds of experiments end with rupture of the hexagonal anvils. By replacing the hexagonal anvils with cubic anvils and, split, deformation wedge extensions, we restore the massive support to the deformation anvils that were inherent in the original multi-anvil design and prevent deformation anvil failure. With the modified parts, the DT-Cup has an experimental success rate that is similar to that of a standard hydrostatic 6-8 multi-anvil apparatus.

  7. A revised design for microarray experiments to account for experimental noise and uncertainty of probe response.

    PubMed

    Pozhitkov, Alex E; Noble, Peter A; Bryk, Jarosław; Tautz, Diethard

    2014-01-01

    Although microarrays are analysis tools in biomedical research, they are known to yield noisy output that usually requires experimental confirmation. To tackle this problem, many studies have developed rules for optimizing probe design and devised complex statistical tools to analyze the output. However, less emphasis has been placed on systematically identifying the noise component as part of the experimental procedure. One source of noise is the variance in probe binding, which can be assessed by replicating array probes. The second source is poor probe performance, which can be assessed by calibrating the array based on a dilution series of target molecules. Using model experiments for copy number variation and gene expression measurements, we investigate here a revised design for microarray experiments that addresses both of these sources of variance. Two custom arrays were used to evaluate the revised design: one based on 25 mer probes from an Affymetrix design and the other based on 60 mer probes from an Agilent design. To assess experimental variance in probe binding, all probes were replicated ten times. To assess probe performance, the probes were calibrated using a dilution series of target molecules and the signal response was fitted to an adsorption model. We found that significant variance of the signal could be controlled by averaging across probes and removing probes that are nonresponsive or poorly responsive in the calibration experiment. Taking this into account, one can obtain a more reliable signal with the added option of obtaining absolute rather than relative measurements. The assessment of technical variance within the experiments, combined with the calibration of probes allows to remove poorly responding probes and yields more reliable signals for the remaining ones. Once an array is properly calibrated, absolute quantification of signals becomes straight forward, alleviating the need for normalization and reference hybridizations.

  8. ProtocolNavigator: emulation-based software for the design, documentation and reproduction biological experiments.

    PubMed

    Khan, Imtiaz A; Fraser, Adam; Bray, Mark-Anthony; Smith, Paul J; White, Nick S; Carpenter, Anne E; Errington, Rachel J

    2014-12-01

    Experimental reproducibility is fundamental to the progress of science. Irreproducible research decreases the efficiency of basic biological research and drug discovery and impedes experimental data reuse. A major contributing factor to irreproducibility is difficulty in interpreting complex experimental methodologies and designs from written text and in assessing variations among different experiments. Current bioinformatics initiatives either are focused on computational research reproducibility (i.e. data analysis) or laboratory information management systems. Here, we present a software tool, ProtocolNavigator, which addresses the largely overlooked challenges of interpretation and assessment. It provides a biologist-friendly open-source emulation-based tool for designing, documenting and reproducing biological experiments. ProtocolNavigator was implemented in Python 2.7, using the wx module to build the graphical user interface. It is a platform-independent software and freely available from http://protocolnavigator.org/index.html under the GPL v2 license. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Quantifying second generation ethanol inhibition: Design of Experiments approach and kinetic model development.

    PubMed

    Schneiderman, Steven J; Johnson, Roger W; Menkhaus, Todd J; Gilcrease, Patrick C

    2015-03-01

    While softwoods represent a potential feedstock for second generation ethanol production, compounds present in their hydrolysates can inhibit fermentation. In this study, a novel Design of Experiments (DoE) approach was used to identify significant inhibitory effects on Saccharomyces cerevisiae D5A for the purpose of guiding kinetic model development. Although acetic acid, furfural and 5-hydroxymethyl furfural (HMF) were present at potentially inhibitory levels, initial factorial experiments only identified ethanol as a significant rate inhibitor. It was hypothesized that high ethanol levels masked the effects of other inhibitors, and a subsequent factorial design without ethanol found significant effects for all other compounds. When these non-ethanol effects were accounted for in the kinetic model, R¯(2) was significantly improved over an ethanol-inhibition only model (R¯(2)=0.80 vs. 0.76). In conclusion, when ethanol masking effects are removed, DoE is a valuable tool to identify significant non-ethanol inhibitors and guide kinetic model development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Precision Pointing Control System (PPCS) system design and analysis. [for gimbaled experiment platforms

    NASA Technical Reports Server (NTRS)

    Frew, A. M.; Eisenhut, D. F.; Farrenkopf, R. L.; Gates, R. F.; Iwens, R. P.; Kirby, D. K.; Mann, R. J.; Spencer, D. J.; Tsou, H. S.; Zaremba, J. G.

    1972-01-01

    The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target.

  11. Illumination system development using design and analysis of computer experiments

    NASA Astrophysics Data System (ADS)

    Keresztes, Janos C.; De Ketelaere, Bart; Audenaert, Jan; Koshel, R. J.; Saeys, Wouter

    2015-09-01

    Computer assisted optimal illumination design is crucial when developing cost-effective machine vision systems. Standard local optimization methods, such as downhill simplex optimization (DHSO), often result in an optimal solution that is influenced by the starting point by converging to a local minimum, especially when dealing with high dimensional illumination designs or nonlinear merit spaces. This work presents a novel nonlinear optimization approach, based on design and analysis of computer experiments (DACE). The methodology is first illustrated with a 2D case study of four light sources symmetrically positioned along a fixed arc in order to obtain optimal irradiance uniformity on a flat Lambertian reflecting target at the arc center. The first step consists of choosing angular positions with no overlap between sources using a fast, flexible space filling design. Ray-tracing simulations are then performed at the design points and a merit function is used for each configuration to quantify the homogeneity of the irradiance at the target. The obtained homogeneities at the design points are further used as input to a Gaussian Process (GP), which develops a preliminary distribution for the expected merit space. Global optimization is then performed on the GP more likely providing optimal parameters. Next, the light positioning case study is further investigated by varying the radius of the arc, and by adding two spots symmetrically positioned along an arc diametrically opposed to the first one. The added value of using DACE with regard to the performance in convergence is 6 times faster than the standard simplex method for equal uniformity of 97%. The obtained results were successfully validated experimentally using a short-wavelength infrared (SWIR) hyperspectral imager monitoring a Spectralon panel illuminated by tungsten halogen sources with 10% of relative error.

  12. Optimizing Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments.

    PubMed

    Hecht, Elizabeth S; Oberg, Ann L; Muddiman, David C

    2016-05-01

    Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as "design of experiments" (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes 3 years after the latest DOE review (Hibbert DB, 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided.

  13. Design of the EO-1 Pulsed Plasma Thruster Attitude Control Experiment

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Sanneman, Paul; Hunt, Teresa; Blackman, Kathie; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing 1 (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic Propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 micro N-s) at low average power (less than 1 to 100 W). EO-1 has a single PPT that can produce torque in either the positive or negative pitch direction. For the PPT in-flight experiment, the pitch reaction wheel will be replaced by the PPT during nominal EO-1 nadir pointing. A PPT specific proportional-integral-derivative (PID) control algorithm was developed for the experiment. High fidelity simulations of the spacecraft attitude control capability using the PPT were conducted. The simulations, which showed PPT control performance within acceptable mission limits, will be used as the benchmark for on-orbit performance. The flight validation will demonstrate the ability of the PPT to provide precision pointing resolution. response and stability as an attitude control actuator.

  14. RNA-seq mixology: designing realistic control experiments to compare protocols and analysis methods

    PubMed Central

    Holik, Aliaksei Z.; Law, Charity W.; Liu, Ruijie; Wang, Zeya; Wang, Wenyi; Ahn, Jaeil; Asselin-Labat, Marie-Liesse; Smyth, Gordon K.

    2017-01-01

    Abstract Carefully designed control experiments provide a gold standard for benchmarking different genomics research tools. A shortcoming of many gene expression control studies is that replication involves profiling the same reference RNA sample multiple times. This leads to low, pure technical noise that is atypical of regular studies. To achieve a more realistic noise structure, we generated a RNA-sequencing mixture experiment using two cell lines of the same cancer type. Variability was added by extracting RNA from independent cell cultures and degrading particular samples. The systematic gene expression changes induced by this design allowed benchmarking of different library preparation kits (standard poly-A versus total RNA with Ribozero depletion) and analysis pipelines. Data generated using the total RNA kit had more signal for introns and various RNA classes (ncRNA, snRNA, snoRNA) and less variability after degradation. For differential expression analysis, voom with quality weights marginally outperformed other popular methods, while for differential splicing, DEXSeq was simultaneously the most sensitive and the most inconsistent method. For sample deconvolution analysis, DeMix outperformed IsoPure convincingly. Our RNA-sequencing data set provides a valuable resource for benchmarking different protocols and data pre-processing workflows. The extra noise mimics routine lab experiments more closely, ensuring any conclusions are widely applicable. PMID:27899618

  15. Specifications for and preliminary design of a plant growth chamber for orbital experimental experiments

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Simmonds, R. C.

    1976-01-01

    It was proposed that plant experiments be performed on board the space shuttle. To permit the proper execution of most tests, the craft must contain a plant growth chamber which is adequately designed to control those environmental factors which can induce changes in a plant's physiology and morphology. The various needs of, and environmental factors affecting, plants are identified. The permissilbe design, construction and performance limits for a plant-growth chamber are set, and tentative designs were prepared for units which are compatible with both the botanical requirements and the constraints imposed by the space shuttle.

  16. The Design of an Instructional Model Based on Connectivism and Constructivism to Create Innovation in Real World Experience

    ERIC Educational Resources Information Center

    Jirasatjanukul, Kanokrat; Jeerungsuwan, Namon

    2018-01-01

    The objectives of the research were to (1) design an instructional model based on Connectivism and Constructivism to create innovation in real world experience, (2) assess the model designed--the designed instructional model. The research involved 2 stages: (1) the instructional model design and (2) the instructional model rating. The sample…

  17. From Playing to Designing: Enhancing Educational Experiences with Location-Based Mobile Learning Games

    ERIC Educational Resources Information Center

    Edmonds, Roger; Smith, Simon

    2017-01-01

    This paper presents research into the benefits and implementation strategies of integrating location-based mobile learning games in higher education courses to enhance educational experiences. Two approaches were studied: learning by playing, and learning by designing. In the first, games were developed for undergraduate courses in four discipline…

  18. Optimizing the vacuum plasma spray deposition of metal, ceramic, and cermet coatings using designed experiments

    NASA Astrophysics Data System (ADS)

    Kingswell, R.; Scott, K. T.; Wassell, L. L.

    1993-06-01

    The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.

  19. Design optimization of condenser microphone: a design of experiment perspective.

    PubMed

    Tan, Chee Wee; Miao, Jianmin

    2009-06-01

    A well-designed condenser microphone backplate is very important in the attainment of good frequency response characteristics--high sensitivity and wide bandwidth with flat response--and low mechanical-thermal noise. To study the design optimization of the backplate, a 2(6) factorial design with a single replicate, which consists of six backplate parameters and four responses, has been undertaken on a comprehensive condenser microphone model developed by Zuckerwar. Through the elimination of insignificant parameters via normal probability plots of the effect estimates, the projection of an unreplicated factorial design into a replicated one can be performed to carry out an analysis of variance on the factorial design. The air gap and slot have significant effects on the sensitivity, mechanical-thermal noise, and bandwidth while the slot/hole location interaction has major influence over the latter two responses. An organized and systematic approach of designing the backplate is summarized.

  20. Design of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Forest, C. B.; O'Connell, R.; Nornberg, M. D.; Spence, E. J.

    2004-11-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid-sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. The temperature of the vessel is maintained through an actively-heated-and-cooled oil heat-exchange system. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities near 15 m/s. Each shaft is sealed with an oil-buffered dual mechanical cartridge seal. The experiment is automated for remote operation and data logging. The melting and transfer of one metric ton of sodium to a storage vessel is discussed. Operating parameters and performance of the experiment are presented.

  1. The Role of Flow Experience and CAD Tools in Facilitating Creative Behaviours for Architecture Design Students

    ERIC Educational Resources Information Center

    Dawoud, Husameddin M.; Al-Samarraie, Hosam; Zaqout, Fahed

    2015-01-01

    This study examined the role of flow experience in intellectual activity with an emphasis on the relationship between flow experience and creative behaviour in design using CAD. The study used confluence and psychometric approaches because of their unique abilities to depict a clear image of creative behaviour. A cross-sectional study…

  2. Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob

    2016-11-01

    Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.

  3. Designing microarray and RNA-Seq experiments for greater systems biology discovery in modern plant genomics.

    PubMed

    Yang, Chuanping; Wei, Hairong

    2015-02-01

    Microarray and RNA-seq experiments have become an important part of modern genomics and systems biology. Obtaining meaningful biological data from these experiments is an arduous task that demands close attention to many details. Negligence at any step can lead to gene expression data containing inadequate or composite information that is recalcitrant for pattern extraction. Therefore, it is imperative to carefully consider experimental design before launching a time-consuming and costly experiment. Contemporarily, most genomics experiments have two objectives: (1) to generate two or more groups of comparable data for identifying differentially expressed genes, gene families, biological processes, or metabolic pathways under experimental conditions; (2) to build local gene regulatory networks and identify hierarchically important regulators governing biological processes and pathways of interest. Since the first objective aims to identify the active molecular identities and the second provides a basis for understanding the underlying molecular mechanisms through inferring causality relationships mediated by treatment, an optimal experiment is to produce biologically relevant and extractable data to meet both objectives without substantially increasing the cost. This review discusses the major issues that researchers commonly face when embarking on microarray or RNA-seq experiments and summarizes important aspects of experimental design, which aim to help researchers deliberate how to generate gene expression profiles with low background noise but with more interaction to facilitate novel biological discoveries in modern plant genomics. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  4. A new paradigm on battery powered embedded system design based on User-Experience-Oriented method

    NASA Astrophysics Data System (ADS)

    Wang, Zhuoran; Wu, Yue

    2014-03-01

    The battery sustainable time has been an active research topic recently for the development of battery powered embedded products such as tablets and smart phones, which are determined by the battery capacity and power consumption. Despite numerous efforts on the improvement of battery capacity in the field of material engineering, the power consumption also plays an important role and easier to ameliorate in delivering a desirable user-experience, especially considering the moderate advancement on batteries for decades. In this study, a new Top-Down modelling method, User-Experience-Oriented Battery Powered Embedded System Design Paradigm, is proposed to estimate the target average power consumption, to guide the hardware and software design, and eventually to approach the theoretical lowest power consumption that the application is still able to provide the full functionality. Starting from the 10-hour sustainable time standard, average working current is defined with battery design capacity and set as a target. Then an implementation is illustrated from both hardware perspective, which is summarized as Auto-Gating power management, and from software perspective, which introduces a new algorithm, SleepVote, to guide the system task design and scheduling.

  5. Analysis of Photothermal Characterization of Layered Materials: Design of Optimal Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    In this paper numerical calculations are presented for the steady-periodic temperature in layered materials and functionally-graded materials to simulate photothermal methods for the measurement of thermal properties. No laboratory experiments were performed. The temperature is found from a new Green s function formulation which is particularly well-suited to machine calculation. The simulation method is verified by comparison with literature data for a layered material. The method is applied to a class of two-component functionally-graded materials and results for temperature and sensitivity coefficients are presented. An optimality criterion, based on the sensitivity coefficients, is used for choosing what experimental conditions will be needed for photothermal measurements to determine the spatial distribution of thermal properties. This method for optimal experiment design is completely general and may be applied to any photothermal technique and to any functionally-graded material.

  6. An automated design process for short pulse laser driven opacity experiments

    DOE PAGES

    Martin, M. E.; London, R. A.; Goluoglu, S.; ...

    2017-12-21

    Stellar-relevant conditions can be reached by heating a buried layer target with a short pulse laser. Previous design studies of iron buried layer targets found that plasma conditions are dominantly controlled by the laser energy while the accuracy of the inferred opacity is limited by tamper emission and optical depth effects. In this paper, we developed a process to simultaneously optimize laser and target parameters to meet a variety of design goals. We explored two sets of design cases: a set focused on conditions relevant to the upper radiative zone of the sun (electron temperatures of 200 to 400 eVmore » and densities greater than 1/10 of solid density) and a set focused on reaching temperatures consistent with deep within the radiative zone of the sun (500 to 1000 eV) at a fixed density. We found optimized designs for iron targets and determined that the appropriate dopant, for inferring plasma conditions, depends on the goal temperature: magnesium for up to 300 eV, aluminum for 300 to 500 eV, and sulfur for 500 to 1000 eV. The optimal laser energy and buried layer thickness increase with goal temperature. The accuracy of the inferred opacity is limited to between 11% and 31%, depending on the design. Finally, overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.« less

  7. An automated design process for short pulse laser driven opacity experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M. E.; London, R. A.; Goluoglu, S.

    Stellar-relevant conditions can be reached by heating a buried layer target with a short pulse laser. Previous design studies of iron buried layer targets found that plasma conditions are dominantly controlled by the laser energy while the accuracy of the inferred opacity is limited by tamper emission and optical depth effects. In this paper, we developed a process to simultaneously optimize laser and target parameters to meet a variety of design goals. We explored two sets of design cases: a set focused on conditions relevant to the upper radiative zone of the sun (electron temperatures of 200 to 400 eVmore » and densities greater than 1/10 of solid density) and a set focused on reaching temperatures consistent with deep within the radiative zone of the sun (500 to 1000 eV) at a fixed density. We found optimized designs for iron targets and determined that the appropriate dopant, for inferring plasma conditions, depends on the goal temperature: magnesium for up to 300 eV, aluminum for 300 to 500 eV, and sulfur for 500 to 1000 eV. The optimal laser energy and buried layer thickness increase with goal temperature. The accuracy of the inferred opacity is limited to between 11% and 31%, depending on the design. Finally, overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.« less

  8. Design of a CO2 laser power control system for a Spacelab microgravity experiment

    NASA Technical Reports Server (NTRS)

    Wenzler, Carl J.; Eichenberg, Dennis J.

    1990-01-01

    The surface tension driven convection experiment (STDCE) is a Space Transportation System flight experiment manifested to fly aboard the USML-1 Spacelab mission. A CO2 laser is used to heat a spot on the surface of silicone oil contained inside a test chamber. Several CO2 laser control systems were evaluated and the selected system will be interfaced with the balance of the experimental hardware to constitute a working engineering model. Descriptions and a discussion of these various design approaches are presented.

  9. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    NASA Technical Reports Server (NTRS)

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  10. Conceptual design of a moving belt radiator shuttle-attached experiments: Technical requirement Document

    NASA Technical Reports Server (NTRS)

    Aguilar, Jerry L.

    1989-01-01

    The technical requirements for a shuttle-attached Moving Belt Radiator (MBR) experiment are defined. The MBR is an advanced radiator concept in which a rotating belt radiates thermal energy to space. The requirements for integrating the MBR experiment in the shuttle bay are discussed. Requirements for the belt material and working fluid are outlined along with some possible options. The proposed size and relationship to a full scale Moving Belt Radiator are defined. The experiment is defined with the primary goal of dynamic testing and a secondary goal of demonstrating the sealing and heat transfer characteristics. A perturbation system which will simulate a docking maneuver or other type of short term acceleration is proposed for inclusion in the experimental apparatus. A deployment and retraction capability which will aid in evaluating the dynamics of a belt during such a maneuver is also described. The proposed test sequence for the experiment is presented. Details of the conceptual design are not presented herein, but rather in a separate Final Report.

  11. Evaluating the Effectiveness of Developmental Mathematics by Embedding a Randomized Experiment within a Regression Discontinuity Design

    ERIC Educational Resources Information Center

    Moss, Brian G.; Yeaton, William H.; Lloyd, Jane E.

    2014-01-01

    Using a novel design approach, a randomized experiment (RE) was embedded within a regression discontinuity (RD) design (R-RE-D) to evaluate the impact of developmental mathematics at a large midwestern college ("n" = 2,122). Within a region of uncertainty near the cut-score, estimates of benefit from a prospective RE were closely…

  12. Design and implementation of a patient navigation system in rural Nepal: Improving patient experience in resource-constrained settings.

    PubMed

    Raut, Anant; Thapa, Poshan; Citrin, David; Schwarz, Ryan; Gauchan, Bikash; Bista, Deepak; Tamrakar, Bibhu; Halliday, Scott; Maru, Duncan; Schwarz, Dan

    2015-12-01

    Patient navigation programs have shown to be effective across multiple settings in guiding patients through the care delivery process. Limited experience and literature exist, however, for such programs in rural and resource-constrained environments. Patients living in such settings frequently have low health literacy and substantially lower social status than their providers. They typically have limited experiences interfacing with formalized healthcare systems, and, when they do, their experience can be unpleasant and confusing. At a district hospital in rural far-western Nepal, we designed and implemented a patient navigation system that aimed to improve patients' subjective care experience. First, we hired and trained a team of patient navigators who we recruited from the local area. Their responsibility is exclusively to demonstrate compassion and to guide patients through their care process. Second, we designed visual cues throughout our hospital complex to assist in navigating patients through the buildings. Third, we incorporated the patient navigators within the management and communications systems of the hospital care team, and established standard operating procedures. We describe here our experiences and challenges in designing and implementing a patient navigator program. Such patient-centered systems may be relevant at other facilities in Nepal and globally where patient health literacy is low, patients come from backgrounds of substantial marginalization and disempowerment, and patient experience with healthcare facilities is limited. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Enhanced ergonomics approaches for product design: a user experience ecosystem perspective and case studies.

    PubMed

    Xu, Wei

    2014-01-01

    This paper first discusses the major inefficiencies faced in current human factors and ergonomics (HFE) approaches: (1) delivering an optimal end-to-end user experience (UX) to users of a solution across its solution lifecycle stages; (2) strategically influencing the product business and technology capability roadmaps from a UX perspective and (3) proactively identifying new market opportunities and influencing the platform architecture capabilities on which the UX of end products relies. In response to these challenges, three case studies are presented to demonstrate how enhanced ergonomics design approaches have effectively addressed the challenges faced in current HFE approaches. Then, the enhanced ergonomics design approaches are conceptualised by a user-experience ecosystem (UXE) framework, from a UX ecosystem perspective. Finally, evidence supporting the UXE, the advantage and the formalised process for executing UXE and methodological considerations are discussed. Practitioner Summary: This paper presents enhanced ergonomics approaches to product design via three case studies to effectively address current HFE challenges by leveraging a systematic end-to-end UX approach, UX roadmaps and emerging UX associated with prioritised user needs and usages. Thus, HFE professionals can be more strategic, creative and influential.

  14. Bridge scour and stream instability countermeasures : experience, selection, and design guidance : third edition. Volume 1

    DOT National Transportation Integrated Search

    2009-09-01

    This document identifies and provides design guidelines for bridge scour and stream instability countermeasures that have been implemented by various State departments of transportation (DOTs) in the United States. Countermeasure experience, selectio...

  15. Bridge scour and stream instability countermeasures : experience, selection, and design guidance : third edition. Volume 2

    DOT National Transportation Integrated Search

    2009-09-01

    This document identifies and provides design guidelines for bridge scour and stream instability countermeasures that have been implemented by various State departments of transportation (DOTs) in the United States. Countermeasure experience, selectio...

  16. Urban Park Design + Love for Nature: Interventions for Visitor Experiences and Social Networking

    ERIC Educational Resources Information Center

    Typhina, Eli

    2017-01-01

    Affect or emotion for nature can prime environmentally friendly attitudes and behaviors, but for one's love of nature to grow she must physically experience and communicate about nature with others. This study aimed to identify urban park designs that could increase affect for nature in park visitors by stimulating their desire to communicate…

  17. Theoretical and practical considerations for the design of the iMUSH active-source seismic experiment

    NASA Astrophysics Data System (ADS)

    Kiser, E.; Levander, A.; Harder, S. H.; Abers, G. A.; Creager, K. C.; Vidale, J. E.; Moran, S. C.; Malone, S. D.

    2013-12-01

    The multi-disciplinary imaging of Magma Under St. Helens (iMUSH) experiment seeks to understand the details of the magmatic system that feeds Mount St. Helens using active- and passive-source seismic, magnetotelluric, and petrologic data. The active-source seismic component of this experiment will take place in the summer of 2014 utilizing all of the 2600 PASSCAL 'Texan' Reftek instruments which will record twenty-four 1000-2000 lb shots distributed around the Mount St. Helens region. The instruments will be deployed as two consecutive refraction profiles centered on the volcano, and a series of areal arrays. The actual number of areal arrays, as well as their locations, will depend strongly on the length of the experiment (3-4 weeks), the number of instrument deployers (50-60), and the time it will take per deployment given the available road network. The current work shows how we are balancing these practical considerations against theoretical experiment designs in order to achieve the proposed scientific goals with the available resources. One of the main goals of the active-source seismic experiment is to image the magmatic system down to the Moho (35-40 km). Calculating sensitivity kernels for multiple shot/receiver offsets shows that direct P waves should be sensitive to Moho depths at offsets of 150 km, and therefore this will likely be the length of the refraction profiles. Another primary objective of the experiment is to estimate the locations and volumes of different magma accumulation zones beneath the volcano using the areal arrays. With this in mind, the optimal locations of these arrays, as well as their associated shots, are estimated using an eigenvalue analysis of the approximate Hessian for each possible experiment design. This analysis seeks to minimize the number of small eigenvalues of the approximate Hessian that would amplify the propagation of data noise into regions of interest in the model space, such as the likely locations of magma

  18. The study design elements employed by researchers in preclinical animal experiments from two research domains and implications for automation of systematic reviews.

    PubMed

    O'Connor, Annette M; Totton, Sarah C; Cullen, Jonah N; Ramezani, Mahmood; Kalivarapu, Vijay; Yuan, Chaohui; Gilbert, Stephen B

    2018-01-01

    Systematic reviews are increasingly using data from preclinical animal experiments in evidence networks. Further, there are ever-increasing efforts to automate aspects of the systematic review process. When assessing systematic bias and unit-of-analysis errors in preclinical experiments, it is critical to understand the study design elements employed by investigators. Such information can also inform prioritization of automation efforts that allow the identification of the most common issues. The aim of this study was to identify the design elements used by investigators in preclinical research in order to inform unique aspects of assessment of bias and error in preclinical research. Using 100 preclinical experiments each related to brain trauma and toxicology, we assessed design elements described by the investigators. We evaluated Methods and Materials sections of reports for descriptions of the following design elements: 1) use of comparison group, 2) unit of allocation of the interventions to study units, 3) arrangement of factors, 4) method of factor allocation to study units, 5) concealment of the factors during allocation and outcome assessment, 6) independence of study units, and 7) nature of factors. Many investigators reported using design elements that suggested the potential for unit-of-analysis errors, i.e., descriptions of repeated measurements of the outcome (94/200) and descriptions of potential for pseudo-replication (99/200). Use of complex factor arrangements was common, with 112 experiments using some form of factorial design (complete, incomplete or split-plot-like). In the toxicology dataset, 20 of the 100 experiments appeared to use a split-plot-like design, although no investigators used this term. The common use of repeated measures and factorial designs means understanding bias and error in preclinical experimental design might require greater expertise than simple parallel designs. Similarly, use of complex factor arrangements creates

  19. Proceedings of the Conference on the Design of Experiments (23rd) S

    DTIC Science & Technology

    1978-07-01

    of Statistics, Carnegie-Mellon University. * [12] Duran , B. S . (1976). A survey of nonparametric tests for scale. Comunications in Statistics A5, 1287...the twenty-third Design of Experiments Conference was the U. S . Army Combat Development Experimentation Command, Fort Ord, California. Excellent...Availability Prof. G. E. P. Box Time Series Modelling University of Wisconsin Dr. Churchill Eisenhart was recipient this year of the Samuel S . Wilks Memorial

  20. Teaching examples for the design of experiments: geographical sensitivity and the self-fulfilling prophecy.

    PubMed

    Lendrem, Dennis W; Lendrem, B Clare; Rowland-Jones, Ruth; D'Agostino, Fabio; Linsley, Matt; Owen, Martin R; Isaacs, John D

    2016-01-01

    Many scientists believe that small experiments, guided by scientific intuition, are simpler and more efficient than design of experiments. This belief is strong and persists even in the face of data demonstrating that it is clearly wrong. In this paper, we present two powerful teaching examples illustrating the dangers of small experiments guided by scientific intuition. We describe two, simple, two-dimensional spaces. These two spaces give rise to, and at the same time appear to generate supporting data for, scientific intuitions that are deeply flawed or wholly incorrect. We find these spaces useful in unfreezing scientific thinking and challenging the misplaced confidence in scientific intuition. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Design and Implementation of the Boundary Layer Transition Flight Experiment on Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    Spanos, Theodoros A.; Micklos, Ann

    2010-01-01

    In an effort to better the understanding of high speed aerodynamics, a series of flight experiments were installed on Space Shuttle Discovery during the STS-119 and STS-128 missions. This experiment, known as the Boundary Layer Transition Flight Experiment (BLTFE), provided the technical community with actual entry flight data from a known height protuberance at Mach numbers at and above Mach 15. Any such data above Mach 15 is irreproducible in a laboratory setting. Years of effort have been invested in obtaining this valuable data, and many obstacles had to be overcome in order to ensure the success of implementing an Orbiter modification. Many Space Shuttle systems were involved in the installation of appropriate components that revealed 'concurrent engineering' was a key integration tool. This allowed the coordination of all various parts and pieces which had to be sequenced appropriately and installed at the right time. Several issues encountered include Orbiter configuration and access, design requirements versus current layout, implementing the modification versus typical processing timelines, and optimizing the engineering design cycles and changes. Open lines of communication within the entire modification team were essential to project success as the team was spread out across the United States, from NASA Kennedy Space Center in Florida, to NASA Johnson Space Center in Texas, to Boeing Huntington Beach, California among others. The forum permits the discussion of processing concerns from the design phase to the implementation phase, which eventually saw the successful flights and data acquisition on STS-119 in March 2009 and on STS-128 in September 2009.

  2. Using Blocked Fractional Factorial Designs to Construct Discrete Choice Experiments for Health Care Studies

    PubMed Central

    Jaynes, Jessica; Wong, Weng Kee; Xu, Hongquan

    2016-01-01

    Discrete choice experiments (DCEs) are increasingly used for studying and quantifying subjects preferences in a wide variety of health care applications. They provide a rich source of data to assess real-life decision making processes, which involve trade-offs between desirable characteristics pertaining to health and health care, and identification of key attributes affecting health care. The choice of the design for a DCE is critical because it determines which attributes’ effects and their interactions are identifiable. We apply blocked fractional factorial designs to construct DCEs and address some identification issues by utilizing the known structure of blocked fractional factorial designs. Our design techniques can be applied to several situations including DCEs where attributes have different number of levels. We demonstrate our design methodology using two health care studies to evaluate (1) asthma patients’ preferences for symptom-based outcome measures, and (2) patient preference for breast screening services. PMID:26823156

  3. Preparing university students to lead K-12 engineering outreach programmes: a design experiment

    NASA Astrophysics Data System (ADS)

    Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi

    2016-11-01

    This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year design experiment to examine the programme's effectiveness at preparing university students to lead pre-engineering activities. Pre- and post-surveys incorporated items from the Student Engagement sub-scale of the Teacher Sense of Efficacy Scale. Surveys were analysed using paired-samples t-test. Interview and open-ended survey data were analysed using discourse analysis and the constant comparative method. As a result of participation in the programme, university students reported a gain in efficacy to lead pre-engineering activities. The paper discusses programme features that supported efficacy gains and concludes with a set of design principles for developing learning environments that effectively prepare university students to facilitate pre-engineering outreach programmes.

  4. Use of Taguchi design of experiments to optimize and increase robustness of preliminary designs

    NASA Technical Reports Server (NTRS)

    Carrasco, Hector R.

    1992-01-01

    The research performed this summer includes the completion of work begun last summer in support of the Air Launched Personnel Launch System parametric study, providing support on the development of the test matrices for the plume experiments in the Plume Model Investigation Team Project, and aiding in the conceptual design of a lunar habitat. After the conclusion of last years Summer Program, the Systems Definition Branch continued with the Air Launched Personnel Launch System (ALPLS) study by running three experiments defined by L27 Orthogonal Arrays. Although the data was evaluated during the academic year, the analysis of variance and the final project review were completed this summer. The Plume Model Investigation Team (PLUMMIT) was formed by the Engineering Directorate to develop a consensus position on plume impingement loads and to validate plume flowfield models. In order to obtain a large number of individual correlated data sets for model validation, a series of plume experiments was planned. A preliminary 'full factorial' test matrix indicated that 73,024 jet firings would be necessary to obtain all of the information requested. As this was approximately 100 times more firings than the scheduled use of Vacuum Chamber A would permit, considerable effort was needed to reduce the test matrix and optimize it with respect to the specific objectives of the program. Part of the First Lunar Outpost Project deals with Lunar Habitat. Requirements for the habitat include radiation protection, a safe haven for occasional solar flare storms, an airlock module as well as consumables to support 34 extra vehicular activities during a 45 day mission. The objective for the proposed work was to collaborate with the Habitat Team on the development and reusability of the Logistics Modules.

  5. Supporting the whole student: Inclusive program design for making undergraduate research experiences accessible

    NASA Astrophysics Data System (ADS)

    Haacker-Santos, R.; Allen, L.; Batchelor, R. L.

    2013-12-01

    As undergraduate research experiences have become an unofficial pre-requisite to enter graduate school programs in the sciences, we have to make sure that these experiences are inclusive and accessible to all students. Program managers who make a conscious effort to recruit students from traditionally under-represented groups, including veterans, non-traditional students or students with disabilities, are often unaware of the financial and program implications these students require, and discover that their current program design might inadvertently exclude or not fully support these students. The SOARS Program, an undergraduate-to-graduate bridge program in the atmospheric sciences, has supported this group of students for over 15 years. We have found that we needed to adjust some program elements and secure extra funding sources to holistically support our students in their research experience, however, the program and the students have reaped tremendous benefits. Involving non-traditional students or veterans in our program has raised the maturity level and problem solving skills of the group, and having students with disabilities participate has been a vehicle for broadening perspective and diverse knowledge into the field of study, e.g. researching weather and climate beyond what you can 'see'. This presentation will highlight some of the findings from the SOARS program experience, and will share practices for recruitment and holistic support to ensure student success. We will share resources and tips on inclusive program design, including working with students with family commitments or physical disabilities, and will report on the enormous program benefits and peer learning these students have brought to the student cohorts and research labs they are working in.

  6. Unlocking the Value of Literature in Health Co-Design: Transforming Patient Experience Publications into a Creative and Accessible Card Tool.

    PubMed

    Villalba, Clare; Jaiprakash, Anjali; Donovan, Jared; Roberts, Jonathan; Crawford, Ross

    2018-05-26

    A wealth of peer-reviewed data exists regarding people's health experience, yet practical ways of using the data to understand patients' experiences and to inform health co-design are needed. This study aims to develop an applied and pragmatic method for using patient experience literature in co-design by transforming it into an accessible and creative co-design tool. A scoping literature review of the CINAHL, MEDLINE, PsycINFO and PubMed electronic databases was conducted from January 2011 through August 2016. Qualitative publications regarding the experience of living with diabetes in Australia were selected. The Results section of each paper was extracted and affinity analysis was applied to identify insights into the health experience. These insights were developed into a card tool for use in health co-design activities. Thirteen relevant papers were identified from the review, and affinity analysis of the Results sections of these papers lead to the identification of 85 insights, from 'Shock of diagnosis' (Insight 1), to 'Delay seeking care' (Insight 9), to 'Assess the quality of care' (Insight 28), to 'Avoid or adapt habits' (Insight 78). Each insight was developed into an individual card, which included a high-level theme, insight, quote and a link back to the literature, together making up the Health Experience Insight Cards, Living with Diabetes Edition. This was the first study to develop a method for transforming existing patient experience literature into a creative tool for health improvement. The Health Experience Insight Cards collate the diverse experiences of over 300 people living with diabetes in Australia, from 13 studies. Health improvement teams can use the 'Living with Diabetes Edition' cards or they can follow this pragmatic method to create their own cards focused on other health experiences to facilitate person-focused health improvements.

  7. Optimal design of gene knockout experiments for gene regulatory network inference

    PubMed Central

    Ud-Dean, S. M. Minhaz; Gunawan, Rudiyanto

    2016-01-01

    Motivation: We addressed the problem of inferring gene regulatory network (GRN) from gene expression data of knockout (KO) experiments. This inference is known to be underdetermined and the GRN is not identifiable from data. Past studies have shown that suboptimal design of experiments (DOE) contributes significantly to the identifiability issue of biological networks, including GRNs. However, optimizing DOE has received much less attention than developing methods for GRN inference. Results: We developed REDuction of UnCertain Edges (REDUCE) algorithm for finding the optimal gene KO experiment for inferring directed graphs (digraphs) of GRNs. REDUCE employed ensemble inference to define uncertain gene interactions that could not be verified by prior data. The optimal experiment corresponds to the maximum number of uncertain interactions that could be verified by the resulting data. For this purpose, we introduced the concept of edge separatoid which gave a list of nodes (genes) that upon their removal would allow the verification of a particular gene interaction. Finally, we proposed a procedure that iterates over performing KO experiments, ensemble update and optimal DOE. The case studies including the inference of Escherichia coli GRN and DREAM 4 100-gene GRNs, demonstrated the efficacy of the iterative GRN inference. In comparison to systematic KOs, REDUCE could provide much higher information return per gene KO experiment and consequently more accurate GRN estimates. Conclusions: REDUCE represents an enabling tool for tackling the underdetermined GRN inference. Along with advances in gene deletion and automation technology, the iterative procedure brings an efficient and fully automated GRN inference closer to reality. Availability and implementation: MATLAB and Python scripts of REDUCE are available on www.cabsel.ethz.ch/tools/REDUCE. Contact: rudi.gunawan@chem.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID

  8. Analytical and experimental investigation of liquid double drop dynamics: Preliminary design for space shuttle experiments

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The preliminary grant assessed the use of laboratory experiments for simulating low g liquid drop experiments in the space shuttle environment. Investigations were begun of appropriate immiscible liquid systems, design of experimental apparatus and analyses. The current grant continued these topics, completed construction and preliminary testing of the experimental apparatus, and performed experiments on single and compound liquid drops. A continuing assessment of laboratory capabilities, and the interests of project personnel and available collaborators, led to, after consultations with NASA personnel, a research emphasis specializing on compound drops consisting of hollow plastic or elastic spheroids filled with liquids.

  9. Recent experience with multidisciplinary analysis and optimization in advanced aircraft design

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    The task of modern aircraft design has always been complicated due to the number of intertwined technical factors from the various engineering disciplines. Furthermore, this complexity has been rapidly increasing by the development of such technologies as aeroelasticity tailored materials and structures, active control systems, integrated propulsion/airframe controls, thrust vectoring, and so on. Successful designs that achieve maximum advantage from these new technologies require a thorough understanding of the physical phenomena and the interactions among these phenomena. A study commissioned by the Aeronautical Sciences and Evaluation Board of the National Research Council has gone so far as to identify technology integration as a new discipline from which many future aeronautical advancements will arise. Regardless of whether one considers integration as a new discipline or not, it is clear to all engineers involved in aircraft design and analysis that better methods are required. In the past, designers conducted parametric studies in which a relatively small number of principal characteristics were varied to determine the effect on design requirements which were themselves often diverse and contradictory. Once a design was chosen, it then passed through the various engineers' disciplines whose principal task was to make the chosen design workable. Working in a limited design space, the discipline expert sometimes improved the concept, but more often than not, the result was in the form of a penalty to make the original concept workable. If an insurmountable problem was encountered, the process began over. Most design systems that attempt to account for disciplinary interactions have large empirical elements and reliance on past experience is a poor guide in obtaining maximum utilizations of new technologies. Further compounding the difficulty of design is that as the aeronautical sciences have matured, the discipline specialist's area of research has generally

  10. Fine-Tuning in a Design Experiment

    ERIC Educational Resources Information Center

    Ho, Foo Him; Toh, Pee Choon; Toh, Tin Lam

    2013-01-01

    Quek, Tay, Toh, Leong, and Dindyal (2011) proposed that a design-theory-practice troika should always be considered for a designed package to be acceptable to the research users who, in this case, are teachers and schools. This paper describes the fine-tuning to the MProSE problem-solving design made by the teachers in the school after first round…

  11. LH2 Target Design & Position Survey Techniques for the MUSE experiment for Precise Proton Radius Measurement

    NASA Astrophysics Data System (ADS)

    Le Pottier, Luc; Roy, Pryiashee; Lorenzon, Wolfgang; Raymond, Richard; Steinberg, Noah; Rossi de La Fuente, Erick; MUSE (MUon proton Scattering Experiment) Collaboration

    2017-09-01

    The proton radius puzzle is a currently unresolved problem which has intrigued the scientific community, dealing with a 7 σ discrepancy between the proton radii determined from muonic hydrogen spectroscopy and electron scattering measurements. The MUon Scattering Experiment (MUSE) aims to resolve this puzzle by performing the first simultaneous elastic scattering measurements of both electrons and muons on the proton, which will allow the comparison of the radii from the two interactions with reduced systematic uncertainties. The data from this experiment is expected to provide the best test of lepton universality to date. The experiment will take place at the Paul Scherrer Institute in Switzerland in 2018. An essential component of the experiment is a liquid hydrogen (LH2) cryotarget system. Our group at the University of Michigan is responsible for the design, fabrication and installation of this system. Here we present our LH2 target cell design and fabrication techniques for successful operation at 20 K and 1 atm, and our computer vision-based target position survey system which will determine the position of the target, installed inside a vacuum chamber, with 0.01 mm or better precision at the height of the liquid hydrogen target and along the beam direction during the experiment.

  12. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    NASA Astrophysics Data System (ADS)

    Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Schiesko, L.; Taliercio, C.; Trevisan, L.

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  13. Electrostatic sensors for SPIDER experiment: design, manufacture of prototypes, and first tests.

    PubMed

    Brombin, M; Spolaore, M; Serianni, G; Barzon, A; Franchin, L; Pasqualotto, R; Pomaro, N; Schiesko, L; Taliercio, C; Trevisan, L

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  14. Uniform magnetic fields and double-wrapped coil systems: improved techniques for the design of bioelectromagnetic experiments.

    PubMed

    Kirschvink, J L

    1992-01-01

    A common mistake in biomagnetic experimentation is the assumption that Helmholtz coils provide uniform magnetic fields; this is true only for a limited volume at their center. Substantial improvements on this design have been made during the past 140 years with systems of three, four, and five coils. Numerical comparisons of the field uniformity generated by these designs are made here, along with a table of construction details and recommendations for their use in experiments in which large volumes of uniform intensity magnetic exposures are needed. Double-wrapping, or systems of bifilar windings, can also help control for the non-magnetic effects of the electric coils used in many experiments. In this design, each coil is wrapped in parallel with two separate, adjacent strands of copper wire, rather than the single strand used normally. If currents are flowing in antiparallel directions, the magnetic fields generated by each strand will cancel and yield virtually no external magnetic field, whereas parallel currents will yield an external field. Both cases will produce similar non-magnetic effects of ohmic heating, and simple measures can reduce the small vibration and electric field differences. Control experiments can then be designed such that the only major difference between treated and untreated groups is the presence or absence of the magnetic field. Double-wrapped coils also facilitate the use of truly double-blind protocol, as the same apparatus can be used either for experimental or control groups.

  15. Motivation for proposed experimentation in the realm of accelerated E. M. systems: A preliminary design for an experiment

    NASA Technical Reports Server (NTRS)

    Post, E. J.

    1970-01-01

    An experiment, designed to determine the difference between fields-magnetic and electric-surrounding a uniformly moving charge as contrasted with the fields surrounding an accelerated charge, is presented. A thought experiment is presented to illustrate the process.

  16. The Plume Impingement Contamination II Experiment: Motivation, Design, and Implementation Plan

    NASA Technical Reports Server (NTRS)

    Lumpkin, Forrest E., III; Albyn, Keith C.; Farrell, Thomas L.

    2001-01-01

    The International Space Station (ISS) will have a long service life during which it must be able to serve as a capable platform for a wide variety of scientific investigations. In order to provide this capability, the ISS has, at the system level, a design requirement of no more than 100 Angstroms of contaminant deposition per year from "non-quiescent" sources. Non-quiescent sources include the plumes resulting from the firing of reaction control system (ReS) engines on space vehicles visiting the ISS as well as the engines on the ISS itself. Unfortunately, good general plume contamination models do not yet exist. This is due both to the complexity of the problem, making the analytic approach difficult, and to the difficulty in obtaining empirical measurements of contaminant depositions. To address this lack of flight data, NASA Johnson Space Center is planning to fly an experiment, Plume Impingement Contamination-II, to measure the contamination deposition from the Shuttle Orbiter's primary RCS engines as a function angle from plume centerline. This represents the first direct on-orbit measurement of plume impingement contamination away from the nozzle centerline ever performed, and as such is extremely important in validating mathematical models which will be used to quantify the cumulative plume impingement contamination to the ISS over its lifetime. The paper will elaborate further upon the motivation behind making these measurements as well as present the design and implementation plan of this planned experiment.

  17. Informing a Pedagogy for Design and Problem-Solving in Hard Materials by Theorising Technologists' Learning Experiences

    ERIC Educational Resources Information Center

    Potter, Patricia; France, Bev

    2018-01-01

    Design and problem solving are central to technology and have distinguished learning in technology from other curriculum areas. This research investigated how expert technologists learn design and problem solving through experience. Data was collected from four expert technologists and this information was analysed using learning theories that…

  18. Conceptual design of an orbital propellant transfer experiment. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Drake, G. L.; Bassett, C. E.; Merino, F.; Siden, L. E.; Bradley, R. E.; Carr, E. J.; Parker, R. E.

    1980-01-01

    The OTV configurations, operations and requirements planned for the period from the 1980's to the 1990's were reviewed and a propellant transfer experiment was designed that would support the needs of these advanced OTV operational concepts. An overall integrated propellant management technology plan for all NASA centers was developed. The preliminary cost estimate (for planning purposes only) is $56.7 M, of which approximately $31.8 M is for shuttle user costs.

  19. Preliminary design and hazards report. Boiling Reactor Experiment V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R. E.

    1960-02-01

    The preliminary objectives of the proposed BORAX V program are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. This is a preliminary report. (W.D.M.)

  20. DESIGN AND HAZARDS SUMMARY REPORT, BOILING REACTOR EXPERIMENT V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-05-01

    Design data for BORAX V are presented along with results of hazards evaluation studies. Considcration of the hazards associated with the operation of BORAX V was based on the following conditions: For normal steady-state power and experimental operation, the reactor and plant are adequately shielded and ventilated to allow personnel to be safely stationed in the turbine building and on the main floor of the reactor building. The control building is located one- half mile distant from the reactor building. For special, hazardous experiments, personnel are withdrawn from the reactor area. (M.C.G.)

  1. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  2. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  3. Nursing staff's experiences of working in an evidence-based designed ICU patient room-An interview study.

    PubMed

    Sundberg, Fredrika; Olausson, Sepideh; Fridh, Isabell; Lindahl, Berit

    2017-12-01

    It has been known for centuries that environment in healthcare has an impact, but despite this, environment has been overshadowed by technological and medical progress, especially in intensive care. Evidence-based design is a concept concerning integrating knowledge from various research disciplines and its application to healing environments. The aim was to explore the experiences of nursing staff of working in an evidence-based designed ICU patient room. Interviews were carried out with eight critical care nurses and five assistant nurses and then subjected to qualitative content analysis. The experience of working in an evidence-based designed intensive care unit patient room was that the room stimulates alertness and promotes wellbeing in the nursing staff, fostering their caring activities but also that the interior design of the medical and technical equipment challenges nursing actions. The room explored in this study had been rebuilt in order to create and evaluate a healing environment. This study showed that the new environment had a great impact on the caring staffs' wellbeing and their caring behaviour. At a time when turnover in nurses is high and sick leave is increasing, these findings show the importance of interior design ofintensive care units. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Design and experiment of a neural signal detection using a FES driving system.

    PubMed

    Zonghao, Huang; Zhigong, Wang; Xiaoying, Lu; Wenyuan, Li; Xiaoyan, Shen; Xintai, Zhao; Shushan, Xie; Haixian, Pan; Cunliang, Zhu

    2010-01-01

    The channel bridging, signal regenerating, and functional rebuilding of injured nerves is one of the most important issues in life science research. In recent years, some progresses in the research area have been made in repairing injured nerves with microelectronic neural bridge. Based on the previous work, this paper presents a neural signal detection and functional electrical stimulation (FES) driving system with using high performance operational amplifiers, which has been realized. The experimental results show that the designed system meets requirements. In animal experiments, sciatic nerve signal detection, regeneration and function rebuilding between two toads have been accomplished successfully by using the designed system.

  5. Designing New Academic Pathways: Reimaging the Community College Experience with Students' Needs and Best Interests at Heart

    ERIC Educational Resources Information Center

    McClenney, Kay; Dare, Donna

    2013-01-01

    This is the second article in a three-part series on reimagining the community college student experience, describing a new model for academic pathways, key design principles, examples from colleges leading the way, and implementation challenges. Community colleges are beginning to embrace the task of reimagining students' educational experiences.…

  6. Using Experience-based Co-design with older patients, their families and staff to improve palliative care experiences in the Emergency Department: A reflective critique on the process and outcomes.

    PubMed

    Blackwell, Rebecca Wright Née; Lowton, Karen; Robert, Glenn; Grudzen, Corita; Grocott, Patricia

    2017-03-01

    Increasing use of emergency departments among older patients with palliative needs has led to the development of several service-level interventions intended to improve care quality. There is little evidence of patient and family involvement in developmental processes, and little is known about the experiences of - and preferences for - palliative care delivery in this setting. Participatory action research seeking to enable collaborative working between patients and staff should enhance the impact of local quality improvement work but has not been widely implemented in such a complex setting. To critique the feasibility of this methodology as a quality improvement intervention in complex healthcare settings, laying a foundation for future work. an Emergency Department in a large teaching hospital in the United Kingdom. Experience-based Co-design incorporating: 150h of nonparticipant observation; semi-structured interviews with 15 staff members about their experiences of palliative care delivery; 5 focus groups with 64 staff members to explore challenges in delivering palliative care; 10 filmed semi-structured interviews with palliative care patients or their family members; a co-design event involving staff, patients and family members. the study successfully identified quality improvement priorities leading to changes in Emergency Department-palliative care processes. Further outputs were the creation of a patient-family-staff experience training DVD to encourage reflective discussion and the identification and application of generic design principles for improving palliative care in the Emergency Department. There were benefits and challenges associated with using Experience-based Co-design in this setting. Benefits included the flexibility of the approach, the high levels of engagement and responsiveness of patients, families and staff, and the impact of using filmed narrative interviews to enhance the 'voice' of seldom heard patients and families. Challenges

  7. Improving text comprehension strategies in upper primary school children: a design experiment.

    PubMed

    De Corte, E; Verschaffel, L; Van De Ven, A

    2001-12-01

    With respect to the acquisition of competence in reading, new standards for primary education stress more than before the importance of learning and teaching cognitive and metacognitive strategies that facilitate text comprehension. Therefore, there is a need to design a research-based instructional approach to strategic reading comprehension. The design experiment aimed at developing, implementing and evaluating a research-based, but also practically applicable learning environment for enhancing skilled strategy use in upper primary school children when reading a text. Four text comprehension strategies (activating prior knowledge, clarifying difficult words, making a schematic representation of the text, and formulating the main idea) and a metacognitive strategy (regulating one's own reading process) were trained through a variety of highly interactive instructional techniques, namely modelling, whole class discussion, and small group work in the format of reciprocal teaching. Participants in the study were four experimental 5th grade classes (79 children) and eight comparable control classes (149 pupils). The effects of the learning environment were measured using a pretest-post-test-retention design. Multilevel hierarchical linear regression models were used to analyse the quantitative data of a Reading Strategy Test, a standardised Reading Comprehension Test, a Reading Attitude Scale, a Transfer Test and an interview about strategy use during reading. The data of the Reading Strategy Test, the Transfer Test and the interviews about strategy use showed that the experimental group out-performed the control group in terms of the strategy adoption and application during text reading. Whilst the experimental group also scored higher on the Reading Comprehension Test than the control group, the difference was not significant. This design experiment shows that it is possible to foster pupils' use and transfer of strategic reading comprehension skills in regular

  8. Children's Negotiations of Visualization Skills during a Design-Based Learning Experience Using Nondigital and Digital Techniques

    ERIC Educational Resources Information Center

    Smith, Shaunna

    2018-01-01

    In the context of a 10-day summer camp makerspace experience that employed design-based learning (DBL) strategies, the purpose of this descriptive case study was to better understand the ways in which children use visualization skills to negotiate design as they move back and forth between the world of nondigital design techniques (i.e., drawing,…

  9. Novel method to construct large-scale design space in lubrication process utilizing Bayesian estimation based on a small-scale design-of-experiment and small sets of large-scale manufacturing data.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-12-01

    A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.

  10. Our Changing Land: Stone Mountain State Park. An Environmental Education Learning Experience Designed for Grades 4-6.

    ERIC Educational Resources Information Center

    Trivette, Larry

    Stone Mountain State Park's environmental education learning experience, Our Changing Land, introduces the student to the geology of the Blue Ridge Mountains, with emphasis on Stone Mountain, through a series of hands-on activities. The learning experience is designed for grades 4-6 and meets curriculum objectives of the standard course of study…

  11. Engaging science practice through science practitioners: Design experiments in K-12 telementoring

    NASA Astrophysics Data System (ADS)

    O'Neill, David Kevin

    Some educational networking enthusiasts think of the Internet primarily as a delivery vehicle for learning resources. Others see its value as a bridge between people, institutions and work routines: a way to bridge communities of discourse/practice which have traditionally been separated, so that students may have more authentic educational experiences. This dissertation reports on a set of design experiments conducted in collaboration with a high school and a middle school teacher around "telementoring": the use of telecommunications to support the development of mentoring relationships between students in school and adults in workplaces. Over the 1995/96 school year, the participants in this research orchestrated curriculum-based mentoring relationships between 90 students in project-based science classes and more than a hundred volunteer scientists from government, academia and industry. The design and evaluation carried out in these experiments had three major foci: activity structures to support productive, ongoing discourse between students and telementors, network services to reduce the administrative workload that telementoring requires of teachers, and strategies to determine how students' written arguments about their research were influenced by telementoring. Individual chapters consider how telementoring could help improve science education on a large scale; describe the activity structures implemented in each classroom and the rationale behind them; present in-depth case studies of successful and unsuccessful telementoring relationships; and discuss the implications of the research for the design of telementoring programs. The methods employed include surveys of students, interviews with students, teachers and volunteers, a broad-based topical coding of telementoring dialogues, and a unique form of genre analysis applied to students' final written reports of their research. One important finding from the research is that teams of students who invested

  12. Comparison of Resource Requirements for a Wind Tunnel Test Designed with Conventional vs. Modern Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Micol, John R.

    2011-01-01

    The factors that determine data volume requirements in a typical wind tunnel test are identified. It is suggested that productivity in wind tunnel testing can be enhanced by managing the inference error risk associated with evaluating residuals in a response surface modeling experiment. The relationship between minimum data volume requirements and the factors upon which they depend is described and certain simplifications to this relationship are realized when specific model adequacy criteria are adopted. The question of response model residual evaluation is treated and certain practical aspects of response surface modeling are considered, including inference subspace truncation. A wind tunnel test plan developed by using the Modern Design of Experiments illustrates the advantages of an early estimate of data volume requirements. Comparisons are made with a representative One Factor At a Time (OFAT) wind tunnel test matrix developed to evaluate a surface to air missile.

  13. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Spolaore, M.; Serianni, G.

    2014-02-15

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioningmore » tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.« less

  14. Mobile App Design for Teaching and Learning: Educators' Experiences in an Online Graduate Course

    ERIC Educational Resources Information Center

    Hsu, Yu-Chang; Ching, Yu-Hui

    2013-01-01

    This research explored how educators with limited programming experiences learned to design mobile apps through peer support and instructor guidance. Educators were positive about the sense of community in this online course. They also considered App Inventor a great web-based visual programming tool for developing useful and fully functioning…

  15. Baseline spacecraft and mission design for the SP-100 flight experiment

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1989-01-01

    The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kWe ammonia arcjet system operating at an experimentally-measured specific impulse of 1030 s and an efficiency of 42 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kWe SRPS is assumed. The total spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission and an orbit raising round trip corresponding to possible orbit transfer vehicle missions. Launches from Kennedy Space Center using the Titan IV expendable launch vehicle are assumed.

  16. Experience with case tools in the design of process-oriented software

    NASA Astrophysics Data System (ADS)

    Novakov, Ognian; Sicard, Claude-Henri

    1994-12-01

    In Accelerator systems such as the CERN PS complex, process equipment has a life time which may exceed the typical life cycle of its related software. Taking into account the variety of such equipment, it is important to keep the analysis and design of the software in a system-independent form. This paper discusses the experience gathered in using commercial CASE tools for analysis, design and reverse engineering of different process-oriented software modules, with a principal emphasis on maintaining the initial analysis in a standardized form. Such tools have been in existence for several years, but this paper shows that they are not fully adapted to our needs. In particular, the paper stresses the problems of integrating such a tool into an existing data-base-dependent development chain, the lack of real-time simulation tools and of Object-Oriented concepts in existing commercial packages. Finally, the paper gives a broader view of software engineering needs in our particular context.

  17. Disturbance Reduction Control Design for the ST7 Flight Validation Experiment

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Hsu, O. C.; Markley, F. L.; Houghton, M. B.

    2003-01-01

    The Space Technology 7 experiment will perform an on-orbit system-level validation of two specific Disturbance Reduction System technologies: a gravitational reference sensor employing a free-floating test mass, and a set of micro-Newton colloidal thrusters. The ST7 Disturbance Reduction System is designed to maintain the spacecraft's position with respect to a free-floating test mass to less than 10 nm/Hz, over the frequency range of 1 to 30 mHz. This paper presents the design and analysis of the coupled, drag-free and attitude control systems that close the loop between the gravitational reference sensor and the micro-Newton thrusters, while incorporating star tracker data at low frequencies. A full 18 degree-of-freedom model, which incorporates rigid-body models of the spacecraft and two test masses, is used to evaluate the effects of actuation and measurement noise and disturbances on the performance of the drag-free system.

  18. Design, integration and preliminary results of the IXV Catalysis experiment

    NASA Astrophysics Data System (ADS)

    Viladegut, Alan; Panerai, F.; Chazot, O.; Pichon, T.; Bertrand, P.; Verdy, C.; Coddet, C.

    2017-06-01

    The CATalytic Experiment (CATE) is an in-flight demonstration of catalysis effects at the surface of thermal protection materials. A high-catalytic coating was applied over the baseline ceramic material on the windward side of the intermediate experimental vehicle (IXV). The temperature jump due to different catalytic activities was detected during re-entry through measurements made with near-surface thermocouples on the windward side of the vehicle. The experiment aimed at contributing to the development and validation of gas/surface interaction models for re-entry applications. The present paper summarizes the design of CATE and its integration on the windward side of the IXV. Results of a qualification campaign at the Plasmatron facility of the von Karman Institute for Fluid Dynamics are presented. They provided an experimental evidence of the temperature jump at the low-to-high catalytic interface of the heat shield under aerothermal conditions relevant to the actual IXV flight. These tests also gave confidence so that the high-catalytic patch would not endanger the integrity of the vehicle and the safety of the mission. A preliminary assessment of flight data from the thermocouple measurements shows consistency with results of the qualification tests.

  19. A general model-based design of experiments approach to achieve practical identifiability of pharmacokinetic and pharmacodynamic models.

    PubMed

    Galvanin, Federico; Ballan, Carlo C; Barolo, Massimiliano; Bezzo, Fabrizio

    2013-08-01

    The use of pharmacokinetic (PK) and pharmacodynamic (PD) models is a common and widespread practice in the preliminary stages of drug development. However, PK-PD models may be affected by structural identifiability issues intrinsically related to their mathematical formulation. A preliminary structural identifiability analysis is usually carried out to check if the set of model parameters can be uniquely determined from experimental observations under the ideal assumptions of noise-free data and no model uncertainty. However, even for structurally identifiable models, real-life experimental conditions and model uncertainty may strongly affect the practical possibility to estimate the model parameters in a statistically sound way. A systematic procedure coupling the numerical assessment of structural identifiability with advanced model-based design of experiments formulations is presented in this paper. The objective is to propose a general approach to design experiments in an optimal way, detecting a proper set of experimental settings that ensure the practical identifiability of PK-PD models. Two simulated case studies based on in vitro bacterial growth and killing models are presented to demonstrate the applicability and generality of the methodology to tackle model identifiability issues effectively, through the design of feasible and highly informative experiments.

  20. Definition and design of an experiment to test raster scanning with rotating unbalanced-mass devices on gimbaled payloads

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.

    1992-01-01

    An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.

  1. The MARTE VNIR imaging spectrometer experiment: design and analysis.

    PubMed

    Brown, Adrian J; Sutter, Brad; Dunagan, Stephen

    2008-10-01

    We report on the design, operation, and data analysis methods employed on the VNIR imaging spectrometer instrument that was part of the Mars Astrobiology Research and Technology Experiment (MARTE). The imaging spectrometer is a hyperspectral scanning pushbroom device sensitive to VNIR wavelengths from 400-1000 nm. During the MARTE project, the spectrometer was deployed to the Río Tinto region of Spain. We analyzed subsets of three cores from Río Tinto using a new band modeling technique. We found most of the MARTE drill cores to contain predominantly goethite, though spatially coherent areas of hematite were identified in Core 23. We also distinguished non Fe-bearing minerals that were subsequently analyzed by X-ray diffraction (XRD) and found to be primarily muscovite. We present drill core maps that include spectra of goethite, hematite, and non Fe-bearing minerals.

  2. The MARTE VNIR Imaging Spectrometer Experiment: Design and Analysis

    NASA Astrophysics Data System (ADS)

    Brown, Adrian J.; Sutter, Brad; Dunagan, Stephen

    2008-10-01

    We report on the design, operation, and data analysis methods employed on the VNIR imaging spectrometer instrument that was part of the Mars Astrobiology Research and Technology Experiment (MARTE). The imaging spectrometer is a hyperspectral scanning pushbroom device sensitive to VNIR wavelengths from 400-1000 nm. During the MARTE project, the spectrometer was deployed to the Río Tinto region of Spain. We analyzed subsets of three cores from Río Tinto using a new band modeling technique. We found most of the MARTE drill cores to contain predominantly goethite, though spatially coherent areas of hematite were identified in Core 23. We also distinguished non Fe-bearing minerals that were subsequently analyzed by X-ray diffraction (XRD) and found to be primarily muscovite. We present drill core maps that include spectra of goethite, hematite, and non Fe-bearing minerals.

  3. Characterizing Design Cognition of High School Students: Initial Analyses Comparing Those with and without Pre-Engineering Experiences

    ERIC Educational Resources Information Center

    Wells, John; Lammi, Matthew; Gero, John; Grubbs, Michael E.; Paretti, Marie; Williams, Christopher

    2016-01-01

    Reported in this article are initial results from of a longitudinal study to characterize the design cognition and cognitive design styles of high school students with and without pre-engineering course experience over a 2-year period, and to compare them with undergraduate engineering students. The research followed a verbal protocol analysis…

  4. Designing a successful HMD-based experience

    NASA Technical Reports Server (NTRS)

    Pierce, J. S.; Pausch, R.; Sturgill, C. B.; Christiansen, K. D.; Kaiser, M. K. (Principal Investigator)

    1999-01-01

    For entertainment applications, a successful virtual experience based on a head-mounted display (HMD) needs to overcome some or all of the following problems: entering a virtual world is a jarring experience, people do not naturally turn their heads or talk to each other while wearing an HMD, putting on the equipment is hard, and people do not realize when the experience is over. In the Electric Garden at SIGGRAPH 97, we presented the Mad Hatter's Tea Party, a shared virtual environment experienced by more than 1,500 SIGGRAPH attendees. We addressed these HMD-related problems with a combination of back story, see-through HMDs, virtual characters, continuity of real and virtual objects, and the layout of the physical and virtual environments.

  5. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    NASA Astrophysics Data System (ADS)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  6. Investigation of crew motion disturbances on Skylab-Experiment T-013. [for future manned spacecraft design

    NASA Technical Reports Server (NTRS)

    Conway, B. A.

    1974-01-01

    Astronaut crew motions can produce some of the largest disturbances acting on a manned spacecraft which can affect vehicle attitude and pointing. Skylab Experiment T-013 was developed to investigate the magnitude and effects of some of these disturbances on the Skylab spacecraft. The methods and techniques used to carry out this experiment are discussed, and preliminary results of data analysis presented. Initial findings indicate that forces on the order of 300 N were exerted during vigorous soaring activities, and that certain experiment activities produced spacecraft angular rate excursions 0.03 to 0.07 deg/sec. Results of Experiment T-013 will be incorporated into mathematical models of crew-motion disturbances, and are expected to be of significant aid in the sizing, design, and analysis of stabilization and control systems for future manned spacecraft.

  7. Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture.

    PubMed

    Lam, Jonathan; Carmichael, S Thomas; Lowry, William E; Segura, Tatiana

    2015-03-11

    Bioactive signals can be incorporated in hydrogels to direct encapsulated cell behavior. Design of experiments methodology methodically varies the signals systematically to determine the individual and combinatorial effects of each factor on cell activity. Using this approach enables the optimization of three ligands concentrations (RGD, YIGSR, IKVAV) for the survival and differentiation of neural progenitor cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  9. Interlopers 3D: experiences designing a stereoscopic game

    NASA Astrophysics Data System (ADS)

    Weaver, James; Holliman, Nicolas S.

    2014-03-01

    Background In recent years 3D-enabled televisions, VR headsets and computer displays have become more readily available in the home. This presents an opportunity for game designers to explore new stereoscopic game mechanics and techniques that have previously been unavailable in monocular gaming. Aims To investigate the visual cues that are present in binocular and monocular vision, identifying which are relevant when gaming using a stereoscopic display. To implement a game whose mechanics are so reliant on binocular cues that the game becomes impossible or at least very difficult to play in non-stereoscopic mode. Method A stereoscopic 3D game was developed whose objective was to shoot down advancing enemies (the Interlopers) before they reached their destination. Scoring highly required players to make accurate depth judgments and target the closest enemies first. A group of twenty participants played both a basic and advanced version of the game in both monoscopic 2D and stereoscopic 3D. Results The results show that in both the basic and advanced game participants achieved higher scores when playing in stereoscopic 3D. The advanced game showed that by disrupting the depth from motion cue the game became more difficult in monoscopic 2D. Results also show a certain amount of learning taking place over the course of the experiment, meaning that players were able to score higher and finish the game faster over the course of the experiment. Conclusions Although the game was not impossible to play in monoscopic 2D, participants results show that it put them at a significant disadvantage when compared to playing in stereoscopic 3D.

  10. Science objectives and performance of a radiometer and window design for atmospheric entry experiments

    NASA Technical Reports Server (NTRS)

    Craig, Roger A.; Davy, William C.; Whiting, Ellis E.

    1994-01-01

    This paper describes the techniques developed for measuring stagnation-point radiation in NASA's cancelled Aeroassist Flight Experiment (AFE). It specifies the need for such a measurement; the types and requirements for the needed instruments; the Radiative Heating Experiment (RHE) developed for the AFE; the requirements, design parameters, and performance of the window developed for the RHE; the procedures and summary of the technique; and results of the arc-jet wind tunnel experiment conducted to demonstrate the overall concept. Subjects emphasized are the commercial implications of the knowledge to be gained by this experiment in connection with the Aeroassisted Space Transfer Vehicle (ASTV), the nonequilibrium nature of the radiation, concerns over the contribution of vacuum-ultraviolet radiation to the overall radiation, and the limit on the flight environment of the vehicle imposed by the limitations on the window material. Results show that a technique exists with which the stagnation-point radiation can be measured in flight in an environment of interest to commercial ASTV applications.

  11. Participating with Experience--A Case Study of Students as Co-Producers of Course Design

    ERIC Educational Resources Information Center

    Reneland-Forsman, Linda

    2016-01-01

    Higher Education (HE) needs to handle a diverse student population. The role of student expectations and previous experience is a key to fully participate. This study investigates student meaning making and interaction in a course designed to stimulate student as co-creators of course content and aims. Results revealed that rich communication…

  12. Designing Experiments on Thermal Interactions by Secondary-School Students in a Simulated Laboratory Environment

    ERIC Educational Resources Information Center

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-01-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample: Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and…

  13. Box-Behnken Design of Experiments Investigation of Hydroxyapatite Synthesis for Orthopedic Applications

    NASA Astrophysics Data System (ADS)

    Kehoe, S.; Stokes, J.

    2011-03-01

    Physicochemical properties of hydroxyapatite (HAp) synthesized by the chemical precipitation method are heavily dependent on the chosen process parameters. A Box-Behnken three-level experimental design was therefore, chosen to determine the optimum set of process parameters and their effect on various HAp characteristics. These effects were quantified using design of experiments (DoE) to develop mathematical models using the Box-Behnken design, in terms of the chemical precipitation process parameters. Findings from this research show that the HAp possessing optimum powder characteristics for orthopedic application via a thermal spray technique can therefore be prepared using the following chemical precipitation process parameters: reaction temperature 60 °C, ripening time 48 h, and stirring speed 1500 rpm using high reagent concentrations. Ripening time and stirring speed significantly affected the final phase purity for the experimental conditions of the Box-Behnken design. An increase in both the ripening time (36-48 h) and stirring speed (1200-1500 rpm) was found to result in an increase of phase purity from 47(±2)% to 85(±2)%. Crystallinity, crystallite size, lattice parameters, and mean particle size were also optimized within the research to find desired settings to achieve results suitable for FDA regulations.

  14. Design of experiments and data analysis challenges in calibration for forensics applications

    DOE PAGES

    Anderson-Cook, Christine M.; Burr, Thomas L.; Hamada, Michael S.; ...

    2015-07-15

    Forensic science aims to infer characteristics of source terms using measured observables. Our focus is on statistical design of experiments and data analysis challenges arising in nuclear forensics. More specifically, we focus on inferring aspects of experimental conditions (of a process to produce product Pu oxide powder), such as temperature, nitric acid concentration, and Pu concentration, using measured features of the product Pu oxide powder. The measured features, Y, include trace chemical concentrations and particle morphology such as particle size and shape of the produced Pu oxide power particles. Making inferences about the nature of inputs X that were usedmore » to create nuclear materials having particular characteristics, Y, is an inverse problem. Therefore, statistical analysis can be used to identify the best set (or sets) of Xs for a new set of observed responses Y. One can fit a model (or models) such as Υ = f(Χ) + error, for each of the responses, based on a calibration experiment and then “invert” to solve for the best set of Xs for a new set of Ys. This perspectives paper uses archived experimental data to consider aspects of data collection and experiment design for the calibration data to maximize the quality of the predicted Ys in the forward models; that is, we assume that well-estimated forward models are effective in the inverse problem. In addition, we consider how to identify a best solution for the inferred X, and evaluate the quality of the result and its robustness to a variety of initial assumptions, and different correlation structures between the responses. In addition, we also briefly review recent advances in metrology issues related to characterizing particle morphology measurements used in the response vector, Y.« less

  15. Design of experiments and data analysis challenges in calibration for forensics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine M.; Burr, Thomas L.; Hamada, Michael S.

    Forensic science aims to infer characteristics of source terms using measured observables. Our focus is on statistical design of experiments and data analysis challenges arising in nuclear forensics. More specifically, we focus on inferring aspects of experimental conditions (of a process to produce product Pu oxide powder), such as temperature, nitric acid concentration, and Pu concentration, using measured features of the product Pu oxide powder. The measured features, Y, include trace chemical concentrations and particle morphology such as particle size and shape of the produced Pu oxide power particles. Making inferences about the nature of inputs X that were usedmore » to create nuclear materials having particular characteristics, Y, is an inverse problem. Therefore, statistical analysis can be used to identify the best set (or sets) of Xs for a new set of observed responses Y. One can fit a model (or models) such as Υ = f(Χ) + error, for each of the responses, based on a calibration experiment and then “invert” to solve for the best set of Xs for a new set of Ys. This perspectives paper uses archived experimental data to consider aspects of data collection and experiment design for the calibration data to maximize the quality of the predicted Ys in the forward models; that is, we assume that well-estimated forward models are effective in the inverse problem. In addition, we consider how to identify a best solution for the inferred X, and evaluate the quality of the result and its robustness to a variety of initial assumptions, and different correlation structures between the responses. In addition, we also briefly review recent advances in metrology issues related to characterizing particle morphology measurements used in the response vector, Y.« less

  16. Design and characterization of a W-band system for modulated DNP experiments.

    PubMed

    Guy, Mallory L; Zhu, Lihuang; Ramanathan, Chandrasekhar

    2015-12-01

    Magnetic-field and microwave-frequency modulated DNP experiments have been shown to yield improved enhancements over conventional DNP techniques, and even to shorten polarization build-up times. The resulting increase in signal-to-noise ratios can lead to significantly shorter acquisition times in signal-limited multi-dimensional NMR experiments and pave the way to the study of even smaller sample volumes. In this paper we describe the design and performance of a broadband system for microwave frequency- and amplitude-modulated DNP that has been engineered to minimize both microwave and thermal losses during operation at liquid helium temperatures. The system incorporates a flexible source that can generate arbitrary waveforms at 94GHz with a bandwidth greater than 1GHz, as well as a probe that efficiently transmits the millimeter waves from room temperature outside the magnet to a cryogenic environment inside the magnet. Using a thin-walled brass tube as an overmoded waveguide to transmit a hybrid HE11 mode, it is possible to limit the losses to 1dB across a 2GHz bandwidth. The loss is dominated by the presence of a quartz window used to isolate the waveguide pipe. This performance is comparable to systems with corrugated waveguide or quasi-optical components. The overall excitation bandwidth of the probe is seen to be primarily determined by the final antenna or resonator used to excite the sample and its coupling to the NMR RF coil. Understanding the instrumental limitations imposed on any modulation scheme is key to understanding the observed DNP results and potentially identifying the underlying mechanisms. We demonstrate the utility of our design with a set of triangular frequency-modulated DNP experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Fractional Factorial Experiment Designs to Minimize Configuration Changes in Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Cler, Daniel L.; Graham, Albert B.

    2002-01-01

    This paper serves as a tutorial to introduce the wind tunnel research community to configuration experiment designs that can satisfy resource constraints in a configuration study involving several variables, without arbitrarily eliminating any of them from the experiment initially. The special case of a configuration study featuring variables at two levels is examined in detail. This is the type of study in which each configuration variable has two natural states - 'on or off', 'deployed or not deployed', 'low or high', and so forth. The basic principles are illustrated by results obtained in configuration studies conducted in the Langley National Transonic Facility and in the ViGYAN Low Speed Tunnel in Hampton, Virginia. The crucial role of interactions among configuration variables is highlighted with an illustration of difficulties that can be encountered when they are not properly taken into account.

  18. Design of the forward straw tube tracker for the PANDA experiment

    NASA Astrophysics Data System (ADS)

    Smyrski, J.; Apostolou, A.; Biernat, J.; Czyżycki, W.; Filo, G.; Fioravanti, E.; Fiutowski, T.; Gianotti, P.; Idzik, M.; Korcyl, G.; Korcyl, K.; Lisowski, E.; Lisowski, F.; Płażek, J.; Przyborowski, D.; Przygoda, W.; Ritman, J.; Salabura, P.; Savrie, M.; Strzempek, P.; Swientek, K.; Wintz, P.; Wrońska, A.

    2017-06-01

    The design of the Forward Tracker for the Forward Spectrometer of the PANDA experiment is described. The tracker consists of 6 tracking stations, each comprising 4 planar double layers of straw tube detectors, and has a total material budget of only 2% X0. The straws are made self-supporting by a 1 bar over-pressure of the working gas mixture (Ar/CO2). This allows to use lightweight and compact rectangular support frames for the double layers and to split the frames into pairs of C-shaped half-frames for an easier installation on the beam line.

  19. Design, development and fabrication of a Solar Experiment Alignment Sensor (SEAS)

    NASA Technical Reports Server (NTRS)

    Bancroft, J. R.; Fain, M. Z.; Johnson, D. F.

    1971-01-01

    The design, development and testing of a laboratory SEAS (Solar Experiment Alignment Sensor) system are presented. The system is capable of overcoming traditional alignment and calibration problems to permit pointing anywhere on the solar disc to an accuracy of five arc seconds. The concept, development and laboratory testing phases of the program are discussed, and particular attention has been given to specific problems associated with selection of materials, and components. The conclusions summarize performance capability and discuss areas for further study including the effects of solar limb darkening and effects of annual variations in the apparent solar diameter.

  20. Design and Predictions for a High-Altitude (Low-Reynolds-Number) Aerodynamic Flight Experiment

    NASA Technical Reports Server (NTRS)

    Greer, Donald; Hamory, Phil; Krake, Keith; Drela, Mark

    1999-01-01

    A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters of an airfoil at high altitudes (70,000 to 100,000 ft), low Reynolds numbers (200,000 to 700,000), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pitot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented. Several predictions of the airfoil performance are also presented. Mark Drela from the Massachusetts Institute of Technology designed the APEX-16 airfoil, using the MSES code. Two-dimensional Navier-Stokes analyses were performed by Mahidhar Tatineni and Xiaolin Zhong from the University of California, Los Angeles, and by the authors at NASA Dryden.

  1. Inverse problems and optimal experiment design in unsteady heat transfer processes identification

    NASA Technical Reports Server (NTRS)

    Artyukhin, Eugene A.

    1991-01-01

    Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

  2. Implementation of Hydrodynamic Simulation Code in Shock Experiment Design for Alkali Metals

    NASA Astrophysics Data System (ADS)

    Coleman, A. L.; Briggs, R.; Gorman, M. G.; Ali, S.; Lazicki, A.; Swift, D. C.; Stubley, P. G.; McBride, E. E.; Collins, G.; Wark, J. S.; McMahon, M. I.

    2017-10-01

    Shock compression techniques enable the investigation of extreme P-T states. In order to probe off-Hugoniot regions of P-T space, target makeup and laser pulse parameters must be carefully designed. HYADES is a hydrodynamic simulation code which has been successfully utilised to simulate shock compression events and refine the experimental parameters required in order to explore new P-T states in alkali metals. Here we describe simulations and experiments on potassium, along with the techniques required to access off-Hugoniot states.

  3. Design and implementation of the protective cap/biobarrier experiment at the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limbach, W.E.; Ratzlaff, T.D.; Anderson, J.E.

    1994-12-31

    The Protective Cap/Biobarrier Experiment (PCBE), initiated in 1993 at the Idaho National Engineering Laboratory (INEL), is a strip-split plot experiment with three replications designed to rigorously test a 2.0-m loessal soil cap against a cap recommended by the US Environmental Protection Agency and two caps with biological intrusion barriers. Past research at INEL indicates that it should be possible to exclude water from buried wastes using natural materials and natural processes in arid environments rather than expensive materials (geotextiles) and highly engineered caps. The PCBE will also test the effects of two vegetal covers and three irrigation levels on capmore » performance. Drainage pans, located at the bottom of each plot, will monitor cap failure. Soil water profiles will be monitored biweekly by neutron probe and continuously by time domain reflectometry. The performance of each cap design will be monitored under a variety of conditions through 1998. From 1994 to 1996, the authors will assess plant establishment, rooting depths, patterns of moisture extraction and their interactions among caps, vegetal covers, and irrigation levels. In 1996, they will introduce ants and burrowing mammals to test the structural integrity of each cap design. In 1998, the authors will apply sufficient water to determine the failure limit for each cap design. The PCBE should provide reliable knowledge of the performances of the four cap designs under a variety of conditions and aid in making hazardous-waste management decisions at INEL and at disposal sites in similar environments.« less

  4. Artistry and Analysis: Student Experiences of UK Practice-Based Doctorates in Art and Design

    ERIC Educational Resources Information Center

    Collinson, Jacquelyn Allen

    2005-01-01

    During the last decade, doctoral education has been the focus of much international academic attention. This period has also witnessed the rapid growth of practice-based research degrees in art and design in the UK. To date, however, there has been no extensive empirical research on the subjective experiences of students undertaking this form of…

  5. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    NASA Astrophysics Data System (ADS)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn

  6. Supporting the Application of Design Patterns in Web-Course Design.

    ERIC Educational Resources Information Center

    Frizell, Sherri S.; Hubscher, Roland

    Many instructors are expected to design and create Web courses. The design of Web courses can be a difficult task for educators who lack experience in interaction and instructional design. Design patterns have emerged as a way to capture design experience and present design solutions to novice designers. Design patterns are a widely accepted…

  7. Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes

    PubMed Central

    Oliveros, Juan C.; Franch, Mònica; Tabas-Madrid, Daniel; San-León, David; Montoliu, Lluis; Cubas, Pilar; Pazos, Florencio

    2016-01-01

    The CRISPR/Cas technology is enabling targeted genome editing in multiple organisms with unprecedented accuracy and specificity by using RNA-guided nucleases. A critical point when planning a CRISPR/Cas experiment is the design of the guide RNA (gRNA), which directs the nuclease and associated machinery to the desired genomic location. This gRNA has to fulfil the requirements of the nuclease and lack homology with other genome sites that could lead to off-target effects. Here we introduce the Breaking-Cas system for the design of gRNAs for CRISPR/Cas experiments, including those based in the Cas9 nuclease as well as others recently introduced. The server has unique features not available in other tools, including the possibility of using all eukaryotic genomes available in ENSEMBL (currently around 700), placing variable PAM sequences at 5′ or 3′ and setting the guide RNA length and the scores per nucleotides. It can be freely accessed at: http://bioinfogp.cnb.csic.es/tools/breakingcas, and the code is available upon request. PMID:27166368

  8. Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang

    2016-10-01

    Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.

  9. Hacking the hospital environment: young adults designing youth-friendly hospital rooms together with young people with cancer experiences.

    PubMed

    Boisen, Kirsten A; Boisen, Anne; Thomsen, Stine Legarth; Matthiesen, Simon Meggers; Hjerming, Maiken; Hertz, Pernille Grarup

    2015-12-09

    There is a need for youth-friendly hospital environments as the ward environment may affect both patient satisfaction and health outcomes. To involve young people in designing youth-friendly ward environment. We arranged a design competition lasting 42 h (Hackathon). Students in architecture, design, engineering, communication and anthropology participated (27 young adults) - forming eight groups. Adolescents and young adults (AYA) with current or former cancer experience participated as sparring partners. We provided workspace and food during the weekend. The groups presented their products to a jury and relevant stakeholders. The groups created eight unique design concepts. The young designers were extremely flexible listening to ideas and experiences from the young patients, which led to common features including individual and flexible design, privacy in two-bed wardrooms and social contact with other hospitalized AYA. The winning project included an integrated concept for both wardrooms and the AYA day room, including logos and names for the rooms and an 'energy wall' in the day room. A hackathon event was an effective mode of youth participation. The design concepts and ideas were in line with current evidence regarding pleasing hospital environment and youth-friendly inpatient facilities and may be applicable to other young patients.

  10. Design of a factorial experiment with randomization restrictions to assess medical device performance on vascular tissue

    PubMed Central

    2011-01-01

    Background Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. Methods The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. Results The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. Conclusions The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental

  11. Design of a factorial experiment with randomization restrictions to assess medical device performance on vascular tissue.

    PubMed

    Diestelkamp, Wiebke S; Krane, Carissa M; Pinnell, Margaret F

    2011-05-20

    Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental device efficacy and performance.

  12. Aerothermal Analysis and Design of the Gravity Recovery and Climate Experiment (GRACE) Spacecraft

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Kumar, Renjith R.; Qu, Min; Seywald, Hans

    2000-01-01

    The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.

  13. An Architectural Experience for Interface Design

    ERIC Educational Resources Information Center

    Gong, Susan P.

    2016-01-01

    The problem of human-computer interface design was brought to the foreground with the emergence of the personal computer, the increasing complexity of electronic systems, and the need to accommodate the human operator in these systems. With each new technological generation discovering the interface design problems of its own technologies, initial…

  14. Designing deep sequencing experiments: detecting structural variation and estimating transcript abundance.

    PubMed

    Bashir, Ali; Bansal, Vikas; Bafna, Vineet

    2010-06-18

    Massively parallel DNA sequencing technologies have enabled the sequencing of several individual human genomes. These technologies are also being used in novel ways for mRNA expression profiling, genome-wide discovery of transcription-factor binding sites, small RNA discovery, etc. The multitude of sequencing platforms, each with their unique characteristics, pose a number of design challenges, regarding the technology to be used and the depth of sequencing required for a particular sequencing application. Here we describe a number of analytical and empirical results to address design questions for two applications: detection of structural variations from paired-end sequencing and estimating mRNA transcript abundance. For structural variation, our results provide explicit trade-offs between the detection and resolution of rearrangement breakpoints, and the optimal mix of paired-read insert lengths. Specifically, we prove that optimal detection and resolution of breakpoints is achieved using a mix of exactly two insert library lengths. Furthermore, we derive explicit formulae to determine these insert length combinations, enabling a 15% improvement in breakpoint detection at the same experimental cost. On empirical short read data, these predictions show good concordance with Illumina 200 bp and 2 Kbp insert length libraries. For transcriptome sequencing, we determine the sequencing depth needed to detect rare transcripts from a small pilot study. With only 1 Million reads, we derive corrections that enable almost perfect prediction of the underlying expression probability distribution, and use this to predict the sequencing depth required to detect low expressed genes with greater than 95% probability. Together, our results form a generic framework for many design considerations related to high-throughput sequencing. We provide software tools http://bix.ucsd.edu/projects/NGS-DesignTools to derive platform independent guidelines for designing sequencing experiments

  15. Design Experiments in Japanese Elementary Science Education with Computer Support for Collaborative Learning: Hypothesis Testing and Collaborative Construction

    ERIC Educational Resources Information Center

    Oshima, Jun; Oshima, Ritsuko; Murayama, Isao; Inagaki, Shigenori; Takenaka, Makiko; Nakayama, Hayashi; Yamaguchi, Etsuji

    2004-01-01

    This paper reports design experiments on two Japanese elementary science lesson units in a sixth-grade classroom supported by computer support for collaborative learning (CSCL) technology as a collaborative reflection tool. We took different approaches in the experiments depending on their instructional goals. In the unit 'air and how things…

  16. Solving Real World Problems with Alternate Reality Gaming: Student Experiences in the Global Village Playground Capstone Course Design

    ERIC Educational Resources Information Center

    Dondlinger, Mary Jo; McLeod, Julie K.

    2015-01-01

    The Global Village Playground (GVP) was a capstone learning experience designed to address institutional assessment needs while providing an integrated and authentic learning experience for students aimed at fostering complex problem solving, as well as critical and creative thinking. In the GVP, students work on simulated and real-world problems…

  17. Design and Assembly of the Magnetized Dusty Plasma Experiment (MDPX)

    NASA Astrophysics Data System (ADS)

    Fisher, Ross; Artis, Darrick; Lynch, Brian; Wood, Keith; Shaw, Joseph; Gilmore, Kevin; Robinson, Daniel; Polka, Christian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2013-10-01

    Over the last two years, the Magnetized Dusty Plasma Experiment (MDPX) has been under construction at Auburn University. This new research device, whose assembly will be completed in late Summer, 2013, uses a four-coil, superconducting, high magnetic field system (|B | >= 4 Tesla) to investigate the confinement, charging, transport, and instabilities in a dusty plasma. A new feature of the MDPX device is the ability to operate the magnetic coils independently to allow a variety of magnetic configurations from highly uniform to quadrapole-like. Envisioned as a multi-user facility, the MDPX device features a cylindrical vacuum vessel whose primary experimental region is an octagonal chamber that has a 35.5 cm inner diameter and is 19 cm tall. There is substantial diagnostics and optical access through eight, 10.2 cm × 12.7 cm side ports. The chamber can also be equipped with two 15.2 cm diameter, 76 cm long extensions to allow long plasma column experiments, particularly long wavelength dust wave studies. This presentation will discuss the final design, assembly, and installation of the MDPX device and will describe its supporting laboratory facility. This work is supported by a National Science Foundation - Major Research Instrumentation (NSF-MRI) award, PHY-1126067.

  18. Influence of student-designed experiments with fast plants on their understanding of plants and of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Akey, Ann Kosek

    2000-10-01

    This dissertation investigates the influence of student designed experiments with Fast Plants in an undergraduate agroecology course on the students' conceptual understanding of plant life cycles and on their procedural understanding of scientific experimentation. It also considers students' perspectives on the value of these experiences. Data sources included semi-structured interviews with students and the instructor, a written task, course evaluations, and observations of class meetings. Students came into the course having strong practical experience with plants from their agricultural backgrounds. Students did not always connect aspects of plant biology that they studied in class, particularly respiration and photosynthesis, to plant growth requirements. The instructor was able to bridge the gap between some practical knowledge and textbook knowledge with experiences other than the Fast Plant project. Most students held an incomplete picture of plant reproduction that was complicated by differences between agricultural and scientific vocabulary. There is need for teaching approaches that help students tie together their knowledge of plants into a cohesive framework. Experiences that help students draw on their background knowledge related to plants, and which give students the opportunity to examine and discuss their ideas, may help students make more meaningful connections. The Fast Plant project, a positive experience for most students, was seen by these undergraduate students as being more helpful in learning about scientific experimentation than about plants. The process of designing and carrying out their own experiments gave students insight into experimentation, provoked their curiosity, and resulted in a sense of ownership and accomplishment.

  19. System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling

    DOE PAGES

    Bacelli, Giorgio; Coe, Ryan; Patterson, David; ...

    2017-04-01

    Empirically based modeling is an essential aspect of design for a wave energy converter. These models are used in structural, mechanical and control design processes, as well as for performance prediction. The design of experiments and methods used to produce models from collected data have a strong impact on the quality of the model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followedmore » for wave tank testing. The general system identification processes are shown to have a number of advantages. The experimental data is then used to produce multiple models for the dynamics of the device. These models are validated and their performance is compared against one and other. Furthermore, while most models of wave energy converters use a formulation with wave elevation as an input, this study shows that a model using a hull pressure sensor to incorporate the wave excitation phenomenon has better accuracy.« less

  20. System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacelli, Giorgio; Coe, Ryan; Patterson, David

    Empirically based modeling is an essential aspect of design for a wave energy converter. These models are used in structural, mechanical and control design processes, as well as for performance prediction. The design of experiments and methods used to produce models from collected data have a strong impact on the quality of the model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followedmore » for wave tank testing. The general system identification processes are shown to have a number of advantages. The experimental data is then used to produce multiple models for the dynamics of the device. These models are validated and their performance is compared against one and other. Furthermore, while most models of wave energy converters use a formulation with wave elevation as an input, this study shows that a model using a hull pressure sensor to incorporate the wave excitation phenomenon has better accuracy.« less