Turbulence measurements in a swirling confined jet flowfield using a triple hot-wire probe
NASA Technical Reports Server (NTRS)
Janjua, S. I.; Mclaughlin, D. K.
1982-01-01
An axisymmetric swirling confined jet flowfield, similar to that encountered in gas turbine combustors was investigated using a triple hot-wire probe. The raw data from the three sensors were digitized using ADC's and stored on a Tektronix 4051 computer. The data were further reduced on the computer to obtain time-series for the three instantaneous velocity components in the flowfield. The time-mean velocities and the turbulence quantities were deduced. Qualification experiments were performed and where possible results compared with independent measurements. The major qualification experiments involved measurements performed in a non-swirling flow compared with conventional X-wire measurements. In the swirling flowfield, advantages of the triple wire technique over the previously used multi-position single hot-wire method are noted. The measurements obtained provide a data base with which the predictions of turbulence models in a recirculating swirling flowfield can be evaluated.
Vortex breakdown and control experiments in the Ames-Dryden water tunnel
NASA Technical Reports Server (NTRS)
Owen, F. K.; Peake, D. J.
1986-01-01
Flow-field measurements have been made to determine the effects of core blowing on vortex breakdown and control. The results of these proof-of-concept experiments clearly demonstrate the usefulness of water tunnels as test platforms for advanced flow-field simulation and measurement.
NASA Astrophysics Data System (ADS)
Duy, Vinh Nguyen; Lee, Jungkoo; Kim, Kyungcheol; Ahn, Jiwoong; Park, Seongho; Kim, Taeeun; Kim, Hyung-Man
2015-10-01
The under-rib convection-driven flow-field design for the uniform distribution of reacting gas and the generation of produced water generates broad scientific interest, especially among those who study the performance of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we simulate the effects of an under-rib convection-driven serpentine flow-field with sub-channel and by-pass (SFFSB) and a conventional advanced serpentine flow-field (CASFF) on single cell performance, and we compare the simulation results with experimental measurements. In the under-rib convection-driven flow-field configuration with SFFSB, the pressure drop is decreased because of the greater cross-sectional area for gas flow, and the decreased pressure drop results in the reduction of the parasitic loss. The anode liquid water mass fraction increases with increasing channel height because of increased back diffusion, while the cathode liquid water mass fraction does not depend upon the sub-channels but is ascribed mainly to the electro-osmotic drag. Simulation results verify that the maximum current and the power densities of the SFFSB are increased by 18.85% and 23.74%, respectively, due to the promotion of under-rib convection. The findings in this work may enable the optimization of the design of under-rib convection-driven flow-fields for efficient PEMFCs.
A computational study of the flowfield surrounding the Aeroassist Flight Experiment vehicle
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Greene, Francis A.
1987-01-01
A symmetric total variation diminishing (STVD) algorithm has been applied to the solution of the three-dimensional hypersonic flowfield surrounding the Aeroassist Flight Experiment (AFE) vehicle. Both perfect-gas and chemical nonequilibrium models have been used. The perfect-gas flows were computed at two different Reynolds numbers, including a flight trajectory point at maximum dynamic pressure, and on two different grids. Procedures for coupling the solution of the species continuity equations with the Navier-Stokes equations in the presence of chemical nonequilibrium are reviewed and tested on the forebody of the AFE and on the complete flowfield assuming noncatalytic wall and no species diffusion. Problems with the STVD algorithm unique to flows with variable thermodynamic properties (real gas) are identified and algorithm modifications are suggested. A potential heating problem caused by strong flow impingement on the nozzle lip in the near wake at 0-deg angle of attack has been identified.
NASA Astrophysics Data System (ADS)
Balakalyani, G.; Saravanan, S.; Jagadeesh, G.
Reduced drag and aerodynamic heating are the two basic design requirements for any hypersonic vehicle [1]. The flowfield around an axisymmetric blunt body is characterized by a bow shockwave standing ahead of its nose. The pressure and temperature behind this shock wave are very high. This increased pressure and temperature are responsible for the high levels of drag and aerodynamic heating over the body. In the past, there have been many investigations on the use of aerospikes as a drag reduction tool. These studies on spiked bodies aim at reducing both the drag and aerodynamic heating by modifying the hypersonic flowfield ahead of the nose of the body [2]. However, most of them used very simple configurations to experimentally study the drag reduction using spikes at hypersonic speeds [3] and therefore very little experimental data is available for a realistic geometric configuration. In the present study, the standard AGARD Hypervelocity Ballistic model 1 is used as the test model. The addition of the spike to the blunt body significantly alters the flowfield ahead of the nose, leading to the formation of a low pressure conical recirculation region, thus causing a reduction in drag and wall heat flux [4]. In the present investigation, aerodynamic drag force is measured over the Hypervelocity Ballistic model-1, with and without spike, at a flow enthalpy of 1.7 MJ/kg. The experiments are carried out at a Mach number of 8 and at zero angle of attack. An internally mountable accelerometer based 3-component force balance system is used to measure the aerodynamic forces on the model. Also computational studies are carried out to complement the experiments.
Computation of H2/air reacting flowfields in drag-reduction external combustion
NASA Technical Reports Server (NTRS)
Lai, H. T.
1992-01-01
Numerical simulation and analysis of the solution are presented for a laminar reacting flowfield of air and hydrogen in the case of external combustion employed to reduce base drag in hypersonic vehicles operating at transonic speeds. The flowfield consists of a transonic air stream at a Mach number of 1.26 and a sonic transverse hydrogen injection along a row of 26 orifices. Self-sustained combustion is computed over an expansion ramp downstream of the injection and a flameholder, using the recently developed RPLUS code. Measured data is available only for surface pressure distributions and is used for validation of the code in practical 3D reacting flowfields. Pressure comparison shows generally good agreements, and the main effects of combustion are also qualitatively consistent with experiment.
NASA Technical Reports Server (NTRS)
Knight, Doyle D.; Badekas, Dias
1991-01-01
The swept oblique shock-wave/turbulent-boundary-layer interaction generated by a 20-deg sharp fin at Mach 4 and Reynolds number 21,000 is investigated via a series of computations using both conical and three-dimensional Reynolds-averaged Navier-Stokes equations with turbulence incorporated through the algebraic turbulent eddy viscosity model of Baldwin-Lomax. Results are compared with known experimental data, and it is concluded that the computed three-dimensional flowfield is quasi-conical (in agreement with the experimental data), the computed three-dimensional and conical surface pressure and surface flow direction are in good agreement with the experiment, and the three-dimensional and conical flows significantly underpredict the peak experimental skin friction. It is pointed out that most of the features of the conical flowfield model in the experiment are observed in the conical computation which also describes the complete conical streamline pattern not included in the model of the experiment.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane
NASA Technical Reports Server (NTRS)
Frederick, Michael A.; Ratnayake, Nalin A.
2010-01-01
The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane
NASA Technical Reports Server (NTRS)
Frederick, Michael A.; Ratnayake, Nalin A.
2011-01-01
The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.
A Computer Program for the Calculation of Three-Dimensional Transonic Nacelle/Inlet Flowfields
NASA Technical Reports Server (NTRS)
Vadyak, J.; Atta, E. H.
1983-01-01
A highly efficient computer analysis was developed for predicting transonic nacelle/inlet flowfields. This algorithm can compute the three dimensional transonic flowfield about axisymmetric (or asymmetric) nacelle/inlet configurations at zero or nonzero incidence. The flowfield is determined by solving the full-potential equation in conservative form on a body-fitted curvilinear computational mesh. The difference equations are solved using the AF2 approximate factorization scheme. This report presents a discussion of the computational methods used to both generate the body-fitted curvilinear mesh and to obtain the inviscid flow solution. Computed results and correlations with existing methods and experiment are presented. Also presented are discussions on the organization of the grid generation (NGRIDA) computer program and the flow solution (NACELLE) computer program, descriptions of the respective subroutines, definitions of the required input parameters for both algorithms, a brief discussion on interpretation of the output, and sample cases to illustrate application of the analysis.
PARC Navier-Stokes code upgrade and validation for high speed aeroheating predictions
NASA Technical Reports Server (NTRS)
Liver, Peter A.; Praharaj, Sarat C.; Seaford, C. Mark
1990-01-01
Applications of the PARC full Navier-Stokes code for hypersonic flowfield and aeroheating predictions around blunt bodies such as the Aeroassist Flight Experiment (AFE) and Aeroassisted Orbital Transfer Vehicle (AOTV) are evaluated. Two-dimensional/axisymmetric and three-dimensional perfect gas versions of the code were upgraded and tested against benchmark wind tunnel cases of hemisphere-cylinder, three-dimensional AFE forebody, and axisymmetric AFE and AOTV aerobrake/wake flowfields. PARC calculations are in good agreement with experimental data and results of similar computer codes. Difficulties encountered in flowfield and heat transfer predictions due to effects of grid density, boundary conditions such as singular stagnation line axis and artificial dissipation terms are presented together with subsequent improvements made to the code. The experience gained with the perfect gas code is being currently utilized in applications of an equilibrium air real gas PARC version developed at REMTECH.
Experiment/Analytical Characterization of the RBCC Rocket-Ejector Mode
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.; West, J.; Turner, James E. (Technical Monitor)
2000-01-01
Experimental and complementary CFD results from the study of the rocket-ejector mode of a Rocket Based Combined Cycle (RBCC) engine are presented and discussed. The experiments involved systematic flowfield measurements in a two-dimensional, variable geometry rocket-ejector system. The rocket-ejector system utilizes a single two-dimensional, gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a thorough understanding of the rocket-ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions. Overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (oxygen, hydrogen, nitrogen and water vapor). The experimental results for both the direct-connect and sea-level static configurations are compared with CFD predictions of the flowfield.
NASA Technical Reports Server (NTRS)
Birch, T. J.; Allen, J. M.; Wilcox, F. J.
2000-01-01
This paper describes a series of wind tunnel experiments carried out with the aim of providing data suitable for evaluating the performance of Computational Fluid Dynamics (CFD) codes. The configurations and flow conditions studied are most relevant to slender supersonic missiles. However, the data obtained, which includes forces and moments, surface pressures, flowfield surveys and a selection of flow visualization images, should he of interest to other CFD practitioners. Results for three test cases are presented and discussed in this paper. These cases have been the subject of a collaborative study concerned with the evaluation of Navier-Stokes solvers for missiles, carried out under the auspices of The Technical Cooperation Programme (TTCP).
Flowfield characterization and model development in detonation tubes
NASA Astrophysics Data System (ADS)
Owens, Zachary Clark
A series of experiments and numerical simulations are performed to advance the understanding of flowfield phenomena and impulse generation in detonation tubes. Experiments employing laser-based velocimetry, high-speed schlieren imaging and pressure measurements are used to construct a dataset against which numerical models can be validated. The numerical modeling culminates in the development of a two-dimensional, multi-species, finite-rate-chemistry, parallel, Navier-Stokes solver. The resulting model is specifically designed to assess unsteady, compressible, reacting flowfields, and its utility for studying multidimensional detonation structure is demonstrated. A reduced, quasi-one-dimensional model with source terms accounting for wall losses is also developed for rapid parametric assessment. Using these experimental and numerical tools, two primary objectives are pursued. The first objective is to gain an understanding of how nozzles affect unsteady, detonation flowfields and how they can be designed to maximize impulse in a detonation based propulsion system called a pulse detonation engine. It is shown that unlike conventional, steady-flow propulsion systems where converging-diverging nozzles generate optimal performance, unsteady detonation tube performance during a single-cycle is maximized using purely diverging nozzles. The second objective is to identify the primary underlying mechanisms that cause velocity and pressure measurements to deviate from idealized theory. An investigation of the influence of non-ideal losses including wall heat transfer, friction and condensation leads to the development of improved models that reconcile long-standing discrepancies between predicted and measured detonation tube performance. It is demonstrated for the first time that wall condensation of water vapor in the combustion products can cause significant deviations from ideal theory.
Advanced Space Propulsion System Flowfield Modeling
NASA Technical Reports Server (NTRS)
Smith, Sheldon
1998-01-01
Solar thermal upper stage propulsion systems currently under development utilize small low chamber pressure/high area ratio nozzles. Consequently, the resulting flow in the nozzle is highly viscous, with the boundary layer flow comprising a significant fraction of the total nozzle flow area. Conventional uncoupled flow methods which treat the nozzle boundary layer and inviscid flowfield separately by combining the two calculations via the influence of the boundary layer displacement thickness on the inviscid flowfield are not accurate enough to adequately treat highly viscous nozzles. Navier Stokes models such as VNAP2 can treat these flowfields but cannot perform a vacuum plume expansion for applications where the exhaust plume produces induced environments on adjacent structures. This study is built upon recently developed artificial intelligence methods and user interface methodologies to couple the VNAP2 model for treating viscous nozzle flowfields with a vacuum plume flowfield model (RAMP2) that is currently a part of the Plume Environment Prediction (PEP) Model. This study integrated the VNAP2 code into the PEP model to produce an accurate, practical and user friendly tool for calculating highly viscous nozzle and exhaust plume flowfields.
A Supersonic Argon/Air Coaxial Jet Experiment for Computational Fluid Dynamics Code Validation
NASA Technical Reports Server (NTRS)
Clifton, Chandler W.; Cutler, Andrew D.
2007-01-01
A non-reacting experiment is described in which data has been acquired for the validation of CFD codes used to design high-speed air-breathing engines. A coaxial jet-nozzle has been designed to produce pressure-matched exit flows of Mach 1.8 at 1 atm in both a center jet of argon and a coflow jet of air, creating a supersonic, incompressible mixing layer. The flowfield was surveyed using total temperature, gas composition, and Pitot probes. The data set was compared to CFD code predictions made using Vulcan, a structured grid Navier-Stokes code, as well as to data from a previous experiment in which a He-O2 mixture was used instead of argon in the center jet of the same coaxial jet assembly. Comparison of experimental data from the argon flowfield and its computational prediction shows that the CFD produces an accurate solution for most of the measured flowfield. However, the CFD prediction deviates from the experimental data in the region downstream of x/D = 4, underpredicting the mixing-layer growth rate.
NASA Technical Reports Server (NTRS)
Hartung, Lin C.
1991-01-01
A method for predicting radiation adsorption and emission coefficients in thermochemical nonequilibrium flows is developed. The method is called the Langley optimized radiative nonequilibrium code (LORAN). It applies the smeared band approximation for molecular radiation to produce moderately detailed results and is intended to fill the gap between detailed but costly prediction methods and very fast but highly approximate methods. The optimization of the method to provide efficient solutions allowing coupling to flowfield solvers is discussed. Representative results are obtained and compared to previous nonequilibrium radiation methods, as well as to ground- and flight-measured data. Reasonable agreement is found in all cases. A multidimensional radiative transport method is also developed for axisymmetric flows. Its predictions for wall radiative flux are 20 to 25 percent lower than those of the tangent slab transport method, as expected, though additional investigation of the symmetry and outflow boundary conditions is indicated. The method was applied to the peak heating condition of the aeroassist flight experiment (AFE) trajectory, with results comparable to predictions from other methods. The LORAN method was also applied in conjunction with the computational fluid dynamics (CFD) code LAURA to study the sensitivity of the radiative heating prediction to various models used in nonequilibrium CFD. This study suggests that radiation measurements can provide diagnostic information about the detailed processes occurring in a nonequilibrium flowfield because radiation phenomena are very sensitive to these processes.
Computation of the tip vortex flowfield for advanced aircraft propellers
NASA Technical Reports Server (NTRS)
Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph
1988-01-01
The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).
Near-field flow structures about subcritical surface roughness
NASA Astrophysics Data System (ADS)
Doolittle, Charles J.; Drews, Scott D.; Goldstein, David B.
2014-12-01
Laminar flow over a periodic array of cylindrical surface roughness elements is simulated with an immersed boundary spectral method both to validate the method for subsequent studies and to examine how persistent streamwise vortices are introduced by a low Reynolds number roughness element. Direct comparisons are made with prior studies at a roughness-based Reynolds number Rek (=U(k) k/ν) of 205 and a diameter to spanwise spacing ratio d/λ of 1/3. Downstream velocity contours match present and past experiments very well. The shear layer developed over the top of the roughness element produces the downstream velocity deficit. Upstream of the roughness element, the vortex topology is found to be consistent with juncture flow experiments, creating three cores along the recirculation line. Streamtraces stemming from these upstream cores, however, have unexpectedly little effect on the downstream flowfield as lateral divergence of the boundary layer quickly dissipates their vorticity. Long physical relaxation time of the recirculating wake behind the roughness remains a prominent issue for simulating this type of flowfield.
Rotor Hover Performance and Flowfield Measurements with Untwisted and Highly-Twisted Blades
NASA Technical Reports Server (NTRS)
Ramasamy, Manikandan; Gold, Nili P.; Bhagwat, Mahendra J.
2010-01-01
The flowfield and performance characteristics of highly-twisted blades were analyzed at various thrust conditions to improve the fundamental understanding relating the wake effects on rotor performance. Similar measurements made using untwisted blades served as the baseline case. Twisted blades are known to give better hover performance than untwisted blades at high thrust coefficients typical of those found in full-scale rotors. However, the present experiments were conducted at sufficiently low thrust (beginning from zero thrust), where the untwisted blades showed identical, if not better, performance when compared with the highly-twisted blades. The flowfield measurements showed some key wake differences between the two rotors, as well. These observations when combined with simple blade element momentum theory (also called annular disk momentum theory) helped further the understanding of rotor performance characteristics.
Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, D.C.
1979-11-01
Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-fron contours. Measurements of surface roughness, surface temperature, average transition-calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies.
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1980-01-01
A computer implemented numerical method for predicting the flow in and about an isolated three dimensional jet exhaust nozzle is summarized. The approach is based on an implicit numerical method to solve the unsteady Navier-Stokes equations in a boundary conforming curvilinear coordinate system. Recent improvements to the original numerical algorithm are summarized. Equations are given for evaluating nozzle thrust and discharge coefficient in terms of computed flowfield data. The final formulation of models that are used to simulate flow turbulence effect is presented. Results are presented from numerical experiments to explore the effect of various quantities on the rate of convergence to steady state and on the final flowfield solution. Detailed flowfield predictions for several two and three dimensional nozzle configurations are presented and compared with wind tunnel experimental data.
NASA Technical Reports Server (NTRS)
Donohue, James M.; Victor, Kenneth G.; Mcdaniel, James C., Jr.
1993-01-01
A computer-controlled technique, using planar laser-induced iodine fluorescence, for measuring complex compressible flowfields is presented. A new laser permits the use of a planar two-line temperature technique so that all parameters can be measured with the laser operated narrowband. Pressure and temperature measurements in a step flowfield show agreement within 10 percent of a CFD model except in regions close to walls. Deviation of near wall temperature measurements from the model was decreased from 21 percent to 12 percent compared to broadband planar temperature measurements. Computer-control of the experiment has been implemented, except for the frequency tuning of the laser. Image data storage and processing has been improved by integrating a workstation into the experimental setup reducing the data reduction time by a factor of 50.
Application of Modern Design of Experiments to CARS Thermometry in a Model Scramjet Engine
NASA Technical Reports Server (NTRS)
Danehy, P. M.; DeLoach, R.; Cutler, A. D.
2002-01-01
We have applied formal experiment design and analysis to optimize the measurement of temperature in a supersonic combustor at NASA Langley Research Center. We used the coherent anti-Stokes Raman spectroscopy (CARS) technique to map the temperature distribution in the flowfield downstream of an 1160 K, Mach 2 freestream into which supersonic hydrogen fuel is injected at an angle of 30 degrees. CARS thermometry is inherently a single-point measurement technique; it was used to map thc flow by translating the measurement volume through the flowfield. The method known as "Modern Design of Experiments" (MDOE) was used to estimate the data volume required, design the test matrix, perform the experiment and analyze the resulting data. MDOE allowed us to match the volume of data acquired to the precision requirements of the customer. Furthermore, one aspect of MDOE, known as response surface methodology, allowed us to develop precise maps of the flowfield temperature, allowing interpolation between measurement points. An analytic function in two spatial variables was fit to the data from a single measurement plane. Fitting with a Cosine Series Bivariate Function allowed the mean temperature to be mapped with 95% confidence interval half-widths of +/- 30 Kelvin, comfortably meeting the confidence of +/- 50 Kelvin specified prior to performing the experiments. We estimate that applying MDOE to the present experiment saved a factor of 5 in data volume acquired, compared to experiments executed in the traditional manner. Furthermore, the precision requirements could have been met with less than half the data acquired.
Assessment of CFD Estimation of Aerodynamic Characteristics of Basic Reusable Rocket Configurations
NASA Astrophysics Data System (ADS)
Fujimoto, Keiichiro; Fujii, Kozo
Flow-fields around the basic SSTO-rocket configurations are numerically simulated by the Reynolds-averaged Navier-Stokes (RANS) computations. Simulations of the Apollo-like configuration is first carried out, where the results are compared with NASA experiments and the prediction ability of the RANS simulation is discussed. The angle of attack of the freestream ranges from 0° to 180° and the freestream Mach number ranges from 0.7 to 2.0. Computed aerodynamic coefficients for the Apollo-like configuration agree well with the experiments under a wide range of flow conditions. The flow simulations around the slender Apollo-type configuration are carried out next and the results are compared with the experiments. Computed aerodynamic coefficients also agree well with the experiments. Flow-fields are dominated by the three-dimensional massively separated flow, which should be captured for accurate aerodynamic prediction. Grid refinement effects on the computed aerodynamic coefficients are investigated comprehensively.
Wind Tunnel Data Fusion and Immersive Visualization: A Case Study
NASA Technical Reports Server (NTRS)
Severance, Kurt; Brewster, Paul; Lazos, Barry; Keefe, Daniel
2001-01-01
This case study describes the process of fusing the data from several wind tunnel experiments into a single coherent visualization. Each experiment was conducted independently and was designed to explore different flow features around airplane landing gear. In the past, it would have been very difficult to correlate results from the different experiments. However, with a single 3-D visualization representing the fusion of the three experiments, significant insight into the composite flowfield was observed that would have been extremely difficult to obtain by studying its component parts. The results are even more compelling when viewed in an immersive environment.
NASA Technical Reports Server (NTRS)
Rhodes, D. L.; Lilley, D. G.
1985-01-01
Numerical predictions, flow visualization experiments and time-mean velocity measurements were obtained for six basic nonreacting flowfields (with inlet swirl vane angles of 0 (swirler removed), 45 and 70 degrees and sidewall expansion angles of 90 and 45 degrees) in an idealized axisymmetric combustor geometry. A flowfield prediction computer program was developed which solves appropriate finite difference equations including a conventional two equation k-epsilon eddy viscosity turbulence model. The wall functions employed were derived from previous swirling flow measurements, and the stairstep approximation was employed to represent the sloping wall at the inlet to the test chamber. Recirculation region boundaries have been sketched from the entire flow visualization photograph collection. Tufts, smoke, and neutrally buoyant helium filled soap bubbles were employed as flow tracers. A five hole pitot probe was utilized to measure the axial, radial, and swirl time mean velocity components.
An Experiment on the Near Flow Field of the GE/ARL Mixer Ejector Nozzle
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2004-01-01
This report is a documentation of the results on flowfield surveys for the GE/ARL mixer-ejector nozzle carried out in an open jet facility at NASA Glenn Research Center. The results reported are for cold (unheated) flow without any surrounding co-flowing stream. Distributions of streamwise vorticity as well as turbulent stresses, obtained by hot-wire anemometry, are presented for a low subsonic condition. Pitot probe survey results are presented for nozzle pressure ratios up to 3.5. Flowfields both inside and outside of the ejector are considered. Inside the ejector, the mean velocity distribution exhibits a cellular pattern on the cross sectional plane, originating from the flow through the primary and secondary chutes. With increasing downstream distance an interchange of low velocity regions with adjacent high velocity regions takes place due to the action of the streamwise vortices. At the ejector exit, the velocity distribution is nonuniform at low and high pressure ratios but reasonably uniform at intermediate pressure ratios. The effects of two chevron configurations and a tab configuration on the evolution of the downstream jet are also studied. Compared to the baseline case, minor but noticeable effects are observed on the flowfield.
Toward Supersonic Retropropulsion CFD Validation
NASA Technical Reports Server (NTRS)
Kleb, Bil; Schauerhamer, D. Guy; Trumble, Kerry; Sozer, Emre; Barnhardt, Michael; Carlson, Jan-Renee; Edquist, Karl
2011-01-01
This paper begins the process of verifying and validating computational fluid dynamics (CFD) codes for supersonic retropropulsive flows. Four CFD codes (DPLR, FUN3D, OVERFLOW, and US3D) are used to perform various numerical and physical modeling studies toward the goal of comparing predictions with a wind tunnel experiment specifically designed to support CFD validation. Numerical studies run the gamut in rigor from code-to-code comparisons to observed order-of-accuracy tests. Results indicate that this complex flowfield, involving time-dependent shocks and vortex shedding, design order of accuracy is not clearly evident. Also explored is the extent of physical modeling necessary to predict the salient flowfield features found in high-speed Schlieren images and surface pressure measurements taken during the validation experiment. Physical modeling studies include geometric items such as wind tunnel wall and sting mount interference, as well as turbulence modeling that ranges from a RANS (Reynolds-Averaged Navier-Stokes) 2-equation model to DES (Detached Eddy Simulation) models. These studies indicate that tunnel wall interference is minimal for the cases investigated; model mounting hardware effects are confined to the aft end of the model; and sparse grid resolution and turbulence modeling can damp or entirely dissipate the unsteadiness of this self-excited flow.
NASA Astrophysics Data System (ADS)
Bose, Chandan; Sarkar, Sunetra
2018-04-01
The present study investigates the complex vortex interactions in two-dimensional flow-field behind a symmetric NACA0012 airfoil undergoing a prescribed periodic pitching-plunging motion in low Reynolds number regime. The flow-field transitions from periodic to chaotic through a quasi-periodic route as the plunge amplitude is gradually increased. This study unravels the role of the complex interactions that take place among the main vortex structures in making the unsteady flow-field transition from periodicity to chaos. The leading-edge separation plays a key role in providing the very first trigger for aperiodicity. Subsequent mechanisms like shredding, merging, splitting, and collision of vortices in the near-field that propagate and sustain the disturbance have also been followed and presented. These fundamental mechanisms are seen to give rise to spontaneous and irregular formation of new vortex couples at arbitrary locations, which are the primary agencies for sustaining chaos in the flow-field. The interactions have been studied for each dynamical state to understand the course of transition in the flow-field. The qualitative changes observed in the flow-field are manifestation of changes in the underlying dynamical system. The overall dynamics are established in the present study by means of robust quantitative measures derived from classical and non-classical tools from the dynamical system theory. As the present analysis involves a high fidelity multi-unknown system, non-classical dynamical tools such as recurrence-based time series methods are seen to be very efficient. Moreover, their application is novel in the context of pitch-plunge flapping flight.
Characterization of hypersonic roughness-induced boundary-layer transition
NASA Astrophysics Data System (ADS)
Tirtey, S. C.; Chazot, O.; Walpot, L.
2011-02-01
The flow-field structure in the vicinity and in the wake of an isolated 3D roughness element has been studied. Different experimental techniques have been coupled and supported by CFD simulation for a good understanding of the flow-field topology. The results have shown strong flow-field similarities for different roughness elements. A model describing the flow structure and interaction mechanisms has been proposed. This model is in good agreement with experimental and CFD results as well as the literature.
Numerical investigation of two interacting parallel thruster-plumes and comparison to experiment
NASA Astrophysics Data System (ADS)
Grabe, Martin; Holz, André; Ziegenhagen, Stefan; Hannemann, Klaus
2014-12-01
Clusters of orbital thrusters are an attractive option to achieve graduated thrust levels and increased redundancy with available hardware, but the heavily under-expanded plumes of chemical attitude control thrusters placed in close proximity will interact, leading to a local amplification of downstream fluxes and of back-flow onto the spacecraft. The interaction of two similar, parallel, axi-symmetric cold-gas model thrusters has recently been studied in the DLR High-Vacuum Plume Test Facility STG under space-like vacuum conditions, employing a Patterson-type impact pressure probe with slot orifice. We reproduce a selection of these experiments numerically, and emphasise that a comparison of numerical results to the measured data is not straight-forward. The signal of the probe used in the experiments must be interpreted according to the degree of rarefaction and local flow Mach number, and both vary dramatically thoughout the flow-field. We present a procedure to reconstruct the probe signal by post-processing the numerically obtained flow-field data and show that agreement to the experimental results is then improved. Features of the investigated cold-gas thruster plume interaction are discussed on the basis of the numerical results.
NASA Astrophysics Data System (ADS)
Kim, Jinyong; Luo, Gang; Wang, Chao-Yang
2017-10-01
3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.
A Comparison of Computed and Experimental Flowfields of the RAH-66 Helicopter
NASA Technical Reports Server (NTRS)
vanDam, C. P.; Budge, A. M.; Duque, E. P. N.
1996-01-01
This paper compares and evaluates numerical and experimental flowfields of the RAH-66 Comanche helicopter. The numerical predictions were obtained by solving the Thin-Layer Navier-Stokes equations. The computations use actuator disks to investigate the main and tail rotor effects upon the fuselage flowfield. The wind tunnel experiment was performed in the 14 x 22 foot facility located at NASA Langley. A suite of flow conditions, rotor thrusts and fuselage-rotor-tail configurations were tested. In addition, the tunnel model and the computational geometry were based upon the same CAD definition. Computations were performed for an isolated fuselage configuration and for a rotor on configuration. Comparisons between the measured and computed surface pressures show areas of correlation and some discrepancies. Local areas of poor computational grid-quality and local areas of geometry differences account for the differences. These calculations demonstrate the use of advanced computational fluid dynamic methodologies towards a flight vehicle currently under development. It serves as an important verification for future computed results.
Navier-Stokes Flowfield Simulation of Boeing 747-200 as Platform for SOFIA
NASA Technical Reports Server (NTRS)
Srinivasan, G.R.
1994-01-01
Steady and unsteady viscous, three-dimensional flowfields are calculated using a thin layer approximation of Navier-Stokes equations in conjunction with Chimera overset grids. The finite-difference numerical scheme uses structured grids and a pentadiagonal flow solver called "OVERFLOW". The configuration of Boeing 747-200 has been chosen as one of configurations to be used as a platform for the SOFIA (Stratospheric Observatory For Infrared Astronomy). Initially, the steady flowfield of the full aircraft is calculated for the clean configuration (without a cavity to house telescope). This solution is then used to start the unsteady flowfield of a configuration containing cavity housing the observation telescope and its peripheral units. Analysis of unsteady flowfield in the cavity and its influence on the tail empennage, as well as the noise due to turbulence and optical quality of the flow are the main focus of this study. For the configuration considered here, the telescope housing cavity is located slightly downstream of the portwing. The entire flow-field is carefully constructed using 45 overset grids and consists of nearly 4 million grid points. All the computations axe done at one freestream flow condition of M(sub infinity) = 0.85, alpha = 2.5deg, and a Reynolds of Re = 1.85x10deg
Wind Code Application to External Forebody Flowfields with Comparisons to Experimental Results
NASA Technical Reports Server (NTRS)
Frate, F. C.; Kim, H. D.
2001-01-01
The WIND Code, a general purpose Navier-Stokes solver, has been utilized to obtain supersonic external flowfield Computational Fluid Dynamics (CFD) solutions over an axisymmetric, parabolic forebody with comparisons made to wind tunnel experimental results. Various cases have been investigated at supersonic freestream conditions ranging from Mach 2.0 to 3.5, at 0 deg and 3 deg angles-of-attack, and with either a sharp-nose or blunt-nose forebody configuration. Both a turbulent (Baldwin-Lomax algebraic turbulence model) and a laminar model have been implemented in the CFD. Obtaining the solutions involved utilizing either the parabolized- or full-Navier-Stokes analyses supplied in WIND. Comparisons have been made with static pressure measurements, with boundary-layer rake and flowfield rake pitot pressure measurements, and with temperature sensitive paint experimental results. Using WIND's parabolized Navier-Stokes capability, grid sequencing, and the Baldwin-Lomax algebraic turbulence model allowed for significant reductions in computational time while still providing good agreement with experiment. Given that CFD and experiment compare well, WIND is found to be a good computational platform for solving this type of forebody problem, and the grids developed in conjunction with it will be used in the future to investigate varying freestream conditions not tested experimentally.
Phase-measuring laser holographic interferometer for use in high speed flows
NASA Astrophysics Data System (ADS)
Yanta, William J.; Spring, W. Charles, III; Gross, Kimberly Uhrich; McArthur, J. Craig
Phase-measurement techniques have been applied to a dual-plate laser holographic interferometer (LHI). This interferometer has been used to determine the flowfield densities in a variety of two-dimensional and axisymmetric flows. In particular, LHI has been applied in three different experiments: flowfield measurements inside a two-dimensional scramjet inlet, flow over a blunt cone, and flow over an indented nose shape. Comparisons of experimentally determined densities with computational results indicate that, when phase-measurement techniques are used in conjunction with state-of-the-art image-processing instrumentation, holographic interferometry can be a diagnostic tool with high resolution, high accuracy, and rapid data retrieval.
Numerical Simulation of the Aircraft Wake Vortex Flowfield
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.; Perry, R. Brad
2013-01-01
The near wake vortex flowfield from a NACA0012 half-wing was simulated using a fully unstructured Navier-Stokes flow solver in three dimensions at a chord Reynolds number of 4.6 million and a Mach number of approximately 0.15. Several simulations were performed to examine the effect of boundary conditions, mesh resolution and turbulence scheme on the formation of wingtip vortex and its downstream propagation. The standard Spalart-Allmaras turbulence model was compared with the Dacles-Mariani and Spalart-Shur corrections for rotation and curvature effects. The simulation results were evaluated using the data from experiment performed at NASA Ames' 32in x 48in low speed wind tunnel.
The aerothermal environment and material response: A review
NASA Technical Reports Server (NTRS)
Nicolet, W. E.
1974-01-01
Aerothermal environments are discussed with emphasis on the cold dense and warm atmospheres of Saturn and Uranus. The spectral distribution of the incident radiation flux is given for the Saturn nominal entry. Saturn and Uranus stagnation point heat pulses with no ablation are compared. Calculations for small flow rates, important in the Saturn-Uranus nominal type entries, are given to investigate the effects due to the mixing layer separation. Analytical and experimental techniques applicable to flowfield calculations are reviewed with emphasis on two--dimensional flow capabilities. Transport properties are reviewed in terms of flowfield calculations along with radiation transport codes. Various approaches to entry calculations are presented. It is indicated that only certain aspects of the aerothermal environment can be simulated in the laboratory and that although flight experiments are becoming feasible they are so expensive that they are prohibitive. Recommendations for further study are included.
The Effect of Projectile Density and Disruption on the Crater Excavation Flow-Field
NASA Technical Reports Server (NTRS)
Anderson, Jennifer L. B.; Schultz, P. H.
2005-01-01
The ejection parameters of material excavated by a growing crater directly relate to the subsurface excavation flow-field. The ejection angles and speeds define the end of subsurface material streamlines at the target surface. Differences in the subsurface flow-fields can be inferred by comparing observed ejection parameters of various impacts obtained using three-dimensional particle image velocimetry (3D PIV). The work presented here investigates the observed ejection speeds and angles of material ejected during vertical (90 impact angle) experimental impacts for a range of different projectile types. The subsurface flow-fields produced during vertical impacts are simple when compared with that of oblique impacts, affected primarily by the depth of the energy and momentum deposition of the projectile. This depth is highly controlled by the projectile/target density ratio and the disruption of the projectile (brittle vs. ductile deformation). Previous studies indicated that cratering efficiency and the crater diameter/depth ratio were affected by projectile disruption, velocity, and the projectile/target density ratio. The effect of these projectile properties on the excavation flow-field are examined by comparing different projectile materials.
Investigation of flowfields found in typical combustor geometries
NASA Technical Reports Server (NTRS)
Lilley, D. G.
1985-01-01
Activities undertaken during the entire course of research are summarized. Studies were concerned with experimental and theoretical research on 2-D axisymmetric geometries under low speed nonreacting, turbulent, swirling flow conditions typical of gas turbine and ramjet combustion chambers. They included recirculation zone characterization, time-mean and turbulence simulation in swirling recirculating flow, sudden and gradual expansion flowfields, and furher complexities and parameter influences. The study included the investigation of: a complete range of swirl strengths; swirler performance; downstream contraction nozzle sizes and locations; expansion ratios; and inlet side-wall angles. Their individual and combined effects on the test section flowfield were observed, measured and characterized. Experimental methods included flow visualization (with smoke and neutrally-buoyant helium-filled soap bubbles), five-hole pitot probe time-mean velocity field measurements, and single-, double-, and triple-wire hot-wire anemometry measurements of time-mean velocities, normal and shear Reynolds sresses. Computational methods included development of the STARPIC code from the primitive-variable TEACH computer code, and its use in flowfield prediction and turbulence model development.
Simulating flow around scaled model of a hypersonic vehicle in wind tunnel
NASA Astrophysics Data System (ADS)
Markova, T. V.; Aksenov, A. A.; Zhluktov, S. V.; Savitsky, D. V.; Gavrilov, A. D.; Son, E. E.; Prokhorov, A. N.
2016-11-01
A prospective hypersonic HEXAFLY aircraft is considered in the given paper. In order to obtain the aerodynamic characteristics of a new construction design of the aircraft, experiments with a scaled model have been carried out in a wind tunnel under different conditions. The runs have been performed at different angles of attack with and without hydrogen combustion in the scaled propulsion engine. However, the measured physical quantities do not provide all the information about the flowfield. Numerical simulation can complete the experimental data as well as to reduce the number of wind tunnel experiments. Besides that, reliable CFD software can be used for calculations of the aerodynamic characteristics for any possible design of the full-scale aircraft under different operation conditions. The reliability of the numerical predictions must be confirmed in verification study of the software. The given work is aimed at numerical investigation of the flowfield around and inside the scaled model of the HEXAFLY-CIAM module under wind tunnel conditions. A cold run (without combustion) was selected for this study. The calculations are performed in the FlowVision CFD software. The flow characteristics are compared against the available experimental data. The carried out verification study confirms the capability of the FlowVision CFD software to calculate the flows discussed.
Advanced ballistic range technology
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1993-01-01
Optical images, such as experimental interferograms, schlieren, and shadowgraphs, are routinely used to identify and locate features in experimental flow fields and for validating computational fluid dynamics (CFD) codes. Interferograms can also be used for comparing experimental and computed integrated densities. By constructing these optical images from flow-field simulations, one-to-one comparisons of computation and experiment are possible. During the period from February 1, 1992, to November 30, 1992, work has continued on the development of CISS (Constructed Interferograms, Schlieren, and Shadowgraphs), a code that constructs images from ideal- and real-gas flow-field simulations. In addition, research connected with the automated film-reading system and the proposed reactivation of the radiation facility has continued.
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Wilkes, Jennifer A.; Aderfer, David W.; Jones, Stephen B.; Robbins, Anthony W.; Pantry, Danny P.; Schwartz, Richard J.
2006-01-01
Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize four different hypersonic flowfields in the NASA Langley Research Center 31-Inch Mach 10 Air wind tunnel. The four configurations were: (1) the wake flowfield of a fuselage-only X-33 lifting body, (2) flow over a flat plate containing a rectangular cavity, (3) flow over a 70deg blunted cone with a cylindrical afterbody, formerly studied by an AGARD working group, and (4) an Apollo-geometry entry capsule - relevant to the Crew Exploration Vehicle currently being developed by NASA. In all cases, NO was seeded into the flowfield through tubes inside or attached to the model sting and strut. PLIF was used to visualize the NO in the flowfield. In some cases pure NO was seeded into the flow while in other cases a 5% NO, 95% N2 mix was injected. Several parameters were varied including seeding method and location, seeding mass flow rate, model angle of attack and tunnel stagnation pressure, which varies the unit Reynolds number. The location of the laser sheet was as also varied to provide three dimensional flow information. Virtual Diagnostics Interface (ViDI) technology developed at NASA Langley was used to visualize the data sets in post processing. The measurements demonstrate some of the capabilities of the PLIF method for studying hypersonic flows.
Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors
NASA Astrophysics Data System (ADS)
Elliott, T. S.; Majdalani, J.
2014-11-01
Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.
Nonequilibrium Stagnation-Line Radiative Heating for Fire II
NASA Technical Reports Server (NTRS)
Johnston, Christopher O.; Hollis, Brian R.; Sutton, Kenneth
2007-01-01
This paper presents a detailed analysis of the shock-layer radiative heating to the Fire II vehicle using a new air radiation model and a viscous shock-layer flowfield model. This new air radiation model contains the most up-to-date properties for modeling the atomic-line, atomic photoionization, molecular band, and non-Boltzmann processes. The applied viscous shock-layer flowfield analysis contains the same thermophysical properties and nonequilibrium models as the LAURA Navier-Stokes code. Radiation-flowfield coupling, or radiation cooling, is accounted for in detail in this study. It is shown to reduce the radiative heating by about 30% for the peak radiative heating points, while reducing the convective heating only slightly. A detailed review of past Fire II radiative heating studies is presented. It is observed that the scatter in the radiation predicted by these past studies is mostly a result of the different flowfield chemistry models and the treatment of the electronic state populations. The present predictions provide, on average throughout the trajectory, a better comparison with Fire II flight data than any previous study. The magnitude of the vacuum ultraviolet (VUV) contribution to the radiative flux is estimated from the calorimeter measurements. This is achieved using the radiometer measurements and the predicted convective heating. The VUV radiation predicted by the present model agrees well with the VUV contribution inferred from the Fire II calorimeter measurement, although only when radiation-flowfield coupling is accounted for. This agreement provides evidence that the present model accurately models the VUV radiation, which is shown to contribute significantly to the Fire II radiative heating.
Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...
NASA Astrophysics Data System (ADS)
Lynch, Denis Aloysius, III
This experimental investigation examined the unsteady response of a stator located downstream of a four- or ten-bladed propeller encountering broadband turbulence. The response is manifested in a radiated acoustic field which can be directly attributed to the unsteady surface pressure loading on the stator by the turbulent flowfield. In order to characterize the unsteady response of the stator, a thorough analysis of the turbulent flowfield downstream of the propeller was completed. The analysis of the turbulent flowfield is organized in a manner which reflects the causal relationship between influences on the flowfield and the evolution of the flowfield itself. Mathematical models for each of these contributions, including the broadband and periodic contributions of the propeller wakes and modification of the inflow turbulence by the propeller, are presented and analyzed. A further mathematical model involving the prediction of correlation length scale aids in the accurate prediction of the radiated acoustic pressure based solely on fundamental turbulent flowfield measurements. Unsteady surface pressure measurements, originally intended to provide additional information about the response of the stator as it relates to the incoming flowfield, were found to be heavily contaminated by vibrational effects. Therefore, techniques involving cross-correlation measurements are developed to mathematically isolate the unsteady pressure signal. The success of these techniques suggests the strong possibility of future application in this area. Finally, the mathematical models developed to describe the flowfield downstream of the propeller are applied to the case of a twenty-bladed propeller. This case was selected due to the anticipated increased levels of modification of the inflow turbulence. Results provide further evidence that this complex flowfield may be fully and accurately represented using simple mathematical models supported by baseline empirical information.
Experimental Study of Impinging Jets Flow-Fields
2016-07-27
1 Grant # N000141410830 Experimental Study of Impinging Jet Flow-Fields Final Report for Period: Jun 15, 2014 – Jun 14, 2016 PI: Dennis K...impinging jet model in the absence of any jet heating. The results of the computations had been compared with the experimental data produced in the...of the validity of the computations, and also of the experimental approach. Figure 12a. Initial single
Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics
NASA Technical Reports Server (NTRS)
Eugene, L. Tu
1996-01-01
The use of canards in advanced aircraft for control and improved aerodynamic performance is a topic of continued interest and research. In addition to providing maneuver control and trim, the influence of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag. In many canard-configured aircraft, the main benefits of canards are realized during maneuver or other dynamic conditions. Therefore, the detailed study and understanding of canards requires the accurate prediction of the non-linear unsteady aerodynamics of such configurations. For close-coupled canards, the unsteady aerodynamic performance associated with the canard-wing interaction is of particular interest. The presence of a canard in close proximity to the wing results in a highly coupled canard-wing aerodynamic flowfield which can include downwash/upwash effects, vortex-vortex interactions and vortex-surface interactions. For unsteady conditions, these complexities of the canard-wing flowfield are further increased. The development and integration of advanced computational technologies provide for the time-accurate Navier-Stokes simulations of the steady and unsteady canard-wing-body flox,fields. Simulation, are performed for non-linear flight regimes at transonic Mach numbers and for a wide range of angles of attack. For the static configurations, the effects of canard positioning and fixed deflection angles on aerodynamic performance and canard-wing vortex interaction are considered. For non-static configurations, the analyses of the canard-wing body flowfield includes the unsteady aerodynamics associated with pitch-up ramp and pitch oscillatory motions of the entire geometry. The unsteady flowfield associated with moving canards which are typically used as primary control surfaces are considered as well. The steady and unsteady effects of the canard on surface pressure integrated forces and moments, and canard-wing vortex interaction are presented in detail including the effects of the canard on the static and dynamic stability characteristics. The current study provides an understanding of the steady and unsteady canard-wing-body flowfield. Emphasis is placed on the effects of the canard on aerodynamic performance as well as the detailed flow physics of the canard-wing flowfield interactions. The computational tools developed to accurately predict the time-accurate flowfield of moving canards provides for the capability of coupled fluids-controls simulations desired in the detailed design and analysis of advanced aircraft.
Flow visualization of lateral jet injection into swirling crossflow
NASA Technical Reports Server (NTRS)
Ferrell, G. B.; Aoki, K.; Lilley, D. G.
1985-01-01
Flow visualization experiments have been conducted to characterize the time-mean flowfield of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally-buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the trajectory and spread pattern of the jet. Gross flowfield characterization was obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow. The flow visualization results agree well with the measurements obtained elsewhere with the six-orientation single hot-wire method.
NASA Technical Reports Server (NTRS)
Simonson, M. R.; Smith, E. G.; Uhl, W. R.
1974-01-01
Analytical and experimental studies were performed to define the flowfield of annular jets, with and, without swirling flow. The analytical model treated configurations with variations of flow angularities, radius ratio, and swirl distributions. Swirl distributions characteristic of stator vanes and rotor blade rows, where the total pressure and swirl distributions are related were incorporated in the mathematical model. The experimental studies included tests of eleven nozzle models, both with and, without swirling exhaust flow. Flowfield surveys were obtained and used for comparison with the analytical model. This comparison of experimental and analytical studies served as the basis for evaluation of several empirical constants as required for application of the analysis to the general flow configuration. The analytical model developed during these studies is applicable to the evaluation of the flowfield and overall performance of the exhaust of statorless lift fan systems that contain various levels of exhaust swirl.
Low altitude plume impingement handbook
NASA Technical Reports Server (NTRS)
Smith, Sheldon D.
1991-01-01
Plume Impingement modeling is required whenever an object immersed in a rocket exhaust plume must survive or remain undamaged within specified limits, due to thermal and pressure environments induced by the plume. At high altitudes inviscid plume models, Monte Carlo techniques along with the Plume Impingement Program can be used to predict reasonably accurate environments since there are usually no strong flowfield/body interactions or atmospheric effects. However, at low altitudes there is plume-atmospheric mixing and potential large flowfield perturbations due to plume-structure interaction. If the impinged surface is large relative to the flowfield and the flowfield is supersonic, the shock near the surface can stand off the surface several exit radii. This results in an effective total pressure that is higher than that which exists in the free plume at the surface. Additionally, in two phase plumes, there can be strong particle-gas interaction in the flowfield immediately ahead of the surface. To date there have been three levels of sophistication that have been used for low altitude plume induced environment predictions. Level 1 calculations rely on empirical characterizations of the flowfield and relatively simple impingement modeling. An example of this technique is described by Piesik. A Level 2 approach consists of characterizing the viscous plume using the SPF/2 code or RAMP2/LAMP and using the Plume Impingement Program to predict the environments. A Level 3 analysis would consist of using a Navier-Stokes code such as the FDNS code to model the flowfield and structure during a single calculation. To date, Level 1 and Level 2 type analyses have been primarily used to perform environment calculations. The recent advances in CFD modeling and computer resources allow Level 2 type analysis to be used for final design studies. Following some background on low altitude impingement, Level 1, 2, and 3 type analysis will be described.
Experiments on opposed lateral jets injected into swirling crossflow. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Mcmurry, C. B.; Lilley, D. G.
1986-01-01
Experiments have been conducted to obtain the time-mean and turbulent quantities of opposed lateral jets in a low speed, nonreacting flowfield. A jet-to-crossflow velocity ratio of R = v sub J/u sub 0 = 4 was used throughout the experiments, with swirl vane angles of d = 0 (swirler removed), 45 and 70 deg used with the crossflow. Flow visualization techniques used were neutrally-buoyant helium-filled soap bubbles and multispark photography in order to obtain the gross flowfield characteristics. Measurements of time-mean and turbulent quantities were obtained utilizing a six-orientation single hot-wire technique. For the nonswirling case, the jets were found not to penetrate past the test-section centerline, in contrast to the single lateral jet with the same jet-to-crossflow velocity ratio. In the swirling cases, the crossflow remains in a narrow region near the wall of the test section. The opposed jets are swept from their vertical courses into spiral trajectories close to the confining walls. Extensive results are presented in r-x plane plots.
NASA Technical Reports Server (NTRS)
Harloff, G. J.; Lai, H. T.; Nelson, E. S.
1988-01-01
The PARC2D code has been selected to analyze the flowfields of a representative hypersonic scramjet nozzle over a range of flight conditions from Mach 3 to 20. The flowfields, wall pressures, wall skin friction values, heat transfer values and overall nozzle performance are presented.
Dynamic Pressure Probes Developed for Supersonic Flow-Field Measurements
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2001-01-01
A series of dynamic flow-field pressure probes were developed for use in large-scale supersonic wind tunnels at the NASA Glenn Research Center. These flow-field probes include pitot and static pressure probes that can capture fast-acting flow-field pressure transients occurring on a millisecond timescale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The flow-field pressure probe contains four major components: 1) Static pressure aerodynamic tip; 2) Pressure-sensing cartridge assembly; 3) Pitot pressure aerodynamic tip; 4) Mounting stem. This modular design allows for a variety of probe tips to be used for a specific application. Here, the focus is on flow-field pressure measurements in supersonic flows, so we developed a cone-cylinder static pressure tip and a pitot pressure tip. Alternatively, probe tips optimized for subsonic and transonic flows could be used with this design. The pressure-sensing cartridge assembly allows the simultaneous measurement of steady-state and transient pressure which allows continuous calibration of the dynamic pressure transducer.
Effects of a Forward-swept Front Rotor on the Flowfield of a Counterrotation Propeller
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Podboy, Gary G.
1994-01-01
The effects of a forward-swept front rotor on the flowfield of a counterrotation model propeller at takeoff conditions at zero degree angle of attack are studied by solving the unsteady three-dimensional Euler equations. The configuration considered is an uneven blade count counterrotation model with twelve forward-swept blades on the fore rotor and ten aft-swept blades on the aft rotor. The flowfield is compared with that of a reference aft-swept counterrotation geometry and Laser Doppler Velocimeter (LDV) measurements. At the operating conditions considered, the forward-swept blade experiences a higher tip loading and produces a stronger tip vortex compared to the aft-swept blade, consistent with the LDV and acoustic measurements. Neither the solution nor the LDV data indicated the formation of a leading edge vortex. The predicted radial distribution of the circumferentially averaged axial velocity at the measurement station agreed very closely with LDV data, while crossflow velocities showed poor agreement. The discrepancy between prediction and LDV data of tangential and radial velocities is due in part to the insufficient mesh resolution in the region between the rotors and in the tip region to track the tip vortex. The vortex is diffused by the time it arrives at the measurement station. The uneven blade count configuration requires the solution to be carried out for six blade passages of the fore rotor and five passages of the aft rotor, thus making grid refinement prohibitive.
Field Effects of Buoyancy on Lean Premixed Turbulent Flames
NASA Technical Reports Server (NTRS)
Cheng, R. K.; Dimalanta, R.; Wernet, M. P.; Greenberg, P. S.
2001-01-01
Buoyancy affects the entire flowfield of steady turbulent flames and this aspect of flame buoyancy coupling is largely unexplored by experiments or by theory. Open flames and flames within large confinements are free to expand and interact with the surrounding environment. In addition to fluid and combustion conditions, their aerodynamic flowfields are determined by the flame brush orientation and geometry, wake of the stabilizer, enclosure size, and of course, the gravitational field. Because the flowfield consists mainly of cold reactants (mostly in the nearfield) and hot products (mostly in the farfield), buoyancy effects are manifested in the farfield region. In upward pointing flames, an obvious effect is a favorable axial pressure gradient that accelerates the products thereby increasing the axial aerodynamic stretch rate. Intrinsic to turbulent flows, changes in mean aerodynamic stretch also couple to the fluctuating pressure field. Consequently, buoyancy can influence the turbulence intensities upstream and downstream of the flame. Flame wrinkling process, and heat release rate are also directly affected. This backward coupling mechanism is the so-called elliptic problem. To resolve the field effects of buoyancy would require the solution of three-dimensional non-linear Navier Stokes equations with full specification of the upstream, wall and downstream boundary conditions.
Transition Experiments on Blunt Bodies with Isolated Roughness Elements in Hypersonic Free Flight
NASA Technical Reports Server (NTRS)
Reda, Daniel C.; Wilder, Michael C.; Prabhu, Dinesh K.
2010-01-01
Smooth titanium hemispheres with isolated three-dimensional (3D) surface roughness elements were flown in the NASA Ames hypersonic ballistic range through quiescent CO2 and air environments. Global surface intensity (temperature) distributions were optically measured and thermal wakes behind individual roughness elements were analyzed to define tripping effectiveness. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted predict key dimensionless parameters used to correlate transition on blunt bodies in hypersonic flow. For isolated roughness elements totally immersed within the laminar boundary layer, critical roughness Reynolds numbers for flights in air were found to be higher than those measured for flights in CO2, i.e., it was easier to trip the CO2 boundary layer to turbulence. Tripping effectiveness was found to be dependent on trip location within the subsonic region of the blunt body flowfield, with effective tripping being most difficult to achieve for elements positioned closest to the stagnation point. Direct comparisons of critical roughness Reynolds numbers for 3D isolated versus 3D distributed roughness elements for flights in air showed that distributed roughness patterns were significantly more effective at tripping the blunt body laminar boundary layer to turbulence.
Two opposed lateral jets injected into swirling crossflow
NASA Technical Reports Server (NTRS)
Lilley, D. G.; Mcmurry, C. B.; Ong, L. H.
1987-01-01
Experiments have been conducted to obtain the time-mean and turbulent quantities of opposed lateral jets in a low speed, nonreacting flowfield. A jet-to-crossflow velocity ratio of R = 4 was used throughout the experiments, with swirl vane angles of 0 (swirler removed), 45 and 70 degrees used with the crossflow. Flow visualization techniques used were neutrally-buoyant helium-filled soap bubbles and multispark photography in order to obtain the gross flowfield characteristics. Measurements of time-mean and turbulent quantities were obtained utilizing a six-orientation single hot-wire technique. For the nonswirling case, the jets were found not to penetrate past the test-section centerline, in contrast to the single lateral jet with the same jet-to-crossflow velocity ratio. In the swirling cases, the crossflow remains in a narrow region near the wall of the test section. The opposed jets are swept from their vertical courses into spiral trajectories close to the confining walls. Extensive results are presented in r-x plane plots.
Detailed flow-field measurements over a 75 deg swept delta wing
NASA Technical Reports Server (NTRS)
Kjelgaard, Scott O.; Sellers, William L., III
1990-01-01
Results from an experimental investigation documenting the flowfield over a 75 deg swept delta wing at an angle-of-attack of 20.5 deg are presented. Results obtained include surface flow visualization, off-body flow visualization, and detailed flowfield surveys for various Reynolds numbers. Flowfield surveys at Reynolds numbers of 0.5, 1.0, and 1.5 million based on the root chord were conducted with both a Pitot pressure probe and a 5-hole pressure probe; and 3-component laser velocimeter surveys were conducted at a Reynolds number of 1.0 million. The Pitot pressure surveys were obtained at 5 chordwise stations, the 5-hole probe surveys were obtained at 3 chordwise stations and the laser velocimeter surveys were obtained at one station. The results confirm the classical roll up of the flow into a pair of primary vortices over the delta wing. The velocity measurements indicate that Reynolds number has little effect on the global structure of the flowfield for the Reynolds number range investigated. Measurements of the non-dimensional axial velocity in the core of the vortex indicate a jet like flow with values greater than twice freestream. Comparisons between velocity measurements from the 5-hole pressure probe and the laser velocimeter indicate that the pressure probe does a reasonable job of measuring the flowfield quantities where the velocity gradients in the flowfield are low.
Marchetti, George A.
2003-01-03
The present invention comprises a thin graphite plate with associated gaskets and pieces of carbon cloth that comprise a flow-field. The plate, gaskets and flow-field comprise a "plate and gasket assembly" for use in an ionomer membrane fuel cell, fuel cell stack or battery.
NASA Technical Reports Server (NTRS)
Rhode, Matthew N.; Oberkampf, William L.
2012-01-01
A high-quality model validation experiment was performed in the NASA Langley Research Center Unitary Plan Wind Tunnel to assess the predictive accuracy of computational fluid dynamics (CFD) models for a blunt-body supersonic retro-propulsion configuration at Mach numbers from 2.4 to 4.6. Static and fluctuating surface pressure data were acquired on a 5-inch-diameter test article with a forebody composed of a spherically-blunted, 70-degree half-angle cone and a cylindrical aft body. One non-powered configuration with a smooth outer mold line was tested as well as three different powered, forward-firing nozzle configurations: a centerline nozzle, three nozzles equally spaced around the forebody, and a combination with all four nozzles. A key objective of the experiment was the determination of experimental uncertainties from a range of sources such as random measurement error, flowfield non-uniformity, and model/instrumentation asymmetries. This paper discusses the design of the experiment towards capturing these uncertainties for the baseline non-powered configuration, the methodology utilized in quantifying the various sources of uncertainty, and examples of the uncertainties applied to non-powered and powered experimental results. The analysis showed that flowfield nonuniformity was the dominant contributor to the overall uncertainty a finding in agreement with other experiments that have quantified various sources of uncertainty.
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Ivey, Christoper B.; Barthel, Brett F.; Inman, Jennifer A.; Jones, Stephen B.; Watkins, Anthony N.; Goodman, Kyle Z.; McCrea, Andrew C.; Leighty, Bradley D.; Lipford, William K.;
2010-01-01
This paper reports a series of wind tunnel tests simulating the near-field behavior of the Space Shuttle Orbiter Boundary Layer Transition Detailed Test Objective (BLT DTO) flight experiment. Hypersonic flow over a flat plate with an attached BLT DTO-shaped trip was tested in a Mach 10 wind tunnel. The sharp-leading-edge flat plate was oriented at an angle of 20 degrees with respect to the freestream flow, resulting in post-shock edge Mach number of approximately 4. The flowfield was visualized using nitric oxide (NO) planar laser-induced fluorescence (PLIF). Flow visualizations were performed at 10 Hz using a wide-field of view and high-resolution NO PLIF system. A lower spatial resolution and smaller field of view NO PLIF system visualized the flow at 500 kHz, which was fast enough to resolve unsteady flow features. At the lowest Reynolds number studied, the flow was observed to be laminar and mostly steady. At the highest Reynolds number, flow visualizations showed streak instabilities generated immediately downstream of the trip. These instabilities transitioned to unsteady periodic and spatially irregular structures downstream. Quantitative surface heating imagery was obtained using the Temperature Sensitive Paint (TSP) technique. Comparisons between the PLIF flow visualizations and TSP heating measurements show a strong correlation between flow patterns and surface heating trends.
Turbulent transport models for scramjet flowfields
NASA Technical Reports Server (NTRS)
Sindir, M. M.; Harsha, P. T.
1984-01-01
Turbulence modeling approaches were examined from the standpoint of their capability to predict the complex flowfield features observed in scramjet combustions. Thus, for example, the accuracy of each turbulence model, with respect to the prediction of recirculating flows, was examined. It was observed that for large diameter ratio axisymmetric sudden expansion flows, a choice of turbulence model was not critical because of the domination of their flowfields by pressure forces. For low diameter ratio axisymmetric sudden expansions and planar backward-facing steps flows, where turbulent shear stresses are of greater significance, the algebraic Reynolds stress approach, modified to increase its sensitivity to streamline curvature, was found to provide the best results. Results of the study also showed that strongly swirling flows provide a stringent test of turbulence model assumptions. Thus, although flows with very high swirl are not of great practical interest, they are useful for turbulence model development. Finally, it was also noted that numerical flowfields solution techniques have a strong interrelation with turbulence models, particularly with the turbulent transport models which involve source-dominated transport equations.
Experimental Study of Saddle Point of Attachment in Laminar Juncture Flow
NASA Technical Reports Server (NTRS)
Coon, Michael D.; Tobak, Murray
1995-01-01
An experimental study of laminar horseshoe vortex flows upstream of a cylinder/flat plate juncture has been conducted to verify the existence of saddle-point-of-attachment topologies. In the classical depiction of this flowfield, a saddle point of separation exists on the flat plate upstream of the cylinder, and the boundary layer separates from the surface. Recent computations have indicated that the topology may actually involve a saddle point of attachment on the surface and additional singular points in the flow. Laser light sheet flow visualizations have been performed on the symmetry plane and crossflow planes to identify the saddle-point-of-attachment flowfields. The visualizations reveal that saddle-point-of-attachment topologies occur over a range of Reynolds numbers in both single and multiple vortex regimes. An analysis of the flow topologies is presented that describes the existence and evolution of the singular points in the flowfield.
User's manual for PEPSIG NASA tip vortex version
NASA Technical Reports Server (NTRS)
Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph
1988-01-01
The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. This document is the user's manual. The analysis and a series of test cases are presented in NASA-CR-182179.
Investigations of flowfields found in typical combustor geometries
NASA Technical Reports Server (NTRS)
Lilley, D. G.
1982-01-01
Measurements and computations are being applied to an axisymmetric swirling flow, emerging from swirl vanes at angle phi, entering a large chamber test section via a sudden expansion of various side-wall angles alpha. New features are: the turbulence measurements are being performed on swirling as well as nonswirling flow; and all measurements and computations are also being performed on a confined jet flowfield with realistic downstream blockage. Recent activity falls into three categories: (1) Time-mean flowfield characterization by five-hole pitot probe measurements and by flow visualization; (2) Turbulence measurements by a variety of single- and multi-wire hot-wire probe techniques; and (3) Flowfield computations using the computer code developed during the previous year's research program.
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1993-01-01
The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method of constructing these images from both ideal- and real-gas, two and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, th sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1992-01-01
The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method for constructing these images from both ideal- and real-gas, two- and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, the sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.
Flowfield analysis of modern helicopter rotors in hover by Navier-Stokes method
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Raghavan, V.; Duque, E. P. N.
1991-01-01
The viscous, three-dimensional, flowfields of UH60 and BERP rotors are calculated for lifting hover configurations using a Navier-Stokes computational fluid dynamics method with a view to understand the importance of planform effects on the airloads. In this method, the induced effects of the wake, including the interaction of tip vortices with successive blades, are captured as a part of the overall flowfield solution without prescribing any wake models. Numerical results in the form of surface pressures, hover performance parameters, surface skin friction and tip vortex patterns, and vortex wake trajectory are presented at two thrust conditions for UH60 and BERP rotors. Comparison of results for the UH60 model rotor show good agreement with experiments at moderate thrust conditions. Comparison of results with equivalent rectangular UH60 blade and BERP blade indicates that the BERP blade, with an unconventional planform, gives more thrust at the cost of more power and a reduced figure of merit. The high thrust conditions considered produce severe shock-induced flow separation for UH60 blade, while the BERP blade develops more thrust and minimal separation. The BERP blade produces a tighter tip vortex structure compared with the UH60 blade. These results and the discussion presented bring out the similarities and differences between the two rotors.
Interaction of a Rectangular Jet with a Flat-Plate Placed Parallel to the Flow
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Brown, C. A.; Bridges, J. A.
2013-01-01
An experimental study is carried out addressing the flowfield and radiated noise from the interaction of a large aspect ratio rectangular jet with a flat plate placed parallel to but away from the direct path of the jet. Sound pressure level spectra exhibit an increase in the noise levels for both the 'reflected' and 'shielded' sides of the plate relative to the free-jet case. Detailed cross-sectional distributions of flowfield properties obtained by hot-wire anemometry are documented for a low subsonic condition. Corresponding mean Mach number distributions obtained by Pitot-probe surveys are presented for high subsonic conditions. In the latter flow regime and for certain relative locations of the plate, a flow resonance accompanied by audible tones is encountered. Under the resonant condition the jet cross-section experiences an 'axis-switching' and flow visualization indicates the presence of an organized 'vortex street'. The trends of the resonant frequency variation with flow parameters exhibit some similarities to, but also marked differences with, corresponding trends of the well-known edgetone phenomenon.
Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, D.C.
1980-01-01
Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-front contours. Measurements of surface roughness, surface temperature, average transition-front location, and freestream environment were combined with calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies. Of the available correlating techniques, only one, based on the concept of a constant (critical) roughness Reynolds number for transition, wasmore » found to successfully describe both the wind-tunnel and ballistics-range data, thereby validating the extrapolation of this concept to actual reentry-vehicle materials and environments.« less
Comparison of Laminar and Linear Eddy Model Closures for Combustion Instability Simulations
2015-07-01
14. ABSTRACT Unstable liquid rocket engines can produce highly complex dynamic flowfields with features such as rapid changes in temperature and...applicability. In the present study, the linear eddy model (LEM) is applied to an unstable single element liquid rocket engine to assess its performance and to...Sankaran‡ Air Force Research Laboratory, Edwards AFB, CA, 93524 Unstable liquid rocket engines can produce highly complex dynamic flowfields with features
CFD validation experiments at the Lockheed-Georgia Company
NASA Technical Reports Server (NTRS)
Malone, John B.; Thomas, Andrew S. W.
1987-01-01
Information is given in viewgraph form on computational fluid dynamics (CFD) validation experiments at the Lockheed-Georgia Company. Topics covered include validation experiments on a generic fighter configuration, a transport configuration, and a generic hypersonic vehicle configuration; computational procedures; surface and pressure measurements on wings; laser velocimeter measurements of a multi-element airfoil system; the flowfield around a stiffened airfoil; laser velocimeter surveys of a circulation control wing; circulation control for high lift; and high angle of attack aerodynamic evaluations.
Vortex dynamics studies in supersonic flow
NASA Astrophysics Data System (ADS)
Vergine, Fabrizio
This dissertation covers the study of selected vortex interaction scenarios both in cold and high enthalpy reacting flows. Specifically, the experimental results and the analysis of the flowfields resulting from two selected supersonic vortex interaction modes in a Mach 2.5 cold flow are presented. Additionally, the experiment design, based on vortex dynamics concepts, and the reacting plume survey of two pylon injectors in a Mach 2.4 high enthalpy flow are shown. All the cold flow experiments were conducted in the supersonic wind tunnel of the Aerodynamics Research Center at the University of Texas at Arlington. A strut injector equipped with specified ramp configurations was designed and used to produce the flowfields of interest. The reacting flow experiments were conducted in the the Expansion Tube Facility located in the High Temperature Gasdynamics Laboratory of Stanford University. A detailed description of the supersonic wind tunnel, the instrumentation, the strut injector and the supersonic wake flow downstream is shown as part of the characterization of the facility. As Stereoscopic Particle Image Velocimetry was the principal flow measurement technique used in this work to probe the streamwise vortices shed from ramps mounted on the strut, this dissertation provides a deep overview of the challenges and the application of the aforementioned technique to the survey of vortical flows. Moreover, the dissertation provides the comprehensive analysis of the mean and fluctuating velocity flowfields associated with two distinct vortex dynamics scenarios, as chosen by means of the outcomes of the simulations of a reduced order model developed in the research group. Specifically, the same streamwise vortices (strength, size and Reynolds number) were used experimentally to investigate both a case in which the resulting dynamics evolve in a vortex merging scenario and a case where the merging process is voluntarily avoided in order to focus the analysis on the fundamental differences associated with the amalgamation processes alone. The results from the mean flow highlight major differences between the two cases and will justify the use of the inviscid reduced order model used to predict the main flow physics. The analysis of the turbulence quantities based on concepts borrowed from incompressible turbulence theory explains interesting features of the fluctuating flowfields, suggesting that turbulence associated with the inspected flow conditions is essentially incompressible. Once the interactions among the vortical structures in cold flow were assessed, these vortex dynamics concepts were probed in a reacting environment. The dissertation describes the design phase of two pylon injectors based on the prediction capabilities of the aforementioned model. Then, the results of a set of combustion experiments conducted utilizing hydrogen fuel injected into Mach 2.4, high-enthalpy (2.8˜MJ/kg) air flow are discussed. The results show that, for the heat release levels considered in this study, the morphology of the plume and its evolution is very similar to the results produced by the code, enabling an interpretation of the phenomena based on vortex dynamics considerations. The persistence of the streamwise vortical structures created by the selected ramp configurations is shown together with the effectiveness of the coherent structures in successfully anchoring the flame very close to the injection point. The work shows the possibility of a new approach in the design of injection strategies (i.e., not limited to injection devices) suitable for adoption in scramjet combustors based on the ability to predict, with basic vortex dynamics concepts and a highly reduced computational cost, the main features of flows of technological interest.
Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research
NASA Technical Reports Server (NTRS)
Flynn, Darin C.; Ratnayake, Nalin A.; Frederick, Michael
2009-01-01
Flowfield rake was designed to quantify the flowfield for inlet research underneath NASA DFRC s F-15B airplane. Detailed loads and stress analysis performed using CFD and empirical methods to assure structural integrity. Calibration data were generated through wind tunnel testing of the rake. Calibration algorithm was developed to determine the local Mach and flow angularity at each probe. RAGE was flown November, 2008. Data is currently being analyzed.
2012-07-01
Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 12 July 2012 2. REPORT TYPE Final Report 3. DATES COVERED...From – To) 1 October 2008 – 31 January 2012 4. TITLE AND SUBTITLE Experimental Studies on the Effects of Thermal Bumps in the Flow-Field around a
Radiation from advanced solid rocket motor plumes
NASA Technical Reports Server (NTRS)
Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.
1994-01-01
The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.
Turbulence modeling of free shear layers for high performance aircraft
NASA Technical Reports Server (NTRS)
Sondak, Douglas
1993-01-01
In many flowfield computations, accuracy of the turbulence model employed is frequently a limiting factor in the overall accuracy of the computation. This is particularly true for complex flowfields such as those around full aircraft configurations. Free shear layers such as wakes, impinging jets (in V/STOL applications), and mixing layers over cavities are often part of these flowfields. Although flowfields have been computed for full aircraft, the memory and CPU requirements for these computations are often excessive. Additional computer power is required for multidisciplinary computations such as coupled fluid dynamics and conduction heat transfer analysis. Massively parallel computers show promise in alleviating this situation, and the purpose of this effort was to adapt and optimize CFD codes to these new machines. The objective of this research effort was to compute the flowfield and heat transfer for a two-dimensional jet impinging normally on a cool plate. The results of this research effort were summarized in an AIAA paper titled 'Parallel Implementation of the k-epsilon Turbulence Model'. Appendix A contains the full paper.
Application of the laser Doppler velocimeter in aerodynamic flows
NASA Technical Reports Server (NTRS)
Yanta, W. J.; Ausherman, D. W.
1982-01-01
Applications of the laser doppler velocimeter (LDV) are discussed. Measurements were made of the flowfield around a tangent-ogive model in a low turbulent, incompressible flow at an incidence of 45 deg. The free-stream velocity was 80 ft per second. The flowfield velocities in several cross-flow planes were measured with a 2-D, two-color LDC operated in a backscatter mode. Measurements were concentrated in the secondary separation region. A typical survey is given. The survey was taken at a model location where the maximum side force occurs. The overall character of the leeward flowfield with the influence of the two body vorticles are shown. Measurements of the velocity and density flowfields in the shock-layer region of a reentry-vehicle indented nose configuration were carried out at Mach 5. The velocity flowfield was measured with a 2-color, 2-D, forward-scatter LDV system. Because of the need to minimize particle lag in the shock-layer region, polystyrene particles with a mean diameter of 0.312 microns were used for the scattering particles. The model diameter was 6 inches.
Investigation of the flow-field of two parallel round jets impinging normal to a flat surface
NASA Astrophysics Data System (ADS)
Myers, Leighton M.
The flow-field features of dual jet impingement were investigated through sub-scale model experiments. The experiments were designed to simulate the environment of a Short Takeoff, and Vertical Landing, STOVL, aircraft performing a hover over the ground, at different heights. Two different dual impinging jet models were designed, fabricated, and tested. The Generation 1 Model consisted of two stainless-steel nozzles, in a tandem configuration, each with an exit diameter of approximately 12.7 mm. The front convergent nozzle was operated at the sonic Mach number of 1.0, while the rear C-D nozzle was generally operated supersonically. The nozzles were embedded in a rectangular flat plate, referred to as the lift plate, which represents a generic lifting surface. The lift plate was instrumented with 36 surface pressure taps, which were used to examine the flow entrainment and recirculation patterns caused by varying the stand-off distance from the nozzle exits to a flat ground surface. The stand-off distance was adjusted with a sliding rail frame that the ground plane was mounted to. Typical dimensionless stand-off distances (ground plane separation) were H/DR = 2 to 24. A series of measurements were performed with the Generation 1 model, in the Penn State High Speed Jet Aeroacoustics Laboratory, to characterize the basic flow phenomena associated with dual jet impingement. The regions of interest in the flow-field included the vertical jet plume(s), near impingement/turning region, and wall jet outwash. Other aspects of interest included the loss of lift (suckdown) that occurs as the ground plane separation distance becomes small, and azimuthal variation of the acoustic noise radiation. Various experimental methods and techniques were used to characterize the flow-field, including flow-visualization, pressure rake surveys, surface mounted pressure taps, laser Doppler velocimetry, and acoustic microphone arrays. A second dual impinging jet scale model, Generation 2, was designed and fabricated with a 50% increase in nozzle exit diameter. The primary design improvement is the ability to quickly and easily exchange the nozzles of the model. This allowed experiments to be performed with rapid-prototyped nozzles that feature more realistic geometry to that of tactical military aircraft engines. One such nozzle, which was designed and demonstrated by previous researchers to reduce jet noise in a free-jet, was incorporated into the model. The nozzle, featuring deflected seals, was installed in the Generation 2 model and its effect on suckdown was evaluated.
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a pressure based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution and turbulence model are two primary factors that influence the accuracy of the base flowfield prediction.
Experimental research on crossing shock wave boundary layer interactions
NASA Astrophysics Data System (ADS)
Settles, G. S.; Garrison, T. J.
1994-10-01
An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.
NASA Astrophysics Data System (ADS)
Dai, Qianwei; Lin, Fangpeng; Wang, Xiaoping; Feng, Deshan; Bayless, Richard C.
2017-05-01
An integrated geophysical investigation was performed at S dam located at Dadu basin in China to assess the condition of the dam curtain. The key methodology of the integrated technique used was flow-field fitting method, which allowed identification of the hydraulic connections between the dam foundation and surface water sources (upstream and downstream), and location of the anomalous leakage outlets in the dam foundation. Limitations of the flow-field fitting method were complemented with resistivity logging to identify the internal erosion which had not yet developed into seepage pathways. The results of the flow-field fitting method and resistivity logging were consistent when compared with data provided by seismic tomography, borehole television, water injection test, and rock quality designation.
Flap effectiveness appraisal for winged re-entry vehicles
NASA Astrophysics Data System (ADS)
de Rosa, Donato; Pezzella, Giuseppe; Donelli, Raffaele S.; Viviani, Antonio
2016-05-01
The interactions between shock waves and boundary layer are commonplace in hypersonic aerodynamics. They represent a very challenging design issue for hypersonic vehicle. A typical example of shock wave boundary layer interaction is the flowfield past aerodynamic surfaces during control. As a consequence, such flow interaction phenomena influence both vehicle aerodynamics and aerothermodynamics. In this framework, the present research effort describes the numerical activity performed to simulate the flowfield past a deflected flap in hypersonic flowfield conditions for a winged re-entry vehicle.
Combustion Instability Analysis and the Effects of Drop Size on Acoustic Driving Rocket Flow
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Ellison, L. Renea; Moser, Marlow D.
2004-01-01
High frequency combustion instability, the most destructive kind, is generally solved on a per engine basis. The instability often is the result of compounding acoustic oscillations, usually from the propellant combustion itself. To counteract the instability the chamber geometry can be changed and/or the method of propellant injection can be altered. This experiment will alter the chamber dimensions slightly; using a cylindrical shape of constant diameter and the length will be varied from six to twelve inches in three-inch increments. The main flowfield will be the products of a high OF hydrogen/oxygen flow. The liquid fuel will be injected into this flowfield using a modulated injector. It will allow for varied droplet size, feed rate, spray pattern, and location for the mixture within the chamber. The response will be deduced from the chamber pressure oscillations.
Achieving swift equilibration of a Brownian particle using flow-fields
NASA Astrophysics Data System (ADS)
Patra, Ayoti; Jarzynski, Christopher
Can a system be driven to a targeted equilibrium state on a timescale that is much shorter than its natural equilibration time? In a recent experiment, the swift equilibration of an overdamped Brownian particle was achieved by use of an appropriately designed, time-dependent optical trap potential. Motivated by these results, we develop a general theoretical approach for guiding an ensemble of Brownian particles to track the instantaneous equilibrium distribution of a desired potential U (q , t) . In our approach, we use flow-fields associated with the parametric evolution of the targeted equilibrium state to construct an auxiliary potential U (q , t) , such that dynamics under the composite potential U (t) + U (t) achieves the desired evolution. Our results establish a close connection between the swift equilibration of Brownian particles, quantum shortcuts to adiabaticity, and the dissipationless driving of a classical, Hamiltonian system.
Flow diagnostics in unseeded air
NASA Technical Reports Server (NTRS)
Miles, R.; Lempert, W.
1990-01-01
Several approaches are presented for the quantitative measurement of flowfield parameters in high-speed flows. The techniques are developed for the study of air flows in the Mach 2 to Mach 3 regime and can be extended to the hypersonic and subsonic regimes in a straightforward manner. Instantaneous two-dimensional cross-sectional images of the density using UV Rayleigh scattering and the measurement of velocity profiles using the RELIEF technique are shown. The RELIEF technique employs two high-powered lasers separated in frequency by the vibrational frequency of oxygen molecules to write lines across the flowfield by stimulated Raman scattering. The preliminary results indicate that the UV Rayleigh scattering may also be extended to the measurement of velocity and temperature fields by using an atomic or molecular absorption filter window, and that the RELIEF technique can be extended to marking shaped volumetric points or arrays of points in the flowfield for velocity and vorticity measurements.
Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields
NASA Technical Reports Server (NTRS)
Daines, Russell L.; Merkle, Charles L.
1994-01-01
Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.
Swept shock/boundary-layer interactions: Scaling laws, flowfield structure, and experimental methods
NASA Technical Reports Server (NTRS)
Settles, Gary S.
1993-01-01
A general review is given of several decades of research on the scaling laws and flowfield structures of swept shock wave/turbulent boundary layer interactions. Attention is further restricted to the experimental study and physical understanding of the steady-state aspects of these flows. The interaction produced by a sharp, upright fin mounted on a flat plate is taken as an archetype. An overall framework of quasiconical symmetry describing such interactions is first developed. Boundary-layer separation, the interaction footprint, Mach number scaling, and Reynolds number scaling are then considered, followed by a discussion of the quasiconical similarity of interactions produced by geometrically-dissimilar shock generators. The detailed structure of these interaction flowfields is next reviewed, and is illustrated by both qualitative visualizations and quantitative flow images in the quasiconical framework. Finally, the experimental techniques used to investigate such flows are reviewed, with emphasis on modern non-intrusive optical flow diagnostics.
Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration
NASA Technical Reports Server (NTRS)
Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.
2000-01-01
A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.
NASA Astrophysics Data System (ADS)
Addy, A. L.; Chow, W. L.; Korst, H. H.; White, R. A.
1983-05-01
Significant data and detailed results of a joint research effort investigating the fluid dynamic mechanisms and interactions within separated flows are presented. The results were obtained through analytical, experimental, and computational investigations of base flow related configurations. The research objectives focus on understanding the component mechanisms and interactions which establish and maintain separated flow regions. Flow models and theoretical analyses were developed to describe the base flowfield. The research approach has been to conduct extensive small-scale experiments on base flow configurations and to analyze these flows by component models and finite-difference techniques. The modeling of base flows of missiles (both powered and unpowered) for transonic and supersonic freestreams has been successful by component models. Research on plume effects and plume modeling indicated the need to match initial plume slope and plume surface curvature for valid wind tunnel simulation of an actual rocket plume. The assembly and development of a state-of-the-art laser Doppler velocimeter (LDV) system for experiments with two-dimensional small-scale models has been completed and detailed velocity and turbulence measurements are underway. The LDV experiments include the entire range of base flowfield mechanisms - shear layer development, recompression/reattachment, shock-induced separation, and plume-induced separation.
Interactive numerical flow visualization using stream surfaces
NASA Technical Reports Server (NTRS)
Hultquist, J. P. M.
1990-01-01
Particle traces and ribbons are often used to depict the structure of three-dimensional flowfields, but images produced using these models can be ambiguous. Stream surfaces offer a more visually intuitive method for the depiction of flowfields, but interactive response is needed to allow the user to place surfaces which reveal the essential features of a given flowfield. FLORA, a software package which supports the interactive calculation and display of stream surfaces on silicon graphics workstations, is described. Alternative methods for the integration of particle traces are examined, and calculation through computational space is found to provide rapid results with accuracy adequate for most purposes. Rapid calculation of traces is teamed with progressive refinement of appoximated surfaces. An initial approximation provides immediate user feedback, and subsequent improvement of the surface ensures that the final image is an accurate representation of the flowfield.
MULTISHOCKED,THREE-DIMENSIONAL SUPERSONIC FLOWFIELDS WITH REAL GAS EFFECTS
NASA Technical Reports Server (NTRS)
Kutler, P.
1994-01-01
This program determines the supersonic flowfield surrounding three-dimensional wing-body configurations of a delta wing. It was designed to provide the numerical computation of three dimensional inviscid, flowfields of either perfect or real gases about supersonic or hypersonic airplanes. The governing equations in conservation law form are solved by a finite difference method using a second order noncentered algorithm between the body and the outermost shock wave, which is treated as a sharp discontinuity. Secondary shocks which form between these boundaries are captured automatically. The flowfield between the body and outermost shock is treated in a shock capturing fashion and therefore allows for the correct formation of secondary internal shocks . The program operates in batch mode, is in CDC update format, has been implemented on the CDC 7600, and requires more than 140K (octal) word locations.
Inward-Turning Streamline-Traced Inlet Design Method for Low-Boom, Low-Drag Applications
NASA Technical Reports Server (NTRS)
Otto, Samuel; Trefny, Charles J.; Slater, John W.
2015-01-01
A new design method for inward-turning, streamline-traced inlets is presented. Resulting designs are intended for moderate supersonic, low-drag, low-boom applications such as that required for NASA's proposed low-boom flight demonstration aircraft. A critical feature of these designs is the internal cowl lip angle that allows for little or no flow turning on the outer nacelle. Present methods using conical-flow Busemann parent flowfields have simply truncated, or otherwise modified the stream-traced contours to include this internal cowl angle. Such modifications disrupt the parent flowfield, reducing inlet performance and flow uniformity. The method presented herein merges a conical flowfield that includes a leading shock with a truncated Busemann flowfield in a manner that minimizes unwanted interactions. A leading internal cowl angle is now inherent in the parent flowfield, and inlet contours traced from this flowfield retain its high performance and good flow uniformity. CFD analysis of a candidate inlet design is presented that verifies the design technique, and reveals a starting issue with the basic geometry. A minor modification to the cowl lip region is shown to eliminate this phenomenon, thereby allowing starting and smooth transition to sub-critical operation as back-pressure is increased. An inlet critical-point total pressure recovery of 96 is achieved based on CFD results for a Mach 1.7 freestream design. Correction for boundary-layer displacement thickness, and sizing for a given engine airflow requirement are also discussed.
Airbreathing Propulsion System Analysis Using Multithreaded Parallel Processing
NASA Technical Reports Server (NTRS)
Schunk, Richard Gregory; Chung, T. J.; Rodriguez, Pete (Technical Monitor)
2000-01-01
In this paper, parallel processing is used to analyze the mixing, and combustion behavior of hypersonic flow. Preliminary work for a sonic transverse hydrogen jet injected from a slot into a Mach 4 airstream in a two-dimensional duct combustor has been completed [Moon and Chung, 1996]. Our aim is to extend this work to three-dimensional domain using multithreaded domain decomposition parallel processing based on the flowfield-dependent variation theory. Numerical simulations of chemically reacting flows are difficult because of the strong interactions between the turbulent hydrodynamic and chemical processes. The algorithm must provide an accurate representation of the flowfield, since unphysical flowfield calculations will lead to the faulty loss or creation of species mass fraction, or even premature ignition, which in turn alters the flowfield information. Another difficulty arises from the disparity in time scales between the flowfield and chemical reactions, which may require the use of finite rate chemistry. The situations are more complex when there is a disparity in length scales involved in turbulence. In order to cope with these complicated physical phenomena, it is our plan to utilize the flowfield-dependent variation theory mentioned above, facilitated by large eddy simulation. Undoubtedly, the proposed computation requires the most sophisticated computational strategies. The multithreaded domain decomposition parallel processing will be necessary in order to reduce both computational time and storage. Without special treatments involved in computer engineering, our attempt to analyze the airbreathing combustion appears to be difficult, if not impossible.
Flowfield-Dependent Mixed Explicit-Implicit (FDMEL) Algorithm for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Garcia, S. M.; Chung, T. J.
1997-01-01
Despite significant achievements in computational fluid dynamics, there still remain many fluid flow phenomena not well understood. For example, the prediction of temperature distributions is inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary layer interactions close to the wall. Complexities of fluid flow phenomena include transition to turbulence, relaminarization separated flows, transition between viscous and inviscid incompressible and compressible flows, among others, in all speed regimes. The purpose of this paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit (FDMEI) method, in an attempt to resolve these difficult issues in Computational Fluid Dynamics (CFD). In this process, a total of six implicitness parameters characteristic of the current flowfield are introduced. They are calculated from the current flowfield or changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkoehler numbers (if reacting) at each nodal point and time step. This implies that every nodal point or element is provided with different or unique numerical scheme according to their current flowfield situations, whether compressible, incompressible, viscous, inviscid, laminar, turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of an variables between adjacent nodal points are determined accurately. If these implicitness parameters are fixed to certain numbers instead of being calculated from the flowfield information, then practically all currently available schemes of finite differences or finite elements arise as special cases. Some benchmark problems to be presented in this paper will show the validity, accuracy, and efficiency of the proposed methodology.
Preliminary study of the three-dimensional deformation of the vortex in Karman vortex street
NASA Astrophysics Data System (ADS)
Ling, Guocan; Guo, Liang; Wu, Zuobin; Ma, Huiyang
1992-03-01
The mechanism for 3D evolution of the isolated Karman vortex and the thin-vortex filament in a circular cylinder wake is studied numerically using the LIA method. The results show that the vortex motion is unstable for small 3D disturbances in the separated wake of a circular cylinder. Karman vortex in the time-averaged wake flowfield wolves into a horseshoe-spoon-like 3D structure. The thin vortex filament deforms three-dimensionally in the braid and generates streamwise vortex structures which incline to the region maximum-deformation direction of the flowfield.
Plume flowfield analysis of the shuttle primary Reaction Control System (RCS) rocket engine
NASA Technical Reports Server (NTRS)
Hueser, J. E.; Brock, F. J.
1990-01-01
A solution was generated for the physical properties of the Shuttle RCS 4000 N (900 lb) rocket engine exhaust plume flowfield. The modeled exhaust gas consists of the five most abundant molecular species, H2, N2, H2O, CO, and CO2. The solution is for a bare RCS engine firing into a vacuum; the only additional hardware surface in the flowfield is a cylinder (=engine mount) which coincides with the nozzle lip outer corner at X = 0, extends to the flowfield outer boundary at X = -137 m and is coaxial with the negative symmetry axis. Continuum gas dynamic methods and the Direct Simulation Monte Carlo (DSMC) method were combined in an iterative procedure to produce a selfconsistent solution. Continuum methods were used in the RCS nozzle and in the plume as far as the P = 0.03 breakdown contour; the DSMC method was used downstream of this continuum flow boundary. The DSMC flowfield extends beyond 100 m from the nozzle exit and thus the solution includes the farfield flow properties, but substantial information is developed on lip flow dynamics and thus results are also presented for the flow properties in the vicinity of the nozzle lip.
Numerical modeling of NITM-2 flow field
NASA Technical Reports Server (NTRS)
Chow, Alan S.; Mo, Jiada
1992-01-01
An axisymmetric flowfield inside the NASA NITM-2 nozzle has been analyzed by solving the compressible Navier-Stokes equations. The PARC code has been modified for the present work and the objective of this research work is to provide some database and some instructive information for the further experimental test on this subject. The presented work includes both the flowfield prediction for the pretest case and the impact of the erosion from any ring of the insulation materials in the flowfield inside the test section and the result is very preliminary.
Thermodynamic equilibrium-air correlations for flowfield applications
NASA Technical Reports Server (NTRS)
Zoby, E. V.; Moss, J. N.
1981-01-01
Equilibrium-air thermodynamic correlations have been developed for flowfield calculation procedures. A comparison between the postshock results computed by the correlation equations and detailed chemistry calculations is very good. The thermodynamic correlations are incorporated in an approximate inviscid flowfield code with a convective heating capability for the purpose of defining the thermodynamic environment through the shock layer. Comparisons of heating rates computed by the approximate code and a viscous-shock-layer method are good. In addition to presenting the thermodynamic correlations, the impact of several viscosity models on the convective heat transfer is demonstrated.
NASA Astrophysics Data System (ADS)
Davidson, Phillip; Babbitt, Ashli; Magstadt, Andrew; Nikoueeyan, Pourya; Naughton, Jonathan; Jonathan Naughton Team
2014-11-01
The performance of helicopter and wind turbine blades is affected by dynamic stall. Dynamic stall has received considerable attention, but it is still difficult to simulate and not fully understood. Over the past seven years, many airfoils for helicopter and wind turbine use ranging from 9.5 to 30% thick have been experimentally tested and simulated while dynamically pitching to further characterize dynamic stall. Tests have been run at chord Reynolds number between 225,000-440,000 for various reduced frequencies, mean angles of attack, and oscillation amplitudes. Characterization of stall has been accomplished using data from previous studies as well as the unsteady pressure and flow-field data available from our own work. Where available, combined surface and flow-field data allow for clear identification of the types of stall observed and the flow structure associated with them. The results indicate that thin airfoil stall, leading edge stall, and trailing edge stall are observed in the oscillating airfoil experiments and simulations. These three main stall types are further divided into subcategories. By improving our understanding of the features of dynamic stall, it is expected that physics-based simulations can be improved. Work supported by DOE and a gift from BP.
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2018-01-01
A simplified, two-dimensional, computational fluid dynamic (CFD) simulation, with a reactive Euler solver is used to examine possible causes for the low detonation wave propagation speeds that are consistently observed in air breathing rotating detonation engine (RDE) experiments. Intense, small-scale turbulence is proposed as the primary mechanism. While the solver cannot model this turbulence, it can be used to examine the most likely, and profound effect of turbulence. That is a substantial enlargement of the reaction zone, or equivalently, an effective reduction in the chemical reaction rate. It is demonstrated that in the unique flowfield of the RDE, a reduction in reaction rate leads to a reduction in the detonation speed. A subsequent test of reduced reaction rate in a purely one-dimensional pulsed detonation engine (PDE) flowfield yields no reduction in wave speed. The reasons for this are explained. The impact of reduced wave speed on RDE performance is then examined, and found to be minimal. Two other potential mechanisms are briefly examined. These are heat transfer, and reactive mixture non-uniformity. In the context of the simulation used for this study, both mechanisms are shown to have negligible effect on either wave speed or performance.
A supercritical airfoil experiment
NASA Technical Reports Server (NTRS)
Mateer, G. G.; Seegmiller, H. L.; Hand, L. A.; Szodruck, J.
1994-01-01
The purpose of this investigation is to provide a comprehensive data base for the validation of numerical simulations. The objective of the present paper is to provide a tabulation of the experimental data. The data were obtained in the two-dimensional, transonic flowfield surrounding a supercritical airfoil. A variety of flows were studied in which the boundary layer at the trailing edge of the model was either attached or separated. Unsteady flows were avoided by controlling the Mach number and angle of attack. Surface pressures were measured on both the model and wind tunnel walls, and the flowfield surrounding the model was documented using a laser Doppler velocimeter (LDV). Although wall interference could not be completely eliminated, its effect was minimized by employing the following techniques. Sidewall boundary layers were reduced by aspiration, and upper and lower walls were contoured to accommodate the flow around the model and the boundary-layer growth on the tunnel walls. A data base with minimal interference from a tunnel with solid walls provides an ideal basis for evaluating the development of codes for the transonic speed range because the codes can include the wall boundary conditions more precisely than interference connections can be made to the data sets.
NASA Technical Reports Server (NTRS)
Trinh, H. P.; Gross, K. W.
1989-01-01
Computational studies have been conducted to examine the capability of a CFD code by simulating the steady state thrust chamber internal flow. The SSME served as the sample case, and significant parameter profiles are presented and discussed. Performance predictions from TDK, the recommended JANNAF reference computer program, are compared with those from PHOENICS to establish the credibility of its results. The investigation of an overexpanded nozzle flow is particularly addressed since it plays an important role in the area ratio selection of future rocket engines. Experience gained during this uncompleted flow separation study and future steps are outlined.
A knowledge-based approach to automated flow-field zoning for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Vogel, Alison Andrews
1989-01-01
An automated three-dimensional zonal grid generation capability for computational fluid dynamics is shown through the development of a demonstration computer program capable of automatically zoning the flow field of representative two-dimensional (2-D) aerodynamic configurations. The applicability of a knowledge-based programming approach to the domain of flow-field zoning is examined. Several aspects of flow-field zoning make the application of knowledge-based techniques challenging: the need for perceptual information, the role of individual bias in the design and evaluation of zonings, and the fact that the zoning process is modeled as a constructive, design-type task (for which there are relatively few examples of successful knowledge-based systems in any domain). Engineering solutions to the problems arising from these aspects are developed, and a demonstration system is implemented which can design, generate, and output flow-field zonings for representative 2-D aerodynamic configurations.
A detailed numerical simulation of a liquid-propellant rocket engine ground test experiment
NASA Astrophysics Data System (ADS)
Lankford, D. W.; Simmons, M. A.; Heikkinen, B. D.
1992-07-01
A computational simulation of a Liquid Rocket Engine (LRE) ground test experiment was performed using two modeling approaches. The results of the models were compared with selected data to assess the validity of state-of-the-art computational tools for predicting the flowfield and radiative transfer in complex flow environments. The data used for comparison consisted of in-band station radiation measurements obtained in the near-field portion of the plume exhaust. The test article was a subscale LRE with an afterbody, resulting in a large base region. The flight conditions were such that afterburning regions were observed in the plume flowfield. A conventional standard modeling approach underpredicted the extent of afterburning and the associated radiation levels. These results were attributed to the absence of the base flow region which is not accounted for in this model. To assess the effects of the base region a Navier-Stokes model was applied. The results of this calculation indicate that the base recirculation effects are dominant features in the immediate expansion region and resulted in a much improved comparison. However, the downstream in-band station radiation data remained underpredicted by this model.
Investigating the Structures of Turbulence in a Multi-Stream, Rectangular, Supersonic Jet
NASA Astrophysics Data System (ADS)
Magstadt, Andrew S.
Supersonic flight has become a standard for military aircraft, and is being seriously reconsidered for commercial applications. Engine technologies, enabling increased mission capabilities and vehicle performance, have evolved nozzles into complex geometries with intricate flow features. These engineering solutions have advanced at a faster rate than the understanding of the flow physics, however. The full consequences of the flow are thus not known, and using predictive tools becomes exceedingly difficult. Additionally, the increasing velocities associated with supersonic flight exacerbate the preexisting jet noise problem, which has troubled the engineering community for nearly 65 years. Even in the simplest flows, the full consequences of turbulence, e.g. noise production, are not fully understood. For composite flows, the fluid mechanics and acoustic properties have been studied even less sufficiently. Before considering the aeroacoustic problem, the development, structure, and evolution of the turbulent flow-field must be considered. This has prompted an investigation into the compressible flow of a complex nozzle. Experimental evidence is sought to explain the stochastic processes of the turbulent flow issuing from a complex geometry. Before considering the more complicated configuration, an experimental campaign of an axisymmetric jet is conducted. The results from this study are presented, and guide research of the primary flow under investigation. The design of a nozzle representative of future engine technologies is then discussed. Characteristics of this multi-stream rectangular supersonic nozzle are studied via time-resolved schlieren imaging, stereo PIV measurements, dynamic pressure transducers, and far-field acoustics. Experiments are carried out in the anechoic chamber at Syracuse University, and focus primarily on the flow-field. An extensive data set is generated, which reveals a detailed view of a very complex flow. Shear, shock waves, unequal entrainment, compressibility, and geometric features of the nozzle heavily influence the development of this jet plume. In the far-field, the acoustic radiation is found to be highly directional. Noise spectra contain high-frequency tonal signatures, and relations to the turbulent structures are made in an effort to explain the physics responsible for such acoustic generation. Analysis of the flow is made possible by the carefully planned experiments. By acquiring a large number of simultaneous data points, the stochastic processes are studied through statistical approaches. First- and second-order moments are used to describe the steady-state behavior of the flow. The wide array of sensors used in the tests allows for cross-moments to be computed, which provide evidence linking different phenomena. Proper orthogonal decomposition (POD) is used to separate flow-field quantities into temporal and spatial pieces, which are then further utilized in conjunction with other sensors. Through these methods, a high-frequency instability is discovered in the near-field of the jet, which pervades the flow-field and propagates ubiquitously throughout the acoustic domain. Additionally, the complex shock structure is found to play a vital role in redistributing disturbances throughout the flow. Finally, several POD modes in the side shear layer of the jet are found to be correlated with acoustic production.
NASA Technical Reports Server (NTRS)
Ashby, George C.
1988-01-01
An experimental investigation of the design of pitot probes for flowfield surveys in hypersonic wind tunnels is reported. The results show that a pitot-pressure probe can be miniaturized for minimum interference effects by locating the transducer in the probe support body and water-cooling it so that the pressure-settling time and transducer temperature are compatible with hypersonic tunnel operation and flow conditions. Flowfield surveys around a two-to-one elliptical cone model in a 20-inch Mach 6 wind tunnel using such a probe show that probe interference effects are essentially eliminated.
Analysis of supersonic plug nozzle flowfield and heat transfer
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.; Sheu, W. H.
1988-01-01
A number of problems pertaining to the flowfield in a plug nozzle, designed as a supersonic thruster nozzle, with provision for cooling the plug with a coolant stream admitted parallel to the plug wall surface, were studied. First, an analysis was performed of the inviscid, nonturbulent, gas dynamic interaction between the primary hot stream and the secondary coolant stream. A numerical prediction code for establishing the resulting flowfield with a dividing surface between the two streams, for various combinations of stagnation and static properties of the two streams, was utilized for illustrating the nature of interactions. Secondly, skin friction coefficient, heat transfer coefficient and heat flux to the plug wall were analyzed under smooth flow conditions (without shocks or separation) for various coolant flow conditions. A numerical code was suitably modified and utilized for the determination of heat transfer parameters in a number of cases for which data are available. Thirdly, an analysis was initiated for modeling turbulence processes in transonic shock-boundary layer interaction without the appearance of flow separation.
NASA Technical Reports Server (NTRS)
Anderson, David J.; Lambert, Heather H.; Mizukami, Masashi
1992-01-01
Experimental results from a wind tunnel test conducted to investigate propulsion/airframe integration (PAI) effects are presented. The objectives of the test were to examine rough order-of-magnitude changes in the acoustic characteristics of a mixer/ejector nozzle due to the presence of a wing and to obtain limited wing and nozzle flow-field measurements. A simple representative supersonic transport wing planform, with deflecting flaps, was installed above a two-dimensional mixer/ejector nozzle that was supplied with high-pressure heated air. Various configurations and wing positions with respect to the nozzle were studied. Because of hardware problems, no acoustics and only a limited set of flow-field data were obtained. For most hardware configurations tested, no significant propulsion/airframe integration effects were identified. Significant effects were seen for extreme flap deflections. The combination of the exploratory nature of the test and the limited flow-field instrumentation made it impossible to identify definitive propulsion/airframe integration effects.
Turbofan forced mixer-nozzle internal flowfield. Volume 1: A benchmark experimental study
NASA Technical Reports Server (NTRS)
Paterson, R. W.
1982-01-01
An experimental investigation of the flow field within a model turbofan forced mixer nozzle is described. Velocity and thermodynamic state variable data for use in assessing the accuracy and assisting the further development of computational procedures for predicting the flow field within mixer nozzles are provided. Velocity and temperature data suggested that the nozzle mixing process was dominated by circulations (secondary flows) of a length scale on the order the lobe dimensions which were associated with strong radial velocities observed near the lobe exit plane. The 'benchmark' model mixer experiment conducted for code assessment purposes is discussed.
NASA Technical Reports Server (NTRS)
Bershader, D. (Editor); Hanson, R. (Editor)
1986-01-01
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
NASA Astrophysics Data System (ADS)
Bershader, D.; Hanson, R.
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids
NASA Technical Reports Server (NTRS)
Ahmad, Jasim; Duque, Earl P. N.
1996-01-01
An overset grid thin-layer Navier-Stokes code has been extended to include dynamic motion of helicopter rotor blades through relative grid motion. The unsteady flowfield and airloads on an AH-IG rotor in forward flight were computed to verify the methodology and to demonstrate the method's potential usefulness towards comprehensive helicopter codes. In addition, the method uses the blade's first harmonics measured in the flight test to prescribe the blade motion. The solution was impulsively started and became periodic in less than three rotor revolutions. Detailed unsteady numerical flow visualization techniques were applied to the entire unsteady data set of five rotor revolutions and exhibited flowfield features such as blade vortex interaction and wake roll-up. The unsteady blade loads and surface pressures compare well against those from flight measurements. Details of the method, a discussion of the resulting predicted flowfield, and requirements for future work are presented. Overall, given the proper blade dynamics, this method can compute the unsteady flowfield of a general helicopter rotor in forward flight.
NASA Technical Reports Server (NTRS)
Holdeman, James D.
1991-01-01
Experimental and computational results on the mixing of single, double, and opposed rows of jets with an isothermal or variable temperature mainstream in a confined subsonic crossflow are summarized. The studies were performed to investigate flow and geometric variations typical of the complex 3D flowfield in the dilution zone of combustion chambers in gas turbine engines. The principal observations from the experiments were that the momentum-flux ratio was the most significant flow variable, and that temperature distributions were similar (independent of orifice diameter) when the orifice spacing and the square-root of the momentum-flux ratio were inversely proportional. The experiments and empirical model for the mixing of a single row of jets from round holes were extended to include several variations typical of gas turbine combustors.
COMOC 2: Two-dimensional aerodynamics sequence, computer program user's guide
NASA Technical Reports Server (NTRS)
Manhardt, P. D.; Orzechowski, J. A.; Baker, A. J.
1977-01-01
The COMOC finite element fluid mechanics computer program system is applicable to diverse problem classes. The two dimensional aerodynamics sequence was established for solution of the potential and/or viscous and turbulent flowfields associated with subsonic flight of elementary two dimensional isolated airfoils. The sequence is constituted of three specific flowfield options in COMOC for two dimensional flows. These include the potential flow option, the boundary layer option, and the parabolic Navier-Stokes option. By sequencing through these options, it is possible to computationally construct a weak-interaction model of the aerodynamic flowfield. This report is the user's guide to operation of COMOC for the aerodynamics sequence.
NASA Technical Reports Server (NTRS)
Daso, Endwell O. (Inventor); Pritchett, II, Victor E. (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor)
2012-01-01
The upstream flowfield of a vehicle traveling in supersonic or hypersonic atmospheric flight is actively controlled using attribute(s) experienced by the vehicle. Sensed attribute(s) include pressure along the vehicle's outer mold line, temperature along the vehicle's outer mold line, heat flux along the vehicle's outer mold line, and/or local acceleration response of the vehicle. A non-heated, non-plasma-producing gas is injected into an upstream flowfield of the vehicle from at least one surface location along the vehicle's outer mold line. The pressure of the gas so-injected is adjusted based on the attribute(s) so-sensed.
Investigations of flowfields found in typical combustor geometries
NASA Technical Reports Server (NTRS)
Lilley, D. G.; Mclaughlin, D. K.
1981-01-01
The flowfields of gas turbine combustion chambers were investigated. Six flowfield configurations with sidewall angles alpha = 90 and 45 deg. and swirl vane angles phi = 0, 45 and 70 deg. are characterized. Photography of neutrally-buoyant helium-filled soap bubbles, tufts, and injected smoke helps to characterize the time-mean streamlines, recirculation zones and regions of highly turbulent flow. Five-hole pitot probe pressure measurements allow the determination of time-mean velocities u, v and w. An advanced computer code equipped with a standard two-equation kappa-epsilon turbulence model was used to predict corresponding flow situations and to compare results with the experimental data.
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1995-01-01
This final report will attempt to concisely summarize the activities and accomplishments associated with NASA Grant and to include pertinent documents in an appendix. The project initially had one primary and several secondary objectives. The original primary objective was to couple into the NASA Johnson Space Center (JSC) nonequilibrium chemistry Euler equation entry vehicle flowfield code, INEQ3D, the Texas A&M University (TAMU) local thermodynamic nonequilibrium (LTNE) radiation model. This model had previously been developed and verified under NASA Langley and NASA Johnson sponsorship as part of a viscous shock layer entry vehicle flowfield code. The secondary objectives were: (1) to investigate the necessity of including the radiative flux term in the vibrational-electron-electronic (VEE) energy equation as well as in the global energy equation, (2) to determine the importance of including the small net change in electronic energy between products and reactants which occurs during a chemical reaction, and (3) to study the effect of atom-atom impact ionization reactions on entry vehicle nonequilibrium flowfield chemistry and radiation. For each, of these objectives, it was assumed that the code would be applicable to lunar return entry conditions, i.e. altitude above 75 km, velocity greater, than 11 km/sec, where nonequilibrium chemistry and radiative heating phenomena would be significant. In addition, it was tacitly assumed that as part of the project the code would be applied to a variety of flight conditions and geometries.
Radiative Heating Methodology for the Huygens Probe
NASA Technical Reports Server (NTRS)
Johnston, Christopher O.; Hollis, Brian R.; Sutton, Kenneth
2007-01-01
The radiative heating environment for the Huygens probe near peak heating conditions for Titan entry is investigated in this paper. The task of calculating the radiation-coupled flowfield, accounting for non-Boltzmann and non-optically thin radiation, is simplified to a rapid yet accurate calculation. This is achieved by using the viscous-shock layer (VSL) technique for the stagnation-line flowfield calculation and a modified smeared rotational band (SRB) model for the radiation calculation. These two methods provide a computationally efficient alternative to a Navier-Stokes flowfield and line-by-line radiation calculation. The results of the VSL technique are shown to provide an excellent comparison with the Navier-Stokes results of previous studies. It is shown that a conventional SRB approach is inadequate for the partially optically-thick conditions present in the Huygens shock-layer around the peak heating trajectory points. A simple modification is proposed to the SRB model that improves its accuracy in these partially optically-thick conditions. This modified approach, labeled herein as SRBC, is compared throughout this study with a detailed line-by-line (LBL) calculation and is shown to compare within 5% in all cases. The SRBC method requires many orders-of-magnitude less computational time than the LBL method, which makes it ideal for coupling to the flowfield. The application of a collisional-radiative (CR) model for determining the population of the CN electronic states, which govern the radiation for Huygens entry, is discussed and applied. The non-local absorption term in the CR model is formulated in terms of an escape factor, which is then curve-fit with temperature. Although the curve-fit is an approximation, it is shown to compare well with the exact escape factor calculation, which requires a computationally intensive iteration procedure.
Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.
Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa. PMID:24000278
Application of CFD to a generic hypersonic flight research study
NASA Technical Reports Server (NTRS)
Green, Michael J.; Lawrence, Scott L.; Dilley, Arthur D.; Hawkins, Richard W.; Walker, Mary M.; Oberkampf, William L.
1993-01-01
Computational analyses have been performed for the initial assessment of flight research vehicle concepts that satisfy requirements for potential hypersonic experiments. Results were obtained from independent analyses at NASA Ames, NASA Langley, and Sandia National Labs, using sophisticated time-dependent Navier-Stokes and parabolized Navier-Stokes methods. Careful study of a common problem consisting of hypersonic flow past a slightly blunted conical forebody was undertaken to estimate the level of uncertainty in the computed results, and to assess the capabilities of current computational methods for predicting boundary-layer transition onset. Results of this study in terms of surface pressure and heat transfer comparisons, as well as comparisons of boundary-layer edge quantities and flow-field profiles are presented here. Sensitivities to grid and gas model are discussed. Finally, representative results are presented relating to the use of Computational Fluid Dynamics in the vehicle design and the integration/support of potential experiments.
Photoacoustic imaging velocimetry for flow-field measurement.
Ma, Songbo; Yang, Sihua; Xing, Da
2010-05-10
We present the photoacoustic imaging velocimetry (PAIV) method for flow-field measurement based on a linear transducer array. The PAIV method is realized by using a Q-switched pulsed laser, a linear transducer array, a parallel data-acquisition equipment and dynamic focusing reconstruction. Tracers used to track liquid flow field were real-timely detected, two-dimensional (2-D) flow visualization was successfully reached, and flow parameters were acquired by measuring the movement of the tracer. Experimental results revealed that the PAIV method would be developed into 3-D imaging velocimetry for flow-field measurement, and potentially applied to research the security and targeting efficiency of optical nano-material probes. (c) 2010 Optical Society of America.
Fluorescence Visualization of Hypersonic Flow over Rapid Prototype Wind-Tunnel Models
NASA Technical Reports Server (NTRS)
Alderfer, D. W.; Danehy, P. M.; Inma, J. A.; Berger, K. T.; Buck, G. M.; Schwartz, R J.
2007-01-01
Reentry models for use in hypersonic wind tunnel tests were fabricated using a stereolithography apparatus. These models were produced in one day or less, which is a significant time savings compared to the manufacture of ceramic or metal models. The models were tested in the NASA Langley Research Center 31-Inch Mach 10 Air Tunnel. Most of the models did not survive repeated tests in the tunnel, and several failure modes of the models were identified. Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the flowfields in the wakes of these models. Pure NO was either seeded through tubes plumbed into the model or via a tube attached to the strut holding the model, which provided localized addition of NO into the model s wake through a porous metal cylinder attached to the end of the tube. Models included several 2-inch diameter Inflatable Reentry Vehicle Experiment (IRVE) models and 5-inch diameter Crew Exploration Vehicle (CEV) models. Various configurations were studied including different sting placements relative to the models, different model orientations and attachment angles, and different NO seeding methods. The angle of attack of the models was also varied and the location of the laser sheet was scanned to provide three-dimensional flowfield information. Virtual Diagnostics Interface technology, developed at NASA Langley, was used to visualize the data sets in post processing. The use of calibration "dotcards" was investigated to correct for camera perspective and lens distortions in the PLIF images. Lessons learned and recommendations for future experiments are discussed.
Aerothermal environment induced by mismatch at the SSME main combustion chamber-nozzle joint
NASA Technical Reports Server (NTRS)
Mcconnaughey, H. V.; O'Farrell, J. M.; Olive, T. A.; Brown, G. B.; Holt, J. B.
1990-01-01
The computational study reported here is motivated by a Space Shuttle main engine hardware problem detected in post-flight and post-test inspections. Of interest are the potential for hot gas ingestion into the joint (G15) at the main combustion chamber-to-nozzle interface and the effect of particular goemetric nonuniformities on that gas ingestion. The flowfield in the G15 region involves supersonic flow past a rounded forward facing step preceded by a deep narrow cavity. This paper describes the physical problem associated with joint G15 and computational investigations of the G15 aerothermal environment. The associated flowfield was simulated in two and three space dimensions using the United Solutions Algorithm (USA) computational fluid dynamics code series. A benchmark calculation of experimentally measured supersonic flow over of a square cavity was performed to demonstrate the accuracy of the USA code in analyzing flows similar to the G15 computational flowfield. The G15 results demonstrate the mechanism for hot gas ingestion into the joint and reveal the sensitivity to salient geometric nonuniformities.
A Test of Maxwell's Z Model Using Inverse Modeling
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, T.
2003-01-01
In modeling impact craters a small region of energy and momentum deposition, commonly called a "point source", is often assumed. This assumption implies that an impact is the same as an explosion at some depth below the surface. Maxwell's Z Model, an empirical point-source model derived from explosion cratering, has previously been compared with numerical impact craters with vertical incidence angles, leading to two main inferences. First, the flowfield center of the Z Model must be placed below the target surface in order to replicate numerical impact craters. Second, for vertical impacts, the flow-field center cannot be stationary if the value of Z is held constant; rather, the flow-field center migrates downward as the crater grows. The work presented here evaluates the utility of the Z Model for reproducing both vertical and oblique experimental impact data obtained at the NASA Ames Vertical Gun Range (AVGR). Specifically, ejection angle data obtained through Three-Dimensional Particle Image Velocimetry (3D PIV) are used to constrain the parameters of Maxwell's Z Model, including the value of Z and the depth and position of the flow-field center via inverse modeling.
Impact of state-specific flowfield modeling on atomic nitrogen radiation
NASA Astrophysics Data System (ADS)
Johnston, Christopher O.; Panesi, Marco
2018-01-01
A hypersonic flowfield model that treats electronic levels of the dominant afterbody radiator N as individual species is presented. This model allows electron-ion recombination rate and two-temperature modeling improvements, the latter which are shown to decrease afterbody radiative heating by up to 30%. This decrease is primarily due to the addition of the electron-impact excitation energy-exchange term to the energy equation governing the vibrational-electronic electron temperature. This model also allows the validity of the often applied quasi-steady-state (QSS) approximation to be assessed. The QSS approximation is shown to fail throughout most of the afterbody region for lower electronic states, although this impacts the radiative intensity reaching the surface by less than 15%. By computing the electronic-state populations of N within the flowfield solver, instead of through the QSS approximation in the radiation solver, the coupling of nonlocal radiative transition rates to the species continuity equations becomes feasible. Implementation of this higher-fidelity level of coupling between the flowfield and radiation solvers is shown to increase the afterbody radiation by up to 50% relative to the conventional model.
Criterion for Identifying Vortices in High-Pressure Flows
NASA Technical Reports Server (NTRS)
Bellan, Josette; Okong'o, Nora
2007-01-01
A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.
High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment
NASA Technical Reports Server (NTRS)
Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.
1987-01-01
Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.
An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1994-01-01
The primary accomplishments of the project are as follows: (1) Using the transonic small perturbation equation as a flowfield model, the project demonstrated that the quasi-analytical method could be used to obtain aerodynamic sensitivity coefficients for airfoils at subsonic, transonic, and supersonic conditions for design variables such as Mach number, airfoil thickness, maximum camber, angle of attack, and location of maximum camber. It was established that the quasi-analytical approach was an accurate method for obtaining aerodynamic sensitivity derivatives for airfoils at transonic conditions and usually more efficient than the finite difference approach. (2) The usage of symbolic manipulation software to determine the appropriate expressions and computer coding associated with the quasi-analytical method for sensitivity derivatives was investigated. Using the three dimensional fully conservative full potential flowfield model, it was determined that symbolic manipulation along with a chain rule approach was extremely useful in developing a combined flowfield and quasi-analytical sensitivity derivative code capable of considering a large number of realistic design variables. (3) Using the three dimensional fully conservative full potential flowfield model, the quasi-analytical method was applied to swept wings (i.e. three dimensional) at transonic flow conditions. (4) The incremental iterative technique has been applied to the three dimensional transonic nonlinear small perturbation flowfield formulation, an equivalent plate deflection model, and the associated aerodynamic and structural discipline sensitivity equations; and coupled aeroelastic results for an aspect ratio three wing in transonic flow have been obtained.
Global Flowfield About the V-22 Tiltrotor Aircraft
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1996-01-01
This final report includes five publications that resulted from the studies of the global flowfield about the V-22 Tiltrotor Aircraft. The first of the five is 'The Chimera Method of Simulation for Unsteady Three-Dimensional Viscous Flow', as presented in 'Computational Fluid Dynamics Review 1995.' The remaining papers, all presented at AIAA conferences, are 'Unsteady Simulation of the Viscous Flow About a V-22 Rotor and Wing in Hover', 'An Efficient Means of Adaptive Refinement Within Systems of Overset Grids', 'On the Spatial and Temporal Accuracy of Overset Grid Methods for MOving Body Problems', and 'Moving Body Overset Grid Methods for Complete Aircraft Tiltrotor Simulations.'
Analysis of Aerospike Plume Induced Base-Heating Environment
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1998-01-01
Computational analysis is conducted to study the effect of an aerospike engine plume on X-33 base-heating environment during ascent flight. To properly account for the effect of forebody and aftbody flowfield such as shocks and to allow for potential plume-induced flow-separation, thermo-flowfield of trajectory points is computed. The computational methodology is based on a three-dimensional finite-difference, viscous flow, chemically reacting, pressure-base computational fluid dynamics formulation, and a three-dimensional, finite-volume, spectral-line based weighted-sum-of-gray-gases radiation absorption model computational heat transfer formulation. The predicted convective and radiative base-heat fluxes are presented.
The effects of buoyancy on turbulent nonpremixed jet flames in crossflow
NASA Astrophysics Data System (ADS)
Boxx, Isaac G.
An experimental research study was conducted to investigate what effect buoyancy had on the mean and instantaneous flow-field characteristics of turbulent jet-flames in crossflow (JFICF). The study used an experimental technique wherein a series of normal-gravity, hydrogen-diluted propane JFICF were compared with otherwise identical ones in low-gravity. Experiments were conducted at the University of Texas Drop Tower Facility, a new microgravity science laboratory built for this study at the University of Texas at Austin. Two different diagnostic techniques were employed, high frame-rate digital cinematographic imaging and planar laser Mie scattering (PLMS). The flame-luminosity imaging revealed significant elongation and distortion of the large-scale luminous structure of the JFICF. This was seen to affect the flametip oscillation and burnout characteristics. Mean and root-mean-square (RMS) images of flame-luminosity were computed from the flame-luminosity image sequences. These were used to compare visible flame-shapes, flame chord-lengths and jet centerline-trajectories of the normal- and low-gravity flames. In all cases the jet-centerline penetration and mean luminous flame-width were seen to increase with decreasing buoyancy. The jet-centerline trajectories for the normal-gravity flames were seen to behave differently to those of the low-gravity flames. This difference led to the conclusion that the jet transitions from a momentum-dominated forced convection limit to a buoyancy-influenced regime when it reaches xiC ≈ 3, where xiC is the Becker and Yamazaki (1978) buoyancy parameter based on local flame chord-length. The mean luminous flame-lengths showed little sensitivity to buoyancy or momentum flux ratio. Consistent with the flame-luminosity imaging experiments, comparison of the instantaneous PLMS flow-visualization images revealed substantial buoyancy-induced elongation and distortion of the large-scale shear-layer vortices in the flow. This effect became apparent in the JFICF at around xiy = 3.1 and grew in influence to become a dominant flow-field characteristic approximately xi y = 4.3. The PLMS images also yielded physical-insight into the nature of the fore-aft asymmetry of JFICF characteristics noted by previous researchers. Ensemble-averages of PLMS images were used to investigate centerline mixture fraction decay. Consistent with previous studies of non-reacting JICF studies, the mixture-fraction of the JFICF showed a power-law decay profile which scaled with (rd)-0.66. Over the region these measurements were made (xiy = 0--1.9), the mixture fraction decay scaling showed little sensitivity to buoyancy. Taken as a whole, these measurements show that buoyancy has the potential to significantly modify both the mean and instantaneous flow-field of a turbulent JFICF, even at relatively modest length-scales.
Flowfield And Download Measurements And Computation of a Tiltrotor Aircraft In Hover
NASA Technical Reports Server (NTRS)
Brand, Albert G.; Peryea, Martin A.; Wood, Tom L.; Meakin, Robert L.
2001-01-01
A multipart study of the V-22 hover flowfield was conducted. Testing involved a 0.15-scale semispan model with multiple independent force balance systems. The velocity flowfield surrounding the airframe was measured using a robotic positioning system and anemometer. Both time averaged and cycle-averaged results are reported. It is shown that the fuselage download in hover can be significantly reduced using a small download reduction device. Measurements indicate that the success of the device is attributed to the substantial elimination of tiltrotor fountain flow. As part of.the study, an unsteady CFD prediction is time-averaged, and shown to have excellent agreement in predicting the baseline configuration fountain flow. Some discrepancies at the outboard edge of the rotor are discussed. An &&sessment of an advanced tip shape rotor comp"'Ietes the study. Derived from a nonrotating study, the advanced tip shape rotor was developed and tested on the Bell 0.15 scale semi-span V-22 model. The tip shape was intended to diffuse the tip vortex and reduce BVI noise. Rotor wake vorticity is extracted from the measured velocity dam to show that the advanced tip shape produces a tip vortex that is only slightly more diffuse than the baseline tip blade. The results indicate that nonrotating tests may overpredict the amount of tip vortex diffusion achieved by tip shape design in a rotating environment.
Analysis of thermo-chemical nonequilibrium models for carbon dioxide flows
NASA Technical Reports Server (NTRS)
Rock, Stacey G.; Candler, Graham V.; Hornung, Hans G.
1992-01-01
The aerothermodynamics of thermochemical nonequilibrium carbon dioxide flows is studied. The chemical kinetics models of McKenzie and Park are implemented in separate three-dimensional computational fluid dynamics codes. The codes incorporate a five-species gas model characterized by a translational-rotational and a vibrational temperature. Solutions are obtained for flow over finite length elliptical and circular cylinders. The computed flowfields are then employed to calculate Mach-Zehnder interferograms for comparison with experimental data. The accuracy of the chemical kinetics models is determined through this comparison. Also, the methodology of the three-dimensional thermochemical nonequilibrium code is verified by the reproduction of the experiments.
Investigation of Mixing a Supersonic Stream with the Flow Downstream of a Wedge
NASA Technical Reports Server (NTRS)
Sheeley, Joseph
1997-01-01
The flow characteristics in the base region of a two-dimensional supersonic compression ramp are investigated. A stream-wise oriented air jet, M = 1.75, is injected through a thin horizontal slot into a supersonic air main flow, M = 2.3, at the end of a two-dimensional compression ramp. The velocity profile and basic characteristics of the flow in the base region immediately following the ramp are determined. Visualization of the flowfield for qualitative observations is accomplished via Dark Central Ground Interferometry (DCGI). Two-dimensional velocity profiles are obtained using Laser Doppler Velocimetry (LDV). The study is the initial phase of a four-year investigation of base flow mixing. The current study is to provide more details of the flowfield.
Flowfield analysis of helicopter rotor in hover and forward flight based on CFD
NASA Astrophysics Data System (ADS)
Zhao, Qinghe; Li, Xiaodong
2018-05-01
The helicopter rotor field is simulated in hover and forward flight based on Computational Fluid Dynamics(CFD). In hover case only one rotor is simulated with the periodic boundary condition in the rotational coordinate system and the grid is fixed. In the non-lift forward flight case, the total rotor is simulated in inertia coordinate system and the whole grid moves rigidly. The dual-time implicit scheme is applied to simulate the unsteady flowfield on the movement grids. The k – ω turbulence model is employed in order to capture the effects of turbulence. To verify the solver, the flowfield around the Caradonna-Tung rotor is computed. The comparison shows a good agreement between the numerical results and the experimental data.
Current and Future Critical Issues in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Navaz, Homayun K.; Dix, Jeff C.
1998-01-01
The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).
NASA Technical Reports Server (NTRS)
Tatnall, Chistopher R.
1998-01-01
The counter-rotating pair of wake vortices shed by flying aircraft can pose a threat to ensuing aircraft, particularly on landing approach. To allow adequate time for the vortices to disperse/decay, landing aircraft are required to maintain certain fixed separation distances. The Aircraft Vortex Spacing System (AVOSS), under development at NASA, is designed to prescribe safe aircraft landing approach separation distances appropriate to the ambient weather conditions. A key component of the AVOSS is a ground sensor, to ensure, safety by making wake observations to verify predicted behavior. This task requires knowledge of a flowfield strength metric which gauges the severity of disturbance an encountering aircraft could potentially experience. Several proposed strength metric concepts are defined and evaluated for various combinations of metric parameters and sensor line-of-sight elevation angles. Representative populations of generating and following aircraft types are selected, and their associated wake flowfields are modeled using various wake geometry definitions. Strength metric candidates are then rated and compared based on the correspondence of their computed values to associated aircraft response values, using basic statistical analyses.
NASA Astrophysics Data System (ADS)
Goldsworthy, M. J.
2012-10-01
One of the most useful tools for modelling rarefied hypersonic flows is the Direct Simulation Monte Carlo (DSMC) method. Simulator particle movement and collision calculations are combined with statistical procedures to model thermal non-equilibrium flow-fields described by the Boltzmann equation. The Macroscopic Chemistry Method for DSMC simulations was developed to simplify the inclusion of complex thermal non-equilibrium chemistry. The macroscopic approach uses statistical information which is calculated during the DSMC solution process in the modelling procedures. Here it is shown how inclusion of macroscopic information in models of chemical kinetics, electronic excitation, ionization, and radiation can enhance the capabilities of DSMC to model flow-fields where a range of physical processes occur. The approach is applied to the modelling of a 6.4 km/s nitrogen shock wave and results are compared with those from existing shock-tube experiments and continuum calculations. Reasonable agreement between the methods is obtained. The quality of the comparison is highly dependent on the set of vibrational relaxation and chemical kinetic parameters employed.
Simulation and experimental validation of droplet dynamics in microchannels of PEM fuel cells
NASA Astrophysics Data System (ADS)
Ashrafi, Moosa; Shams, Mehrzad; Bozorgnezhad, Ali; Ahmadi, Goodarz
2016-12-01
In this study, dynamics of droplets in the channels of proton exchange membrane fuel cells with straight and serpentine flow-fields was investigated. Tapered and filleted channels were suggested for the straight and serpentine flow-fields respectively in order to improve water removal in channels. Surface tension and wall adhesion forces were applied by using the volume of fluid method. The hydrophilic walls and hydrophobic gas diffusion layer were considered. The mechanism of droplets movement with different diameters was studied by using the Weber and capillary numbers in simple and tapered straight channels. It was illustrated that the flooding was reduced in tapered channel due to increase of water removal rate, and available reaction sites improved subsequently. In addition, film flow was formed in the tapered channel more than the simple channel, so pressure fluctuation was decreased in the tapered channel. Moreover, the water coverage ratio of hydrophilic tapered surface was more than the simple channel, which enhanced water removal from the channel. The filleted serpentine channel was introduced to improve water removal from the simple serpentine channel. It was shown by observation of the unsteady and time-averaged two-phase pressure drop that in the filleted serpentine channels, the two-phase pressure drop was far less than the simple serpentine channel, and also the accumulation of water droplets in the elbows was less leading to lower pressure fluctuation. The numerical simulation results were validated by experiments.
Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body
NASA Astrophysics Data System (ADS)
Barzegar Gerdroodbary, M.
2014-09-01
This study investigates a combined technique of both an active flow control concept that uses counterflowing jets and an aerodisk spike as a new method to significantly modify external flowfields and heat reduction in a hypersonic flow around a nose cone. The coolant gas (Carbon Dioxide and Helium) is chosen to inject from the tip of the nose cone to cool the recirculation region. The gases are considered to be ideal, and the computational domain is axisymmetric. The analysis shows that the counterflowing jet has significant effects on the flowfield and reduces the heat load over the nose cone. The Helium jet is found to have a relatively more effective cooling performance.
NASA Technical Reports Server (NTRS)
Fletcher, D. G.; Mcdaniel, J. C.
1987-01-01
A preliminary quantitative study of the compressible flowfield in a steady, nonreacting model SCRAMJET combustor using laser-induced iodine fluorescence (LIIF) is reported. Measurements of density, temperature, and velocity were conducted with the calibrated, nonintrusive, optical technique for two different combustor operating conditions. First, measurements were made in the supersonic flow over a rearward-facing step without transverse injection for comparison with calculated pressure profiles. The second configuration was staged injection behind the rearward-facing step at an injection dynamic pressure ratio of 1.06. These experimental results will be used to validate computational fluid dynamic (CFD) codes being developed to model supersonic combustor flowfields.
Computational Fluid Dynamics of Whole-Body Aircraft
NASA Astrophysics Data System (ADS)
Agarwal, Ramesh
1999-01-01
The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.
NASA Technical Reports Server (NTRS)
Schunk, Richard Gregory; Chung, T. J.
2001-01-01
A parallelized version of the Flowfield Dependent Variation (FDV) Method is developed to analyze a problem of current research interest, the flowfield resulting from a triple shock/boundary layer interaction. Such flowfields are often encountered in the inlets of high speed air-breathing vehicles including the NASA Hyper-X research vehicle. In order to resolve the complex shock structure and to provide adequate resolution for boundary layer computations of the convective heat transfer from surfaces inside the inlet, models containing over 500,000 nodes are needed. Efficient parallelization of the computation is essential to achieving results in a timely manner. Results from a parallelization scheme, based upon multi-threading, as implemented on multiple processor supercomputers and workstations is presented.
NASA Technical Reports Server (NTRS)
Baker, A. J.
1974-01-01
The finite-element method is used to establish a numerical solution algorithm for the Navier-Stokes equations for two-dimensional flows of a viscous compressible fluid. Numerical experiments confirm the advection property for the finite-element equivalent of the nonlinear convection term for both unidirectional and recirculating flowfields. For linear functionals, the algorithm demonstrates good accuracy using coarse discretizations and h squared convergence with discretization refinement.
NASA Technical Reports Server (NTRS)
Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.
1992-01-01
The interaction between a quasi-laminar flame and a turbulent flowfield is investigated through direct numerical simulations (DNS) of reacting flow in two- and three-dimensional domains. Effects due to finite-rate chemistry are studied using a single step global reaction A (fuel) + B (oxidizer) yields P (product), and by varying a global Damkoehler number, as a result of which the turbulence-chemistry interaction in the flame is found to generate a wide variety of conditions, ranging from near-equilibrium to near-extinction. Differential diffusion effects are studied by changing the Schmidt number of one reactive species to one-half. It is observed that laminar flamelet response is followed within the turbulent flowfield, except in regions where transient effects seem to dominate.
Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment
NASA Technical Reports Server (NTRS)
Barber, T.; Paterson, R. W.; Skebe, S. A.
1988-01-01
A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.
Parallel methodology to capture cyclic variability in motored engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameen, Muhsin M.; Yang, Xiaofeng; Kuo, Tang-Wei
2016-07-28
Numerical prediction of of cycle-to-cycle variability (CCV) in SI engines is extremely challenging for two key reasons: (i) high-fidelity methods such as large eddy simulation (LES) are require to accurately capture the in-cylinder turbulent flowfield, and (ii) CCV is experienced over long timescales and hence the simulations need to be performed for hundreds of consecutive cycles. In this study, a new methodology is proposed to dissociate this long time-scale problem into several shorter time-scale problems, which can considerably reduce the computational time without sacrificing the fidelity of the simulations. The strategy is to perform multiple single-cycle simulations in parallel bymore » effectively perturbing the simulation parameters such as the initial and boundary conditions. It is shown that by perturbing the initial velocity field effectively based on the intensity of the in-cylinder turbulence, the mean and variance of the in-cylinder flowfield is captured reasonably well. Adding perturbations in the initial pressure field and the boundary pressure improves the predictions. It is shown that this new approach is able to give accurate predictions of the flowfield statistics in less than one-tenth of time required for the conventional approach of simulating consecutive engine cycles.« less
NASA Technical Reports Server (NTRS)
Desautel, Richard
1993-01-01
The objectives of this research include supporting the Aerothermodynamics Branch's research by developing graphical visualization tools for both the branch's adaptive grid code and flow field ray tracing code. The completed research for the reporting period includes development of a graphical user interface (GUI) and its implementation into the NAS Flowfield Analysis Software Tool kit (FAST), for both the adaptive grid code (SAGE) and the flow field ray tracing code (CISS).
Modification of vortex ring formation using dilute polymer solution
NASA Astrophysics Data System (ADS)
Jordan, Daniel; Krane, Michael; Peltier, Joel; Patterson, Eric; Fontaine, Arnold
2006-11-01
This talk will present the results of an experimental study to determine the effect of dilute polymer solution on the formation of a vortex ring. Experiments were conducted in a large, glass tank, filled with water. Vortex rings were produced by injecting a slug of dilute polymer solution into the tank through a nozzle. The injection was controlled by a prescribed piston motion in the nozzle. For the same piston motion, vortex rings were produced for 3 concentrations of the polymer solution, including one with no polymer. The vortex ring flowfield was measured using DPIV. Differences between the 3 cases of polymer concentration in vortex ring formation time, circulation, size, and convection speed are presented.
Review of vortex tube expansion in vapour compression refrigeration system
NASA Astrophysics Data System (ADS)
Liu, Yefeng; Yu, Jun
2018-05-01
A vortex tube expansion device replacing the throttle valve is proposed to improve the efficiency of vapour compression refrigeration cycle by reducing the loss of irreversibility in expansion process. The vortex tube is well-suited for these applications because it is simple, compact, light, quiet. Thus, this paper presents an overview of the thermodynamic analysis of vapour compression refrigeration cycle with vortex tube expansion device using different refrigerants. The paper also reviews the experiments and the calculations presented in previous studies on temperature separation in the vortex tube. The temperature separation mechanism and the flow-field inside the vortex tubes is explored by measuring the pressure, velocity, and temperature fields.
Coupling of wrinkled laminar flames with gravity
NASA Technical Reports Server (NTRS)
Bedat, Benoit; Kostiuk, Larry W.; Cheng, Robert K.
1995-01-01
The overall objective of our research is to understand flame-gravity coupling processes in laminar and low turbulent Reynolds number, Re(sub l), premixed flames (i.e. wrinkled- laminar flames). The approach we have developed is to compare the flowfields and mean flame properties under different gravitational orientations. Key to our study is the investigation of microgravity (mu g) flames. These mu g experiments provide vital information to reconcile the differences between flames in normal gravity (+g, flame pointing upward) and reverse gravity (-g, flame pointing downwards). Traditionally, gravity effects are assumed to be insignificant or circumvented in the laboratory, therefore, not much is available in the literature on the behavior of -g flames.
Plasma-Assisted Control of Mach-2 Flowfield over Ramp Geometry
NASA Astrophysics Data System (ADS)
Watanabe, Yasumasa; Leonov, Sergey B.; Houpt, Alec; Hedlund, Brock E.; Elliott, Skye
2017-10-01
This study examined the effect of Reynolds number on plasma-assisted flow control ahead of a compression ramp geometry in Mach-2 supersonic flow. The experiments were conducted in the supersonic wind tunnel SBR-50 at the University of Notre Dame. Stagnation temperature and pressure were varied as T0=294-500K and P0=1-3bar to attain Reynolds number ranging from 3.4×105-2.2×106. Ramp pressure measurements, schlieren visualization, and high-speed camera imaging were used for the evaluation of plasma-assisted flow control effects. A linear dependency was found between the ramp pressure change per averaged plasma power and Reynolds number.
Navier-Stokes simulation of rotor-body flowfield in hover using overset grids
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Ahmad, J. U.
1993-01-01
A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.
Analytical solutions of hypersonic type IV shock - shock interactions
NASA Astrophysics Data System (ADS)
Frame, Michael John
An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for hypersonic leading edges. The formation of vortices at the termination shock of the supersonic jet has been modeled using the analytical method. The vortices lead to deflections in the jet terminating flow, and the presence of the cylinder surface seems to causes the vortices to break off the jet resulting in an oscillation in the jet flow.
Studies on nonequilibrium phenomena in supersonic chemically reacting flows
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Chandrasekhar, Rajnish
1993-01-01
This study deals with a systematic investigation of nonequilibrium processes in supersonic combustion. The two-dimensional, elliptic Navier-Stokes equations are used to investigate supersonic flows with nonequilibrium chemistry and thermodynamics, coupled with radiation, for hydrogen-air systems. The explicit, unsplit MacCormack finite-difference scheme is used to advance the governing equations in time, until convergence is achieved. For a basic understanding of the flow physics, premixed flows undergoing finite rate chemical reactions are investigated. Results obtained for specific conditions indicate that the radiative interactions vary substantially, depending on reactions involving HO2 and NO species, and that this can have a noticeable influence on the flowfield. The second part of this study deals with premixed reacting flows under thermal nonequilibrium conditions. Here, the critical problem is coupling of the vibrational relaxation process with the radiative heat transfer. The specific problem considered is a premixed expanding flow in a supersonic nozzle. Results indicate the presence of nonequilibrium conditions in the expansion region of the nozzle. This results in reduction of the radiative interactions in the flowfield. Next, the present study focuses on investigation of non-premixed flows under chemical nonequilibrium conditions. In this case, the main problem is the coupled turbulence-chemistry interaction. The resulting formulation is validated by comparison with experimental data on reacting supersonic coflowing jets. Results indicate that the effect of heat release is to lower the turbulent shear stress and the mean density. The last part of this study proposes a new theoretical formulation for the coupled turbulence-radiation interactions. Results obtained for the coflowing jets experiment indicate that the effect of turbulence is to enhance the radiative interactions.
Zero side force volute development
NASA Technical Reports Server (NTRS)
Anderson, P. G.; Franz, R. J.; Farmer, R. C.; Chen, Y. S.
1995-01-01
Collector scrolls on high performance centrifugal pumps are currently designed with methods which are based on very approximate flowfield models. Such design practices result in some volute configurations causing excessive side loads even at design flowrates. The purpose of this study was to develop and verify computational design tools which may be used to optimize volute configurations with respect to avoiding excessive loads on the bearings. The new design methodology consisted of a volute grid generation module and a computational fluid dynamics (CFD) module to describe the volute geometry and predict the radial forces for a given flow condition, respectively. Initially, the CFD module was used to predict the impeller and the volute flowfields simultaneously; however, the required computation time was found to be excessive for parametric design studies. A second computational procedure was developed which utilized an analytical impeller flowfield model and an ordinary differential equation to describe the impeller/volute coupling obtained from the literature, Adkins & Brennen (1988). The second procedure resulted in 20 to 30 fold increase in computational speed for an analysis. The volute design analysis was validated by postulating a volute geometry, constructing a volute to this configuration, and measuring the steady radial forces over a range of flow coefficients. Excellent agreement between model predictions and observed pump operation prove the computational impeller/volute pump model to be a valuable design tool. Further applications are recommended to fully establish the benefits of this new methodology.
Investigation of Small-Caliber Primer Function Using a Multiphase Computational Model
2008-07-01
all solid walls along with specified inflow at the primer orifice (0.102 cm < Y < 0.102 cm at X = 0). Initially , the entire flowfield is filled...to explicitly treat both the gas and solid phase. The model is based on the One Dimensional Turbulence modeling approach that has recently emerged as...a powerful tool in multiphase simulations. Initial results are shown for the model run as a stand-alone code and are compared to recent experiments
Controllers for Flow-Field Survey Apparatus
NASA Technical Reports Server (NTRS)
Ashby George C., JR.; Vaccarelli, M. D.
1986-01-01
Control systems of flow-field survey apparatuses of 22-inch (56centimeter) Hypersonic Helium Facility (two-dimensional) and 20-inch (51centimeter) Mach 6 Tunnel (three-dimensional) at Langley Research Center equipped with single-chip microcomputer and single-board microcomputer, respectively, to drive probes at selected speeds and perform other functions automatically. Various modes of operation programed as need arises. Both of these control systems fabricated relatively inexpensively from commercially available stock components.
Flowfield measurements in a model scramjet combustion using laser-induced iodine fluorescence
NASA Technical Reports Server (NTRS)
Mcdaniel, J. C., Jr.
1984-01-01
Preliminary designs were completed for an iodine mixing chamber and the optical setup to be used with a modified wind tunnel in obtaining accurate, spatially resolved measurements of variables in the flowfield of a model nonreacting scramjet combustor. Schematics of the iodine-seeded wind tunnel and a sketch of the charcoal filter for removing the iodine are included along with a cutaway section of the laboratory.
Flowfield survey over a 75 deg swept delta wing at an angle of attack of 20.5 deg
NASA Technical Reports Server (NTRS)
Kjelgaard, S. O.; Sellers, W. L., III; Weston, R. P.
1986-01-01
An experimental investigation of the flowfield over a 75 deg swept delta wing at an angle of attack of 20.5 deg has been conducted. The data include pitot pressure surveys and two types of flow visualization. Surface and flowfield visualization data were obtained at Reynolds number, Rn, ranging from 0.5 to 2.0 million in increments of 0.25 million. Detailed pitot pressure surveys were made at five longitudinal stations at Rn = 0.5, 1.0, and 1.5 million in both the primary and secondary vortices. The results indicate that Reynolds number has only a minor effect on the global structure of the flowfield in the Reynolds number range that was investigated. The boundary layer transitions from laminar to turbulent at the trailing edge of the wing at Rn = 1.0 x 10 to the 6th, and the transition moves forward to x/L = 0.4 at Rn = 2.0 x 10 to the 6th. The positions of the primary vortex cores are insensitive to Reynolds number in this range; however, the lateral position of the secondary vortex core moves outboard aft of the region where the boundary layer transitions from laminar to turbulent.
NASA Astrophysics Data System (ADS)
Wang, Yulin; Yue, Like; Wang, Shixue
2017-03-01
The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.
NASA Technical Reports Server (NTRS)
Micol, John R.
1989-01-01
The Aeroassisted Flight Experiment vehicle for whose scale model pressure and heat-transfer rate distributions have been measured in air at Mach 10 is a 60-deg elliptic cone, raked off at a 73-percent angle, with an ellipsoid nose and a skirt added to the base of the rake plane to reduce heating. The predictions of both an inviscid flow-field code and a Navier-Stokes solver are compared with measured values. Good agreement is obtained in the case of pressure distributions; the effect of Reynolds number on heat-transfer distributions is noted to be small.
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a three-dimensional pressure-based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution had a strong influence on the accuracy of the base flowfield prediction.
Development of a Nonequilibrium Radiative Heating Prediction Method for Coupled Flowfield Solutions
NASA Technical Reports Server (NTRS)
Hartung, Lin C.
1991-01-01
A method for predicting radiative heating and coupling effects in nonequilibrium flow-fields has been developed. The method resolves atomic lines with a minimum number of spectral points, and treats molecular radiation using the smeared band approximation. To further minimize computational time, the calculation is performed on an optimized spectrum, which is computed for each flow condition to enhance spectral resolution. Additional time savings are obtained by performing the radiation calculation on a subgrid optimally selected for accuracy. Representative results from the new method are compared to previous work to demonstrate that the speedup does not cause a loss of accuracy and is sufficient to make coupled solutions practical. The method is found to be a useful tool for studies of nonequilibrium flows.
Numerical study of external burning flowfields
NASA Technical Reports Server (NTRS)
Bittner, Robert D.; Mcclinton, Charles R.
1991-01-01
This paper demonstrates the successful application of CFD to modeling an external burning flowfield. The study used the 2D, 3D, and PNS versions of the SPARK code. Various grids, boundary conditions, and ignition methodologies have been employed. Flameholding was achieved through the use of a subsonic outflow condition and a hot block located behind the step to ignite the fuel. Since the resulting burning produces a large subsonic region downstream of the cowl, this entire surface can be pressurized to the level of the back pressure. An evaluation of interactions between the ramjet exhaust and the external burning products demonstrate the complexity of this design issue. Ths code is now capable of evaluating the external burning effectiveness for flight vehicles using simple injector schemes, and the methodology can be readily applied to other external burning designs.
Experimental Study of Boundary Layer Flow Control Using an Array of Ramp-Shaped Vortex Generators
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Zaman, Khairul B.M.Q.; Bencic, Tomothy J.
2012-01-01
The objective of this study was to obtain a database on the flowfield past an array of vortex generators (VGs) in a turbulent boundary layer. All testing was carried out in a low speed wind tunnel with a flow velocity of 29 ft/sec, giving a Reynolds number of 17,500 based on the width of the VG. The flowfield generated by an array of five ramp-shaped vortex generators was examined with hot wire anemometry and smoke flow visualization. The magnitude and extent of the velocity increase near the wall, the penetration of the velocity deficit into the core flow, and the peak streamwise vorticity are examined. Influence of various parameters on the effectiveness of the array is considered on the basis of the ability to pull high momentum fluid into the near wall region.
An application of a two-equation model of turbulence to three-dimensional chemically reacting flows
NASA Technical Reports Server (NTRS)
Lee, J.
1994-01-01
A numerical study of three dimensional chemically reacting and non-reacting flowfields is conducted using a two-equation model of turbulence. A generalized flow solver using an implicit Lower-Upper (LU) diagonal decomposition numerical technique and finite-rate chemistry has been coupled with a low-Reynolds number two-equation model of turbulence. This flow solver is then used to study chemically reacting turbulent supersonic flows inside combustors with synergetic fuel injectors. The reacting and non-reacting turbulent combustor solutions obtained are compared with zero-equation turbulence model solutions and with available experimental data. The hydrogen-air chemistry is modeled using a nine-species/eighteen reaction model. A low-Reynolds number k-epsilon model was used to model the effect of turbulence because, in general, the low-Reynolds number k-epsilon models are easier to implement numerically and are far more general than algebraic models. However, low-Reynolds number k-epsilon models require a much finer near-wall grid resolution than high-Reynolds number models to resolve accurately the near-wall physics. This is especially true in complex flowfields, where the stiff nature of the near-wall turbulence must be resolved. Therefore, the limitations imposed by the near-wall characteristics and compressible model corrections need to be evaluated further. The gradient-diffusion hypothesis is used to model the effects of turbulence on the mass diffusion process. The influence of this low-Reynolds number turbulence model on the reacting flowfield predictions was studied parametrically.
Flowfield visualization for SSME hot gas manifold
NASA Technical Reports Server (NTRS)
Roger, Robert P.
1988-01-01
The objective of this research, as defined by NASA-Marshall Space Flight Center, was two-fold: (1) to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME), and (2) to provide analytical support for SSME related numerical computational experiments, being performed by the Computational Fluid Dynamics staff in the Aerophysics Division of the Structures and Dynamics Laboratory at NASA-MSFC. Numerical results of HGM were calculations to complement both water flow visualization experiments and air flow visualization experiments and air experiments in two-duct geometries performed at NASA-MSFC and Rocketdyne. In addition, code modification and improvement efforts were to strengthen the CFD capabilities of NASA-MSFC for producing reliable predictions of flow environments within the SSME.
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Cabell, Karen F.; Ziltz, Austin R.; Hass, Neal E.; Inman, Jennifer A.; Burns, Ross A.; Bathel, Brett F.; Danehy, Paul M.
2017-01-01
The current work compares experimentally and computationally obtained nitric oxide (NO) planar laser induced fluorescence (PLIF) images of the mixing flowfields for three types of high-speed fuel injectors: a strut, a ramp, and a rectangular flushwall. These injection devices, which exhibited promising mixing performance at lower flight Mach numbers, are currently being studied as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, and improve the understanding of underlying physical processes relevant to flight Mach numbers greater than eight. In the experiments, conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF), the injectors are placed downstream of a Mach 6 facility nozzle, which simulates the high Mach number air flow at the entrance of a scramjet combustor. Helium is used as an inert substitute for hydrogen fuel. Both schlieren and PLIF techniques are applied to obtain mixing flowfield flow visualizations. The experimental PLIF is obtained by using a UV laser sheet to interrogate a plane of the flow by exciting fluorescence from the NO molecules, which are present in the AHSTF air. Consequently, the absence of signal in the resulting PLIF images is an indication of pure helium (fuel). The computational PLIF is obtained by applying a fluorescence model for NO to the results of the Reynolds-averaged simulations (RAS) of the mixing flow field carried out using the VULCAN-CFD solver. This approach is required because the PLIF signal is a nonlinear function of not only NO concentration, but also pressure, temperature, and the flow velocity. This complexity allows additional flow features to be identified and compared with those obtained from the computational fluid dynamics (CFD) simulations, however, such comparisons are only semiquantitative. Three-dimensional image reconstruction, similar to that used in magnetic resonance imaging, is also used to obtain images in the streamwise and spanwise planes from select cross-stream PLIF plane data. Synthetic schlieren is also computed from the RAS data. Good agreement between the experimental and computational results provides increased confidence in the CFD simulations for investigations of injector performance.
Film cooling from inclined cylindrical holes using large eddy simulations
NASA Astrophysics Data System (ADS)
Peet, Yulia V.
2006-12-01
The goal of the present study is to investigate numerically the physics of the flow, which occurs during the film cooling from inclined cylindrical holes, Film cooling is a technique used in gas turbine industry to reduce heat fluxes to the turbine blade surface. Large Eddy Simulation (LES) is performed modeling a realistic film cooling configuration, which consists of a large stagnation-type reservoir, feeding an array of discrete cooling holes (film holes) flowing into a flat plate turbulent boundary layer. Special computational methodology is developed for this problem, involving coupled simulations using multiple computational codes. A fully compressible LES code is used in the area above the flat plate, while a low Mach number LES code is employed in the plenum and film holes. The motivation for using different codes comes from the essential difference in the nature of the flow in these different regions. Flowfield is analyzed inside the plenum, film hole and a crossflow region. Flow inside the plenum is stagnating, except for the region close to the exit, where it accelerates rapidly to turn into the hole. The sharp radius of turning at the trailing edge of the plenum pipe connection causes the flow to separate from the downstream wall of the film hole. After coolant injection occurs, a complex flowfield is formed consisting of coherent vortical structures responsible for bringing hot crossflow fluid in contact with the walls of either the film hole or the blade, thus reducing cooling protection. Mean velocity and turbulent statistics are compared to experimental measurements, yielding good agreement for the mean flowfield and satisfactory agreement for the turbulence quantities. LES results are used to assess the applicability of basic assumptions of conventional eddy viscosity turbulence models used with Reynolds-averaged (RANS) approach, namely the isotropy of an eddy viscosity and thermal diffusivity. It is shown here that these assumptions do not hold for the film cooling flows. Comparison of film cooling effectiveness with experiments shows fair agreement for the centerline and laterally-averaged effectiveness. Lateral growth of the jet as judged from the lateral distribution of effectiveness is predicted correctly.
Comparative Study Of Four Models Of Turbulence
NASA Technical Reports Server (NTRS)
Menter, Florian R.
1996-01-01
Report presents comparative study of four popular eddy-viscosity models of turbulence. Computations reported for three different adverse pressure-gradient flowfields. Detailed comparison of numerical results and experimental data given. Following models tested: Baldwin-Lomax, Johnson-King, Baldwin-Barth, and Wilcox.
NASA Technical Reports Server (NTRS)
Anderson, Robert C.; Trucco, Richard E.; Rubin, L. F.; Swain, D. M.
1992-01-01
Flowfield characterization has been accomplished for several fuel injector configurations using simultaneous planar laser induced fluorescence (PLIF) and laser holographic imaging (LHI). The experiments were carried out in the GASL-NASA HYPULSE real gas expansion tube facility, a pulsed facility with steady test times of about 350 microsec. The tests were done at simulated Mach numbers 13.5 and 17. The focus of this paper is on the measurement technologies used and their application in a research facility. The HYPULSE facility, the models used for the experiments, and the setup for the LHI and PLIF measurements are described. Measurement challenges and solutions are discussed. Results are presented for experiments with several fuel injector configurations and several equivalence ratios.
Method of Characteristic (MOC) Nozzle Flowfield Solver - User’s Guide and Input Manual Version 2.0
2018-01-01
TECHNICAL REPORT RDMR-SS-17-13 METHOD OF CHARACTERISTIC (MOC) NOZZLE FLOWFIELD SOLVER—USER’S GUIDE AND INPUT MANUAL VERSION 2.0 Kevin D. Kennedy...System Simulation and Development Directorate Aviation and Missile Research , Development, and Engineering Center January 2018 Distribution Statement...DOCUMENTS, DESTROY BY ANY METHOD THAT WILL PREVENT DISCLOSURE OF CONTENTS OR RECONSTRUCTION OF THE DOCUMENT. DISCLAIMER THE FINDINGS IN THIS REPORT
Navier-Stokes simulation of plume/Vertical Launching System interaction flowfields
NASA Astrophysics Data System (ADS)
York, B. J.; Sinha, N.; Dash, S. M.; Anderson, L.; Gominho, L.
1992-01-01
The application of Navier-Stokes methodology to the analysis of Vertical Launching System/missile exhaust plume interactions is discussed. The complex 3D flowfields related to the Vertical Launching System are computed utilizing the PARCH/RNP Navier-Stokes code. PARCH/RNP solves the fully-coupled system of fluid, two-equation turbulence (k-epsilon) and chemical species equations via the implicit, approximately factored, Beam-Warming algorithm utilizing a block-tridiagonal inversion procedure.
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
1990-01-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
NASA Astrophysics Data System (ADS)
Glass, Christopher E.
1990-08-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
Mach 6 flowfield survey at the engine inlet of a research airplane
NASA Technical Reports Server (NTRS)
Johnson, C. B.; Lawing, P. L.
1977-01-01
A flowfield survey was conducted to better define the nature of vehicle forebody flowfield at the inlet location of an airframe-integrated scramjet engine mounted on the lower surface of a high-speed research airplane to be air launched from a B-52 and rocket boosted to Mach 6. The tests were conducted on a 1/30-scale brass model in a Mach-6 20-in. wind tunnel at Reynolds number of 11,200,000 based on distance to engine inlet. Boundary layer profiles at five spanwise locations indicate that the boundary layer in the area of the forebody centerline is more than twice as thick as the boundary layer at three outboard stations. It is shown that the cold streak found in heating contours on the centerline of the forebody is caused by a thickening of the boundary layer on the centerline, and that this thickening decreases with angle of attack.
Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research
NASA Technical Reports Server (NTRS)
Flynn, Darin C.; Ratnayake, Nalin A.; Frederick, Michael
2009-01-01
The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on NASA's F-15B aircraft, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. For future flight data from this platform to be valid, more information must be gathered concerning the quality of the airflow underneath the body of the F-15B at various flight conditions, especially supersonic conditions. The flow angularity and Mach number must be known at multiple locations on any test article interface plane for measurement data at these locations to be valid. To determine this prerequisite information, flight data will be gathered in the Rake Airflow Gauge Experiment using a custom-designed flowfield rake to probe the airflow underneath the F-15B at the desired flight conditions. This paper addresses the design considerations of the rake and probe assembly, including the loads and stress analysis using analytical methods, computational fluid dynamics, and finite element analysis. It also details the flow calibration procedure, including the completed wind-tunnel test and posttest data reduction, calibration verification, and preparation for flight-testing.
Transition Experiments on Large Bluntness Cones with Distributed Roughness in Hypersonic Flight
NASA Technical Reports Server (NTRS)
Reda, Daniel. C.; Wilder, Michael C.; Prabhu, Dinesh K.
2012-01-01
Large bluntness cones with smooth nosetips and roughened frusta were flown in the NASA Ames hypersonic ballistic range at a Mach number of 10 through quiescent air environments. Global surface intensity (temperature) distributions were optically measured and analyzed to determine transition onset and progression over the roughened surface. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted to predict values of key dimensionless parameters used to correlate transition on such configurations in hypersonic flow. For these large bluntness cases, predicted axial distributions of the roughness Reynolds number showed (for each specified freestream pressure) that this parameter was a maximum at the physical beginning of the roughened zone and decreased with increasing run length along the roughened surface. Roughness-induced transition occurred downstream of this maximum roughness Reynolds number location, and progressed upstream towards the beginning of the roughened zone as freestream pressure was systematically increased. Roughness elements encountered at the upstream edge of the roughened frusta thus acted like a finite-extent trip array, consistent with published results concerning the tripping effectiveness of roughness bands placed on otherwise smooth surfaces.
NASA Astrophysics Data System (ADS)
Hooseria, S. J.; Skews, B. W.
2017-01-01
A complex interference flowfield consisting of multiple shocks and expansion waves is produced when high-speed slender bodies are placed in close proximity. The disturbances originating from a generator body impinge onto the adjacent receiver body, modifying the local flow conditions over the receiver. This paper aims to uncover the basic gas dynamics produced by two closely spaced slender bodies in a supersonic freestream. Experiments and numerical simulations were used to interpret the flowfield, where good agreement between the predictions and measurements was observed. The numerical data were then used to characterise the attenuation associated with shock wave diffraction, which was found to be interdependent with the bow shock contact perimeter over the receiver bodies. Shock-induced boundary layer separation was observed over the conical and hemispherical receiver bodies. These strong viscous-shock interactions result in double-reflected, as well as double-diffracted shock wave geometries in the interference region, and the diffracting waves progress over the conical and hemispherical receivers' surfaces in "lambda" type configurations. This gives evidence that viscous effects can have a substantial influence on the local bow shock structure surrounding high-speed slender bodies in close proximity.
Investigation of Vortical Flow Patterns in the Near Field of a Dynamic Low-Aspect-Ratio Cylinder
NASA Astrophysics Data System (ADS)
Gildersleeve, Samantha; Amitay, Michael
2016-11-01
The flowfield and associated flow structures of a low-aspect-ratio cylindrical pin were investigated experimentally in the near-field as the pin underwent wall-normal periodic oscillations. Under dynamic conditions, the pin is driven at the natural wake shedding frequency with an amplitude of 33% of its mean height. Additionally, a static pin was also tested at various mean heights of 0.5, 1.0, and 1.5 times the local boundary layer thickness to explore the effect of the mean height on the flowfield. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along streamwise planes for several spanwise locations under static and dynamic conditions. The study focuses on the incoming boundary layer as it interacts with the pin, as well as two main vortical formations: the arch-type vortex and the horseshoe vortex. Under dynamic conditions, the upstream boundary layer is thinner, relative to the baseline, and the downwash in the wake increases, resulting in a reduced wake deficit. These results indicate enhanced strength of the aforementioned vortical flow patterns under dynamic conditions. The flow structures in the near-field of the static/dynamic cylinder will be discussed in further detail. Supported by The Boeing Company.
An experimental study of the effect of streamwise vorticity on supersonic mixing enhancement
NASA Technical Reports Server (NTRS)
Naughton, J. W.; Cattafesta, L. N.; Settles, G. S.
1989-01-01
An initial experimental study of the effect of streamwise vorticity on supersonic turbulent mixing has been carried out. A Mach 3 streamwise vortex is generated using a strutmounted swirl injector and is injected into a Mach 3.5 freestream. The resulting flowfield is investigated using both five-hole angularity probe and total temperature probe surveys. The results are compared to identical experiments with a baseline, swirl-free Mach 3 jet. Laser Light Sheet (LLS) images are used to observe the mixing phenomena. The entrainment of energy and mass is used to evaluate the degree of mixing between the two streams for both the vortex and jet cases. The results reveal that streamwise vorticity does lead to a modest mixing enhancement of about 34 percent for the conditions tested.
A CFD study of complex missile and store configurations in relative motion
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1995-01-01
An investigation was conducted from May 16, 1990 to August 31, 1994 on the development of computational fluid dynamics (CFD) methodologies for complex missiles and the store separation problem. These flowfields involved multiple-component configurations, where at least one of the objects was engaged in relative motion. The two most important issues that had to be addressed were: (1) the unsteadiness of the flowfields (time-accurate and efficient CFD algorithms for the unsteady equations), and (2) the generation of grid systems which would permit multiple and moving bodies in the computational domain (dynamic domain decomposition). The study produced two competing and promising methodologies, and their proof-of-concept cases, which have been reported in the open literature: (1) Unsteady solutions on dynamic, overlapped grids, which may also be perceived as moving, locally-structured grids, and (2) Unsteady solutions on dynamic, unstructured grids.
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; OByrne, Sean B.; Tedder, Sarah A.; Cutler, Andrew D.
2005-01-01
This paper describes the recent use of coherent anti-Stokes Raman spectroscopy (CARS) to study supersonic combustion at NASA Langley Research Center. CARS is a nonlinear optical measurement technique used to measure temperature and species mole fractions remotely in harsh environments. A CARS system has been applied to two different combustor geometries at NASA Langley. Both experiments used the same vitiated wind-tunnel facility to create an air flow that simulates flight at Mach numbers of 6 and 7 for the combustor inlet and both experiments used hydrogen fuel. In the first experiment, the hydrogen was injected supersonically at a 30-degree angle with respect to the incoming flow. In the second experiment, the hydrogen was injected sonically at normal incidence. While these injection schemes produced significantly different flow features, the CARS method provided mean temperature, N2, O2 and H2 maps at multiple downstream locations for both. The primary aim of these measurements was to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.
Evaluation of non-intrusive flow measurement techniques for a re-entry flight experiment
NASA Technical Reports Server (NTRS)
Miles, R. B.; Santavicca, D. A.; Zimmermann, M.
1983-01-01
This study evaluates various non-intrusive techniques for the measurement of the flow field on the windward side of the Space Shuttle orbiter or a similar reentry vehicle. Included are linear (Rayleigh, Raman, Mie, Laser Doppler Velocimetry, Resonant Doppler Velocimetry) and nonlinear (Coherent Anti-Stokes Raman, Laser-Induced Fluorescence) light scattering, electron-beam fluorescence, thermal emission, and mass spectroscopy. Flow-field properties were taken from a nonequilibrium flow model by Shinn, Moss, and Simmonds at the NASA Langley Research Center. Conclusions are, when possible, based on quantitative scaling of known laboratory results to the conditions projected. Detailed discussion with researchers in the field contributed further to these conclusions and provided valuable insights regarding the experimental feasibility of each of the techniques.
NASA Technical Reports Server (NTRS)
Russell, Louis M.; Thurman, Douglas R.; Poinsatte, Philip E.; Hippensteele, Steven A.
1998-01-01
An experimental study was made to obtain quantitative information on heat transfer, flow, and pressure distribution in a branched duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling. Surface heat transfer coefficients and entrance flow conditions were measured at nominal entrance Reynolds numbers of 45,000, 335,000, and 726,000. Heat transfer data were obtained by using a steady-state technique in which an Inconel heater sheet is attached to the surface and coated with liquid crystals. Visual and quantitative flow-field data from particle image velocimetry measurements for a plane at midchannel height for a Reynolds number of 45,000 were also obtained. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Pressure distribution measurements were made both on the surface with discrete holes and in the flow field with a total pressure probe. The flow-field measurements yielded flow-field velocities at selected locations. A relatively new method, pressure sensitive paint, was also used to measure surface pressure distribution. The pressure paint data obtained at Reynolds numbers of 335,000 and 726,000 compared well with the more standard method of measuring pressures by using discrete holes.
Turbofan forced mixer-nozzle internal flowfield. Volume 2: Computational fluid dynamic predictions
NASA Technical Reports Server (NTRS)
Werle, M. J.; Vasta, V. N.
1982-01-01
A general program was conducted to develop and assess a computational method for predicting the flow properties in a turbofan forced mixed duct. The detail assessment of the resulting computer code is presented. It was found that the code provided excellent predictions of the kinematics of the mixing process throughout the entire length of the mixer nozzle. The thermal mixing process between the hot core and cold fan flows was found to be well represented in the low speed portion of the flowfield.
Determination of local values of gas and liquid mass flux in highly loaded two-phase flow
NASA Technical Reports Server (NTRS)
Burick, R. J.; Scheuerman, C. H.; Falk, A. Y.
1974-01-01
A measurement system using a deceleration probe was designed for determining the local values of gas and liquid mass flux in various gas/liquid droplet sprayfields. The system was used to characterize two-phase flowfields generated by gas/liquid rocket-motor injectors. Measurements were made at static pressures up to 500 psia and injected mass flow ratios up to 20. The measurement system can also be used at higher pressures and in gas/solid flowfields.
Advanced Multi-phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
NASA Technical Reports Server (NTRS)
Liaw, Paul; Chen, Yen-Sen
1995-01-01
A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of the RSRM geometry.
Computation of asymmetric supersonic flows around cones at large incidence
NASA Technical Reports Server (NTRS)
Degani, David
1987-01-01
The Schiff-Steger parabolized Navier-Stokes (PNS) code has been modified to allow computation of conical flowfields around cones at high incidence. The improved algorithm of Degani and Schiff has been incorporated with the PNS code. This algorithm adds the cross derivative and circumferential viscous terms to the original PNS code and modifies the algebraic eddy viscosity turbulence model to take into account regions of so called cross-flow separation. Assuming the flowfield is conical (but not necessarily symmetric) a marching stepback procedure is used: the solution is marched one step downstream using improved PNS code and the flow variables are then scaled to place the solution back to the original station. The process is repeated until no change in the flow variables is observed with further marching. The flow variables are then constant along rays of the flowfield. The experiments obtained by Bannik and Nebbeling were chosen as a test case. In these experiments a cone of 7.5 deg. half angle at Mach number 2.94 and Reynolds number 1.372 x 10(7) was tested up 34 deg. angle of attack. At high angle of attack nonconical asymmetric leeward side vortex patterns were observed. In the first set of computations, using an earlier obtained solution of the above cone for angle of attack of 22.6 deg. and at station x=0.5 as a starting solution, the angle of attack was gradually increased up to 34 deg. During this procedure the grid was carfully adjusted to capture the bow shock. A stable, converged symmetric solution was obtained. Since the numerical code converged to a symmetric solution which is not the physical one, the stability was tested by a random perturbation at each point. The possible effect of surface roughness or non perfect body shape was also investigated. It was concluded that although the assumption of conical viscous flows can be very useful for certain cases, it can not be used for the present case. Thus the second part of the investigation attempted to obtain a marching (in space) solution with the PNS method using the conical solution as initial data. Finally, the solution of the full Navier-Stokes equations was carried out.
Aeroacoustic Simulation of a Nose Landing Gear in an Open Jet Facility Using FUN3D
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.; Carlson, Jan-Renee
2012-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida s open-jet acoustic facility known as UFAFF. The unstructured-grid flow solver, FUN3D, developed at NASA Langley Research center is used to compute the unsteady flow field for this configuration. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions compare favorably with the measured data. Unsteady flowfield data obtained from the FUN3D code are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the sound pressure levels at microphones placed in the farfield. Significant improvement in predicted noise levels is obtained when the flowfield data from the open jet UFAFF simulations is used as compared to the case using flowfield data from the closed-wall BART configuration.
CFD analyses of combustor and nozzle flowfields
NASA Astrophysics Data System (ADS)
Tsuei, Hsin-Hua; Merkle, Charles L.
1993-11-01
The objectives of the research are to improve design capabilities for low thrust rocket engines through understanding of the detailed mixing and combustion processes. A Computational Fluid Dynamic (CFD) technique is employed to model the flowfields within the combustor, nozzle, and near plume field. The computational modeling of the rocket engine flowfields requires the application of the complete Navier-Stokes equations, coupled with species diffusion equations. Of particular interest is a small gaseous hydrogen-oxygen thruster which is considered as a coordinated part of an ongoing experimental program at NASA LeRC. The numerical procedure is performed on both time-marching and time-accurate algorithms, using an LU approximate factorization in time, flux split upwinding differencing in space. The integrity of fuel film cooling along the wall, its effectiveness in the mixing with the core flow including unsteady large scale effects, the resultant impact on performance and the assessment of the near plume flow expansion to finite pressure altitude chamber are addressed.
Laser velocimeter measurements of the flowfield generated by an advanced counterrotating propeller
NASA Technical Reports Server (NTRS)
Podboy, Gary G.; Krupar, Martin J.
1989-01-01
Results are presented of an investigation to measure the flowfield generated by an advanced counterrotating pusher propeller model similar to the full-scale Unducted Fan demonstrator engine. A laser Doppler velocimeter was used to measure the velocity field in several planes normal to the centerline of the model at axial stations upstream and downstream of each rotor. During this investigation, blades of the F4/A4 type were installed on the model which was operating in a freestream Mach 0.72 regime, with the advance ratio of each rotor set at 2.80. The measured data indicate only a slight influence of the potential field of each front rotor blade on the flowfield upstream of the rotor. The data measured downstream of the front rotor characterize the tip vortices, vortex sheets and potential field nonuniformities generated by the front rotor. The unsteadiness of the flow in the rotating frame of reference of the aft rotor is also illustrated.
Active-Adaptive Control of Inlet Separation Using Supersonic Microjets
NASA Technical Reports Server (NTRS)
Alvi, Farrukh S.
2007-01-01
Flow separation in internal and external flows generally results in a significant degradation in aircraft performance. For internal flows, such as inlets and transmission ducts in aircraft propulsion systems, separation is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control it. In this research, we extended our investigation of active separation control (under a previous NASA grant) where we explored the use of microjets for the control of boundary layer separation. The geometry used for the initial study was a simple diverging Stratford ramp, equipped with arrays of microjets. These early results clearly show that the activation of microjets eliminated flow separation. Furthermore, the velocity-field measurements, using PIV, also demonstrate that the gain in momentum due to the elimination of separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very little mass flow through the microjets. Based on our initial promising results this research was continued under the present grant, using a more flexible model. This model allows for the magnitude and extent of separation as well as the microjet parameters to be independently varied. The results, using this model were even more encouraging and demonstrated that microjet control completely eliminated significant regions of flow separation over a wide range of conditions with almost negligible mass flow. Detailed studies of the flowfield and its response to microjets were further examined using 3-component PIV and unsteady pressure measurements, among others. As the results presented this report will show, microjets were successfully used to control the separation of a much larger extent and magnitude than demonstrated in our earlier experiments. In fact, using the appropriate combination of control parameters (microjet, location, angle and pressure) separation was completely eliminated for the largest separated flowfield we could generate with the present model. Separation control also resulted in a significant reduction in the unsteady pressures in the flow where the unsteady pressure field was found to be directly responsive to the state of the flow above the surface. Hence, our study indicates that the unsteady pressure signature is a strong candidate for a flow state sensor , which can be used to estimate the location, magnitude and other properties of the separated flowfield. Once better understood and properly utilized, this behavior can be of significant practical importance for developing and implementing online control.
Flow-field in a vortex with breakdown above sharp edged delta wings
NASA Technical Reports Server (NTRS)
Hayashi, Y.; Nakaya, T.
1978-01-01
The behavior of vortex-flow, accompanied with breakdown, formed above sharp-edged delta wings, was studied experimentally as well as theoretically. Emphasis is placed particularly on the criterion for the breakdown at sufficiently large Reynolds numbers
NASA Technical Reports Server (NTRS)
Dwenger, Richard Dale
1995-01-01
An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B
NASA Technical Reports Server (NTRS)
Frederick, Michael; Ratnayake, Nalin
2011-01-01
The results are described of the Rake Airflow Gage Experiment (RAGE), which was designed and fabricated to support the flight test of a new supersonic inlet design using Dryden's Propulsion Flight Test Fixture (PFTF) and F-15B testbed airplane (see figure). The PFTF is a unique pylon that was developed for flight-testing propulsion-related experiments such as inlets, nozzles, and combustors over a range of subsonic and supersonic flight conditions. The objective of the RAGE program was to quantify the local flowfield at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment (CCIE). The CCIE is a fixed representation of a conceptual mixed-compression supersonic inlet with a translating biconic centerbody. The primary goal of RAGE was to identify the relationship between free-stream and local Mach number in the low supersonic regime, with emphasis on the identification of the particular free-stream Mach number that produced a local Mach number of 1.5. Measurements of the local flow angularity, total pressure distortion, and dynamic pressure over the interface plane were also desired. The experimental data for the RAGE program were obtained during two separate research flights. During both flights, local flowfield data were obtained during straight and level acceleration segments out to steady-state test points. The data obtained from the two flights showed small variations in Mach number, flow angularity, and dynamic pressure across the interface plane at all flight conditions. The data show that a free-stream Mach number of 1.65 will produce the desired local Mach number of 1.5 for CCIE. The local total pressure distortion over the interface plane at this condition was approximately 1.5%. At this condition, there was an average of nearly 2 of downwash over the interface plane. This small amount of downwash is not expected to adversely affect the performance of the CCIE inlet.
Effects of nozzle-strut integrated design concepton on the subsonic turbine stage flowfield
NASA Astrophysics Data System (ADS)
Liu, Jun; Du, Qiang; Liu, Guang; Wang, Pei; Zhu, Junqiang
2014-10-01
In order to shorten aero-engine axial length, substituting the traditional long chord thick strut design accompanied with the traditional low pressure(LP) stage nozzle, LP turbine is integrated with intermediate turbine duct (ITD). In the current paper, five vanes of the first stage LP turbine nozzle is replaced with loaded struts for supporting the engine shaft, and providing oil pipes circumferentially which fulfilled the areo-engine structure requirement. However, their bulky geometric size represents a more effective obstacle to flow from high pressure (HP) turbine rotor. These five struts give obvious influence for not only the LP turbine nozzle but also the flowfield within the ITD, and hence cause higher loss. Numerical investigation has been undertaken to observe the influence of the Nozzle-Strut integrated design concept on the flowfield within the ITD and the nearby nozzle blades. According to the computational results, three main conclusions are finally obtained. Firstly, a noticeable low speed area is formed near the strut's leading edge, which is no doubt caused by the potential flow effects. Secondly, more severe radial migration of boundary layer flow adjacent to the strut's pressure side have been found near the nozzle's trailing edge. Such boundary layer migration is obvious, especially close to the shroud domain. Meanwhile, radial pressure gradient aggravates this phenomenon. Thirdly, velocity distribution along the strut's pressure side on nozzle's suction surface differs, which means loading variation of the nozzle. And it will no doubt cause nonuniform flowfield faced by the downstream rotor blade.
Focused Experimental and Analytical Studies of the RBCC Rocket-Ejector
NASA Technical Reports Server (NTRS)
Lehman, M.; Pal, S.; Schwes, D.; Chen, J. D.; Santoro, R. J.
1999-01-01
The rocket-ejector mode of a Rocket Based Combined Cycle Engine (RBCC) was studied through a joint experimental/analytical approach. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was designed and fabricated for experimentation. The rocket-ejector system utilizes a single two-dimensional gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a systematic understanding of the rocket ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions Overall system performance was obtained through Global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen. nitrogen and water vapor). These experimental efforts were complemented by Computational Fluid Dynamic (CFD) flowfield analyses.
SVDS plume impingement modeling development. Sensitivity analysis supporting level B requirements
NASA Technical Reports Server (NTRS)
Chiu, P. B.; Pearson, D. J.; Muhm, P. M.; Schoonmaker, P. B.; Radar, R. J.
1977-01-01
A series of sensitivity analyses (trade studies) performed to select features and capabilities to be implemented in the plume impingement model is described. Sensitivity analyses were performed in study areas pertaining to geometry, flowfield, impingement, and dynamical effects. Recommendations based on these analyses are summarized.
Turbulence measurements in a complex plowfield using a crossed hot-wire. M.S. Thesis
NASA Technical Reports Server (NTRS)
Mckillop, B. E.
1983-01-01
Turbulence was quantified in complex axisymmetric, nonreacting, nonswirling flowfields using a crossed hot-wire anemometer. Mean velocity, turbulence intensities, turbulent viscosity, and Reynolds tree were measured in round free jet and confined jet flowfields. The confined jet, a model of an axisymmetric can combustor, had an expansion ratio D/d=2, an expansion angle of 90 deg, and an axial location increments of 0.5 diameters. The confined jet was studied with and without a contraction nozzle. Free jet measurements validated the experimental technique and data reduction. Results show good agreement with those of previous research. Measurements in the confined jet indicate that the cross hot-wire used cannot handle axial flow reversal and the experimental technique is inadequate for measuring time-mean radial velocity. Other quantities show a high level of comparability.
Adjoint-Based Design of Rotors Using the Navier-Stokes Equations in a Noninertial Reference Frame
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.
2010-01-01
Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated by using comparisons with a complex-variable technique, and a number of single- and multipoint optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.
Adjoint-Based Design of Rotors using the Navier-Stokes Equations in a Noninertial Reference Frame
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.
2009-01-01
Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated using comparisons with a complex-variable technique, and a number of single- and multi-point optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.
A Survey of Supersonic Retropropulsion Technology for Mars Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Korzun, Ashley M.; Cruz, Juan R.; Braun, Robert D.
2007-01-01
This paper presents a literature survey on supersonic retropropulsion technology as it applies to Mars entry, descent, and landing (EDL). The relevance of this technology to the feasibility of Mars EDL is shown to increase with ballistic coefficient to the point that it is likely required for human Mars exploration. The use of retropropulsion to decelerate an entry vehicle from hypersonic or supersonic conditions to a subsonic velocity is the primary focus of this review. Discussed are systems-level studies, general flowfield characteristics, static aerodynamics, vehicle and flowfield stability considerations, and aerothermodynamics. The experimental and computational approaches used to develop retropropulsion technology are also reviewed. Finally, the applicability and limitations of the existing literature and current state-of-the-art computational tools to future missions are discussed in the context of human and robotic Mars exploration.
Supersonic reacting internal flowfields
NASA Astrophysics Data System (ADS)
Drummond, J. P.
The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flowfields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.
Comparison of Orbiter PRCS Plume Flow Fields Using CFD and Modified Source Flow Codes
NASA Technical Reports Server (NTRS)
Rochelle, Wm. C.; Kinsey, Robin E.; Reid, Ethan A.; Stuart, Phillip C.; Lumpkin, Forrest E.
1997-01-01
The Space Shuttle Orbiter will use Reaction Control System (RCS) jets for docking with the planned International Space Station (ISS). During approach and backout maneuvers, plumes from these jets could cause high pressure, heating, and thermal loads on ISS components. The object of this paper is to present comparisons of RCS plume flow fields used to calculate these ISS environments. Because of the complexities of 3-D plumes with variable scarf-angle and multi-jet combinations, NASA/JSC developed a plume flow-field methodology for all of these Orbiter jets. The RCS Plume Model (RPM), which includes effects of scarfed nozzles and dual jets, was developed as a modified source-flow engineering tool to rapidly generate plume properties and impingement environments on ISS components. This paper presents flow-field properties from four PRCS jets: F3U low scarf-angle single jet, F3F high scarf-angle single jet, DTU zero scarf-angle dual jet, and F1F/F2F high scarf-angle dual jet. The RPM results compared well with plume flow fields using four CFD programs: General Aerodynamic Simulation Program (GASP), Cartesian (CART), Unified Solution Algorithm (USA), and Reacting and Multi-phase Program (RAMP). Good comparisons of predicted pressures are shown with STS 64 Shuttle Plume Impingement Flight Experiment (SPIFEX) data.
Three Dimensional CFD Analysis of the GTX Combustor
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.
2002-01-01
The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. ScramJet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel massflow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.
Nonintrusive, multipoint velocity measurements in high-pressure combustion flows
NASA Technical Reports Server (NTRS)
Allen, M.; Davis, S.; Kessler, W.; Legner, H.; Mcmanus, K.; Mulhall, P.; Parker, T.; Sonnenfroh, D.
1993-01-01
A combined experimental and analytical effort was conducted to demonstrate the applicability of OH Doppler-shifted fluorescence imaging of velocity distributions in supersonic combustion gases. The experiments were conducted in the underexpanded exhaust flow from a 6.8 atm, 2400 K, H2-O2-N2 burner exhausting into the atmosphere. In order to quantify the effects of in-plane variations of the gas thermodynamic properties on the measurement accuracy, a set of detailed measurements of the OH (1,0) band collisional broadening and shifting in H2-air gases was produced. The effect of pulse-to-pulse variations in the dye laser bandshape was also examined in detail and a modification was developed which increased in the single pulse bandwidth, thereby increasing the intraimage velocity dynamic range as well as reducing the sensitivity of the velocity measurement to the gas property variations. Single point and imaging measurements of the velocity field in the exhaust flowfield were compared with 2D, finite-rate kinetics simulations of the flowfield. Relative velocity accuracies of +/- 50 m/s out of 1600 m/s were achieved in time-averaged imaging measurements of the flow over an order of magnitude variation in pressure and a factor of two variation in temperature.
Computational study of single-expansion-ramp nozzles with external burning
NASA Astrophysics Data System (ADS)
Yungster, Shaye; Trefny, Charles J.
1992-04-01
A computational investigation of the effects of external burning on the performance of single expansion ramp nozzles (SERN) operating at transonic speeds is presented. The study focuses on the effects of external heat addition and introduces a simplified injection and mixing model based on a control volume analysis. This simplified model permits parametric and scaling studies that would have been impossible to conduct with a detailed CFD analysis. The CFD model is validated by comparing the computed pressure distribution and thrust forces, for several nozzle configurations, with experimental data. Specific impulse calculations are also presented which indicate that external burning performance can be superior to other methods of thrust augmentation at transonic speeds. The effects of injection fuel pressure and nozzle pressure ratio on the performance of SERN nozzles with external burning are described. The results show trends similar to those reported in the experimental study, and provide additional information that complements the experimental data, improving our understanding of external burning flowfields. A study of the effect of scale is also presented. The results indicate that combustion kinetics do not make the flowfield sensitive to scale.
Computational study of single-expansion-ramp nozzles with external burning
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Trefny, Charles J.
1992-01-01
A computational investigation of the effects of external burning on the performance of single expansion ramp nozzles (SERN) operating at transonic speeds is presented. The study focuses on the effects of external heat addition and introduces a simplified injection and mixing model based on a control volume analysis. This simplified model permits parametric and scaling studies that would have been impossible to conduct with a detailed CFD analysis. The CFD model is validated by comparing the computed pressure distribution and thrust forces, for several nozzle configurations, with experimental data. Specific impulse calculations are also presented which indicate that external burning performance can be superior to other methods of thrust augmentation at transonic speeds. The effects of injection fuel pressure and nozzle pressure ratio on the performance of SERN nozzles with external burning are described. The results show trends similar to those reported in the experimental study, and provide additional information that complements the experimental data, improving our understanding of external burning flowfields. A study of the effect of scale is also presented. The results indicate that combustion kinetics do not make the flowfield sensitive to scale.
NASA Technical Reports Server (NTRS)
Drozda, Tomasz, G.; Cabell, Karen F.; Ziltz, Austin R.; Hass, Neil E.; Inman, Jennifer A.; Burns, Ross A.; Bathel, Brett F.; Danehy, Paul M.; Abul-Huda, Yasin M.; Gamba, Mirko
2017-01-01
The current work compares experimentally and computationally obtained nitric oxide (NO) planar laser-induced fluorescence (PLIF) images of the mixing flowfields for three types of high-speed fuel injectors: a strut, a ramp, and a rectangular flush-wall. These injection devices, which exhibited promising mixing performance at lower flight Mach numbers, are currently being studied as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, and improve the understanding of underlying physical processes relevant to flight Mach numbers greater than eight. In the experiments, conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF), the injectors are placed downstream of a Mach 6 facility nozzle, which simulates the high Mach number air flow at the entrance of a scramjet combustor. Helium is used as an inert substitute for hydrogen fuel. The PLIF is obtained by using a tunable laser to excite the NO, which is present in the AHSTF air as a direct result of arc-heating. Consequently, the absence of signal is an indication of pure helium (fuel). The PLIF images computed from the computational fluid dynamics (CFD) simulations are obtained by combining a fluorescence model for NO with the Reynolds-Averaged Simulation results carried out using the VULCAN-CFD solver to obtain a computational equivalent of the experimentally measured PLIF signal. The measured NO PLIF signal is mainly a function of NO concentration allowing for semi-quantitative comparisons between the CFD and the experiments. The PLIF signal intensity is also sensitive to pressure and temperature variations in the flow, allowing additional flow features to be identified and compared with the CFD. Good agreement between the PLIF and the CFD results provides increased confidence in the CFD simulations for investigations of injector performance.
Transition and Turbulence Modeling for Blunt-Body Wake Flows
NASA Technical Reports Server (NTRS)
Nance, Robert P.; Horvath, Thomas J.; Hassan, H. A.
1997-01-01
Aerobraking has been proposed as an efficient means of decelerating spacecraft for planetary missions. Most current aerobrake designs feature a blunt forebody shielding the payload from the intense heat generated during atmospheric entry. Although this forebody will absorb the largest portion of the heat pulse, accurate prediction of heating in the near wake is of great importance, since large local heating values can occur at points of shear-layer impingement. In order to address the various issues associated with these blunt-body wake flowfields, the Advisory Group for Aerospace Research and Development (AGARD) formed Working Group 18 in 1992. One of the objectives of this activity was to examine real-gas effects in high-speed flow fields around a 70 deg. blunted cone. To date, many researchers have conducted experiments using this geometry in various facilities, such as the Large Energy National Shock (LENS) tunnel at Cubric/Calspan and the HEG shock tunnel at DLR-Goettingen. Several computational studies have also been conducted in concert with these tests. Many of the experimental results have indicated the possible presence of a transitional shear layer through a large increase in heat transfer downstream of the reattachment point. The presence of transition could in fact lead to much higher peak heating than if the separated flow is entirely laminar or turbulent. In the shock-tunnel tests, however, it is difficult to separate such viscous-flow phenomena from real-gas effects. In order to help make this distinction, Horvath et al. recently conducted a set of experiments in the NASA Langley 20-Inch Mach 6 Tunnel, and compared the results to laminar Navier-Stokes calculations. They found heat-transfer distributions similar to those obtained in the high-enthalpy facilities, with the measured peak heating along the sting support markedly greater than that predicted by the laminar computations. These trends point to the need to find transitional and turbulent computational solutions for these flowfields.
NASA Technical Reports Server (NTRS)
Patrick, Marshall C.; Cooper, Anita E.; Powers, W. T.
2003-01-01
Flow-field analysis techniques under continuing development at NASA's Marshall Space Flight Center are the foundation for a new type of health monitoring instrumentation for propulsion systems and a vast range of other applications. Physics, spectroscopy, mechanics, optics, and cutting-edge computer sciences merge to make recent developments in such instrumentation possible. Issues encountered in adaptation of such a system to future space vehicles, or retrofit in existing hardware, are central to the work. This paper is an overview of the collaborative efforts results, current efforts, and future plans.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1990-01-01
The primary tasks during January 1990 to June 1990 have been the development and evaluation of various electron and electron-electronic energy equation models, the continued development of improved nonequilibrium radiation models for molecules and atoms, and the continued development and investigation of precursor models and their effects. In addition, work was initiated to develop a vibrational model for the viscous shock layer (VSL) nonequilibrium chemistry blunt body engineering code. Also, an effort was started associated with the effects of including carbon species, say from an ablator, in the flowfield.
Verification of a three-dimensional viscous flow analysis for a single stage compressor
NASA Astrophysics Data System (ADS)
Matsuoka, Akinori; Hashimoto, Keisuke; Nozaki, Osamu; Kikuchi, Kazuo; Fukuda, Masahiro; Tamura, Atsuhiro
1992-12-01
A transonic flowfield around rotor blades of a highly loaded single stage axial compressor was numerically analyzed by a three dimensional compressible Navier-Stokes equation code using Chakravarthy and Osher type total variation diminishing (TVD) scheme. A stage analysis which calculates both flowfields around inlet guide vane (IGV) and rotor blades simultaneously was carried out. Comparing with design values and experimental data, computed results show slight difference quantitatively. But the numerical calculation simulates well the pressure rise characteristics of the compressor and its flow pattern including strong shock surface.
1981-04-01
made of the fuei and air stagnation points along the centerline, in bc-, isothermal and cotnbusting flows. STPi SECURITY CLA~S:FICATIOWII QF T•, PAGE...Flow Rates. 22 The Variation of the Centerline Location (Z.) of the Fuel 33 (f.) and Air (a.) Stuignation Points with the Mean Annulus Air Velocity (WA...Tunnel with No 41 Annular Flow. 31 Flowfield for Annula , Flow in the Combustion Tunnel with 42 No Fuel Flow. S2 Flowfield in the Combustion Tunnel when
Refinement Of Hexahedral Cells In Euler Flow Computations
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1996-01-01
Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.
Flow induced vibrations in the SSME injector heads
NASA Technical Reports Server (NTRS)
Lepore, Frank A.
1991-01-01
A description is given of the flowfield in the Space Shuttle Main Engine (SSME) powerhead, the mechanisms which control flow-induced vibrations, and previous experimental work. An in-depth description is given of the development phase of the program , which includes the analysis, design, and fabrication of liquid oxygen (LOX) posts models used in the experimental phase, as well as test facilities, equipment, and procedures used. Also covered is the experimental data analysis, which includes overall steady state powerhead flowfield as well as the high frequency response of the LOX posts.
Research on Plasma Synthetic Jet Actuator
NASA Astrophysics Data System (ADS)
Che, X. K.; Nie, W. S.; Hou, Z. Y.
2011-09-01
Circular dielectric barrier surface discharge (DBDs) actuator is a new concept of zero mass synthetic jet actuator. The characteristic of discharge and flow control effect of annular-circular plasma synthetic jet actuator has been studied by means of of numerical simulation and experiment. The discharge current density, electron density, electrostatic body force density and flowfield have been obtained. The results show annular-circular actuator can produce normal jet whose velocity will be greater than 2.0 m/s. The jet will excite circumfluence. In order to insure the discharge is generated in the exposed electrode annular and produce centripetal and normal electrostatic body force, the width and annular diameter of exposed electrode must be big enough, or an opposite phase drove voltage potential should be applied between the two electrodes.
Supersonic Combustion Research at NASA
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Danehy, Paul M.; Gaffney, Richard L., Jr.; Tedder, Sarah A.; Cutler, Andrew D.; Bivolaru, Daniel
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
In-cylinder air-flow characteristics of different intake port geometries using tomographic PIV
NASA Astrophysics Data System (ADS)
Agarwal, Avinash Kumar; Gadekar, Suresh; Singh, Akhilendra Pratap
2017-09-01
For improving the in-cylinder flow characteristics of intake air/charge and for strengthening the turbulence intensity, specific intake port geometries have shown significant potential in compression ignition engines. In this experimental study, effects of intake port geometries on air-flow characteristics were investigated using tomographic particle imaging velocimetry (TPIV). Experiments were performed using three experimental conditions, namely, swirl port open (SPO), tangential port open (TPO), and both port open (BPO) configurations in a single cylinder optical research engine. Flow investigations were carried out in a volumetric section located in the middle of the intake and exhaust valves. Particle imaging velocimetry (PIV) images were captured using two high speed cameras at a crank angle resolution of 2° in the intake and compression strokes. The captured PIV images were then pre-processed and post-processed to obtain the final air-flow-field. Effects of these two intake ports on flow-field are presented for air velocity, vorticity, average absolute velocity, and turbulent kinetic energy. Analysis of these flow-fields suggests the dominating nature of the swirl port over the tangential port for the BPO configuration and higher rate of flow energy dissipation for the TPO configuration compared to the SPO and BPO configurations. These findings of TPIV investigations were experimentally verified by combustion and particulate characteristics of the test engine in thermal cylinder head configuration. Combustion results showed that the SPO configuration resulted in superior combustion amongst all three port configurations. Particulate characteristics showed that the TPO configuration resulted in higher particulate compared to other port configurations.
Lava flow-field morphology: A case study from Mount Etna, Sicily
NASA Technical Reports Server (NTRS)
Guest, J. E.; Hughes, J. W.; Duncan, A. M.
1987-01-01
The morphology of lava flows is often taken as an indicator of the broad chemical composition of the lava, especially when interpreting extraterrestrial volcanoes using spacecraft images. The historical lavas of the active volcano Mount Etna in Sicily provide an excellent opportunity to examine the controls on flow field morphology. In this study only flow produced by flank eruptions after the middle of the 18th century are examined. The final form of a flow-field may be more indicative of the internal plumbing of the volcano, which may control such factors as the effusion, rate, duration of eruption, volume of available magma, rate of de-gassing, and lava rheology. Different flow morphologies on Etna appear to be a good indicator of differing conditions within the volcanic pile. Thus the spatial distribution of different flow types on an extraterrestrial volcano may provide useful information about the plumbing conditions of that volcano, rather than necessarily providing information on the composition of materials erupted.
Jet Noise Reduction Potential from Emerging Variable Cycle Technologies
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Bridges, James; Wernet, Mark
2012-01-01
Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.
Jet Noise Reduction Potential From Emerging Variable Cycle Technologies
NASA Technical Reports Server (NTRS)
2012-01-01
Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.
Numerical studies of the fluid and optical fields associated with complex cavity flows
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1992-01-01
Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.
Numerical Analysis of Base Flowfield for a Four-Engine Clustered Nozzle Configuration
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1995-01-01
Excessive base heating has been a problem for many launch vehicles. For certain designs such as the direct dump of turbine exhaust inside and at the lip of the nozzle, the potential burning of the turbine exhaust in the base region can be of great concern. Accurate prediction of the base environment at altitudes is therefore very important during the vehicle design phase. Otherwise, undesirable consequences may occur. In this study, the turbulent base flowfield of a cold flow experimental investigation for a four-engine clustered nozzle was numerically benchmarked using a pressure-based computational fluid dynamics (CFD) method. This is a necessary step before the benchmarking of hot flow and combustion flow tests can be considered. Since the medium was unheated air, reasonable prediction of the base pressure distribution at high altitude was the main goal. Several physical phenomena pertaining to the multiengine clustered nozzle base flow physics were deduced from the analysis.
An Experimental Investigation of Jet Noise from Septa Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Bridges, J. E.; Fagan, A. F.; Brown, C. A.
2016-01-01
Results of an experimental study with a large aspect ratio rectangular nozzle, divided into multiple compartments or septa, as pertinent to distributed propulsion, are presented. Noise measurements at high-subsonic conditions show that the nozzle with the septa is quieter than the corresponding baseline nozzle without the septa. At relatively lower Mach numbers a high-frequency tone is heard. This is shown to be due to Karmann vortex shedding from the trailing edge of the partitions that separate a septum from the adjacent ones. Flowfield measurements for a six septa case show that the cellular flow structure, issuing from the nozzle, goes through a curious coalescence with increasing downstream distance (x) from the nozzle. Adjacent cells pair to yield a three-cell structure by x/D =2, where D is the equivalent diameter of the baseline nozzle. By about x/D =16, both the septa case and the baseline case evolve to yield axisymmetric flowfields.
A comparative study of turbulence models for overset grids
NASA Technical Reports Server (NTRS)
Renze, Kevin J.; Buning, Pieter G.; Rajagopalan, R. G.
1992-01-01
The implementation of two different types of turbulence models for a flow solver using the Chimera overset grid method is examined. Various turbulence model characteristics, such as length scale determination and transition modeling, are found to have a significant impact on the computed pressure distribution for a multielement airfoil case. No inherent problem is found with using either algebraic or one-equation turbulence models with an overset grid scheme, but simulation of turbulence for multiple-body or complex geometry flows is very difficult regardless of the gridding method. For complex geometry flowfields, modification of the Baldwin-Lomax turbulence model is necessary to select the appropriate length scale in wall-bounded regions. The overset grid approach presents no obstacle to use of a one- or two-equation turbulence model. Both Baldwin-Lomax and Baldwin-Barth models have problems providing accurate eddy viscosity levels for complex multiple-body flowfields such as those involving the Space Shuttle.
Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate
NASA Technical Reports Server (NTRS)
Yao, Chung-Sheng; Lin, John C.; Allan, Brian G.
2002-01-01
Detailed flow-field measurements were performed downstream of a single vortex generator (VG) using an advanced Stereo Digital Particle Image Velocimetry system. Thc passive flow-control devices examined consisted of a low-profile VG with a device height, h, approximately equal to 20 percent of the boundary-layer thickness, sigma, and a conventional VG with h is approximately sigma. Flow-field data were taken at twelve cross-flow planes downstream of the VG to document and quantify the evolution of embedded streamwise vortex. The effects of device angle of attack on vortex development downstream were compared between the low-profile VG and the conventional VG. Key parameters including vorticity, circulation, trajectory, and half-life radius - describing concentration, strength, path, and size, respectively--of the device-induced streamwise vortex were extracted from the flow-field data. The magnitude of maximum vorticity increases as angle of attack increases for the low-profile VG, but the trend is reversed for the conventional VG, probably due to flow stalling around the larger device at higher angles of attack. Peak vorticity and circulation for the low-profile VG decays exponentially and inversely proportional to the distance downstream from the device. The device-height normalized vortex trajectories for the low-profile VG, especially in the lateral direction, follow the general trends of the conventional VG. The experimental database was used to validate the predictive capability of computational fluid dynamics (CFD). CFD accurately predicts the vortex circulation and path; however, improvements are needed for predicting the vorticity strength and vortex size.
NASA Technical Reports Server (NTRS)
Goussis, D. A.; Lam, S. H.; Gnoffo, P. A.
1990-01-01
The Computational Singular Perturbation CSP methods is employed (1) in the modeling of a homogeneous isothermal reacting system and (2) in the numerical simulation of the chemical reactions in a hypersonic flowfield. Reduced and simplified mechanisms are constructed. The solutions obtained on the basis of these approximate mechanisms are shown to be in very good agreement with the exact solution based on the full mechanism. Physically meaningful approximations are derived. It is demonstrated that the deduction of these approximations from CSP is independent of the complexity of the problem and requires no intuition or experience in chemical kinetics.
Where is The Dark Matter: The Flow-field From 2MASS
NASA Astrophysics Data System (ADS)
Crook, Aidan; Huchra, J.; Macri, L.; Masters, K.; Jarrett, T.
2009-01-01
We present a map of the flow-field constructed from groups of galaxies in the 2MASS Redshift Survey. Previous efforts have suffered because the underlying surveys either did not penetrate to low galactic latitudes or were not sensitive to elliptical galaxies, thereby missing a significant fraction of the mass. The 2MASS Redshift Survey provides a uniform all-sky magnitude-limited sample in the J, H and Ks bands, 97% complete to Ks<11.75 and |b|>10°, sensitive to both ellipticals and spirals. We demonstrate how utilizing the properties of galaxy groups leads to improved predictions of peculiar velocities in the nearby Universe, and use dynamical mass estimates to construct a reliable flow-field to 12,000 km/s. We demonstrate its effectiveness in providing distance estimates, and discuss the advantages of this model over earlier work. With independent knowledge of the peculiar velocity of the Local Group, we discuss the implications for the matter density parameter and bias. This work is supported by a Whiteman Fellowship and NSF grant AST-0406906.
Turbulence modeling of free shear layers for high-performance aircraft
NASA Technical Reports Server (NTRS)
Sondak, Douglas L.
1993-01-01
The High Performance Aircraft (HPA) Grand Challenge of the High Performance Computing and Communications (HPCC) program involves the computation of the flow over a high performance aircraft. A variety of free shear layers, including mixing layers over cavities, impinging jets, blown flaps, and exhaust plumes, may be encountered in such flowfields. Since these free shear layers are usually turbulent, appropriate turbulence models must be utilized in computations in order to accurately simulate these flow features. The HPCC program is relying heavily on parallel computers. A Navier-Stokes solver (POVERFLOW) utilizing the Baldwin-Lomax algebraic turbulence model was developed and tested on a 128-node Intel iPSC/860. Algebraic turbulence models run very fast, and give good results for many flowfields. For complex flowfields such as those mentioned above, however, they are often inadequate. It was therefore deemed that a two-equation turbulence model will be required for the HPA computations. The k-epsilon two-equation turbulence model was implemented on the Intel iPSC/860. Both the Chien low-Reynolds-number model and a generalized wall-function formulation were included.
Three-dimensional turbopump flowfield analysis
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Belford, K. A.; Ni, R. H.
1992-01-01
A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.
Computational models for the analysis of three-dimensional internal and exhaust plume flowfields
NASA Technical Reports Server (NTRS)
Dash, S. M.; Delguidice, P. D.
1977-01-01
This paper describes computational procedures developed for the analysis of three-dimensional supersonic ducted flows and multinozzle exhaust plume flowfields. The models/codes embodying these procedures cater to a broad spectrum of geometric situations via the use of multiple reference plane grid networks in several coordinate systems. Shock capturing techniques are employed to trace the propagation and interaction of multiple shock surfaces while the plume interface, separating the exhaust and external flows, and the plume external shock are discretely analyzed. The computational grid within the reference planes follows the trace of streamlines to facilitate the incorporation of finite-rate chemistry and viscous computational capabilities. Exhaust gas properties consist of combustion products in chemical equilibrium. The computational accuracy of the models/codes is assessed via comparisons with exact solutions, results of other codes and experimental data. Results are presented for the flows in two-dimensional convergent and divergent ducts, expansive and compressive corner flows, flow in a rectangular nozzle and the plume flowfields for exhausts issuing out of single and multiple rectangular nozzles.
Flow Field and Acoustic Predictions for Three-Stream Jets
NASA Technical Reports Server (NTRS)
Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas
2014-01-01
Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Carlson, J.-R.; Hannon, J. A.; Jenkins, L. N.; Bartram, S. M.; Pulliam, T. H.; Lee, H. C.
2017-01-01
Because future wind tunnel tests associated with the NASA Juncture Flow project are being designed for the purpose of CFD validation, considerable effort is going into the characterization of the wind tunnel boundary conditions, particularly at inflow. This is important not only because wind tunnel flowfield nonuniformities can play a role in integrated testing uncertainties, but also because the better the boundary conditions are known, the better CFD can accurately represent the experiment. This paper describes recent investigative wind tunnel tests involving two methods to measure and characterize the oncoming flow in the NASA Langley 14- by 22-Foot Subsonic Tunnel. The features of each method, as well as some of their pros and cons, are highlighted. Boundary conditions and modeling tactics currently used by CFD for empty-tunnel simulations are also described, and some results using three different CFD codes are shown. Preliminary CFD parametric studies associated with the Juncture Flow model are summarized, to determine sensitivities of the flow near the wing-body juncture region of the model to a variety of modeling decisions.
On the prediction of far field computational aeroacoustics of advanced propellers
NASA Technical Reports Server (NTRS)
Jaeger, Stephen M.; Korkan, Kenneth D.
1990-01-01
A numerical method for determining the acoustic far field generated by a high-speed subsonic aircraft propeller was developed. The approach used in this method was to generate the entire three-dimensional pressure field about the propeller (using an Euler flowfield solver) and then to apply a solution of the wave equation on a cylindrical surface enveloping the propeller. The method is applied to generate the three-dimensional flowfield between two blades of an advanced propeller. The results are compared with experimental data obtained in a wind-tunnel test at a Mach number of 0.6.
NASA Astrophysics Data System (ADS)
Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li
2017-02-01
The drag reduction and thermal protection system applied to hypersonic re-entry vehicles have attracted an increasing attention, and several novel concepts have been proposed by researchers. In the current study, the influences of performance parameters on drag and heat reduction efficiency of combinational novel cavity and opposing jet concept has been investigated numerically. The Reynolds-average Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flowfields, and the first-order spatially accurate upwind scheme appears to be more suitable for three-dimensional flowfields after grid independent analysis. Different cases of performance parameters, namely jet operating conditions, freestream angle of attack and physical dimensions, are simulated based on the verification of numerical method, and the effects on shock stand-off distance, drag force coefficient, surface pressure and heat flux distributions have been analyzed. This is the basic study for drag reduction and thermal protection by multi-objective optimization of the combinational novel cavity and opposing jet concept in hypersonic flows in the future.
High freestream turbulence studies on a scaled-up stator vane
NASA Astrophysics Data System (ADS)
Radomsky, Roger William, Jr.
2000-10-01
Today's gas turbine engines are operating at combustor exit temperatures far exceeding the maximum temperatures of the component alloys downstream of the combustor. These higher temperatures are necessary to increase the efficiency of the engine, and, as such, durability of the downstream components becomes an issue. The highly turbulent flowfield that exists at the exit of the combustor complicates issues further by increasing heat transfer from the hot gas to the component surface. To account for the high heat transfer rates, and provide a better prediction of the applied heat loads, detailed heat transfer and flowfield information is needed at turbulence levels representative those exiting a combustor. Flowfield measurements at high freestream turbulence levels indicated that turbulence, which was isotropic at the inlet, became highly anisotropic in the test section as a result of surface curvature and strain. Turbulent kinetic energy levels were shown to increase in the passage by as much as 131% and 31% for the 10% and 19.5% turbulence levels. Although the turbulent kinetic energy was high, the turbulence level based upon local velocity decreased quickly to levels of 3% and 6% near the suction surface for the 10% and 19.5% turbulence levels. For the pressure surface, local turbulence levels were as high as 10% and 16% for the 10% and 19.5% turbulence levels. High local turbulence levels and heat transfer augmentation were observed near the stagnation location, by as much as 50%, and along the pressure surface, by as much as 80%, where airfoil geometries have shown degradation after prolonged usage. Endwall flowfield measurements on a plane at the stagnation location showed that a horseshoe vortex developed in the juncture region of the vane at high freestream. turbulence similar to that at low freestream turbulence. Measurements near the center of the vortex indicated that the vortex was highly unsteady. In regions where strong secondary flows (horseshoe and passage vortex) were present, these vortices dominated the heat transfer and the augmentations due to high freestream turbulence were small.
International Symposium on Air Breathing Engines (5th)
1981-05-29
Marquardt Co., USA 22 Flowfield Studies of Dump Combustors Raghunath S. Boray, Wright Patterson AFB, USA and Cherng Chang, Breham Laboratory, USA 23 A Ramjet...Bending Loads R. Padmanabhan, K. Ramachandra, V. Maruthi and B.J. Raghunath , Gas Turbine Research Establishment, Bangalore, India 56 Influence of O-Rings
Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame
NASA Technical Reports Server (NTRS)
Cheng, Robert K.; Bedat, Benoit
1997-01-01
Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to characterize microgravity (micro g) premixed flames. The results are used to derive appropriate scaling parameters for guiding the development of theoretical models to include the effects of buoyancy. Knowledge gain from the analysis will also contribute to further understanding of the elliptical nature of premixed flames. Our current emphasis is to examine the momentum limit above which the effects of buoyancy would become insignificant. This is accomplished by comparing the flowfields and the mean properties of normal gravity flames (+g), and reversed gravity flames (-g, up-side-down flames) at different flow velocities and turbulence intensities. Microgravity (micro g) flames experiments provide the key reference data to reconcile the differences between flames in +g and -g. As flame configuration has significant impact on premixed flames characteristics we have studied axi-symmetric conical flames and plane-symmetric rod-stabilized v-flames. The two configurations produce distinct features that dictates how the flames couple with buoyancy. In a conical flame, the hot products plume completely envelopes the flame cone and shields the flame from direct interaction with the ambient air. The plume originates at the burner rim and generates a divergent flowfield. In comparison, the products region of v-flames forms between the twin flame sheets and it is convergent towards the center-plane. Interaction with ambient air is limited to the two end regions of the stabilized rod and beyond the flame sheets.
Modeling Combustion in Supersonic Flows
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
NASA Technical Reports Server (NTRS)
Rediniotis, Othon K.
1999-01-01
Two new calibration algorithms were developed for the calibration of non-nulling multi-hole probes in compressible, subsonic flowfields. The reduction algorithms are robust and able to reduce data from any multi-hole probe inserted into any subsonic flowfield to generate very accurate predictions of the velocity vector, flow direction, total pressure and static pressure. One of the algorithms PROBENET is based on the theory of neural networks, while the other is of a more conventional nature (polynomial approximation technique) and introduces a novel idea of local least-squares fits. Both algorithms have been developed to complete, user-friendly software packages. New technology was developed for the fabrication of miniature multi-hole probes, with probe tip diameters all the way down to 0.035". Several miniature 5- and 7-hole probes, with different probe tip geometries (hemispherical, conical, faceted) and different overall shapes (straight, cobra, elbow probes) were fabricated, calibrated and tested. Emphasis was placed on the development of four stainless-steel conical 7-hole probes, 1/16" in diameter calibrated at NASA Langley for the entire subsonic regime. The developed calibration algorithms were extensively tested with these probes demonstrating excellent prediction capabilities. The probes were used in the "trap wing" wind tunnel tests in the 14'x22' wind tunnel at NASA Langley, providing valuable information on the flowfield over the wing. This report is organized in the following fashion. It consists of a "Technical Achievements" section that summarizes the major achievements, followed by an assembly of journal articles that were produced from this project and ends with two manuals for the two probe calibration algorithms developed.
Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.
1988-01-01
The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.
Aerothermodynamic Environments Definition for the Mars Science Laboratory Entry Capsule
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.
2007-01-01
An overview of the aerothermodynamic environments definition status is presented for the Mars Science Laboratory entry vehicle. The environments are based on Navier-Stokes flowfield simulations on a candidate aeroshell geometry and worst-case entry heating trajectories. Uncertainties for the flowfield predictions are based primarily on available ground data since Mars flight data are scarce. The forebody aerothermodynamics analysis focuses on boundary layer transition and turbulent heating augmentation. Turbulent transition is expected prior to peak heating, a first for Mars entry, resulting in augmented heat flux and shear stress at the same heatshield location. Afterbody computations are also shown with and without interference effects of reaction control system thruster plumes. Including uncertainties, analysis predicts that the heatshield may experience peaks of 225 W/sq cm for turbulent heat flux, 0.32 atm for stagnation pressure, and 400 Pa for turbulent shear stress. The afterbody heat flux without thruster plume interference is predicted to be 7 W/sq cm on the backshell and 10 W/sq cm on the parachute cover. If the reaction control jets are fired near peak dynamic pressure, the heat flux at localized areas could reach as high as 76 W/sq cm on the backshell and 38 W/sq cm on the parachute cover, including uncertainties. The final flight environments used for hardware design will be updated for any changes in the aeroshell configuration, heating design trajectories, or uncertainties.
Experimental and computational surface and flow-field results for an all-body hypersonic aircraft
NASA Technical Reports Server (NTRS)
Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.
1990-01-01
The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.
Application of Chimera Grid Scheme to Combustor Flowfields at all Speeds
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Chen, Kuo-Huey
1997-01-01
A CFD method for solving combustor flowfields at all speeds on complex configurations is presented. The approach is based on the ALLSPD-3D code which uses the compressible formulation of the flow equations including real gas effects, nonequilibrium chemistry and spray combustion. To facilitate the analysis of complex geometries, the chimera grid method is utilized. To the best of our knowledge, this is the first application of the chimera scheme to reacting flows. In order to evaluate the effectiveness of this numerical approach, several benchmark calculations of subsonic flows are presented. These include steady and unsteady flows, and bluff-body stabilized spray and premixed combustion flames.
NASA Astrophysics Data System (ADS)
York, B. J.; Sinha, N.; Dash, S. M.; Hosangadi, A.; Kenzakowski, D. C.; Lee, R. A.
1992-07-01
The analysis of steady and transient aerodynamic/propulsive/plume flowfield interactions utilizing several state-of-the-art computer codes (PARCH, CRAFT, and SCHAFT) is discussed. These codes have been extended to include advanced turbulence models, generalized thermochemistry, and multiphase nonequilibrium capabilities. Several specialized versions of these codes have been developed for specific applications. This paper presents a brief overview of these codes followed by selected cases demonstrating steady and transient analyses of conventional as well as advanced missile systems. Areas requiring upgrades include turbulence modeling in a highly compressible environment and the treatment of particulates in general. Recent progress in these areas are highlighted.
Viscous real gas flowfields about three dimensional configurations
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Davy, W. C.
1983-01-01
Laminar, real gas hypersonic flowfields over a three dimensional configuration are computed using an unsteady, factored implicit scheme. Local chemical and thermodynamic properties are evaluated by an equilibrium composition method. Transport properties are obtained from individual species properties and application of a mixture rule. Numerical solutions are presented for an ideal gas and equilibrium air for free-stream Mach numbers of 13 and 15 and at various angles of attack. The effect of real gas is to decrease the shock-layer thickness resulting from decreased shock-layer temperatures and corresponding increased density. The combined effects of viscosity and real gas are to increase the subsonic layer near the wall.
Rocket Plume Scaling for Orion Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.
2011-01-01
A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.
CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests
NASA Technical Reports Server (NTRS)
Goekcen, Tahir; Skokova, Kristina A.
2017-01-01
This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles, and comparisons with the measured calibration data.
Synthetic Jet Interactions with Flows of Varying Separation Severity and Spanwise Flow Magnitude
NASA Astrophysics Data System (ADS)
Monastero, Marianne; Lindstrom, Annika; Amitay, Michael
2017-11-01
Flow physics associated with the interactions of synthetic jet actuators with a highly three-dimensional separated flow over a flapped airfoil were investigated experimentally and analyzed using stereo particle image velocimetry (SPIV) and surface pressure data. Increased understanding of active flow control devices in flows which are representative of airplane wings or tails can lead to actuator placement (i.e., chordwise location, spanwise spacing) with the greatest beneficial effect on performance. An array of discrete synthetic jets was located just upstream of the control surface hingeline and operated at a blowing ratio of 1 and non-dimensional frequency of 48. Detailed flowfield measurements over the control surface were conducted, where the airfoil's sweep angle and the control surface deflection angle were fixed at 20°. Focus was placed on the local and global flowfields as spanwise actuator spacing was varied. Moreover, surface pressure measurement for several sweep angles, control surface deflection angles, and angles of attack were also performed. Actuation resulted in an overall separation reduction and a dependence of local flowfield details (i.e. separation severity, spanwise flow magnitude, flow structures, and jet trajectory) on spanwise jet spacing. The Boeing Company.
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
NASA Technical Reports Server (NTRS)
Flanagan, Michael J.
1992-01-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
NASA Astrophysics Data System (ADS)
Flanagan, Michael J.
1992-09-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
Implementation of Preconditioned Dual-Time Procedures in OVERFLOW
NASA Technical Reports Server (NTRS)
Pandya, Shishir A.; Venkateswaran, Sankaran; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2003-01-01
Preconditioning methods have become the method of choice for the solution of flowfields involving the simultaneous presence of low Mach and transonic regions. It is well known that these methods are important for insuring accurate numerical discretization as well as convergence efficiency over various operating conditions such as low Mach number, low Reynolds number and high Strouhal numbers. For unsteady problems, the preconditioning is introduced within a dual-time framework wherein the physical time-derivatives are used to march the unsteady equations and the preconditioned time-derivatives are used for purposes of numerical discretization and iterative solution. In this paper, we describe the implementation of the preconditioned dual-time methodology in the OVERFLOW code. To demonstrate the performance of the method, we employ both simple and practical unsteady flowfields, including vortex propagation in a low Mach number flow, flowfield of an impulsively started plate (Stokes' first problem) arid a cylindrical jet in a low Mach number crossflow with ground effect. All the results demonstrate that the preconditioning algorithm is responsible for improvements to both numerical accuracy and convergence efficiency and, thereby, enables low Mach number unsteady computations to be performed at a fraction of the cost of traditional time-marching methods.
CFD Simulations for Arc-Jet Panel Testing Capability Development Using Semi-Elliptical Nozzles
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Balboni, John A.; Hartman, G. Joseph
2016-01-01
This paper reports computational simulations in support of arc-jet panel testing capability development using semi-elliptical nozzles in a high enthalpy arc-jet facility at NASA Ames Research Center. Two different semi-elliptical nozzle configurations are proposed for testing panel test articles. Computational fluid dynamics simulations are performed to provide estimates of achievable panel surface conditions and useful test area for each configuration. The present analysis comprises three-dimensional simulations of the nonequilibrium flowfields in the semi-elliptical nozzles, test box and flowfield over the panel test articles. Computations show that useful test areas for the proposed two nozzle options are 20.32 centimeters by 20.32 centimeters (8 inches by 8 inches) and 43.18 centimeters by 43.18 centimeters (17 inches by 17 inches). Estimated values of the maximum cold-wall heat flux and surface pressure are 155 watts per centimeters squared and 39 kilopascals for the smaller panel test option, and 44 watts per centimeters squared and 7 kilopascals for the larger panel test option. Other important properties of the predicted flowfields are presented, and factors that limit the useful test area in the semi-free jet test configuration are discussed.
Laser fringe anemometry for aero engine components
NASA Technical Reports Server (NTRS)
Strazisar, A. J.
1986-01-01
Advances in flow measurement techniques in turbomachinery continue to be paced by the need to obtain detailed data for use in validating numerical predictions of the flowfield and for use in the development of empirical models for those flow features which cannot be readily modelled numerically. The use of laser anemometry in turbomachinery research has grown over the last 14 years in response to these needs. Based on past applications and current developments, this paper reviews the key issues which are involved when considering the application of laser anemometry to the measurement of turbomachinery flowfields. Aspects of laser fringe anemometer optical design which are applicable to turbomachinery research are briefly reviewed. Application problems which are common to both laser fringe anemometry (LFA) and laser transit anemometry (LTA) such as seed particle injection, optical access to the flowfield, and measurement of rotor rotational position are covered. The efficiency of various data acquisition schemes is analyzed and issues related to data integrity and error estimation are addressed. Real-time data analysis techniques aimed at capturing flow physics in real time are discussed. Finally, data reduction and analysis techniques are discussed and illustrated using examples taken from several LFA turbomachinery applications.
Flowfield and acoustic characteristics of telescope cavity in SOFIA platform
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.
1995-01-01
Unsteady three-dimensional flowfields are calculated for the Stratospheric Observatory For Infrared Astronomy (SOFIA) at both free-flight cruise and wind tunnel conditions with a view to help in the design process of an acoustically quiet telescope cavity and to understand the flow physics of a three dimensional cavity. The calculation method is based on the numerical solution of thin layer Navier-Stokes equations on a Chimera overset grid system. The Boeing 747-200 aircraft is examined as one option for the SOFIA platform. The flowfield domain is composed of 45 grids consisting of over 4.1 million points. Numerical simulations are performed for both wind tunnel and free-flight cruise conditions at one freestream condition of M(infinity) = 0.85, alpha = 2.5 deg. Comparison of results from wind tunnel simulation show good agreement with experimental data for time-averaged surface pressures, drag for the empennage, and sound pressure levels and power spectra at various locations within the cavity and on the telescope. The presence of the open cavity induces an incremental drag increase, an increased acoustic radiation, and an increase in unsteady pressure loads on the telescope. Its impact on the effectiveness of aircraft control surfaces appears minimal.
Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2004-01-01
Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.
Experimental investigation of the flowfield of an oscillating airfoil
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.
1992-01-01
The flowfield of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than or = k less than or = 1.6 is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between angles of attack (alpha) of 5 and 25 degrees. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 degrees at k = 0.2, but is shed at the minimum alpha of 5 degrees at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 degrees) dominates the unsteady fluctuations in the wake.
Effects of nonuniform Mach-number entrance on scramjet nozzle flowfield and performance
NASA Astrophysics Data System (ADS)
Zhang, Pu; Xu, Jinglei; Quan, Zhibin; Mo, Jianwei
2016-12-01
Considering the non-uniformities of nozzle entrance influenced by the upstream, the effects of nonuniform Mach-number coupled with shock and expansion-wave on the flowfield and performances of single expansion ramp nozzle (SERN) are numerically studied using Reynolds-Averaged Navier-Stokes equations. The adopted Reynolds-averaged Navier-Stokes methodology is validated by comparing the numerical results with the cold experimental data, and the average method used in this paper is discussed. Uniform and nonuniform facility nozzles are designed to generate different Mach-number profile for the inlet of SERN, which is direct-connected with different facility nozzle, and the whole flowfield is simulated. Because of the coupling of shock and expansion-wave, flow direction of nonuniform SERN entrance is distorted. Compared with Mach contour of uniform case, the line is more curved for coupling shock-wave entrance (SWE) case, and flatter for the coupling expansion-wave entrance (EWE) case. Wall pressure distribution of SWE case appears rising region, whereas decreases like stairs of EWE case. The numerical results reveal that the coupled shock and expansion-wave play significant roles on nozzle performances. Compared with the SERN performances of uniform entrance case at the same work conditions, the thrust of nonuniform entrance cases reduces by 3-6%, pitch moment decreases by 2.5-7%. The negative lift presents an incremental trend with EWE while the situation is the opposite with SWE. These results confirm that considering the entrance flow parameter nonuniformities of a scramjet nozzle coupled with shock or expansion-wave from the upstream is necessary.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1991-01-01
The primary tasks performed are: (1) the development of a second order local thermodynamic nonequilibrium (LTNE) model for atoms; (2) the continued development of vibrational nonequilibrium models; and (3) the development of a new multicomponent diffusion model. In addition, studies comparing these new models with previous models and results were conducted and reported.
Flow visualization studies of transverse fuel injection patterns in a nonreacting Mach 2 combustor
NASA Technical Reports Server (NTRS)
Mcdaniel, J. C.
1987-01-01
Planar visualization images are recorded of transverse jet mixing in a supersonic combustor flowfield, without chemical reaction, using laser-induced fluorescence from iodine molecules. Digital image processing and three-dimensional display enable complete representations of fuel penetration boundary and shock surfaces corresponding to several injection geometries and pressures.
Transverse jet shear layer instabilities and their control
NASA Astrophysics Data System (ADS)
Karagozian, Ann
2013-11-01
The jet in crossflow, or transverse jet, is a canonical flowfield that has relevance to engineering systems ranging from dilution jets and film cooling for gas turbine engines to thrust vector control and fuel injection in high speed aerospace vehicles to environmental control of effluent from chimney and smokestack plumes. Over the years, our UCLA Energy and Propulsion Research Lab's studies on this flowfield have focused on the dynamics of the vorticity associated with equidensity and variable density jets in crossflow, including the stability characteristics of the jet's upstream shear layer. A range of different experimental diagnostics have been used to study the jet's upstream shear layer, whereby a transition from convectively unstable behavior at high jet-to-crossflow momentum flux ratios to absolutely unstable flow at low momentum flux and/or density ratios is identified. These differences in shear layer stability characteristics have a profound effect on how one employs external excitation to control jet penetration, spread, and mixing, depending on the flow regime and specific engineering application. These control strategies, and challenges for future research directions, will be identified in this presentation.
Effects of Hybrid Flow Control on a Normal Shock Boundary-Layer Interaction
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Vyas, Manan A.
2013-01-01
Hybrid flow control, a combination of micro-ramps and steady micro-jets, was experimentally investigated in the 15x15 cm Supersonic Wind Tunnel at the NASA Glenn Research Center. A central composite design of experiments method, was used to develop response surfaces for boundary-layer thickness and reversed-flow thickness, with factor variables of inter-ramp spacing, ramp height and chord length, and flow injection ratio. Boundary-layer measurements and wall static pressure data were used to understand flow separation characteristics. A limited number of profiles were measured in the corners of the tunnel to aid in understanding the three-dimensional characteristics of the flowfield.
Development and Application of PIV in Supersonic flows
NASA Astrophysics Data System (ADS)
Rong, Z.; Liu, H.; Chen, F.
2011-09-01
This paper presents PIV measurements obtained in Mach 4.0 flowfields performed in the SJTU Hypersonic wind tunnel (HWT). In order to certificate this technique, PIV experiments were conducted to the empty test section to provide uniform flow data for comparison with analysis data. Dynamical properties of particle tracers were investigated to measure the particle response across an oblique shock wave. The flow over a sharp cone at Ma = 4.0 were tested in comparasion with the CFD and schlieren visualization. It is shown that shock wave angles measured with PIV are in good agreement with theory and schlieren visualization, in addition the overall flow is consistent with the CFD results.
FLEET Velocimetry Measurements on a Transonic Airfoil
NASA Technical Reports Server (NTRS)
Burns, Ross A.; Danehy, Paul M.
2017-01-01
Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0 deg, 3.5 deg, and 7deg. Measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty in the context of the applied flowfield. Measurement precisions as low as 1 m/s were observed, while overall uncertainties ranged from 4 to 5 percent. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack.
Quadrant CFD Analysis of a Mixer-Ejector Nozzle for HSCT Applications
NASA Technical Reports Server (NTRS)
Yoder, Dennis A.; Georgiadis, Nicholas J.; Wolter, John D.
2005-01-01
This study investigates the sidewall effect on flow within the mixing duct downstream of a lobed mixer-ejector nozzle. Simulations which model only one half-chute width of the ejector array are compared with those which model one complete quadrant of the nozzle geometry and with available experimental data. These solutions demonstrate the applicability of the half-chute technique to model the flowfield far away from the sidewall and the necessity of a full-quadrant simulation to predict the formation of a low-energy flow region near the sidewall. The quadrant solutions are further examined to determine the cause of this low-energy region, which reduces the amount of mixing and lowers the thrust of the nozzle. Grid resolution and different grid topologies are also examined. Finally, an assessment of the half-chute and quadrant approaches is made to determine the ability of these simulations to provide qualitative and/or quantitative predictions for this type of complex flowfield.
Influence of flowfield and vehicle parameters on engineering aerothermal methods
NASA Technical Reports Server (NTRS)
Wurster, Kathryn E.; Zoby, E. Vincent; Thompson, Richard A.
1989-01-01
The reliability and flexibility of three engineering codes used in the aerosphace industry (AEROHEAT, INCHES, and MINIVER) were investigated by comparing the results of these codes with Reentry F flight data and ground-test heat-transfer data for a range of cone angles, and with the predictions obtained using the detailed VSL3D code; the engineering solutions were also compared. In particular, the impact of several vehicle and flow-field parameters on the heat transfer and the capability of the engineering codes to predict these results were determined. It was found that entropy, pressure gradient, nose bluntness, gas chemistry, and angle of attack all affect heating levels. A comparison of the results of the three engineering codes with Reentry F flight data and with the predictions obtained of the VSL3D code showed a very good agreement in the regions of the applicability of the codes. It is emphasized that the parameters used in this study can significantly influence the actual heating levels and the prediction capability of a code.
Numerical analysis of hypersonic turbulent film cooling flows
NASA Technical Reports Server (NTRS)
Chen, Y. S.; Chen, C. P.; Wei, H.
1992-01-01
As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.
An Experimental Study of Swirling Flows as Applied to Annular Combustors
NASA Technical Reports Server (NTRS)
Seal, Michael Damian, II
1997-01-01
This thesis presents an experimental study of swirling flows with direct applications to gas turbine combustors. Two separate flowfields were investigated: a round, swirling jet and a non-combusting annular combustor model. These studies were intended to allow both a further understanding of the behavior of general swirling flow characteristics, such as the recirculation zone, as well as to provide a base for the development of computational models. In order to determine the characteristics of swirling flows the concentration fields of a round, swirling jet were analyzed for varying amount of swirl. The experimental method used was a light scattering concentration measurement technique known as marker nephelometry. Results indicated the formation of a zone of recirculating fluid for swirl ratios (rotational speed x jet radius over mass average axial velocity) above a certain critical value. The size of this recirculation zone, as well as the spread angle of the jet, was found to increase with increase in the amount of applied swirl. The annular combustor model flowfield simulated the cold-flow characteristics of typical current annular combustors: swirl, recirculation, primary air cross jets and high levels of turbulence. The measurements in the combustor model made by the Laser Doppler Velocimetry technique, allowed the evaluation of the mean and rms velocities in the three coordinate directions, one Reynold's shear stress component and the turbulence kinetic energy: The primary cross jets were found to have a very strong effect on both the mean and turbulence flowfields. These cross jets, along with a large step change in area and wall jet inlet flow pattern, reduced the overall swirl in the test section to negligible levels. The formation of the strong recirculation zone is due mainly to the cross jets and the large step change in area. The cross jets were also found to drive a four-celled vortex-type motion (parallel to the combustor longitudinal axis) near the cross jet injection plane.
High-fidelity large eddy simulation for supersonic jet noise prediction
NASA Astrophysics Data System (ADS)
Aikens, Kurt M.
The problem of intense sound radiation from supersonic jets is a concern for both civil and military applications. As a result, many experimental and computational efforts are focused at evaluating possible noise suppression techniques. Large-eddy simulation (LES) is utilized in many computational studies to simulate the turbulent jet flowfield. Integral methods such as the Ffowcs Williams-Hawkings (FWH) method are then used for propagation of the sound waves to the farfield. Improving the accuracy of this two-step methodology and evaluating beveled converging-diverging nozzles for noise suppression are the main tasks of this work. First, a series of numerical experiments are undertaken to ensure adequate numerical accuracy of the FWH methodology. This includes an analysis of different treatments for the downstream integration surface: with or without including an end-cap, averaging over multiple end-caps, and including an approximate surface integral correction term. Secondly, shock-capturing methods based on characteristic filtering and adaptive spatial filtering are used to extend a highly-parallelizable multiblock subsonic LES code to enable simulations of supersonic jets. The code is based on high-order numerical methods for accurate prediction of the acoustic sources and propagation of the sound waves. Furthermore, this new code is more efficient than the legacy version, allows cylindrical multiblock topologies, and is capable of simulating nozzles with resolved turbulent boundary layers when coupled with an approximate turbulent inflow boundary condition. Even though such wall-resolved simulations are more physically accurate, their expense is often prohibitive. To make simulations more economical, a wall model is developed and implemented. The wall modeling methodology is validated for turbulent quasi-incompressible and compressible zero pressure gradient flat plate boundary layers, and for subsonic and supersonic jets. The supersonic code additions and the wall model treatment are then utilized to simulate military-style nozzles with and without beveling of the nozzle exit plane. Experiments of beveled converging-diverging nozzles have found reduced noise levels for some observer locations. Predicting the noise for these geometries provides a good initial test of the overall methodology for a more complex nozzle. The jet flowfield and acoustic data are analyzed and compared to similar experiments and excellent agreement is found. Potential areas of improvement are discussed for future research.
NASA Technical Reports Server (NTRS)
Khodadoust, Abdollah
1994-01-01
Wind tunnel experiments were conducted in order to study the effect of a simulated glaze ice accretion on the flowfield of a semispan, reflection-plane, rectangular wing at Re = 1.5 million and M = 0.12. A laser Doppler velocimeter was used to map the flowfield on the upper surface of the model in both the clean and iced configurations at alpha = 0, 4, and 8 degrees angle of attack. At low angles of attack, the massive separation bubble aft of the leading edge ice horn was found to behave in a manner similar to laminar separation bubbles. At alpha = 0 and 4 degrees, the locations of transition and reattachment, as deduced from momentum thickness distributions, were found to be in good agreement with transition and reattachment locations in laminar separation bubbles. These values at y/b = 0.470, the centerline measurement location, matched well with data obtained on a similar but two dimensional model. The measured velocity profiles on the iced wing compared reasonably with the predicted profiles from Navier-Stokes computations. The iced-induced separation bubble was also found to have features similar to the recirculating region aft of rearward-facing steps. At alpha = 0 degrees and 4 degrees, reverse flow magnitudes and turbulence intensity levels were typical of those found in the recirculating region aft of rearward-facing steps. The calculated separation streamline aft of the ice horn at alpha = 4 degrees, y/b = 0.470 coincided with the locus of the maximum Reynolds normal stress. The maximum Reynolds normal stress peaked at two locations along the separation streamline. The location of the first peak-value coincided with the transition location, as deduced from the momentum thickness distributions. The location of the second peak was just upstream of reattachment, in good agreement with measurements of flows over similar obstacles. The intermittency factor in the vicinity of reattachment at alpha = 4 degrees, y/b = 0.470, revealed the time-dependent nature of the reattachment process. The size and extent of the separation bubble were found to be a function of angle of attack and the spanwise location. Three dimensional effects were found to be strongest at alpha = 8 degrees. The calculated separation and stagnation streamlines were found to vary little with spanwise location at alpha = 0 degrees. The calculated separation streamlines at alpha = 4 degrees revealed that the bubble was largest near the centerline measurement plane, whereas the tip-induced vortex flow and the model root-tunnel wall boundary-layer interaction reduced the size of the bubble. These effects were found to be most dramatic at alpha = 8 degrees.
NASA Astrophysics Data System (ADS)
Tong, Fulin; Li, Xinliang; Duan, Yanhui; Yu, Changping
2017-12-01
Numerical investigations on a supersonic turbulent boundary layer over a longitudinal curved compression ramp are conducted using direct numerical simulation for a free stream Mach number M∞ = 2.9 and Reynolds number Reθ = 2300. The total turning angle is 24°, and the concave curvature radius is 15 times the thickness of the incoming turbulent boundary layer. Under the selected conditions, the shock foot is transferred to a fan of the compression wave because of the weaker adverse pressure gradient. The time-averaged flow-field in the curved ramp is statistically attached where the instantaneous flow-field is close to the intermittent transitory detachment state. Studies on coherent vortex structures have shown that large-scale vortex packets are enhanced significantly when the concave curvature is aligned in the spanwise direction. Consistent with findings of previous experiments, the effect of the concave curvature on the logarithmic region of the mean velocity profiles is found to be small. The intensity of the turbulent fluctuations is amplified across the curved ramp. Based on the analysis of the Reynolds stress anisotropy tensor, the evolutions of the turbulence state in the inner and outer layers of the boundary layer are considerably different. The curvature effect on the transport mechanism of the turbulent kinetic energy is studied using the balance analysis of the contributing terms in the transport equation. Furthermore, the Görtler instability in the curved ramp is quantitatively analyzed using a stability criterion. The instantaneous streamwise vorticity confirms the existence of the Görtler-like structures. These structures are characterized by an unsteady motion. In addition, the dynamic mode decomposition analysis of the instantaneous flow field at the spanwise/wall-normal plane reveals that four dynamical relevant modes with performance loss of 16% provide an optimal low-order representation of the essential characteristics of the numerical data. The spatial structures of the dominated low-frequency dynamic modes are found to be similar to that of the Görtler-like vortices.
Internal computational fluid mechanics on supercomputers for aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Andersen, Bernhard H.; Benson, Thomas J.
1987-01-01
The accurate calculation of three-dimensional internal flowfields for application towards aerospace propulsion systems requires computational resources available only on supercomputers. A survey is presented of three-dimensional calculations of hypersonic, transonic, and subsonic internal flowfields conducted at the Lewis Research Center. A steady state Parabolized Navier-Stokes (PNS) solution of flow in a Mach 5.0, mixed compression inlet, a Navier-Stokes solution of flow in the vicinity of a terminal shock, and a PNS solution of flow in a diffusing S-bend with vortex generators are presented and discussed. All of these calculations were performed on either the NAS Cray-2 or the Lewis Research Center Cray XMP.
Vorticity interaction effects on blunt bodies. [hypersonic viscous shock layers
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Wilcox, D. C.
1977-01-01
Numerical solutions of the viscous shock layer equations governing laminar and turbulent flows of a perfect gas and radiating and nonradiating mixtures of perfect gases in chemical equilibrium are presented for hypersonic flow over spherically blunted cones and hyperboloids. Turbulent properties are described in terms of the classical mixing length. Results are compared with boundary layer and inviscid flowfield solutions; agreement with inviscid flowfield data is satisfactory. Agreement with boundary layer solutions is good except in regions of strong vorticity interaction; in these flow regions, the viscous shock layer solutions appear to be more satisfactory than the boundary layer solutions. Boundary conditions suitable for hypersonic viscous shock layers are devised for an advanced turbulence theory.
NASA Technical Reports Server (NTRS)
Cole, G. L.; Willoh, R. G.
1975-01-01
A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.
Experimental Study of a Pulse Detonation Engine Driven Ejector
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh; Shehadeh, R.; Saretto, S.; Lee, S.-Y.
2005-01-01
Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen (O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results are in excellent agreement with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. Further increases are possible by tailoring the ejector geometry based on CFD predictions conducted elsewhere. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Gilbert, W. P.
1983-01-01
An experimental investigation was conducted to assess the vortex flow-field interactions on an advanced, twin-jet fighter aircraft configuration at high angles of attack. Flow-field surveys were conducted on a small-scale model in the Northrop 0.41 - by 0.60-meter water tunnel and, where appropriate, the qualitative observations were correlated with low-speed wind tunnel data trends obtained on a large-scale model of the advanced fighter in the NASA Langley Research Center 30- by 60-foot (9.1- by 18.3-meter) facility. Emphasis was placed on understanding the interactions of the forebody and LEX-wing vortical flows, defining the effects on rolling moment variation with sideslip, and identifying modifications to control or regulate the vortex interactions at high angles of attack. The water tunnel flow visualization results and wind tunnel data trend analysis revealed the potential for strong interactions between the forebody and LEX vortices at high angles of attack. In particular, the forebody flow development near the nose could be controlled by means of carefully-positioned radome strakes. The resultant strake-induced flow-field changes were amplified downstream by the more powerful LEX vortical motions with subsequent large effects on wing flow separation characteristics.
Numerical simulation of helicopter engine plume in forward flight
NASA Technical Reports Server (NTRS)
Dimanlig, Arsenio C. B.; Vandam, Cornelis P.; Duque, Earl P. N.
1994-01-01
Flowfields around helicopters contain complex flow features such as large separated flow regions, vortices, shear layers, blown and suction surfaces and an inherently unsteady flow imposed by the rotor system. Another complicated feature of helicopters is their infrared signature. Typically, the aircraft's exhaust plume interacts with the rotor downwash, the fuselage's complicated flowfield, and the fuselage itself giving each aircraft a unique IR signature at given flight conditions. The goal of this project was to compute the flow about a realistic helicopter fuselage including the interaction of the engine air intakes and exhaust plume. The computations solve the Think-Layer Navier Stokes equations using overset type grids and in particular use the OVERFLOW code by Buning of NASA Ames. During this three month effort, an existing grid system of the Comanche Helicopter was to be modified to include the engine inlet and the hot engine exhaust. The engine exhaust was to be modeled as hot air exhaust. However, considerable changes in the fuselage geometry required a complete regriding of the surface and volume grids. The engine plume computations have been delayed to future efforts. The results of the current work consists of a complete regeneration of the surface and volume grids of the most recent Comanche fuselage along with a flowfield computation.
Fuel cell with metal screen flow-field
Wilson, M.S.; Zawodzinski, C.
1998-08-25
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
2001-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
1998-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
Aerodynamic Classification of Swept-Wing Ice Accretion
NASA Technical Reports Server (NTRS)
Broeren, Andy; Diebold, Jeff; Bragg, Mike
2013-01-01
The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current state-of-the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice, and spanwise-ridge ice. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.
Plasma Flowfields Around Low Earth Orbit Objects: Aerodynamics to Underpin Orbit Predictions
NASA Astrophysics Data System (ADS)
Capon, Christopher; Boyce, Russell; Brown, Melrose
2016-07-01
Interactions between orbiting bodies and the charged space environment are complex. The large variation in passive body parameters e.g. size, geometry and materials, makes the plasma-body interaction in Low Earth Orbit (LEO) a region rich in fundamental physical phenomena. The aerodynamic interaction of LEO orbiting bodies with the neutral environment constitutes the largest non-conservative force on the body. However in general, study of the LEO plasma-body interaction has not been concerned with external flow physics, but rather with the effects on surface charging. The impact of ionospheric flow physics on the forces on space debris (and active objects) is not well understood. The work presented here investigates the contribution that plasma-body interactions have on the flow structure and hence on the total atmospheric force vector experienced by a polar orbiting LEO body. This work applies a hybrid Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFoam, to self-consistently model the electrostatic flowfield about a cylinder with a uniform, fixed surface potential. Flow conditions are representative of the mean conditions experienced by the Earth Observing Satellite (EOS) based on the International Reference Ionosphere model (IRI-86). The electron distribution function is represented by a non-linear Boltzmann electron fluid and ion gas-surface interactions are assumed to be that of a neutralising, conducting, thermally accommodating solid wall with diffuse reflections. The variation in flowfield and aerodynamic properties with surface potential at a fixed flow condition is investigated, and insight into the relative contributions of charged and neutral species to the flow physics experienced by a LEO orbiting body is provided. This in turn is intended to help improve the fidelity of physics-based orbit predictions for space debris and other near-Earth space objects.
NASA Astrophysics Data System (ADS)
Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi
2017-11-01
We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.
Electrodeionization Using Microseparated Bipolar Membranes
NASA Technical Reports Server (NTRS)
Lyons, Donald; Jackson, George; Andrews, Craig C.; Tennakoon, Charles L, K.; Singh, Waheguru; Hitchens, G. Duncan; Jabs, Harry; Chepin, James F.; Archer, Shivaun; Gonzalez-Martinez, Anukia;
2004-01-01
An electrochemical technique for deionizing water, now under development, is intended to overcome a major limitation of prior electrically-based water-purification techniques. The limitation in question is caused by the desired decrease in the concentration of ions during purification: As the concentration of ions decreases, the electrical resistivity of the water increases, posing an electrical barrier to the removal of the remaining ions. In the present technique, this limitation is overcome by use of electrodes, a flowfield structure, and solid electrolytes configured to provide conductive paths for the removal of ions from the water to be deionized, even when the water has already been purified to a high degree. The technique involves the use of a bipolar membrane unit (BMU), which includes a cation-exchange membrane and an anion-exchange membrane separated by a nonconductive mesh that has been coated by an ionically conductive material (see figure). The mesh ensures the desired microseparation between the ion-exchange membranes: The interstices bounded by the inner surfaces of the membranes and the outer surfaces of the coated mesh constitute a flow-field structure that allows the water that one seeks to deionize (hereafter called "process water" for short) to flow through the BMU with a low pressure drop. The flow-field structure is such that the distance between any point in the flow field and an ionically conductive material is small; thus, the flow-field structure facilitates the diffusion of molecules and ions to and from the ion-exchange membranes. The BMU is placed between an anode and a cathode, but not in direct contact with these electrodes. Instead, the space between the anion-exchange membrane and the anode is denoted the anode compartment and is filled with an ionic solution. Similarly, the space between the cation-exchange membrane and the cathode is denoted the cathode compartment and is filled with a different ionic solution. The electrodes are made of titanium coated with platinum.
NASA Technical Reports Server (NTRS)
Schetz, J. A.; Jakubowski, A. K.; Aoyagi, K.
1983-01-01
A jet in a cross flow is of interest in practical situations including jet-powered VTOL aircraft. Three aspects of the problem have received little prior study. First is the effect of the angle of the jet to the crossflow. Second is the performance of dual-jet configurations. The third item for further study is a jet injected from a body of revolution as opposed to a flat plate. The Test Plan for this work was designed to address these three aspects. The experiments were conducted in the 7 x 10 tunnel at NASA Ames at velocities 14.5 - 35.8 m/sec (47.6 - 117.4 ft/sec). Detailed pressure distributions are presented for single and dual jets over a range of velocity ratios from 3 to 8, spacings from 2 to 6 diameters and injection angles of 90, 75 and 60 degrees. Some flowfield measurements are also presented, and it is shown that a simple analysis is capable of predicting the trajectories of the jets.
Shock wave/turbulent boundary layer interaction in the flow field of a tri-dimension wind tunnel
NASA Technical Reports Server (NTRS)
Benay, R.; Pot, T.
1986-01-01
The first results of a thorough experimental analysis of a strong three-dimensional shock-wave/turbulent boundary-layer interaction occurring in a three dimensional transonic channel are presented. The aim of this experiment is to help in the physical understanding of a complex field, including several separations, and to provide a well documented case to test computational methods. The flowfield has been probed in many points by means of a three-component laser Doppler velocimeter. The results presented relate only to the mean velocity field. They clearly show the formation in the flow of a strong vortical motion resulting from the shock wave interaction.
Experiments and Analyses of Distributed Exhaust Nozzles
NASA Technical Reports Server (NTRS)
Kinzie, Kevin W.; Schein, David B.; Solomon, W. David, Jr.
2002-01-01
Experimental and analytical aeroacoustic properties of several distributed exhaust nozzle (DEN) designs are presented. Significant differences between the designs are observed and correlated back to Computational Fluid Dynamics (CFD) flowfield predictions. Up to 20 dB of noise reduction on a spectral basis and 10 dB on an overall sound pressure level basis are demonstrated from the DEN designs compared to a round reference nozzle. The most successful DEN designs acoustically show a predicted thrust loss of approximately 10% compared to the reference nozzle. Characteristics of the individual mini-jet nozzles that comprise the DEN such as jet-jet shielding and coalescence are shown to play a major role in the noise signature.
Flowfield measurements in the wake of a robotic lamprey
Hultmark, Marcus; Leftwich, Megan
2009-01-01
Experiments are reported on the hydrodynamics of a swimming robotic lamprey under conditions of steady swimming and where the thrust exceeds the drag. The motion of the robot was based on the swimming of live lampreys, which is described by an equation similar to that developed for the American eel by Tytell and Lauder (J Exp Biol 207:1825–1841, 2004). For steady swimming, the wake structure closely resembles that of the American eel, where two pairs of same sign vortices are shed each tail beat cycle, giving the wake a 2P structure. Force estimates suggest that the major part of the thrust is produced at or close to the end of the tail. PMID:19946623
Numerical simulation of steady supersonic flow over spinning bodies of revolution
NASA Technical Reports Server (NTRS)
Sturek, W. B.; Schiff, L. B.
1982-01-01
A recently reported parabolized Navier-Stokes code has been employed to compute the supersonic flowfield about a spinning cone and spinning and nonspinning ogive cylinder and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary-layer velocity profiles, and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to 6 deg. At angles greater than 6 deg discrepancies are noted which are tentatively attributed to turbulence modeling errors. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape for the selected models.
Numerical simulation of three dimensional transonic flows
NASA Technical Reports Server (NTRS)
Sahu, Jubaraj; Steger, Joseph L.
1987-01-01
The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.
NASA Technical Reports Server (NTRS)
Sinha, Neeraj
2014-01-01
This Phase II project validated a state-of-the-art LES model, coupled with a Ffowcs Williams-Hawkings (FW-H) far-field acoustic solver, to support the development of advanced engine concepts. These concepts include innovative flow control strategies to attenuate jet noise emissions. The end-to-end LES/ FW-H noise prediction model was demonstrated and validated by applying it to rectangular nozzle designs with a high aspect ratio. The model also was validated against acoustic and flow-field data from a realistic jet-pylon experiment, thereby significantly advancing the state of the art for LES.
Computations of Axisymmetric Flows in Hypersonic Shock Tubes
NASA Technical Reports Server (NTRS)
Sharma, Surendra P.; Wilson, Gregory J.
1995-01-01
A time-accurate two-dimensional fluid code is used to compute test times in shock tubes operated at supersonic speeds. Unlike previous studies, this investigation resolves the finer temporal details of the shock-tube flow by making use of modern supercomputers and state-of-the-art computational fluid dynamic solution techniques. The code, besides solving the time-dependent fluid equations, also accounts for the finite rate chemistry in the hypersonic environment. The flowfield solutions are used to estimate relevant shock-tube parameters for laminar flow, such as test times, and to predict density and velocity profiles. Boundary-layer parameters such as bar-delta(sub u), bar-delta(sup *), and bar-tau(sub w), and test time parameters such as bar-tau and particle time of flight t(sub f), are computed and compared with those evaluated by using Mirels' correlations. This article then discusses in detail the effects of flow nonuniformities on particle time-of-flight behind the normal shock and, consequently, on the interpretation of shock-tube data. This article concludes that for accurate interpretation of shock-tube data, a detailed analysis of flowfield parameters, using a computer code such as used in this study, must be performed.
Optimal and robust control of transition
NASA Technical Reports Server (NTRS)
Bewley, T. R.; Agarwal, R.
1996-01-01
Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion; these disturbances are considered in both a structured (Gaussian) and unstructured ('worst case') sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.
Non-Intrusive Optical Diagnostic Methods for Flowfield Characterization
NASA Technical Reports Server (NTRS)
Tabibi, Bagher M.; Terrell, Charles A.; Spraggins, Darrell; Lee, Ja. H.; Weinstein, Leonard M.
1997-01-01
Non-intrusive optical diagnostic techniques such as Electron Beam Fluorescence (EBF), Laser-Induced Fluorescence (LIF), and Focusing Schlieren (FS) have been setup for high-speed flow characterization and large flowfield visualization, respectively. Fluorescence emission from the First Negative band of N2(+) with the (0,0) vibration transition (at lambda =391.44 nm) was obtained using the EBF technique and a quenching rate of N2(+)* molecules by argon gas was reported. A very high sensitivity FS system was built and applied in the High-Speed Flow Generator (HFG) at NASA LaRC. A LIF system is available at the Advanced Propulsion Laboratory (APL) on campus and a plume exhaust velocity measurement, measuring the Doppler shift from lambda = 728.7 nm of argon gas, is under way.
Decay of Far-Flowfield in Trailing Vortices
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Chigier, N. A.; Sheaffer, Y. S.
1973-01-01
Methods for reduction of velocities in trailing vortices of large aircraft are of current interest for the purpose of shortening the waiting time between landings at central airports. We have made finite-difference calculations of the flow in turbulent wake vortices as an aid to interpretation of wind-tunnel and flight experiments directed toward that end. Finite-difference solutions are capable of adding flexibility to such investigations if they are based on an adequate model of turbulence. Interesting developments have been taking place in the knowledge of turbulence that may lead to a complete theory in the future. In the meantime, approximate methods that yield reasonable agreement with experiment are appropriate. The simplified turbulence model we have selected contains features that account for the major effects disclosed by more sophisticated models in which the parameters are not yet established. Several puzzles are thereby resolved that arose in previous theoretical investigations of wake vortices.
Experimental studies of transpiration cooling with shock interaction in hypersonic flow, part B
NASA Technical Reports Server (NTRS)
Holden, Michael S.
1994-01-01
This report describes the result of experimental studies conducted to examine the effects of the impingement of an oblique shock on the flowfield and surface characteristics of a transpiration-cooled wall in turbulent hypersonic flow. The principal objective of this work was to determine whether the interaction between the oblique shock and the low-momentum region of the transpiration-cooled boundary layer created a highly distorted flowfield and resulted in a significant reduction in the cooling effectiveness of the transpiration-cooled surface. As a part of this program, we also sought to determine the effectiveness of transpiration cooling with nitrogen and helium injectants for a wide range of blowing rates under constant-pressure conditions in the absence of shock interaction. This experimental program was conducted in the Calspan 48-Inch Shock Tunnel at nominal Mach numbers of 6 and 8, for a Reynolds number of 7.5 x 10(exp 6). For these test conditions, we obtained fully turbulent boundary layers upstream of the interaction regions over the transpiration-cooled segment of the flat plate. The experimental program was conducted in two phases. In the first phase, we examined the effects of mass-addition level and coolant properties on the cooling effectiveness of transpiration-cooled surfaces in the absence of shock interaction. In the second phase of the program, we examined the effects of oblique shock impingement on the flowfield and surface characteristics of a transpiration-cooled surface. The studies were conducted for a range of shock strengths with nitrogen and helium coolants to examine how the distribution of heat transfer and pressure and the characteristics of the flowfield in the interaction region varied with shock strength and the level of mass addition from the transpiration-cooled section of the model. The effects of the distribution of the blowing rate along the interaction regions were also examined for a range of blowing rates through the transpiration-cooled panels. The regions of shockwave/boundary layer interaction examined in these studies were induced by oblique shocks generated with a sharp, flat plate, inclined to the freestream at angles of 5 degrees, 7.5 degrees, and 10 degrees. It was found that, in the absence of an incident shock, transpiration cooling was a very effective method for reducing both the heat transfer and the skin friction loads on the surface. The helium coolant was found to be significantly more effective than nitrogen, because of its low molecular weight and high specific heat. The studies of shock-wave/transpiration-cooled surface interaction demonstrated that the interaction region between the incident shock and the low-momentum transpiration-cooled boundary layer did not result in a significant increase in the size of attached or separated interaction regions, and did not result in significant flowfield distortions above the interaction region. The increase in heating downstream of the shock-impingement point could easily be reduced to the values without shock impingement by a relatively small increase in the transpiration cooling in this region. Surprisingly, this increase in cooling rate did not result in a significant increase in size of the region ahead of the incident shock or create a significantly enlarged interaction region with a resultant increase in the distortion level in the inviscid flow. Thus, transpiration cooling appears to be a very effective technique to cool the internal surfaces of scramjet engines, where shocks in the engine would induce large local increases in wall heating and create viscous/inviscid interactions that could significantly disturb the smooth flow through the combustor. However, if hydrogen is used as the coolant, burning upstream of shock impingement might result in localized hot spots. Clearly, further research is needed in this area.
Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions
NASA Astrophysics Data System (ADS)
Groth, C. P. T.
1986-04-01
In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.
Mixing Enhancement in a Lobed Injector
NASA Technical Reports Server (NTRS)
Smith, L. L.; Majamaki, A. J.; Lam, I. T.; Delabroy, O.; Karagozian, A. R.; Marble, F. E.; Smith, O. I.
1997-01-01
An experimental investigation of the non-reactive mixing processes associated with a lobed fuel injector in a coflowing air stream is presented. The lobed fuel injector is a device which generates streamwise vorticity, producing high strain rates which can enhance the mixing of reactants while delaying ignition in a controlled manner. The lobed injectors examined in the present study consist of two corrugated plates between which a fuel surrogate, CO2, is injected into coflowing air. Acetone is seeded in the CO2 supply as a fuel marker. Comparison of two alternative lobed injector geometries is made with a straight fuel injector to determine net differences in mixing and strain fields due to streamwise vorticity generation. Planar laser-induced fluorescence (PLIF) of the seeded acetone yields two-dimensional images of the scalar concentration field at various downstream locations, from which local mixing and scalar dissipation rates are computed. It is found that the lobed injector geometry can enhance molecular mixing and create a highly strained flowfield, and that the strain rates generated by scalar energy dissipation can potentially delay ignition in a reacting flowfield.
NASA Technical Reports Server (NTRS)
Mizukami, M.; Saunders, J. D.
1995-01-01
The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a two-dimensional (2D) Navier-Stokes flow solver. Parametric studies were performed on turbulence models, computational grids and bleed models. The computer flowfield was substantially different from the original inviscid design, due to interactions of shocks, boundary layers, and bleed. Good agreement with experimental data was obtained in many aspects. Many of the discrepancies were thought to originate primarily from 3D effects. Therefore, a balance should be struck between expending resources on a high fidelity 2D simulation, and the inherent limitations of 2D analysis. The solutions were fairly insensitive to turbulence models, grids and bleed models. Overall, the k-e turbulence model, and the bleed models based on unchoked bleed hole discharge coefficients or uniform velocity are recommended. The 2D Navier-Stokes methods appear to be a useful tool for the design and analysis of supersonic inlets, by providing a higher fidelity simulation of the inlet flowfield than inviscid methods, in a reasonable turnaround time.
Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; DeBonis, J. R.
1999-01-01
A study of the Trailblazer vehicle inlet was conducted using the Global Air Sampling Program (GASP) code for flight Mach numbers ranging from 4-12. Both perfect gas and finite rate chemical analysis were performed with the intention of making detailed comparisons between the two results. Inlet performance was assessed using total pressure recovery and kinetic energy efficiency. These assessments were based upon a one-dimensional stream-thrust-average of the axisymmetric flowfield. Flow visualization utilized to examine the detailed shock structures internal to this mixed-compression inlet. Kinetic energy efficiency appeared to be the least sensitive to differences between the perfect gas and finite rate chemistry results. Total pressure recovery appeared to be the most sensitive discriminator between the perfect gas and finite rate chemistry results for flight Mach numbers above Mach 6. Adiabatic wall temperature was consistently overpredicted by the perfect gas model for flight Mach numbers above Mach 4. The predicted shock structures were noticeably different for Mach numbers from 6-12. At Mach 4, the perfect gas and finite rate chemistry models collapse to the same result.
CFD analyses of coolant channel flowfields
NASA Technical Reports Server (NTRS)
Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.
Investigations of flowfields found in typical combustor geometries
NASA Technical Reports Server (NTRS)
Lilley, D. G.
1984-01-01
Studies are concerned with experimental and theoretical research on 2-D axisymmetric geometries under low speed, nonreacting, turbulent, swirling flow conditions. The flow enters the test section and proceeds into a larger chamber (the linear expansion ratio D/d = 2, 1.5 and 1) via a sudden or gradual expansion (side wall angle alpha = 90 and 45 degrees). A weak or strong nozzle (of area ratio A/a = 2 and 4) may be positioned downstream at x/D = 2 to form a contraction exit to the test section. Inlet swirl vanes are adjustable to a variety of vane angles with values of theta = 0, 38, 45, 60 and 70 degrees being emphasized. The objective is to determine the effect of these parameters on isothermal flow field patterns, time mean velocities and turbulence quantities, and to establish an improved simulation in the form of a computer prediction code equipped with a suitable turbulence model. The goal of the on going research is to perform experiments and complementary computations with the idea of doing the necessary type of research that will yield improved calculation capability. This involves performing experiments where time mean turbulence quantities are measured and taking input conditions and running an existing prediction code for a variety of test cases so as to compare predictions against experiment.
Aerodynamic Measurements at Low Raynolds Numbers for Fixed Wing Micro-Air Vehicles
2000-04-01
effect on the drag and lift characteristics of a 3D three-dimensional (wing) cambered Eppler 61 airfoil /wing. A/D analog-to-digital TE trailing edge...interest in the studies before 1996. Bums also studied the flowfield over the Eppler 61 Also, most of the studies were for relatively thick airfoils ...relatively thin airfoils studied were the tographs. Figure 7 shows the effect of changing the angle Eppler 61 and Pfenninger 048 airfoils . The Eppler 61 , of
NASA Technical Reports Server (NTRS)
Naumowicz, Tim; Hange, Craig; Olson, Lawrence E. (Technical Monitor)
1998-01-01
An external environment test for an AV-8B Harrier during hover and vertical operations was conducted at NAWCAD at Patuxent River, Maryland in July 1997. Four boundary layer rakes were instrumented with static and total pressures, and thermocouples for measuring temperatures. These rakes were installed at 30, 50, 75, and 100 foot from the hover center. The 50 ft and 100 ft rakes were offset 20 deg from the other two to minimize interference effects. In order to measure a complete flowfield footprint, it was necessary to have the Harrier change its heading relative to the rakes from 0 to 180 deg. A 20 deg increment in azimuth was used. This permitted the four rakes to measure the flowfield at 72 locations relative to the aircraft. However, as the Harrier burns fuel, the hover thrust must be reduced by the pilot in order to maintain a constant height above ground. The typical test procedure employed was: (1) vertical takeoff at an initial heading; (2) 20 second hover dwell at that heading; (3) pedal turn to a second heading, followed by a 20 second dwell hover; (4) pedal turn to a third heading, followed by a 20 second dwell hover; and (5) vertical landing at the third heading. Additional information is contained in the original extended abstract.
3D automatic Cartesian grid generation for Euler flows
NASA Technical Reports Server (NTRS)
Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.
1993-01-01
We describe a Cartesian grid strategy for the study of three dimensional inviscid flows about arbitrary geometries that uses both conventional and CAD/CAM surface geometry databases. Initial applications of the technique are presented. The elimination of the body-fitted constraint allows the grid generation process to be automated, significantly reducing the time and effort required to develop suitable computational grids for inviscid flowfield simulations.
Numerical Investigation of Double-Cone Flows with High Enthalpy Effects
NASA Astrophysics Data System (ADS)
Nompelis, I.; Candler, G. V.
2009-01-01
A numerical study of shock/shock and shock/boundary layer interactions generated by a double-cone model that is placed in a hypersonic free-stream is presented. Computational results are compared with the experimental measurements made at the CUBRC LENS facility for nitrogen flows at high enthalpy conditions. The CFD predictions agree well with surface pressure and heat-flux measurements for all but one of the double-cone cases that have been studied by the authors. Unsteadiness is observed in computations of one of the LENS cases, however for this case the experimental measurements show that the flowfield is steady. To understand this discrepancy, several double-cone experiments performed in two different facilities with both air and nitrogen as the working gas are examined in the present study. Computational results agree well with measurements made in both the AEDC tunnel 9 and the CUBRC LENS facility for double-cone flows at low free-stream Reynolds numbers where the flow is steady. It is shown that at higher free- stream pressures the double-cone simulations develop instabilities that result in an unsteady separation.
The Flowfield Characteristics of a Mach 2 Diamond Jet
NASA Technical Reports Server (NTRS)
Washington, Donnell; Alvi, Farrukh S.; Krothapalli, Anjanevulu
1997-01-01
The potential for using a novel diamond-shaped nozzle which may allow for superior mixing characteristics of supersonic jets without significant thrust losses is explored. The results of flow visualization and pressure measurements indicate the presence of distinct structures in the shear layers, not normally observed in shear layers of axisymmetric and rectangular jets. As characteristics of these features suggests that they are a manifestation of significant streamwise vorticity in the shear layers. Despite the distinct nature of the flowfield structure of the present shear layer, the global growth rates of this shear layer were found to be very similar to its two-dimensional and axisymmetric counterparts. These and other observations suggest that the presence of streamwise vorticity may not play a significant role in the global development of a compressible shear layer.
CFD analyses of coolant channel flowfields
NASA Technical Reports Server (NTRS)
Yagley, J. A.; Feng, J.; Merkle, Charles L.
1993-01-01
The flowfield characteristics in a rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so fully developed conditions are reached. The supercritical hydrogen coolant introduces strong property variations that have a major influence on the developing flow and the resulting heat transfer. Comparisons of constant and variable property solutions show substantial differences. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel.
On the prediction of swirling flowfields found in axisymmetric combustor geometries
NASA Technical Reports Server (NTRS)
Rhode, D. L.; Lilley, D. G.; Mclaughlin, D. K.
1981-01-01
The paper reports research restricted to steady turbulence flow in axisymmetric geometries under low speed and nonreacting conditions. Numerical computations are performed for a basic two-dimensional axisymmetrical flow field similar to that found in a conventional gas turbine combustor. Calculations include a stairstep boundary representation of the expansion flow, a conventional k-epsilon turbulence model and realistic accomodation of swirl effects. A preliminary evaluation of the accuracy of computed flowfields is accomplished by comparisons with flow visualizations using neutrally-buoyant helium-filled soap bubbles as tracer particles. Comparisons of calculated results show good agreement, and it is found that a problem in swirling flows is the accuracy with which the sizes and shapes of the recirculation zones may be predicted, which may be attributed to the quality of the turbulence model.
The Isolated Synthetic Jet in Crossflow: A Benchmark for Flow Control Simulation
NASA Technical Reports Server (NTRS)
Schaeffler, Norman W.; Jenkins, Luther N.
2006-01-01
An overview of the data acquisition, reduction, and uncertainty of experimental measurements made of the flowfield created by the interaction of an isolated synthetic jet and a turbulent boundary layer is presented. The experimental measurements were undertaken to serve as the second of three computational fluid dynamics validation databases for Active Flow Control. The validation databases were presented at the NASA Langley Research Center Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control in March, 2004. Detailed measurements were made to document the boundary conditions for the flow and also for the phase-averaged flowfield itself. Three component Laser-Doppler Velocimetry, 2-D Particle Image Velocimetry, and Stereo Particle Image Velocimetry were utilized to document the phase-averaged velocity field and the turbulent stresses.
The Isolated Synthetic Jet in Crossflow: A Benchmark for Flow Control Simulation
NASA Technical Reports Server (NTRS)
Schaeffler, Norman W.; Jenkins, Luther N.
2004-01-01
An overview of the data acquisition, reduction, and uncertainty of experimental measurements of the flowfield created by the interaction of an isolated synthetic jet and a turbulent boundary layer is presented. The experimental measurements were undertaken to serve as the second of three computational fluid dynamics validation databases for Active Flow Control. The validation databases were presented at the NASA Langley Research Center Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control in March, 2004. Detailed measurements were made to document the boundary conditions for the flow and also for the phase-averaged flowfield itself. Three component Laser-Doppler Velocimetry, 2-D Particle Image Velocimetry, and Stereo Particle Image Velocimetry were utilized to document the phase averaged velocity field and the turbulent stresses.
Summary of nozzle-exhaust plume flowfield analyses related to space shuttle applications
NASA Technical Reports Server (NTRS)
Penny, M. M.
1975-01-01
Exhaust plume shape simulation is studied, with the major effort directed toward computer program development and analytical support of various plume related problems associated with the space shuttle. Program development centered on (1) two-phase nozzle-exhaust plume flows, (2) plume impingement, and (3) support of exhaust plume simulation studies. Several studies were also conducted to provide full-scale data for defining exhaust plume simulation criteria. Model nozzles used in launch vehicle test were analyzed and compared to experimental calibration data.
Parabolized Navier-Stokes Code for Computing Magneto-Hydrodynamic Flowfields
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B. (Technical Monitor); Tannehill, J. C.
2003-01-01
This report consists of two published papers, 'Computation of Magnetohydrodynamic Flows Using an Iterative PNS Algorithm' and 'Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm'.
Flowfield computation of entry vehicles
NASA Technical Reports Server (NTRS)
Prabhu, Dinesh K.
1990-01-01
The equations governing the multidimensional flow of a reacting mixture of thermally perfect gasses were derived. The modeling procedures for the various terms of the conservation laws are discussed. A numerical algorithm, based on the finite-volume approach, to solve these conservation equations was developed. The advantages and disadvantages of the present numerical scheme are discussed from the point of view of accuracy, computer time, and memory requirements. A simple one-dimensional model problem was solved to prove the feasibility and accuracy of the algorithm. A computer code implementing the above algorithm was developed and is presently being applied to simple geometries and conditions. Once the code is completely debugged and validated, it will be used to compute the complete unsteady flow field around the Aeroassist Flight Experiment (AFE) body.
Heat transfer with very high free stream turbulence
NASA Technical Reports Server (NTRS)
Moffat, Robert J.; Maciejewski, Paul K.
1985-01-01
Stanton numbers as much as 350 percent above the accepted correlations for flat plate turbulent boundary layer heat transfer have been found in experiments on a low velocity air flow with very high turbulence (up to 50 percent). These effects are far larger that have been previously reported and the data do not correlate as well in boundary layer coordinates (Stanton number and Reynolds number) as they do in simpler coordinates: h vs. X. The very high relative turbulence levels were achieved by placing the test plate in different positions in the margin of a large diameter free jet. The large increases may be due to organized structures of large scale which are present in the marginal flowfield around a free jet.
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Ashby, George C., Jr.; Monta, William J.
1992-01-01
A propulsion/airframe integration experiment conducted in the NASA Langley 20-Inch Mach 6 Tunnel using a 16.8-in.-long version of the Langley Test Technique Demonstrator configuration with simulated scramjet propulsion is described. Schlieren and vapor screen visualization of the nozzle flow field is presented and correlated with pitot-pressure flow-field surveys. The data were obtained at nominal free-stream conditions of Re = 2.8 x 10 exp 6 and a nominal engine total pressure of 100 psia. It is concluded that pitot-pressure surveys coupled to schlieren and vapor-screen photographs, and oil flows have revealed flow features including vortices, free shear layers, and shock waves occurring in the model flow field.
Acoustically excited heated jets. 1: Internal excitation
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.
1988-01-01
The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.
Aeroacoustic Characteristics of Supersonic Impinging Jets
NASA Astrophysics Data System (ADS)
Worden, Theodore James
High-speed impinging jets are often generated by the propulsive systems of aerospace launch vehicles and tactical aircraft. In many instances, the presence of these impinging jets creates a hazard for flight operations personnel due to the extremely high noise levels and unsteady loads produced by fluid-surface interaction. In order to effectively combat these issues, a fundamental understanding of the flow physics and dominant acoustic behavior is essential. There are inherent challenges in performing such investigations, especially with the need to simulate the flowfield under realistic operational conditions (temperature, Mach number, etc.) and in configurations that are relevant to full-scale application. A state-of-the-art high-temperature flow facility at Florida State University has provided a unique opportunity to experimentally investigate the high-speed impinging jet flowfield at application-relevant conditions. Accordingly, this manuscript reports the findings of several experimental studies on high-temperature supersonic impinging jets in multiple configurations. The overall objective of these studies is to characterize the complex relationship between the hydrodynamic and acoustic fields. A fundamental parametric investigation has been performed to document the flowfield and acoustic characteristics of an ideally-expanded supersonic air jet impinging onto a semi-infinite flat plate at ambient and heated jet conditions. The experimental program has been designed to span a widely-applicable geometric parameter space, and as such, an extensive database of the flow and acoustic fields has been developed for impingement distances in the range 1d to 12d, impingement angles in the range 45 degrees to 90 degrees, and jet stagnation temperatures from 289K to 811K (TTR = 1.0 to 2.8). Measurements include point-wise mean and unsteady pressure on the impingement surface, time-resolved shadowgraphy of the flowfield, and fully three-dimensional near field acoustics. Aside from detailed documentation of the flow and acoustic fields, this work aims to develop a physical understanding of the noise sources generated by impingement. Correlation techniques are employed to localize and quantify the spatial extent of broadband noise sources in the near-impingement region and to characterize their frequency content. Additionally, discrete impingement tones are documented for normal and oblique incidence angles, and an empirical model of the tone frequencies has been developed using velocity data extracted from time-resolved shadowgraphy together with a simple modification to the conventional feedback formula to account for non-normal incidence. Two application-based studies have also been undertaken. In simulating a vertical take-off and landing aircraft in hover, the first study of a normally-impinging jet outfitted with lift-plate characterizes the flow-acoustic interaction between the high-temperature jet and the underside of an aircraft and documents the effectiveness of an active flow control technique known as `steady microjet injection' to mitigate high noise levels and unsteady phenomena. The second study is a detailed investigation of the jet blast deflector/carrier deck configuration aimed at gaining a better understanding of the noise field generated by a jet operating on a flight deck. The acoustic directionality and spectral characteristics are documented for a model-scale carrier deck with particular focus on locations that are pertinent to flight operations personnel.
CFD flowfield simulation of Delta Launch Vehicles in a power-on configuration
NASA Technical Reports Server (NTRS)
Pavish, D. L.; Gielda, T. P.; Soni, B. K.; Deese, J. E.; Agarwal, R. K.
1993-01-01
This paper summarizes recent work at McDonnell Douglas Aerospace (MDA) to develop and validate computational fluid dynamic (CFD) simulations of under expanded rocket plume external flowfields for multibody expendable launch vehicles (ELVs). Multi engine reacting gas flowfield predictions of ELV base pressures are needed to define vehicle base drag and base heating rates for sizing external nozzle and base region insulation thicknesses. Previous ELV design programs used expensive multibody power-on wind tunnel tests that employed chamber/nozzle injected high pressure cold or hot-air. Base heating and pressure measurements were belatedly made during the first flights of past ELV's to correct estimates from semi-empirical engineering models or scale model tests. Presently, CFD methods for use in ELV design are being jointly developed at the Space Transportation Division (MDA-STD) and New Aircraft Missiles Division (MDA-NAMD). An explicit three dimensional, zonal, finite-volume, full Navier-Stokes (FNS) solver with finite rate hydrocarbon/air and aluminum combustion kinetics was developed to accurately compute ELV power-on flowfields. Mississippi State University's GENIE++ general purpose interactive grid generation code was chosen to create zonal, finite volume viscous grids. Axisymmetric, time dependent, turbulent CFD simulations of a Delta DSV-2A vehicle with a MB-3 liquid main engine burning RJ-1/LOX were first completed. Hydrocarbon chemical kinetics and a k-epsilon turbulence model were employed and predictions were validated with flight measurements of base pressure and temperature. Zonal internal/external grids were created for a Delta DSV-2C vehicle with a MB-3 and three Castor-1 solid motors burning and a Delta-2 with an RS-27 main engine (LOX/RP-1) and 9 GEM's attached/6 burning. Cold air, time dependent FNS calculations were performed for DSV-2C during 1992. Single phase simulations that employ finite rate hydrocarbon and aluminum (solid fuel) combustion chemistry are currently in progress. Reliable and efficient Eulerian algorithms are needed to model two phase (solid-gas) momentum and energy transfer mechanisms for solid motor fuel combustion products.
Winship, I R; Wylie, D R
2001-11-01
The responses of neurons in the medial column of the inferior olive to translational and rotational optic flow were recorded from anaesthetized pigeons. Panoramic translational or rotational flowfields were produced by mechanical devices that projected optic flow patterns onto the walls, ceiling and floor of the room. The axis of rotation/translation could be positioned to any orientation in three-dimensional space such that axis tuning could be determined. Each neuron was assigned a vector representing the axis about/along which the animal would rotate/translate to produce the flowfield that elicited maximal modulation. Both translation-sensitive and rotation-sensitive neurons were found. For neurons responsive to translational optic flow, the preferred axis is described with reference to a standard right-handed coordinate system, where +x, +y and +z represent rightward, upward and forward translation of the animal, respectively (assuming that all recordings were from the right side of the brain). t(+y) neurons were maximally excited in response to a translational optic flowfield that results from self-translation upward along the vertical (y) axis. t(-y) neurons also responded best to translational optic flow along the vertical axis but showed the opposite direction preference. The two remaining groups, t(-x+z) and t(-x-z) neurons, responded best to translational optic flow along horizontal axes that were oriented 45 degrees to the midline. There were two types of neurons responsive to rotational optic flow: rVA neurons preferred rotation about the vertical axis, and rH135c neurons preferred rotation about a horizontal axis at 135 degrees contralateral azimuth. The locations of marking lesions indicated a clear topographical organization of the six response types. In summary, our results reinforce that the olivo-cerebellar system dedicated to the analysis of optic flow is organized according to a reference frame consisting of three approximately orthogonal axes: the vertical axis, and two horizontal axes oriented 45 degrees to either side the midline. Previous research has shown that the eye muscles, vestibular semicircular canals and postural control system all share a similar spatial frame of reference.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1994-01-01
The primary accomplishments of the project were as follows: (1) From an overall standpoint, the primary accomplishment of this research was the development of a complete gasdynamic-radiatively coupled nonequilibrium viscous shock layer solution method for axisymmetric blunt bodies. This method can be used for rapid engineering modeling of nonequilibrium re-entry flowfields over a wide range of conditions. (2) Another significant accomplishment was the development of an air radiation model that included local thermodynamic nonequilibrium (LTNE) phenomena. (3) As part of this research, three electron-electronic energy models were developed. The first was a quasi-equilibrium electron (QEE) model which determined an effective free electron temperature and assumed that the electronic states were in equilibrium with the free electrons. The second was a quasi-equilibrium electron-electronic (QEEE) model which computed an effective electron-electronic temperature. The third model was a full electron-electronic (FEE) differential equation model which included convective, collisional, viscous, conductive, vibrational coupling, and chemical effects on electron-electronic energy. (4) Since vibration-dissociation coupling phenomena as well as vibrational thermal nonequilibrium phenomena are important in the nonequilibrium zone behind a shock front, a vibrational energy and vibration-dissociation coupling model was developed and included in the flowfield model. This model was a modified coupled vibrational dissociation vibrational (MCVDV) model and also included electron-vibrational coupling. (5) Another accomplishment of the project was the usage of the developed models to investigate radiative heating. (6) A multi-component diffusion model which properly models the multi-component nature of diffusion in complex gas mixtures such as air, was developed and incorporated into the blunt body model. (7) A model was developed to predict the magnitude and characteristics of the shock wave precursor ahead of vehicles entering the Earth's atmosphere. (8) Since considerable data exists for radiating nonequilibrium flow behind normal shock waves, a normal shock wave version of the blunt body code was developed. (9) By comparing predictions from the models and codes with available normal shock data and the flight data of Fire II, it is believed that the developed flowfield and nonequilibrium radiation models have been essentially validated for engineering applications.
CFD flowfield simulation of Delta Launch Vehicles in a power-on configuration
NASA Astrophysics Data System (ADS)
Pavish, D. L.; Gielda, T. P.; Soni, B. K.; Deese, J. E.; Agarwal, R. K.
1993-07-01
This paper summarizes recent work at McDonnell Douglas Aerospace (MDA) to develop and validate computational fluid dynamic (CFD) simulations of under expanded rocket plume external flowfields for multibody expendable launch vehicles (ELVs). Multi engine reacting gas flowfield predictions of ELV base pressures are needed to define vehicle base drag and base heating rates for sizing external nozzle and base region insulation thicknesses. Previous ELV design programs used expensive multibody power-on wind tunnel tests that employed chamber/nozzle injected high pressure cold or hot-air. Base heating and pressure measurements were belatedly made during the first flights of past ELV's to correct estimates from semi-empirical engineering models or scale model tests. Presently, CFD methods for use in ELV design are being jointly developed at the Space Transportation Division (MDA-STD) and New Aircraft Missiles Division (MDA-NAMD). An explicit three dimensional, zonal, finite-volume, full Navier-Stokes (FNS) solver with finite rate hydrocarbon/air and aluminum combustion kinetics was developed to accurately compute ELV power-on flowfields. Mississippi State University's GENIE++ general purpose interactive grid generation code was chosen to create zonal, finite volume viscous grids. Axisymmetric, time dependent, turbulent CFD simulations of a Delta DSV-2A vehicle with a MB-3 liquid main engine burning RJ-1/LOX were first completed. Hydrocarbon chemical kinetics and a k-epsilon turbulence model were employed and predictions were validated with flight measurements of base pressure and temperature. Zonal internal/external grids were created for a Delta DSV-2C vehicle with a MB-3 and three Castor-1 solid motors burning and a Delta-2 with an RS-27 main engine (LOX/RP-1) and 9 GEM's attached/6 burning. Cold air, time dependent FNS calculations were performed for DSV-2C during 1992. Single phase simulations that employ finite rate hydrocarbon and aluminum (solid fuel) combustion chemistry are currently in progress. Reliable and efficient Eulerian algorithms are needed to model two phase (solid-gas) momentum and energy transfer mechanisms for solid motor fuel combustion products.
The Influence of Viscous Effects on Ice Accretion Prediction and Airfoil Performance Predictions
NASA Technical Reports Server (NTRS)
Kreeger, Richard E.; Wright, William B.
2005-01-01
A computational study was conducted to evaluate the effectiveness of using a viscous flow solution in an ice accretion code and the resulting accuracy of aerodynamic performance prediction. Ice shapes were obtained for one single-element and one multi-element airfoil using both potential flow and Navier-Stokes flowfields in the LEWICE ice accretion code. Aerodynamics were then calculated using a Navier-Stokes flow solver.
Passive Turbulence Generating Grid Arrangements in a Turbine Cascade Wind Tunnel
2015-01-01
mean square of free stream velocity μ = flow viscosity I. Introduction and Background Turbine Cascade Wind Tunnels ( CWT ) are...closed-loop CWT . Turbine cascade facilities are used to simulate turbine operating conditions for the study of flow phenomena such as 2 boundary layer...A CWT test section inlet must have uniform flowfield properties. The inlet conditions of interest upstream of the cascade include velocity and
Flowfield Comparisons from Three Navier-Stokes Solvers for an Axisymmetric Separate Flow Jet
NASA Technical Reports Server (NTRS)
Koch, L. Danielle; Bridges, James; Khavaran, Abbas
2002-01-01
To meet new noise reduction goals, many concepts to enhance mixing in the exhaust jets of turbofan engines are being studied. Accurate steady state flowfield predictions from state-of-the-art computational fluid dynamics (CFD) solvers are needed as input to the latest noise prediction codes. The main intent of this paper was to ascertain that similar Navier-Stokes solvers run at different sites would yield comparable results for an axisymmetric two-stream nozzle case. Predictions from the WIND and the NPARC codes are compared to previously reported experimental data and results from the CRAFT Navier-Stokes solver. Similar k-epsilon turbulence models were employed in each solver, and identical computational grids were used. Agreement between experimental data and predictions from each code was generally good for mean values. All three codes underpredict the maximum value of turbulent kinetic energy. The predicted locations of the maximum turbulent kinetic energy were farther downstream than seen in the data. A grid study was conducted using the WIND code, and comments about convergence criteria and grid requirements for CFD solutions to be used as input for noise prediction computations are given. Additionally, noise predictions from the MGBK code, using the CFD results from the CRAFT code, NPARC, and WIND as input are compared to data.
A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control
Li, Shifeng; Fozdar, David Y.; Ali, Mehnaaz F.; Li, Hao; Shao, Dongbing; Vykoukal, Daynene M.; Vykoukal, Jody; Floriano, Pierre N.; Olsen, Michael; McDevitt, John T.; Gascoyne, Peter R.C.; Chen, Shaochen
2009-01-01
This paper presents a continuous-flow polymerase chain reaction (PCR) microchip with a serpentine microchannel of varying width for “regional velocity control.” Varying the channel width by incorporating expanding and contracting conduits made it possible to control DNA sample velocities for the optimization of the exposure times of the sample to each temperature phase while minimizing the transitional periods during temperature transitions. A finite element analysis (FEA) and semi-analytical heat transfer model was used to determine the distances between the three heating assemblies that are responsible for creating the denaturation (96 °C), hybridization (60 °C), and extension (72 °C) temperature zones within the microchip. Predictions from the thermal FEA and semi-analytical model were compared with temperature measurements obtained from an infrared (IR) camera. Flow-field FEAs were also performed to predict the velocity distributions in the regions of the expanding and contracting conduits to study the effects of the microchannel geometry on flow recirculation and bubble nucleation. The flow fields were empirically studied using micro particle image velocimetry (μ-PIV) to validate the flow-field FEA’s and to determine experimental velocities in each of the regions of different width. Successful amplification of a 90 base pair (bp) bacillus anthracis DNA fragment was achieved. PMID:19829760
Development of artificial meteor for observation of upper atmosphere
NASA Astrophysics Data System (ADS)
Watanabe, Masaki; Sahara, Hironori; Abe, Shinsuke; Watanabe, Takeo; Nojiri, Yuta; Okajima, Lena
2016-04-01
This study proposes a method for the observation of the upper atmosphere using an artificial meteor injected by a mass driver installed on a microsatellite. The mass driver injects a pill at a velocity of 200 m/s and deorbits it into the atmosphere. The emission of the pill can then be observed from the ground at the necessary time and location. This approach could contribute to a better understanding of the global environment as well as different aspects of astronomy and planetary science. To realize the proposed method, the required size and emission of the pill have to be determined. Therefore, we conducted flow-field simulations, spectroscopic estimations, and an experiment on an artificial meteor in the arc heater wind tunnel at the Institute of Space and Astronautical Science in the Japan Aerospace Exploration Agency (ISAS/JAXA). From the results, we confirmed that the light emission could be observed as a shooting star by the naked eye and thus verified the feasibility of the method.
Inlet Aerodynamics and Ram Drag of Laser-Propelled Lightcraft Vehicles
NASA Astrophysics Data System (ADS)
Langener, Tobias; Myrabo, Leik; Rusak, Zvi
2010-05-01
Numerical simulations are used to study the aerodynamic inlet properties of three axisymmetric configurations of laser-propelled Lightcraft vehicles operating at subsonic, transonic and supersonic speeds up to Mach 5. The 60 cm vehicles were sized for launching 0.1-1.0 kg nanosatellites with combined-cycle airbreathing/rocket engines, transitioning between propulsion modes at roughly Mach 5-6. Results provide the pressure, temperature, density, and velocity flowfields around and through the three representative vehicle/engine configurations, as well as giving the resulting ram drag and total drag coefficients—all as a function of flight Mach number. Simulations with rotating boundaries were also carried out, since for stability reasons, Lightcraft are normally spun up before lift-off. Given the three alternatives, it is demonstrated that the optimal geometry for minimum drag is the configuration with a parabola nose; hence, these inlet flow conditions are being applied in subsequent "direct connect" 2D laser propulsion experiments in a small transonic flow facility.
Feasibility Study of Laboratory Simulation of Single-Stage-to-Orbit Vehicle Base Heating
NASA Technical Reports Server (NTRS)
Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)
1995-01-01
The feasibility of simulating in a laboratory the heating environment of the base region of the proposed reusable single-stage-to-orbit vehicle during its ascent is examined. The propellant is assumed to consist of hydrocarbon (RP1), liquid hydrogen (LH2), and liquid oxygen (LO2), which produces CO and H2 as the main combustible components of the exhaust effluent. Since afterburning in the recirculating region can dictate the temperature of the base flowfield and ensuing heating phenomena, laboratory simulation focuses on the thermochemistry of the afterburning. By extrapolating the Saturn V flight data, the Damkohler number, in the base region with afterburning for SSTO vehicle, is estimated to be between 30 and 140. It is shown that a flow with a Damkohler number of 1.8 to 25 can be produced in an impulse ground test facility. Even with such a reduced Damkohler number, the experiment can adequately reproduce the main features of the flight environment.
Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements
NASA Astrophysics Data System (ADS)
Kurt, Melike; Moored, Keith
2017-11-01
In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.
NASA Technical Reports Server (NTRS)
Kumar, A.; Graves, R. A., Jr.
1980-01-01
A user's guide is provided for a computer code which calculates the laminar and turbulent hypersonic flows about blunt axisymmetric bodies, such as spherically blunted cones, hyperboloids, etc., at zero and small angles of attack. The code is written in STAR FORTRAN language for the CDC-STAR-100 computer. Time-dependent, viscous-shock-layer-type equations are used to describe the flow field. These equations are solved by an explicit, two-step, time asymptotic, finite-difference method. For the turbulent flow, a two-layer, eddy-viscosity model is used. The code provides complete flow-field properties including shock location, surface pressure distribution, surface heating rates, and skin-friction coefficients. This report contains descriptions of the input and output, the listing of the program, and a sample flow-field solution.
NASA Technical Reports Server (NTRS)
Zoby, E. V.
1981-01-01
An engineering method has been developed for computing the windward-symmetry plane convective heat-transfer rates on Shuttle-like vehicles at large angles of attack. The engineering code includes an approximate inviscid flowfield technique, laminar and turbulent heating-rate expressions, an approximation to account for the variable-entropy effects on the surface heating and the concept of an equivalent axisymmetric body to model the windward-ray flowfields of Shuttle-like vehicles at angles of attack from 25 to 45 degrees. The engineering method is validated by comparing computed heating results with corresponding experimental data measured on Shuttle and advanced transportation models over a wide range of flow conditions and angles of attack from 25 to 40 degrees and also with results of existing prediction techniques. The comparisons are in good agreement.
Mean flowfields in axisymmetric combustor geometries with swirl
NASA Astrophysics Data System (ADS)
Rhode, D. L.; Lilley, D. G.; McLaughlin, D. K.
1982-01-01
Six flowfield configurations are investigated with sidewall angles of 90 and 45 deg, and swirl vane angles of 0, 45, and 70 deg. It is found that central recirculation zones occur for the swirling flow cases investigated, which extend from the inlet to x/D = 1.7, where x is the axial polar coordinate, and D is the test section diameter. Five-hole pitot probe pressure measurements are used to determine time-mean velocities, and corresponding flow situations are predicted and compared to results of experimental data. Excellent agreement is found for the nonswirling flow, although poor agreement is found for swirling flow cases, especially near the inlet. The discrepancy is attributed to the lack of realism in the turbulence model, and/or to inaccurate specification of time-mean velocity and turbulence energy distributions at the inlet.
Aerodynamic Classification of Swept-Wing Ice Accretion
NASA Technical Reports Server (NTRS)
Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.
2013-01-01
The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current stateof- the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of "nominally 3D" or "highly 3D" horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.
Aerodynamic Classification of Swept-Wing Ice Accretion
NASA Technical Reports Server (NTRS)
Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.
2013-01-01
The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current state-of-the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of nominally 3D or highly 3D horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.
Numerical Investigation of the Interaction of Counterflowing Jets and Supersonic Capsule Flows
NASA Technical Reports Server (NTRS)
Venkatachari, Balaji Shankar; Ito, Yasushi; Cheng, Gary; Chang, Chau-Lyan
2011-01-01
Use of counterflowing jets ejected into supersonic freestreams as a flow control concept to modify the external flowfield has gained renewed interest with regards to potential retropropulsion applications pertinent to entry, descent, and landing investigations. This study describes numerical computations of such a concept for a scaled wind-tunnel capsule model by employing the space-time conservation element solution element viscous flow solver with unstructured meshes. Both steady-state and time-accurate computations are performed for several configurations with different counterflowing jet Mach numbers. Axisymmetric computations exploring the effect of the jet flow rate and jet Mach number on the flow stability, jet interaction with the bow shock and its subsequent impact on the aerodynamic and aerothermal loads on the capsule body are carried out. Similar to previous experimental findings, both long and short penetration modes exist at a windtunnel Mach number of 3.48. It was found that both modes exhibit non-stationary behavior and the former is much more unstable than the latter. It was also found that the unstable long penetration mode only exists in a relatively small range of the jet mass flow rate. Solution-based mesh refinement procedures are used to improve solution accuracy and provide guidelines for a more effective mesh generation procedure for parametric studies. Details of the computed flowfields also serve as a means to broaden the knowledge base for future retropropulsion design studies.
Development and application of theoretical models for Rotating Detonation Engine flowfields
NASA Astrophysics Data System (ADS)
Fievisohn, Robert
As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new tool to conduct large-scale parametric studies to optimize a design space before conducting computationally-intensive, high-fidelity simulations that may be used to examine additional effects. The work presented in this thesis not only bridges the gap between simple one-dimensional models and high-fidelity full numerical simulations, but it also provides an effective tool for understanding and exploring RDE flow processes.
Computational Relativistic Astrophysics Using the Flowfield-Dependent Variation Theory
NASA Technical Reports Server (NTRS)
Richardson, G. A.; Chung, T. J.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Theoretical models, observations and measurements have preoccupied astrophysicists for many centuries. Only in recent years, has the theory of relativity as applied to astrophysical flows met the challenges of how the governing equations can be solved numerically with accuracy and efficiency. Even without the effects of relativity, the physics of magnetohydrodynamic flow instability, turbulence, radiation, and enhanced transport in accretion disks has not been completely resolved. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks and also in the study of Gamma-Ray bursts (GRB). Thus, our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flowfield-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for Computational Relativistic Astrophysics (CRA) are demonstrated.
Modeling of high speed chemically reacting flow-fields
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Carpenter, Mark H.; Kamath, H.
1989-01-01
The SPARK3D and SPARK3D-PNS computer programs were developed to model 3-D supersonic, chemically reacting flow-fields. The SPARK3D code is a full Navier-Stokes solver, and is suitable for use in scramjet combustors and other regions where recirculation may be present. The SPARK3D-PNS is a parabolized Navier-Stokes solver and provides an efficient means of calculating steady-state combustor far-fields and nozzles. Each code has a generalized chemistry package, making modeling of any chemically reacting flow possible. Research activities by the Langley group range from addressing fundamental theoretical issues to simulating problems of practical importance. Algorithmic development includes work on higher order and upwind spatial difference schemes. Direct numerical simulations employ these algorithms to address the fundamental issues of flow stability and transition, and the chemical reaction of supersonic mixing layers and jets. It is believed that this work will lend greater insight into phenomenological model development for simulating supersonic chemically reacting flows in practical combustors. Currently, the SPARK3D and SPARK3D-PNS codes are used to study problems of engineering interest, including various injector designs and 3-D combustor-nozzle configurations. Examples, which demonstrate the capabilities of each code are presented.
Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
2005-01-01
Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.
2013-01-01
A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.
The AFFDL-Nielsen Flow-Field Study
1976-04-01
76-18 1.0 INTRODUCTION This investigation was conducted in the von K ~ n Gas Dynamics Facility (VKF) Supersonic Wind Tunnel (A) for Nielsen...flow field-surveys, using a cone probe rake to determine the local velocity field; (2) pressure distributions on a store model; and (3) force and...moment data on a store model. In addition, free-stream (interference-free) data were obtained with the probe rake and on the force and pressure store
Response Surface Methods for Spatially-Resolved Optical Measurement Techniques
NASA Technical Reports Server (NTRS)
Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.
2003-01-01
Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatial ly-re solved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/-30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-light, inflatable space antenna at NASA Langley Research Center.
Investigation of low-speed turbulent separated flow around airfoils
NASA Technical Reports Server (NTRS)
Wadcock, Alan J.
1987-01-01
Described is a low-speed wind tunnel experiment to measure the flowfield around a two-dimensional airfoil operating close to maximum lift. Boundary layer separation occurs on the upper surface at x/c=0.85. A three-component laser velocimeter, coupled with a computer-controlled data acquisition system, was used to obtain three orthogonal mean velocity components and three components of the Reynolds stress tensor in both the boundary layer and wake of the airfoil. Pressure distributions on the airfoil, skin friction distribution on the upper surface of the airfoil, and integral properties of the airfoil boudary layer are also documented. In addition to these near-field flow properties, static pressure distributions, both upstream and downstream from the airfoil and on the walls of the wind tunnel, are also presented.
Computation of shock wave/target interaction
NASA Technical Reports Server (NTRS)
Mark, A.; Kutler, P.
1983-01-01
Computational results of shock waves impinging on targets and the ensuing diffraction flowfield are presented. A number of two-dimensional cases are computed with finite difference techniques. The classical case of a shock wave/cylinder interaction is compared with shock tube data and shows the quality of the computations on a pressure-time plot. Similar results are obtained for a shock wave/rectangular body interaction. Here resolution becomes important and the use of grid clustering techniques tend to show good agreement with experimental data. Computational results are also compared with pressure data resulting from shock impingement experiments for a complicated truck-like geometry. Here of significance are the grid generation and clustering techniques used. For these very complicated bodies, grids are generated by numerically solving a set of elliptic partial differential equations.
Analysis of Test Case Computations and Experiments for the First Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Schuster, David M.; Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel
2013-01-01
This paper compares computational and experimental data from the Aeroelastic Prediction Workshop (AePW) held in April 2012. This workshop was designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems and to identify computational and experimental areas needing additional research and development. Three subject configurations were chosen from existing wind-tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations, and results from all of these computations were compared at the workshop.
[Low-Frequency Flow Oscillation
NASA Technical Reports Server (NTRS)
Bragg, Michael B.
1997-01-01
The results of the research conducted under this grant are presented in detail in three Master theses, by Heinrich, Balow, and Broeren. Additional analysis of the experimental data can be found in two AIAA Journal articles and two conference papers. Citations for all of the studies' publications can be found in the bibliography which is attached. The objective of Heinrich's study was to document the low-frequency flow oscillation on the LRN-1007 airfoil, which had been previously observed at low Reynolds number, to determine its origin, and explore the phenomenon at higher Reynolds number. Heinrich performed detailed flow visualization on the airfoil using surface fluorescent oil and laser-sheet off-body visualization. A large leading-edge separation bubble and trailing-edge separation was identified on the airfoil just prior to the onset of the unsteady stall flow oscillation. From the laser-sheet data, the unsteady flow appeared as a massive boundary-layer separation followed by flow reattachment. Hot-wire data were taken in the wake to identify the presence of the flow oscillation and the dominant frequency. The oscillation was found in the flow from a Reynolds number of 0.3 to 1.3 x 10 exp 6. The Strouhal number based on airfoil projected height was nominally 0.02 and increased slightly with increasing Reynolds number and significantly with increasing airfoil angle of attack. Balow focused his research on the leading-edge separation bubble which was hypothesized to be the origin of the low-frequency oscillation. Initially, experimental measurements in the bubble at the onset of the low-frequency oscillation were attempted to study the characteristics of the bubble and explain possible relationships to the shear-layer-flapping phenomena. Unfortunately, the bubble proved to be extremely sensitive to the probe interference and it drastically reduced the size of the bubble. These detailed measurements were then abandoned by Balow. However, this led to a series of tests where the leading-edge bubble and trailing-edge separation were altered and the affect on the flow-oscillation studied. Balow found that by tripping the airfoil boundary-layer with "zigzag" tape ahead of bubble separation, the bubble was effectively eliminated mid the oscillation suppressed. Wake survey drag measurements showed a drastic reduction in airfoil drag when the bubble and oscillation were eliminated. Using the "zigzag" tape, the trailing-edge separation was moved downstream approximately 5 percent chord. This was found to reduce the amplitude of the oscillation, particularly in the onset stage at low angle of attack (around 14 degrees). Through detailed analysis of the wake behind the airfoil during the unsteady flow oscillation, Balow provided a better understanding of the wake flowfield. Broeren studied the oscillating flowfield in detail at Reynolds number equal 3 x 10 exp 5 and an angle of attack of 15 degrees using laser Doppler velocimetry (LDV). Two-dimensional LDV data were acquired at 687 grid points above the model upper surface while hot-wire data were taken simultaneously in the wake. Using the hot-wire signal, the LDV data were phase averaged into 24 bins to represent a single ensemble average of one oscillation cycle. The velocity data showed a flowfield oscillation that could be divided into three flow regimes. In the first regime, the flow over the airfoil was completely separated initially, the flowfield reattached from the leading edge and the reattachment point moved downstream with increasing time or phase. Broeren referred to this as the reattachment regime. The bubble development regime followed, where a leading-edge separation bubble formed at the leading edge and grew with increasing time. During the initial part of this regime the trailing-edge separation continued to move downstream. However, during the last 30 degrees of phase the trailing-edge separation moved rapidly forward and appeared to merge with the leading-edge bubble. During the third regime, the separation regime, the flow was segmented from the airfoil leading edge and did not reattach to the airfoil surface. The reverse flow was seen to grow in vertical extent up from the model surface as the phase increased. Next reattachment began again at the leading edge signaling the start of the reattachment regime, and so the cycle continued. From Broeren's work, the details of the unsteady flowfield over the airfoil were seen for the first time. From this research a great deal has been learned about the low-frequency flow oscillation which naturally occurs on the LRN-1007 airfoil near stall. The oscillation was seen to persist at higher Reynolds number, the dependence of the Strouhal number on angle of attack and Reynolds number were discovered, the critical role played by the laminar bubble was shown and the entire upper surface flowfield during a flow oscillation cycle was measured and analyzed. What still eludes understanding is the scaling of the flow oscillation and why certain airfoils, such as the LRN, have a very strong low-frequency mode and other airfoils exhibit no organized low-frequency oscillation at all.
Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Lee, Sam; Shah, Gautam H.; Murphy, Patrick C.
2012-01-01
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5 percent scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from alpha = -5deg to 85deg and beta = -45 deg to 45 deg at a Reynolds number of 0.24 x10(exp 6) and Mach number of 0.06. The 3.5 percent scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5 percent scale GTM. The addition of the large, glaze-horn type ice shapes did result in an increase in airplane drag coefficient but had little effect on the lift and pitching moment. The lateral-directional characteristics showed mixed results with a small effect of the ice shapes observed in some cases. The flow visualization images revealed the presence and evolution of a spanwise-running vortex on the wing that was the dominant feature of the flowfield for both clean and iced configurations. The lack of ice-induced performance and flowfield effects observed in this effort was likely due to Reynolds number effects for the clean configuration. Estimates of full-scale baseline performance were included in this analysis to illustrate the potential icing effects.
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1986-01-01
An explicit-implicit and an implicit two-dimensional Navier-Stokes code along with various grid generation capabilities were developed. A series of classical benckmark cases were simulated using these codes.
Hydrodynamic design of generic pump components
NASA Technical Reports Server (NTRS)
Eastland, A. H. J.; Dodson, H. C.
1991-01-01
Inducer and impellar base geometries were defined for a fuel pump for a generic generator cycle. Blade surface data and inlet flowfield definition are available in sufficient detail to allow computational fluid dynamic analysis of the two components.
A nonlinear relaxation/quasi-Newton algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Edwards, Jack R.; Mcrae, D. S.
1992-01-01
A highly efficient implicit method for the computation of steady, two-dimensional compressible Navier-Stokes flowfields is presented. The discretization of the governing equations is hybrid in nature, with flux-vector splitting utilized in the streamwise direction and central differences with flux-limited artificial dissipation used for the transverse fluxes. Line Jacobi relaxation is used to provide a suitable initial guess for a new nonlinear iteration strategy based on line Gauss-Seidel sweeps. The applicability of quasi-Newton methods as convergence accelerators for this and other line relaxation algorithms is discussed, and efficient implementations of such techniques are presented. Convergence histories and comparisons with experimental data are presented for supersonic flow over a flat plate and for several high-speed compression corner interactions. Results indicate a marked improvement in computational efficiency over more conventional upwind relaxation strategies, particularly for flowfields containing large pockets of streamwise subsonic flow.
Hypersonic merged layer blunt body flows with wakes
NASA Technical Reports Server (NTRS)
Jain, Amolak C.; Dahm, Werner K.
1991-01-01
An attempt is made here to understand the basic physics of the flowfield with wake on a blunt body of revolution under hypersonic rarefied conditions. A merged layer model of flow is envisioned. Full steady-state Navier-Stokes equations in spherical polar coordinate system are computed from the surface with slip and temperature jump conditions to the free stream by the Accelerated Successive Replacement method of numerical integration. Analysis is developed for bodies of arbitrary shape, but actual computations have been carried out for a sphere and sphere-cone body. Particular attention is paid to set the limit of the onset of separation, wake closure, shear-layer impingement, formation and dissipation of the shocks in the flowfield. Validity of the results is established by comparing the present results for sphere with the corresponding results of the SOFIA code in the common region of their validity and with the experimental data.
NASA Technical Reports Server (NTRS)
Alford, William J , Jr
1957-01-01
The flow-field characteristics beneath swept and unswept wings as determined by potential-flow theory are compared with the experimentally determined flow fields beneath swept and unswept wing-fuselage combinations. The potential-flow theory utilized considered both spanwise and chordwise distributions of vorticity as well as the wing-thickness effects. The perturbation velocities induced by a unit horseshoe vortex are included in tabular form. The theoretical predictions of the flow-field characteristics were qualitatively correct in all cases considered, although there were indications that the magnitudes of the downwash angles tended to be overpredicted as the tip of the swept wing was approached and that the sidewash angles ahead of the unswept wing were underpredicted. The calculated effects of compressibility indicated that significant increases in the chordwise variation of flow angles and dynamic-pressure ratios should be expected in going from low to high subsonic speeds.
Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames
NASA Technical Reports Server (NTRS)
Cheng, R. K.; Bedat, B.; Yegian, D. T.; Greenberg, P.
1999-01-01
Open laboratory turbulent flames used for investigating fundamental flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in open flames, buoyancy effects are usually not considered in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with the mean and the fluctuating pressure fields. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, and flame geometry.
An Application of Overset Grids to Payload/Fairing Three-Dimensional Internal Flow CFD Analysis
NASA Technical Reports Server (NTRS)
Kandula, Max; Nallasamy, R.; Schallhorn, P.; Duncil, L.
2007-01-01
The application of overset grids to the computational fluid dynamics analysis of three-dimensional internal flow in the payload/fairing of an expendable launch vehicle is described. In conjunction with the overset grid system, the flowfield in the payload/fairing configuration is obtained with the aid of OVERFLOW Navier-Stokes code. The solution exhibits a highly three dimensional complex flowfield with swirl, separation, and vortices. Some of the computed flow features are compared with the measured Laser-Doppler Velocimetry (LDV) data on a 1/5th scale model of the payload/fairing configuration. The counter-rotating vortex structures and the location of the saddle point predicted by the CFD analysis are in general agreement with the LDV data. Comparisons of the computed (CFD) velocity profiles on horizontal and vertical lines in the LDV measurement plane in the faring nose region show reasonable agreement with the LDV data.
Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.
2010-01-01
We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.
Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows
NASA Technical Reports Server (NTRS)
Lane, David A.
1996-01-01
Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.
Mathematical modeling of ice accretion on airfoils
NASA Technical Reports Server (NTRS)
Macarthur, C. D.; Keller, J. L.; Luers, J. K.
1982-01-01
The progress toward development of a computer model suitable for predicting icing behavior on airfoils over a wide range of environmental conditions and airfoils shapes is reported. The LEWICE program was formulated to solve a set of equations which describe the physical processes which occur during accretion of ice on an airfoil, including heat transfer in a time dependent mode, with the restriction that the flow must be describable by a two-dimensional flow code. Input data comprises the cloud liquid water content, mean droplet diameter, ambient air temperature, air velocity, and relative humidity. A potential flowfield around the airfoil is calculated, along with the droplet trajectories within the flowfield, followed by local values of water droplet collection efficiency at the impact points. Both glaze and rime ice conditions are reproduced, and comparisons with test results on icing of circular cylinders showed good agreement with the physical situation.
LDV Surveys Over a Fighter Model at Moderate to High Angles of Attack
NASA Technical Reports Server (NTRS)
Sellers, William L., III; Meyers, James F.; Hepner, Timothy E.
2004-01-01
The vortex flowfield over an advanced twin-tailed fighter configuration was measured in a low-speed wind tunnel at two angles of attack. The primary test data consisted of 3-component velocity surveys obtained using a Laser Doppler Velocimeter. Laser light sheet and surface flow visualization were also obtained to provide insight into the flowfield structure. Time-averaged velocities and the root mean square of the velocity fluctuations were obtained at two cross-sections above the model. At 15 degrees angle of attack, the vortices generated by the wing leading edge extension (LEX) were unburst over the model and passed outboard of the vertical tail. At 25 degrees angle of attack, the vortices burst in the vicinity of the wing-LEX intersection and impact directly on the vertical tails. The RMS levels of the velocity fluctuations reach values of approximately 30% in the region of the vertical tails.
Fuel cell with interdigitated porous flow-field
Wilson, Mahlon S.
1997-01-01
A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.
Rotor redesign for a highly loaded 1800 ft/sec tip speed fan. 3: Laser Doppler velocimeter report
NASA Technical Reports Server (NTRS)
Harvey, W. B.; Hobbs, D. E.; Lee, D.; Williams, M. C.; Williams, K. F.
1982-01-01
Laser Doppler velocimeter (LDV) techniques were employed for testing a highly loaded, 550 m/sec (1800 ft/sec) tip speed, test fan stage, the objective to provide detailed mapping of the upstream, intrablade, and downstream flowfields of the rotor. Intrablade LDV measurements of velocity and flow angle were obtained along four streamlines passing through the leading edge at 45%, 69%, 85%, and 95% span measured from hub to tip, at 100% of design speed, peak efficiency; 100% speed, near surge; and 95% speed, peak efficiency. At the design point, most passages appeared to have a strong leading edge shock, which moved forward with increasing strength near surge and at part speeds. The flow behind the shock was of a complex mixed subsonic and supersonic form. The intrablade flowfields were found to be significantly nonperiodic at 100% design speed, peak efficiency.
Fuel cell with interdigitated porous flow-field
Wilson, M.S.
1997-06-24
A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.
Navier-Stokes simulation of real gas flows in nozzles
NASA Technical Reports Server (NTRS)
Nagaraj, N.; Lombard, C. K.
1987-01-01
Air flow in a hypersonic nozzle causes real gas effects due to reaction among the species constituting air. Such reactions may be in chemical equilibrium or in chemical nonequilibrium. Here using the CSCM upwind scheme for the compressible Navier-Stokes equations, the real gas flowfield in an arcjet nozzle is computed for both the equilibrium case and the nonequilibrium case. A hypersonic nozzle flow arising from a pebble bed heated plenum is also computed for the equilibrium situation. Between the equilibrium cases, the chemistry is treated by two different schemes and comments are made as to computational complexity. For the nonequilibrium case, a full set of seventeen reactions and full implicit coupling of five species with gasdynamics is employed to compute the flowfield. For all cases considered here the gas is assumed to be a calorically imperfect mixture of ideal gases in thermal equilibrium.
The art and science of flow control - case studies using flow visualization methods
NASA Astrophysics Data System (ADS)
Alvi, F. S.; Cattafesta, L. N., III
2010-04-01
Active flow control (AFC) has been the focus of significant research in the last decade. This is mainly due to the potentially substantial benefits it affords. AFC applications range from the subsonic to the supersonic (and beyond) regime for both internal and external flows. These applications are wide and varied, such as controlling flow transition and separation over various external components of the aircraft to active management of separation and flow distortion in engine components and over turbine and compressor blades. High-speed AFC applications include control of flow oscillations in cavity flows, supersonic jet screech, impinging jets, and jet-noise control. In this paper we review some of our recent applications of AFC through a number of case studies that illustrate the typical benefits as well as limitations of present AFC methods. The case studies include subsonic and supersonic canonical flowfields such as separation control over airfoils, control of supersonic cavity flows and impinging jets. In addition, properties of zero-net mass-flux (ZNMF) actuators are also discussed as they represent one of the most widely studied actuators used for AFC. In keeping with the theme of this special issue, the flowfield properties and their response to actuation are examined through the use of various qualitative and quantitative flow visualization methods, such as smoke, shadowgraph, schlieren, planar-laser scattering, and Particle image velocimetry (PIV). The results presented here clearly illustrate the merits of using flow visualization to gain significant insight into the flow and its response to AFC.
Effect of Swirl on an Unstable Single-Element Gas-Gas Rocket Engine
2014-06-01
at 300 K, and the combustor is filled with a mixture of water and carbon dioxide at 1500 K. The warmer temperature in the combustor enables the auto...a variety of configurations including gas turbines and rocket engines.4–13 The single-element engine chosen for this study is the continuously...combustion systems including gas turbines , rocket engines, and industrial furnaces. Swirl can have dramatic effects on the flowfield; these include jet growth
Reynolds-Stress and Triple-Product Models Applied to Flows with Rotation and Curvature
NASA Technical Reports Server (NTRS)
Olsen, Michael E.
2016-01-01
Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.
Implementation of Premixed Equilibrium Chemistry Capability in OVERFLOW
NASA Technical Reports Server (NTRS)
Olsen, M. E.; Liu, Y.; Vinokur, M.; Olsen, T.
2003-01-01
An implementation of premixed equilibrium chemistry has been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flowfields. The implementation builds on the computational efficiency and geometric generality of the solver.
Implementation of Premixed Equilibrium Chemistry Capability in OVERFLOW
NASA Technical Reports Server (NTRS)
Olsen, Mike E.; Liu, Yen; Vinokur, M.; Olsen, Tom
2004-01-01
An implementation of premixed equilibrium chemistry has been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flowfields. The implementation builds on the computational efficiency and geometric generality of the solver.
Bell nozzle kernel analysis program
NASA Technical Reports Server (NTRS)
Elliot, J. J.; Stromstra, R. R.
1969-01-01
Bell Nozzle Kernel Analysis Program computes and analyzes the supersonic flowfield in the kernel, or initial expansion region, of a bell or conical nozzle. It analyzes both plane and axisymmetric geometrices for specified gas properties, nozzle throat geometry and input line.
Navier-Stokes flowfield computation of wing/rotor interaction for a tilt rotor aircraft in hover
NASA Technical Reports Server (NTRS)
Fejtek, Ian G.
1993-01-01
The download on the wing produced by the rotor-induced downwash of a tilt rotor aircraft in hover is of major concern because of its severe impact on payload-carrying capability. A method has been developed to help gain a better understanding of the fundamental fluid dynamics that causes this download, and to help find ways to reduce it. In particular, the method is employed in this work to analyze the effect of a tangential leading edge circulation-control jet on download reduction. Because of the complexities associated with modeling the complete configuration, this work focuses specifically on the wing/rotor interaction of a tilt rotor aircraft in hover. The three-dimensional, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The rotor is modeled as an actuator disk which imparts both a radical and an azimuthal distribution of pressure rise and swirl to the flowfield. A momentum theory blade element analysis of the rotor is incorporated into the Navier-Stokes solution method. Solution blanking at interior points of the mesh has been shown here to be an effective technique in introducing the effects of the rotor and tangential leading edge jet. Results are presented both for a rotor alone and for wing/rotor interaction. The overall mean characteristics of the rotor flowfield are computed including the flow acceleration through the rotor disk, the axial and swirl velocities in the rotor downwash, and the slipstream contraction. Many of the complex tilt rotor flow features are captured including the highly three-dimensional flow over the wing, the recirculation fountain at the plane of symmetry, wing leading and trailing edge separation, and the large region of separated flow beneath the wing. Mean wing surface pressures compare fairly well with available experimental data, but the time-averaged download/thrust ratio is 20-30 percent higher than the measured value. The discrepancy is due to a combination of factors that are discussed. Leading edge tangential blowing, of constant strength along the wing span, is shown to be effective in reducing download. The jet serves primarily to reduce the pressure on the wing upper surface. The computation clearly shows that, because of the three-dimensionality of the flowfield, optimum blowing would involve a spanwise variation in blowing strength.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2000-01-01
One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to determine the impact of the unstart transient on the surrounding flow field. This wind tunnel test program was a success, and for the first time, researchers acquired flow-field aerodynamic data during a supersonic propulsion system engine compressor stall and inlet unstart sequence. In addition to obtaining flow-field pressure data, Glenn researchers determined other properties such as the transient flow angle and Mach number. Data are still being reduced, and a comprehensive final report will be released during calendar year 2000.
NASA Technical Reports Server (NTRS)
Shyne, Rickey J.
1998-01-01
A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT blade onto a flat plate. The experiments were carried out at Reynolds numbers of 100,000 and 250,000 with three levels of freestream turbulence. Freestream turbulence levels ranging from 0.8% to 3% was used in this experiment. Smoke-wire flow visualization data was used to confirm that the boundary layer was separated and formed a bubble. Hot-wires (single and x-wire) and surface mounted hot-film gases and static pressure taps were used to map the flowfield. The transition process over the separated flow region is observed to be similar to a laminar free shear layer flow with the formation of a large coherent eddy structure. For each condition, the locations defining the separation bubble were determined by careful examination of pressure and mean velocity profile data. Transition onset location and length determined from intermittency profiles decrease as freestream turbulence levels increase. Additionally, the length and height of the laminar separation bubbles were observed to be inversely proportional to the levels of freestream turbulence.
Enhanced Performance of Streamline-Traced External-Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.
2015-01-01
A computational design study was conducted to enhance the aerodynamic performance of streamline-traced, external-compression inlets for Mach 1.6. The current study explored a new parent flowfield for the streamline tracing and several variations of inlet design factors, including the axial displacement and angle of the subsonic cowl lip, the vertical placement of the engine axis, and the use of porous bleed in the subsonic diffuser. The performance was enhanced over that of an earlier streamline-traced inlet such as to increase the total pressure recovery and reduce total pressure distortion
Advancements in Theoretical Models of Confined Vortex Flowfields
2007-03-29
blades, curved vanes, vortex generators, twisted tape inserts, triangular winglets , propellers, coiled wires, tangential injectors, and other...Corresponding boundary conditions consist of the no slip at the wall and blending with the composite inner solution in the outer domain. Following similar
Reduced Order Modeling Incompressible Flows
NASA Technical Reports Server (NTRS)
Helenbrook, B. T.
2010-01-01
The details: a) Need stable numerical methods; b) Round off error can be considerable; c) Not convinced modes are correct for incompressible flow. Nonetheless, can derive compact and accurate reduced-order models. Can be used to generate actuator models or full flow-field models
Evolution and Erosion of Tyrrhena and Hadriaca Paterae, Mars: New Insights from MOC and MOLA
NASA Technical Reports Server (NTRS)
Gregg, T. K. P.; Crown, D. A.; Sakimoto, S. E. H.
2001-01-01
Investigation of Hadriaca and Tyrrhena Paterae, Mars, using MOC and MOLA data reveals new information about caldera formation, channel development, and lava flow-field emplacement. Additional information is contained in the original extended abstract.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1990-01-01
The continued development and improvement of the viscous shock layer (VSL) nonequilibrium chemistry blunt body engineering code, the incorporation in a coupled manner of radiation models into the VSL code, and the initial development of appropriate precursor models are presented.
Holographic Interferometry and Image Analysis for Aerodynamic Testing
1980-09-01
tunnels, (2) development of automated image analysis techniques for reducing quantitative flow-field data from holographic interferograms, and (3...investigation and development of software for the application of digital image analysis to other photographic techniques used in wind tunnel testing.
Radiation/convection coupling in rocket motors and plumes
NASA Technical Reports Server (NTRS)
Farmer, R. C.; Saladino, A. J.
1993-01-01
The three commonly used propellant systems - H2/O2, RP-1/O2, and solid propellants - primarily radiate as molecular emitters, non-scattering small particles, and scattering larger particles, respectively. Present technology has accepted the uncoupling of the radiation analysis from that of the flowfield. This approximation becomes increasingly inaccurate as one considers plumes, interior rocket chambers, and nuclear rocket propulsion devices. This study will develop a hierarchy of methods which will address radiation/convection coupling in all of the aforementioned propulsion systems. The nature of the radiation/convection coupled problem is that the divergence of the radiative heat flux must be included in the energy equation and that the local, volume-averaged intensity of the radiation must be determined by a solution of the radiative transfer equation (RTE). The intensity is approximated by solving the RTE along several lines of sight (LOS) for each point in the flowfield. Such a procedure is extremely costly; therefore, further approximations are needed. Modified differential approximations are being developed for this purpose. It is not obvious which order of approximations are required for a given rocket motor analysis. Therefore, LOS calculations have been made for typical rocket motor operating conditions in order to select the type approximations required. The results of these radiation calculations, and the interpretation of these intensity predictions are presented herein.
Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer
NASA Technical Reports Server (NTRS)
Bhat, M. K.; Vakili, A. D.; Wu, J. M.
1990-01-01
The flowfield on a segmented multi-slotted wind tunnel wall was studied at transonic speeds by measurements in and near the wall layer using five port cone probes. The slotted wall flowfield was observed to be three-dimensional in nature for a relatively significant distance above the slot. The boundary layer characteristics measured on the single slotted wall were found to be very sensitive to the applied suction through the slot. The perturbation in the velocity components generated due to the flow through the slot decay rapidly in the transverse direction. A vortex-like flow existed on the single slotted wall for natural ventilation but diminished with increased suction flow rate. For flow on a segmented multi-slotted wall, the normal velocity component changes were found to be maximum for measurement points located between the segmented slots atop the active chamber. The lateral influence due to applied suction and blowing, through a compartment, exceeded only slightly that in the downstream direction. Limited upstream influence was observed. Influence coefficients were determined from the data in the least-square sense for blowing and suction applied through one and two compartments. This was found to be an adequate determination of the influence coefficients for the range of mass flows considered.
The Role of Flow Diagnostic Techniques in Fan and Open Rotor Noise Modeling
NASA Technical Reports Server (NTRS)
Envia, Edmane
2016-01-01
A principal source of turbomachinery noise is the interaction of the rotating and stationary blade rows with the perturbations in the airstream through the engine. As such, a lot of research has been devoted to the study of the turbomachinery noise generation mechanisms. This is particularly true of fan and open rotors, both of which are the major contributors to the overall noise output of modern aircraft engines. Much of the research in fan and open rotor noise has been focused on developing theoretical models for predicting their noise characteristics. These models, which run the gamut from the semi-empirical to fully computational ones, are, in one form or another, informed by the description of the unsteady flow-field in which the propulsors (i.e., the fan and open rotors) operate. Not surprisingly, the fidelity of the theoretical models is dependent, to a large extent, on capturing the nuances of the unsteady flowfield that have a direct role in the noise generation process. As such, flow diagnostic techniques have proven to be indispensible in identifying the shortcoming of theoretical models and in helping to improve them. This presentation will provide a few examples of the role of flow diagnostic techniques in assessing the fidelity and robustness of the fan and open rotor noise prediction models.
Focusing-schlieren visualization in a dual-mode scramjet
NASA Astrophysics Data System (ADS)
Kouchi, Toshinori; Goyne, Christopher P.; Rockwell, Robert D.; McDaniel, James C.
2015-12-01
Schlieren imaging is particularly suited to measuring density gradients in compressible flowfields and can be used to capture shock waves and expansion fans, as well as the turbulent structures of mixing and wake flows. Conventional schlieren imaging, however, has difficulty clearly capturing such structures in long-duration supersonic combustion test facilities. This is because the severe flow temperatures locally change the refractive index of the window glass that is being used to provide optical access. On the other hand, focusing-schlieren imaging presents the potential of reduced sensitivity to thermal distortion of the windows and to clearly capture the flow structures even during a combustion test. This reduced sensitivity is due the technique's ability to achieve a narrow depth of focus. As part of this study, a focusing-schlieren system was developed with a depth of focus near ±5 mm and was applied to a direct-connect, continuous-flow type, supersonic combustion test facility with a stagnation temperature near 1200 K. The present system was used to successfully visualize the flowfield inside a dual-mode scramjet. The imaging system captured combustion-induced volumetric expansion of the fuel jet and an anchored bifurcated shock wave at the trailing edge of the ramp fuel injector. This is the first time successful focusing-schlieren measurements have been reported for a dual-mode scramjet.
NASA Technical Reports Server (NTRS)
Geng, Tao; Paxson, Daniel E.; Zheng, Fei; Kuznetsov, Andrey V.; Roberts, William L.
2008-01-01
Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamic (CFD) simulation work focused primarily on the pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data.
Evaluation of flip-flop jet nozzles for use as practical excitation devices
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Rice, Edward J.; Cornelius, David M.
1994-01-01
This paper describes the flowfield characteristics of the flip-flop jet nozzle and the potential for using this nozzle as a practical excitation device. It appears from the existing body of published information that there is a lack of data on the parameters affecting the operation of such nozzles and on the mechanism of operation of these nozzles. An attempt is made in the present work to study the important parameters affecting the operation and performance of a flip-flop jet nozzle. Measurements were carried out to systematically assess the effect of varying the nozzle pressure ratio (NPR) as well as the length and volume of the feedback tube on the frequency of oscillation of this device. Flow visualization was used to obtain a better understanding of the jet flowfield and of the processes occurring within the feedback tube. The frequency of oscillation of the flip-flop jet depended significantly on the feedback tube length and volume as well as on the nozzle pressure ratio. In contrast, the coherent velocity perturbation levels did not depend on the above mentioned parameters. The data presented in this paper would be useful for modeling such flip-flop excitation devices that are potentially useful for controlling practical shear flows.
Use of Taguchi design of experiments to optimize and increase robustness of preliminary designs
NASA Technical Reports Server (NTRS)
Carrasco, Hector R.
1992-01-01
The research performed this summer includes the completion of work begun last summer in support of the Air Launched Personnel Launch System parametric study, providing support on the development of the test matrices for the plume experiments in the Plume Model Investigation Team Project, and aiding in the conceptual design of a lunar habitat. After the conclusion of last years Summer Program, the Systems Definition Branch continued with the Air Launched Personnel Launch System (ALPLS) study by running three experiments defined by L27 Orthogonal Arrays. Although the data was evaluated during the academic year, the analysis of variance and the final project review were completed this summer. The Plume Model Investigation Team (PLUMMIT) was formed by the Engineering Directorate to develop a consensus position on plume impingement loads and to validate plume flowfield models. In order to obtain a large number of individual correlated data sets for model validation, a series of plume experiments was planned. A preliminary 'full factorial' test matrix indicated that 73,024 jet firings would be necessary to obtain all of the information requested. As this was approximately 100 times more firings than the scheduled use of Vacuum Chamber A would permit, considerable effort was needed to reduce the test matrix and optimize it with respect to the specific objectives of the program. Part of the First Lunar Outpost Project deals with Lunar Habitat. Requirements for the habitat include radiation protection, a safe haven for occasional solar flare storms, an airlock module as well as consumables to support 34 extra vehicular activities during a 45 day mission. The objective for the proposed work was to collaborate with the Habitat Team on the development and reusability of the Logistics Modules.
Directional Attenuation of Jet Noise With Eccentric Coannular Nozzle Investigated
NASA Technical Reports Server (NTRS)
Zaman, Khairul B.
2005-01-01
Jet noise and flow field were measured to follow up on observations made by Professor D. Papamoschou of the University of California at Irvine (NASA Grant NAG3-2345). When a dual-stream coannular nozzle was arranged non-concentrically, noise was attenuated significantly on the side where the annulus was thicker. A similar observation was also made in reference 2. The practical significance is obvious. If the bypass flow of a jet exhaust in flight could be diverted to form a thicker layer underneath, then less noise would be heard by an observer on the ground. In view of the current emphasis on jet noise abatement, researchers felt that the effect deserved further attention. This prompted an experiment to confirm the phenomenon in a larger facility and to obtain flow-field data to advance understanding of the mechanism.
Flow and Noise from Septa Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Bridges, J. E.
2017-01-01
Flow and noise fields are explored for the concept of distributed propulsion. A model-scale experiment is performed with an 8:1 aspect ratio rectangular nozzle that is divided into six passages by five septa. The septa geometries are created by placing plastic inserts within the nozzle. It is found that the noise radiation from the septa nozzle can be significantly lower than that from the baseline rectangular nozzle. The reduction of noise is inferred to be due to the introduction of streamwise vortices in the flow. The streamwise vortices are produced by secondary flow within each passage. Thus, the geometry of the internal passages of the septa nozzle can have a large influence. The flow evolution is profoundly affected by slight changes in the geometry. These conclusions are reached by mostly experimental results of the flowfield aided by brief numerical simulations.
Acoustic field modulation in regenerators
NASA Astrophysics Data System (ADS)
Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.
2016-12-01
The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.
Molecular gas dynamics applied to low-thrust propulsion
NASA Astrophysics Data System (ADS)
Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.
1993-11-01
The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.
Genetic Algorithm Optimization of a Film Cooling Array on a Modern Turbine Inlet Vane
2012-09-01
heater is typically higher than the test section temperature since there is a lag due to heat transfer to the piping between the heater and test... flexible substrate 301 used 50 microns thick and the gauges themselves are a platinum metal layer 500-Å thick. When subjected to a change in heat ...more advanced gas turbine cooling design methods that factor in the 3-D flowfield and heat transfer characteristics, this study involves the
Molecular gas dynamics applied to low-thrust propulsion
NASA Technical Reports Server (NTRS)
Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.
1993-01-01
The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.
Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles
NASA Astrophysics Data System (ADS)
Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven
2010-11-01
The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.
Shock Layer Radiation Modeling and Uncertainty for Mars Entry
NASA Technical Reports Server (NTRS)
Johnston, Christopher O.; Brandis, Aaron M.; Sutton, Kenneth
2012-01-01
A model for simulating nonequilibrium radiation from Mars entry shock layers is presented. A new chemical kinetic rate model is developed that provides good agreement with recent EAST and X2 shock tube radiation measurements. This model includes a CO dissociation rate that is a factor of 13 larger than the rate used widely in previous models. Uncertainties in the proposed rates are assessed along with uncertainties in translational-vibrational relaxation modeling parameters. The stagnation point radiative flux uncertainty due to these flowfield modeling parameter uncertainties is computed to vary from 50 to 200% for a range of free-stream conditions, with densities ranging from 5e-5 to 5e-4 kg/m3 and velocities ranging from of 6.3 to 7.7 km/s. These conditions cover the range of anticipated peak radiative heating conditions for proposed hypersonic inflatable aerodynamic decelerators (HIADs). Modeling parameters for the radiative spectrum are compiled along with a non-Boltzmann rate model for the dominant radiating molecules, CO, CN, and C2. A method for treating non-local absorption in the non-Boltzmann model is developed, which is shown to result in up to a 50% increase in the radiative flux through absorption by the CO 4th Positive band. The sensitivity of the radiative flux to the radiation modeling parameters is presented and the uncertainty for each parameter is assessed. The stagnation point radiative flux uncertainty due to these radiation modeling parameter uncertainties is computed to vary from 18 to 167% for the considered range of free-stream conditions. The total radiative flux uncertainty is computed as the root sum square of the flowfield and radiation parametric uncertainties, which results in total uncertainties ranging from 50 to 260%. The main contributors to these significant uncertainties are the CO dissociation rate and the CO heavy-particle excitation rates. Applying the baseline flowfield and radiation models developed in this work, the radiative heating for the Mars Pathfinder probe is predicted to be nearly 20 W/cm2. In contrast to previous studies, this value is shown to be significant relative to the convective heating.
Study of Aerothermodynamic Modeling Issues Relevant to High-Speed Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Johnston, Christopher O.
2014-01-01
This paper examines the application of state-of-the-art coupled ablation and radiation simulations to highspeed sample return vehicles, such as those returning from Mars or an asteroid. A defining characteristic of these entries is that the surface recession rates and temperatures are driven by nonequilibrium convective and radiative heating through a boundary layer with significant surface blowing and ablation products. Measurements relevant to validating the simulation of these phenomena are reviewed and the Stardust entry is identified as providing the best relevant measurements. A coupled ablation and radiation flowfield analysis is presented that implements a finite-rate surface chemistry model. Comparisons between this finite-rate model and a equilibrium ablation model show that, while good agreement is seen for diffusion-limited oxidation cases, the finite-rate model predicts up to 50% lower char rates than the equilibrium model at sublimation conditions. Both the equilibrium and finite rate models predict significant negative mass flux at the surface due to sublimation of atomic carbon. A sensitivity analysis to flowfield and surface chemistry rates show that, for a sample return capsule at 10, 12, and 14 km/s, the sublimation rates for C and C3 provide the largest changes to the convective flux, radiative flux, and char rate. A parametric uncertainty analysis of the radiative heating due to radiation modeling parameters indicates uncertainties ranging from 27% at 10 km/s to 36% at 14 km/s. Applying the developed coupled analysis to the Stardust entry results in temperatures within 10% of those inferred from observations, and final recession values within 20% of measurements, which improves upon the 60% over-prediction at the stagnation point obtained through an uncoupled analysis. Emission from CN Violet is shown to be over-predicted by nearly and order-of-magnitude, which is consistent with the results of previous independent analyses. Finally, the coupled analysis is applied to a 14 km/s Earth entry representative of a Mars sample return. Although the radiative heating provides a larger fraction of the total heating, the influence of ablation and radiation on the flowfield are shown to be similar to Stardust.
Airloads Correlation of the UH-60A Rotor Inside the 40- by 80-Foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.
2013-01-01
The presented research validates the capability of a loosely-coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the full-scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.
Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility
NASA Technical Reports Server (NTRS)
Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.
2017-01-01
The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.
Three-dimensional investigations of the threading regime in a microfluidic flow-focusing channel
NASA Astrophysics Data System (ADS)
Gowda, Krishne; Brouzet, Christophe; Lefranc, Thibault; Soderberg, L. Daniel; Lundell, Fredrik
2017-11-01
We study the flow dynamics of the threading regime in a microfluidic flow-focusing channel through 3D numerical simulations and experiments. Making strong filaments from cellulose nano-fibrils (CNF) could potentially steer to new high-performance bio-based composites competing with conventional glass fibre composites. CNF filaments can be obtained through hydrodynamic alignment of dispersed CNF by using the concept of flow-focusing. The aligned structure is locked by diffusion of ions resulting in a dispersion-gel transition. Flow-focusing typically refers to a microfluidic channel system where the core fluid is focused by the two sheath fluids, thereby creating an extensional flow at the intersection. In this study, threading regime corresponds to an extensional flow field generated by the water sheath fluid stretching the dispersed CNF core fluid and leading to formation of long threads. The experimental measurements are performed using optical coherence tomography (OCT) and 3D numerical simulations with OpenFOAM. The prime focus is laid on the 3D characteristics of thread formation such as wetting length of core fluid, shape, aspect ratio of the thread and velocity flow-field in the microfluidic channel.
Hydrodynamic focusing investigation in a micro-flow cytometer.
Yang, An-Shik; Hsieh, Wen-Hsin
2007-04-01
Hydrodynamic focusing behavior is characterized by two fluids coflowing at different velocities inside a micro-flow cytometer. In this study, a two-fluid model has been established to describe the flow transport behavior and interaction of sample and sheath fluids. The analysis treats the sample and sheath fluids as two-dimensional, laminar, incompressible, and isothermal. The theoretical model comprises two groups of transient conservation equations of mass and momentum with consideration of the interfacial momentum exchange. The governing equations are solved numerically through an iterative SIMPLEC algorithm to determine the flow properties. Since the ratio of the sheath velocity to the sample velocity varies from 5 to 70, the predicted focusing width and length are in good agreement with the experimental data in the literature. In addition, the present study explored the hydrodynamic focusing flowfield as well as the pressure drop across a micro-flow cytometer and the time needed for the completion of one focusing event in detail. To enhance the understanding of hydrodynamic focusing in the design of cytometers, ten numerical experiments were conducted to examine the effects of the inner nozzle length, inner nozzle exit width, inner nozzle shape, and fluid properties on the width of the focused sample stream.
Supersonic Retropropulsion Test 1853 in NASA LaRC Unitary Plan Wind Tunnel Test Section 2
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Rhode, Matthew N.
2014-01-01
A supersonic retropropulsion experiment was conducted in the Langley Research Center Unitary Plan Wind Tunnel Test Section 2 at Mach numbers of 2.4, 3.5, and 4.6. Intended as a code validation effort, this study used pretest computations to size and refine the model such that tunnel blockage and internal flow separations were minimized. A 5-in diameter 70 degree sphere-cone forebody, which can accommodate up to four 4:1 area ratio nozzles, followed by a 9.55 inches long cylindrical aft body was selected for this test after computational maturation. The primary measurements for this experiment were high spatial-density surface pressures. In addition, high speed schlieren video and internal pressures and temperatures were acquired. The test included parametric variations in the number of nozzles utilized, thrust coefficients (roughly 0 to 4), and angles of attack (-8 to 20 degrees). The run matrix was developed to also allow quantification of various sources of experimental uncertainty, such as random errors due to run-to-run variations and systematic errors due to flowfield or model misalignments. To accommodate the uncertainty assessment, many runs and replicates were conducted with the model at various locations within the tunnel and with model roll angles of 0, 60, 120, and 180 degrees. This test report provides operational details of the experiment, contains a review of trends, and provides all schlieren and pressure results within appendices.
IGB grid: User's manual (A turbomachinery grid generation code)
NASA Technical Reports Server (NTRS)
Beach, T. A.; Hoffman, G.
1992-01-01
A grid generation code called IGB is presented for use in computational investigations of turbomachinery flowfields. It contains a combination of algebraic and elliptic techniques coded for use on an interactive graphics workstation. The instructions for use and a test case are included.
Low-speed wind-tunnel tests of single- and counter-rotation propellers
NASA Technical Reports Server (NTRS)
Dunham, D. M.; Gentry, G. L., Jr.; Coe, P. L., Jr.
1986-01-01
A low-speed (Mach 0 to 0.3) wind-tunnel investigation was conducted to determine the basic performance, force and moment characteristics, and flow-field velocities of single- and counter-rotation propellers. Compared with the eight-blade single-rotation propeller, a four- by four- (4 x 4) blade counter-rotation propeller with the same blade design produced substantially higher thrust coefficients for the same blade angles and advance ratios. The results further indicated that ingestion of the wake from a supporting pylon for a pusher configuration produced no significant change in the propeller thrust performance for either the single- or counter-rotation propellers. A two-component laser velocimeter (LV) system was used to make detailed measurements of the propeller flow fields. Results show increasing slipstream velocities with increasing blade angle and decreasing advance ratio. Flow-field measurements for the counter-rotation propeller show that the rear propeller turned the flow in the opposite direction from the front propeller and, therefore, could eliminate the swirl component of velocity, as would be expected.
Validation of a Computational Fluid Dynamics (CFD) Code for Supersonic Axisymmetric Base Flow
NASA Technical Reports Server (NTRS)
Tucker, P. Kevin
1993-01-01
The ability to accurately and efficiently calculate the flow structure in the base region of bodies of revolution in supersonic flight is a significant step in CFD code validation for applications ranging from base heating for rockets to drag for protectives. The FDNS code is used to compute such a flow and the results are compared to benchmark quality experimental data. Flowfield calculations are presented for a cylindrical afterbody at M = 2.46 and angle of attack a = O. Grid independent solutions are compared to mean velocity profiles in the separated wake area and downstream of the reattachment point. Additionally, quantities such as turbulent kinetic energy and shear layer growth rates are compared to the data. Finally, the computed base pressures are compared to the measured values. An effort is made to elucidate the role of turbulence models in the flowfield predictions. The level of turbulent eddy viscosity, and its origin, are used to contrast the various turbulence models and compare the results to the experimental data.
The 1991 version of the plume impingement computer program. Volume 2: User's input guide
NASA Technical Reports Server (NTRS)
Bender, Robert L.; Somers, Richard E.; Prendergast, Maurice J.; Clayton, Joseph P.; Smith, Sheldon D.
1991-01-01
The Plume Impingement Program (PLIMP) is a computer code used to predict impact pressures, forces, moments, heating rates, and contamination on surfaces due to direct impingement flowfields. Typically, it has been used to analyze the effects of rocket exhaust plumes on nearby structures from ground level to the vacuum of space. The program normally uses flowfields generated by the MOC, RAMP2, SPF/2, or SFPGEN computer programs. It is capable of analyzing gaseous and gas/particle flows. A number of simple subshapes are available to model the surfaces of any structure. The original PLIMP program has been modified many times of the last 20 years. The theoretical bases for the referenced major changes, and additional undocumented changes and enhancements since 1988 are summarized in volume 1 of this report. This volume is the User's Input Guide and should be substituted for all previous guides when running the latest version of the program. This version can operate on VAX and UNIX machines with NCAR graphics ability.
16-foot transonic tunnel test section flowfield survey
NASA Technical Reports Server (NTRS)
Yetter, J. A.; Abeyounis, W. K.
1994-01-01
A flow survey has been made of the test section of the NASA Langley Research Center 16-Foot Transonic Tunnel at subsonic and supersonic speeds. The survey was performed using five five-hole pyramid-head probes mounted at 14 inch intervals on a survey rake. Probes were calibrated at freestream Mach numbers from 0.50 to 0.95 and from 1.18 to 1.23. Flowfield surveys were made at Mach numbers from 0.50 to 0.90 and at Mach 1.20. The surveys were made at tunnel stations 130.6, 133.6, and 136.0. By rotating the survey rake through 180 degrees, a cylindrical volume of the test section 4.7 feet in diameter and 5.4 feet long centered about the tunnel centerline was surveyed. Survey results showing the measured test section upflow and sideflow characteristics and local Mach number distributions are presented. The report documents the survey probe calibration techniques used, summarizes the procedural problems encountered during testing, and identifies the data discrepancies observed during the post-test data analysis.
Confined turbulent swirling recirculating flow predictions. Ph.D. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Abujelala, M. T.; Lilley, D. G.
1985-01-01
The capability and the accuracy of the STARPIC computer code in predicting confined turbulent swirling recirculating flows is presented. Inlet flow boundary conditions were demonstrated to be extremely important in simulating a flowfield via numerical calculations. The degree of swirl strength and expansion ratio have strong effects on the characteristics of swirling flow. In a nonswirling flow, a large corner recirculation zone exists in the flowfield with an expansion ratio greater than one. However, as the degree of inlet swirl increases, the size of this zone decreases and a central recirculation zone appears near the inlet. Generally, the size of the central zone increased with swirl strength and expansion ratio. Neither the standard k-epsilon turbulence mode nor its previous extensions show effective capability for predicting confined turbulent swirling recirculating flows. However, either reduced optimum values of three parameters in the mode or the empirical C sub mu formulation obtained via careful analysis of available turbulence measurements, can provide more acceptable accuracy in the prediction of these swirling flows.
The self streamlining wind tunnel. [wind tunnel walls
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1975-01-01
A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.
A method for modeling finite-core vortices in wake-flow calculations
NASA Technical Reports Server (NTRS)
Stremel, P. M.
1984-01-01
A numerical method for computing nonplanar vortex wakes represented by finite-core vortices is presented. The approach solves for the velocity on an Eulerian grid, using standard finite-difference techniques; the vortex wake is tracked by Lagrangian methods. In this method, the distribution of continuous vorticity in the wake is replaced by a group of discrete vortices. An axially symmetric distribution of vorticity about the center of each discrete vortex is used to represent the finite-core model. Two distributions of vorticity, or core models, are investigated: a finite distribution of vorticity represented by a third-order polynomial, and a continuous distribution of vorticity throughout the wake. The method provides for a vortex-core model that is insensitive to the mesh spacing. Results for a simplified case are presented. Computed results for the roll-up of a vortex wake generated by wings with different spanwise load distributions are presented; contour plots of the flow-field velocities are included; and comparisons are made of the computed flow-field velocities with experimentally measured velocities.
Active control of jet flowfields
NASA Astrophysics Data System (ADS)
Kibens, Valdis; Wlezien, Richard W.
1987-06-01
Passive and active control of jet shear layer development were investigated as mechanisms for modifying the global characteristics of jet flowfields. Slanted and stepped indeterminate origin (I.O.) nozzles were used as passive, geometry-based control devices which modified the flow origins. Active control techniques were also investigated, in which periodic acoustic excitation signals were injected into the I.O. nozzle shear layers. Flow visualization techniques based on a pulsed copper-vapor laser were used in a phase-conditioned image acquisition mode to assemble optically averaged sets of images acquired at known times throughout the repetition cycle of the basic flow oscillation period. Hot wire data were used to verify the effect of the control techniques on the mean and fluctuating flow properties. The flow visualization images were digitally enhanced and processed to show locations of prominent vorticity concentrations. Three-dimensional vortex interaction patterns were assembled in a format suitable for movie mode on a graphic display workstation, showing the evolution of three-dimensional vortex system in time.
NASA Technical Reports Server (NTRS)
Korte, John J.; Kumar, Ajay; Singh, D. J.; White, J. A.
1992-01-01
A design program is developed which incorporates a modern approach to the design of supersonic/hypersonic wind-tunnel nozzles. The approach is obtained by the coupling of computational fluid dynamics (CFD) with design optimization. The program can be used to design a 2D or axisymmetric, supersonic or hypersonic, wind-tunnel nozzles that can be modeled with a calorically perfect gas. The nozzle design is obtained by solving a nonlinear least-squares optimization problem (LSOP). The LSOP is solved using an iterative procedure which requires intermediate flowfield solutions. The nozzle flowfield is simulated by solving the Navier-Stokes equations for the subsonic and transonic flow regions and the parabolized Navier-Stokes equations for the supersonic flow regions. The advantages of this method are that the design is based on the solution of the viscous equations eliminating the need to make separate corrections to a design contour, and the flexibility of applying the procedure to different types of nozzle design problems.
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.
Modern quantitative schlieren techniques
NASA Astrophysics Data System (ADS)
Hargather, Michael; Settles, Gary
2010-11-01
Schlieren optical techniques have traditionally been used to qualitatively visualize refractive flowfields in transparent media. Modern schlieren optics, however, are increasingly focused on obtaining quantitative information such as temperature and density fields in a flow -- once the sole purview of interferometry -- without the need for coherent illumination. Quantitative data are obtained from schlieren images by integrating the measured refractive index gradient to obtain the refractive index field in an image. Ultimately this is converted to a density or temperature field using the Gladstone-Dale relationship, an equation of state, and geometry assumptions for the flowfield of interest. Several quantitative schlieren methods are reviewed here, including background-oriented schlieren (BOS), schlieren using a weak lens as a "standard," and "rainbow schlieren." Results are presented for the application of these techniques to measure density and temperature fields across a supersonic turbulent boundary layer and a low-speed free-convection boundary layer in air. Modern equipment, including digital cameras, LED light sources, and computer software that make this possible are also discussed.
Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle
NASA Technical Reports Server (NTRS)
Henline, William D.; Tauber, Michael E.
1994-01-01
A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.
NASA Technical Reports Server (NTRS)
Daywitt, J.; Kutler, P.; Anderson, D.
1977-01-01
The technique of floating shock fitting is adapted to the computation of the inviscid flowfield about circular cones in a supersonic free stream at angles of attack that exceed the cone half-angle. The resulting equations are applicable over the complete range of free-stream Mach numbers, angles of attack and cone half-angles for which the bow shock is attached. A finite difference algorithm is used to obtain the solution by an unsteady relaxation approach. The bow shock, embedded cross-flow shock, and vortical singularity in the leeward symmetry plane are treated as floating discontinuities in a fixed computational mesh. Where possible, the flowfield is partitioned into windward, shoulder, and leeward regions with each region computed separately to achieve maximum computational efficiency. An alternative shock fitting technique which treats the bow shock as a computational boundary is developed and compared with the floating-fitting approach. Several surface boundary condition schemes are also analyzed.
On Theoretical Broadband Shock-Associated Noise Near-Field Cross-Spectra
NASA Technical Reports Server (NTRS)
Miller, Steven A. E.
2015-01-01
The cross-spectral acoustic analogy is used to predict auto-spectra and cross-spectra of broadband shock-associated noise in the near-field and far-field from a range of heated and unheated supersonic off-design jets. A single equivalent source model is proposed for the near-field, mid-field, and far-field terms, that contains flow-field statistics of the shock wave shear layer interactions. Flow-field statistics are modeled based upon experimental observation and computational fluid dynamics solutions. An axisymmetric assumption is used to reduce the model to a closed-form equation involving a double summation over the equivalent source at each shock wave shear layer interaction. Predictions are compared with a wide variety of measurements at numerous jet Mach numbers and temperature ratios from multiple facilities. Auto-spectral predictions of broadband shock-associated noise in the near-field and far-field capture trends observed in measurement and other prediction theories. Predictions of spatial coherence of broadband shock-associated noise accurately capture the peak coherent intensity, frequency, and spectral width.
Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)
NASA Technical Reports Server (NTRS)
Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.
2000-01-01
The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.
Combined Experimental and Numerical Investigation of Electric-Arc Airspikes For Blunt Body at Mach 3
NASA Astrophysics Data System (ADS)
Misiewicz, C.; Myrabo, L. N.; Shneider, M. N.; Raizer, Y. P.
2005-04-01
Electric-arc airspike experiments were performed with a 1.25-inch diameter blunt body in the vacuum-driven Mach 3 wind tunnel at Rensselaer Polytechnic Institute. Schlieren movies at 30-Hz frame rate were recorded of the airspike flowfields, revealing substantial evolution over the 6-second run durations. Arc powers up to 2-kW were delivered into the airspike by an arc-welding power supply, using zirconiated tungsten electrodes. Aerodynamic drag was measured with a piezo-electric load cell, revealing reductions up to 70% when the airspike was energized. The test article was a small-scale model of the Mercury lightcraft, a laser-propelled transatmospheric vehicle designed to transport one-person into orbit. Numerical modeling of this airspike is based on the Euler gasdynamic equations for conditions identical to those tested in the RPI supersonic tunnel. Excellent agreement between the shock wave shapes given by first-order asymptotic theory, numerical modeling, and experiment is demonstrated. Results of the numerical modeling confirm both the significant drag reduction potential and the energy efficiency of the airspike concept.
Deflected jet experiments in a turbulent combustor flowfield. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Ferrell, G. B.; Lilley, D. G.
1985-01-01
Experiments were conducted to characterize the time-mean and turbulent flow field of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the tracjectory and spread pattern of the jet. A six-position single hot-wire technique was used to measure the velocities and turbulent stresses in nonswirling crossflow cases. In these cases, measurements confirmed that the deflected jet is symmetrical about the vertical plan passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity ratio infinite crossflow cases. In the swirling crossflow cases, the flow visualization techniques enabled gross flow field characterization to be obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow.
Detailed Investigation of Self-Similarity of Strong Shock Reflection Phenomena
NASA Astrophysics Data System (ADS)
Kobayashi, Susumu; Adachi, Takashi
2012-04-01
This paper experimentally investigates the validity of self-similarity of strong shock reflection phenomena in a shock tube. The models used for the shock-tube experiment are ordinary wedges with various reflecting wedge angles. The triple-point trajectory is approximately a straight line through the wedge apex for each reflecting wedge. However, a detailed measurement of the angle made by the incident and reflected shocks shows that the wave angle varies as the incident shock proceeds. This means that the shock reflection configuration deviates from self-similarity. The most remarkable phenomenon is the dynamic transition from regular to Mach reflection during shock propagation, where the validity of self-similarity breaks down. The flow-field behind the Mach stem is subsonic with respect to the triple point, so the condition on the solid boundary can catch up with the triple point and affect the flow around it. We also explain why the discrepancy between theory and experiment has gone unnoticed for strong shock waves and demonstrate that it is due to the transport properties of the fluid, such as the viscosity.
Preliminary study of the interactions caused by crossing shock waves and a turbulent boundary layer
NASA Technical Reports Server (NTRS)
Ketchum, A. C.; Bogdonoff, S. M.; Fernando, E. M.; Batcho, P. F.
1989-01-01
The subject research, the first phase of an extended study of the interaction of crossing shock waves with a turbulent boundary layer, has revealed the complexity of the resulting flow. Detailed surface visualization and mean wall static pressure distributions show little resemblance to the inviscid flow approximation, and the exploratory high frequency measurements show that the flow downstream of the theoretical inviscid shock crossing position has a significant unsteady characteristic. Further developments of the (unsteady) high frequency measurements are required to fully characterize the unsteadiness and the requirements to include this component in flowfield modeling.
Magnus effects at high angles of attack and critical Reynolds numbers
NASA Technical Reports Server (NTRS)
Seginer, A.; Ringel, M.
1983-01-01
The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.
Numerical studies of interacting vortices
NASA Technical Reports Server (NTRS)
Liu, G. C.; Hsu, C. H.
1985-01-01
To get a basic understanding of the physics of flowfields modeled by vortex filaments with finite vortical cores, systematic numerical studies of the interactions of two dimensional vortices and pairs of coaxial axisymmetric circular vortex rings were made. Finite difference solutions of the unsteady incompressible Navier-Stokes equations were carried out using vorticity and stream function as primary variables. Special emphasis was placed on the formulation of appropriate boundary conditions necessary for the calculations in a finite computational domain. Numerical results illustrate the interaction of vortex filaments, demonstrate when and how they merge with each other, and establish the region of validity for an asymptotic analysis.
Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena
NASA Technical Reports Server (NTRS)
Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.
2004-01-01
Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have resulted from this feedback. Alternate diagnostic methods are constantly being evaluated as to their suitability as a diagnostic tool in these environments. A new method currently under examination is background oriented Schlieren (BOS) for examining the fuel/air mixing processes. While ratioing the Stokes and anti-Stokes nitrogen lines obtained from spontaneous Raman is being refined for temperature measurement. While the primary focus of the GRC diagnostic work remains optical species measurement and flow stream characterization, an increased emphasis has been placed on our involvement in flame code validation efforts. A functional combustor code should shorten and streamline future combustor design. Quantitative measurements of flow parameters such as temperature, species concentration, drop size and velocity using such methods as Raman and phase Doppler anemometry will provide data necessary in this effort.
Design and Experimental Study of an Over-Under TBCC Exhaust System.
Mo, Jianwei; Xu, Jinglei; Zhang, Liuhuan
2014-01-01
Turbine-based combined-cycle (TBCC) propulsion systems have been a topic of research as a means for more efficient flight at supersonic and hypersonic speeds. The present study focuses on the fundamental physics of the complex flow in the TBCC exhaust system during the transition mode as the turbine exhaust is shut off and the ramjet exhaust is increased. A TBCC exhaust system was designed using methods of characteristics (MOC) and subjected to experimental and computational study. The main objectives of the study were: (1) to identify the interactions between the two exhaust jet streams during the transition mode phase and their effects on the whole flow-field structure; (2) to determine and verify the aerodynamic performance of the over-under TBCC exhaust nozzle; and (3) to validate the simulation ability of the computational fluid dynamics (CFD) software according to the experimental conditions. Static pressure taps and Schlieren apparatus were employed to obtain the wall pressure distributions and flow-field structures. Steady-state tests were performed with the ramjet nozzle cowl at six different positions at which the turbine flow path were half closed and fully opened, respectively. Methods of CFD were used to simulate the exhaust flow and they complemented the experimental study by providing greater insight into the details of the flow field and a means of verifying the experimental results. Results indicated that the flow structure was complicated because the two exhaust jet streams interacted with each other during the exhaust system mode transition. The exhaust system thrust coefficient varied from 0.9288 to 0.9657 during the process. The CFD simulation results agree well with the experimental data, which demonstrated that the CFD methods were effective in evaluating the aerodynamic performance of the TBCC exhaust system during the mode transition.
Analysis of Mars Pathfinder Entry Data, Aerothermal Heating, and Heat Shield Material Response
NASA Technical Reports Server (NTRS)
Milos, Frank; Chen, Y. K.; Tran, H. K.; Rasky, Daniel J. (Technical Monitor)
1997-01-01
The Mars Pathfinder heatshield contained several thermocouples and resistance thermometers. A description of the experiment, the entry data, and analysis of the entry environment and material response is presented. In particular, the analysis addresses uncertainties of the data and the fluid dynamics and material response models. The calculations use the latest trajectory and atmosphere reconstructions for the Pathfinder entry. A modified version of the GIANTS code is used for CFD (computational fluid dynamics) analyses, and FIAT is used for material response. The material response and flowfield are coupled appropriately. Three different material response models are considered. The analysis of Pathfinder entry data for validation of aerothermal heating and material response models is complicated by model uncertainties and unanticipated data-acquisition and processing problems. We will discuss these issues as well as ramifications of the data and analysis for future Mars missions.
Analysis of penetration and mixing of gas jets in supersonic cross flow
NASA Technical Reports Server (NTRS)
Billig, F. S.; Schetz, J. A.
1992-01-01
The JETPEN analysis for gas jets in a supersonic cross flow developed earlier at APL/JHU has been extended in several important ways. First, the treatment of cases with injection at angles other than 90 deg has been redone. Next, the second of the three regions formerly treated has been eliminated. Third, the region downstream of the Mach disk for underexpanded cases has been reformulated such that turbulent entrainment of main stream fluid into the plume is modeled, and the equations of motion are solved marching downstream. These changes now permit prediction of the variation in composition, mixing area growth and all other flow variables along the plume. The analysis has been verified by comparison of predictions and experiment over a wide range of conditions. The result is an analysis capable of reliable predictions of the major flowfield variables that can be run on a PC.
On predicting contamination levels of HALOE optics aboard UARS using direct simulation Monte Carlo
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Rault, Didier F. G.
1993-01-01
A three-dimensional version of the direct simulation Monte Carlo method is adapted to assess the contamination environment surrounding a highly detailed model of the Upper Atmosphere Research Satellite. Emphasis is placed on simulating a realistic, worst-case set of flowfield and surface conditions and geometric orientations in order to estimate an upper limit for the cumulative level of volatile organic molecular deposits at the aperture of the Halogen Occultation Experiment. Problems resolving species outgassing and vent flux rates that varied over many orders of magnitude were handled using species weighting factors. Results relating to contaminant cloud structure, cloud composition, and statistics of simulated molecules impinging on the target surface are presented, along with data related to code performance. Using procedures developed in standard contamination analyses, the cumulative level of volatile organic deposits on HALOE's aperture over the instrument's 35-month nominal data collection period is estimated to be about 2700A.
Computational analysis of the SSME fuel preburner flow
NASA Technical Reports Server (NTRS)
Wang, T. S.; Farmer, R. C.
1986-01-01
A computational fluid dynamics model which simulates the steady state operation of the SSME fuel preburner is developed. Specifically, the model will be used to quantify the flow factors which cause local hot spots in the fuel preburner in order to recommend experiments whereby the control of undesirable flow features can be demonstrated. The results of a two year effort to model the preburner are presented. In this effort, investigating the fuel preburner flowfield, the appropriate transport equations were numerically solved for both an axisymmetric and a three-dimensional configuration. Continuum's VAST (Variational Solution of the Transport equations) code, in conjunction with the CM-1000 Engineering Analysis Workstation and the NASA/Ames CYBER 205, was used to perform the required calculations. It is concluded that the preburner operational anomalies are not due to steady state phenomena and must, therefore, be related to transient operational procedures.
NASA Technical Reports Server (NTRS)
Kline, S. J. (Editor); Cantwell, B. J. (Editor); Lilley, G. M.
1982-01-01
Computational techniques for simulating turbulent flows were explored, together with the results of experimental investigations. Particular attention was devoted to the possibility of defining a universal closure model, applicable for all turbulence situations; however, conclusions were drawn that zonal models, describing localized structures, were the most promising techniques to date. The taxonomy of turbulent flows was summarized, as were algebraic, differential, integral, and partial differential methods for numerical depiction of turbulent flows. Numerous comparisons of theoretically predicted and experimentally obtained data for wall pressure distributions, velocity profiles, turbulent kinetic energy profiles, Reynolds shear stress profiles, and flows around transonic airfoils were presented. Simplifying techniques for reducing the necessary computational time for modeling complex flowfields were surveyed, together with the industrial requirements and applications of computational fluid dynamics techniques.
Development of Tripropellant CFD Design Code
NASA Technical Reports Server (NTRS)
Farmer, Richard C.; Cheng, Gary C.; Anderson, Peter G.
1998-01-01
A tripropellant, such as GO2/H2/RP-1, CFD design code has been developed to predict the local mixing of multiple propellant streams as they are injected into a rocket motor. The code utilizes real fluid properties to account for the mixing and finite-rate combustion processes which occur near an injector faceplate, thus the analysis serves as a multi-phase homogeneous spray combustion model. Proper accounting of the combustion allows accurate gas-side temperature predictions which are essential for accurate wall heating analyses. The complex secondary flows which are predicted to occur near a faceplate cannot be quantitatively predicted by less accurate methodology. Test cases have been simulated to describe an axisymmetric tripropellant coaxial injector and a 3-dimensional RP-1/LO2 impinger injector system. The analysis has been shown to realistically describe such injector combustion flowfields. The code is also valuable to design meaningful future experiments by determining the critical location and type of measurements needed.
Current methods for the size determination of nanomaterials in aqueous suspension include dynamic or static light scattering and electron or atomic force microscopy techniques. Light scattering techniques are limited by poor resolution and the scattering intensity dependence on p...
Flowfield characteristics of an aerodynamic acoustic levitator
NASA Astrophysics Data System (ADS)
Yarin, A. L.; Brenn, G.; Keller, J.; Pfaffenlehner, M.; Ryssel, E.; Tropea, C.
1997-11-01
A droplet held in a single-axis ultrasonic levitator will principally sustain a certain external blowing along the levitation axis, which introduces the possibility of investigating heat and/or mass transfer from the droplet under conditions which are not too remote from those in spray systems. The focus of the present work is on the influence of the acoustic field on the external flow. More specifically, an axisymmetric submerged gas jet in an axial standing acoustic wave is examined, both in the absence and presence of a liquid droplet. Flow visualization is first presented to illustrate the global flow effects and the operating windows of jet velocities and acoustic powers which are suitable for further study. An analytic and numeric solution, based on the parabolic boundary layer equations are then given for the case of no levitated droplet, providing quantitative estimates of the acoustic field/flow interaction. Detailed velocity measurements using a laser Doppler anemometer verify the analytic results and extend these to the case of a levitated droplet. Some unresolved discrepancy remains in predicting the maximum velocity attainable before the droplet is blown out of the levitator. Two methods are developed to estimate the sound pressure level in the levitator by comparing flowfield patterns with analytic results. These results and observations are used to estimate to what extent acoustic aerodynamic levitators can be used in the future for investigating transport properties of individual droplets.
Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland
2017-01-01
For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. PMID:27639623
High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Curran, E.T.
1991-01-01
Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.
Summary of an experimental investigation on the ground vortex
NASA Technical Reports Server (NTRS)
Billet, Michael L.; Cimbala, John M.
1988-01-01
The results of an experimental investigation into the position and characteristics of the ground vortex are summarized. A 48-inch wind tunnel was modified to create a testing environment suitable for the ground vortex study. Flow visualization was used to document the jet-crossflow interaction and a two-component Laser Doppler Velocimeter (LDV) was used to survey the flowfield in detail. Measurements of the ground vortex characteristics and location as a function of freestream-to-jet velocity ratio, jet height, pressure gradient and upstream boundary layer thickness were obtained.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2001-01-01
Three-dimensional transonic flow over a delta wing is investigated using several turbulence models. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition aft of the leading edge or are fully turbulent are performed. These computations show that grid resolution, transition location and turbulence model significantly affect the 3D flowfield.
Simulation of blast action on civil structures using ANSYS Autodyn
NASA Astrophysics Data System (ADS)
Fedorova, N. N.; Valger, S. A.; Fedorov, A. V.
2016-10-01
The paper presents the results of 3D numerical simulations of shock wave spreading in cityscape area. ANSYS Autodyne software is used for the computations. Different test cases are investigated numerically. On the basis of the computations, the complex transient flowfield structure formed in the vicinity of prismatic bodies was obtained and analyzed. The simulation results have been compared to the experimental data. The ability of two numerical schemes is studied to correctly predict the pressure history in several gauges placed on walls of the obstacles.
Advanced ballistic range technology
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1993-01-01
Experimental interferograms, schlieren, and shadowgraphs are used for quantitative and qualitative flow-field studies. These images are created by passing light through a flow field, and the recorded intensity patterns are functions of the phase shift and angular deflection of the light. As part of the grant NCC2-583, techniques and software have been developed for obtaining phase shifts from finite-fringe interferograms and for constructing optical images from Computational Fluid Dynamics (CFD) solutions. During the period from 1 Nov. 1992 - 30 Jun. 1993, research efforts have been concentrated in improving these techniques.
NASA Astrophysics Data System (ADS)
Diasinos, S.; Gatto, A.
2008-09-01
This paper details a quantitative 3D investigation using LDA into the interaction aerodynamics on a sub-scale open wheel race car inverted front wing and wheel. Of primary importance to this study was the influence of changing wing angle of attack and span on the resulting near-field and far-field flow characteristics. Results obtained showed that both variables do have a significant influence on the resultant flow-field, particularly on wing vortex and wheel wake development and propagation.
Preconditioned upwind methods to solve 3-D incompressible Navier-Stokes equations for viscous flows
NASA Technical Reports Server (NTRS)
Hsu, C.-H.; Chen, Y.-M.; Liu, C. H.
1990-01-01
A computational method for calculating low-speed viscous flowfields is developed. The method uses the implicit upwind-relaxation finite-difference algorithm with a nonsingular eigensystem to solve the preconditioned, three-dimensional, incompressible Navier-Stokes equations in curvilinear coordinates. The technique of local time stepping is incorporated to accelerate the rate of convergence to a steady-state solution. An extensive study of optimizing the preconditioned system is carried out for two viscous flow problems. Computed results are compared with analytical solutions and experimental data.
Automated Parameter Studies Using a Cartesian Method
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosimis, Michael J.; Nemec, Marian
2004-01-01
Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated points in a design space by performing steady-state computations at fixed flight conditions (Mach number, angle of attack, sideslip), for a fixed geometric configuration of interest. This "point analysis" provides detailed information about the flowfield, which aides an engineer in understanding, or correcting, a design. A point analysis is typically performed using high fidelity methods at a handful of critical design points, e.g. a cruise or landing configuration, or a sample of points along a flight trajectory.
Focused Rocket-Ejector RBCC Experiments
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
2003-01-01
This document reports the results of additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Perm State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3rd generation Reusable Launch Vehicles (RLV). The two tasks conducted under this program build on earlier NASA MSFC funded research program on rocket ejector investigations. The first task continued a systematic investigation of the improvements provided by a gaseous hydrogen (GHz)/oxygen (GO2) twin thruster RBCC rocket ejector system over a single rocket system. In a similar vein, the second task continued investigations into the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. For the GH2/GO2 propellant rocket ejector experiments, high frequency measurements of the pressure field within the system were also made to understand the unsteady behavior of the flowfield.
Numerical Solutions of the Complete Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Robinson, David F.; Hassan, H. A.
1997-01-01
This report details the development of a new two-equation turbulence closure model based on the exact turbulent kinetic energy k and the variance of vorticity, zeta. The model, which is applicable to three dimensional flowfields, employs one set of model constants and does not use damping or wall functions, or geometric factors.
Exact solutions in oscillating airfoil theory
NASA Technical Reports Server (NTRS)
Williams, M. H.
1977-01-01
A result obtained by Williams (1977) for two-dimensional airfoils oscillating in an arbitrary subsonic parallel flowfield is reformulated to show that the pressure distribution induced by any deformation can be construed from the particular solutions for heaving and pitching motions. Specific formulas are presented for an oscillating control surface with a sealed gap.
On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Alunni, Antonella I.
2012-01-01
This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.
Prediction of submarine scattered noise by the acoustic analogy
NASA Astrophysics Data System (ADS)
Testa, C.; Greco, L.
2018-07-01
The prediction of the noise scattered by a submarine subject to the propeller tonal noise is here addressed through a non-standard frequency-domain formulation that extends the use of the acoustic analogy to scattering problems. A boundary element method yields the scattered pressure upon the hull surface by the solution of a boundary integral equation, whereas the noise radiated in the fluid domain is evaluated by the corresponding boundary integral representation. Propeller-induced incident pressure field on the scatterer is detected by combining an unsteady three-dimensional panel method with the Bernoulli equation. For each frequency of interest, numerical results concern with sound pressure levels upon the hull and in the flowfield. The validity of the results is established by a comparison with a time-marching hydrodynamic panel method that solves propeller and hull jointly. Within the framework of potential-flow hydrodynamics, it is found out that the scattering formulation herein proposed is appropriate to successfully capture noise magnitude and directivity both on the hull surface and in the flowfield, yielding a computationally efficient solution procedure that may be useful in preliminary design/multidisciplinary optimization applications.
Computation of oscillating airfoil flows with one- and two-equation turbulence models
NASA Technical Reports Server (NTRS)
Ekaterinaris, J. A.; Menter, F. R.
1994-01-01
The ability of one- and two-equation turbulence models to predict unsteady separated flows over airfoils is evaluated. An implicit, factorized, upwind-biased numerical scheme is used for the integration of the compressible, Reynolds-averaged Navier-Stokes equations. The turbulent eddy viscosity is obtained from the computed mean flowfield by integration of the turbulent field equations. One- and two-equation turbulence models are first tested for a separated airfoil flow at fixed angle of incidence. The same models are then applied to compute the unsteady flowfields about airfoils undergoing oscillatory motion at low subsonic Mach numbers. Experimental cases where the flow has been tripped at the leading-edge and where natural transition was allowed to occur naturally are considered. The more recently developed turbulence models capture the physics of unsteady separated flow significantly better than the standard kappa-epsilon and kappa-omega models. However, certain differences in the hysteresis effects are observed. For an untripped high-Reynolds-number flow, it was found necessary to take into account the leading-edge transitional flow region to capture the correct physical mechanism that leads to dynamic stall.
Prediction of drag at subsonic and transonic speeds using Euler methods
NASA Technical Reports Server (NTRS)
Nikfetrat, K.; Van Dam, C. P.; Vijgen, P. M. H. W.; Chang, I. C.
1992-01-01
A technique for the evaluation of aerodynamic drag from flowfield solutions based on the Euler equations is discussed. The technique is limited to steady attached flows around three-dimensional configurations in the absence of active systems such as surface blowing/suction and propulsion. It allows the decomposition of the total drag into induced drag and wave drag and, consequently, it provides more information on the drag sources than the conventional surface-pressure integration technique. The induced drag is obtained from the integration of the kinetic energy (per unit distance) of the trailing vortex system on a wake plane and the wave drag is obtained from the integration of the entropy production on a plane just downstream of the shocks. The drag-evaluation technique is applied to three-dimensional flowfield solutions for the ONERA M6 wing as well as an aspect-ratio-7 wing with an elliptic spanwise chord distribution and an NACA-0012 section shape. Comparisons between the drag obtained with the present technique and the drag based on the integration of surface pressures are presented for two Euler codes.
Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change
NASA Technical Reports Server (NTRS)
Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.
2010-01-01
Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.
Prediction of the Thrust Performance and the Flowfield of Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Wang, T.-S.
1990-01-01
In an effort to improve the current solutions in the design and analysis of liquid propulsive engines, a computational fluid dynamics (CFD) model capable of calculating the reacting flows from the combustion chamber, through the nozzle to the external plume, was developed. The Space Shuttle Main Engine (SSME) fired at sea level, was investigated as a sample case. The CFD model, FDNS, is a pressure based, non-staggered grid, viscous/inviscid, ideal gas/real gas, reactive code. An adaptive upwinding differencing scheme is employed for the spatial discretization. The upwind scheme is based on fourth order central differencing with fourth order damping for smooth regions, and second order central differencing with second order damping for shock capturing. It is equipped with a CHMQGM equilibrium chemistry algorithm and a PARASOL finite rate chemistry algorithm using the point implicit method. The computed flow results and performance compared well with those of other standard codes and engine hot fire test data. In addition, the transient nozzle flowfield calculation was also performed to demonstrate the ability of FDNS in capturing the flow separation during the startup process.
NASA Technical Reports Server (NTRS)
Alford, William J., Jr.
1956-01-01
The flow-field characteristics beneath swept and unswept wings as determined by potential-flow theory are compared with the experimentally determined flow fields beneath swept and unswept wing-fuselage combinations. The potential-flow theory utilized considered both spanwise and chordwise distributions of vorticity as well as the wing-thickness effects. The perturbation velocities induced by a unit horseshoe vortex are included in tabular form. The results indicated that significant chordwise flow gradients existed beneath both swept and unswept wings at zero lift and throughout the lift range. The theoretical predictions of the flow-field characteristics were qualitatively correct in all cases considered, although there were indications that the magnitudes of the downwash angles tended to be overpredicted as the tip of the swept wing was approached and that the sidewash angles ahead of the unswept wing were underpredicted. The calculated effects of compressibility indicated that significant increases in the chordwise variation of flow angles and dynamic-pressure ratios should be expected in going from low to high subsonic speeds.
Scaling study of the combustion performance of gas—gas rocket injectors
NASA Astrophysics Data System (ADS)
Wang, Xiao-Wei; Cai, Guo-Biao; Jin, Ping
2011-10-01
To obtain the key subelements that may influence the scaling of gas—gas injector combustor performance, the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based on the results of a previous study on the scaling of a gas—gas combustion flowfield. Analysis indicates that inner wall friction loss and heat-flux loss are two key issues in gaining the scaling criterion of the combustion performance. The similarity conditions of the inner wall friction loss and heat-flux loss in a gas—gas combustion chamber are obtained by theoretical analyses. Then the theoretical scaling criterion was obtained for the combustion performance, but it proved to be impractical. The criterion conditions, the wall friction and the heat flux are further analysed in detail to obtain the specific engineering scaling criterion of the combustion performance. The results indicate that when the inner flowfields in the combustors are similar, the combustor wall shear stress will have similar distributions qualitatively and will be directly proportional to pc0.8dt-0.2 quantitatively. In addition, the combustion peformance will remain unchanged. Furthermore, multi-element injector chambers with different geometric sizes and at different pressures are numerically simulated and the wall shear stress and combustion efficiencies are solved and compared with each other. A multielement injector chamber is designed and hot-fire tested at several chamber pressures and the combustion performances are measured in a total of nine hot-fire tests. The numerical and experimental results verified the similarities among combustor wall shear stress and combustion performances at different chamber pressures and geometries, with the criterion applied.
Decoding complex flow-field patterns in visual working memory.
Christophel, Thomas B; Haynes, John-Dylan
2014-05-01
There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Supersonic quasi-axisymmetric vortex breakdown
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.
1991-01-01
An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.
Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics
NASA Technical Reports Server (NTRS)
Fischbach, Sean R.
2015-01-01
Combustion instability modeling of Solid Rocket Motors (SRM) remains a topic of active research. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process, acoustics, and steady-state gas dynamics. Recent advances in defining the energy transport of disturbances within steady flow-fields have been applied by combustion stability modelers to improve the analysis framework [1, 2, 3]. Employing this more accurate global energy balance requires a higher fidelity model of the SRM flow-field and acoustic mode shapes. The current industry standard analysis tool utilizes a one dimensional analysis of the time dependent fluid dynamics along with a quasi-three dimensional propellant grain regression model to determine the SRM ballistics. The code then couples with another application that calculates the eigenvalues of the one dimensional homogenous wave equation. The mean flow parameters and acoustic normal modes are coupled to evaluate the stability theory developed and popularized by Culick [4, 5]. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The current study employs the COMSOL multiphysics finite element framework to model the steady flow-field parameters and acoustic normal modes of a generic SRM. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluates the gas flow inside of a SRM using St. Robert's law to model the solid propellant burn rate, no slip boundary conditions, and the hybrid outflow condition. Results from the HMNF model are verified by comparing the pertinent ballistics parameters with the industry standard code outputs (i.e. pressure drop, thrust, ect.). These results are then used by the coefficient form of the mathematics module to determine the complex eigenvalues of the Acoustic Velocity Potential Equation (AVPE). The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. The results of the steady-state CFD and AVPE analyses are used to calculate the linear acoustic growth rate as is defined by Flandro and Jacob [2, 3]. In order to verify the process implemented within COMSOL we first employ the Culick theory and compare the results with the industry standard. After the process is verified, the Flandro/Jacob energy balance theory is employed and results displayed.
Navier-Stokes Aerodynamic Simulation of the V-22 Osprey on the Intel Paragon MPP
NASA Technical Reports Server (NTRS)
Vadyak, Joseph; Shrewsbury, George E.; Narramore, Jim C.; Montry, Gary; Holst, Terry; Kwak, Dochan (Technical Monitor)
1995-01-01
The paper will describe the Development of a general three-dimensional multiple grid zone Navier-Stokes flowfield simulation program (ENS3D-MPP) designed for efficient execution on the Intel Paragon Massively Parallel Processor (MPP) supercomputer, and the subsequent application of this method to the prediction of the viscous flowfield about the V-22 Osprey tiltrotor vehicle. The flowfield simulation code solves the thin Layer or full Navier-Stoke's equation - for viscous flow modeling, or the Euler equations for inviscid flow modeling on a structured multi-zone mesh. In the present paper only viscous simulations will be shown. The governing difference equations are solved using a time marching implicit approximate factorization method with either TVD upwind or central differencing used for the convective terms and central differencing used for the viscous diffusion terms. Steady state or Lime accurate solutions can be calculated. The present paper will focus on steady state applications, although time accurate solution analysis is the ultimate goal of this effort. Laminar viscosity is calculated using Sutherland's law and the Baldwin-Lomax two layer algebraic turbulence model is used to compute the eddy viscosity. The Simulation method uses an arbitrary block, curvilinear grid topology. An automatic grid adaption scheme is incorporated which concentrates grid points in high density gradient regions. A variety of user-specified boundary conditions are available. This paper will present the application of the scalable and superscalable versions to the steady state viscous flow analysis of the V-22 Osprey using a multiple zone global mesh. The mesh consists of a series of sheared cartesian grid blocks with polar grids embedded within to better simulate the wing tip mounted nacelle. MPP solutions will be shown in comparison to equivalent Cray C-90 results and also in comparison to experimental data. Discussions on meshing considerations, wall clock execution time, load balancing, and scalability will be provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boxx, I.; Stoehr, M.; Meier, W.
This paper presents observations and analysis of the time-dependent behavior of a 10 kW partially pre-mixed, swirl-stabilized methane-air flame exhibiting self-excited thermo-acoustic oscillations. This analysis is based on a series of measurements wherein particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of the OH radical were performed simultaneously at 5 kHz repetition rate over durations of 0.8 s. Chemiluminescence imaging of the OH{sup *} radical was performed separately, also at 5 kHz over 0.8 s acquisition runs. These measurements were of sufficient sampling frequency and duration to extract usable spatial and temporal frequency information on the medium to large-scalemore » flow-field and heat-release characteristics of the flame. This analysis is used to more fully characterize the interaction between the self-excited thermo-acoustic oscillations and the dominant flow-field structure of this flame, a precessing vortex core (PVC) present in the inner recirculation zone. Interpretation of individual measurement sequences yielded insight into various physical phenomena and the underlying mechanisms driving flame dynamics. It is observed for this flame that location of the reaction zone tracks large-scale fluctuations in axial velocity and also conforms to the passage of large-scale vortical structures through the flow-field. Local extinction of the reaction zone in regions of persistently high principal compressive strain is observed. Such extinctions, however, are seen to be self healing and thus do not induce blowout. Indications of auto-ignition in regions of unburned gas near the exit are also observed. Probable auto-ignition events are frequently observed coincident with the centers of large-scale vortical structures, suggesting the phenomenon is linked to the enhanced mixing and longer residence times associated with fluid at the core of the PVC as it moves through the flame. (author)« less
NASA Astrophysics Data System (ADS)
Harvazinski, Matthew Evan
Self-excited combustion instabilities have been studied using a combination of two- and three-dimensional computational fluid dynamics (CFD) simulations. This work was undertaken to assess the ability of CFD simulations to generate the high-amplitude resonant combustion dynamics without external forcing or a combustion response function. Specifically, detached eddy simulations (DES), which allow for significantly coarser grid resolutions in wall bounded flows than traditional large eddy simulations (LES), were investigated for their capability of simulating the instability. A single-element laboratory rocket combustor which produces self-excited longitudinal instabilities is used for the configuration. The model rocket combustor uses an injector configuration based on practical oxidizer-rich staged-combustion devices; a sudden expansion combustion section; and uses decomposed hydrogen peroxide as the oxidizer and gaseous methane as the fuel. A better understanding of the physics has been achieved using a series of diagnostics. Standard CFD outputs like instantaneous and time averaged flowfield outputs are combined with other tools, like the Rayleigh index to provide additional insight. The Rayleigh index is used to identify local regions in the combustor which are responsible for driving and damping the instability. By comparing the Rayleigh index to flowfield parameters it is possible to connect damping and driving to specific flowfield conditions. A cost effective procedure to compute multidimensional local Rayleigh index was developed. This work shows that combustion instabilities can be qualitatively simulated using two-dimensional axisymmetric simulations for fuel rich operating conditions. A full three-dimensional simulation produces a higher level of instability which agrees quite well with the experimental results. In addition to matching the level of instability the three-dimensional simulation also predicts the harmonic nature of the instability that is observed in experiments. All fuel rich simulations used a single step global reaction for the chemical kinetic model. A fuel lean operating condition is also studied and has a lower level of instability. The two-dimensional results are unable to provide good agreement with experimental results unless a more expensive four-step chemical kinetic model is used. The three-dimensional simulation is able to predict the harmonic behavior but fails to capture the amplitude of the instability observed in the companion experiment, instead predicting lower amplitude oscillations. A detailed analysis of the three-dimensional results on a single cycle shows that the periodic heat release commonly associated with combustion instability can be interpreted to be a result of the time lag between the instant the fuel is injected and when it is burned. The time lag is due to two mechanisms. First, methane present near the backstep can become trapped and transported inside shed vortices to the point of combustion. The second aspect of the time lag arises due to the interaction of the fuel with upstream-running pressure waves. As the wave moves past the injection point the flow is temporarily disrupted, reducing the fuel flow into the combustor. A comparison between the fuel lean and fuel rich cases shows several differences. Whereas both cases can produce instability, the fuel-rich case is measurably more unstable. Using the tools developed differences in the location of the damping, and driving regions are evident. By moving the peak driving area upstream of the damping region the level of instability is lower in the fuel lean case. The location of the mean heat release is also important; locating the mean heat release adjacent to the vortex impingement point a higher level of instability is observed for the fuel rich case. This research shows that DES instability modeling has the ability to be a valuable tool in the study of combustion instability. The lower grid size requirement makes the use of DES based modeling a potential candidate in the modeling of full-scale rocket engines. Whereas three-dimensional simulations may be necessary for very good agreement, two-dimensional simulations allow efficient parametric investigation and tool development. The insights obtained from the simulations offer the possibility that their results can be used in the design of future engines to exploit damping and reduce driving.
Flow Physics of Synthetic Jet Interactions on a Sweptback Model with a Control Surface
NASA Astrophysics Data System (ADS)
Monastero, Marianne; Amitay, Michael
2016-11-01
Active flow control using synthetic jets can be used on aerodynamic surfaces to improve performance and increase fuel efficiency. The flowfield resulting from the interaction of the jets with a separated crossflow with a spanwise component must be understood to determine actuator spacing for aircraft integration. The current and previous work showed adjacent synthetic jets located upstream of a control surface hingeline on a sweptback model interact with each other under certain conditions. Whether these interactions are constructive or destructive is dependent on the spanwise spacing of the jets, the severity of separation over the control surface, and the magnitude of the spanwise flow. Measuring and understanding the detailed flow physics of the flow structures emanating from the synthetic jet orifices and their interactions with adjacent jets of varying spacings is the focus of this work. Wind tunnel experiments were conducted at the Rensselaer Polytechnic Institute Subsonic Wind Tunnel using stereo particle image velocimetry (SPIV) and pressure measurements to study the effect that varying the spanwise spacing has on the overall performance. Initial SPIV data gave insight into defining and understanding the mechanisms behind the beneficial or detrimental jets interactions.
Low-speed flowfield characterization by infrared measurements of surface temperatures
NASA Technical Reports Server (NTRS)
Gartenberg, E.; Roberts, A. S., Jr.; Mcree, G. J.
1989-01-01
An experimental program was aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions. Implementing a new technique, a long electrically heated wire was placed across a laminar jet. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified. Furthermore, using Nusselt number correlations, the velocity distribution could be deduced. The same approach was used to survey wakes behind cylinders in a wind-tunnel. This method is suited to investigate flows with position dependent velocities, e.g., boundary layers, confined flows, jets, wakes, and shear layers. It was found that the IR imaging camera cannot accurately track high gradient temperature fields. A correlation procedure was devised to account for this limitation. Other wind-tunnel experiments included tracking the development of the laminar boundary layer over a warmed flat plate by measuring the chordwise temperature distribution. This technique was applied also to the flow downstream from a rearward facing step. Finally, the IR imaging system was used to study boundary layer behavior over an airfoil at angles of attack from zero up to separation. The results were confirmed with tufts observable both visually and with the IR imaging camera.
Investigation of ramp injectors for supersonic mixing enhancement
NASA Technical Reports Server (NTRS)
Haimovitch, Y.; Gartenberg, E.; Roberts, A. S., Jr.
1994-01-01
A comparative study of wall mounted swept ramp injectors fitted with injector nozzles of different shape has been conducted in a constant area duct to explore mixing enhancement techniques for scramjet combustors. Six different injector nozzle inserts, all having equal exit and throat areas, were tested to explore the interaction between the preconditioned fuel jet and the vortical flowfield produced by the ramp: circular nozzle (baseline), nozzle with three downstream facing steps, nozzle with four vortex generators, elliptical nozzle, tapered-slot nozzle, and trapezoidal nozzle. The main flow was air at Mach 2, and the fuel was simulated by air injected at Mach 1.63 or by helium injected at Mach 1.7. Pressure and temperature surveys, combined with Mie and Rayleigh scattering visualization, were used to investigate the flow field. The experiments were compared with three dimensional Navier-Stokes computations. The results indicate that the mixing process is dominated by the streamwise vorticity generated by the ramp, the injectors' inner geometry having a minor effect. It was also found that the injectant/air mixing in the far-field is nearly independent of the injector geometry, molecular weight of the injectant, and the initial convective Mach number.
NASA Astrophysics Data System (ADS)
Dünser, Simon; Meyer, Daniel W.
2016-06-01
In most groundwater aquifers, dispersion of tracers is dominated by flow-field inhomogeneities resulting from the underlying heterogeneous conductivity or transmissivity field. This effect is referred to as macrodispersion. Since in practice, besides a few point measurements the complete conductivity field is virtually never available, a probabilistic treatment is needed. To quantify the uncertainty in tracer concentrations from a given geostatistical model for the conductivity, Monte Carlo (MC) simulation is typically used. To avoid the excessive computational costs of MC, the polar Markovian velocity process (PMVP) model was recently introduced delivering predictions at about three orders of magnitude smaller computing times. In artificial test cases, the PMVP model has provided good results in comparison with MC. In this study, we further validate the model in a more challenging and realistic setup. The setup considered is derived from the well-known benchmark macrodispersion experiment (MADE), which is highly heterogeneous and non-stationary with a large number of unevenly scattered conductivity measurements. Validations were done against reference MC and good overall agreement was found. Moreover, simulations of a simplified setup with a single measurement were conducted in order to reassess the model's most fundamental assumptions and to provide guidance for model improvements.
Numerical optimization of conical flow waveriders including detailed viscous effects
NASA Technical Reports Server (NTRS)
Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego
1987-01-01
A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.
Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC
NASA Technical Reports Server (NTRS)
Hedahl, Marc O.; Wilmoth, Richard G.
1995-01-01
The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.
Flow-combustion interactions in ducted flameholder-stabilized premixed flames
NASA Astrophysics Data System (ADS)
Soteriou, Marios; Arienti, Marco; Erickson, Robert
2006-11-01
Turbulent premixed combustion is present in many power generation and propulsion systems due to its large energy conversion rate (as compared to non-premixed combustion) and its potential for reduced emissions (at the lean limit). As a result, the study of turbulent premixed flames has received substantial attention in the past through experiment, analysis and simulation. In the recent past, unsteady Computational Fluid Dynamics (CFD) based models have been increasingly leveraged towards the in depth study of the physics of turbulent premixed flames. The bulk of this effort focuses on the response of the flame to turbulence. In contrast, we focus on the opposite problem, i.e. the modification of the turbulent flowfield by the flame. This topic has also received some attention but with a strong emphasis on planar (in the mean), flames propagating normal to the flow. Instead, we focus on flameholder-stabilized ducted flames, i.e. ones in which the flame is confined and substantially inclined to the incoming flow. The fundamental mechanisms by which the flame impacts the flow, i.e. dilatation, baroclinic vorticity generation and molecular diffusion enhancement are discussed in detail and their relative impact quantified. Limitations of modeling these mechanisms in current state of the art CFD models are also addressed.
Plasma Propulsion Testing Capabilities at Arnold Engineering Development Center
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Dawbarn, Albert; Moeller, Trevor
2007-01-01
This paper describes the results of a series of experiments aimed at quantifying the plasma propulsion testing capabilities of a 12-ft diameter vacuum facility (12V) at USAF-Arnold Engineering Development Center (AEDC). Vacuum is maintained in the 12V facility by cryogenic panels lining the interior of the chamber. The pumping capability of these panels was shown to be great enough to support plasma thrusters operating at input electrical power >20 kW. In addition, a series of plasma diagnostics inside the chamber allowed for measurement of plasma parameters at different spatial locations, providing information regarding the chamber's effect on the global plasma thruster flowfield. The plasma source used in this experiment was Hall thruster manufactured by Busek Co. The thruster was operated at up to 20 kW steady-state power in both a lower current and higher current mode. The vacuum level in the chamber never rose above 9 x 10(exp -6) torr during the course of testing. Langmuir probes, ion flux probes, and Faraday cups were used to quantify the plasma parameters in the chamber. We present the results of these measurements and estimates of pumping speed based on the background pressure level and thruster propellant mass flow rate.
The Hydrodynamics of Plesiosaurs
NASA Astrophysics Data System (ADS)
Muscutt, Luke; Ganapathisubramani, Bharathram; Dyke, Gareth; Weymouth, Gabriel
2015-11-01
Plesiosaurs are extinct marine reptiles that existed at the same time as the dinosaurs, and are the only known animals to swim by actively flapping their four wing-like flippers. This can be viewed as a tandem flapping wing problem, where the hind wing is operating in the wake of the fore wing. Experiments using full-scale robotic plesiosaur flippers in a large flume tank have been used to investigate the kinematics and interaction of the flippers. The flippers are actuated in heave and pitch, and a combination of force measurements and flow visualization are used to analyze the characteristics of the vortex interaction between the flippers. Previous two-dimensional numerical simulations have shown that certain kinematics give an increase in thrust of the hind flipper of up to 50%. The current experiments determine if such thrust augmentation is present for a three-dimensional flowfield and determine the kinematics that give the highest possible thrust. This will help to answer paleo-biological questions about the function and evolution of the plesiosaur flippers, along with helping to determine if tandem flapping wings could be a viable propulsion system for autonomous underwater vehicles. Support from EPSRC and Ginko Investments Ltd.
A full-scale STOVL ejector experiment
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy S.
1993-01-01
The design and development of thrust augmenting short take-off and vertical landing (STOVL) ejectors has typically been an iterative process. In this investigation, static performance tests of a full-scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators, yarn tufts and paint dots) was used to assess inlet flowfield characteristics, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate 'seasonal' aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature. Full-scale experimental tests such as this are expensive, and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles -- in particular, the Munk and Prim similarity principle for isentropic flow -- was explored. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then shown to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, then properly chosen performance parameters should be similar for both hot flow and cold flow model tests.
Fluid dynamic mechanisms and interactions within separated flows
NASA Astrophysics Data System (ADS)
Dutton, J. C.; Addy, A. L.
1990-02-01
The significant results of a joint research effort investigating the fundamental fluid dynamic mechanisms and interactions within high-speed separated flows are presented in detail. The results have obtained through analytical and numerical approaches, but with primary emphasis on experimental investigations of missile and projectile base flow-related configurations. The objectives of the research program focus on understanding the component mechanisms and interactions which establish and maintain high-speed separated flow regions. The analytical and numerical efforts have centered on unsteady plume-wall interactions in rocket launch tubes and on predictions of the effects of base bleed on transonic and supersonic base flowfields. The experimental efforts have considered the development and use of a state-of-the-art two component laser Doppler velocimeter (LDV) system for experiments with planar, two-dimensional, small-scale models in supersonic flows. The LDV experiments have yielded high quality, well documented mean and turbulence velocity data for a variety of high-speed separated flows including initial shear layer development, recompression/reattachment processes for two supersonic shear layers, oblique shock wave/turbulent boundary layer interactions in a compression corner, and two-stream, supersonic, near-wake flow behind a finite-thickness base.
Characterization of Three-Stream Jet Flow Fields
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Wernet, Mark P.
2016-01-01
Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10 percent) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50 percent of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65 percent of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.
Characterization of Three-Stream Jet Flow Fields
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Wernet, Mark P.
2016-01-01
Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10%) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50% of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65% of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.
Laser-Based Flowfield Imaging in a Lean Premixed Prevaporized Sector Combustor
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.
2005-01-01
OH and fuel planar laser-induced fluorescence (PLIF) is used qualitatively in this study to observe the flame structure resultant from different fuel injector dome configurations within the 3-cup sector combustor test rig. The fluorescence images are compared with some computational fluid dynamics (CFD) results. Interferences in obtaining OH fluorescence signals due to the emission of other species are assessed. NO PLIF images are presented and compared to gas analysis results. The comparison shows that PLIF NO can be an excellent method for measuring NO in the flame. Additionally, we present flow visualization of the molecular species C2.
Mach disk from underexpanded axisymmetric nozzle flow
NASA Technical Reports Server (NTRS)
Chang, I.-S.; Chow, W. L.
1974-01-01
The flowfield associated with the underexpanded axisymmetric nozzle freejet flow including the appearance of a Mach disk has been studied. It is shown that the location and size of the Mach disk are governed by the appearance of a triple-point shock configuration and the condition that the central core flow will reach a state of 'choking at a throat'. It is recognized that coalescence of waves requires special attention and the reflected wave, as well as the vorticity generated from these wave interactions, have to be taken accurately into account. The theoretical results obtained agreed well with the experimental data.
NASA Technical Reports Server (NTRS)
Kerr, Andrew W.
1989-01-01
Programs related to rotorcraft aeromechanics and man-machine integration are discussed which will support advanced army rotorcraft design. In aeromechanics, recent advances in computational fluid dynamics will be used to characterize the complex unsteady flowfields of rotorcraft, and a second-generation comprehensive helicopter analysis system will be used along with models of aerodynamics, engines, and control systems to study the structural dynamics of rotor/body configurations. The man-machine integration program includes the development of advanced cockpit design technology and the evaluation of cockpit and mission equipment concepts in a real-time full-combat environment.
NASA Technical Reports Server (NTRS)
Kussoy, M. I.; Horstman, K. C.; Kim, K.-S.
1991-01-01
Experimental data for a series of three-dimensional shock-wave/turbulent-boundary-layer interaction flows at Mach 8.2 are presented. The test bodies, composed of sharp fins fastened to a flat-plate test surface, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface-pressure, heat-transfer, and skin-friction distributions, as well as limited mean flowfield surveys both in the undisturbed and interaction regimes. The data were obtained for the purpose of validating computational models of these hypersonic interactions.
Numerical computation of viscous flow around bodies and wings moving at supersonic speeds
NASA Technical Reports Server (NTRS)
Tannehill, J. C.
1984-01-01
Research in aerodynamics is discussed. The development of equilibrium air curve fits; computation of hypersonic rarefield leading edge flows; computation of 2-D and 3-D blunt body laminar flows with an impinging shock; development of a two-dimensional or axisymmetric real gas blunt body code; a study of an over-relaxation procedure forthe MacCormack finite-difference scheme; computation of 2-D blunt body turbulent flows with an impinging shock; computation of supersonic viscous flow over delta wings at high angles of attack; and computation of the Space Shuttle Orbiter flowfield are discussed.
Pylon Effects on a Scramjet Cavity Flameholder Flowfield
2008-09-01
39 ix Page Figure 20. Static and pitot probes ...pressure (Pa) Ppitot Pitot probe pressure (Pa) Pcone Static cone probe pressure (Pa) P Static pressure (Pa) q Dynamic pressure (Pa) R...create strong shocks within the combustor section of the engine. An oblique or bow shock will form off the leading edge of the pylon reflecting
Development and application of computational aerothermodynamics flowfield computer codes
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
1992-01-01
Presented is a collection of papers on research activities carried out during the funding period of October 1991 to March 1992. Topics covered include: blunt body flows in thermochemical equilibrium; thermochemical relaxation in high enthalpy nozzle flow; single expansion ramp nozzle simulations; lunar return aerobraking; line boundary problem for three dimensional grids; and unsteady shock induced combustion.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields, volume 1
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1991-01-01
The following subject areas are covered: the development of detailed nonequilibrium radiation models for molecules along with appropriate models for atoms; the inclusion of nongray radiation gasdynamic coupling in the VSL (Viscous Shock Layer) code; the development and evaluation of various electron-electronic energy models; and an examination of the effects of shock slip.
Turbulence Characteristics of Swirling Flowfields. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jackson, T. W.
1983-01-01
Combustor design phenomena; recirculating flows research; single-wire, six-orientation, eddy dissipation rate, and turbulence modeling measurement; directional sensitivity (DS); calibration equipment, confined jet facility, and hot-wire instrumentation; effects of swirl, strong contraction nozzle, and expansion ratio; and turbulence parameters; uncertain; and DS in laminar jets; turbulent nonswirling jets, and turbulent swirling jets are discussed.
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Doty, Mike
2012-01-01
Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.
Inclined Jet in Crossflow Interacting with a Vortex Generator
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Rigby, D .L.; Heidmann, J. D.
2011-01-01
An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 < J < 11) show that the vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.
Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland
2016-11-20
For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Nutrient-enhanced decomposition of plant biomass in a freshwater wetland
Bodker, James E.; Turner, Robert Eugene; Tweel, Andrew; Schulz, Christopher; Swarzenski, Christopher M.
2015-01-01
We studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.
Experiments on free and impinging supersonic microjets
NASA Astrophysics Data System (ADS)
Phalnikar, K. A.; Kumar, R.; Alvi, F. S.
2008-05-01
The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.
Experimental Study of an Inclined Jet-In-Cross-Flow Interacting with a Vortex Generator
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Rigby, D. L.; Heidmann, J. D.
2010-01-01
An experiment is conducted on the effectiveness of a vortex generator (VG) in preventing lift-off of a jet-in-cross-flow (JICF), with film-cooling application in mind. The jet issues into the boundary layer at an angle of 20 to the free-stream. The effect of a triangular ramp-shaped VG is studied while varying its geometry and location. Detailed flow-field properties are documented for a specific case in which the height of the VG and the diameter of the orifice are comparable to the approach boundary layer thickness. This combination of VG and JICF produce a streamwise vortex pair with vorticity magnitude three times larger (and of opposite sense) than that found in the JICF alone. Such a VG appears to be most effective in keeping the jet attached to the wall. While most of the data are taken at a jet-to-freestream momentum flux ratio (J) of 2, limited surveys are done for varying J. The VG is found to have a significant effect even at the highest J (=11) covered in the experiment. Effect of parametric variation is studied mostly from surveys ten diameters downstream from the orifice. When the VG height is halved there is a lift-off of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensities. Varying the location of the VG, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the VG with increasing radius of curvature progressively diminishes the effect. However, a small radius of curvature may be quite tolerable in practice.
Improving Jet Reactor Configuration for Production of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Povitsky, Alex
2000-01-01
The jet mixing reactor has been proposed for the industrial production of fullerene carbon nanotubes. Here we study the flowfield of this reactor using the SIMPLER algorithm. Hot peripheral jets are used to enhance heating of the central jet by mixing with the ambiance of reactor. Numerous configurations of peripheral jets with various number of jets, distance between nozzles, angles between the central jet and a peripheral jets, and twisted configuration of nozzles are considered. Unlike the previous studies of jet mixing, the optimal configuration of peripheral jets produces strong non-uniformity of the central jet in a cross-section. The geometrical shape of reactor is designed to obtain a uniform temperature of a catalyst.
Numerical investigations in three-dimensional internal flows
NASA Technical Reports Server (NTRS)
Rose, William C.
1991-01-01
In previous efforts, a two-dimensional full Navier-Stokes (FNS) code (SCRAM2D) was used in a design process that involved parametric modifications of the inlet geometry to arrive at what appeared to be an optimum inlet flowfield that produced a uniform flow at the exit in a very short distance. In these previous studies, the technologies for determining the contours with a 'man-in-the-loop' approach for both the ramp and cowl of the inlet were demonstrated, and nearly shock-free exiting flowfields were shown to be obtainable. The resulting two-dimensional compression contours were then used with swept sidewalls to form a three-dimensional inlet. Then the three-dimensional Navier-Stokes code (SCRAM3D) was used to investigate the inlet's three-dimensional flow. One of the major difficulties encountered in the previous studies was that associated with the relatively long time required to obtain a solution using even the 2D FNS code in the design process. Since one of the goals of high-speed inlet design is to produce inputs to the overall aircraft design in a timely manner, it was proposed for this year's research to examine 2D and 3D viscous flow solver techniques alternative to the NFS codes used to date. Areas of the inlet particularly identified for code speed up are those associated with the forebody and external flow ramp systems of the inlet. In these areas, parabolized, or space-marched, Navier-Stokes codes were proposed to be investigated for their applicability in the design process developed previously. This report describes the results of an investigation into the use of two other codes for analyzing the forebody and inlet ramp systems of high-speed inlets.
NASA Astrophysics Data System (ADS)
Garg, Sanjay
An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three-dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 10 ^circ to 20^circ at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature pressure transducers flush-mounted in the flat plate have been used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their rms level, amplitude distribution and power spectra, are also determined. Measurements have been made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 155 dB, which places them in the category of significant aeroacoustic load generators. The fluctuations near the foot of the fin are dominated by low frequency (0-5 kHz) components, and are caused by a previously unrecognized random motion of the primary attachment line. This phenomenon is probably intimately linked to the unsteadiness of the separation shock at the start of the interaction. The characteristics of the pressure fluctuations are explained in light of the features of the interaction flowfield. In particular, physical mechanisms responsible for the generation of high levels of surface pressure fluctuations are proposed based on the results of the study. The unsteadiness of the flowfield of the surface is also examined via a novel, non-intrusive optical technique. Results show that the entire shock structure generated by the interaction undergoes relatively low-frequency oscillations.
Thermal Nonequilibrium in Hypersonic Separated Flow
2014-12-22
flow duration and steadiness. 15. SUBJECT TERMS Hypersonic Flowfield Measurements, Laser Diagnostics of Gas Flow, Laser Induced...extent than the NS computation. While it would be convenient to believe that the more physically realistic flow modeling of the DSMC gas - surface...index and absorption coefficient. Each of the curves was produced assuming a 0.5 % concentration of lithium at the Condition A nozzle exit conditions
Computation of flow in radial- and mixed-flow cascades by an inviscid-viscous interaction method
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Hansen, E. C.
1980-01-01
The use of inviscid-viscous interaction methods for the case of radial or mixed-flow cascade diffusers is discussed. A literature review of investigations considering cascade flow-field prediction by inviscid-viscous iterative computation is given. Cascade aerodynamics in the third blade row of a multiple-row radial cascade diffuser are specifically investigated.
2016-12-07
many DoD sponsored MAV projects including one task from ARO and another one as part of Army/Navy/ NASA - sponsored VLRCOE at Maryland all requiring...has undertaken many DoD sponsored MAV projects including one task from ARO and another one as part of Army/Navy/ NASA sponsored Vertical Lift Research