Science.gov

Sample records for experiment k-6-22 growth

  1. Experiment K-6-22. Growth hormone regulation, synthesis and secretion in microgravity. Part 1: Somatotroph physiology. Part 2: Immunohistochemical analysis of hypothalamic hormones. Part 3: Plasma analysis

    NASA Technical Reports Server (NTRS)

    Grindeland, R.; Vale, W.; Hymer, W.; Sawchenko, P.; Vasques, M.; Krasnov, I.; Kaplanski, A.; Victorov, I.

    1990-01-01

    The objectives of the 1887 mission were: (1) to determine if the results of the SL-3 pituitary gland experiment (1) were repeatable; and (2) to determine what effect a longer mission would have on the rat pituitary gland growth hormone (GH) system. In the 1887 experiment two issues were considered especially important. First, it was recognized that cells prepared from individual rat pituitary glands should be considered separately so that the data from the 5 glands could be analyzed in a statistically meaningful way. Second, results of the SL-3 flight involving the hollow fiber implant and HPLC GH-variant experiments suggested that the biological activity of the hormone had been negatively affected by flight. The results of the 1887 experiment documented the wisdom of addressing both issues in the protocol. Thus, the reduction in secretory capacity of flight cells during subsequent extended cell culture on Earth was documented statistically, and thereby established the validity of the SL-3 result. The results of both flight experiments thus support the contention that there is a secretory lesion in pituitary GH cells of flight animals. The primary objective of both missions was a clear definition of the effect of spaceflight on the GH cell system. There can no longer be any reasonable doubt that this system is affected in microgravity. One explanation for the reason(s) underlying the better known effects of spaceflight on organisms, viz. changes in bone, muscle and immune systems may very well rest with such changes in bGH. In spite of the fact that rats in the Cosmos 1887 flight were on Earth for two days after flight, the data show that the GH system had still not recovered from the effects of flight. Many questions remain. One of the more important concerns the GRF responsiveness of somatotrophs after flight. This will be tested in an upcoming experiment.

  2. Isothermal Dendritic Growth Experiment Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  3. Kelp growth experiments

    SciTech Connect

    North, W. J.

    1980-01-01

    Harvest yields obtainable from giant kelp plants that are adequately fertilized were investigated. The following topics are discussed: desirable characteristics in a candidate macroalga, and giant kelp as a candidate macroalga for ocean farming. Nutrient requirements, field experiments, and approaches to acquiring yield data are reviewed. (MHR)

  4. The Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Malarik, D. C.

    1998-01-01

    The growth of dendrites is one of the commonly observed forms of solidification encountered when metals and alloys freeze under low thermal gradients, as occurs in most casting and welding processes. In engineering alloys, the details of the dendritic morphology directly relates to important material responses and properties. Of more generic interest, dendritic growth is also an archetypical problem in morphogenesis, where a complex pattern evolves from simple starting conditions. Thus, the physical understanding and mathematical description of how dendritic patterns emerge during the growth process are of interest to both scientists and engineers. The Isothermal Dendritic Growth Experiment (IDGE) is a basic science experiment designed to measure, for a fundamental test of theory, the kinetics and morphology of dendritic growth without complications induced by gravity-driven convection. The IDGE, a collaboration between Rensselaer Polytechnic Institute, in Troy NY, and NASA's Lewis Research Center (LeRC) was developed over a ten year period from a ground-based research program into a space flight experiment. Important to the success of this flight experiment was provision of in situ near-real-time teleoperations during the spaceflight experiment.

  5. IDGE: Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) flew on STS-62 to study the microscopic, tree-like structures (dendrites) that form within metals as they solidify from molten materials. The size, shape, and orientation of these dendrites affect the strength and usefulness of metals. Data from this experiment will be used to test and improve the mathematical models that support the industrial production of metals.

  6. ARC EMCS Experiments (Seedling Growth-2) Experiment Status

    NASA Technical Reports Server (NTRS)

    Heathcote, David; Steele, Marianne

    2015-01-01

    Presentation of the status of the ARC ISS (International Space Station) Experiment, Seedling Growth-2 to the Payload Operations Investigator Working Group meeting at MSFC, Huntsville AL. The experiment employs the European Modular Cultivation System (ECMS).

  7. Bean Plants: A Growth Experience

    ERIC Educational Resources Information Center

    West, Donna

    2004-01-01

    Teaching plant growth to seventh-grade life science students has been interesting for the author because she grew up in a rural area and always had to help in the garden. She made many assumptions about what her rural and suburban students knew. One year she decided to have them grow plants to observe the roots, stems, leaves, flowers, and fruit…

  8. Personal growth after traumatic experiences.

    PubMed

    Carroll, Michael

    Psychiatric practice acknowledges that people who are subjected to traumatic events may develop emotional negativity requiring intervention. However, it has recently been acknowledged that emotional distress caused by a traumatic event can facilitate that person's recovery into an emotionally stronger person. This article aims to provide a clinical understanding of the phenomenon of post-trauma growth.

  9. Near-Death Experiences and Posttraumatic Growth.

    PubMed

    Khanna, Surbhi; Greyson, Bruce

    2015-10-01

    Posttraumatic growth denotes positive psychological change after a traumatic experience that is an improvement over the state before the trauma. Inasmuch as it involves existential reevaluation, posttraumatic growth overlaps with spiritual change, although it also encompasses other domains of positive outcome. This study investigated posttraumatic growth and presence and depth of near-death experience at the time of the close brush with death among 251 survivors of a close brush with death, using the Posttraumatic Growth Inventory and the Near-Death Experience (NDE) Scale. Near-death experiences were associated with greater posttraumatic growth than were close brushes with death in the absence of such an experience, and scores on the NDE Scale were significantly correlated with scores on the Posttraumatic Growth Inventory. To the extent that NDEs are interpreted as spiritual events, these findings support prior research suggesting that spiritual factors make a significant contribution to posttraumatic growth and are consistent with the model that posits challenges to the assumptive worldview as a major stimulus to posttraumatic growth.

  10. Spacelab 3 vapor crystal growth experiment

    NASA Technical Reports Server (NTRS)

    Schnepple, W.; Vandenberg, L.; Skinner, N.; Ortale, C.

    1987-01-01

    The Space Shuttle Challenger, with Spacelab 3 as its payload, was launched into orbit April 29, 1985. The mission, number 51-B, emphasized materials processing in space, although a wide variety of experiments in other disciplines were also carried onboard. One of the materials processing experiments on this flight is described, specifically the growth of single crystals of mercuric iodide by physical vapor transport.

  11. Monitoring hydraulic fracture growth: Laboratory experiments

    SciTech Connect

    Groenenboom, J.; Dam, D.B. van

    2000-04-01

    The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

  12. A Simple Mechanical Experiment on Exponential Growth

    ERIC Educational Resources Information Center

    McGrew, Ralph

    2015-01-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the…

  13. Isothermal Dendritic Growth Experiment - SCN Dendrites

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  14. Protein-crystal growth experiment (planned)

    NASA Technical Reports Server (NTRS)

    Fujita, S.; Asano, K.; Hashitani, T.; Kitakohji, T.; Nemoto, H.; Kitamura, S.

    1988-01-01

    To evaluate the effectiveness of a microgravity environment on protein crystal growth, a system was developed using 5 cubic feet Get Away Special payload canister. In the experiment, protein (myoglobin) will be simultaneously crystallized from an aqueous solution in 16 crystallization units using three types of crystallization methods, i.e., batch, vapor diffusion, and free interface diffusion. Each unit has two compartments: one for the protein solution and the other for the ammonium sulfate solution. Compartments are separated by thick acrylic or thin stainless steel plates. Crystallization will be started by sliding out the plates, then will be periodically recorded up to 120 hours by a still camera. The temperature will be passively controlled by a phase transition thermal storage component and recorded in IC memory throughout the experiment. Microgravity environment can then be evaluated for protein crystal growth by comparing crystallization in space with that on Earth.

  15. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  16. A Simple Mechanical Experiment on Exponential Growth

    NASA Astrophysics Data System (ADS)

    McGrew, Ralph

    2015-04-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the activity are accessible to students in physical science and environmental science courses.

  17. The Isothermal Dendritic Growth Experiment Archive

    NASA Astrophysics Data System (ADS)

    Koss, Matthew

    2009-03-01

    The growth of dendrites is governed by the interplay between two simple and familiar processes---the irreversible diffusion of energy, and the reversible work done in the formation of new surface area. To advance our understanding of these processes, NASA sponsored a project that flew on the Space Shuttle Columbia is 1994, 1996, and 1997 to record and analyze benchmark data in an apparent-microgravity ``laboratory.'' In this laboratory, energy transfer by gravity driven convection was essentially eliminated and one could test independently, for the first time, both components of dendritic growth theory. The analysis of this data shows that although the diffusion of energy can be properly accounted for, the results from interfacial physics appear to be in disagreement and alternate models should receive increased attention. Unfortunately, currently and for the foreseeable future, there is no access or financial support to develop and conduct additional experiments of this type. However, the benchmark data of 35mm photonegatives, video, and all supporting instrument data are now available at the IDGE Archive at the College of the Holy Cross. This data may still have considerable relevance to researchers working specifically with dendritic growth, and more generally those working in the synthesis, growth & processing of materials, multiscale computational modeling, pattern formation, and systems far from equilibrium.

  18. The Isothermal Dendritic Growth Experiment (IDGE)

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Koss, M. B.; Lupulescu, A. O.; LaCombe, J. C.; Frei, J. E.; Malarik, D. C.

    1999-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three NASA-supported microgravity experiments, all of which flew aboard the space shuttle, Columbia. This experimental space flight series was designed and operated to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, and thereby produce a wealth of benchmark-quality data for testing solidification scaling laws. The data and analysis performed on the dendritic growth speed and tip size in Succinontrie (SCN) demonstrates that although the theory yields predictions that are reasonably in agreement with experiment, there are significant discrepancies. However, some of these discrepancies can be explained by accurately describing the diffusion of heat. The key finding involves recognition that the actual three-dimensional shape of dendrites includes time-dependent side-branching and a tip region that is not a paraboloid of revolution. Thus, the role of heat transfer in dendritic growth is validated, with the caveat that a more realistic model of the dendrite then a paraboloid is needed to account for heat flow in an experimentally observed dendrite. We are currently conducting additional analysis to further confirm and demonstrate these conclusions. The data and analyses for the growth selection physics remain much less definitive. From the first flight, the data indicated that the selection parameter, sigma*, is not exactly a constant, but exhibits a slight dependence on the supercooling. Additional data from the second flight are being examined to investigate the selection of a unique dendrite speed, tip size and shape. The IDGE flight series is now complete. We are currently completing analyses and moving towards final data archiving. It is gratifying to see that the IDGE published results and archived data sets are being used actively by other scientists and engineers. In addition, we are also pleased to report that the techniques and IDGE

  19. The Isothermal Dendritic Growth Experiment (IDGE)

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; LaCombe, J. C.; Lupulescu, A. O.; Frei, J. E.; Guimarra, C.; Malarik, D. C.

    2001-01-01

    Dendritic solidification is one of the simplest examples of pattern formation where a structureless melt evolves into a ramified crystalline microstructure; it is a common mode of solidification in many materials, but especially so in metals and alloys. There is considerable engineering interest in dendrites because of the role dendrites play in the determination of microstructure, and thereby in influencing the physical properties of cast metals and alloys. Dendritic solidification provides important examples of non-equilibrium physics, pattern formation dynamics, and models for computational condensed matter and material physics. Current theories of dendritic growth generally couple diffusion effects in the melt with the physics introduced by the interface. Unfortunately, in terrestrial based experiments, convective effects in the melt alter the growth process in such a manner as to prevent definitive analysis of convective, diffusive or interfacial effects. Thus, the effective elimination of convection in the melt by operating experiments on orbit were required to produce high-fidelity data needed for achieving further progress. This simple fact comprised the scientific justification for the IDGE.

  20. Experiences in home-based growth monitoring.

    PubMed

    Suelan, F; Briones, H

    1992-01-01

    A growth monitoring project (GMP) of child weighing was implemented by the Philippines' Department of Health (DOH) through the Integrated Provincial Health Office to monitor either children's nutritional progress or their faltering of growth. Weaknesses, however, were found in the GMP. For example, only 31% of preschoolers included in the Nutrition Center of the Philippines (NCP) survey had growth charts. An 1990 UNICEF-DOH survey also found that the growth chart was used primarily by mothers and service providers to record infant immunization. Mothers brought their children to well-baby clinics in barangay health centers only when their children were sick. Conducted only once per year, weighing was not perceived as a tool in detecting and preventing sickness, and ensuring normal growth. Asked to help improve the GMP, the NCP consulted intended beneficiaries and cooperators to develop a plan to pilot an intensive monitoring project in four towns of Negros Occidental, starting in January 1991 and ending in December 1992. The resultant Home-Based Growth Monitoring (HBGM) project would place emphasis upon enabling rural mothers to become self-sustaining agents for child growth monitoring. A key feature was the establishment of a weighing post in a strategic place for every 2-3 family clusters. The HBGM project was piloted in 1991 in Calatrava, Toboso, Cauayan, and Sipalay. This paper describes project implementation, problems and solutions, and results.

  1. Growth and the Category of Experience

    ERIC Educational Resources Information Center

    Yandell, John

    2016-01-01

    In John Dixon's account of Dartmouth, experience is seen as central to the business of English as a school subject. Experience, for Dixon, is the raw material that is worked on in the classroom. What kinds of theory inform this emphasis on experience, and what are the curricular and pedagogic implications of this version of English? How does…

  2. Population growth and development: the Kenyan experience.

    PubMed

    Nyamwange, M

    1995-01-01

    Rapid population growth in Kenya and high fertility impacts negatively on economic development. The growth and high fertility results in declines in gross national product, per capita food consumption, and land quality; a high dependency ratio; urban crowding; and inadequate health systems. East Africa has the highest crude birth rates in Africa, and Kenya has the highest birth rate of 54/1000 population in East Africa. The African crude death rate is 50% higher than the world average, but Kenya's death rate is the lowest in East Africa and comparable to North American and European death rates. Kenya has the highest rate of natural increase of about 4%. Population growth rates rose over the decades. Kenya's average population density is well above the sub-Saharan African average and much lower than very high density countries. Population is unequally distributed. Regional densities are widely divergent, and the highest densities in Western province are well above densities in Rwanda and Burundi. Urban growth has increased, as has migration to urban areas. Nairobi has 57% of urban population. Improved health and nutrition have contributed to increased life expectancy. The desired family size is large. The impact of demographic factors on economic conditions is evident in the decline in gross national product per capita growth to under 1% during 1972-88. A slight upswing occurred during 1988-93, but other crises are emerging. Food production has not kept pace with population growth. Production has been low due to serious land degradation, short fallow periods, and traditional farming practices. Population pressure has forced families to shift agriculture onto marginal lands, and desertification has increased. A growing proportion of the population is unemployed or underemployed. Population programs should address the underlying conditions for fertility decline.

  3. Frog egg growth, experiment S003

    NASA Technical Reports Server (NTRS)

    Young, R. S.; Tremor, J. W.

    1971-01-01

    The objective of experiment was to determine the effect of weightlessness on the ability of a fertilized frog egg to divide normally and to differentiate and form a normal embryo. This experiment was first attempted on the Gemini 8 mission and was completed only partially because of the early termination of that mission.

  4. Halide eutectic growth experiment MA-131

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yue, B. K.; Lee, J. Y. M.

    1976-01-01

    Fiberlike sodium chloride/lithium fluoride eutectic mixtures have been produced on earth and in space by the directional solidification technique. Macroscopic and microscopic examinations were made on longitudinal and transverse sections of Apollo Soyuz Test Project space grown and earth grown ingots. It was found that samples grown in space have a higher percentage of fibers alined with the growth axis. The enhanced alinement of fibers is attributed to the absence of convection currents in the liquid during solidification. Optical transmittance measurements of transverse sections of the space grown and earth grown ingots were performed with an infrared spectrometer. For a given sample thickness, the highest transmittance was obtained from ingots grown in space. For samples of different thicknesses, grown either in space or on earth, it was found that the thinner the sample, the higher the transmittance. This is in agreement with the general optical property of transparent materials.

  5. Experiments with Corn To Demonstrate Plant Growth and Development.

    ERIC Educational Resources Information Center

    Haldeman, Janice H.; Gray, Margarit S.

    2000-01-01

    Explores using corn seeds to demonstrate plant growth and development. This experiment allows students to formulate hypotheses, observe and record information, and practice mathematics. Presents background information, materials, procedures, and observations. (SAH)

  6. Adolescents' Accounts of Growth Experiences in Youth Activities.

    ERIC Educational Resources Information Center

    Dworkin, Jodi B.; Larson, Reed; Hansen, David

    2003-01-01

    Conducted 10 focus groups in which adolescents discussed their "growth experiences" in extracurricular and community-based activities. The 55 participants reported personal and interpersonal processes and generally described themselves as agents of their own development and change. (SLD)

  7. Visualization of Growth Curve Data from Phenotype MicroarrayExperiments

    SciTech Connect

    Jacobsen, Janet S.; Joyner, Dominique C.; Borglin, Sharon E.; Hazen, Terry C.; Arkin, Adam P.; Bethel, E. Wes

    2007-04-19

    Phenotype microarrays provide a technology to simultaneouslysurvey the response of an organism to nearly 2,000 substrates, includingcarbon, nitrogen and potassium sources; varying pH; varying saltconcentrations; and antibiotics. In order to more quickly and easily viewand compare the large number of growth curves produced by phenotypemicroarray experiments, we have developed software to produce and displaycolor images, each of which corresponds to a set of 96 growth curves.Using color images to represent growth curves data has proven to be avaluable way to assess experiment quality, compare replicates, facilitatecomparison of the responses of different organisms, and identifysignificant phenotypes. The color images are linked to traditional plotsof growth versus time, as well as to information about the experiment,organism, and substrate. In order to share and view information and dataproject-wide, all information, plots, and data are accessible using onlya Web browser.

  8. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  9. Follow up on the crystal growth experiments of the LDEF

    NASA Technical Reports Server (NTRS)

    Nielsen, K. F.; Lind, M. D.

    1993-01-01

    The results of the 4 solution growth experiments on the LDEF have been published elsewhere. Both the crystals of CaCO3, which were large and well shaped, and the much smaller TTF-TCNQ crystals showed unusual morphological behavior. The follow up on these experiments was begun in 1981, when ESA initiated a 'Concept Definition Study' on a large, 150 kg, Solution Growth Facility (SGF) to be included in the payload of EURECA-1, the European Retrievable Carrier. This carrier was a continuation of the European Spacelab and at that time planned for launch in 1987. The long delay of the LDEF retrieval and of subsequent missions brought about reflections both on the concept of crystal growth in space and on the choice of crystallization materials that had been made for the LDEF. Already before the LDEF retrieval, research on TTF-TCNQ had been stopped, and a planned growth experiment with TTF-TCNQ on the SGF/EURECA had been cancelled. The target of the SGF investigation is now more fundamental in nature. None of the crystals to be grown here are, like TTF-TCNQ, in particular demand by science or industry, and the crystals only serve the purpose of model crystals. The real purpose of the investigation is to study the growth behavior. One of the experiments, the Soret Coefficient Measurement experiment is not growing crystals at all, but has it as its sole purpose to obtain accurate information on thermal diffusion, a process of importance in crystal growth from solution.

  10. Very-high-growth-factor Planar Ablative Rayleigh Taylor Experiments

    SciTech Connect

    Bradley, D K; Braun, D G; Glendinning, S G; Edwards, M J; Milovich, J L; Sorce, C M; Collins, G W; Haan, S W; Page, R H

    2006-10-30

    The Rayleigh-Taylor (RT) instability is an important factor in bounding the performance envelope of ignition targets. This paper describes an experiment for ablative RT instability that for the first time achieves growth factors close to those expected to occur in ignition targets at the National Ignition Facility (NIF). The large growth allows small seed perturbations to be detected and can be used to place an upper bound on perturbation growth at the ablation front resulting from microstructure in the preferred Be ablator. The experiments were performed on the Omega laser using a halfraum 1.2 mm long by 2 mm diameter with a 75% laser entrance hole. The halfraum was filled with {approx} 1 atm of neopentane to delay gold plasma from closing the diagnostic line of sight down the axis of the halfraum. The ablator was mounted at the base of the halfraum, and was accelerated by a two stepped X-ray pulse consisting of an early time section {approx} 100 eV to emulate the NIF foot followed by an approximately constant {approx} 150 eV drive sustained over an additional 5-7ns. It is this long pulse duration and late time observation that distinguishes the present work from previous experiments, and is responsible for the large growth that is achieved. The growth of a 2D sinusoidal perturbation machined on the drive side of the ablator was measured using face-on radiography. The diagnostic view remained open until {approx} 11 ns with maximum growth factors measured to be {approx} 200. The trajectory of the ablator was measured using streaked backlit radiography. The design and analysis of the experiments is described, and implications for experiments on ignition target ablators are discussed.

  11. Crewmember working on the spacelab Zeolite Crystal Growth experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View showing Payload Specialists Bonnie Dunbar and Larry DeLucas in the aft section of the U. S. Microgravity Laboratory-1. Dunbar is preparing to load a sample in the Crystal Growth Furnace (CGF) Integrated Furnace Experiment Assembly (IFEA) in rack 9 of the Microgravity Laboratory. DeLucas is checking out the multi-purpose Glovebox Facility.

  12. Crewmember working on the mid deck Zeolite Crystal Growth experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View showing Payload Specialist Bonnie Dunbar, in the mid deck, conducting the Zeolite Crystal Growth (ZCG) Experiment in the mid deck stowage locker work area. View shows assembly of zeolite sample in the metal autoclave cylinders prior to insertion into the furnace.

  13. Computer Simulation of the Population Growth (Schizosaccharomyces Pombe) Experiment.

    ERIC Educational Resources Information Center

    Daley, Michael; Hillier, Douglas

    1981-01-01

    Describes a computer program (available from authors) developed to simulate "Growth of a Population (Yeast) Experiment." Students actively revise the counting techniques with realistically simulated haemocytometer or eye-piece grid and are reminded of the necessary dilution technique. Program can be modified to introduce such variables…

  14. [Parameter determination of algae growth based on ecological tank experiment].

    PubMed

    Pang, Yong; Ding, Ling; Gao, Guang

    2005-05-01

    A dynamic simulation experiment of algae in an ecological tank was performed at the Taihu Laboratory for Lake Ecosystem Research. During the experiment, water from Taihu Lake was infused into the ecological tank and samples were taken continually to observe algae growth under varying conditions, such as temperature, sunlight and nutrients. Based on the experiment, an algae growth model, considering nitrogen and phosphorus cycle, was developed by using the advanced PHREEQC model. After that, a detailed calibration and validation of parameters in the model were done on the basis of experimental results. The least square method was used to determine the optimal set of parameters. The calculated values of algae and nutrient concentrations show fairly satisfying fittness with measured data.

  15. Fostering Growth in the Survivorship Experience: Investigating Breast Cancer Survivors' Lived Experiences Scaling Mt. Kilimanjaro from a Posttraumatic Growth Perspective

    ERIC Educational Resources Information Center

    Burke, Shaunna M.; Sabiston, Catherine M.

    2012-01-01

    The aim of this study was to use an ethnographic case study approach to explore breast cancer survivors' experiences scaling Mt. Kilimanjaro from a posttraumatic growth perspective. Three breast cancer survivors who participated in interviews and observations during a nine-day climb on the mountain were included in this study. Findings are…

  16. Preliminary terrestrial based experiments on gravity-affected crystal growth

    NASA Technical Reports Server (NTRS)

    Johnston, M. H.

    1970-01-01

    Tin was melted in a heating assembly secured to the arm of a centrifuge. The furnace was allowed to pivot and reach its equilibrium angle of swing for the gravity force being experienced. The crucible was cooled during rotation to allow the growth of single crystals. The crystals were etched for the purpose of observing the growth striations. Slices were removed from some of the crystals to permit observation of the striations in the interior. Visual analyses were made with a scanning electron microscope. Preliminary conclusions relating the appearance of the striations to gravity forces and the affected growth mechanisms are presented. Further experiments that will verify these conclusions and determine other gravity effects are proposed.

  17. Fundamental magneto-Rayleigh-Taylor Instability Growth Experiments

    NASA Astrophysics Data System (ADS)

    Sinars, D. B.; Peterson, K. J.; Vesey, R. A.; Jennings, C.; Herrmann, M. C.; McBride, R. D.; Martin, M. R.; Slutz, S. A.

    2013-10-01

    Sandia is investigating a magnetized liner inertial fusion concept that uses cylindrical Be or Al liners to compress magnetized and preheated fusion fuel. As part of this work, we have been studying the growth of instabilities in initially solid liners driven with 20-24 MA, 100-ns current pulses on the Z pulsed power facility. The magneto-Rayleigh-Taylor instability in particular can disrupt the plasma liner during its implosion. Previous experiments studied instability growth starting either from intentionally seeded single-mode perturbations or from diamond-turned best-finish surfaces. Here we report on experiments studying (1) the growth of intentionally seeded multi-mode perturbations, and (2) the growth from polished best-finish surfaces where the tooling mark orientation is changed from being predominantly azimuthal to axial. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  18. Protein Crystal Growth (PCG) experiment aboard mission STS-66

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On the Space Shuttle Orbiter Atlantis' middeck, Astronaut Joseph R. Tarner, mission specialist, works at an area amidst several lockers which support the Protein Crystal Growth (PCG) experiment during the STS-66 mission. This particular section is called the Crystal Observation System, housed in the Thermal Enclosure System (COS/TES). Together with the Vapor Diffusion Apparatus (VDA), housed in Single Locker Thermal Enclosure (SLTES), the COS/TES represents the continuing research into the structure of proteins and other macromolecules such as viruses.

  19. The Mars Plant Growth Experiment and Implications for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Smith, Heather

    Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds

  20. Macromolecular crystal growth experiments on International Microgravity Laboratory--1.

    PubMed Central

    Day, J.; McPherson, A.

    1992-01-01

    Macromolecular crystal growth experiments, using satellite tobacco mosaic virus (STMV) and canavalin from jack beans as samples, were conducted on a US Space Shuttle mission designated International Microgravity Laboratory--1 (IML-1), flown January 22-29, 1992. Parallel experiments using identical samples were carried out in both a vapor diffusion-based device (PCG) and a liquid-liquid diffusion-based instrument (CRYOSTAT). The experiments in each device were run at 20-22 degrees C and at colder temperatures. Crystals were grown in virtually every trial, but the characteristics of the crystals were highly dependent on the crystallization technique employed and the temperature experience of the sample. In general, very good results, based on visual inspection of the crystals, were obtained in both PCG and CRYOSTAT. Unusually impressive results were, however, achieved for STMV in the CRYOSTAT instrument. STMV crystals grown in microgravity by liquid-liquid diffusion were more than 10-fold greater in total volume than any STMV crystals previously grown in the laboratory. X-ray diffraction data collected from eight STMV crystals grown in CRYOSTAT demonstrated a substantial improvement in diffraction quality over the entire resolution range when compared to data from crystals grown on Earth. In addition, the extent of the diffraction pattern for the STMV crystals grown in space extended to 1.8 A resolution, whereas the best crystals that were ever grown under conditions of Earth's gravity produced data limited to 2.3 A resolution. Other observations indicate that the growth of macromolecular crystals is indeed influenced by the presence or absence of gravity. These observations further suggest, consistent with earlier results, that the elimination of gravity provides a more favorable environment for such processes. PMID:1303744

  1. Flight software development for the isothermal dendritic growth experiment

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Winsa, Edward A.; Glicksman, Martin E.

    1989-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and uplink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.

  2. Ignition and Growth Modeling of LX-17 Hockey Puck Experiments

    SciTech Connect

    Tarver, C M

    2004-04-19

    Detonating solid plastic bonded explosives (PBX) formulated with the insensitive molecule triaminotrinitrobenzene (TATB) exhibit measurable reaction zone lengths, curved shock fronts, and regions of failing chemical reaction at abrupt changes in the charge geometry. A recent set of ''hockey puck'' experiments measured the breakout times of diverging detonation waves in ambient temperature LX-17 (92.5 % TATB plus 7.5% Kel-F binder) and the breakout times at the lower surfaces of 15 mm thick LX-17 discs placed below the detonator-booster plane. The LX-17 detonation waves in these discs grow outward from the initial wave leaving regions of unreacted or partially reacted TATB in the corners of these charges. This new experimental data is accurately simulated for the first time using the Ignition and Growth reactive flow model for LX-17, which is normalized to a great deal of detonation reaction zone, failure diameter and diverging detonation data. A pressure cubed dependence for the main growth of reaction rate yields excellent agreement with experiment, while a pressure squared rate diverges too quickly and a pressure quadrupled rate diverges too slowly in the LX-17 below the booster equatorial plane.

  3. Crystal growth from the vapor phase experiment MA-085

    NASA Technical Reports Server (NTRS)

    Wiedemeir, H.; Sadeek, H.; Klaessig, F. C.; Norek, M.

    1976-01-01

    Three vapor transport experiments on multicomponent systems were performed during the Apollo Soyuz mission to determine the effects of microgravity forces on crystal morphology and mass transport rates. The mixed systems used germanium selenide, tellurium, germanium tetraiodide (transport agent), germanium monosulfide, germanium tetrachloride (transport agent), and argon (inert atmosphere). The materials were enclosed in evacuated sealed ampoules of fused silica and were transported in a temperature gradient of the multipurpose electric furnace onboard the Apollo Soyuz spacecraft. Preliminary evaluation of 2 systems shows improved quality of space grown crystals in terms of growth morphology and bulk perfection. This conclusion is based on a direct comparison of space grown and ground based crystals by means of X-ray diffraction, microscopic, and chemical etching techniques. The observation of greater mass transport rates than predicted for a microgravity environment by existing vapor transport models indicates the existence of nongravity caused transport effects in a reactive solid/gas phase system.

  4. Martian Soil Plant Growth Experiment: The Effects of Adding Nitrogen, Bacteria, and Fungi to Enhance Plant Growth

    NASA Technical Reports Server (NTRS)

    Kliman, D. M.; Cooper, J. B.; Anderson, R. C.

    2000-01-01

    Plant growth is enhanced by the presence of symbiotic soil microbes. In order to better understand how plants might prosper on Mars, we set up an experiment to test whether symbiotic microbes function to enhance plant growth in a Martian soil simulant.

  5. Growth in Nephrops norvegicus from a tag-recapture experiment

    NASA Astrophysics Data System (ADS)

    Haynes, Paula S.; Browne, Patricia; Fullbrook, Liam; Graham, Conor T.; Hancox, Lee; Johnson, Mark P.; Lauria, Valentina; Power, Anne Marie

    2016-10-01

    Nephrops norvegicus is a commercially valuable fishery in the EU but management of stocks is challenging due to difficulties in aging individuals and calculating growth and biomass production. Growth of N. norvegicus was estimated by releasing 1177 tagged individuals in western Ireland in Summer 2013 and recapturing these in 2014 (n = 207, an average of 344 days later) and 2015 (n = 38, 654–665 days later). Moulting occurred twice per year in approximately half of the males and only once in females. Mean growth increments after approximately one year were 5.1 mm Carapace Length (CL) in males and 1.4 mm CL in females. After two years, males had grown by 12.0 mm CL and females by 4.6 mm CL, on average, across size classes. Low variation in growth increments was seen across female size classes, but significantly lower growth was observed in larger males, meeting an important assumption of the Von Bertalanffy Growth Function. Asymptotic carapace lengths were 70.8 mm (males) and 55.2 mm (females) with respective growth constants (k) of 0.161 yr‑1 and 0.077 yr‑1. The results suggest that this is a very productive fishery and that survivability of returns from creel fishing is high.

  6. Growth in Nephrops norvegicus from a tag-recapture experiment

    PubMed Central

    Haynes, Paula S.; Browne, Patricia; Fullbrook, Liam; Graham, Conor T.; Hancox, Lee; Johnson, Mark P.; Lauria, Valentina; Power, Anne Marie

    2016-01-01

    Nephrops norvegicus is a commercially valuable fishery in the EU but management of stocks is challenging due to difficulties in aging individuals and calculating growth and biomass production. Growth of N. norvegicus was estimated by releasing 1177 tagged individuals in western Ireland in Summer 2013 and recapturing these in 2014 (n = 207, an average of 344 days later) and 2015 (n = 38, 654–665 days later). Moulting occurred twice per year in approximately half of the males and only once in females. Mean growth increments after approximately one year were 5.1 mm Carapace Length (CL) in males and 1.4 mm CL in females. After two years, males had grown by 12.0 mm CL and females by 4.6 mm CL, on average, across size classes. Low variation in growth increments was seen across female size classes, but significantly lower growth was observed in larger males, meeting an important assumption of the Von Bertalanffy Growth Function. Asymptotic carapace lengths were 70.8 mm (males) and 55.2 mm (females) with respective growth constants (k) of 0.161 yr−1 and 0.077 yr−1. The results suggest that this is a very productive fishery and that survivability of returns from creel fishing is high. PMID:27725735

  7. Indium antimonide crystal growth experiment M562. [Skylab weightless conditions

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1974-01-01

    It was established that ideal diffusion controlled steady state conditions, never accomplished on earth, were achieved during the growth of Te-doped InSb crystals in Skylab. Surface tension effects led to nonwetting conditions under which free surface solidification took place in confined geometry. It was further found that, under forced contact conditions, surface tension effects led to the formation of surface ridges (not previously observed on earth) which isolated the growth system from its container. In addition, it was possible, for the first time, to identify unambiguously: the origin of segregation discontinuities associated with facet growth, the mode of nucleation and propagation of rotational twin boundaries, and the specific effect of mechanical-shock perturbations on segregation. The results obtained prove the advantageous conditions provided by outer space. Thus, fundamental data on solidification thought to be unattainable because of gravity-induced interference on earth are now within reach.

  8. Dendritic Growth of Hard-Sphere Crystals. Experiment 34

    NASA Technical Reports Server (NTRS)

    Russel, W. B.; Chaikin, P. M.; Zhu, Ji-Xiang; Meyer, W. V.; Rogers, R.

    1998-01-01

    Recent observations of the disorder-order transition for colloidal hard spheres under microgravity revealed dendritic crystallites roughly 1-2 mm in size for samples in the coexistence region of the phase diagram. Order-of-magnitude estimates rationalize the absence of large or dendritic crystals under normal gravity and their stability to annealing in microgravity. A linear stability analysis of the Ackerson and Schaetzel model for crystallization of hard spheres establishes the domain of instability for diffusion-limited growth at small supersaturations. The relationship between hard-sphere and molecular crystal growth is established and exploited to relate the predicted linear instability to the well-developed dendrites observed.

  9. How Being Female Influenced My Professional Experiences and Growth

    ERIC Educational Resources Information Center

    Foa, Edna B.

    2012-01-01

    In this paper I describe some of my professional experiences as a female, both as a graduate student and throughout my career. My own experience was unique because I began graduate school a few months after arriving in the U.S. with limited knowledge of English in a very competitive and demanding program , in addition to the fact that I was a…

  10. Literary Experience and Literature Teaching since the Growth Model

    ERIC Educational Resources Information Center

    Reid, Ian

    2016-01-01

    By the late 70s the "growth through English" slogan, derived from John Dixon's account of the Dartmouth conference, had become popular around Australia. In 1980 the Sydney IFTE conference featured several Dartmouth veterans; but during that conference, Dartmouth-linked ideas from overseas mingled with lines of local influence, especially…

  11. New Instrument INKA for Ice Nucleation and Growth Experiments

    NASA Astrophysics Data System (ADS)

    Schmitt, Thea; Levin, Ezra; Höhler, Kristina; Nadolny, Jens; Möhler, Ottmar; DeMott, Paul

    2015-04-01

    Microphysical processes in clouds, such as the formation and growth of ice crystals, significantly influence the weather and the climate. Particularly the transition from the supercooled water to the solid ice phase is of great relevance since ice formation initiates the formation of precipitation and thereby strongly affects the cloud structure and life time. However, the formulation and parameterization of these processes and further laboratory studies are needed to obtain quantitative information on the ice activity of various atmospheric aerosol species. Therefore, we have constructed and built a new continuous flow diffusion chamber (CFDC) called INKA (Ice Nucleation Instrument of the KArlsruhe Institut of Technology) to be used both in the AIDA laboratory for detailed studies of ice nucleation and growth processes and in field applications for measuring the temperature-dependent abundance of ice nucleating particles (INPs). The CFDC design was originally developed and theoretically described by Rogers et al. (1988). The main part of the new INKA instrument, the chamber, consists of two vertically-oriented, concentric tubes with a total length of 150 cm. Together with particle-free, dry sheath air, the sampled aerosol particles flow through the annular space between these two cylinders. The wall temperatures of the cylinders can be adjusted and the walls of the annular gap are coated with thin ice layers. The bottom part (about 50 cm) of the outer cylinder of INKA is separately cooled, which allows operation in two different modes: In the ice nucleation mode, the CFDC is operated with a nucleation and growth section, covering the upper 100 cm of its length, which exposes the aerosol particles to a defined temperature and supersaturation. The bottom part is the so called droplet evaporation section which allows the ice particles to grow to a detectable size on the expense of present droplets. In the ice growth mode, the full length of the cylinders is operated

  12. Accelerated growth of calcium silicate hydrates: Experiments and simulations

    SciTech Connect

    Nicoleau, Luc

    2011-12-15

    Despite the usefulness of isothermal calorimetry in cement analytics, without any further computations this brings only little information on the nucleation and growth of hydrates. A model originally developed by Garrault et al. is used in this study in order to simulate hydration curves of cement obtained by calorimetry with different known hardening accelerators. The limited basis set of parameters used in this model, having a physical or chemical significance, is valuable for a better understanding of mechanisms underlying in the acceleration of C-S-H precipitation. Alite hydration in presence of four different types of hardening accelerators was investigated. It is evidenced that each accelerator type plays a specific role on one or several growth parameters and that the model may support the development of new accelerators. Those simulations supported by experimental observations enable us to follow the formation of the C-S-H layer around grains and to extract interesting information on its apparent permeability.

  13. Quantitative determination of zero-gravity effects on crystal growth from the melt (experiment MA-060). [germanium crystal growth experiment during ASTP mission

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Herman, C. J.; Lichtensteiger, M.; Witt, A. F.

    1976-01-01

    The purpose of experiment MA-060 was to investigate quantitatively the effects of near-zero gravity conditions on crystal growth and dopant segregation during directional solidification from the melt. Gallium-doped germanium single crystals were successfully grown from the melt with simultaneous interface demarcation during the Apollo Soyuz Test Project mission. The analysis of the experimental data indicates striking differences of dopant segregation and growth behavior in the presence and absence of gravity. The results obtained are believed to have far-reaching implications on materials processing under zero-gravity conditions and on the theory of crystal growth and segregation in general.

  14. Plant Growth/Plant Phototropism - Skylab Student Experiment ED-61/62

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart describes the Skylab student experiment ED-61, Plant Growth, and experiment ED-62, Plant Phototropism. Two similar proposals were submitted by Joel G. Wordekemper of West Point, Nebraska, and Donald W. Schlack of Downey, California. Wordekemper's experiment (ED-61) was to see how the lack of gravity would affect the growth of roots and stems of plants. Schlack's experiment (ED-62) was to study the effect of light on a seed developing in zero gravity. The growth container of the rice seeds for their experiment consisted of eight compartments arranged in two parallel rows of four. Each had two windowed surfaces to allow periodic photography of the developing seedlings. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  15. Experiment 9: ASTROCULTURE: Growth and Starch Accumulation of Potato Tuber

    NASA Technical Reports Server (NTRS)

    Tibbitts, Theodore W.; Brown, Christopher S.; Croxdale, Judith G.; Wheeler, Raymond M.

    1998-01-01

    Potato explants (leaf, small stem section, and axillary bud) flown on STS-73 developed tubers of 1.5 cm diameter and 1.7 g mass during the 16-day period of space flight. The experiment was undertaken in the ASTROCULTURE(TM) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers that formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was similar in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in space flight and ground controls, but activity of ADP-glucose pyrophosphorylase was reduced in the space flight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in space flight as on the ground. Thus, this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  16. Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Gruener, J. E.; Henderson, K. E.; Steinberg, S. L.; Barta, D. J.; Galindo, C.; Henninger, D. L.

    2001-01-01

    A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates.

  17. Inverse problem for the Verhulst equation of limited population growth with discrete experiment data

    NASA Astrophysics Data System (ADS)

    Azimov, Anvar; Kasenov, Syrym; Nurseitov, Daniyar; Serovajsky, Simon

    2016-08-01

    Verhulst limited growth model with unknown parameters of growth is considered. These parameters are defined by discrete experiment data. This inverse problem is solved with using gradient method with interpolation of data and without it. Approximation of the delta-function is used for the latter case. As an example the bacteria population E.coli is considered.

  18. Crystal growth from the vapor phase. Experiment MA-085

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1977-01-01

    The positive effects of microgravity on crystal quality and the fundamental properties of the vapor transport reaction were established by analyzing the results of three transport experiments on multicomponent systems performed during the Apollo-Soyuz Test Project mission. The systems employed were GeSe0.99Te0.01-GeI4(A), GeS0.98Se0.02-GeCl4(B), and GeS-GeCl4-Ar (C). The crystallographic analysis is based on a direct comparison of space and ground-based (prototype) crystals employing X-ray diffraction, microprobe, microscopic, and chemical etching techniques. The results demonstrate a considerable improvement of the space-grown crystals in terms of chemical and crystalline homogeneity, surface morphology, and bulk perfection relative to ground specimens.

  19. RTA beam dynamics experiments: limiting cumulative transverse instability growth in a linear periodic system

    SciTech Connect

    Houck, T; Lidia, S; Westenskow, G

    2000-06-10

    A critical issue for a Two-Beam accelerator based upon extended relativistic klystrons is controlling the cumulative dipole instability growth We describe a theoretical scheme to reduce the growth from an exponential to a more manageable linear rate, and a new experiment to test this concept. The experiment utilizes a 1-MeV, 600-Amp, 200-ns electron beam and a short beamline of periodically spaced RF dipole pillbox cavities and solenoid magnets for transport. Descriptions of the RTA injector and the planned beamline are presented, followed by theoretical studies of the beam transport and dipole mode growth.

  20. Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Neichitailo, G. S.; Mashinski, A. L.; Musgrave, M. E.

    2003-01-01

    The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  1. Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000.

    PubMed

    Porterfield, D M; Neichitailo, G S; Mashinski, A L; Musgrave, M E

    2003-01-01

    The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research.

  2. Characterizing the growth to detonation in HNS with small-scale PDV "cutback" experiments

    NASA Astrophysics Data System (ADS)

    Wixom, Ryan R.; Yarrington, Cole D.; Knepper, Robert; Tappan, Alexander S.; Olles, Joseph D.; Damm, David L.

    2017-01-01

    For many decades, cutback experiments have been used to characterize the equation of state and growth to steady detonation in explosive formulations. More recently, embedded gauges have been used to capture the growth to steady detonation in gas-gun impacted samples. Data resulting from these experiments are extremely valuable for parameterizing equation of state and reaction models used in hydrocode simulations. Due to the extremely fast growth to detonation in typical detonator explosives, cutback and embedded gauge experiments are particularly difficult, if not impossible. Using frequency shifted photonic Doppler velocimetry (PDV) we have measured particle velocity histories from vapor-deposited explosive films impacted with electrically driven flyers. By varying the sample thickness and impact conditions we were able to capture the growth from inert shock to full detonation pressure within distances as short as 100 µm. These data are being used to assess and improve burn-model parameterization and equations of state for simulating shock initiation.

  3. Modeling, simulation, and experiments of coating growth on nanofibers

    NASA Astrophysics Data System (ADS)

    Clemons, C. B.; Hamrick, P.; Heminger, J.; Kreider, K. L.; Young, G. W.; Buldum, A.; Evans, E.; Zhang, G.

    2008-02-01

    This work is a comparison of modeling and simulation results with experiments for an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin film materials using plasma enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with metallic materials under different operating conditions to observe changes in the coating morphology. The modeling effort focuses on linking simple models at the reactor level, nanofiber level and atomic level to form a comprehensive model. The comprehensive model leads to the definition of an evolution equation for the coating free surface around an isolated nanofiber. This evolution equation was previously derived and solved under conditions of a nearly circular coating, with a concentration field that was only radially dependent and that was independent of the location of the coating free surface. These assumptions permitted the development of analytical expressions for the concentration field. The present work does not impose the above-mentioned conditions and considers numerical simulations of the concentration field that couple with level set simulations of the evolution equation for the coating free surface. Further, the cases of coating an isolated fiber as well as a multiple fiber mat are considered. Simulation results are compared with experimental results as the reactor pressure and power, as well as the nanofiber mat porosity, are varied.

  4. [Growth responses of belowground modules of Carex lasiocarpa to different water regimes and water experiences].

    PubMed

    Wang, Li; Song, Chang-Chun; Hu, Jin-Ming; Yang, Tao

    2008-10-01

    With seedling's transplanting experiment under different water levels, this paper studied the growth responses of belowground modules of Carex lasiocarpa to various water regimes and water experiences in Sanjiang Plain. The results showed that the belowground modules of C. lasiocarpa had significantly different responses to water regimes. At thriving stage, the length of rhizome and adventitious root decreased with increasing water level, and until later growth stage, the maximal value still appeared under drought condition. However, under dry-wet alternate condition, the length of rhizome and adventitious root increased most from thriving stage to the end, indicating that stable and lower water level could improve the growth of rhizome and adventitious root. The biomass of rhizome, adventitious root, and belowground part were maximal under dry-wet alternate condition at both growth stages. For those with different water experiences, the ones undergoing alternate condition in early growth season and then drought had maximal rhizome biomass, and the others under sustained alternate condition had maximal adventitious root and belowground biomass. More biomass was distributed to rhizome in the later growth season under various water regimes. The percentage of rhizome in total biomass was significantly higher under drought condition than under other water conditions through the growth season. Besides, C. lasiocarpa grew slowly when submerged, but could recover through rhizomatic reproduction after the stress disappeared.

  5. Plant Growth and Development in the ASTROCULTURE(trademark) Space-Based Growth Unit-Ground Based Experiments

    NASA Technical Reports Server (NTRS)

    Bula, R. J.

    1997-01-01

    The ASTROCULTURE(trademark) plant growth unit flown as part on the STS-63 mission in February 1995, represented the first time plants were flown in microgravity in a enclosed controlled environment plant growth facility. In addition to control of the major environmental parameters, nutrients were provided to the plants with the ZEOPONICS system developed by NASA Johnson Space Center scientists. Two plant species were included in this space experiment, dwarf wheat (Triticum aestivum) and a unique mustard called "Wisconsin Fast Plants" (Brassica rapa). Extensive post-flight analyses have been performed on the plant material and it has been concluded that plant growth and development was normal during the period the plants were in the microgravity environment of space. However, adequate plant growth and development control data were not available for direct comparisons of plant responses to the microgravity environment with those of plants grown at 1 g. Such data would allow for a more complete interpretation of the extent that microgravity affects plant growth and development.

  6. Children’s Experience of Posttraumatic Growth: Distinguishing General from Domain-Specific Correlates

    PubMed Central

    Laceulle, Odilia M.; Kleber, Rolf J.; Alisic, Eva

    2015-01-01

    Although the five domains of posttraumatic growth (new possibilities, relating to others, personal strength, spiritual change and appreciation of life) have been studied extensively in adults, little is known about these domains and their correlates in children. We aimed to examine whether demographic and/or social characteristics are related to children’s reports of overall posttraumatic growth and of growth in specific domains. In a general population study, children aged 8–12 years who had been exposed to adverse events (N = 1290) filled out questionnaires on their experiences, demographic characteristics (gender, age, time lag since event), stress reactions, peer support, religiosity and posttraumatic growth. All demographic and social characteristics were related to overall posttraumatic growth, except time lag. Associations varied across the five domains with the strongest effects being found for stress reactions and religiosity. A higher level of stress reactions was related to more growth in all domains (general effect), whereas religious children experienced more spiritual growth than non-religious children without differences on other domains (domain specific effect). Other effects were small, and some did not remain significant after Bonferroni corrections. These findings suggest the presence of both general and domain-specific correlates of child posttraumatic growth. Although effects were generally small, the current findings show the need to differentiate between the domains of posttraumatic growth in both further research and clinical practice. This will allow a better understanding of the mechanisms of posttraumatic growth in children as well as more tailored assessment and intervention. PMID:26714193

  7. Whisker/Cone growth on the thermal control surfaces experiment no. S0069

    NASA Technical Reports Server (NTRS)

    Zwiener, James M.; Coston, James E., Jr.; Miller, Edgar R.; Mell, Richard J.; Wilkes, Donald R.

    1995-01-01

    An unusual surface 'growth' was found during scanning electron microscope (SEM) investigations of the Thermal Control Surface Experiment (TCSE) S0069 front thermal cover. This 'growth' is similar to the cone type whisker growth phenomena as studied by G. K. Wehner beginning in the 1960's. Extensive analysis has identified the most probable composition of the whiskers to be a silicate type glass. Sources of the growth material are outgassing products from the experiment and orbital atomic oxygen, which occurs naturally at the orbital altitudes of the LDEF mission in the form of neutral atomic oxygen. The highly ordered symmetry and directionality of the whiskers are attributed to the long term (5.8 year) stable flight orientation of the LDEF.

  8. Environmental Physical Modulation of Intrinsic Tendency to Growth of Multicellular Tumour Spheroids: In Silico Experiments

    NASA Astrophysics Data System (ADS)

    Griffa, M.; Scalerandi, M.

    2005-01-01

    Lowering in nutrient local availability and rising in host mechanical rigidity are two distinct boundary conditions that affect the growth of solid a-vascular cancers in similar ways (inhibition of growth). In silico experiments based on a physical-mathematical model can shed light on some of the mechanisms at the basis of these effects and suggest that the self-organizing properties of neoplastic populations are greatly modulated by environmental restrictions.

  9. Follow-on Research Activities for the Rensselaer Isothermal Dendritic Growth Experiment (RIDGE)

    NASA Technical Reports Server (NTRS)

    LaCombe, J. C.; Koss, M. B.; Lupulescu, A. O.; Frei, J. E.; Giummarra, C.; Glicksman, M. E.

    2001-01-01

    The RIDGE effort continues the aegis of the earlier, NASA-sponsored, Isothermal Dendritic Growth Experiment (IDGE) series of experiments through the continued analysis of microgravity data acquired during these earlier space flights. The preliminary observations presented here demonstrate that there are significant differences between SCN and the more anisotropic PVA dendrites. The side branch structure becomes amplified only further behind the tip, and the interface shape is generally wider (i.e. more hyperbolic than parabolic) in PVA than in SCN. These characteristics are seen to affect the process of heat transport. Additionally, the dendrites grown during the fourth United States Microgravity Payload (USMP-4) exhibit time-dependent growth characteristics and may not always have reached steady-state growth during the experiment.

  10. From burden to spritual growth: Korean students' experience in a spiritual care practicum.

    PubMed

    So, Woi Sook; Shin, Hye Sook

    2011-01-01

    Little is known about how students learn spiritual caregiving. A phenomenological study was conducted to examine the experience of Korean nursing students in a spiritual care practicum. Interviews with 12 students were analyzed and organized into 40 themes, 17 theme clusters, and five categories describing their experience in the practicum. Students initially experienced burdens and helplessness,followed by improvement of coping skills, self-reflection, and spiritual growth.

  11. Beam breakup growth and reduction experiments in long-pulse electron beam transport

    NASA Astrophysics Data System (ADS)

    Menge, P. R.; Gilgenbach, R. M.; Lau, Y. Y.; Bosch, R. A.

    1994-02-01

    The results of an experimental program whose sole objective is to investigate the cumulative beam breakup instability (BBU) in electron beam accelerators are presented. The BBU growth rate scalings are examined with regard to beam current, focusing field, cavity Q, and propagation distance. A microwave cavity array was designed and fabricated to excite and measure the cumulative BBU resulting from beam interactions with the deflecting TM110 cavity mode. One phase of this experiment used high Q(≊1000) cavities with relatively large frequency spread (Δf/f0≊0.1%). The observed TM110 mode microwave growth between an upstream (second) and a downstream (tenth) cavity indicated BBU growth of 26 dB for an electron beam of kinetic energy of 750 keV, 45 A, and focused by a 1.1 kG solenoidal field. At beam currents of less than 100 A the experiments agreed well with a two-dimensional continuum theory; the agreement was worse at higher beam currents (≳100 A) due to beam loading. The second-phase experiments used lower Q(≊200) cavities with relatively low frequency spread (Δf/f0≊0.03%). Theory and experiment agreed well for beam currents up to 220 A. Distance scaling experiments were also performed by doubling the propagation length. Instability growth reduction experiments using the technique of external cavity coupling resulted in a factor of four decrease in energy in BBU growth when seven internal beam cavities were coupled by microwave cable to seven identical external dummy cavities. A theory invoking power sharing between the internal beam cavities and the external dummy cavities was used to explain the experimental reduction with excellent agreement using an equivalent circuit model.

  12. Biofilm growth in porous media: Experiments, computational modeling at the porescale, and upscaling

    NASA Astrophysics Data System (ADS)

    Peszynska, Malgorzata; Trykozko, Anna; Iltis, Gabriel; Schlueter, Steffen; Wildenschild, Dorthe

    2016-09-01

    Biofilm growth changes many physical properties of porous media such as porosity, permeability and mass transport parameters. The growth depends on various environmental conditions, and in particular, on flow rates. Modeling the evolution of such properties is difficult both at the porescale where the phase morphology can be distinguished, as well as during upscaling to the corescale effective properties. Experimental data on biofilm growth is also limited because its collection can interfere with the growth, while imaging itself presents challenges. In this paper we combine insight from imaging, experiments, and numerical simulations and visualization. The experimental dataset is based on glass beads domain inoculated by biomass which is subjected to various flow conditions promoting the growth of biomass and the appearance of a biofilm phase. The domain is imaged and the imaging data is used directly by a computational model for flow and transport. The results of the computational flow model are upscaled to produce conductivities which compare well with the experimentally obtained hydraulic properties of the medium. The flow model is also coupled to a newly developed biomass-nutrient growth model, and the model reproduces morphologies qualitatively similar to those observed in the experiment.

  13. Characterizing the growth to detonation in PETN and HNS with small-scale PDV cutback experiments

    NASA Astrophysics Data System (ADS)

    Wixom, Ryan; Yarrington, Cole; Knepper, Robert; Tappan, Alexander; Olles, Joseph; Zelenok, Matthew; A-Team

    2015-06-01

    For many decades, cutback experiments have been used to characterize the equation of state and growth to steady detonation in explosive formulations. More recently, embedded gauges have been used to capture the growth to steady detonation in gas-gun impacted samples. Data resulting from these experiments are extremely valuable for parameterizing equation of state and reaction models used in hydrocode simulations. Due to the extremely fast growth to detonation in typical detonator explosives, cutback and embedded gauge experiments are extremely difficult, if not impossible. Using frequency shifted photonic Doppler velocimetry (PDV) we have measured particle velocity histories from explosive films impacted with electrically driven flyers. By varying the sample thickness and impact conditions we were able to capture the growth from inert shock to full detonation pressure within distances as short as 100 μm. These data were used to assess and improve burn-model parameterization and equations of state for simulating shock initiation. Additionally, we discuss details of the experiment and data analysis regarding the most accurate possible determination of the velocity spike.

  14. Isothermal Dendritic Growth Experiment - Science, engineering, and hardware development for USMP space flights

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Koss, M. B.; Tirmizi, S. H.; Selleck, M. E.; Velosa, A.; Winsa, E.

    1991-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) has been designed to provide microgravity data on dendritic growth for a critical test of theory. This paper updates progress on constructing a crystal growth chamber suitable for space flight. The IDGE chamber is constructed from glass and stainless steel and is hermetically sealed by electron beam welds and glass-metal seals. Initial tests of the chambers sample's melting point plateau show that the new chamber design is capable of preserving the 99.9995 percent purity of succinonitrile. Dendrite growth can be initiated in the center of the IDGE chamber by means of thermo-electric coolers and a capillary injector tube (stinger). The new IDGE chamber is ready for fully integrated tests with the prototype IDGE engineering hardware at NASA's Lewis Research Center.

  15. Crystal Growth Furnace - An overview of the system configuration and planned experiments on the First United States Microgravity Laboratory mission

    NASA Technical Reports Server (NTRS)

    Srinivas, R.; Schaefer, D. A.

    1992-01-01

    The Crystal Growth Furnace (CGF) system configuration for the First United States Microgravity Laboratory (USML-1) mission is reviewed, and the planned on-orbit experiments are briefly described. The CGF is configured to accommodate four scientific experiments involving crystal growth which are based on the classical Bridgman method and CVT method, including vapor transport crystal growth of mercury cadmium telluride; crystal growth of mercury zinc telluride by directional solidification; seeded Bridgman growth of zinc-doped cadmium telluride; and Bridgman growth of selenium-doped gallium arsenide.

  16. Ablation Front Rayleigh-Taylor Growth Experiments in Spherically Convergent Geometry

    SciTech Connect

    Glendinning, S.G.; Cherfils, C.; Colvin, J.; Divol, L.; Galmiche, D.; Haan, S.; Marinak, M.M.; Remington, B.A.; Richard, A.L.; Wallace, R.

    1999-11-03

    Experiments were performed on the Nova laser, using indirectly driven capsules mounted in cylindrical gold hohlraums, to measure the Rayleigh-Taylor growth at the ablation front by time-resolved radiography. Modulations were preformed on the surface of Ge-doped plastic capsules. With initial modulations of 4 {micro}m, growth factors of about 6 in optical depth were seen, in agreement with simulations using the radiation hydrocode FCI2. With initial modulations of 1 {micro}m, growth factors of about 100-150 in optical depth were seen. The Rayleigh-Taylor (RT) instability at the ablation front in an inertial confinement fusion capsule has been the subject of considerable investigation. Much of this research has been concentrated on planar experiments, in which RT growth is inferred from radiography. The evolution is somewhat different in a converging geometry; the spatial wavelength decreases (affecting the onset of nonlinear saturation), and the shell thickens and compresses rather than decompressing as in a planar geometry. In a cylindrically convergent geometry, the latter effect is proportional to the radius, while in spherically convergent geometry, the latter effect is proportional to the radius squared. Experiments were performed on the Nova and Omega lasers in cylindrical geometry (using both direct and indirect drive) and have been performed in spherical geometry using direct drive.

  17. Specifications for and preliminary design of a plant growth chamber for orbital experimental experiments

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Simmonds, R. C.

    1976-01-01

    It was proposed that plant experiments be performed on board the space shuttle. To permit the proper execution of most tests, the craft must contain a plant growth chamber which is adequately designed to control those environmental factors which can induce changes in a plant's physiology and morphology. The various needs of, and environmental factors affecting, plants are identified. The permissilbe design, construction and performance limits for a plant-growth chamber are set, and tentative designs were prepared for units which are compatible with both the botanical requirements and the constraints imposed by the space shuttle.

  18. Experiment MA-028 crystal growth. [low gravity manufacturing of single crystals from Apollo/Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Lind, D. M.

    1976-01-01

    A crystal growth experiment is reported on orbital space flights. The experiment was performed during the Apollo-Soyuz Test Project. The Crystal Growth Experiment assessed a novel process for growing single crystals of insoluble substances by allowing two or more reactant solutions to diffuse toward each other through a region of pure solvent in zero gravity. The experiment was entirely successful and yielded crystals of about the expected size, quality, and number.

  19. Epitaxial graphene growth and shape dynamics on copper: phase-field modeling and experiments.

    PubMed

    Meca, Esteban; Lowengrub, John; Kim, Hokwon; Mattevi, Cecilia; Shenoy, Vivek B

    2013-01-01

    The epitaxial growth of graphene on copper foils is a complex process, influenced by thermodynamic, kinetic, and growth parameters, often leading to diverse island shapes including dendrites, squares, stars, hexagons, butterflies, and lobes. Here, we introduce a phase-field model that provides a unified description of these diverse growth morphologies and compare the model results with new experiments. Our model explicitly accounts for the anisotropies in the energies of growing graphene edges, kinetics of attachment of carbon at the edges, and the crystallinity of the underlying copper substrate (through anisotropy in surface diffusion). We show that anisotropic diffusion has a very important, counterintuitive role in the determination of the shape of islands, and we present a "phase diagram" of growth shapes as a function of growth rate for different copper facets. Our results are shown to be in excellent agreement with growth shapes observed for high symmetry facets such as (111) and (001) as well as for high-index surfaces such as (221) and (310).

  20. Experiment 3: Zeolite Crystal Growth in Microgravity- The USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bac, Nurcan; Warzywoda, Juliusz; Sacco, Albert, Jr.

    1998-01-01

    The extensive use of zeolites and their impact on the world's economy leads to many efforts to characterize their structure, and to improve the knowledge base for nucleation and growth of these crystals. The Zeolite Crystal Growth (ZCG) experiment on USML-2 aims to enhance the understanding of nucleation and growth of zeolite crystals while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16-day USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. Space-grown Beta crystals were free of line defects while terrestrial/controls had substantial defects.

  1. Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment

    NASA Astrophysics Data System (ADS)

    Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul

    2016-10-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.

  2. Time until first significant difference in in vivo tumor growth experiments.

    PubMed

    Heitjan, D F; Kunselman, S

    1995-01-01

    In in vivo tumor growth experiments it is common to report the tumor measurement time at which the volume distributions of the treatment groups become significantly different. This method of analysis, as commonly practiced, is deficient in that its type I error rate exceeds the usual nominal rate of 5%, unless one specifically corrects for multiple comparisons. A second problem is that many investigators evidently interpret the time of first significance as a statistical parameter--i.e., a fixed but unknown property of the model that one can estimate by experimentation. In fact the time until first significance, like the power of the test, depends both on true model parameters (such as mean growth curves and experimental variability) and on features of the experimental design, such as the sample size and the spacing of the measurement times. We argue that investigators would do better to compare treatment groups by modeling tumor growth curves or estimating volume doubling times.

  3. Alternative Student Growth Measures for Teacher Evaluation: Implementation Experiences of Early-Adopting Districts. REL 2015-093

    ERIC Educational Resources Information Center

    McCullough, Moira; English, Brittany; Angus, Megan Hague; Gill, Brian

    2015-01-01

    Alternative student growth measures for teacher evaluation: Implementation experiences of early-adopting districts: State requirements to include student achievement growth in teacher evaluations are prompting the development of alternative ways to measure growth in grades and subjects not covered by state assessments. These alternative growth…

  4. SHOCK INITIATION EXPERIMENTS ON PBX9501 EXPLOSIVE AT 150?C FOR IGNITION AND GROWTH MODELING

    SciTech Connect

    Vandersall, K S; Tarver, C M; Garcia, F; Urtiew, P A

    2005-07-19

    Shock initiation experiments on the explosive PBX9501 (95% HMX, 2.5% estane, and 2.5% nitroplasticizer by weight) were performed at 150 C to obtain in-situ pressure gauge data and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the PBX9501 explosive with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data and Ignition and Growth modeling parameters were obtained with a good fit to the experimental data. This parameter set will allow accurate code predictions to be calculated for safety scenarios involving PBX9501 explosives at temperatures close to 150 C.

  5. Hydrodynamic growth experiments with the 3-D, “native-roughness” modulations on NIF

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Weber, S. V.; Casey, D.; Clark, D. S.; Coppari, F.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W.; Landen, O.; Nikroo, A.; Robey, H. F.; Weber, C. R.

    2016-05-01

    Hydrodynamic instability growth experiments with threedimensional (3-D) surface-roughness modulations were performed on plastic (CH) shell spherical implosions at the National Ignition Facility (NIF). The initial capsule outer-surface roughness was similar to the standard specifications (“native roughness”) used in a majority of implosions on NIF. At a convergence ratio of ∼3, the measured tent modulations were close to those predicted by 3-D simulations (within ∼15-20%), while measured 3-D, broadband modulations were ∼3-4 times larger than those simulated based on the growth of the known imposed initial surface modulations. One of the hypotheses to explain the results is based on the increased instability amplitudes due to modulations of the oxygen content in the bulk of the capsule. These new experiments results have prompted looking for ways to reduce UV light exposure during target fabrication.

  6. On the role of convective motion during dendrite growth: Experiments under variable gravity, revised

    NASA Technical Reports Server (NTRS)

    Hallett, J.; Cho, N.; Harrison, K.; Lord, A.; Wedum, E.; Purcell, R.; Saunders, C. P. R.

    1987-01-01

    Experiments show the effect of self induced convection on individual dendrite growth in uniformly supercooled samples and solidification of the resulting mush under conditions of high and low g. Convection is visualized by a Schlieren optical system or a Mach Zender interferometer. For ice crystals growing from the vapor in air, a slight reduction in linear growth rate occur under low g. For ice crystals growing from NaCl solution, dendrite tip velocities are unchanged, but subsequent mush solidification is enhanced through drainage channels under higher g. By contrast, sodium sulfate decahydrate dendrites growing from solution produce convective plumes which lead to higher tip growth rate only as the crystal growth direction approaches that of gravity. Convective plumes are laminar for small crystals under conditions of these experiments; the rise velocity of such plumes is greater than individual vortex rings under identical conditions. Convection effects are only present in solution under a critical supercooling less than about 5 C for sodium sulfate and 2 C for ice in NaCl since at higher supercooling the crystallization velocity, proportional to the square of the supercooling, exceeds the convective velocity, proportional to the square root of the supercooling. The role of convective velocity in bulk solidification is to give a large scale flow which under extreme cases may lead to extensive secondary crystal production, which alters the resulting crystal texture of the completely solidified melt.

  7. Flowtube experiments on diamond formation: separating the growth and nucleation kinetics

    NASA Astrophysics Data System (ADS)

    Martin, L. R.; Hill, Michael W.

    1990-12-01

    We have done a series of experiments on diamond microcrystal formation in flowtubes. The system is designed to separate the discharge used to create atomic hydrogen from the organic molecules used as a carbon source. This creates a simplified chemical environment in which the species concentrations are kinetically rather than thermodynamically controlled. The flowtube enables us to examine kinetics of diamond formation under a variety of conditions and gives us some information about the rate of nucleation independently of the growth rate. 1.

  8. Growth of thin Fe(0 0 1) films for terahertz emission experiments

    NASA Astrophysics Data System (ADS)

    Meserole, C. A.; Fisher, G. L.; Hilton, D. J.; Averitt, R. D.; Funk, D. J.; Taylor, A. J.

    2007-06-01

    The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.

  9. Utilizing ARC EMCS Seedling Cassettes as Highly Versatile Miniature Growth Chambers for Model Organism Experiments

    NASA Technical Reports Server (NTRS)

    Freeman, John L.; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David; Reinsch, S.; DeSimone, Julia C.; Myers, Zachary A.

    2014-01-01

    The aim of our ground testing was to demonstrate the capability of safely putting specific model organisms into dehydrated stasis, and to later rehydrate and successfully grow them inside flight proven ARC EMCS seedling cassettes. The ARC EMCS seedling cassettes were originally developed to support seedling growth during space flight. The seeds are attached to a solid substrate, launched dry, and then rehydrated in a small volume of media on orbit to initiate the experiment. We hypothesized that the same seedling cassettes should be capable of acting as culture chambers for a wide range of organisms with minimal or no modification. The ability to safely preserve live organisms in a dehydrated state allows for on orbit experiments to be conducted at the best time for crew operations and more importantly provides a tightly controlled physiologically relevant growth experiment with specific environmental parameters. Thus, we performed a series of ground tests that involved growing the organisms, preparing them for dehydration on gridded Polyether Sulfone (PES) membranes, dry storage at ambient temperatures for varying periods of time, followed by rehydration. Inside the culture cassettes, the PES membranes were mounted above blotters containing dehydrated growth media. These were mounted on stainless steel bases and sealed with plastic covers that have permeable membrane covered ports for gas exchange. The results showed we were able to demonstrate acceptable normal growth of C.elegans (nematodes), E.coli (bacteria), S.cerevisiae (yeast), Polytrichum (moss) spores and protonemata, C.thalictroides (fern), D.discoideum (amoeba), and H.dujardini (tardigrades). All organisms showed acceptable growth and rehydration in both petri dishes and culture cassettes initially, and after various time lengths of dehydration. At the end of on orbit ISS European Modular Cultivation System experiments the cassettes could be frozen at ultra-low temperatures, refrigerated, or chemically

  10. Hydrodynamic instability growth and mix experiments at the National Ignition Facility

    SciTech Connect

    Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.; Casey, D. T.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W. W.; Hurricane, O.; Kroll, J.; Landen, O. L.; Lindl, J. D.; Ma, T.; McNaney, J. M.; Mintz, M.; Parham, T.; Peterson, J. L.; and others

    2014-05-15

    Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ignition-relevant laser pulses, and ablation-front modulation growth was measured using x-ray radiography for a shell convergence ratio of ∼2. The measured growth was in good agreement with that predicted, thus validating simulations for the fastest growing modulations with mode numbers up to 90 in the acceleration phase. Future experiments will be focused on measurements at higher convergence, higher-mode number modulations, and growth occurring during the deceleration phase.

  11. Growth-rate influences on coral climate proxies tested by a multiple colony culture experiment

    NASA Astrophysics Data System (ADS)

    Hayashi, Erika; Suzuki, Atsushi; Nakamura, Takashi; Iwase, Akihiro; Ishimura, Toyoho; Iguchi, Akira; Sakai, Kazuhiko; Okai, Takashi; Inoue, Mayuri; Araoka, Daisuke; Murayama, Shohei; Kawahata, Hodaka

    2013-01-01

    As application of coral-based climate reconstruction has become more frequent at tropical sites, increased attention is being paid to the potential ambiguities of coral thermometers that are intrinsic to the biomineralisation process, including the so-called vital effect, the growth-rate-related kinetic effect, and the [CO32-] effect. Here we studied how the growth rate influenced the skeletal oxygen and carbon isotope ratios (δ18O and δ13C) and the Sr/Ca ratio in a common-garden experiment involving the long-term culture of Porites australiensis clone colonies. Comparison of the seasonal minimum δ18O values during summer showed a negligible influence of the large intercolony variation in growth rate (2-10 mm yr-1) on δ18O variation, but δ18O was relatively sensitive to temporary intracolony growth-rate changes related to colony health. In contrast, the Sr/Ca ratio was robust against both inter- and intracolony growth-rate variation. We found a positive shift in δ13C in slower growing corals, which we attributed to the kinetic behaviour of the calcification reaction. The seasonal fluctuation in δ13C corresponded not to changes in light intensity nor to δ13C of dissolved inorganic carbon in seawater, but to photosynthetic efficiency as measured by pulse-amplitude photometry. These findings support the inference that coral skeletal Sr/Ca and δ18O in a long-lived colony can function as a palaeoclimate archive by recording signals of clonal growth. We also propose practical guidelines for the proper interpretation of coral records.

  12. [Control locus, stress resistance and personal growth of the participants in experiment Mars-500].

    PubMed

    Solcova, I; Vinokhodova, A G

    2013-01-01

    The article deals with positive personal transformations in a simulated space mission. The investigation was focused on the aspects of control locus, stamina, proactive behavior to overcome challenges, and stress-related personal growth. Besides, ingenious psychophysiological techniques designed to select Russian cosmonauts were used for assessing stress-resistance and ability to control own emotions voluntarily. Experiment Mars-500 simulated the basic features of a mission to Mars. The crew consisted of 6 males 27 to 38 years of age who volunteered to spend 520 days in isolation and confinement in the IBMP experimental facility (Moscow). To detect personality changes, the volunteers were tested before the experiment and after its completion. According to the test results, the participants commonly demonstrated the ability to see the bright side of the Mars-500 adversities, which most often was caused by their social growth. Positive changes were particularly pronounced in the crewmembers who possessed a better ability to control own emotions. The simulated challenges were also beneficial for personal growth of the volunteers.

  13. Shuttle Flight Experiment on USMP-4: In Situ Monitoring of Crystal Growth Using MEPHISTO

    NASA Technical Reports Server (NTRS)

    Abbaschian, Reza; deGroh, Henry C., III; Leonardi, E.; deVahlDavis, Graham; Coriell, Sam; Cambon, Gerard

    2001-01-01

    This reports on the MEPHISTO-4 experiment on the Space Shuttle Columbia, STS-87, November 19-December 5, 1997. Involved were NASA; the University of Florida at Gainesville; groups from France that developed and built the furnace; the National Institute of Standards and Technology; The University of New South Wales, Australia; and Purdue University. This was a solidification study in which three long rods of Bismuth- 1 at.% Tin were directionally solidified. The goals were to solidify in an environment free of natural convection; to determine the relationship among solidification growth velocity, growth mode, and temperature; and determine the diffusivity of Sn in Bi. The flight samples grew with a planar solid/liquid interface at velocities less than 3.4 gm/s, and cellular growth was present at velocities greater than 6.7 um/s; grain orientation influenced the planar to cellular transition. The temperature gradient in the liquid was 204 K/cm. The s/l interface was flat with slight concavity. Diffusion-dominated conditions were present during MEPHISTO-4. The Seebeck technique was used to determine the s/I interface temperature during growth, however, to date, analysis of the Seebeck results has not yielded a reliable measurement of the interface temperature. The partition coefficient for Bi alloyed with Sn was measured, k = 0.029.

  14. Growth and survival of tree seedlings in a large-scale rainfall manipulation experiment

    SciTech Connect

    Parikh, N.R.; Holmgren, M.; Huston, M.

    1995-06-01

    Seedlings of three species with different tolerance to shade and drought, Acer saccharum, Liriodendron tulipifera, and Quercus alba, were planted on the hillslope site of the Walker Branch Throughfall Displacement Experiment during the winter of 1993-1994, and their growth measured during the following growing season. Volumetric soil moisture in the upper 35cm of soil was measured twice monthly, and relative light availability above each seedling was measured in August. The most shade tolerant species, sugar maple, leafed out earlier and by the beginning of April had produced 80% of its total leaf area, compared with only 16% for tulip poplar and 39% for white oak. Leaf area and stem growth of sugar maple were positively correlated with soil moisture, but not with light, while stem growth of tulip poplar and white oak were positively correlated with light, but not with soil moisture. Tulip poplar had the highest mortality (15%) followed by sugar maple (3%). Mortality was higher in dry locations, but was not related to growth during the season.

  15. Shock initiation experiments with ignition and growth modeling on low density composition B

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Garcia, Frank; Tarver, Craig M.

    2017-01-01

    Shock initiation experiments on low density (˜1.2 and ˜1.5 g/cm3) Composition B were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between packed layers (˜1.2 g/cm3) confined in Teflon rings or sample disks pressed to low density (˜1.5 g/cm3). The shock sensitivity was found to increase with decreasing density as expected. Ignition and Growth model parameters were derived that yielded reasonable agreement with the experimental data at both initial densities. The shock sensitivity at the tested densities are compared to prior published work with near full density material.

  16. Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth

    SciTech Connect

    Hanson, P.J.

    2001-09-04

    This numeric data package provides data sets, and accompanying documentation, on site characterization, system performance, weather, species composition, and growth for the Throughfall Displacement Experiment, which was established in the Walker Branch Watershed of East Tennessee to provide data on the responses of forests to altered precipitation regimes. The specific data sets include soil water content and potential, coarse fraction of the soil profile, litter layer temperature, soil temperature, monthly weather, daily weather, hourly weather, species composition of trees and saplings, mature tree and sapling annual growth, and relative leaf area index. Fortran and SAS{trademark} access codes are provided to read the ASCII data files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).

  17. The Isothermal Dendritic Growth Experiment (IDGE): USMP-4 One-Year-Report

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; LaCombe, J. C.; Lupulescu, A. O.; Malarik, D. C.

    1999-01-01

    Dendrites describe the tree-like crystal morphology commonly assumed in many material systems--particularly in metals and alloys that freeze from supercooled or supersaturated melts. There remains a high level of engineering interest in dendritic solidification because of the role of dendrites in the determination of cast alloy microstructures. Microstructure plays a key role in determining the physical properties of cast or welded products. In addition, dendritic solidification provides an example of non-equilibrium physics and is one of the simplest non-trivial examples of dynamic pattern formation, where an amorphous melt, under simple starting conditions, evolves into a complex ramified microstructure. Although it is well-known that dendritic growth is controlled by the transport of latent heat from the moving solid-melt interface as the dendrite advances into a supercooled melt, an accurate, and predictive model has not been developed. Current theories consider: 1) the transfer of heat or solute from the solid-liquid interface into the melt, and 2) the interfacial crystal growth and growth selection physics for the interface. However, the effects of gravity-induced convection on the transfer of heat from the interface prevent either element from being adequately tested solely under terrestrial conditions. The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three NASA-supported microgravity experiments, all of which flew aboard the space shuttle, Columbia. This experimental space flight series was designed and operated to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, and thereby produce a wealth of benchmark-quality data for testing solidification scaling laws. The data collection from the on-orbit phase of the IDGE flight series is now complete. We are currently completing analyses and moving towards final data archiving.

  18. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2008-11-30

    Prediction of the microbial growth rate as a response to changing temperatures is an important aspect in the control of food safety and food spoilage. Accurate model predictions of the microbial evolution ask for correct model structures and reliable parameter values with good statistical quality. Given the widely accepted validity of the Cardinal Temperature Model with Inflection (CTMI) [Rosso, L., Lobry, J. R., Bajard, S. and Flandrois, J. P., 1995. Convenient model to describe the combined effects of temperature and pH on microbial growth, Applied and Environmental Microbiology, 61: 610-616], this paper focuses on the accurate estimation of its four parameters (T(min), T(opt), T(max) and micro(opt)) by applying the technique of optimal experiment design for parameter estimation (OED/PE). This secondary model describes the influence of temperature on the microbial specific growth rate from the minimum to the maximum temperature for growth. Dynamic temperature profiles are optimized within two temperature regions ([15 degrees C, 43 degrees C] and [15 degrees C, 45 degrees C]), focusing on the minimization of the parameter estimation (co)variance (D-optimal design). The optimal temperature profiles are implemented in a computer controlled bioreactor, and the CTMI parameters are identified from the resulting experimental data. Approximately equal CTMI parameter values were derived irrespective of the temperature region, except for T(max). The latter could only be estimated accurately from the optimal experiments within [15 degrees C, 45 degrees C]. This observation underlines the importance of selecting the upper temperature constraint for OED/PE as close as possible to the true T(max). Cardinal temperature estimates resulting from designs within [15 degrees C, 45 degrees C] correspond with values found in literature, are characterized by a small uncertainty error and yield a good result during validation. As compared to estimates from non-optimized dynamic

  19. Phototropism experiments in microgravity-the Seedling Growth project in the EMCS on the ISS

    NASA Astrophysics Data System (ADS)

    Kiss, John; Edelmann, Richard; Herranz, Raul; Medina, Francisco Javier; Millar, Katherine

    The microgravity environment aboard orbiting spacecraft has provided a unique laboratory to explore important topics in basic plant biology. Our group has utilized the European Modular Cultivation System (EMCS) aboard the International Space Station (ISS) to study plant growth, development, tropisms, and gene expression in a series of spaceflight experiments. The most current project performed on the ISS was termed Seeding Growth-1 (SG-1) which builds on the previous TROPI (for tropisms) experiments. TROPI-1 was the first EMCS experiment, and we discovered a novel red-light-based phototropism in hypocotyls of seedlings grown in microgravity (Millar et al. 2010). In TROPI-2, our experiments were extended to reduced gravity levels and found that 0.1-0.3 g can attenuate the red-light response (Kiss et al. 2012). In addition, we performed gene profiling studies and noted that approximately 280 genes that were differentially regulated at least two-fold in the space samples compared to the ground controls (Correll et al. 2013). Major technical and operational changes in SG-1 (launched in March 2013) compared to the TROPI experiments include: improvements in lighting conditions within the EMCS to optimize the environment for phototropism studies and the use of infrared illumination to provide high-quality images of the seedlings. In SG-1, the red-light-based phototropism in roots and hypocotyls of seedlings that was noted in TROPI-2 was confirmed and now can be more precisely characterized based on the improvements in procedures. As we move forward, the SG-2 experiments (to be launched in 2014), in addition to a continued focus on phototropism, will consider the cell cycle as well as the growth and proliferation of plant cells in microgravity (Matía et al. 2010). Furthermore, the lessons learned from sequential experiments from TROPI-1 to TROPI-2 to SG-1 can provide insights to other researchers developing space experiments in plant biology. References: Correll M.J., T

  20. Factors driving mortality and growth at treeline: a 30-year experiment of 92 000 conifers.

    PubMed

    Barbeito, Ignacio; Dawes, Melissa A; Rixen, Christian; Senn, Josef; Bebi, Peter

    2012-02-01

    Understanding the interplay between environmental factors contributing to treeline formation and how these factors influence different life stages remains a major research challenge. We used an afforestation experiment including 92 000 trees to investigate the spatial and temporal dynamics of tree mortality and growth at treeline in the Swiss Alps. Seedlings of three high-elevation conifer species (Larix decidua, Pinus mugo ssp. uncinata, and Pinus cembra) were systematically planted along an altitudinal gradient at and above the current treeline (2075 to 2230 m above sea level [a.s.l.]) in 1975 and closely monitored during the following 30 years. We used decision-tree models and generalized additive models to identify patterns in mortality and growth along gradients in elevation, snow duration, wind speed, and solar radiation, and to quantify interactions between the different variables. For all three species, snowmelt date was always the most important environmental factor influencing mortality, and elevation was always the most important factor for growth over the entire period studied. Individuals of all species survived at the highest point of the afforestation for more than 30 years, although mortality was greater above 2160 m a.s.l., 50-100 m above the current treeline. Optimal conditions for height growth differed from those for survival in all three species: early snowmelt (ca. day of year 125-140 [where day 1 is 1 January]) yielded lowest mortality rates, but relatively later snowmelt (ca. day 145-150) yielded highest growth rates. Although snowmelt and elevation were important throughout all life stages of the trees, the importance of radiation decreased over time and that of wind speed increased. Our findings provide experimental evidence that tree survival and height growth require different environmental conditions and that even small changes in the duration of snow cover, in addition to changes in temperature, can strongly impact tree survival and

  1. Plant Growth During the Greenhouse II Experiment on the MIR Orbital Station

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.; Campbell, W. F.; Carman, J. G.; Bingham, G. E.; Bubenheim, D. L.; Yendler, B.; Sytchev, V.; Levinskikh, M. A.; Ivanova, I.; Chernova, L.; Podolsky, I.

    2002-01-01

    We carried out three experiments with Super Dwarf wheat in the Bulgarian/Russian growth chamber Svet (0.1 sq m growing area) on the Space Station Mir. This paper mostly describes the first of these NASA-supported trials, began on Aug. 13, 1995. Plants were sampled five times and harvested on Nov. 9 after 90 days. Equipment failures led to low irradiance (three, then four of six lamp sets failed), instances of high temperatures (ca. 37 C), and sometimes excessive-substrate moisture. Although plants grew for the 90 days, no wheat heads were produced. Considering the low light levels, plants were surprisingly green, but of course biomass production was low. Plants were highly disoriented (low light, mirror walls?). Fixed and dried samples and the root module were returned on the US Shuttle Atlantis on Nov. 20, 1995. Samples of the substrate, a nutrient-charged zeolite called Balkanine, were taken from the root module, carefully examined for roots, weighed, dried, and reweighed. The Svet control unit and the light bank were shipped to Moscow. An experiment validation test (EVT) of plant growth and experiment procedures, carried out in Moscow, was highly successful. Equipment built in Utah to measure CO2, H2O vapor, irradiance, air and leaf (IR) temperature, O2, pressure, and substrate moisture worked well in the EVT and in space. After this manuscript was first prepared, plants were grown in Mir with a new light bank and controller for 123 days in late 1996 and 39 days in 1996/1997. Plants grew exceptionally well with higher biomass production than in any previous space experiment, but the ca. 280 wheat heads that were produced in 1996 contained no seeds. Ethylene in the cabin atmosphere was responsible.

  2. Successful Isothermal Dendritic Growth Experiment (IDGE) Proves Current Theories of Dendritic Solidification are Flawed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The scientific objective of the Isothermal Dendritic Growth Experiment (IDGE) is to test fundamental assumptions about dendritic solidification of molten materials. "Dendrites"-- from the ancient Greek word for tree--are tiny branching structures that form inside molten metal alloys when they solidify during manufacturing. The size, shape, and orientation of the dendrites have a major effect on the strength, ductility (ability to be molded or shaped), and usefulness of an alloy. Nearly all of the cast metal alloys used in everyday products (such as automobiles and airplanes) are composed of thousands to millions of tiny dendrites. Gravity, present on Earth, causes convection currents in molten alloys that disturb dendritic solidification and make its precise study impossible. In space, gravity is negated by the orbiting of the space shuttle. Consequently, IDGE (which was conducted on the space shuttle) gathered the first precise data regarding undisturbed dendritic solidification. IDGE is a microgravity materials science experiment that uses an apparatus which was designed, built, tested, and operated by people from the NASA Lewis Research Center. This experiment was conceived by the principal investigator, Professor Martin E. Glicksman, from Rensselaer Polytechnic Institute in Troy, New York. The experiment was a team effort of Lewis civil servants, contractors from Aerospace Design & Fabrication Inc. (ADF), and personnel at Rensselaer.

  3. Growth of Co and Fe on Cu(1 1 1): experiment and BFS based calculations

    NASA Astrophysics Data System (ADS)

    Farías, D.; Niño, M. A.; de Miguel, J. J.; Miranda, R.; Morse, J.; Bozzolo, G.

    2003-10-01

    The structure and morphology of Co and Fe films grown on Cu(1 1 1) have been investigated by thermal energy atom scattering (TEAS) and low-energy electron diffraction (LEED). It has been found that the growth mode of Co and Fe can be greatly improved by using Pb as surfactant, although in the case of Fe this works only for the first bilayer. This shows that the two systems exhibit decisive differences already in the first stages of the growth process. In a second series of experiments, the effect of codepositing Co-Cu and Fe-Cu on the films quality was investigated. The results are very promising, and suggest that very flat, structurally ordered fcc Fe-Cu and Co-Cu films can be prepared by applying this technique together with the use of Pb as surfactant. These results were complemented by atomistic simulations based on the BFS method for alloys. Simulations performed in the low-coverage regime suggest that the early stages of growth are governed to a great extent by the affinity of Cu for Co and Fe. We have also performed temperature-dependent Monte Carlo simulations to determine the structure of superlattices formed by codeposition of Cu-Co and Cu-Fe.

  4. Microbial growth and transport in porous media under denitrification conditions: experiments and simulations

    NASA Astrophysics Data System (ADS)

    Clement, T. P.; Peyton, B. M.; Skeen, R. S.; Jennings, D. A.; Petersen, J. N.

    1997-01-01

    Soil column experiments were conducted to study bacterial growth and transport in porous media under denitrifying conditions. The study used a denitrifying microbial consortium isolated from aquifer sediments sampled at the U.S. Department of Energy's Hanford site. One-dimensional, packed-column transport studies were conducted under two substrate loading conditions. A detailed numerical model was developed to predict the measured effluent cell and substrate concentration profiles. First-order attachment and detachment models described the interphase exchange processes between suspended and attached biomass. Insignificantly different detachment coefficient values of 0.32 and 0.43 day -1, respectively, were estimated for the high and low nitrate loading conditions (48 and 5 mg l -1 NO 3, respectively). Comparison of these values with those calculated from published data for aerobically growing organisms shows that the denitrifying consortium had lower detachment rate coefficients. This suggests that, similar to detachment rates in reactor-grown biofilms, detachment in porous media may increase with microbial growth rate. However, available literature data are not sufficient to confirm a specific analytical model for predicting this growth dependence.

  5. Plant growth during the Greenhouse II experiment on the Mir orbital station

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.; Campbell, W. F.; Carman, J. G.; Bingham, G. E.; Bubenheim, D. L.; Yendler, B.; Sytchev, V.; Levinskikh, M. A.; Ivanova, I.; Chernova, L.; Podolsky, I.

    2003-01-01

    We carried out three experiments with Super Dwarf wheat in the Bulgarian/Russian growth chamber Svet (0.1 m2 growing area) on the Space Station Mir. This paper mostly describes the first of these NASA-supported trials, began on Aug. 13, 1995. Plants were sampled five times and harvested on Nov. 9 after 90 days. Equipment failures led to low irradiance (3, then 4 of 6 lamp sets failed), instances of high temperatures (ca. 37 degrees C), and sometimes excessive substrate moisture. Although plants grew for the 90 d, no wheat heads were produced. Considering the low light levels, plants were surprisingly green, but of course biomass production was low. Plants were highly disoriented (low light, mirror walls?). Fixed and dried samples and the root module were returned on the U.S. Shuttle Atlantis on Nov. 20, 1995. Samples of the substrate, a nutrient-charged zeolite called Balkanine, were taken from the root module, carefully examined for roots, weighed, dried, and reweighed. The Svet control unit and the light bank were shipped to Moscow. An experiment validation test (EVT) of plant growth and experimental procedures, carried out in Moscow, was highly successful. Equipment built in Utah to measure CO2, H2O vapor, irradiance, air and leaf (IR) temperature, O2, pressure, and substrate moisture worked well in the EVT and in space. After this manuscript was first prepared, plants were grown in Mir with a new light bank and controller for 123 d in late 1996 and 39 days in 1996/1997. Plants grew exceptionally well with higher biomass production than in any previous space experiment, but the ca. 280 wheat heads that were produced in 1996 contained no seeds. Ethylene in the cabin atmosphere was responsible. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  6. Plant growth during the greenhouse II experiment on the Mir orbital station

    NASA Astrophysics Data System (ADS)

    Salisbury, F. B.; Campbell, W. F.; Carman, J. G.; Bingham, G. E.; Bubenheim, D. L.; Yendler, B.; Sytchev, V.; Levinskikh, M. A.; Ivanova, I.; Chernova, L.; Podolsky, I.

    We carried out three experiments with Super Dwarf wheat in the Bulgarian/Russian growth chamber Svet (0.1 m2 growing area) on the Space Station Mir. This paper mostly describes the first of these NASA-supported trials, began on Aug. 13, 1995. Plants were sampled five times and harvested on Nov. 9 after 90 days. Equipment failures led to low irradiance (3, then 4 of 6 lamp sets failed), instances of high temperatures (ca. 37 °C), and sometimes excessive substrate moisture. Although plants grew for the 90 d, no wheat heads were produced. Considering the low light levels, plants were surprisingly green, but of course biomass production was low. Plants were highly disoriented (low light, mirror walls?). Fixed and dried samples and the root module were returned on the U.S. Shuttle Atlantis on Nov. 20, 1995. Samples of the substrate, a nutrient-charged zeolite called Balkanine, were taken from the root module, carefully examined for roots, weighed, dried, and reweighed. The Svet control unit and the light bank were shipped to Moscow. An experiment validation test (EVT) of plant growth and experimental procedures, carried out in Moscow, was highly successful. Equipment built in Utah to measure CO2, H2O vapor, irradiance, air and leaf (IR) temperature, O2, pressure, and substrate moisture worked well in the EVT and in space. After this manuscript was first prepared, plants were grown in Mir with a new light bank and controller for 123 d in late 1996 and 39 days in 1996/1997. Plants grew exceptionally well with higher biomass production than in any previous space experiment, but the ca. 280 wheat heads that were produced in 1996 contained no seeds. Ethylene in the cabin atmosphere was responsible.

  7. In situ growth experiments of reef-building cold-water corals: The good, the bad and the ugly

    NASA Astrophysics Data System (ADS)

    Lartaud, F.; Meistertzheim, A. L.; Peru, E.; Le Bris, N.

    2017-03-01

    The ecological study of corals in their habitat is essential to determine the effects of global change and to develop strategies for reef conservation. Based on mark and recovery experiments, we investigated skeletal growth patterns of two reef-building cold-water coral species, Lophelia pertusa and Madrepora oculata, in the Lacaze-Duthiers canyon in the northwestern Mediterranean Sea. Coral fragments were collected, stained and deployed for short-term (2.5 months) and long-term (15 months) growth experiments at two sites located 4.5 km and 6.8 km from the canyon head. The analysis of distinct growth parameters (budding, new polyp growth and linear extension of the coral fragments) revealed that growth patterns are consistent among branches of different sizes, but discrepancies arose from the different types of staining used. Calcein appeared more suitable than alizarin red, which strongly limited growth by delaying coral recovery, for short-term experiments at least. Both species grew rapidly when redeployed in their habitat. Effects of long-term experiments could not be observed because corals were exposed to harmful environmental stress, particularly the lethal effect of sedimentation on the fragments. Despite limited in situ deployment, the growth analysis from the short-term experiment highlighted species-specific responses according to the location along a longitudinal gradient in the canyon and were likely related to the local environmental conditions. Consistent with the observed species distributions, M. oculata showed optimal growth at the site closer to the canyon head compared with L. pertusa, which had optimal growth at the deeper site. In situ experiments are difficult to conduct in deep-sea ecosystems, but with the use of remotely operated vehicles (ROVs), such a simple approach may be of interest to managers of cold-water coral ecosystems.

  8. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop

  9. Corrosion of copper and authigenic sulfide mineral growth in hydrothermal bentonite experiments

    NASA Astrophysics Data System (ADS)

    Caporuscio, F. A.; Palaich, S. E. M.; Cheshire, M. C.; Jové Colón, C. F.

    2017-03-01

    The focus of this experimental work is to characterize interaction of bentonite with possible used-fuel waste container materials. Experiments were performed up to 300 °C at 150-160 bars for five to six weeks. Bentonite was saturated with a 1900 ppm K-Ca-Na-Cl-bearing water with Cu-foils. Copper rapidly degrades into chalcocite (CuS2) and minor covellite (CuS) in the presence of H2S. Chalcocite growth and corrosion pit depths were measured for four different experimental runs yielding corrosion rates between 8.8 and 116 μm/yr depending on duration of experiment, brine composition, and clay type (bentonite vs. Opalinus Clay). Results of this research show that although pit-corrosion is demonstrated on Cu substrates, experiments show that the reactions that ensue, and the formation of minerals that develop, are extraordinarily slow. This supports the use of Cu in nuclide-containment systems as a possible engineered barrier system material.

  10. Biofilm supported increase of chemical weathering and decrease of chemical denudation in pine growth experiments

    NASA Astrophysics Data System (ADS)

    Balogh, Z.; Keller, C.; Gill, R. A.

    2006-12-01

    Vascular plants and associated microbial communities produced biofilm coatings increase weathering by extending contact periods of minerals with low pH liquids. We performed an experiment to isolate the effects of ectomycorrhiza-forming fungi and ectomycorrhiza- helper bacteria on chemical weathering and chemical denudation (i.e. chemical erosion), and their effects on these fluxes in association with red pine as a host. The study was conducted in a growth chamber using sandy growth medium in replicated flow-through columns. Biotite and anorthite supplied Ca, Mg and K. Concentrations of these cations were measured in input and output solutions, in tree biomass and on exchangeable cation sites of the growth medium; then weathering and denudation fluxes were estimated by mass-balance. In addition, mineral surface changes, biofilm cover and microbial attachment to surfaces were investigated with scanning electron microscopy. The column experiment demonstrated that both bacteria and fungi had a large weathering potential for Ca- bearing minerals, but the microbial communities were not able to regulate denudation losses without a vascular host. Chemical weathering and denudation were about equal in each microbe-only treatment. By the second 6 months of the experiment treatment effects became significant for the seedling systems (p<0.005). The ectomycorrhizal treatments produced the greatest weathering and least denudation, but non- ectomycorrhizal seedlings lowered denudation as well. The differences between the fluxes were significant in both ectomycorrhizal and non-ectomycorrhizal treatments, but the ectomycorrhizal treatment difference was larger, while abiotic weathering was less and equaled the abiotic denudation flux. The ability to retard denudation in both ectomycorrhizal and non-ectomycorrhizal treatment was linked to biofilm formation on mineral surfaces. An ectomycorrhizal hyphal network, as part of the biofilm or covered by the biofilm, was apparently able

  11. Multiscale study of bacterial growth: Experiments and model to understand the impact of gas exchange on global growth.

    PubMed

    Lalanne-Aulet, David; Piacentini, Adalberto; Guillot, Pierre; Marchal, Philippe; Moreau, Gilles; Colin, Annie

    2015-01-01

    Using a millifluidics and macroscale setup, we study quantitatively the impact of gas exchange on bacterial growth. In millifluidic environments, the permeability of the incubator materials allows an unlimited oxygen supply by diffusion. Moreover, the efficiency of diffusion at small scales makes the supply instantaneous in comparison with the cell division time. In hermetic closed vials, the amount of available oxygen is low. The growth curve has the same trend but is quantitatively different from the millifluidic situation. The analysis of all the data allows us to write a quantitative modeling enabling us to capture the entire growth process.

  12. Multiscale study of bacterial growth: Experiments and model to understand the impact of gas exchange on global growth

    NASA Astrophysics Data System (ADS)

    Lalanne-Aulet, David; Piacentini, Adalberto; Guillot, Pierre; Marchal, Philippe; Moreau, Gilles; Colin, Annie

    2015-11-01

    Using a millifluidics and macroscale setup, we study quantitatively the impact of gas exchange on bacterial growth. In millifluidic environments, the permeability of the incubator materials allows an unlimited oxygen supply by diffusion. Moreover, the efficiency of diffusion at small scales makes the supply instantaneous in comparison with the cell division time. In hermetic closed vials, the amount of available oxygen is low. The growth curve has the same trend but is quantitatively different from the millifluidic situation. The analysis of all the data allows us to write a quantitative modeling enabling us to capture the entire growth process.

  13. Grief and Personal Growth Experience of Spouses and Adult-Child Caregivers of Individuals with Alzheimer's Disease and Related Dementias

    ERIC Educational Resources Information Center

    Ott, Carol H.; Sanders, Sara; Kelber, Sheryl T.

    2007-01-01

    Purpose: The purpose of this study was to describe the grief and personal growth experience of spouses and adult children of individuals with Alzheimer's disease and related dementias and the factors contributing to these experiences. Design and Methods: We used a modification of the Marwit-Meuser-Sanders Caregiver Grief model to examine the…

  14. Experiment requirements and implementation plan (Erip) for semiconductor materials growth in low-G environment

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Fripp, A. L.; Debnam, W. J.; Clark, I. O.

    1983-01-01

    The MEA-2 A facility was used to test the effect of the low gravity environment on suppressing convective mixing in the growth of Pb(1-x)Sn(x)Te crystals. The need to eliminate convection, the furnace characteristics and operation that will be required for successful experimental implementation, and to the level that is presently known, the measured physical properties of the Pb(1-x)Sn(x)Te system were discussed. In addition, a brief background of the present and potential utilization of Pb(1-x)Sn(x)Te is given. Additional experiments are anticipated in future MEA-A, improved MEA and other dedicated materials processing in space flight apparatus.

  15. Crystal Growth Furnace System Configuration and Planned Experiments on the Second United States Microgravity Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Srinivas, R.; Hambright, G.; Ainsworth, M.; Fiske, M.; Schaefer, D.

    1995-01-01

    The Crystal Growth Furnace (CGF) is currently undergoing modifications and refurbishment and is currently undergoing modifications and refurbishment and is manifested to refly on the Second United States Microgravity Laboratory (USML-2) mission scheduled for launch in September 1995. The CGF was developed for the National Aeronautics and Space Administration (NASA) under the Microgravity Science and Applications Division (MSAD) programs at NASA Headquarters. The refurbishment and reflight program is being managed by the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Funding and program support for the CGF project is provided to MSFC by the office of Life and Microgravity Sciences and Applications at NASA Headquarters. This paper presents an overview of the CGF system configuration for the USML-2 mission, and provides a brief description of the planned on-orbit experiment operation.

  16. Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.

    PubMed

    Lestini, Giulia; Mentré, France; Magni, Paolo

    2016-09-01

    Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were (i) to evaluate the importance of including measurements during tumor regrowth and (ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules, and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e., control versus treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e., "short" and "long" studies, respectively. In long studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the experiment was stopped 3 days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected.

  17. The experience of acculturative stress-related growth from immigrants’ perspectives

    PubMed Central

    Kim, Junhyoung; Kim, Hakjun

    2013-01-01

    Previous literature has mainly focused on the positive effects of stress associated with disability and illness, called stress-related growth. Little research has explored positive changes as a result of acculturative stress among a group of immigrants. In particular, older Asian immigrants may experience a high level of stress related to acculturation because they may face more challenges to adapt to and navigate a new culture. This study was designed to capture the characteristics of stress-related growth associated with acculturative stress. Using in-depth interviews among 13 older Korean immigrants, three main themes associated with the stress-coping strategies were identified: (a) the development of mental toughness, (b) engagement in meaningful activities, and (c) promotion of cultural understanding. These themes indicate that by following the stressful acculturation process, participants developed a better understanding of the new culture, engaged in various leisure activities, and enhanced mental strength. This finding provides information on how immigrants deal with acculturative stress and have positive psychological changes, which results in a sense of happiness and psychological well-being. PMID:24070225

  18. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&ice Dusty Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.

    2017-03-01

    The grain growth process in the Caltech water–ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (i) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (ii) the major axis length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (i.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ∼0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  19. Growth of sinuous waves on thin liquid sheets: Comparison of predictions with experiments

    NASA Astrophysics Data System (ADS)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2016-05-01

    A recent theory [M. S. Tirumkudulu and M. Paramati, "Stability of a moving radial liquid sheet: Time dependent equations," Phys. Fluids 25(10), 102-107 (2013)] has shown that a radially expanding liquid sheet is unstable to sinuous wave disturbances due to the thinning of the liquid sheet while ignoring the presence of a surrounding gas phase. In this work, we compare the predictions of the aforementioned theory with the measurements of Crapper et al. ["Large amplitude Kelvin-Helmholtz waves on thin liquid sheets," Proc. R. Soc. London, Ser. A 342(1629), 209-224 (1975)] who measured the amplitude and spatial growth rates of sinuous waves induced in radially expanding liquid sheets produced by fan spray nozzles. The predicted growth rates are remarkably close to the measurements over a range of forcing frequencies and amplitudes even though the experiments were performed in the presence of a surrounding gas phase. This is in contrast to large discrepancies observed by Crapper et al. when the same measurements were compared with the predictions of a spatial stability analysis for a moving liquid sheet that accounts for the inertia of the surrounding gas phase but ignores the thickness variation of the sheet.

  20. Visualization experiments of biofilm growth in the presence of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Manariotis, I. D.; Sygouni, V.; Chrysikopoulos, C. V.

    2013-12-01

    Capturing and storing CO2 emissions in properly selected deep geologic formations is considered a promising solution for the reduction of CO2 in the atmosphere. However, CO2 leakage may potentially occur from the storage geologic formation. Partition of CO2 in water may result in pH decrease. This change in aqueous phase may contribute to solubilization of undesired heavy metals from the solid matrix. In this work we investigate experimentally the impact of CO2 to shallow groundwater systems. A series of visualization experiments in a glass-etched micromodel were performed in order to estimate the effect of CO2 on biofilm formation. Biofilms were developed using Pseudomonas putida. Nutrient saturated with CO2 was injected in the micromodel through an inlet port, and fluid samples were collected at the outlet port. The transient growth of the biofilm was monitored by taking high-resolution digital photographs at various times, and the effect of CO2 on biofilm growth was estimated.

  1. Shock Initiation Experiments with Ignition and Growth Modeling on Low Density HMX

    NASA Astrophysics Data System (ADS)

    Garcia, Frank; Vandersall, Kevin; Tarver, Craig

    2013-06-01

    Shock initiation experiments on low density (1.24 and 1.64 g/cm3) HMX were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between packed layers (1.24 g/cm3) or sample disks pressed to low density (1.64 g/cm3) . The measured shock sensitivity of the 1.24 g/cm3 HMX was similar to that previously measured by Dick and Sheffield et al. and the 1.64 g/cm3 HMX was measured to be much less shock sensitive. Ignition and Growth model parameters were derived that yielded good agreement with the experimental data at both initial densities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Brain composition in Heliconius butterflies, posteclosion growth and experience-dependent neuropil plasticity.

    PubMed

    Montgomery, Stephen H; Merrill, Richard M; Ott, Swidbert R

    2016-06-15

    Behavioral and sensory adaptations are often reflected in the differential expansion of brain components. These volumetric differences represent changes in cell number, size, and/or connectivity, which may denote changes in the functional and evolutionary relationships between different brain regions, and between brain composition and behavioral ecology. Here we describe the brain composition of two species of Heliconius butterflies, a long-standing study system for investigating ecological adaptation and speciation. We confirm a previous report of a striking volumetric expansion of the mushroom body, and explore patterns of differential posteclosion and experience-dependent plasticity between different brain regions. This analysis uncovers age- and experience-dependent posteclosion mushroom body growth comparable to that in foraging Hymenoptera, but also identifies plasticity in several other neuropils. An interspecific analysis indicates that Heliconius display a remarkably large investment in mushroom bodies for a lepidopteran, and indeed rank highly compared to other insects. Our analyses lay the foundation for future comparative and experimental analyses that will establish Heliconius as a valuable case study in evolutionary neurobiology.

  3. Ground Based Experiments in Support of Microgravity Research Results-Vapor Growth of Organic Nonlinear Optical Thin Film

    NASA Technical Reports Server (NTRS)

    Zugrav, M. Ittu; Carswell, William E.; Haulenbeek, Glen B.; Wessling, Francis C.

    2001-01-01

    This work is specifically focused on explaining previous results obtained for the crystal growth of an organic material in a reduced gravity environment. On STS-59, in April 1994, two experiments were conducted with N,N-dimethyl-p-(2,2-dicyanovinyl) aniline (DCVA), a promising nonlinear optical (NLO) material. The space experiments were set to reproduce laboratory experiments that yielded small, bulk crystals of DCVA. The results of the flight experiment, however, were surprising. Rather than producing a bulk single crystal, the result was the production of two high quality, single crystalline thin films. This result was even more intriguing when it is considered that thin films are more desirable for NLO applications than are bulk single crystals. Repeated attempts on the ground to reproduce these results were fruitless. A second set of flight experiments was conducted on STS-69 in September 1995. This time eight DCVA experiments were flown, with each of seven experiments containing a slight change from the first reference experiment. The reference experiment was programmed with growth conditions identical to those of the STS-59 mission. The slight variations in each of the other seven were an attempt to understand what particular parameter was responsible for the preference of thin film growth over bulk crystal growth in microgravity. Once again the results were surprising. In all eight cases thin films were grown again, albeit with varying quality. So now we were faced with a phenomenon that not only takes place in microgravity, but also is very robust, resisting all attempts to force the growth of bulk single crystals.

  4. Analogue experiments of salt flow and pillow growth due basement faulting and differential loading

    NASA Astrophysics Data System (ADS)

    Warsitzka, M.; Kley, J.; Kukowski, N.

    2014-07-01

    Basement faulting is widely acknowledged as a potential trigger for salt flow and the growth of salt structures in salt-bearing extensional basins. In this study, dynamically scaled analogue experiments were designed to examine the evolution of salt pillows and the kinematics of salt flow due to a short pulse of basement faulting and a long-lasting phase of successive sedimentation. Experiments performed in the framework of this study consist of viscous silicone putty to simulate ductile rock salt, and a PVC-beads-quartz sand mixture representing a brittle supra-salt layer. In order to derive 2-D incremental displacement and strain patterns, the analogue experiments were monitored by an optical image correlation system (Particle Imaging Velocimetry). By varying layer thicknesses and extension rates, the influence of these parameters on the kinematics of salt flow were tested. Model results reveal that significant strain is triggered in the viscous layer by minor basement faulting. During basement extension downward flow occurs in the viscous layer above the basement fault tip. In contrast, upward flow takes place during post-extensional sedimentation. Lateral redistribution of the viscous material during post-extensional sedimentation is associated with subsidence above the footwall block and uplift adjacent to the basement faults leading to the formation of pillow structures (primary pillows). Decoupled cover faulting and the subsidence of peripheral sinks adjacent to the primary pillow causes the formation of additional pillow structures at large distance from the basement fault (secondary pillows). Experimental results demonstrate that the development of salt pillows can be triggered by basement extension, but requires a phase of tectonic quiescence. The potential for pillow growth and the displacement rate in the viscous layer increase with increasing thickness of the viscous layer and increasing extension rate, but decrease with increasing thickness of the

  5. Factors involved in growth plasticity of cockles Cerastoderma edule (L.), identified by field survey and transplant experiments

    NASA Astrophysics Data System (ADS)

    De Montaudouin, Xavier

    1996-12-01

    In Arcachon Bay, a macrotidal coastal lagoon in southwest France, growth rates of cockles Cerastoderma edule (L.) differ greatly between locations. Sampling of populations at different tidal levels showed that the mean shell length was significantly and positively correlated with immersion time, whereas no correlation was found with population density and microphytobenthos biomass. Transplants of cockles between two intertidal sites were used to examine the relative importance of habitat and site of origin for growth rate and condition index. Artifacts due to manipulation were assessed, i.e. the impact of enclosures on growth, conditon index and mortality. During a 5-mo reciprocal transplant experiment, growth rates of the transplanted cockles and the cockles already present were similar, whereas the sites of origin did not affect growth rate. Condition index, however, displayed significant differences in relation to both transplant and origin sites. During a further 6-mo experiment in which cockles were transplanted from one site to four new sites, growth was mainly influenced by tidal level. These results indicate that net growth started when cockles were immersed 30% of the time. It is concluded that, on the scale of Arcachon Bay (156 km 2), differences in growth and condition between cockle populations are largely phenotypic. Tidal level ( i.e. food supply and emersion stress) accounts for most of these differences, but the existence of genetically or physiologically different populations cannot be excluded.

  6. Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2001-01-01

    The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the

  7. Impacts of a gape limited Brook Trout, Salvelinus fontinalis, on larval Northwestern salamander, Ambystoma gracile, growth: A field enclosure experiment

    USGS Publications Warehouse

    Currens, C.R.; Liss, W.J.; Hoffman, R.L.

    2007-01-01

    The formation of amphibian population structure is directly affected by predation. Although aquatic predators have been shown to have direct negative effects on larval salamanders in laboratory and field experiments, the potential impacts of gape-limited fish on larval salamander growth has been largely underexplored. We designed an enclosure experiment conducted in situ to quantify the effects of gape-limited Brook Trout (Salvelinus fontinalis) on larval Northwestern Salamander (Ambystoma gracile) growth. We specifically tested whether the presence of fish too small to consume larvae had a negative effect on larval growth. The results of this study indicate that the presence of a gape-limited S. fontinalis can have a negative effect on growth of larval A. gracile salamanders. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  8. Growing from experience: an exploratory study of posttraumatic growth in adolescent refugees

    PubMed Central

    Sleijpen, Marieke; Haagen, Joris; Mooren, Trudy; Kleber, Rolf J.

    2016-01-01

    Objective The aim of this study was to explore perceived posttraumatic growth (PTG) and its associations with potentially traumatic events (PTEs), dispositional optimism, perceived social support, posttraumatic stress disorder (PTSD) symptoms, and satisfaction with life (SWL) among adolescent refugees and asylum seekers. Method A cross-sectional design was employed including 111 refugees, aged 12–17, that were recruited from asylum seeker centres throughout the Netherlands. Measurements included the revised Posttraumatic Growth Inventory for Children, Children's Impact of Event Scale, Multidimensional Scale of Perceived Social Support, The Life Orientation Test, and the Satisfaction with Life Scale. Results Participants reported mean PTG scores (20.2) indicating an average response of some perceived change, while reporting high levels of PTSD symptoms (30.6). PTG and PTSD symptoms were not related with each other (r=0.07, p=0.50). PTG was positively associated with dispositional optimism (r=0.41, p<0.01) and social support (r=0.43, p<0.01). A hierarchical regression analysis demonstrated that dispositional optimism (β=0.33; p<0.05) and social support (β=0.27; p<0.05) positively predicted PTG, explaining 22% of the PTG variance above demographic variables and PTEs. PTG was also positively related with SWL (r=0.37, p<0.01). Conclusions Perceived PTG and PTSD symptoms appear to be independent constructs, which co-occur in adolescent refugees and asylum seekers. The relationship between PTG and mental health remains inconclusive; PTG was positively related to SWL and not associated with PTSD symptoms. Longitudinal research is required to determine causality between PTG and mental health in this refugee population confronted with many traumatic experiences and challenging migration tasks. PMID:26886487

  9. Fe-SAPONITE and Chlorite Growth on Stainless Steel in Hydrothermal Engineered Barrier Experiments

    NASA Astrophysics Data System (ADS)

    Cheshire, M. C.; Caporuscio, F. A.; McCarney, M.

    2012-12-01

    The United States recently has initiated the Used Fuel Disposition campaign to evaluate various generic geological repositories for the disposal of high-level, spent nuclear fuel within environments ranging from hard-rock, salt/clay, to deep borehole settings. Previous work describing Engineered Barrier Systems (EBS) for repositories focused on low temperature and pressure conditions. The focus of this experimental work is to characterize the stability and alteration of a bentonite-based EBS with different waste container materials in brine at higher heat loads and pressures. All experiments were run at ~150 bar and 125 to 300 C for ~1 month. Unprocessed bentonite from Colony, Wyoming was used in the experiments as the clay buffer material. The redox conditions for each system were buffered along the magnetite-iron oxygen fugacity univariant curve using Fe3O4 and Feo filings. A K-Na-Ca-Cl-based salt solution was chosen to replicate deep groundwater compositions. The experimental mixtures were 1) salt solution-clay; 2) salt solution -clay-304 stainless steel; and 3) salt solution -clay-316 stainless steel with a water/bentonite ratio of ~9. Mineralogy and aqueous geochemistry of each experiment was evaluated to monitor the reactions that took place. No smectite illitization was observed in these reactions. However, it appears that K-smectite was produced, possibly providing a precursor to illitization. It is unclear whether reaction times were sufficient for bentonite illitization at 212 and 300 C or whether conditions conducive to illite formation were obtained. The more notable clay mineral reactions occurred at the stainless steel surfaces. Authigenic chlorite and Fe-saponite grew with their basal planes near perpendicular to the steel plate, forming a 10 - 40 μm thick 'corrosion' layer. Partial dissolution of the steel plates was the likely iron source for chlorite/saponite formation; however, dissolution of the Feo/Fe3O4 may also have acted as an iron source

  10. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments.

    PubMed

    Burrows, Nathan D; Harvey, Samantha; Idesis, Fred A; Murphy, Catherine J

    2017-02-28

    Since the development of simple, aqueous protocols for the synthesis of anisotropic metal nanoparticles, research into many promising, valuable applications of gold nanorods has grown considerably, but a number of challenges remain, including gold-particle yield, robustness to minor impurities, and precise control of gold nanorod surface chemistry. Herein we present the results of a composite fractional factorial series of experiments designed to screen seven additional potential avenues of control and to understand the seed-mediated silver-assisted synthesis of gold nanorods. These synthesis variables are the amount of sodium borohydride used and the rate of stirring when producing seed nanoparticles, the age of and the amount of seeds added, the reaction temperature, the amounts of silver nitrate and ascorbic acid added, and the age of the reduced growth solution before seed nanoparticles are added to initiate rod formation. This statistical experimental design and analysis method, besides determining which experimental variables are important and which are not when synthesizing gold nanorods (and quantifying their effects), gives further insight into the mechanism of growth by measuring the degree to which variables interact with each other by mapping out their mechanistic connections. This work demonstrates that when forming gold nanorods by the reduction of auric ions by ascorbic acid onto seed nanoparticles, ascorbic acid determines how much gold is reduced, and the amount of seeds determine how it is divided, yet both influence the intrinsic growth rates, in both width and length, of the forming nanorods. Furthermore, this work shows that the reduction of gold proceeds via direct reduction on the surface of seeds and not through a disproportionation reaction. Further control over the length of gold nanorods can be achieved by tuning the amount of silver nitrate or the reaction temperature. This work shows that silver does not directly influence rod length or

  11. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    NASA Astrophysics Data System (ADS)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  12. Experiments on Dynamic Overpressure Stabilization of Ablative Richtmyer--Meshkov Growth in ICF Targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Gotchev, O. V.; Goncharov, V. N.; Jaanimagi, P. A.; Knauer, J. P.; Meyerhofer, D. D.

    2002-11-01

    Dynamic overpressure sets the growth rate of the ablative Richtmyer--Meshkov (RM) instability and the late-time imprint levels in directly driven ICF targets. It leads to temporal oscillations of the perturbed ablation front, which have been predicted analytically and observed experimentally,(Y. Aglitskiy et al.), Phys. Plasmas 9, 2264 (2002). and in 2-D ORCHID simulations. These predictions were verified on OMEGA by measuring the perturbation amplitudes and frequencies directly with an x-ray framing camera through face-on x-ray radiography. Planar plastic targets with variable thickness (20 to 60 μm) and single-mode (λ = 10 to 30 μm) ripples on the front surface were irradiated with 1.5-ns square UV laser pulses at maximum energy. Results clearly indicate a phase reversal in the evolution of the target areal density perturbations, in good agreement with theory and simulation. Nonlinearity in the evolution of the preimposed mode, resulting in an enriched spectrum, was observed for initial amplitudes previously believed to develop linearly with time. Upcoming experiments with a high-resolution, streaked imager, will allow for the detailed recording of the evolution of the RM instability and the competing stabilization effect. This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  13. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai Frank; Larrosa, Cecilia C.; Janapati, Vishnuvardhan; Roy, Surajit; Chang, Fu-Kuo

    2011-01-01

    Composite structures are gaining importance for use in the aerospace industry. Compared to metallic structures their behavior is less well understood. This lack of understanding may pose constraints on their use. One possible way to deal with some of the risks associated with potential failure is to perform in-situ monitoring to detect precursors of failures. Prognostic algorithms can be used to predict impending failures. They require large amounts of training data to build and tune damage model for making useful predictions. One of the key aspects is to get confirmatory feedback from data as damage progresses. These kinds of data are rarely available from actual systems. The next possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to stress carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were used to periodically interrogate the system. Analysis showed distinct differences in the signatures of growing failures between data collected at conditions. Periodic X-radiographs were taken to assess the damage ground truth. Results after signal processing showed clear trends of damage growth that were correlated to damage assessed from the X-ray images.

  14. ARADISH - Development of a Standardized Plant Growth Chamber for Experiments in Gravitational Biology Using Ground Based Facilities

    NASA Astrophysics Data System (ADS)

    Schüler, Oliver; Krause, Lars; Görög, Mark; Hauslage, Jens; Kesseler, Leona; Böhmer, Maik; Hemmersbach, Ruth

    2016-06-01

    Plant development strongly relies on environmental conditions. Growth of plants in Biological Life Support Systems (BLSS), which are a necessity to allow human survival during long-term space exploration missions, poses a particular problem for plant growth, as in addition to the traditional environmental factors, microgravity (or reduced gravity such as on Moon or Mars) and limited gas exchange hamper plant growth. Studying the effects of reduced gravity on plants requires real or simulated microgravity experiments under highly standardized conditions, in order to avoid the influence of other environmental factors. Analysis of a large number of biological replicates, which is necessary for the detection of subtle phenotypical differences, can so far only be achieved in Ground Based Facilities (GBF). Besides different experimental conditions, the usage of a variety of different plant growth chambers was a major factor that led to a lack of reproducibility and comparability in previous studies. We have developed a flexible and customizable plant growth chamber, called ARAbidopsis DISH (ARADISH), which allows plant growth from seed to seedling, being realized in a hydroponic system or on Agar. By developing a special holder, the ARADISH can be used for experiments with Arabidopsis thaliana or a plant with a similar habitus on common GBF hardware, including 2D clinostats and Random Positioning Machines (RPM). The ARADISH growth chamber has a controlled illumination system of red and blue light emitting diodes (LED), which allows the user to apply defined light conditions. As a proof of concept we tested a prototype in a proteomic experiment in which plants were exposed to simulated microgravity or a 90° stimulus. We optimized the design and performed viability tests after several days of growth in the hardware that underline the utility of ARADISH in microgravity research.

  15. Analogue experiments of salt flow and pillow growth due to basement faulting and differential loading

    NASA Astrophysics Data System (ADS)

    Warsitzka, M.; Kley, J.; Kukowski, N.

    2015-01-01

    Salt flow in sedimentary basins is mainly driven by differential loading and can be described by the concept of hydraulic head. A hydraulic head in the salt layer can be imposed by vertically displacing the salt layer (elevation head) or the weight of overburden sediments (pressure head). Basement faulting in salt-bearing extensional basins is widely acknowledged as a potential trigger for hydraulic heads and the growth of salt structures. In this study, scaled analogue experiments were designed to examine the kinematics of salt flow during the early evolution of a salt structure triggered by basement extension. In order to distinguish flow patterns driven by elevation head or by pressure head, we applied a short pulse of basement extension, which was followed by a long-lasting phase of sedimentation. During the experiments viscous silicone putty simulated ductile rock salt, and a PVC-beads/quartz-sand mixture was used to simulate a brittle supra-salt layer. In order to derive 2-D incremental displacement and strain patterns, the analogue experiments were monitored using an optical image correlation system (particle imaging velocimetry). By varying layer thicknesses and extension rates, the influence of these parameters on the kinematics of salt flow were tested. Model results reveal that significant flow can be triggered in the viscous layer by small-offset basement faulting. During basement extension downward flow occurs in the viscous layer above the basement fault tip. In contrast, upward flow takes place during post-extensional sediment accumulation. Flow patterns in the viscous material are characterized by channelized Poiseuille-type flow, which is associated with subsidence in regions of "salt" expulsion and surface uplift in regions of inflation of the viscous material. Inflation of the viscous material eventually leads to the formation of pillow structures adjacent to the basement faults (primary pillows). The subsidence of peripheral sinks adjacent to

  16. Long-term monitoring of growth in the Eastern Elliptio, Elliptio complanata (Bivalvia: Unionidae), in Rhode Island: A transplant experiment

    USGS Publications Warehouse

    Kesler, D.H.; Newton, T.J.; Green, L.

    2007-01-01

    The lengths of marked specimens of the freshwater mussel, Eastern Elliptio (Elliptio complanata [Lightfoot 1786]), were monitored annually in 3 lakes in Rhode Island, USA, from 1991 to 2005. Mussels growing in Worden Pond showed a change in mean shell length of only 4.3 mm over 14 y, whereas mussel growth in 2 nearby lakes was 3 to 8x greater than growth in Worden Pond over the same time period. L???, the length at which shell growth stops, was significantly different (p < 0.001) among lakes and ranged from 60.5 to 87.4 mm. Transplant experiments revealed that mussels moved to Worden Pond stopped growing, whereas mussels moved from Worden Pond to the 2 other lakes grew at rates similar to the rates observed for resident mussels in the 2 lakes. Standard water-quality measures did not explain the observed growth cessation and lower condition indices of mussels in Worden Pond. Our growth data are consistent with food limitation. The consistent slow growth of E. complanata in Worden Pond, without high mortality, and its ability to increase growth when placed in environments more favorable than Worden Pond, suggests both growth plasticity and longevity in these animals. ?? 2007 by The North American Benthological Society.

  17. Subjective Experiences in Activity Involvement and Perceptions of Growth in a Sample of First-Year Female University Students

    ERIC Educational Resources Information Center

    Busseri, Michael A.; Rose-Krasnor, Linda

    2008-01-01

    We examined subjective experiences in activities and perceptions of growth in a sample of first-year female university students (N = 196; age range = 17 to 19 years old, M = 18.48, SD = 0.53; the most common ethnic affiliations were British Isles, 51% of respondents, Canadian, 34%, French, 14%, and German, 8%). Students described 4 activities,…

  18. Light and Plants. A Series of Experiments Demonstrating Light Effects on Seed Germination, Plant Growth, and Plant Development.

    ERIC Educational Resources Information Center

    Downs, R. J.; And Others

    A brief summary of the effects of light on plant germination, growth and development, including photoperiodism and pigment formation, introduces 18 experiments and demonstrations which illustrate aspects of these effects. Detailed procedures for each exercise are given, the expected results outlined, and possible sources of difficulty discussed.…

  19. More Ideas for Monitoring Biological Experiments with the BBC Computer: Absorption Spectra, Yeast Growth, Enzyme Reactions and Animal Behaviour.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1988-01-01

    Presented are five ideas for A-level biology experiments using a laboratory computer interface. Topics investigated include photosynthesis, yeast growth, animal movements, pulse rates, and oxygen consumption and production by organisms. Includes instructions specific to the BBC computer system. (CW)

  20. Experiment Requirements and Implementation Plan (ERIP) for semiconductor materials growth in low-G environment experiment no. MPS-77F087

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Fripp, A. L.; Debnam, W. J.; Clark, I. O.

    1981-01-01

    Crystals of the intermetallic compound Pb1-xSnxTe will be grown in furnaces on the Space Shuttle. The reasons for conducting this growth in space, the program of investigation to develop the space experiment and the requirements that are placed on the Space Shuttle furnace are discussed. Also included are relevent thermophysical properties of Pb1-xSnxTe to the degree which they are known.

  1. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment.

    PubMed

    Chen, Xin; Wu, Chunhua; Tang, Jianjun; Hu, Shuijin

    2005-07-01

    A sand culture experiment was conducted to investigate whether mycorrhizal colonization and mycorrhizal fungal vesicular numbers were influenced by metal lead, and whether mycorrhizae enhance host plants tolerance to metal lead. Metal lead was applied as Pb(NO3)2 in solution at three levels (0, 300 and 600 mg kg(-1) sand). Five mycorrhizal host plant species, Kummerowia striata (Thunb.) Schindl, Ixeris denticulate L., Lolium perenne L., Trifolium repens L. and Echinochloa crusgalli var. mitis were used to examine Pb-mycorrhizal interactions. The arbuscular mycorrhizal inoculum consisted of mixed spores of mycorrhizal fungal species directly isolated from orchard soil. Compared to the untreated control, both Pb concentrations reduced mycorrhizal colonization by 3.8-70.4%. Numbers of AM fungal vesicles increased by 13.2-51.5% in 300 mg Pb kg(-1) sand but decreased by 9.4-50.9% in 600 mg Pb kg(-1) sand. Mycorrhizae significantly enhanced Pb accumulation both in shoot by 10.2-85.5% and in root by 9.3-118.4%. Mycorrhizae also enhanced shoot biomass and shoot P concentration under both Pb concentrations. Root/shoot ratios of Pb concentration were higher in highly mycorrhizal plant species (K.striata, I. denticulate, and E. crusgalli var. mitis) than that in poorly mycorrhizal ones (L. perenne and T. repens,). Mycorrhizal inoculation increased the root/shoot ratio of Pb concentration of highly mycorrhizal plant species by 7.6-57.2% but did not affect the poorly mycorrhizal ones. In the treatments with 300 Pb mg kg(-1) sand, plant species with higher vesicular numbers tended to show higher root/shoot ratios of the Pb concentration. We suggest that under an elevated Pb condition, mycorrhizae could promote plant growth by increasing P uptake and mitigate Pb toxicity by sequestrating more Pb in roots.

  2. The Benefits of High School Experiences on Growth in Occupational Status in U.S.

    ERIC Educational Resources Information Center

    Kim, Kyung-Nyun; Passmore, David L.

    2016-01-01

    In this study, we investigated high school graduates' school-to-work transition by considering their post-school occupational skill levels. Using an ordinal growth model analysis, occupational status increased in an arch-shaped curve as the number of years after high school graduation also increased. This growth trajectory was further related to…

  3. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments1

    PubMed Central

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    • Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies. PMID:25202578

  4. Flight Experiments of Physical Vapor Transport of ZnSe: Growth of Crystals in Various Convective Conditions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2015-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). The flight experiment will conduct crystal growths of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT). The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds, especially the effects of different growth orientations related to gravity direction on the grown crystals.

  5. Growth

    NASA Astrophysics Data System (ADS)

    Waag, Andreas

    This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000∘C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However

  6. Enhancing chemotherapeutic drug inhibition on tumor growth by ultrasound: an in vivo experiment.

    PubMed

    Zhao, Ying-Zheng; Lu, Cui-Tao; Zhou, Zhi-Cai; Jin, Zhuo; Zhang, Lu; Sun, Chang-Zheng; Xu, Yan-Yan; Gao, Hui-Sheng; Tian, Ji-Lai; Gao, Feng-Hou; Tang, Qin-Qin; Li, Wei; Xiang, Qi; Li, Xiao-Kun; Li, Wen-Feng

    2011-02-01

    An in vivo study on enhancing epirubicin hydrochloride (EPI) inhibition on tumor growth by ultrasound (US) was reported. Five-week-old male nude mice were used and HL-60 cells were s.c. (subcutaneous injection) inoculated in axilla of these mice. Six groups were designed and five consecutive treatments were applied to investigate the inhibition on tumor growth and body weight growth. US applied locally to the tumor resulted in a substantially increased drug uptake in tumor cells. The inhibition on tumor growth depended on the position of drug injection and phospholipid-based microbubble (PMB) application. Tumor growth rate under group 1 (PMB+US) was similar to that of blank control. The order of the inhibition on tumor volume growth was: group 4 (s.c. EPI+PMB+US) > group 5 intraperitoneal (i.p. EPI+PMB+US) > group 2 (i.p. EPI) > group 3 (s.c. EPI+US) > group 1 (PMB+US). Similar conclusion was obtained from experimental measurements of tumor weight change. The order of animal survival status for EPI administration groups was: group 4 > group 5 > group 2 > group 3. Chemotherapeutic drug inhibition on tumor growth could be enhanced by local US combined with PMB, which might provide a potential application for US-mediated chemotherapy.

  7. Cancer-related trauma, stigma and growth: the 'lived' experience of head and neck cancer.

    PubMed

    Threader, J; McCormack, L

    2016-01-01

    Head and neck cancer is associated with multiple layers of distress including stigma. Stigma attraction or devalued social identity is twofold: (1) it is a cancer associated with lifestyle risk factors and (2) treatment often results in confronting facial disfigurement. Subjective interpretations from nine head and neck cancer patients were analysed using Interpretative Phenomenological Analysis. An overarching superordinate theme--Distress, Stigma and Psychological Growth--encompassed four subordinate themes. Two themes captured the expressed trauma and terror as a result of diagnosis and treatment, and two the redefining of self despite stigma through meaning making. Distress was interpreted as a catalyst for awakening new life interpretations and combined with social support to facilitate two distinct pathways of growth: (1) psychological growth without support; (2) psychological and relational growth with support. Previously unfelt empathetic understanding and altruism for others with cancer emerged from the impact of stigma on 'self'. Acceptance allowed a new sense of identity that recognised cancer-related traumatic distress as integral to growth for these participants. The present study offers a unique insight into cancer-related trauma and stigma and the potential to redefine a more accepting, empathic and altruistic 'self' for psychological growth. Implications are discussed.

  8. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 1; Growth Hormone Regulation Synthesis and Secretion in Microgravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R.; Vale, W.; Sawchenko, P.; Ilyina-Kakueva, E. I.

    1994-01-01

    Changes in the musculoskeletal, immune, vascular, and endocrine system of the rat occur as a result of short-term spaceflight. Since pituitary gland growth hormone (GH) plays a role in the control of these systems, and since the results of an earlier spaceflight mission (Spacelab 3, 1985) showed that GH cell function was compromised in a number of post-flight tests, we repeated and extended the 1985 experiment in two subsequent spaceflights: the 12.5 day mission of Cosmos 1887 (in 1987) and the 14 day mission of Cosmos 2044 (in 1989). The results of these later two flight experiments are the subject of this report. They document repeatable and significant changes in the GH cell system of the spaceflown rat in several post-flight tests.

  9. Modeling Island-Growth Capture Zone Distributions (CZD) with the Generalized Wigner Distribution (GWD): New Developments in Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Pimpinelli, Alberto; Einstein, T. L.; González, Diego Luis; Sathiyanarayanan, Rajesh; Hamouda, Ajmi Bh.

    2011-03-01

    Earlier we showed [PRL 99, 226102 (2007)] that the CZD in growth could be well described by P (s) = asβ exp (-bs2) , where s is the CZ area divided by its average value. Painstaking simulations by Amar's [PRE 79, 011602 (2009)] and Evans's [PRL 104, 149601 (2010)] groups showed inadequacies in our mean field Fokker-Planck argument relating β to the critical nucleus size. We refine our derivation to retrieve their β ~ i + 2 [PRL 104, 149602 (2010)]. We discuss applications of this formula and methodology to experiments on Ge/Si(001) and on various organics on Si O2 , as well as to kinetic Monte Carlo studies homoepitaxial growth on Cu(100) with codeposited impurities of different sorts. In contrast to theory, there can be significant changes to β with coverage. Some experiments also show temperature dependence. Supported by NSF-MRSEC at UMD, Grant DMR 05-20471.

  10. SHOCK INITIATION EXPERIMENTS ON PBX 9501 EXPLOSIVE AT PRESSURES BELOW 3 GPa WITH ASSOCIATED IGNITION AND GROWTH MODELING

    SciTech Connect

    Chidester, S K; Thompson, D G; Vandersall, K S; Idar, D J; Tarver, C M; Garcia, F; Urtiew, P A

    2007-06-13

    Shock initiation experiments on the explosive PBX 9501 (95% HMX, 2.5% estane, and 2.5% nitroplasticizer by weight) were performed at pressures below 3 GPa to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. Propellant driven gas guns (101 mm and 155 mm) were utilized to initiate the PBX 9501 explosive with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data and Ignition and Growth modeling parameters were obtained with a good fit to the experimental data. This parameter set will allow accurate code predictions to be calculated for safety scenarios in the low-pressure regime (below 3 GPa) involving PBX 9501 explosive.

  11. Psychosocial experiences of breast cancer survivors involved in a dragon boat program: exploring links to positive psychological growth.

    PubMed

    Sabiston, Catherine M; McDonough, Meghan H; Crocker, Peter R E

    2007-08-01

    This study explored psychosocial experiences of breast cancer survivors involved in dragon boat programs. Twenty women (M(age) = 58.69, SD = 6.85) were interviewed for 45-60 min about their experiences as members of survivor dragon boat teams. Interviews were analyzed using constructivist grounded theory methods. The dragon boat program facilitated social support from women with common challenges and a shared understanding of survivorship. It also provided opportunities to (re)gain a sense of personal control, develop new identities as athletes, and overcome physical challenges. Together these elements contributed to positive psychological growth and linked to the literature on posttraumatic growth. Future physical activity interventions targeting breast cancer survivors may benefit from developing strategies that share key characteristics of dragon boating.

  12. Experiment 13: The Study of Dopant Segregation Behavior During the Growth of GaAs in Microgravity on USML-2

    NASA Technical Reports Server (NTRS)

    Matthiesen, David H.; Kaforey, Monica L.; Bly, J. M.; Chait, Arnon; Kafalas, James; Carlson, Douglas

    1998-01-01

    An investigation into the segregation behavior of selenium doped gallium arsenide (Se/GaAs) during directional solidification in the microgravity environment was conducted using the Crystal Growth Furnace (CGF) aboard the second United States Microgravity Laboratory (USML-2). Two crystals were successfully processed on USML-2, which lasted from October 20 to November 7, 1995. The first sample was processed for 67 hours, 45 minutes (MET 5/04:53:45-8/00:23:50) and included 19 hours of growth at 0.5 microns/sec which yielded 3.42 cm of sample length, and 5 hours of growth at 1.5 microns/sec which yielded 2.7 cm of sample. During the second experiment, the furnace temperature was adjusted to move the melt-solid interface position towards the hot end of the furnace. The second sample was processed for 50 hours, 10 minutes (MET 8/18:48:49-10/21:58:54) and included 11 hours of growth at 0.5 microns/sec which yielded 1.98 cm of sample, and 1 hour, 25 minutes of growth at 5.0 microns/sec which yielded 2.6 cm of sample. This sample provides an order of magnitude change in growth rate and reproduces one of the growth rates used during USML-1. In contrast to the results from USML-1, no voids were present in either crystal grown on USML-2. The absence of voids in either sample indicates that growth rate changes alone were not responsible for the formation of voids found in the crystals grown on USML-1. Sections of the ground-based and flight crystals grown on USML-2 were cut and polished. All of the interface demarcation lines expected from the current pulse interface demarcation (CPID) system have been identified. These measurements have been analyzed for interface positions, interface shapes, and growth rates. Using a newly developed technique, based on experimental and numerical results, the seeding interface reproducibility from run to run was <= 2.5 mm. The seeding interface position could be controllably moved, with respect to the furnace zones, by adjusting the control

  13. Numerical Simulation and Experiments of Fatigue Crack Growth in Multi-Layer Structures of MEMS and Microelectronic Devices

    DTIC Science & Technology

    2006-12-01

    simulations of fatigue crack growth are conducted by use of cohesive zone models. Both, a damage mechanics based model as well as a model based on dislocation...conducted by use of cohesive zone models. Both, a damage mechanics based model as well as a model based on dislocation mechanics are employed. To...Paris-law type response obtained in experiments, and also predicts that for thinner films the tendency to crack. Damage tolerant design requires

  14. Phase partitioning, crystal growth, electrodeposition and cosmic ray experiments in microgravity

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C.

    1987-01-01

    Five experiments are contained in one Get Away Special Canister (5 cu ft). The first utilizes microgravity to separate biological cells and to study the mechanism of phase partitioning in 12 separate cuvettes. Two experiments are designed to grow organic crystals by physical vapor transport. One experiment consists of eight electroplating cells with various chemicals to produce surfaces electroplated in microgravity. Some of the surfaces have micron sized particles of hard materials co-deposited during electrodeposition. The fifth experiment intercepts cosmic ray particles and records their paths on photographic emulsions. The first four experiments are controlled by an on-board C-MOS controller. The fifth experiment is totally passive. These are the first in Space. Their purpose is to create new commercial products with microgravity processing.

  15. Growth of the peritrich epibiont Zoothamnium intermedium Precht, 1935 (Ciliophora, Peritrichia) estimated from laboratory experiments.

    PubMed

    Utz, L R P

    2008-05-01

    Peritrich ciliates are commonly found colonizing living substrates. Although this a well known phenomenon, biological aspects of this relationship need to be studied in more detail. Assessment of growth rates in peritrichs has been the subject of very few studies. Only species in the genera Carchesium Ehrenberg, 1830 and Vorticella Linnaeus, 1767 had their growth rates evaluated in the field and in the laboratory. In the present study, growth, colonization (colonies/host), and proliferation (zooids/colony) rates of the peritrich epibiont Zoothamnium intermedium Precht, 1935 attached to the calanoid copepod Acartia tonsa Dana 1848 were evaluated in the laboratory in two food regimes: bacteria only, and algal based diet. Results showed that growth, colonization, and proliferation rates were similar for both diets. Maximum growth rates obtained for Z. intermedium was 0.85 and 0.83 per day, for bacteria and algae respectively. Maximum colonization rates were 0.5 per day for both diets, and the maximum proliferation rates were 0.44 and 0.42 per day for bacteria and algae respectively. These results demonstrate that Z. intermedium is able to grow at the same rate of other peritrichs on bacterial and algal based diets.

  16. Ground based experiments on the growth and characterization of L-Arginine Phosphate (LAP) crystals

    NASA Technical Reports Server (NTRS)

    Rao, S. M.; Cao, C.; Batra, A. K.; Lal, R. B.; Mookherji, T. K.

    1991-01-01

    L-Arginine Phosphate (LAP) is a new nonlinear optical material with higher efficiency for harmonic generation compared to KDP. Crystals of LAP were grown in the laboratory from supersaturated solutions by temperature lowering technique. Investigations revealed the presence of large dislocation densities inside the crystals which are observed to produce refractive index changes causing damage at high laser powers. This is a result of the convection during crystal growth from supersaturated solutions. It is proposed to grow these crystals in a diffusion controlled growth condition under microgravity environment and compare the crystals grown in space with those grown on ground. Physical properties of the solutions needed for modelling of crystal growth are also presented.

  17. Traveling Magnetic Field Applications for Vertical Bridgman Growth: Modeling and Experiment

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2004-01-01

    Traveling magnetic fields offer a direct control of the metallic melt meridional flow in long cylinders. It induces the Lorentz body force that can counteract with the buoyancy force induced by radial temperature non-uniformity. It can significantly offset a natural convection in the system, or it can even set up the flow in opposite direction, thus affecting the interface shape, the growth rate and macrosegregation. Results of our numerical modeling of the Vertical Bridgman crystal growth of InSb will be discussed. The experimental part of this investigation will address the effect of the applied traveling magnetic fields on the interface shape of InSb crystals. Specifics of the growth apparatus design for this research will be provided in details.

  18. Competitive growth of stable and metastable Fe- C- X eutectics: Part I. experiments

    NASA Astrophysics Data System (ADS)

    Magnin, P.; Kurz, W.

    1988-08-01

    The effect of small additions of Si, P, Cr, Mn, Ti, Al, and S to pure Fe-C eutectic, upon the transi-tion velocities from grey to white and white to grey cast iron, has been measured by varying the growth rate during directional solidification. As a result, it is found that alloying elements can be classified into three types: graphitizing (Si, Al, P, and S), carburizing (Cr), and “hysteretic effect” (Mn, Ti). The well-known influence of a thermal gradient (or the superheat) has been shown to af-fect only the grey-to-white transition. Growth undercoolings were measured as a function of growth rate, while the average lamellar spacings were determined from transverse sections of directionally solidified samples. A small addition of the element studied can have a marked effect upon these parameters.

  19. Density dependent growth in adult brown frogs Rana arvalis and Rana temporaria - A field experiment

    NASA Astrophysics Data System (ADS)

    Loman, Jon; Lardner, Björn

    2009-11-01

    In species with complex life cycles, density regulation can operate on any of the stages. In frogs there are almost no studies of density effects on the performance of adult frogs in the terrestrial habitat. We therefore studied the effect of summer density on the growth rate of adult frogs during four years. Four 30 by 30 m plots in a moist meadow were used. In early summer, when settled after post-breeding migration, frogs ( Rana arvalis and Rana temporaria that have a very similar ecology and potentially compete) were enclosed by erecting a fence around the plots. Frogs were captured, measured, marked and partly relocated to create two high density and two low density plots. In early autumn the frogs were again captured and their individual summer growth determined. Growth effects were evaluated in relation to two density measures: density by design (high/low manipulation), and actual (numerical) density. R. arvalis in plots with low density by design grew faster than those in high density plots. No such effect was found for R. temporaria. For none of the species was growth related to actual summer density, determined by the Lincoln index and including the density manipulation. The result suggests that R. arvalis initially settled according to an ideal free distribution and that density had a regulatory effect (mediated through growth). The fact that there were no density effects on R. temporaria (and a significant difference in its response to that of R. arvalis) suggests it is a superior competitor to R. arvalis during the terrestrial phase. There were no density effects on frog condition index, suggesting that the growth rate modifications may actually be an adaptive trait of R. arvalis. The study demonstrates that density regulation may be dependent on resources in frogs' summer habitat.

  20. Community development in a Research Experience for Teachers (RET) program: Teacher growth and translation of the experience back to the classroom

    NASA Astrophysics Data System (ADS)

    Johnston, Carol Suzanne Chism

    This qualitative study explores how a scientific research experience helped seven secondary science teachers to grow professionally. The design of this Research Experience for Teachers (RET) program emphasized having teachers become members of university scientific research communities---participating in experimental design, data collection, analysis, and presenting of findings---in order to have a better understanding of research science. I conducted individual interviews with teacher and scientist participants, visited the teachers in their laboratories, videotaped classroom visits, and videotaped group meetings during the summers to learn what teachers brought back to their classrooms about the processes of science. I examined the teachers' views of research science, views shaped by their exposure to research science under the mentorship of a scientist participant. The teachers observed the collaborative efforts of research scientists and experienced doing scientific research, using technology and various experimental methods. Throughout their two-year experience, the teachers continually refined their images of scientists. I also examined how teachers in this program built a professional community as they developed curricula. Further, I investigated what the teachers brought from their experiences back to the classroom, deciding on a theme of "Communicating Science" as a way to convey aspects of scientific inquiry to students. Teacher growth as a result of this two-year program included developing more empathy for student learning and renewing their enthusiasm for both learning and teaching science. Teacher growth also included developing curricula to involve students in behaving as scientists. The teachers identified a few discrete communication practices of scientists that they deemed appropriate for students to adopt to increase their communication skills. Increased community building in classes to model scientific communities was seen as a way to motivate

  1. Terrestrial whisker growth experiments which anticipate some special effects of a space station environment

    NASA Technical Reports Server (NTRS)

    Hobbs, H. H.

    1983-01-01

    The effects of the absence of gravitationally driven thermal convection on the growth of whiskers by chemical reduction of metal salts was studied. It was possible to accomplish nearly complete suppression of such convection. Suppression of the convection does indeed effect the growth but in subtle, not necessarily detrimental ways: none of the changes observed were such as to hamper efforts to produce whiskers in space. Copper whiskers grown from cuprous iodide respond most positively to the suppression of convection; therefore, they are strongly recommended for tests in the space environment. Cobalt whiskers grown from cobaltous bromide show the greatest independence from conditions of convection and applied electric fields of any material studied; therefore, this medium is highly recommended. A strong pulse of electric field forces the whiskers to stick to the growth vessel top plate, this facilitates study or "harvesting'. On the space station it is recommended that the growth vessels be mounted outside the laboratory and joined with the station by means of double vacuum valves and gas service lines.

  2. Posttraumatic Growth and Depreciation as Independent Experiences and Predictors of Well-Being

    ERIC Educational Resources Information Center

    Cann, Arnie; Calhoun, Lawrence G.; Tedeschi, Richard G.; Solomon, David T.

    2010-01-01

    Positive changes (posttraumatic growth [PTG]) and negative changes (posttraumatic depreciation [PTD]) were assessed using the PTGI-42 with persons reporting changes from a stressful event. PTG and PTD were uncorrelated, and PTG was much greater than PTD. PTG was positively related to disruption of core beliefs and recent deliberate rumination and…

  3. The Experience of Stress and Personal Growth among Grandparents of Children with and without Intellectual Disability

    ERIC Educational Resources Information Center

    Findler, Liora

    2014-01-01

    The aim of this research was to examine the contribution of internal and external resources to stress and personal growth among grandparents of children with and without an intellectual disability. Ninety-four grandparents of children with intellectual disability and 105 grandparents of children without intellectual disability completed the…

  4. ISS-Crystal Growth of Photorefractive Materials (BSO): Critical Design Issues for Optimized Data Extraction from Space Experiments

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Motakef, S.; Witt, A. F.; Wuensch, B.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Realization of the full potential of photorefractive materials in device technology is seriously impeded by our inability to achieve controlled formation of critical defects during single crystal growth and by difficulties in meeting the required degree of compositional uniformity on a micro-scale over macroscopic dimensions. The exact nature and origin of the critical defects which control photorefractivity could not as yet be identified because of gravitational interference. There exists, however, strong evidence that the density of defect formation and their spatial distribution are adversely affected by gravitational interference which precludes the establishment of quantifiable and controllable heat and mass transfer conditions during crystal growth. The current, NASA sponsored research at MIT is directed at establishing a basis for the development of a comprehensive approach to the optimization of property control during melt growth of photorefractive materials, making use of the m-g environment, provided in the International Space Station. The objectives to be pursued in m-g research on photorefractive BSO (Bi12SiO20) are: (a) identification of the x-level(s) responsible for photorefractivity in undoped BSO; (b) development of approaches leading to the control of x-level formation at uniform spatial distribution; (c) development of doping and processing procedures for optimization of the critical, application specific parameters, spectral response, sensitivity, response time and matrix stability. The presentation will focus on: the rationale for the justification of the space experiment, ground-based development efforts, design considerations for the space experiments, strategic plan of the space experiments, and approaches to the quantitative analysis of the space experiments.

  5. Quantitative and qualitative changes in primary and secondary stem organization of Aristolochia macrophylla during ontogeny: functional growth analysis and experiments

    PubMed Central

    Masselter, Tom; Speck, Thomas

    2008-01-01

    The anatomy of young and old stems of Aristolochia macrophylla has been investigated for a better understanding of how secondary growth processes cause changes in the stem anatomy of a lianescent plant. In A. macrophylla, following an increase in volume of secondary vascular tissues, the cortical tissues are deformed and the outer sclerenchymatous cylinder ruptures. Morphometric measurements prove that the inner zone of the cortical parenchymatous tissue is compressed prior to the rupture of the outer sclerenchymatous cylinder. After the rupture has occurred, the radial width of the inner primary cortex slightly increases again. This could be caused by strain relaxation, suggesting that the inner primary cortex mechanically behaves similarly to cellular technical foam rubbers. Two different experiments were undertaken to test the outer cortical cylinders mechanically. The outer cortical cylinders comprise the outer sclerenchymatous cortical tissue and a collenchymatous sheath underneath the epidermis and the epidermis. In a first experiment, transverse compression loads were applied to the outside of the cortical cylinders causing ovalization of the cylinder until failure. This experiment allowed the Young's Modulus of the outer cortical cylinders to be determined. In a second set of experiments, radial hydraulic pressure was applied to the inside of the cortical cylinders, mimicking the mechanical effects of internal growth processes. The increase of the internal pressure finally led to rupture of the cortical cylinders. The circumferential stresses acting on the inner surface of the cortical cylinders were calculated. These data allow quantitative estimates of the radial and circumferential pressures effected by vascular secondary growth processes during ontogeny in A. macrophylla stems. The experimental results further indicate that the outer sclerenchymatous cylinder is the main contributor to mechanical stability of young A. macrophylla stems. PMID:18573799

  6. Stories of experiences of care for growth hormone deficiency: the CRESCERE project

    PubMed Central

    Marini, Maria G; Chesi, Paola; Mazzanti, Laura; Guazzarotti, Laura; Toni, Teresa D; Salerno, Maria C; Officioso, Annunziata; Parpagnoli, Maria; Angeletti, Cristina; Faienza, Maria F; Iezzi, Maria L; Aversa, Tommaso; Sacchetti, Cinzia

    2016-01-01

    Aims: Growth hormone deficiency therapy is demanding for patients and caregivers. Teams engaged in the clinical management of growth hormone deficiency therapy need to know how families live with this condition, to provide an adequate support and prevent the risk of withdrawal from therapy. Methods: Using Narrative Medicine, testimonies from patients, their parents and providers of care were collected from 11 Italian centers. Narrations were analyzed throughout an elaboration of recurring words and expressions. Results: Although care management and outcomes were considered satisfying in the 182 collected narratives, recurring signals of intolerance among adolescents and the worry of not being well informed about side effects among parents are open issues. Conclusion: Narratives found that communication issues could decrease adherence and influence the physicians’ clinical practice. PMID:28031934

  7. Growth of single crystals by vapor transport in zero-gravity environment, ground-based experiments

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1978-01-01

    Mass and heat transfer phenomena associated with the growth of single crystals by chemical vapor transport reactions were investigated. In this technique, a gaseous transport agent reacts with the solid source material to form exclusively gaseous products. The gas phase species migrate from the source to the condensation zone of the closed reaction ampoule where the reverse reaction occurs with formation of single crystals. The necessary concentration gradient is achieved by means of a temperature gradient.

  8. Numerical analysis of the sensitivity of crystal growth experiments to spacecraft residual acceleration

    NASA Technical Reports Server (NTRS)

    Alexander, J. I. D.; Amiroudine, Sakir; Ouazzani, Jalil; Rosenberger, Franz

    1992-01-01

    An analysis is conducted of the sensitivity of the Bridgman-Stockbarger crystal growth method, using an idealized model for a range of operating and boundary conditions over a variety of accelerations. Attention is given to the dopant nonuniformity at the melt-crystal interface. The largest compositional nonuniformities are found to occur for disturbances whose amplitudes are greater than 10 exp 6 g, and frequencies below 0.1 Hz.

  9. AxBAxB… pulsed atomic layer deposition: Numerical growth model and experiments

    NASA Astrophysics Data System (ADS)

    Muneshwar, Triratna; Cadien, Ken

    2016-02-01

    Atomic layer deposition (ALD) is widely used for the fabrication of advanced semiconductor devices and related nanoscale structures. During ALD, large precursor doses (>1000 L per pulse) are often required to achieve surface saturation, of which only a small fraction is utilized in film growth while the rest is pumped from the system. Since the metal precursor constitutes a significant cost of ALD, strategies to enhance precursor utilization are essential for the scaling of ALD processes. In the precursor reaction step, precursor physisorption is restricted by steric hindrance (mA1) from ligands on the precursor molecules. On reaction, some of these ligands are removed as by-products resulting in chemisorbed species with reduced steric hindrance (mA1 → mA2, where mA2 < mA1) and some of the initially hindered surface reaction sites becoming accessible for further precursor physisorption. To utilize these additional reaction sites, we propose a generalized AxBAxB… pulsed deposition where the total precursor dose (ΦA) is introduced as multiple x (x > 1, x ∈ I) short-pulses rather than a single pulse. A numerical first-order surface reaction kinetics growth model is presented and applied to study the effect of AxBAxB… pulsed ALD on the growth per cycle (GPC). The model calculations predict higher GPC for AxBAxB… pulsing than with ABAB… deposition. In agreement with the model predictions, with AxBAxB… pulsed deposition, the GPC was found to increase by ˜46% for ZrN plasma enhanced ALD (PEALD), ˜49% for HfO2 PEALD, and ˜8% for thermal Al2O3 ALD with respect to conventional ABAB… pulsed growth.

  10. Phytoplankton growth and microzooplankton grazing dynamics across vertical environmental gradients determined by transplant in situ dilution experiments.

    PubMed

    Gutiérrez-Rodríguez, Andrés; Selph, Karen E; Landry, Michael R

    2016-03-01

    The Costa Rica Dome (CRD) represents a classic case of the bloom-forming capacity of small phytoplankton. Unlike other upwelling systems, autotrophic biomass in the CRD is dominated by picocyanobacteria and small eukaryotes that outcompete larger diatoms and reach extremely high biomass levels. We investigated responses of the subsurface phytoplankton community of the CRD to changes associated with vertical displacement of water masses, coupling in situ transplanted dilution experiments with flow cytometry and epifluorescence microscopy to assess group-specific dynamics. Growth rates of Synechococcus (SYN) and photosynthetic picoeukaryotes (PEUK) were positively correlated with light (Rpearson_SYN = 0.602 and Rpearson_PEUK = 0.588, P < 0.001). Growth rates of Prochlorococcus (PRO), likely affected by photoinhibition, were not light correlated (Rpearson_PRO = 0.101, P = 0.601). Overall, grazing and growth rates were closely coupled in all picophytoplankton groups (Rspearman_PRO = 0.572, Rspearman_SYN = 0.588, Rspearman_PEUK = 0.624), and net growth rates remained close to zero. Conversely, the abundance and biomass of larger phytoplankton, mainly diatoms, increased more than 10-fold in shallower transplant incubations indicating that, in addition to trace-metal chemistry, light also plays a significant role in controlling microphytoplankton populations in the CRD.

  11. Phytoplankton growth and microzooplankton grazing dynamics across vertical environmental gradients determined by transplant in situ dilution experiments

    PubMed Central

    Gutiérrez-Rodríguez, Andrés; Selph, Karen E.; Landry, Michael R.

    2016-01-01

    The Costa Rica Dome (CRD) represents a classic case of the bloom-forming capacity of small phytoplankton. Unlike other upwelling systems, autotrophic biomass in the CRD is dominated by picocyanobacteria and small eukaryotes that outcompete larger diatoms and reach extremely high biomass levels. We investigated responses of the subsurface phytoplankton community of the CRD to changes associated with vertical displacement of water masses, coupling in situ transplanted dilution experiments with flow cytometry and epifluorescence microscopy to assess group-specific dynamics. Growth rates of Synechococcus (SYN) and photosynthetic picoeukaryotes (PEUK) were positively correlated with light (Rpearson_SYN = 0.602 and Rpearson_PEUK = 0.588, P < 0.001). Growth rates of Prochlorococcus (PRO), likely affected by photoinhibition, were not light correlated (Rpearson_PRO = 0.101, P = 0.601). Overall, grazing and growth rates were closely coupled in all picophytoplankton groups (Rspearman_PRO = 0.572, Rspearman_SYN = 0.588, Rspearman_PEUK = 0.624), and net growth rates remained close to zero. Conversely, the abundance and biomass of larger phytoplankton, mainly diatoms, increased more than 10-fold in shallower transplant incubations indicating that, in addition to trace-metal chemistry, light also plays a significant role in controlling microphytoplankton populations in the CRD. PMID:27275030

  12. The effect of tailor-made additives on crystal growth of methyl paraben: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Cai, Zhihui; Liu, Yong; Song, Yang; Guan, Guoqiang; Jiang, Yanbin

    2017-03-01

    In this study, methyl paraben (MP) was selected as the model component, and acetaminophen (APAP), p-methyl acetanilide (PMAA) and acetanilide (ACET), which share the similar molecular structure as MP, were selected as the three tailor-made additives to study the effect of tailor-made additives on the crystal growth of MP. HPLC results indicated that the MP crystals induced by the three additives contained MP only. Photographs of the single crystals prepared indicated that the morphology of the MP crystals was greatly changed by the additives, but PXRD and single crystal diffraction results illustrated that the MP crystals were the same polymorph only with different crystal habits, and no new crystal form was found compared with other references. To investigate the effect of the additives on the crystal growth, the interaction between additives and facets was discussed in detail using the DFT methods and MD simulations. The results showed that APAP, PMAA and ACET would be selectively adsorbed on the growth surfaces of the crystal facets, which induced the change in MP crystal habits.

  13. Arresting bubble coarsening: A two-bubble experiment to investigate grain growth in the presence of surface elasticity

    NASA Astrophysics Data System (ADS)

    Salonen, A.; Gay, C.; Maestro, A.; Drenckhan, W.; Rio, E.

    2016-11-01

    Many two-phase materials suffer from grain growth due to the energy cost which is associated with the interface that separates both phases. While our understanding of the driving forces and the dynamics of grain growth in different materials is well advanced by now, current research efforts address the question of how this process may be slowed down, or, ideally, arrested. We use a model system of two bubbles to explore how the presence of a finite surface elasticity may interfere with the coarsening process and the final grain size distribution. Combining experiments and modelling in the analysis of the evolution of two bubbles, we show that clear relationships can be predicted between the surface tension, the surface elasticity and the initial/final size ratio of the bubbles. We rationalise these relationships by the introduction of a modified Gibbs criterion. Besides their general interest, the present results have direct implications for our understanding of foam stability.

  14. Autotrophic growth and lipid production of Chlorella sorokiniana in lab batch and BIOCOIL photobioreactors: Experiments and modeling.

    PubMed

    Concas, Alessandro; Malavasi, Veronica; Costelli, Cristina; Fadda, Paolo; Pisu, Massimo; Cao, Giacomo

    2016-07-01

    A novel mathematical model for the quantitative assessment of the effect of dissolved nitrogen on the autotrophic batch-growth and lipid accumulation of Chlorella sorokiniana, is proposed in this work. Model results have been validated through comparison with suitable experimental data performed in lab photobioreactors. Further experiments have been then performed using the BIOCOIL photobioreactor operated in fed-batch mode. The experimental results, which show that a maximum growth rate of 0.52day(-1) and a lipid content equal to 25%wt can be achieved with the BIOICOIL, have been successfully predicted through the proposed model. Therefore, the model might represent a first step toward the development of a tool for the scale-up and optimization of the operating conditions of BIOCOIL photobioreactors. Finally, the fatty acid methyl esters obtained by trans-esterification of lipids extracted from C. sorokiniana, have been analyzed in view of the assessment of their usability for producing biodiesel.

  15. Aspects of experimental design for plant metabolomics experiments and guidelines for growth of plant material.

    PubMed

    Gibon, Yves; Rolin, Dominique

    2012-01-01

    Experiments involve the deliberate variation of one or more factors in order to provoke responses, the identification of which then provides the first step towards functional knowledge. Because environmental, biological, and/or technical noise is unavoidable, biological experiments usually need to be designed. Thus, once the major sources of experimental noise have been identified, individual samples can be grouped, randomised, and/or pooled. Like other 'omics approaches, metabolomics is characterised by the numbers of analytes largely exceeding sample number. While this unprecedented singularity in biology dramatically increases false discovery, experimental error can nevertheless be decreased in plant metabolomics experiments. For this, each step from plant cultivation to data acquisition needs to be evaluated in order to identify the major sources of error and then an appropriate design can be produced, as with any other experimental approach. The choice of technology, the time at which tissues are harvested, and the way metabolism is quenched also need to be taken into consideration, as they decide which metabolites can be studied. A further recommendation is to document data and metadata in a machine readable way. The latter should also describe every aspect of the experiment. This should provide valuable hints for future experimental design and ultimately give metabolomic data a second life. To facilitate the identification of critical steps, a list of items to be considered before embarking on time-consuming and costly metabolomic experiments is proposed.

  16. [Growth and development of plants in a sequence of generations under the conditions of space flight (experiment Greenhouse-3)

    NASA Technical Reports Server (NTRS)

    Levinskikh, M. A.; Sychev, V. N.; Signalova, O. B.; Derendiaeva, T. A.; Podol'skii, I. G.; Masgreiv, M. E.; Bingheim, G. E.; Musgrave, M. E. (Principal Investigator); Campbell, W. F. (Principal Investigator)

    2001-01-01

    The purpose was to study characteristic features of growth and development of several plant generations in space flight in experiment GREENHOUSE-3 as a part of the Russian-US space research program MIR/NASA in 1997. The experiment consisted of cultivation of Brassica rapa L. in board greenhouse Svet. Two vegetative cycles were fully completed and the third vegetation was terminated on day 13 on the phase of budding. The total duration of the space experiment was 122 days, i.e. same as in the ground controls. In the experiment with Brassica rapa L. viable seeds produced by the first crop were planted in space flight and yielded next crop. Crops raised from the ground and space seeds were found to differ in height and number of buds. Both parameters were lowered in the plants grown from the space seeds. The prime course for smaller size and reduced organogenic potential of plantTs reproductive system seems to be a less content of nutrients in seeds that had matured in the space flight. Experiment GREENHOUSE-3 demonstrated principle feasibility of plant reproduction in space greenhouse from seeds developed in microgravity.

  17. Dynamic correlation length growth in superspin glass: Bridging experiments and simulations

    NASA Astrophysics Data System (ADS)

    Nakamae, S.; Crauste-Thibierge, C.; L'Hôte, D.; Vincent, E.; Dubois, E.; Dupuis, V.; Perzynski, R.

    2012-12-01

    Interacting magnetic nanoparticles display a wide variety of magnetic behaviors that are now being gathered in the emerging field of "supermagnetism." We have investigated how the out-of-equilibrium dynamics in the disordered superspin glass (SSG) state of a frozen ferrofluid sample is affected by texturation. Via magnetization relaxation experiments at low temperatures, we were able to estimate superspin correlation lengths for both textured and non-textured samples. The comparison with simulations and experiments on atomic spin glasses shows that the dynamic correlations in SSG's appear to develop in a way reminiscent to those in atomic spin glasses at intermediate time/length scales.

  18. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought.

    PubMed

    Moser, Gerald; Schuldt, Bernhard; Hertel, Dietrich; Horna, Viviana; Coners, Heinz; Barus, Henry; Leuschner, Christoph

    2014-05-01

    Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n = 3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semihumid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semihumid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semihumid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sublethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood

  19. A Method for Determining Hygroscopic Growth Factor for Organic Aerosols From Vapor Pressure Experiments

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Tabazadeh, A.; Golden, D. M.; Jacobson, M. Z.

    2008-12-01

    Currently, the tandem differential mobility analyzer (TDMA) is one of the most commonly used instruments to study the hygroscopic behavior of aerosols. The hygroscopic growth factor (HGF), defined as the ratio of the diameter of a spherical particle when it is exposed to humid conditions to that at dry conditions, is typically used to quantify particle water uptake. We present a new formulation to express the HGF of an aerosol particle as a function of water activity (aW) in the aqueous phase. Our approach is based on the fact that water activity limits the growth of a particle that can be attributed to water uptake. We have assembled a vapor pressure apparatus to measure aW of aqueous solutions as a function of solution concentration and temperature. For the pertinent solutions, we report coefficients resulting from a least square fitting of the water activity data as a function of molality for temperatures from 0 to 30°C. We compared the results obtained using our measured water activities in the HGF formulation with previous studies published, where TDMA is used to directly measure the HGF, for solutes commonly found in atmospheric aerosols. Our results indicate agreement with TDMA studies for common inorganic salts and water-miscible organic particles that are known to deliquesce into aqueous drops at high relative humidity (RH). However, we find a difference for organic particles that show no deliquescence behavior at low RH. For example, one TDMA study measured a HGF of 1.18 for 100 nm phthalic acid particles at 90% RH (aW= 0.9) and 30°C. Our data showed that even an aqueous solution saturated in phthalic acid did not lower the vapor pressure of pure water at 30°C. We propose that the adsorption of a negligible mass of water by a porous particle can lead to an apparent growth in particle size by changing the particle morphology.

  20. [A model of world population growth as an experiment in systematic research].

    PubMed

    Kapitsa, S

    1997-01-01

    A mathematical model was developed for the estimation of global population growth, and the estimates were compared with those of the UN and covered the stretch of 4.4 million years B.C. to the years 2175 and 2500 A.D. The estimates were also broken down into human, geological, and technological historical periods. The model showed that human population would stabilize at the level of 14 billion around 2500 A.D. and 13 billion around 2200 A.D., in accordance with UN projections. It also revealed the history of human population growth through the following stages (UN figures are listed in parentheses): 100,000, about 1.6 million years ago; 5 (1-5) million, 35,000 B.C.; 21 (10-15) million, 7000 B.C.; 46 (47) million, 2000 B.C.; 93 (100-230) million, at the time of Christ; 185 (275-345) million, 1000 A.D.; 366 (450-540) million, 1500 A.D.; 887 (907) million, 1800 A.D.; 1158 (1170) million, 1850 A.D.; 1656 (1650-1710) million, 1900 A.D.; 2812 (2515) million, 1950 A.D.; 5253 (5328) million, 1990 A.D.; 6265 (6261) million, 2000 A.D.; 10,487 (10,019) million, 2050 A.D.; 12,034 (11,186) million, 2100 A.D.; 12,648 (11,543) million, 2150 A.D.; 12,946 (11,600) million, 2200 A.D.; and 13,536 million, 2500 A.D. The model advanced the investigation of phenomena by studying the interactions between economical, technological, social, cultural, and biological processes. The analysis showed that humanity has reached a critical phase in its growth and that development in each period depended on external, not internal, factors. This permits the formulation of the principle of demographic imperative (distinct from the Malthusian principle), which states that resources determine the speed and extent of the growth of population.

  1. Zero-gravity growth of NaCl-LiF eutectic. Experiment MA-131

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yeh, C. W.; Yue, B. K.

    1977-01-01

    Continuous and discontinuous lithium fluoride fibers embedded in a sodium chloride matrix were produced in space and on earth, respectively. The production of continuous fibers in an eutectic mixture was attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of lithium fluoride fibers along the growth direction.

  2. Development of the Plant Growth Facility for Use in the Shuttle Middeck and Test Units for Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Wells, H. William

    1996-01-01

    The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.

  3. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    PubMed Central

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species’ local rarity and specific leaf area – traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that

  4. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth.

    PubMed

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-05-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species' local rarity and specific leaf area - traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that the

  5. Growth and Decay: An Experiment Demonstrating Radioactivity Relationships and Chelate Solvent Extraction Separations.

    ERIC Educational Resources Information Center

    Downey, D. M.; And Others

    1984-01-01

    The separation of lead and bismuth by chelate solvent extraction is of interest because of the simplicity which the use of radiotracers allows in its demonstration. Theoretical background information, procedures, materials needed, and typical results are provided for an experiment involving the extraction. (JN)

  6. Easy Growth Experiment on Peas Stimulates Interest in Biology for 10-11 Year Old Pupils

    ERIC Educational Resources Information Center

    McEwen, Birgitta

    2007-01-01

    How do we support the enthusiasm children show for biology in school? Unfortunately, lack of exciting practical work and boring biology lessons seem to make science less popular. As a senior lecturer in plant physiology at Karlstad University I have simplified experiments intended for students at university and then tested them on 10-11 year old…

  7. Counselor Development in the Process of Mastering Cultural Competence: A Study of Professional Growth Experiences

    ERIC Educational Resources Information Center

    Wakefield, Marie A.

    2012-01-01

    Grounded theory methodology was employed to explore the experiences of counseling professionals as they work to develop a higher level of cultural competence. Three key findings support the core theme, navigating change toward cultural competent practices: (1) environmental awareness; (2) dispositions toward the development in cultural competency…

  8. Optimal Experience and Personal Growth: Flow and the Consolidation of Place Identity.

    PubMed

    Bonaiuto, Marino; Mao, Yanhui; Roberts, Scott; Psalti, Anastasia; Ariccio, Silvia; Ganucci Cancellieri, Uberta; Csikszentmihalyi, Mihaly

    2016-01-01

    This study examined the relationship between flow experience and place identity, based on eudaimonistic identity theory (EIT) which prioritizes self-defining activities as important for an individual's identification of his/her goals, values, beliefs, and interests corresponding to one's own identity development or enhancement. This study focuses on place identity, the identity's features relating to a person's relation with her/his place. The study is also based on flow theory, according to which some salient features of an activity experience are important for happiness and well-being. Questionnaire surveys on Italian and Greek residents focused on their perceived flow and place identity in relation to their own specific local place experiences. The overall findings revealed that flow experience occurring in one's own preferred place is widely reported as resulting from a range of self-defining activities, irrespective of gender or age, and it is positively and significantly associated with one's own place identity. Such findings provide the first quantitative evidence about the link between flow experienced during meaningfully located self-defining activities and identity experienced at the place level, similarly to the corresponding personal and social levels that had been previously already empirically tested. Results are also discussed in terms of their implications for EIT's understanding and enrichment, especially by its generalization from the traditional, personal identity level up to that of place identity. More generally, this study has implications for maintaining or enhancing one's own place identity, and therefore people-place relations, by means of facilitating a person's flow experience within psychologically meaningful places.

  9. Optimal Experience and Personal Growth: Flow and the Consolidation of Place Identity

    PubMed Central

    Bonaiuto, Marino; Mao, Yanhui; Roberts, Scott; Psalti, Anastasia; Ariccio, Silvia; Ganucci Cancellieri, Uberta; Csikszentmihalyi, Mihaly

    2016-01-01

    This study examined the relationship between flow experience and place identity, based on eudaimonistic identity theory (EIT) which prioritizes self-defining activities as important for an individual’s identification of his/her goals, values, beliefs, and interests corresponding to one’s own identity development or enhancement. This study focuses on place identity, the identity’s features relating to a person’s relation with her/his place. The study is also based on flow theory, according to which some salient features of an activity experience are important for happiness and well-being. Questionnaire surveys on Italian and Greek residents focused on their perceived flow and place identity in relation to their own specific local place experiences. The overall findings revealed that flow experience occurring in one’s own preferred place is widely reported as resulting from a range of self-defining activities, irrespective of gender or age, and it is positively and significantly associated with one’s own place identity. Such findings provide the first quantitative evidence about the link between flow experienced during meaningfully located self-defining activities and identity experienced at the place level, similarly to the corresponding personal and social levels that had been previously already empirically tested. Results are also discussed in terms of their implications for EIT’s understanding and enrichment, especially by its generalization from the traditional, personal identity level up to that of place identity. More generally, this study has implications for maintaining or enhancing one’s own place identity, and therefore people–place relations, by means of facilitating a person’s flow experience within psychologically meaningful places. PMID:27872600

  10. Design of challenge testing experiments to assess the variability of Listeria monocytogenes growth in foods.

    PubMed

    Augustin, Jean-Christophe; Bergis, Hélène; Midelet-Bourdin, Graziella; Cornu, Marie; Couvert, Olivier; Denis, Catherine; Huchet, Véronique; Lemonnier, Sabrina; Pinon, Anthony; Vialette, Michèle; Zuliani, Véronique; Stahl, Valérie

    2011-06-01

    The assessment of the evolution of micro-organisms naturally contaminating food must take into account the variability of biological factors, food characteristics and storage conditions. A research project involving eight French laboratories was conducted to quantify the variability of growth parameters of Listeria monocytogenes obtained by challenge testing in five food products. The residual variability corresponded to a coefficient of variation (CV) of approximately 20% for the growth rate (μ(max)) and 130% for the parameter K = μ(max) × lag. The between-batch and between-manufacturer variability of μ(max) was very dependent on the food tested and mean CV of approximately 20 and 35% were observed for these two sources of variability, respectively. The initial physiological state variability led to a CV of 100% for the parameter K. It appeared that repeating a limited number of three challenge tests with three different batches (or manufacturers) and with different initial physiological states seems often necessary and adequate to accurately assess the variability of the behavior of L. monocytogenes in a specific food produced by a given manufacturer (or for a more general food designation).

  11. Topological events in two-dimensional grain growth: Experiments and simulations

    SciTech Connect

    Fradkov, V.E.; Glicksman, M.E.; Palmer, M.; Rajan, K. . Materials Engineering Dept.)

    1994-08-01

    Grain growth in polycrystals is a process that occurs as a result of the vanishing of small grains. The mean topological class of vanishing two-dimensional (2-D) grains was found experimentally to be about 4.5. This result suggests that most vanishing grains are either 4- or 5-sided. A recent theory of 2-D grain growth is explicitly based on this fact, treating the switching as random events. The process of shrinking of 4- and 5-sided two-dimensional grains was observed experimentally on polycrystalline films of transparent, pure succinonitrile (SCN). Grain shrinking was studied theoretically and simulated by computer (both dynamic and Monte Carlo). It was found that most shrinking grains are topologically stable and remain within their topological class until they are much smaller than their neighbors. They discuss differences which were found with respect to the behavior of 2-D polycrystals, a 2-D ideal soap froth, and a 2-D section of a 3-D grain structure.

  12. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China

    PubMed Central

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-01-01

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation. PMID:28367963

  13. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    SciTech Connect

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  14. Growth properties of protoplanetary dust in a long-term microgravity experiment

    NASA Astrophysics Data System (ADS)

    Brisset, Julie; Kothe, Stefan; Weidling, Rene; Heisselmann, Daniel; Blum, Juergen

    2014-11-01

    In the very first steps of the formation of a new planetary system, dust agglomerates and grows inside the protoplanetary disk that rotates around the newly formed star. In this disk, collisions between the dust particles, induced by interactions with the surrounding gas, lead to sticking. Aggregates start growing until their sizes and relative velocities are high enough for collisions to result in bouncing or fragmentation. As part of a series of microgravity experiments aiming at the investigation of the transitions between sticking, bouncing and fragmentation of colliding dust aggregates, the Suborbital Particle and Aggregation Experiment (SPACE) was designed, built and operated both at the drop tower in Bremen (August 2011) and on the REXUS 12 suborbital rocket (March 2012). The SPACE experiment allowed for the observation of collisions between aggregates of sizes of a few 100 µm that were composed of SiO2, a commonly used protoplanetary dust analog material. At velocities below 10 cm/s, clusters composed of a high number of aggregates (more than 10^4) formed and grew to sizes of up to 5 mm. The analysis of these collisions delivered valuable input to a current dust collision model, which maps the outcome of collisions depending on the aggregate sizes and their relative velocities. The sticking probability of sub-mm-sized dust aggregates could directly be measured during the suborbital rocket flight, over a velocity range covering the transition between the sticking and bouncing regimes. In addition, the evolution of clusters formed from sub-mm-sized aggregates during the different experiments could be observed and some of their intrinsic properties derived. The measured characteristics were the cluster fractal dimensions, the tensile strength of their outer aggregate layer and the effective surface energy of their constituents. Threshold energies for cluster restructuring and fragmentation could also be determined. All these cluster properties are important

  15. Serving Community College Students: Student Preparation, Development and Growth through the REU Experience

    NASA Astrophysics Data System (ADS)

    Kim, C. S.; Osborn, J.; Smith, M.

    2014-12-01

    Effectively recruiting and engaging community college students in STEM research experiences is an increasingly important goal of the NSF but has not historically been the primary focus of most NSF-REU Site programs. The Summer Undergraduate Research Fellowship in Earth and Environmental Sciences (SURFEES) program at Chapman University, a primarily undergraduate institution in Southern California, is the site of the first NSF-REU program in the NSF's Division of Earth Sciences that selects participants exclusively from local partnering community colleges. Building on and now running parallel with a successful internally-funded summer research program already in place and available only to Chapman undergraduates, the SURFEES program incorporates specific mentor and participant pre-experience training, pre-, mid-, and post-assessment instruments, and programming targeted to the earth and environmental sciences as well as to community college students. Perhaps most importantly, the application, selection and pairing of student participants with faculty mentors was conducted with specific goals of identifying those applicants with the greatest potential for a transformative experience while also meeting self-defined targets of under-represented minority, female, and low-income participants. Initial assessment results of the first participant cohort from summer 2014 and lessons learned for creating/adapting an NSF-REU site to involve community college students will be discussed.

  16. Improved long-term bone-implant integration. Experiments in transgenic mice overexpressing bovine growth hormone.

    PubMed

    Morberg, P H; Isaksson, O G; Johansson, C B; Sandstedt, J; Törnell, J

    1997-08-01

    Several recent studies have investigated the effects of growth hormone (GH) on the healing of fractures and bone ingrowth, but with conflicting results. The negative results may be due to antibody formation against injected GH or because some experimental models are able to prove only positive GH effects. In this study, we wanted to investigate the effect of GH on implant integration in bone. To avoid potential formation of antibodies against injected GH, we used a model with transgenic mice overexpressing bovine GH (bGH). Titanium implants were inserted in the forehead of the mice. 4 months after insertion, the implants were cut out en bloc with the surrounding bone. The calcified specimens were cut and ground to a thickness of approximately 10 microns. Histomorphometry demonstrated significantly more direct bone-to-metal contact in the transgenic mice than in the nontransgenic littermates. Our findings indicate that systemic administration of GH in humans may improve implant integration in bone.

  17. Portulaca grandiflora as green roof vegetation: Plant growth and phytoremediation experiments.

    PubMed

    Vijayaraghavan, K; Arockiaraj, Jesu; Kamala-Kannan, Seralathan

    2017-06-03

    Finding appropriate rooftop vegetation may improve the quality of runoff from green roofs. Portulaca grandiflora was examined as possible vegetation for green roofs. Green roof substrate was found to have low bulk density (360.7 kg/m(3)) and high water-holding capacity (49.4%), air-filled porosity (21.1%), and hydraulic conductivity (5270 mm/hour). The optimal substrate also supported the growth of P. grandiflora with biomass multiplication of 450.3% and relative growth rate of 0.038. Phytoextraction potential of P. grandiflora was evaluated using metal-spiked green roof substrate as a function of time and spiked substrate metal concentration. It was identified that P. grandiflora accumulated all metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from metal-spiked green roof substrate. At the end of 40 days, P. grandiflora accumulated 811 ± 26.7, 87.2 ± 3.59, 416 ± 15.8, 459 ± 15.6, 746 ± 20.9, 357 ± 18.5, 565 ± 6.8, and 596 ± 24.4 mg/kg of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn, respectively. Results also indicated that spiked substrate metal concentration strongly influenced metal accumulation property of P. grandiflora with metal uptake increased and accumulation factor decreased with increase in substrate metal concentration. P. grandiflora also showed potential to translocate all the examined metals with translocation factor greater than 1 for Al, Cu, Fe, and Zn, indicating hyperaccumulation property.

  18. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    SciTech Connect

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and the IRPh

  19. [Growth and development of plants in a row of generations under the conditions of space flight (experiment Greenhouse-5)

    NASA Technical Reports Server (NTRS)

    Levinskikh, M. A.; Sychev, V. N.; Derendiaeva, T. A.; Signalova, O. B.; Podol'skii, I. G.; Avdeev, S. V.; Bingheim, G. E.; Campbell, W. F. (Principal Investigator)

    2001-01-01

    Results of the experiment aimed at harvesting a second space generation of wheat var. Apogee in Mir greenhouse Svet (experiment GREENHOUSE-5) are presented. In space flight, germination rate of space seeds from the first crop made up 89% against 100% of the ground seeds. The full biological ripeness was observed in 20 plants grown from the ground seeds and one plant grown from the space seeds following 80- to 90-d vegetation. The plant of the second space generation was morphologically different neither from the species in the first space crop nor from the ground controls. To study the biological characteristics of Apogee seeds gathered in the first and second crops in spaceflight experiment GREENHOUSE-5, the seeds were planted on their return to the laboratory. Morphometric analysis showed that they were essentially similar to the controls. Hence, the space experiments in Mir greenhouse Svet performed during 1998-1999 gave proof that plants cultivated in microgravity can pass the ontogenetic cycle more than once. However, initial results of the investigations into growth and development of plants through several generations are still in-sufficient to speak of possible delayed effects of the spaceflight factors (microgravity, multicomponent radiation, harmful trace contaminants etc.).

  20. Determination of longevities, chamber building rates and growth functions for Operculina complanata from long term cultivation experiments

    NASA Astrophysics Data System (ADS)

    Woeger, Julia; Kinoshita, Shunichi; Wolfgang, Eder; Briguglio, Antonino; Hohenegger, Johann

    2016-04-01

    Operculina complanata was collected in 20 and 50 m depth around the Island of Sesoko belonging to Japans southernmost prefecture Okinawa in a series of monthly sampling over a period of 16 months (Apr.2014-July2015). A minimum of 8 specimens (4 among the smallest and 4 among the largest) per sampling were cultured in a long term experiment that was set up to approximate conditions in the field as closely as possible. A set up allowing recognition of individual specimens enabled consistent documentation of chamber formation, which in combination with μ-CT-scanning after the investigation period permitted the assignment of growth steps to specific time periods. These data were used to fit various mathematical models to describe growth (exponential-, logistic-, generalized logistic-, Gompertz-function) and chamber building rate (Michaelis-Menten-, Bertalanffy- function) of Operculina complanata. The mathematically retrieved maximum lifespan and mean chamber building rate found in cultured Operculina complanata were further compared to first results obtained by the simultaneously conducted "natural laboratory approach". Even though these comparisons hint at a somewhat stunted growth and truncated life spans of Operculina complanata in culture, they represent a possibility to assess and improve the quality of further cultivation set ups, opening new prospects to a better understanding of the their theoretical niches.

  1. Third and Final Shuttle Mission of the Isothermal Dendritic Growth Experiment Conducted: Highest Supercooling Ever Recorded Achieved

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Malarik, Diane C.

    1999-01-01

    Dendrites describe the treelike crystal morphology commonly assumed in metals and alloys that freeze from supercooled or supersaturated melts. There remains a high level of engineering interest in dendritic solidification because the size, shape, and orientation of the dendrites determine the final microstructure of a material. It is the microstructure that then determines the physical properties of cast or welded products. Although it is well known that dendritic growth is controlled by the transport of latent heat from the moving solid-liquid interface, an accurate and predictive model has not yet been developed. The effects of gravity-induced convection on the transfer of heat from the interface have prevented adequate testing, under terrestrial conditions, of solidification models. The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three microgravity experiments flown aboard the Space Shuttle Columbia. The apparatus was used to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, thereby producing a wealth of benchmark-quality data for testing solidification models and theories.

  2. Experiments to measure ablative Richtmyer-Meshkov growth of Gaussian bumps in plastic capsules

    SciTech Connect

    Loomis, Eric; Batha, Steve; Sedillo, Tom; Evans, Scott; Sorce, Chuck; Landen, Otto; Braun, Dave

    2010-06-02

    Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF) due to ablator and fuel non-uniformities have been of primary concern to the ICF program since its inception. To achieve thermonuclear ignition at Megajoule class laser systems such as the NIF, targets must be designed for high implosion velocities, which requires higher in-flight aspect ratios (IFAR) and diminished shell stability. Controlling capsule perturbations is thus of the utmost importance. Recent simulations have shown that features on the outer surface of an ICF capsule as small as 10 microns wide and 100's of nanometers tall such as bumps, divots, or even dust particles can profoundly impact capsule performance by leading to material jetting or mix into the hotspot. Recent x-ray images of implosions on the NIF may be evidence of such mixing. Unfortunately, our ability to accurately predict these effects is uncertain due to disagreement between equation of state (EOS) models. In light of this, we have begun a campaign to measure the growth of isolated defects (Gaussian bumps) due to ablative Richtmyer-Meshkov in CH capsules to validate these models. The platform that has been developed uses halfraums with radiation temperatures near 75 eV (Rev. 4 foot-level) driven by 15-20 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY), which sends a ~2.5 Mbar shock into a planar CH foil. Gaussian-shaped bumps (20 microns wide, 4-7 microns tall) are deposited onto the ablation side of the target. On-axis radiography with a saran (Cl Heα - 2.8 keV) backlighter is used to measure bump evolution prior to shock breakout. Shock speed measurements will also be made with Omega's active shock breakout (ASBO) and streaked optical pyrometery (SOP) diagnostics in conjunction with filtered x-ray photodiode arrays (DANTE) to determine drive conditions in the target. These data will be used to discriminate between EOS models so

  3. Growth experiment of narrow band-gap semiconductor PbSnTe single crystals in space (M-1)

    NASA Technical Reports Server (NTRS)

    Yamada, Tomoaki

    1993-01-01

    An experiment on crystal growth of Pb(1-x)Sn(x)Te in microgravity is planned. This material is an alloy of the compound semiconductors PbTe and SnTe. It is a promising material for infrared diode lasers and detectors in the wavelength region between 6 and 30 micron. Since the electrical properties of Pb(1-x)Sn(x)Te depend greatly on the Pb/Sn ratio and crystalline defects as well as impurity concentration, homogeneous, defect-free, high-quality crystals are anticipated. Although many growth methods, such as the pulling method, the Bridgman method, the vapor growth method, etc., have been applied to the growth of Pb(1-x)Sn(x)Te, large, homogeneous, low-defect-density crystals have not yet been grown on Earth. The unsuccessful results were caused by buoyancy-driven convection in the fluids induced by the specific gravity difference between heated and cooled fluids on Earth. A crystal is grown by cooling the melt from one end of the ampoule. In crystal growth from the melt, about 30 percent of the SnTe in the melt is rejected at the solid-liquid interface during solidification. On Earth, the rejected SnTe is completely mixed with the remaining melt by convection in the melt. Therefore, SnTe concentration in the melt, and accordingly in the crystal, increases as the crystal grows. In the microgravity environment, buoyancy-driven convection is suppressed because the specific gravity difference is negligible. In that case, the rejected SnTe remains at the solid-liquid interface and its concentration increases only at the interface. If the growth rate is higher than the PbTe-SnTe interdiffusion rate, the amount of SnTe which diffuses from the interface into the melt increases as SnTe piles up at the interface, and finally it balances the amount of rejected SnTe during solidification, resulting in steady-state SnTe transportation at the interface. By using this principle, compositionally homogeneous crystals can be grown. Furthermore, low-defect-density crystals will be

  4. Laboratory and numerical decompression experiments: an insight into the nucleation and growth of bubbles

    NASA Astrophysics Data System (ADS)

    Spina, L.; Colucci, S.; De'Michieli Vitturi, M.; Scheu, B.; Dingwell, D. B.

    2014-12-01

    Numerical modeling, joined with experimental investigations, is fundamental for studying the dynamics of magmatic fluid into the conduit, where direct observations are unattainable. Furthermore, laboratory experiments can provide invaluable data to vunalidate complex multiphase codes. With the aim on unveil the essence of nucleation process, as well as the behavior of the multiphase magmatic fluid, we performed slow decompression experiments in a shock tube system. We choose silicon oil as analogue for the magmatic melt, and saturated it with Argon at 10 MPa for 72h. The slow decompression to atmospheric conditions was monitored through a high speed camera and pressure sensors, located into the experimental conduit. The experimental conditions of the decompression process have then been reproduced numerically with a compressible multiphase solver based on OpenFOAM. Numerical simulations have been performed by the OpenFOAM compressibleInterFoam solver for 2 compressible, non-isothermal immiscible fluids, using a VOF (volume of fluid) phase-fraction based interface capturing approach. The data extracted from 2D images obtained from laboratory analyses were compared to the outcome of numerical investigation, showing the capability of the model to capture the main processes studied.

  5. Ignition and growth reactive flow modeling of recent HMX/TATB detonation experiments

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2017-01-01

    Two experimental studies in which faster HMX detonation waves produced oblique detonation waves in adjoining slower detonating TATB charges were modeled using the Ignition and Growth (I&G) reactive flow detonation model parameters for PBX 9501 (95% HMX / 2.5% Estane / 2.5% BDNPA/F) and PBX 9502 (95% TATB / 5% Kel-F binder). Matignon et al. used X1 explosive (96% HMX / 4% binder) to drive an oblique detonation wave into an attached charge of T2 explosive (97% TATB / 3% binder). The flow angles were measured in the T2 shock initiation region and in steady T2 detonation. Anderson et al. used detonating PBX 9501 slabs of various thicknesses ranging from 0.56 mm to 2.5 mm to create oblique detonation waves in 8 mm thick slabs of PBX 9502. Several diagnostics were employed to: photograph the waves; measure detonation velocities and flow angles; and determine the output of the PBX 9501 slabs, the PBX 9502 slabs, and the "initiation regions" using LiF windows and PDV probes.

  6. Managing data for a multicountry longitudinal study: experience from the WHO Multicentre Growth Reference Study.

    PubMed

    Onyango, Adelheid W; Pinol, Alain J; de Onis, Mercedes

    2004-03-01

    The World Health Organization (WHO) Multicentre Growth Reference (MGRS) data management protocol was designed to create and manage a large data bank of information collected from multiple sites over a period of several years. Data collection and processing instruments were prepared centrally and used in a standardized fashion across sites. The data management system contained internal validation features for timely detection of data errors, and its standard operating procedures stipulated a method of master file updating and correction that maintained a clear trail for data auditing purposes. Each site was responsible for collecting, entering, verifying, and validating data, and for creating site-level master files. Data from the sites were sent to the MGRS Coordinating Centre every month for master file consolidation and more extensive quality control checking. All errors identified at the Coordinating Centre were communicated to the site for correction at source. The protocol imposed transparency on the sites' data management activities but also ensured access to technical help with operation and maintenance of the system. Through the rigorous implementation of what has been a highly demanding protocol, the MGRS has accumulated a large body of very high-quality data.

  7. Absorbable screws through the greater trochanter do not disturb physeal growth: rabbit experiments.

    PubMed

    Gil-Albarova, J; Fini, M; Gil-Albarova, R; Melgosa, M; Aldini-Nicolo, N; Giardino, R; Seral, F

    1998-06-01

    We studied the effect of implantation of self-reinforced polyglycolic acid (SR-PGA) screws through the greater trochanter in rabbits. 15 rabbits aged 10 weeks had an SR-PGA screw inserted through the left trochanter physis. A similar drilling was made through the right greater trochanter without screw implantation. The animals were assigned to 3 groups of 5, and were killed after 1, 2 or 3 months. Radiographs of both femurs were obtained monthly and the articulo-trochanteric distance and the neck-shaft angle were measured. After killing the animals, a histological study was performed. The drilling on the right trochanter generated a bony bridge in all the animals. The SR-PGA screws did not give rise to an epiphysiodesis. The progressive peripheral degradation of the implants gave rise to the formation of only modest bridges, which were smaller in size than those observed in the control trochanter. Our findings suggest that absorbable PGA screws implanted through a growth plate cause only minor bone formation and no epiphyseodesis.

  8. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    NASA Astrophysics Data System (ADS)

    May, Chadd M.; Tarver, Craig M.

    2014-05-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several KaptonTM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  9. Stable carbon and oxygen isotope fractionation processes during speleothem growth: systematic investigation in novel laboratory experiments

    NASA Astrophysics Data System (ADS)

    Scholz, D.; Hansen, M.; Dreybrodt, W.

    2012-04-01

    The most widely applied climate proxies in speleothems are stable carbon and oxygen isotopes (δ13C and δ18O). The interpretation of the stable isotope signals in terms of past temperature and/or precipitation variability is complex because both δ18O and δ13C depend on a complex interplay of various processes occurring in the atmosphere, the soil and karst above the cave and inside the cave. Quantitative reconstruction of climate parameters such as temperature and precipitation has, thus, remained impossible so far. Here we present several novel laboratory experiments aiming to understand the basic physical and chemical processes affecting the δ18O and δ13C signals during precipitation of calcium carbonate on the stalagmite surface. In particular, we aim to quantify the influence of kinetic isotope fractionation and verify recently published modelling studies (Dreybrodt, 2008; Scholz et al., 2009, Dreybrodt and Scholz, 2011). Several experiments are conducted: Degassing of CO2 from a thin film of water sparged with CO2 flowing down an inclined glass plate. pH and electric conductivity are systematically documented in order to monitor degassing of CO2. The results show that degassing of CO2 is fast, and the pCO2 of the solution is in equilibrium with the atmosphere after a short distance of flow. Carbon isotope exchange between atmospheric CO2 and dissolved bicarbonate. The results show that carbon isotope exchange may have a significant effect on the δ13C value of the dissolved bicarbonate and, thus, speleothem calcite, in particular for slow drip rates. Degassing of CO2 and calcite precipitation from a thin film of water supersaturated with respect to calcite flowing down an inclined calcium carbonate plate. Drip water is sampled after different lengths of flow path and, thus, different residence times on the plate, and pH, electrical conductivity and the stable isotope composition of the water are determined. Decreasing conductivity with increasing distance

  10. Laron syndrome (primary growth hormone resistance or insensitivity): the personal experience 1958-2003.

    PubMed

    Laron, Zvi

    2004-03-01

    Clinical and laboratory investigations starting in 1958 of a group of dwarfed children resembling isolated GH deficiency but who had very high serum levels of GH led to the description of the syndrome of primary GH resistance or insensitivity (Laron syndrome) and subsequently to the discovery of its molecular defects residing in the GH receptor and leading to an inability of IGF-I generation. With the biosynthesis of IGF-I in 1986, therapeutic trials started. Continuously more and more patients are being diagnosed in many parts of the world with a variety of molecular defects. This syndrome proved to be a unique model that enables the study of the consequences of GH receptor defects, the physiopathology of GH-IGF-I disruption, and comparison of the GH-independent IGF-I effects. This review presents the personal experience gained from the study follow-up and treatment of the 60 patients followed up for many years in the Israeli cohort.

  11. The growth of language: Universal Grammar, experience, and principles of computation.

    PubMed

    Yang, Charles; Crain, Stephen; Berwick, Robert C; Chomsky, Noam; Bolhuis, Johan J

    2017-01-07

    Human infants develop language remarkably rapidly and without overt instruction. We argue that the distinctive ontogenesis of child language arises from the interplay of three factors: domain-specific principles of language (Universal Grammar), external experience, and properties of non-linguistic domains of cognition including general learning mechanisms and principles of efficient computation. We review developmental evidence that children make use of hierarchically composed structures ('Merge') from the earliest stages and at all levels of linguistic organization. At the same time, longitudinal trajectories of development show sensitivity to the quantity of specific patterns in the input, which suggests the use of probabilistic processes as well as inductive learning mechanisms that are suitable for the psychological constraints on language acquisition. By considering the place of language in human biology and evolution, we propose an approach that integrates principles from Universal Grammar and constraints from other domains of cognition. We outline some initial results of this approach as well as challenges for future research.

  12. A new data processing technique for Rayleigh-Taylor instability growth experiments

    NASA Astrophysics Data System (ADS)

    Yuan, Yongteng; Tu, Shaoyong; Miao, Wenyong; Wu, Junfeng; Wang, Lifeng; Yin, Chuansheng; Hao, Yidan; Ye, Wenhua; Ding, Yongkun; Jiang, Shaoen

    2016-06-01

    Typical face-on experiments for Rayleigh-Taylor instability study involve the time-resolved radiography of an accelerated foil with line-of-sight of the radiography along the direction of motion. The usual method which derives perturbation amplitudes from the face-on images reverses the actual image transmission procedure, so the obtained results will have a large error in the case of large optical depth. In order to improve the accuracy of data processing, a new data processing technique has been developed to process the face-on images. This technique based on convolution theorem, refined solutions of optical depth can be achieved by solving equations. Furthermore, we discuss both techniques for image processing, including the influence of modulation transfer function of imaging system and the backlighter spatial profile. Besides, we use the two methods to the process the experimental results in Shenguang-II laser facility and the comparison shows that the new method effectively improve the accuracy of data processing.

  13. Three-dimensional simulations of Nova high growth factor capsule implosion experiments

    NASA Astrophysics Data System (ADS)

    Marinak, M. M.; Tipton, R. E.; Landen, O. L.; Murphy, T. J.; Amendt, P.; Haan, S. W.; Hatchett, S. P.; Keane, C. J.; McEachern, R.; Wallace, R.

    1996-05-01

    Capsule implosion experiments carried out on the Nova laser [E. M. Campbell et al., Rev. Sci. Instrum. 57, 2101 (1986)] are simulated with the three-dimensional HYDRA radiation hydrodynamics code [NTIS Document No. DE-96004569 (M. M. Marinak et al. in UCRL-LR-105821-95-3)]. Simulations of ordered, near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, in which case they cause even more damage. A simulation of a capsule with a multimode perturbation of moderate amplitude shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry is found to be important, bringing the simulated neutron yields into closer agreement with the experimental values.

  14. Reproducible Crystal Growth Experiments in Microgravity Science Glovebox at the International Space Station (SUBSA Investigation)

    NASA Technical Reports Server (NTRS)

    Ostrogorsky, A.; Marin, C.; Volz, M. P.; Bonner, W. A.

    2005-01-01

    Solidification Using a Baffle in Sealed Ampoules (SUBSA) is the first investigation conducted in the Microgravity Science Glovebox (MSG) Facility at the International Space Station (ISS) Alpha. 8 single crystals of InSb, doped with Te and Zn, were directionally solidified in microgravity. The experiments were conducted in a furnace with a transparent gradient section, and a video camera, sending images to the earth. The real time images (i) helped seeding, (ii) allowed a direct measurement of the solidification rate. The post-flight characterization of the crystals includes: computed x-ray tomography, Secondary Ion Mass Spectroscopy (SIMS), Hall measurements, Atomic Absorption (AA), and 4 point probe analysis. For the first time in microgravity, several crystals having nearly identical initial transients were grown. Reproducible initial transients were obtained with Te-doped InSb. Furthermore, the diffusion controlled end-transient was demonstrated experimentally (SUBSA 02). From the initial transients, the diffusivity of Te and Zn in InSb was determined.

  15. Benchmark Data Set for Wheat Growth Models: Field Experiments and AgMIP Multi-Model Simulations.

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Martre, P.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.J.; Rotter, R. P.

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario.

  16. Surface growth for molten silicon infiltration into carbon millimeter-sized channels: Lattice-Boltzmann simulations, experiments and models

    NASA Astrophysics Data System (ADS)

    Sergi, Danilo; Camarano, Antonio; Molina, José Miguel; Ortona, Alberto; Narciso, Javier

    2016-01-01

    The process of liquid silicon (Si) infiltration is investigated for channels with radii from 0.25[mm] to 0.75[mm] drilled in compact carbon (C) preforms. The advantage of this setup is that the study of the phenomenon results can be simplified. For comparison purposes, attempts are made in order to work out a framework for evaluating the accuracy of simulations. The approach relies on dimensionless numbers involving the properties of the surface reaction. It turns out that complex hydrodynamic behavior derived from second Newton law can be made consistent with Lattice-Boltzmann (LB) simulations. The experiments give clear evidence that the growth of silicon carbide (SiC) proceeds in two different stages and basic mechanisms are highlighted. LB simulations prove to be an effective tool for the description of the growing phase. Namely, essential experimental constraints can be implemented. As a result, the existing models are useful to gain more insight on the process of reactive infiltration into porous media in the first stage of penetration, i.e. up to pore closure because of surface growth. A way allowing one to implement the resistance from chemical reaction in Darcy law is also proposed.

  17. Application of a two-phenotype color-shift model with heterogeneous growth to a rat hepatocarcinogenesis experiment.

    PubMed

    Groos, Jutta; Kopp-Schneider, Annette

    2010-04-01

    The color-shift model (CSM) was introduced by Kopp-Schneider et al. [1] to describe formation and progression of foci of altered hepatocytes (FAH). It incorporates the field-effect hypothesis which postulates that entire colonies of altered hepatocytes simultaneously alter their phenotype. In the original CSM, FAH grow with deterministic growth rate and change their phenotype after an exponentially distributed waiting time. A modification of the original color-shift model (CSM beta) is presented here in which the growth rate varies from focus to focus according to a beta distribution. The concept of an exponentially distributed waiting time to phenotype change is modified to the concept of a random radius at which phenotype changes and this radius is modelled as beta distributed. The original and the modified CSM are applied to data from an initiation-promotion rat hepatocarcinogenesis experiment with diethylnitrosomorpholine (DEN) and N-nitrosomorpholine (NNM), in which two phenotypes of FAH were observed in hematoxilin/eosin (H&E) stained liver sections. The Cramer-von-Mises Distance is used as a measure for the discrepancy between empirical and theoretical size distributions. Comparisons of model fit show that considerable improvement is obtained for CSM beta compared to the original CSM.

  18. Beyond Agar: Gel Substrates with Improved Optical Clarity and Drug Efficiency and Reduced Autofluorescence for Microbial Growth Experiments

    PubMed Central

    McElfresh, Cameron; Wong, Lily R.

    2015-01-01

    Agar, a seaweed extract, has been the standard support matrix for microbial experiments for over a century. Recent developments in high-throughput genetic screens have created a need to reevaluate the suitability of agar for use as colony support, as modern robotic printing systems now routinely spot thousands of colonies within the area of a single microtiter plate. Identifying optimal biophysical, biochemical, and biological properties of the gel support matrix in these extreme experimental conditions is instrumental to achieving the best possible reproducibility and sensitivity. Here we systematically evaluate a range of gelling agents by using the yeast Saccharomyces cerevisiae as a model microbe. We find that carrageenan and Phytagel have superior optical clarity and reduced autofluorescence, crucial for high-resolution imaging and fluorescent reporter screens. Nutrient choice and use of refined Noble agar or pure agarose reduce the effective dose of numerous selective drugs by >50%, potentially enabling large cost savings in genetic screens. Using thousands of mutant yeast strains to compare colony growth between substrates, we found no evidence of significant growth or nutrient biases between gel substrates, indicating that researchers could freely pick and choose the optimal gel for their respective application and experimental condition. PMID:26070672

  19. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment.

    PubMed

    ten Berge, Hein F M; van der Meer, Hugo G; Steenhuizen, Johan W; Goedhart, Paul W; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO(2) on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2) sequestration ('enhanced weathering'). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha(-1). Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1) (14.8% of dose, OLIV1) to 2240 kg ha(-1) (1.1%, OLIV4). This corresponds to gross CO(2) sequestration of 290 to 2690 kg ha(-1) (29 10(3) to 269 10(3) kg km(-2).) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.

  20. Design and development of green roof substrate to improve runoff water quality: plant growth experiments and adsorption.

    PubMed

    Vijayaraghavan, K; Raja, Franklin D

    2014-10-15

    Many studies worldwide have investigated the potential benefits achievable by transforming brown roofs of buildings to green roofs. However, little literature examined the runoff quality/sorption ability of green roofs. As the green roof substrate is the main component to alter the quality of runoff, this investigation raises the possibility of using a mixture of low-cost inorganic materials to develop a green roof substrate. The tested materials include exfoliated vermiculite, expanded perlite, crushed brick and sand along with organic component (coco-peat). Detailed physical and chemical analyses revealed that each of these materials possesses different characteristics and hence a mix of these materials was desirable to develop an optimal green roof substrate. Using factorial design, 18 different substrate mixes were prepared and detailed examination indicated that mix-12 exhibited desirable characteristics of green roof substrate with low bulk density (431 kg/m(3)), high water holding capacity (39.4%), air filled porosity (19.5%), and hydraulic conductivity (4570 mm/h). The substrate mix also provided maximum support to Portulaca grandiflora (380% total biomass increment) over one month of growth. To explore the leaching characteristics and sorption capacity of developed green roof substrate, a down-flow packed column arrangement was employed. High conductivity and total dissolved solids along with light metal ions (Na, K, Ca and Mg) were observed in the leachates during initial stages of column operation; however the concentration of ions ceased during the final stages of operation (600 min). Experiments with metal-spiked deionized water revealed that green roof substrate possess high sorption capacity towards various heavy metal ions (Al, Fe, Cr, Cu, Ni, Pb, Zn and Cd). Thus the developed growth substrate possesses desirable characteristics for green roofs along with high sorption capacity.

  1. The impact of interventional nephrologists on the growth of a peritoneal dialysis program: Long-term, single-center experience.

    PubMed

    Ros-Ruiz, Silvia; Alonso-Esteve, Ángela; Gutiérrez-Vílchez, Elena; Rudas-Bermúdez, Edisson; Hernández, Domingo

    2016-01-01

    Peritoneal dialysis (PD) is an underutilized form of renal replacement therapy. Although a variety of factors have been deemed responsible, timely insertion of a PD catheter may also be a contributory factor. Furthermore, a good catheter implantation technique is important to allow for effective peritoneal access function and long-term technique survival. Studies regarding results obtained by nephrologists in comparison with surgeons have been limited to small single-center experiences. Thus, the objective of this study was to explore the impact of the peritoneal dialysis (PD) catheter insertion by nephrologists compared to surgeons on early catheter complications and on technique survival. We also examine whether PD catheter insertion by nephrologists has a positive impact on the growth in the number of patients using PD. We performed 313 consecutive procedures: 192 catheter insertions and 121 catheter removal from January 1, 2006 to December 31, 2013. The main reasons for catheter removal were: renal transplantation, 52 (43%) follow of transfer to HD, 48 (40%) and catheter malfunction, 16 (13%). The patients were mostly male (63.4%) with the mean age of 50.8±15.1 years and 23.8 were diabetics. We only observed seven (2.5%) early complications (<4 weeks) associated to peritoneal catheter surgery (3 peritonitis episodes, 2 hemoperitoneum episodes, one complicated hernia and one omental entrapment). There were not significant differences in surgery-related complications in both periods. The penetration ratio of PD after 2006 was 117% higher compared with procedures performing before this date. In conclusions, we have demonstrated a positive impact on the growth of the PD population when catheter insertion is performed by nephrologists with a minimal incidence of complications associated.

  2. Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment

    PubMed Central

    ten Berge, Hein F. M.; van der Meer, Hugo G.; Steenhuizen, Johan W.; Goedhart, Paul W.; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO2 on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO2 sequestration (‘enhanced weathering’). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha−1. Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha−1 (14.8% of dose, OLIV1) to 2240 kg ha−1 (1.1%, OLIV4). This corresponds to gross CO2 sequestration of 290 to 2690 kg ha−1 (29 103 to 269 103 kg km−2.) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the ‘enhanced weathering’ concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop. PMID:22912685

  3. Jamin-interferometer-setup for the determination of concentration and temperature dependent face-specific crystal growth rates from a single experiment

    NASA Astrophysics Data System (ADS)

    Eder, Cornelia; Choscz, Carsten; Müller, Vesna; Briesen, Heiko

    2015-09-01

    An interference technique that permits the investigation of the crystal growth from a temperature controlled solution is presented. Contrary to Mach-Zehnder- or Michelson-type interferometers, the Jamin-interferometer applied in this work is characterized by improved thermal and long-time stability. In consequence a single experiment may comprise several temperature steps leading to significant changes in the bulk concentration. A procedure for the automated analysis of the acquired sequence of interference patterns is presented. Within this evaluation procedure the position of the selected crystal face, the bulk concentration and the vertical concentration distribution above the crystal are determined simultaneously. Long-term single crystal growth experiments in the range from 20 to 60 °C with sucrose and lactose crystals are used to test the method. The exact bulk concentration is determined by the interferometer. The obtained results for the growth rate of sucrose are consistent with values given in the literature. The vertical concentration distribution above the two saccharide crystals differs clearly indicating that the diffusion strongly limits the sucrose growth but not the growth of the lactose crystal. The major benefit of the described setup is that the data of a single experiment are sufficient to deduce the parameters of the model equation for the growth rate as a function of temperature and supersaturation.

  4. Cation Uptake and Allocation by Red Pine Seedlings under Cation-Nutrient Stress in a Column Growth Experiment

    SciTech Connect

    Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.; Harsh, James B.; Gill, Richard; Thomashow, Linda; Dohnalkova, Alice; Stacks, Daryl; Letourneau, Melissa; Keller, Chester K.

    2014-01-10

    Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months of plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.

  5. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.

    PubMed

    Wamelink, G W Wieger; Frissel, Joep Y; Krijnen, Wilfred H J; Verwoert, M Rinie; Goedhart, Paul W

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  6. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants

    PubMed Central

    Wamelink, G. W. Wieger; Frissel, Joep Y.; Krijnen, Wilfred H. J.; Verwoert, M. Rinie; Goedhart, Paul W.

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils. PMID:25162657

  7. The 3-5 semiconductor solid solution single crystal growth. [low gravity float zone growth experiments using gallium indium antimonides and cadmium tellurides

    NASA Technical Reports Server (NTRS)

    Gertner, E. R.

    1980-01-01

    Techniques used for liquid and vapor phase epitaxy of gallium indium arsenide are described and the difficulties encountered are examined. Results show that the growth of bulk III-V solid solution single crystals in a low gravity environment will not have a major technological impact. The float zone technique in a low gravity environment is demonstrated using cadmium telluride. It is shown that this approach can result in the synthesis of a class of semiconductors that can not be grown in normal gravity because of growth problems rooted in the nature of their phase diagrams.

  8. Elliptical selection experiment for the estimation of genetic parameters of the growth rate and feed conversion ratio in rabbits.

    PubMed

    Piles, M; Gomez, E A; Rafel, O; Ramon, J; Blasco, A

    2004-03-01

    Two elliptical selection experiments were performed in two contemporary sire lines of rabbits (C and R) in order to optimize the experimental design for estimating the genetic parameters of the growth rate (GR) and feed conversion ratio (FCR). Twelve males and 19 females from line C, and 13 males and 23 females from line R, were selected from an ellipse defined by a quadratic index based on these traits. Data from 160 rabbits of each of the parental generations of lines C and R and their offspring (275 and 266 animals, respectively) were used for the analysis. A Bayesian framework was adopted for inference. Marginal posterior distributions of the genetic parameters were obtained by Gibbs sampling. An animal model including batch, parity order, litter size, and common environmental litter effects was assumed. Posterior means (posterior standard deviations) for heritabilities of GR and FCR were estimated to be 0.31 (0.10) and 0.31 (0.10), respectively, in line C and 0.21 (0.08) and 0.25 (0.12) in line R. Posterior means of the proportion of the variance due to common litter environmental effects were 0.14 (0.06) and 0.21 (0.06) for GR and FCR, respectively, in line C and 0.17 (0.06) and 0.22 (0.06) in line R. Posterior means of genetic correlation between both traits were -0.49 (0.25) in line C and -0.47 (0.32) in line R, indicating that selection for GR was expected to result in a similar correlated response in FCR in both lines.

  9. The application of time-dependent ice crystal trajectory and growth model for the evaluation of cloud seeding experiment using liquid carbon dioxide

    NASA Astrophysics Data System (ADS)

    Nishiyama, K.; Wakimizu, K.; Maki, T.; Suzuki, Y.; Morita, O.; Tomine, K.

    2012-12-01

    This study evaluated the results of cloud seeding experiment conducted on 17th January, 2008, in western Kyushu, Japan, using simplified time-dependent ice crystal growth and trajectory cloud model, which is characterized by 1) depositional diffusion growth process only of an ice crystal, and 2) the pursuit of the growing ice crystal based on wind field and ice crystal terminal velocity. For the estimation of the ice crystal growth and trajectory, the model specifies ice supersaturation ratio that expresses the degree of competition growth among ice crystals formed by LC seeding for existing water vapor, assuming no effect of natural ice crystals. The model is based on ice crystal growth along a- and c-axes depending on air temperature and ice supersatuation, according to Chen and Lamb (1994). The cloud seeding experiment was conducted by applying homogeneous nucleation (rapid cooling of air mass and subsequent formation of many ice crystals~1013/g LC) of Liquid Carbon (LC) dioxide seeding under typical winter-type snowfall-inducing weather situation characterized by the outbreak of cold air masses from the Siberia. The result of aircraft horizontally-penetrating seeding of LC into lower layer (-2 degree C) of supercooled convective cloud with 1km thickness above the freezing level led to the formation of an artificially-induced 'isolated' radar echo (the left figures of Fig. 1) in dominant 'no-natural radar echo region'. In other words, natural biases were eliminated by the formation of the isolated radar echo. This fact provides the shortcut for evaluating the result of cloud seeding experiment. In the next, the observed cloud seeding results were evaluated by estimating the trajectory of artificially-induced growing ice crystal. The results show that the trajectory of artificial ice crystals depends on the degree of completion growth mode. Free growth brings rapid growth of an ice crystal and, therefore, the ice crystal falls into lower layers for a short time

  10. Growth of the chorioallantoic membrane into a rapid-prototyped model pore system: experiments and mathematical model.

    PubMed

    Lemon, Greg; Howard, Daniel; Yang, Hongyi; Ratchev, Svetan M; Segal, Joel I; Rose, Felicity R A J; Jensen, Oliver E; Waters, Sarah L; King, John R

    2011-07-01

    This paper presents a mathematical model to describe the growth of tissue into a rapid-prototyped porous scaffold when it is implanted onto the chorioallantoic membrane (CAM). The scaffold was designed to study the effects of the size and shape of pores on tissue growth into conventional tissue engineering scaffolds, and consists of an array of pores each having a pre-specified shape. The experimental observations revealed that the CAM grows through each pore as an intact layer of tissue, provided the width of the pore exceeds a threshold value. Based on these results a mathematical model is described to simulate the growth of the membrane, assuming that the growth is a function of the local isotropic membrane tension. The model predictions are compared against measurements of the extent of membrane growth through the pores as a function of time for pores with different dimensions.

  11. Influence of CO2 change during 90-day experiment on growth characteristics and photosynthetic activity in vegetables grown in Lunar Palace 1

    NASA Astrophysics Data System (ADS)

    Shao, Lingzhi; Liu, Hong; Wang, Minjuan; Fu, Yuming; Dong, Chen; Liu, Guanghui

    To establish bioregenerative life support system (BLSS) on lunar or Mars bases in the future, it is necessary to firstly conduct manned simulation experiments on the ground. For this purpose, Lunar palace 1 as an integrative experimental facility for permanent astrobase life support artificial closed ecosystem was set up, and 90-day experiment was carried out in this system. Vegtables as one of the important plant units, provide various nutrient content for crews in the system, such as vitamin, antioxidants and so on. However, it is not clear yet that how the CO _{2} change during 90-day experiment to affect on growth characteristics and photosynthetic activity in vegtables grown in the system. In this study, red lettuce, red rape, romaine lettuce, and bibb lettuce grown in the system were chosen as the subject investigated. Growth, expressed as dry weight, length of shoot and root, leaf area, was mearsured, and photosynthesis,expressed as net photosynthetic rate, intercellular CO _{2} concentration, chlorophyll contents and fluorescence was analyzed to detemind influence of CO _{2} change during 90-day experiment on growth in vegtables grown in the system.

  12. Surface-crack growth: Models, experiments, and structures; Proceedings of the Symposium, Sparks, NV, Apr. 25, 1988

    NASA Technical Reports Server (NTRS)

    Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)

    1990-01-01

    The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.

  13. Appendix I: Weather, soils, cultural practices, and cotton growth data from the 1989 FACE Experiment in IBSNAT Format

    SciTech Connect

    Kimball, B.A.; La Morte, R.L.; Peresta, G.J.; Mauney, J.R.; Lewin, K.F.; Hendrey, G.R.

    1992-12-31

    A major objective of the free-air CO{sub 2} enrichment (FACE) project is to provide data suitable for validation of plant growth models. These models are intended to have the capability to predict the effects of the increasing atmospheric CO{sub 2} concentration and its interactions with climate variables on future plant growth, yield, and water use. And indeed one such model called COTCO2 has been written for cotton in cooperation with the FACE project. Therefore, it is important that the data from the project be assembled for convenient use by modelers seeking to validate COTCO2 or other cotton growth models. The objective of this Appendix is to present these data in a standard format used by many plant growth models (the data are also available on diskette by request). 31 refs.

  14. Heat flow control and segregation in directional solidification: Development of an experimental and theoretical basis for Bridgman-type growth experiments in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Witt, A. F.

    1986-01-01

    Within the framework of the proposed research, emphasis was placed on application of magnetic fields to semiconductor growth systems. It was found that magnetic fields up to 3 kGauss do not affect the growth behavior nor the macro-segregation behavior in the system Ge(Ga). Applied fields are found to significantlty alter the radial dopant distribution, which is attributed to alterations in the spatial orientation of convective cells. Increasing the magnetic field to 30 kGauss is found to have a fundamental effect on dopant segregation. Emphasis is also placed on the potential of KC-135 flights for preliminary studies on the effects of reduced gravity environments on the wetting behavior of semiconductor systems in growth configuration. The limited number of experiments conducted does not allow any conclusions on the merits of KC-135 flights for semiconductor processing research.

  15. Modelling growth performance and feeding behaviour of Atlantic salmon (Salmo salar L.) in commercial-size aquaculture net pens: Model details and validation through full-scale experiments.

    PubMed

    Føre, Martin; Alver, Morten; Alfredsen, Jo Arve; Marafioti, Giancarlo; Senneset, Gunnar; Birkevold, Jens; Willumsen, Finn Victor; Lange, Guttorm; Espmark, Åsa; Terjesen, Bendik Fyhn

    2016-11-01

    We have developed a mathematical model which estimates the growth performance of Atlantic salmon in aquaculture production units. The model consists of sub-models estimating the behaviour and energetics of the fish, the distribution of feed pellets, and the abiotic conditions in the water column. A field experiment where three full-scale cages stocked with 120,000 salmon each (initial mean weight 72.1  ± SD 2.8 g) were monitored over six months was used to validate the model. The model was set up to simulate fish growth for all the three cages using the feeding regimes and observed environmental data as input, and simulation results were compared with the experimental data. Experimental fish achieved end weights of 878, 849 and 739 g in the three cages respectively. However, the fish contracted Pancreas Disease (PD) midway through the experiment, a factor which is expected to impair growth and increase mortality rate. The model was found able to predict growth rates for the initial period when the fish appeared to be healthy. Since the effects of PD on fish performance are not modelled, growth rates were overestimated during the most severe disease period. This work illustrates how models can be powerful tools for predicting the performance of salmon in commercial production, and also imply their potential for predicting differences between commercial scale and smaller experimental scales. Furthermore, such models could be tools for early detection of disease outbreaks, as seen in the deviations between model and observations caused by the PD outbreak. A model could potentially also give indications on how the growth performance of the fish will suffer during such outbreaks.

  16. Quantitative determination of zero-gravity effects on electronic materials processing germanium crystal growth with simultaneous interface demarcation. Experiment MA-060

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1977-01-01

    Experiment MA-060 was designed to establish the crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero-g conditions. The interface demarcation technique was incorporated into the experiment since it constitutes a unique tool for recording the morphology of the growth rate throughout solidification, and for establishing an absolute time reference framework for all stages of the solidification process. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. There was no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground-based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.

  17. Cross-national comparison of prenatal methamphetamine exposure on infant and early child physical growth: A natural experiment

    PubMed Central

    Abar, Beau; LaGasse, Linda L.; Wouldes, Trecia; Derauf, Chris; Newman, Elana; Shah, Rizwan; Smith, Lynne M.; Arria, Amelia M.; Huestis, Marilyn A.; DellaGrotta, Sheri; Dansereau, Lynne M.; Wilcox, Tara; Neal, Charles R.; Lester, Barry M.

    2013-01-01

    The current study seeks to compare the effects of prenatal methamphetamine exposure (PME) on infant and child physical growth between the United States (US) and New Zealand (NZ). This cross-national comparison provides a unique opportunity to examine the potential impact of services provided to drug using mothers on child health. Methods The longitudinal Infant Development, Environment and Lifestyle (IDEAL) study of PME from birth to 36 months was conducted in the US and NZ. The US cohort included 204 children with PME and 212 non-PME matched comparisons (NPME); the NZ cohort included 108 children with PME and 115 NPME matched comparisons. Latent growth curve models were used to examine effects of PME, country of origin, and the country × PME interaction on growth in length/height and weight. Results In regard to length/height, PME and country of origin were associated with initial length and growth over time. There was also a significant interaction effect, such that children with PME in the US were shorter at birth than children with PME in NZ after controlling for other prenatal exposures, infant set, socioeconomic status, and maternal height. In regard to weight, there was only an effect of country of origin. Conclusions Effects of PME on infant and child growth were shown to differ across countries, with exposed children in NZ faring better than exposed children in the US. Implications for prevention programs and public policy are discussed. PMID:23943149

  18. Cross-national comparison of prenatal methamphetamine exposure on infant and early child physical growth: a natural experiment.

    PubMed

    Abar, Beau; LaGasse, Linda L; Wouldes, Trecia; Derauf, Chris; Newman, Elana; Shah, Rizwan; Smith, Lynne M; Arria, Amelia M; Huestis, Marilyn A; DellaGrotta, Sheri; Dansereau, Lynne M; Wilcox, Tara; Neal, Charles R; Lester, Barry M

    2014-10-01

    The current study seeks to compare the effects of prenatal methamphetamine exposure (PME) on infant and child physical growth between the USA and New Zealand (NZ). This cross-national comparison provides a unique opportunity to examine the potential impact of services provided to drug using mothers on child health. The longitudinal Infant Development, Environment and Lifestyle study of PME from birth to 36 months was conducted in the USA and NZ. The US cohort included 204 children with PME and 212 non-PME matched comparisons (NPME); the NZ cohort included 108 children with PME and 115 NPME matched comparisons. Latent growth curve models were used to examine effects of PME, country of origin, and the country × PME interaction on growth in length/height and weight. In regard to length/height, PME and country of origin were associated with initial length and growth over time. There was also a significant interaction effect, such that children with PME in the USA were shorter at birth than children with PME in NZ after controlling for other prenatal exposures, infant set, socioeconomic status, and maternal height. In regard to weight, there was only an effect of country of origin. Effects of PME on infant and child growth were shown to differ across countries, with exposed children in NZ faring better than exposed children in the USA. Implications for prevention programs and public policy are discussed.

  19. Growth and Phenology of Three Dwarf Shrub Species in a Six-Year Soil Warming Experiment at the Alpine Treeline

    PubMed Central

    Anadon-Rosell, Alba; Rixen, Christian; Cherubini, Paolo; Wipf, Sonja; Hagedorn, Frank; Dawes, Melissa A.

    2014-01-01

    Global warming can have substantial impacts on the phenological and growth patterns of alpine and Arctic species, resulting in shifts in plant community composition and ecosystem dynamics. We evaluated the effects of a six-year experimental soil warming treatment (+4°C, 2007–2012) on the phenology and growth of three co-dominant dwarf shrub species growing in the understory of Larix decidua and Pinus uncinata at treeline in the Swiss Alps. We monitored vegetative and reproductive phenology of Vaccinium myrtillus, Vaccinium gaultherioides and Empetrum hermaphroditum throughout the early growing season of 2012 and, following a major harvest at peak season, we measured the biomass of above-ground ramet fractions. For all six years of soil warming we measured annual shoot growth of the three species and analyzed ramet age and xylem ring width of V. myrtillus. Our results show that phenology of the three species was more influenced by snowmelt timing, and also by plot tree species (Larix or Pinus) in the case of V. myrtillus, than by soil warming. However, the warming treatment led to increased V. myrtillus total above-ground ramet biomass (+36% in 2012), especially new shoot biomass (+63% in 2012), as well as increased new shoot increment length and xylem ring width (+22% and +41%, respectively; average for 2007–2012). These results indicate enhanced overall growth of V. myrtillus under soil warming that was sustained over six years and was not caused by an extended growing period in early summer. In contrast, E. hermaphroditum only showed a positive shoot growth response to warming in 2011 (+21%), and V. gaultherioides showed no significant growth response. Our results indicate that V. myrtillus might have a competitive advantage over the less responsive co-occurring dwarf shrub species under future global warming. PMID:24956273

  20. Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline.

    PubMed

    Anadon-Rosell, Alba; Rixen, Christian; Cherubini, Paolo; Wipf, Sonja; Hagedorn, Frank; Dawes, Melissa A

    2014-01-01

    Global warming can have substantial impacts on the phenological and growth patterns of alpine and Arctic species, resulting in shifts in plant community composition and ecosystem dynamics. We evaluated the effects of a six-year experimental soil warming treatment (+4°C, 2007-2012) on the phenology and growth of three co-dominant dwarf shrub species growing in the understory of Larix decidua and Pinus uncinata at treeline in the Swiss Alps. We monitored vegetative and reproductive phenology of Vaccinium myrtillus, Vaccinium gaultherioides and Empetrum hermaphroditum throughout the early growing season of 2012 and, following a major harvest at peak season, we measured the biomass of above-ground ramet fractions. For all six years of soil warming we measured annual shoot growth of the three species and analyzed ramet age and xylem ring width of V. myrtillus. Our results show that phenology of the three species was more influenced by snowmelt timing, and also by plot tree species (Larix or Pinus) in the case of V. myrtillus, than by soil warming. However, the warming treatment led to increased V. myrtillus total above-ground ramet biomass (+36% in 2012), especially new shoot biomass (+63% in 2012), as well as increased new shoot increment length and xylem ring width (+22% and +41%, respectively; average for 2007-2012). These results indicate enhanced overall growth of V. myrtillus under soil warming that was sustained over six years and was not caused by an extended growing period in early summer. In contrast, E. hermaphroditum only showed a positive shoot growth response to warming in 2011 (+21%), and V. gaultherioides showed no significant growth response. Our results indicate that V. myrtillus might have a competitive advantage over the less responsive co-occurring dwarf shrub species under future global warming.

  1. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments.

    PubMed

    Ren, Lingxiao; Wang, Peifang; Wang, Chao; Chen, Juan; Hou, Jun; Qian, Jin

    2017-01-01

    Phosphorus (P) plays a critical role in algal growth; therefore, a better understanding of P availability is essential to control harmful algal blooms. Three algae species, Microcystis aeruginosa, Chlorella pyrenoidosa, and Pseudokirchneriella subcapitata, were mono-cultured and co-cultured on three types of P substrates, dissolved inorganic P (DIP), phosphomonoesters glucose-6-phosphate (G-6-P) and β-glycerol phosphate (β-glycerol-P), and phosphonate (glyphosate), to explore their growth and P utilization. All three species could utilize dissolved organic P (DOP) to sustain their growth, whereas DIP was their preferred P substrate in both culture types. Algae could regulate the P uptake capacity under different P conditions, and the added P could be rapidly accumulated at the beginning of the culture and slowly utilized during the subsequent life cycle. M. aeruginosa exhibited wider P selectivity and could utilize all three P substrates, whereas the other two species could only use phosphomonoester (G-6-P and β-glycerol-P) in the mono-cultures. However, in the co-cultures, the relative bioavailability of DOP for M. aeruginosa and C. pyrenoidosa was enhanced, and M. aeruginosa might contribute to the growth of C. pyrenoidosa and P. subcapitata when fed with glyphosate. The three species showed an intrinsic ability to produce alkaline phosphatase (AP), and AP activity (APA) was regulated by Pi stress. However, high APA did not necessarily lead to high Pi release and algal growth on unfavorable substrates. Although M. aeruginosa was not superior in growth rate in the mono-cultures, it showed a better P accumulation ability and maintained stable growth on different P substrates. Moreover, it was a good competitor, suppressing the thriving growth of the other species in co-cultures. Overall, the findings indicated the strategic flexibility of P utilization by algae and the strong competitive ability of M. aeruginosa in Pi-limited and DOP-enriched natural

  2. Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment.

    PubMed

    Lee, Youn-Sun; Choi, Kyeong-Mi; Kim, Wonkyun; Jeon, Young-Soo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo

    2013-12-27

    Hinokitiol (1), a tropolone-related natural compound, induces apoptosis and has anti-inflammatory, antioxidant, and antitumor activities. In this study, the inhibitory effects of 1 were investigated on human colon cancer cell growth and tumor formation of xenograft mice. HCT-116 and SW-620 cells derived from human colon cancers were found to be similarly susceptible to 1, with IC50 values of 4.5 and 4.4 μM, respectively. Compound 1 induced S-phase arrest in the cell cycle progression and decreased the expression levels of cyclin A, cyclin E, and Cdk2. Conversely, 1 increased the expression of p21, a Cdk inhibitor. Compound 1 decreased Bcl-2 expression and increased the expression of Bax, and cleaved caspase-9 and -3. The effect of 1 on tumor formation when administered orally was evaluated in male BALB/c-nude mice implanted intradermally separately with HCT-116 and SW-620 cells. Tumor volumes and tumor weights in the mice treated with 1 (100 mg/kg) were decreased in both cases. These results suggest that the suppression of tumor formation by compound 1 in human colon cancer may occur through cell cycle arrest and apoptosis.

  3. Skylab experiments. Volume 3: Materials science. [Skylab experiments on metallurgy, crystal growth, semiconductors, and combustion physics in weightless environment for high school level education

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The materials science and technology investigation conducted on the Skylab vehicle are discussed. The thirteen experiments that support these investigations have been planned to evaluate the effect of a weightless environment on melting and resolidification of a variety of metals and semiconductor crystals, and on combustion of solid flammable materials. A glossary of terms which define the space activities and a bibliography of related data are presented.

  4. Do University Teachers Become More Effective with Experience? A Multilevel Growth Model of Students' Evaluations of Teaching over 13 Years

    ERIC Educational Resources Information Center

    Marsh, Herbert W.

    2007-01-01

    Do university teachers, like good wine, improve with age? The purpose of this methodological/substantive study is to apply a multiple-level growth modeling approach to the long-term stability of students' evaluations of teaching effectiveness (SETs). For a diverse cohort of 195 teachers who were evaluated continuously over 13 years (6,024 classes,…

  5. F.A.C.E.S. (Faculty Academic Community Education Showcase): Professional Growth Experiences in a Career University

    ERIC Educational Resources Information Center

    Colbert, Paul J.

    2012-01-01

    Institutes of higher education exist for the purpose of developing, fostering, nurturing, and stimulating the intellectual growth and development of students. The core values of a college education provide students conceptual and practical educational opportunities that focus on improving their skills and knowledge. These skills and knowledge…

  6. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    SciTech Connect

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-06-24

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varying two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.

  7. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    DOE PAGES

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; ...

    2015-06-24

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varyingmore » two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.« less

  8. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    SciTech Connect

    Merritt, E. C. Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-06-15

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varying two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. We also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.

  9. What have we learned about phototropism from spaceflight experiments? Novel responses to light discovered during the Seedling Growth project on the ISS.

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Edelmann, Richard; Herranz, Raul; Medina, Francisco Javier; Vandenbrink, Joshua

    2016-07-01

    In response to external stimuli, plants exhibit directed growth responses termed tropisms. Phototropism is directed growth of plants in response to light while gravitropism is the tropistic movement of plants in response to gravity. The integration of these tropisms (along with other growth movements) results in the overall growth form of the plant. Utilizing the European Modular Cultivation System (EMCS) on the International Space Station (ISS), we were able to decouple phototropism from the effects of gravitropism. The Seedling Growth (SG-1, 2, 3) series of experiments employed the centrifuge in the EMCS to create fractional/reduced gravity environments (0, 0.3, 0.5, 0.8 and 1g) to help discern the relationship between the phototropic response and gravitropism in seedlings of Arabidopsis thaliana. In SG, seedlings were exposed to continuous red light, continuous blue light, and red-to-blue light cycles at various gravity levels in order to characterize the phototropic response. Image downlinks from the ISS allowed for analysis of growth and curvature measurements under differential light and gravity conditions. Previous results from our space experiments identified a unique red-light-based phototropism in roots and shoots. The most recent results from SG-1 and SG-2 (2015) reveal a novel positive phototropic curvature in roots of seedlings illuminated with blue light under microgravity conditions. In addition, a positive phototropic response of roots and shoots exposed to red light was observed in microgravity, confirming our previous observations. The phototropic response of shoots to blue light appears to be largely unaffected by fractional gravity. In addition to the WT (Landsberg ecotype), phytochrome A and B mutants were utilized to elucidate the role phytochromes play in blue and red light perception and the resulting phototropic responses. Understanding the relationship between phototropic and gravitropic responses is an important first step in being able

  10. Building a better mousetrap II: using Design of Experiments with unconfounded ions to compare the growth of different microalgae.

    PubMed

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2015-05-01

    A large number of unconfounded media variations were used with a Scheffe Mix Model to examine in an unambiguous fashion the effects of variations in six important ions; NH4(+), NO3(-), Na(+), K(+), PO4(-), and Cl(-), on the growth of Chlorella vulgaris. This allows several novel observations on media components, for example, the inhibitory effects of chloride, to be made. Using a side by side comparison, it is shown that two strains of Chlorella show significant physiological and functional differences brought out by this approach. Testing selected formulations with a diverse set of algae demonstrated different effects on both growth and cellular lipid content, in some cases driving significant lipid production. This suggests that future work using a larger portion of media composition space could lead to the development of novel media supporting maximal biomass production and lipid production.

  11. A reference growth curve for nutritional experiments in zebrafish (Danio rerio) and changes in whole body proteome during development.

    PubMed

    Gómez-Requeni, P; Conceição, L E C; Olderbakk Jordal, A-E; Rønnestad, I

    2010-12-01

    Zebrafish is one of the most used vertebrate model organisms in molecular and developmental biology, recently gaining popularity also in medical research. However, very little work has been done to assess zebrafish as a model species in nutritional studies in aquaculture in order to utilize the methodological toolbox that this species represents. As a starting point to acquire some baseline data for further nutritional studies, growth of a population of zebrafish was followed for 15 weeks. Furthermore, whole body proteome was screened during development by means of bi-dimensional gel electrophoresis and mass spectrometry. Fish were reared under best practice laboratory conditions from hatching until 103 days post-fertilization (dpf) and regularly fed ad libitum with Artemia nauplii from 12 dpf. A growth burst occurred within 9-51 dpf, reaching a plateau after 65 dpf. Fork length and body weight were significantly lower in males than in females from 58 dpf onwards. Proteomics analysis showed 28 spot proteins differently expressed through development and according to sex. Of these proteins, 20 were successfully identified revealing proteins involved in energy production, muscle development, eye lens differentiation, and sexual maturation. In summary, zebrafish exhibited a rapid growth until approximately 50 dpf, when most individuals started to allocate part of the dietary energy intake for sexual maturation. However, proteomic analysis revealed that some individuals reached sexual maturity earlier and already from 30 dpf onwards. Thus, in order to design nutritional studies with zebrafish fed Artemia nauplii, it is recommended to select a period between 20 and 40 dpf, when fish allocate most of the ingested energy for non-reproductive growth purposes.

  12. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 3; Plasma Analysis Hormone Measurements

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Popova, I. A.; Grossman, E.; Rudolph, I.

    1994-01-01

    Plasma from space flight and tail suspended rats was analyzed for a number of constituents in order to evaluate their metabolic status and endocrine function. The data presented here cover plasma hormone measurements. Corticosterone, thyroxine, and testosterone were measured by radioimmunoassay. Prolactin and growth hormone were measured by double antibody immunoassays using hormones and antisera prepared in house. Data were evaluated by analysis of variance.

  13. Laboratory Experiments on Heterogeneous CO2 Ice Nucleation and Growth Rates on Meteor Smoke Particle Analogues in the Martian Mesosphere

    NASA Astrophysics Data System (ADS)

    Nachbar, M.; Duft, D.; Mangan, T.; Gomez Martin, J. C.; Plane, J. M. C.; Leisner, T.

    2014-12-01

    CO2 ice particles with radii of about 100 nm have been detected in the Martian mesosphere region at heights between 80 km and 100 km. Gravity waves propagating upward cause a cooling of this region leading to temporary supersaturated conditions during which heterogeneous nucleation of CO2 can take place. Large uncertainties in describing the nucleation processes at the extreme conditions of the Martian mesopause region state the need of laboratory measurements. Sub-3 nanometer radius meteor smoke particle (MSP) analogues are created in a microwave plasma and stored in an electrodynamic trap for examining CO2 ice nucleation as well as growth rates at low particle temperatures between 60 K and 75 K and CO2 concentrations up to 1017 m-3 which are reasonably close to conditions present in the Martian mesosphere. Ice nucleation and growth processes of the particles are examined by analyzing the mass distribution of the particles with a time of flight spectrometer as a function of the residence time under supersaturated conditions. In this paper, first measurements of CO2 ice nucleation and growth on iron oxide and silicate particles will be presented. These results are extrapolated to realistic Martian conditions reducing the large uncertainty in dealing with CO2 ice nucleation on MSPs.

  14. Simulating Population Growth.

    ERIC Educational Resources Information Center

    Byington, Scott

    1997-01-01

    Presents a strategy to help students grasp the important implications of population growth. Involves an interactive demonstration that allows students to experience exponential and logistic population growth followed by a discussion of the implications of population-growth principles. (JRH)

  15. On the design of optimal dynamic experiments for parameter estimation of a Ratkowsky-type growth kinetics at suboptimal temperatures.

    PubMed

    Bernaerts, K; Versyck, K J; Van Impe, J F

    2000-03-10

    It is generally known that accurate model building, i.e., proper model structure selection and reliable parameter estimation, constitutes an essential matter in the field of predictive microbiology, in particular, when integrating these predictive models in food safety systems. In this context, Versyck et al. (1999) have introduced the methodology of optimal experimental design techniques for parameter estimation within the field. Optimal experimental design focuses on the development of optimal input profiles such that the resulting rich (i.e., highly informative) experimental data enable unique model parameter estimation. As a case study, Versyck et al. (1999) [Versyck, K., Bernaerts, K., Geeraerd, A.H., Van Impe, J.F., 1999. Introducing optimal experimental design in predictive modeling: a motivating example. Int. J. Food Microbiol., 51(1), 39-51] have elaborated the estimation of Bigelow inactivation kinetics parameters (in a numerical way). Opposed to the classic (static) experimental approach in predictive modelling, an optimal dynamic experimental setup is presented. In this paper, the methodology of optimal experimental design or parameter estimation is applied to obtain uncorrelated estimates of the square root model parameters [Ratkowsky, D.A., Olley, J., McMeekin, T.A., Ball, A., 1982. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 149, 1-5] describing the effect of suboptimal growth temperatures on the maximum specific growth rate of microorganisms. These estimates are the direct result of fitting a primary growth model to cell density measurements as a function of time. Apart from the design of an optimal time-varying temperature profile based on a sensitivity study of the model output, an important contribution of this publication is a first experimental validation of this innovative dynamic experimental approach for uncorrelated parameter identification. An optimal step temperature profile, within the range of

  16. Fungal and bacterial growth responses to N fertilization and pH in the 150-year 'Park Grass' UK grassland experiment.

    PubMed

    Rousk, Johannes; Brookes, Philip C; Bååth, Erland

    2011-04-01

    The effects of nitrogen (N) fertilization (0-150 kg N ha⁻¹ year⁻¹ since 1865) and pH (3.3-7.4) on fungal and bacterial growth, biomass and phospholipid fatty acid (PLFA) composition were investigated in grassland soils from the 'Park Grass Experiment', Rothamsted Research, UK. Bacterial growth decreased and fungal growth increased with lower pH, resulting in a 50-fold increase in the relative importance of fungi between pH 7.4 and 3.3. The PLFA-based fungal:bacterial biomass ratio was unchanged between pH 4.5 and 7.4, and decreased only below pH 4.5. Respiration and substrate-induced respiration biomass both decreased three- to fourfold with lower pH, but biomass concentrations estimated using PLFAs were unaffected by pH. N fertilization did not affect bacterial growth and marginally affected fungal growth while PLFA biomass marker concentrations were all reduced by higher N additions. Respiration decreased with higher N application, suggesting a reduced quality of the soil organic carbon. The PLFA composition was strongly affected by both pH and N. A comparison with a pH gradient in arable soil allowed us to generalize the pH effect between systems. There are 30-50-fold increases in the relative importance of fungi between high (7.4-8.3) and low (3.3-4.5) pH with concomitant reductions of respiration by 30-70%.

  17. The Growth of Instructional Coaching Partner Conversations in a PreK-3rd Grade Teacher Professional Development Experience

    ERIC Educational Resources Information Center

    Thomas, Earl E.; Bell, David L.; Spelman, Maureen; Briody, Jennifer

    2015-01-01

    Instructional coaching that supports teachers' with revising teaching practices is not understood. This study sought to understand the impact of the instructional coaching experience by recording coaching conversations/interactions with teachers. The purpose was to determine if the type of coaching conversations changed overtime during three…

  18. Effects of visual experience on vascular endothelial growth factor expression during the postnatal development of the rat visual cortex.

    PubMed

    Bengoetxea, Harkaitz; Argandoña, Enrike G; Lafuente, José V

    2008-07-01

    The development of the cortical vascular network depends on functional maturation. External inputs are an essential requirement in the modeling of the visual cortex, mainly during the critical period, when the functional and structural properties of visual cortical neurons are particularly susceptible to alterations. Vascular endothelial growth factor (VEGF) is the major angiogenic factor, a key signal in the induction of vessel growth. Our study focused on the role of visual stimuli on the development of the vascular pattern correlated with VEGF levels. Vascular density and the expression of VEGF were examined in the primary visual cortex of rats reared under different visual environments (dark rearing, dark-rearing in conditions of enriched environment, enriched environment, and laboratory standard conditions) during postnatal development (before, during, and after the critical period). Our results show a restricted VEGF cellular expression to astroglial cells. Quantitative differences appeared during the critical period: higher vascular density and VEGF protein levels were found in the enriched environment group; both dark-reared groups showed lower vascular density and VEGF levels, which means that enriched environment without the physical exercise component does not exert effects in dark-reared rats.

  19. Effects of Visual Experience on Vascular Endothelial Growth Factor Expression during the Postnatal Development of the Rat Visual Cortex

    PubMed Central

    Argandoña, Enrike G.; Lafuente, José V.

    2008-01-01

    The development of the cortical vascular network depends on functional maturation. External inputs are an essential requirement in the modeling of the visual cortex, mainly during the critical period, when the functional and structural properties of visual cortical neurons are particularly susceptible to alterations. Vascular endothelial growth factor (VEGF) is the major angiogenic factor, a key signal in the induction of vessel growth. Our study focused on the role of visual stimuli on the development of the vascular pattern correlated with VEGF levels. Vascular density and the expression of VEGF were examined in the primary visual cortex of rats reared under different visual environments (dark rearing, dark-rearing in conditions of enriched environment, enriched environment, and laboratory standard conditions) during postnatal development (before, during, and after the critical period). Our results show a restricted VEGF cellular expression to astroglial cells. Quantitative differences appeared during the critical period: higher vascular density and VEGF protein levels were found in the enriched environment group; both dark-reared groups showed lower vascular density and VEGF levels, which means that enriched environment without the physical exercise component does not exert effects in dark-reared rats. PMID:17986606

  20. Influence of non steady gravity on natural convection during micro-gravity solidification of semiconductors. I - Time scale analysis. II - Implications for crystal growth experiments

    NASA Technical Reports Server (NTRS)

    Griffin, P. R.; Motakef, S.

    1989-01-01

    Consideration is given to the influence of temporal variations in the magnitude of gravity on natural convection during unidirectional solidification of semiconductors. It is shown that the response time to step changes in g at low Rayleigh numbers is controlled by the momentum diffusive time scale. At higher Rayleigh numbers, the response time to increases in g is reduced because of inertial effects. The degree of perturbation of flow fields by transients in the gravitational acceleration on the Space Shuttle and the Space Station is determined. The analysis is used to derive the requirements for crystal growth experiments conducted on low duration low-g vehicles. Also, the effectiveness of sounding rockets and KC-135 aircraft for microgravity experiments is examined.

  1. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 3; Constant Stress and Cyclic Stress Experiments

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on advanced structural ceramics tested under constant stress and cyclic stress loading at ambient and elevated temperatures. The data fit to the relation between the time to failure and applied stress (or maximum applied stress in cyclic loading) was very reasonable for most of the materials studied. It was also found that life prediction for cyclic stress loading from data of constant stress loading in the exponential formulation was in good agreement with the experimental data, resulting in a similar degree of accuracy as compared with the power-law formulation. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important slow-crack-growth (SCG) parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  2. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 2; Constant Stress Rate Experiments

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress rate and preload testing at ambient and elevated temperatures. The data fit to the relation of strength versus the log of the stress rate was very reasonable for most of the materials. Also, the preloading technique was determined equally applicable to the case of slow-crack-growth (SCG) parameter n greater than 30 for both the power-law and exponential formulations. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important SCG parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  3. Sources of variation in growth, form, and survival in dwarf and normal-stature pitch pines (Pinus rigida, Pinaceae) in long-term transplant experiments.

    PubMed

    Fang, Wei; Taub, Daniel R; Fox, Gordon A; Landis, R Matthew; Natali, Susan; Gurevitch, Jessica

    2006-08-01

    Determining the relative contributions of genetic and environmental factors to phenotypic variation is critical for understanding the evolutionary ecology of plant species, but few studies have examined the sources of phenotypic differentiation between nearby populations of woody plants. We conducted reciprocal transplant experiments to examine sources of variation in growth rate, form, survival, and maturation in a globally rare dwarf population of pitch pine (Pinus rigida) and in surrounding populations of normal-stature pitch pines on Long Island, New York. Transplants were monitored over a 6-yr period. The influence of seedling origin on height, growth rate, survival, and form (single-stemmed vs. multi-stemmed growth habit) was much smaller than the effect of transplanting location. Both planting site and seed origin were important factors in determining time to reproduction; seedlings originating from dwarf populations and seedlings planted at the normal-stature site reproduced earliest. These results suggest that many of the differences between dwarf and normal-stature pitch pines may be due more to plastic responses to environmental factors than to genetic differentiation among populations. Therefore, preservation of the dwarf pine habitat is essential for preserving dwarf pine communities; the dwarf pines cannot be preserved ex situ.

  4. Diffusion-Tensor Imaging of the Physes: A Possible Biomarker for Skeletal Growth-Experience with 151 Children.

    PubMed

    Bedoya, Maria A; Delgado, Jorge; Berman, Jeffrey I; Chauvin, Nancy A; Zurakowski, David; Ramirez-Grueso, Raul; Ntoulia, Aikaterini; Jaramillo, Diego

    2017-02-02

    Purpose To determine the changes of diffusion-tensor imaging (DTI) and tractography in the distal femur and proximal tibia related to age, sex, and height. Materials and Methods Following institutional review board approval, with waiver of consent and with HIPAA compliance, the authors retrospectively analyzed DTI images of the knee in 151 children, 73 girls (median age, 14.1 years; range, 6.5-17.8 years) and 78 boys (median age, 16.6 years; range, 6.9-17.9 years), studied from January 2013 to October 2014. At sagittal echo-planar DTI (20 directions, b values of 0 and 600 sec/mm(2)), regions of interest were placed in the tibial and femoral physes. Using a fractional anisotropy threshold of 0.15 and an angle threshold of 40°, the authors performed tractography and measured apparent diffusion coefficient (ADC) and tract length and volume. Changes related to age, sex, and height were evaluated by using fitted nonlinear polynomial functions on bootstrapped samples. Results Femoral tract volume and length increased and then decreased with age (P < .001); the peaks of femoral tract volume are consistent with the growth spurt, occurring earlier in girls (10.8 years) than in boys (13.0 years) (P < .001). Girls had smaller tract volumes in comparison to boys (P = .013). ADC peaks 2 years earlier than tract volume (girls at 9.3 years, boys at 11.0 years). Girls with greater than 50th percentile of height had longer tracts and greater tract volumes compared with girls with less than 50th percentile (P < .020). DTI parameters of boys do not correlate with percentile of height (P > .300). Conclusion DTI of the physis and metaphysis shows greater tract length and volumes in subjects who are at ages when the growth is fastest. ADC and tract length and volume have an earlier and smaller peak in girls than in boys. Femoral tract length and volume are larger in taller girls. (©) RSNA, 2017.

  5. The Effect of Temperature on Hygroscopic Growth of Organic Aerosols Over The 273-303K Range as Derived From Bulk Solution Experiments

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Tabazadeh, A.; Golden, D. M.; Jacobson, M. Z.

    2009-12-01

    Studies have shown that organic matter often constitutes up to 50% by mass of tropospheric aerosols. It is also known that these organics may considerably alter the water uptake properties of aerosol particles. Water uptake of a particle is typically quantified by the hygroscopic growth factor, defined as the ratio of the diameter of a spherical particle when it is exposed to humid conditions to that under dry conditions. In this study, we have assembled an apparatus to measure water activity over aqueous solutions as a function of temperature and solute concentration. We report the experimental precision of our vapor pressure apparatus, obtained by replicating several experiments. Using this apparatus, we studied aqueous solutions of organic compounds representing the categories found in atmospheric aerosols such as simple sugars, diacids, humic materials, and some of their mixtures with inorganic salts. From these measurements, we directly computed the hygroscopic growth factor (HGF) using a formulation that expresses HGF as a function of water activity. Our approach is based on the fact that water activity limits the growth of a particle that can be attributed to water uptake. While most studies report the hygroscopic growth factor of atmospheric aerosols at room temperature (20 - 30°C), we explored the temperature effect on hygroscopic growth of organic aerosols within the 0 - 30°C temperature range. Within experimental error, we found no temperature dependence of the HGF in the 0 - 30°C range, for solutes d-glucose, levoglucosan, succinic acid, phthalic acid, humic acid and Suwanne River fulvic acid. For example, the water activity of an aqueous solution of d-glucose corresponding to a HGF of 1.72 varied by only 1% from 0 to 30°C, well below the experimental error. We report hygroscopic growth curves as a function of temperature and relative humidity for these six organic solutes and some of their mixtures with inorganic salts. Finally, we compare our HGF

  6. A series of experiments aimed at clarifying the mode of action of barley straw in cyanobacterial growth control.

    PubMed

    Iredale, Robert S; McDonald, Adrian T; Adams, David G

    2012-11-15

    For over 25 years it has been known that rotting barley straw can be used to prevent the development of blooms of cyanobacteria and algae in freshwater bodies, although its effectiveness can be variable. The mode of action is still not understood, although a number of hypotheses have been suggested, many of which are supported by little or no experimental evidence. Here, we provide the first experimental confirmation that microbial activity is responsible for the release of either the growth inhibitory fraction, or its precursor, from whole straw, after three or more weeks of decomposition. However, a much more rapid release of inhibitory components was achieved by fine chopping of fresh straw. In bioassays of straw activity the choice of both the cyanobacterial test strain and the assay temperature affected the outcome. The inhibitory activity of straw was greater when decomposition was carried out in the presence of UV-supplemented visible light and this activity was reduced in the presence of catalase, implying that straw activity may in part involve hydrogen peroxide. A better understanding of straw decomposition is required to clarify the mode of action of straw and allow the optimisation of its use in the field.

  7. The space experiment CERASP: Definition of a space-suited radiation source and growth conditions for human cells

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine E.; Baumstark-Khan, Christa; Spitta, Luis; Thelen, Melanie; Arenz, Andrea; Franz, Markus; Schulze-Varnholt, Dirk; Berger, Thomas; Reitz, Günther

    The combined action of ionizing radiation and microgravity will continue to influence future space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. It has been estimated that on a 3-year mission to Mars about 3% of the bodies' cell nuclei would have been hit by one iron ion with the consequence that nuclear DNA will be heavily damaged. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. DNA repair studies in space on bacteria, yeast cells and human fibroblasts, which were irradiated before, flight, gave contradictory results: from inhibition of repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. The space experiment CERASP (CEllular Responses to RAdiation in SPace) to be performed at the International Space Station (ISS) is aimed to supply basic information on the cellular response in microgravity to radiation applied during flight. It makes use of a recombinant human cell line as reporter for cellular signal transduction modulation by genotoxic environmental conditions. The main biological endpoints under investigation will be gene activation based on enhanced green fluorescent protein (EGFP, originally isolated from the bioluminescent jellyfish Aequorea victoria) expression controlled by a DNA damage-dependent promoter element which reflects the activity of the nuclear factor kappa B (NF- κB) pathway. The NF- κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, anti-apoptosis and tumorgenesis. For radiation exposure during space flight a radiation source has been constructed as damage accumulation by cosmic radiation will certainly be insufficient for analysis. The space experiment specific hardware consists of a specially designed radiation source made up of the β-emitter promethium-147, combined with a

  8. Plant growth responses to inorganic environmental contaminants are density-dependent: experiments with copper sulfate, barley and lettuce.

    PubMed

    Hansi, Mari; Weidenhamer, Jeffrey D; Sinkkonen, Aki

    2014-01-01

    The density-dependence of terrestrial plant-plant interactions in the presence of toxins has previously been explored using biodegradable compounds. We exposed barley and lettuce to four copper concentrations at four stand densities. We hypothesized that toxin effects would decrease and Cu uptake would increase at increasing plant densities. We analyzed toxin effects by (a) comparing plant biomasses and (b) using a recent regression model that has a separate parameter for the interaction of resource competition and toxin interference. Plant response to Cu was density-dependent in both experiments. Total Cu uptake by barley increased and the dose per plant decreased as plant density increased. This study is the first to demonstrate that plant density mediates plant response to metals in soil in a predictable way. This highlights the need to explore the mechanisms for and consequences of these effects, and to integrate the use of several plant densities into standard ecotoxicological testing.

  9. Experiences of patients undergoing repeated intravitreal anti-vascular endothelial growth factor injections for neovascular age-related macular degeneration.

    PubMed

    Boyle, Jessica; Vukicevic, Meri; Koklanis, Konstandina; Itsiopoulos, Catherine; Rees, Gwyneth

    2017-01-09

    Current therapy to slow disease progression in patients with neovascular age-related macular degeneration (AMD) entails regular intravitreal anti-vascular endothelial growth factor (VEGF) injections, often indefinitely. Little is known about the burden imposed on patients by this repetitive treatment schedule and how this can be best managed. The aim of this study was to explore the psychosocial impact of repeated intravitreal injections on patients with neovascular AMD. Forty patients (16 males, 24 females) with neovascular AMD undergoing anti-VEGF treatment were recruited using purposive sampling from a private ophthalmology practice and public hospital in Melbourne. Patients were surveyed using the Macular Disease Treatment Satisfaction Questionnaire (MacTSQ; Bradley, Health Psychology Research Unit, Surrey, England) and underwent semi-structured, one-on-one interviews. Interview topics were: treatment burden and satisfaction; tolerability; barriers to adherence; treatment motivation; and patient education. Interviews were audio recorded and thematic analysis performed using NVivo 10 (QSR International, Doncaster, Australia). Patients recognised the importance of treatment to preserve eyesight, yet experienced significant psychosocial and practical burden from the treatment schedule. Important issues included treatment-related anxiety, financial considerations and transport burden placed on relatives or carers. Many patients were restricted to sedentary activities post-injection owing to treatment side effects. Patients prioritised treatment, often sacrificing family, travel and social commitments owing to a fear of losing eyesight if treatment was not received. Whilst anti-VEGF injections represent the current mainstay of treatment for neovascular AMD, the ongoing treatment protocol imposes significant burden on patients. An understanding of the factors that contribute to the burden of treatment may help inform strategies to lessen its impact and assist

  10. The preferential growth of branched GDGT source microorganisms under aerobic conditions in peat revealed by stable isotope probing experiments

    NASA Astrophysics Data System (ADS)

    Huguet, Arnaud; Meador, Travis B.; Laggoun-Défarge, Fatima; Könneke, Martin; Derenne, Sylvie; Hinrichs, Kai-Uwe

    2016-04-01

    Branched glycerol dialkyl glycerol tetraether (brGDGTs) membrane lipids are widely distributed in aquatic and terrestrial environments and are being increasingly used as temperature proxies. Nevertheless, little is known regarding the microorganisms that produce these lipids, which are found in especially high abundance in the anaerobic horizons of peat bogs. We initiated stable isotope probing incubations of peat samples from a Sphagnum-dominated peatland (Jura Mountains, France) to measure the incorporation of (D)-D2O and 13C-labeled dissolved inorganic carbon (DIC) into brGDGTs, and thus gauge the activity, growth, and turnover times of their source organisms. Peat samples were collected from two adjacent sites with contrasting humidity levels (hereafter called "fen" and "bog" sites). For each site, samples from the surficial aerobic layer (acrotelm) and deeper anaerobic layer (catotelm) were collected and were incubated under both anaerobic and aerobic conditions for the acrotelm samples and only anaerobic conditions for the catotelm. The incubations were performed at 12 ° C, consistent with the mean summer air temperature at the sampling site. After two months of incubation, there was no incorporation of 13C label in brGDGTs for samples incubated under either aerobic or anaerobic conditions, showing that brGDGT-producing bacteria are heterotrophic microorganisms, as previously observed in organo-mineral soils (Weijers et al., 2011). Similarly, little to no deuterium incorporation was observed for brGDGTs isolated from anaerobically-incubated deep samples. In contrast, in the aerobic incubations of acrotelm samples from bog and fen, the weighted average δD of brGDGT core lipids (CLs) increased by up to 3332‰ and 933‰ after two months, respectively, indicating that fresh brGDGT CLs were biosynthesized at the peat surface. D incorporation into brGDGT CLs converted to production rates ranging from 30-106 ng cm-3y-1 in the aerobic acrotelm from bog and fen

  11. Correction of the equilibrium temperature caused by slight evaporation of water in protein crystal growth cells during long-term space experiments at International Space Station

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takahisa; Suzuki, Yoshihisa; Yoshizaki, Izumi; Tsukamoto, Katsuo; Murayama, Kenta; Fukuyama, Seijiro; Hosokawa, Kouhei; Oshi, Kentaro; Ito, Daisuke; Yamazaki, Tomoya; Tachibana, Masaru; Miura, Hitoshi

    2015-08-01

    The normal growth rates of the {110} faces of tetragonal hen egg-white lysozyme crystals, R, were measured as a function of the supersaturation σ parameter using a reflection type interferometer under μG at the International Space Station (NanoStep Project). Since water slightly evaporated from in situ observation cells during a long-term space station experiment for several months, equilibrium temperature Te changed, and the actual σ, however, significantly increased mainly due to the increase in salt concentration Cs. To correct σ, the actual Cs and protein concentration Cp, which correctly represent the measured Te value in space, were first calculated. Second, a new solubility curve with the corrected Cs was plotted. Finally, the revised σ was obtained from the new solubility curve. This correction method successfully revealed that the 2.8% water was evaporated from the solution, leading to 2.8% increase in the Cs and Cp of the solution.

  12. IMPACTS OF MESOGRAZERS ON EPIPHYTE AND ENDOPHYTE GROWTH ASSOCIATED WITH CHEMICALLY DEFENDED MACROALGE FROM THE WESTERN ANTARCTIC PENINSULA: A MESOCOSM EXPERIMENT(1).

    PubMed

    Aumack, Craig F; Amsler, Charles D; McClintock, James B; Baker, Bill J

    2011-02-01

    It has been hypothesized that the extensive mesograzer community along the western Antarctic Peninsula regulates epiphytic algae as well as emergent filaments from endophytic species. Should grazing limit growth of fouling or potentially pathogenic microphytes, then Antarctic macrophytes may actually benefit from the remarkably high densities of mesograzer amphipods that occur in these waters. Although initially counterintuitive, the negative impacts of epi/endophyte fouling may outweigh stresses caused by limited amphipod grazing on chemically defended macrophytes by reducing stress from endo/epiphyte biomass. If so, then alleviating mesograzing stress should result in significant increases in endo/epiphytic biomass. To test this hypothesis, a mesocosm experiment was conducted. Individuals representing four common species of Antarctic macroalgae were placed in flow-through seawater mesocosms. Amphipods were added to five mesocosms at simulated natural densities, while the other five remained herbivore free. At the end of 7 weeks, endo/epiphytic growth on individual macrophytes was quantified. Most species of macroalgae demonstrated noticeably higher instances of endophyte coverage, epiphytic diversity, and diatom colonization in consumer-free mesocosms than in the presence of amphipods. These data suggest that macroalgae along the western Antarctic Peninsula rely on grazers to control populations of potentially harmful epiphytes. We hypothesize that the chemically defended macroalgal flora lives in mutualism with high densities of mesograzers, providing amphipods with shelter from predation while continually being cleaned of potentially harmful endo/epiphytes.

  13. Modeling and estimation of replication fitness of human immunodeficiency virus type 1 in vitro experiments by using a growth competition assay.

    PubMed

    Wu, Hulin; Huang, Yangxin; Dykes, Carrie; Liu, Dacheng; Ma, Jingming; Perelson, Alan S; Demeter, Lisa M

    2006-03-01

    Growth competition assays have been developed to quantify the relative fitnesses of human immunodeficiency virus (HIV-1) mutants. In this article we develop mathematical models to describe viral/cellular dynamic interactions in the assay experiment, from which new competitive fitness indices or parameters are defined. These indices include the log fitness ratio (LFR), the log relative fitness (LRF), and the production rate ratio (PRR). From the population genetics perspective, we clarify the confusion and correct the inconsistency in the definition of relative fitness in the literature of HIV-1 viral fitness. The LFR and LRF are easier to estimate from the experimental data than the PRR, which was misleadingly defined as the relative fitness in recent HIV-1 research literature. Calculation and estimation methods based on two data points and multiple data points were proposed and were carefully studied. In particular, we suggest using both standard linear regression (method of least squares) and a measurement error model approach for more-accurate estimates of competitive fitness parameters from multiple data points. The developed methodologies are generally applicable to any growth competition assays. A user-friendly computational tool also has been developed and is publicly available on the World Wide Web at http://www.urmc.rochester.edu/bstools/vfitness/virusfitness.htm.

  14. Nucleation and Grain Growth During Dehydration of Polycrystalline Gypsum Observed in Time-series Synchrotron X-ray Micro-tomography Experiments

    NASA Astrophysics Data System (ADS)

    Leclere, H.; Bedford, J. D.; Fusseis, F.; Wheeler, J.; Faulkner, D.

    2015-12-01

    Nucleation and growth of new minerals in response to disequilibrium is the most fundamental metamorphic process. However, our current understanding of metamorphic reactions is largely based on inference from mineral assemblages brought to the surface by uplift and erosion, rather than from direct observation. The experimental investigation of metamorphism has also been limited, typically to concealed vessels thus restricting the possibility of direct microstructural monitoring. Recent advances in synchrotron-based X-ray micro-tomography allow for new experiments that utilise X-ray transparent setups in order to image these processes on the micron-scale in 4D. We conducted in-situ constant temperature experiments at the Advanced Photon Source (Argonne National Laboratory, USA) to dehydrate confined cylinders of Volterra Gypsum (5mm length x 2mm diameter). The relatively modest temperature of reaction and the apparently simple mineralogy make gypsum an ideal material for investigating processes associated with metamorphic devolatilization. Using a purpose-built X-ray transparent experimental cell (Fusseis et al., 2014, J. Synchrotron Rad. 21, 251-253) to apply an effective pressure of 5MPa, the samples were heated to 388K for approximately 10 hours to acquire three-dimensional time-series tomography datasets comprising forty time steps. Images show grains of the product material (bassanite) growing throughout the sample accompanied by an evolving porous network. These datasets provide new visual insights into the spatiotemporal association between porosity development and the formation of product minerals during devolatilization. The direct observation of reaction also has important implications for general metamorphic theory as we can track the complete history of grain growth from nucleation through to interaction with surrounding grains.

  15. Spatio-Temporal Variation in Contrasting Effects of Resident Vegetation on Establishment, Growth and Reproduction of Dry Grassland Plants: Implications for Seed Addition Experiments

    PubMed Central

    Knappová, Jana; Knapp, Michal; Münzbergová, Zuzana

    2013-01-01

    Successful establishment of plants is limited by both biotic and abiotic conditions and their interactions. Seedling establishment is also used as a direct measure of habitat suitability, but transient changes in vegetation might provide windows of opportunity allowing plant species to colonize sites which otherwise appear unsuitable. We aimed to study spatio-temporal variability in the effects of resident vegetation on establishment, growth and reproduction of dry grassland species in abandoned arable fields representing potentially suitable habitats. Seeds were sown in disturbed (bare of vegetation and roots) and undisturbed plots in three fields abandoned in the last 20 years. To assess the effects of temporal variation on plant establishment, we initiated our experiments in two years (2007 and 2008). Seventeen out of the 35 sown species flowered within two years after sowing, while three species completely failed to become established. The vegetation in the undisturbed plots facilitated seedling establishment only in the year with low spring precipitation, and the effect did not hold for all species. In contrast, growth and flowering rate were consistently much greater in the disturbed plots, but the effect size differed between the fields and years of sowing. We show that colonization is more successful when site opening by disturbance coincide with other suitable conditions such as weather or soil characteristics. Seasonal variability involved in our study emphasizes the necessity of temporal replication of sowing experiments. Studies assessing habitat suitability by seed sowing should either involve both vegetation removal treatments and untreated plots or follow the gradient of vegetation cover. We strongly recommend following the numbers of established individuals, their sizes and reproductive success when assessing habitat suitability by seed sowing since one can gain completely different results in different phases of plant life cycle. PMID:23755288

  16. SAYSOY- Space Apparatus to Yield SOY sprouts: Growing sprouts in a growth support system for experiments on unmanned platforms in space

    NASA Astrophysics Data System (ADS)

    De Micco, Veronica; Aronne, Giovanna; Scala, Michele; Eduardo, Pasquale; Haladich, Marco; Castagnolo, Dario; Fortezza, Raimondo

    2005-08-01

    The aim of this study was to design and develop an automatic growth support system for sprouts production in Space addressing a main biological requirement: seedling development had to occur completely under microgravity conditions from seed imbibition until chemical fixation of seedlings. This research is placed within the scenario of producing sprouts of soy, and other species, on board of Space platforms to integrate astronauts' diet with fresh food.The project SAYSOY was submitted within the Education programmes of ESA and was selected for the flight onboard of FOTON M2 satellite. The experiment is based on previous tests conducted on ground in simulated low-gravity conditions where emphasis was addressed to the effect of altered gravity on biological processes that affect nutritional value (metabolism of phenolics) and taste satisfaction (hydration of tissues, vascular differentiation and lignification affecting turgidity and softness of sprouts). The hardware was developed according to the specifications of the FOTON capsule and biological requirements in the sight of the planned analyses of biometrical anatomy on the recovered seedlings. The experiment SAYSOY was successfully conducted flying from May 31st to June 16th, 2005.

  17. Enriched early life experiences reduce adult anxiety-like behavior in rats: a role for insulin-like growth factor 1.

    PubMed

    Baldini, Sara; Restani, Laura; Baroncelli, Laura; Coltelli, Maila; Franco, Roberta; Cenni, Maria Cristina; Maffei, Lamberto; Berardi, Nicoletta

    2013-07-10

    Early life experiences can affect brain development, contributing to shape interindividual differences in stress vulnerability and anxiety-like behavior. In rodents, high levels of maternal care have long-lasting positive effects on the behavior of the offspring and stress response; post-weaning rearing in an enriched environment (EE) or massage counteract the negative effects of maternal separation or prenatal stressors. We recently found that insulin-like growth factor 1 (IGF-1) is a key mediator of early EE or massage on brain development. Whether early enrichment of experience can induce long-lasting effects on anxiety-like behavior and whether IGF-1 is involved in these effects is not known. We assessed anxiety-like behavior by means of the elevated plus maze in control adult rats and in adult rats subjected to early EE or to massage. We found that both EE and massage reduced adult anxiety-like behavior. Early IGF-1 systemic injections in rat pups reared in standard condition mimic the effects of EE and massage, reducing anxiety-like behavior in the adult; blocking early IGF-1 action in massaged and EE animals prevents massage and EE effects. In EE and IGF-1-treated animals, we assessed the hippocampal expression of glucocorticoid receptors (GRs) at postnatal day 12 (P12) and P60, finding a significantly higher GR expression at P60 for both treatments. These results suggest that IGF-1 could be involved in mediating the long-lasting effects of early life experiences on vulnerability/resilience to stress in adults.

  18. Effects of dust-caused early snowmelt on soil moisture, soil carbon and nitrogen, and plant growth and reproductive output in a snow manipulation experiment

    NASA Astrophysics Data System (ADS)

    Conner, L. G.; Gill, R. A.

    2014-12-01

    Regional climate forecasts for the western United States predict slightly more snow accumulation during the winter but warmer springs and earlier spring snowmelt. Snowmelt will be further advanced by radiative forcing from dust and black carbon deposition on mountain snowpack. We expect earlier snowmelt to reduce regional water supplies (Painter et al., 2010) and suspect that it may also lead to drier soil conditions which could impact nutrient cycling and plant growth and reproduction in alpine and subalpine environments. Our snow manipulation experiment included 12 sites at two elevations in paired forest and meadow sites. We added dust to the snow surface during spring ablation. The dust treatment reduced snowpack by 20 to 40% and advanced the snowfree date by 9 to 14 days. Following snowmelt, there was a temporary difference in soil moisture in the upper 0-15 cm of soil between the treatment and control plots. Following snowmelt, the temporary differences in soil moisture quickly converged during soil drydown to a lower limit determined by the soil characteristics specific to each site. This brief window of differences in soil moisture may have temporary impacts on ecosystem processes; however, the impacts are mediated by plant and microbial phenology. Some of the plants and microbes in seasonally-snow-covered environments are adapted to take advantage of the early season environments which include low temperatures and frequent freezing, while other plants and microbes have evolved to avoid this transition period through prolonged dormancy. These adaptations, and the transient nature of environmental differences caused by early snowmelt, may limit the impacts of early snowmelt on carbon and nitrogen cycling and on plant growth and reproduction in subalpine forest and meadows.

  19. Competitive growth experiments with a high-lipid Chlamydomonas reinhardtii mutant strain and its wild-type to predict industrial and ecological risks.

    PubMed

    Russo, David A; Beckerman, Andrew P; Pandhal, Jagroop

    2017-12-01

    Key microalgal species are currently being exploited as biomanufacturing platforms using mass cultivation systems. The opportunities to enhance productivity levels or produce non-native compounds are increasing as genetic manipulation and metabolic engineering tools are rapidly advancing. Regardless of the end product, there are both environmental and industrial risks associated to open pond cultivation of mutant microalgal strains. A mutant escape could be detrimental to local biodiversity and increase the risk of algal blooms. Similarly, if the cultivation pond is invaded by a wild-type (WT) microalgae or the mutant reverts to WT phenotypes, productivity could be impacted. To investigate these potential risks, a response surface methodology was applied to determine the competitive outcome of two Chlamydomonas reinhardtii strains, a WT (CC-124) and a high-lipid accumulating mutant (CC-4333), grown in mixotrophic conditions, with differing levels of nitrogen and initial WT to mutant ratios. Results of the growth experiments show that mutant cells have double the exponential growth rate of the WT in monoculture. However, due to a slower transition from lag phase to exponential phase, mutant cells are outcompeted by the WT in every co-culture treatment. This suggests that, under the conditions tested, outdoor cultivation of the C. reinhardtii cell wall-deficient mutant strains does not carry a significant environmental risk to its WT in an escape scenario. Furthermore, lipid results show the mutant strain accumulates over 200% more TAGs per cell, at 50 mg L(-1) NH4Cl, compared to the WT, therefore, the fragility of the mutant strain could impact on overall industrial productivity.

  20. Correction of the equilibrium temperature caused by slight evaporation of water in protein crystal growth cells during long-term space experiments at International Space Station.

    PubMed

    Fujiwara, Takahisa; Suzuki, Yoshihisa; Yoshizaki, Izumi; Tsukamoto, Katsuo; Murayama, Kenta; Fukuyama, Seijiro; Hosokawa, Kouhei; Oshi, Kentaro; Ito, Daisuke; Yamazaki, Tomoya; Tachibana, Masaru; Miura, Hitoshi

    2015-08-01

    The normal growth rates of the {110} faces of tetragonal hen egg-white lysozyme crystals, R, were measured as a function of the supersaturation σ parameter using a reflection type interferometer under μG at the International Space Station (NanoStep Project). Since water slightly evaporated from in situ observation cells during a long-term space station experiment for several months, equilibrium temperature T(e) changed, and the actual σ, however, significantly increased mainly due to the increase in salt concentration C(s). To correct σ, the actual C(s) and protein concentration C(p), which correctly represent the measured T(e) value in space, were first calculated. Second, a new solubility curve with the corrected C(s) was plotted. Finally, the revised σ was obtained from the new solubility curve. This correction method successfully revealed that the 2.8% water was evaporated from the solution, leading to 2.8% increase in the C(s) and C(p) of the solution.

  1. Growth of ScN(111) on Sc2O3(111) for GaN integration on Si(111): Experiment and ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Sana, P.; Tetzner, H.; Dabrowski, J.; Lupina, L.; Costina, I.; Thapa, S. B.; Storck, P.; Schroeder, T.; Zoellner, M. H.

    2016-10-01

    Growth mechanism of ScN on Sc2O3 for integration of Ga-polar GaN on Si(111) is investigated by in-situ X-ray photoemission spectroscopy, ex-situ time-of-flight secondary ion mass spectrometry, atomic force microscopy, and ab-initio density functional theory (DFT) calculations. The ScN films are grown by molecular beam epitaxy from e-beam evaporated Sc and N plasma. The films grow in a layer-by-layer (Frank-van der Merwe, FM) fashion. Diffusion of nitrogen into Sc2O3 and segregation of oxygen onto ScN are observed. The segregated O atoms are gradually removed from the surface by N atoms from the plasma. Experiment and theory show that nitrogen cannot be efficiently incorporated into Sc2O3 by exposing it to N plasma alone, and calculations indicate that anion intermixing between ScN and Sc2O3 should be weak. On the basis of ab-initio data, the in-diffusion of N into Sc2O3 is attributed mostly to the effect of interaction between ScN ad-dimers on the Sc2O3 surface in the initial stage of growth. The segregation of O to the ScN surface is understood as driven by the tendency to compensate build-up of the electric field in the polar ScN film. This segregation is computed to be energetically favorable (by 0.4 eV per O atom) already for a monolayer of ScN; the energy gain increases to 1.0 eV and 1.6 eV per O atom for two and three ScN layers, respectively. Finally, it is verified by DFT that the ScN deposition method in which Sc metallic film is deposited first and then nitridized would lead to strong incorporation of O into the grown film, accompanied by strong reduction of the Sc2O3 substrate.

  2. Growth hormone and growth?

    PubMed

    Harvey, Steve

    2013-09-01

    Pituitary GH is obligatory for normal growth in mammals, but the importance of pituitary GH in avian growth is less certain. In birds, pituitary GH is biologically active and has growth promoting actions in the tibia-test bioassay. Its importance in normal growth is indicated by the growth suppression following the surgical removal of the pituitary gland or after the immunoneutralization of endogenous pituitary GH. The partial restoration of growth in some studies with GH-treated hypophysectomized birds also suggests GH dependency in avian growth, as does the dwarfism that occurs in some strains with GHR dysfunctions. Circulating GH concentrations are also correlated with body weight gain, being high in young, rapidly growing birds and low in slower growing older birds. Nevertheless, despite these observations, there is an extensive literature that concludes pituitary GH is not important in avian growth. This is based on numerous studies with hypophysectomized and intact birds that show only slight, transitory or absent growth responses to exogenous GH-treatment. Moreover, while circulating GH levels correlate with weight gain in young birds, this may merely reflect changes in the control of pituitary GH secretion during aging, as numerous studies involving experimental alterations in growth rate fail to show positive correlations between plasma GH concentrations and the alterations in growth rate. Furthermore, growth is known to occur in the absence of pituitary GH, as most embryonic development occurs prior to the ontogenetic appearance of pituitary somatotrophs and the appearance of GH in embryonic circulation. Early embryonic growth is also independent of the endocrine actions of pituitary GH, since removal of the presumptive pituitary gland does not impair early growth. Embryonic growth does, however, occur in the presence of extrapituitary GH, which is produced by most tissues and has autocrine or paracrine roles that locally promote growth and development

  3. Influence of nitrogen and phosphorus concentrations and ratios on Lemna gibba growth responses to triclosan in laboratory and stream mesocosm experiments.

    PubMed

    Fulton, Barry A; Brain, Richard A; Usenko, Sascha; Back, Jeffrey A; King, Ryan S; Brooks, Bryan W

    2009-12-01

    The effects of co-occurring nutrient and contaminant stressors are very likely to interact in aquatic systems, particularly at the level of primary producers. Site-specific nitrogen (N) and phosphorus (P) concentrations are often much lower and differ in relative availability than those used in nutrient-saturated laboratory assays for aquatic plants, which can introduce uncertainty in prospective ecological hazard and risk assessments. Because triclosan, an antimicrobial agent included in personal care products, potentially presents high relative risk among antimicrobial agents to aquatic plants and algae, we performed laboratory experiments with the model aquatic macrophyte Lemna gibba across a gradient of environmentally relevant N:P levels with and without triclosan co-exposure. Frond numbers (7 d) were significantly higher in N:P treatments of 16 and 23 but were lower in N:P of 937 and 2,500 treatments relative to standardized control media (N:P=3). When triclosan co-exposure occurred at high nutrient concentrations, frond number median effective concentration values at N:P 0.75, 3, and 16 were more than twofold lower than triclosan median effective concentration values in low nutrient media N:P ratios. However, a triclosan median effective concentration for frond number was twofold lower at N:P of 2,500 than at other N:P ratios in low concentration media. Influences of P enrichment on triclosan toxicity to L. gibba were further explored during a 14-d outdoor experimental stream mesocosm study. Effects of 2.6 and 20.8 microg L(-1) triclosan on L. gibba growth rates were more pronounced with increasing P treatment levels, which was generally consistent with our laboratory observations. Findings from these laboratory and field studies indicate that site-specific nutrient concentrations and ratios should be considered during assessments of primary producer responses to chemical stressors.

  4. Water regime and growth of young oak stands subjected to air-warming and drought on two different forest soils in a model ecosystem experiment.

    PubMed

    Kuster, T M; Arend, M; Bleuler, P; Günthardt-Goerg, M S; Schulin, R

    2013-01-01

    Global climate change is expected to increase annual temperatures and decrease summer precipitation in Central Europe. Little is known of how forests respond to the interaction of these climate factors and if their responses depend on soil conditions. In a 3-year lysimeter experiment, we investigated the growth response of young mixed oak stands, on either acidic or calcareous soil, to soil water regime, air-warming and drought treatments corresponding to an intermediate climate change scenario. The air-warming and drought treatments were applied separately as well as in combination. The air-warming treatment had no effect on soil water availability, evapotranspiration or stand biomass. Decreased evapotranspiration from the drought-exposed stands led to significantly higher air and soil temperatures, which were attributed to impaired transpirational cooling. Water limitation significantly reduced the stand foliage, shoot and root biomass as droughts were severe, as shown in low leaf water potentials. Additional air warming did not enhance the drought effects on evapotranspiration and biomass, although more negative leaf water potentials were observed. After re-watering, evapotranspiration increased within a few days to pre-drought levels. Stands not subjected to the drought treatment produced significantly less biomass on the calcareous soil than on the acidic soil, probably due to P or Mn limitation. There was no difference in biomass and water regime between the two soils under drought conditions, indicating that nutrient availability was governed by water availability under these conditions. The results demonstrate that young oak stands can cope with severe drought and therefore can be considered for future forestry.

  5. Metabolic and growth characteristics of novel diverse microbes isolated from deep cores collected at the Next Generation Ecosystem Experiment (NGEE)-Arctic site in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Chakraborty, R.; Pettenato, A.; Tas, N.; Hubbard, S. S.; Jansson, J.

    2013-12-01

    The Arctic is characterized by vast amounts of carbon stored in permafrost and is an important focal point for the study of climate change as increasing temperature may accelerate microbially mediated release of Carbon stored in permafrost into the atmosphere as CO2 and CH4. Yet surprisingly, very little is known about the vulnerability of permafrost and response of microorganisms in the permafrost to their changing environment. This deficiency is largely due to the difficulty in study of largely uncultivated and unknown permafrost microbes. As part of the U.S. Department of Energy (DOE) Next Generation Ecosystem Experiment (NGEE) in the Arctic, we collected permafrost cores in an effort to isolate resident microbes. The cores were from the Barrow Environmental Observatory (BEO), located at the northern most location on the Alaskan Arctic Coastal Plain near Barrow, AK, and up to 3m in depth. In this location, permafrost starts from 0.5m in depth and is characterized by variable water content and higher pH than surface soils. Enrichments for heterotrophic bacteria were initiated at 4°C and 1°C in the dark in several different media types, under both aerobic and anaerobic conditions. Positive enrichments were identified by an increase in optical density and cell counts after incubation period ranging from two to four weeks. After serial transfers into fresh media, individual colonies were obtained on agar surface. Several strains were isolated that include Firmicutes such as Bacillus, Clostridium, Sporosarcina, and Paenibacillus species and Iron-reducing Betaproteobacteria such as Rhodoferax species. In addition, methanogenic enrichments continue to grow and produce methane gas at 2°C. In this study, we present the characterization, carbon substrate utilization, pH, temperature and osmotic tolerance, as well as the effect of increasing climate change parameters on the growth rate and respiratory gas production from these permafrost isolates.

  6. Population growth and economic growth.

    PubMed

    Narayana, D L

    1984-01-01

    This discussion of the issues relating to the problem posed by population explosion in the developing countries and economic growth in the contemporary world covers the following: predictions of economic and social trends; the Malthusian theory of population; the classical or stationary theory of population; the medical triage model; ecological disaster; the Global 2000 study; the limits to growth; critiques of the Limits to Growth model; nonrenewable resources; food and agriculture; population explosion and stabilization; space and ocean colonization; and the limits perspective. The Limits to Growth model, a general equilibrium anti-growth model, is the gloomiest economic model ever constructed. None of the doomsday models, the Malthusian theory, the classical stationary state, the neo-Malthusian medical triage model, the Global 2000 study, are so far reaching in their consequences. The course of events that followed the publication of the "Limits to Growth" in 1972 in the form of 2 oil shocks, food shock, pollution shock, and price shock seemed to bear out formally the gloomy predictions of the thesis with a remarkable speed. The 12 years of economic experience and the knowledge of resource trends postulate that even if the economic pressures visualized by the model are at work they are neither far reaching nor so drastic. Appropriate action can solve them. There are several limitations to the Limits to Growth model. The central theme of the model, which is overshoot and collapse, is unlikely to be the course of events. The model is too aggregative to be realistic. It exaggerates the ecological disaster arising out of the exponential growth of population and industry. The gross underestimation of renewable resources is a basic flaw of the model. The most critical weakness of the model is its gross underestimation of the historical trend of technological progress and the technological possiblities within industry and agriculture. The model does correctly emphasize

  7. pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil

    PubMed Central

    Brenzinger, Kristof; Dörsch, Peter; Braker, Gesche

    2015-01-01

    Soil pH is a strong regulator for activity as well as for size and composition of denitrifier communities. Low pH not only lowers overall denitrification rates but also influences denitrification kinetics and gaseous product stoichiometry. N2O reductase is particularly sensitive to low pH which seems to impair its activity post-transcriptionally, leading to higher net N2O production. Little is known about how complex soil denitrifier communities respond to pH change and whether their ability to maintain denitrification over a wider pH range relies on phenotypic redundancy. In the present study, we followed the abundance and composition of an overall and transcriptionally active denitrifier community extracted from a farmed organic soil in Sweden (pHH2O = 7.1) when exposed to pH 5.4 and drifting back to pH 6.6. The soil was previously shown to retain much of its functioning (low N2O/N2 ratios) over a wide pH range, suggesting a high functional versatility of the underlying community. We found that denitrifier community composition, abundance and transcription changed throughout incubation concomitant with pH change in the medium, allowing for complete reduction of nitrate to N2 with little accumulation of intermediates. When exposed to pH 5.4, the denitrifier community was able to grow but reduced N2O to N2 only when near-neutral pH was reestablished by the alkalizing metabolic activity of an acid-tolerant part of the community. The genotypes proliferating under these conditions differed from those dominant in the control experiment run at neutral pH. Denitrifiers of the nirS-type appeared to be severely suppressed by low pH and nirK-type and nosZ-containing denitrifiers showed strongly reduced transcriptional activity and growth, even after restoration of neutral pH. Our study suggests that low pH episodes alter transcriptionally active populations which shape denitrifier communities and determine their gas kinetics. PMID:26441895

  8. pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil.

    PubMed

    Brenzinger, Kristof; Dörsch, Peter; Braker, Gesche

    2015-01-01

    Soil pH is a strong regulator for activity as well as for size and composition of denitrifier communities. Low pH not only lowers overall denitrification rates but also influences denitrification kinetics and gaseous product stoichiometry. N2O reductase is particularly sensitive to low pH which seems to impair its activity post-transcriptionally, leading to higher net N2O production. Little is known about how complex soil denitrifier communities respond to pH change and whether their ability to maintain denitrification over a wider pH range relies on phenotypic redundancy. In the present study, we followed the abundance and composition of an overall and transcriptionally active denitrifier community extracted from a farmed organic soil in Sweden (pH H2O = 7.1) when exposed to pH 5.4 and drifting back to pH 6.6. The soil was previously shown to retain much of its functioning (low N2O/N2 ratios) over a wide pH range, suggesting a high functional versatility of the underlying community. We found that denitrifier community composition, abundance and transcription changed throughout incubation concomitant with pH change in the medium, allowing for complete reduction of nitrate to N2 with little accumulation of intermediates. When exposed to pH 5.4, the denitrifier community was able to grow but reduced N2O to N2 only when near-neutral pH was reestablished by the alkalizing metabolic activity of an acid-tolerant part of the community. The genotypes proliferating under these conditions differed from those dominant in the control experiment run at neutral pH. Denitrifiers of the nirS-type appeared to be severely suppressed by low pH and nirK-type and nosZ-containing denitrifiers showed strongly reduced transcriptional activity and growth, even after restoration of neutral pH. Our study suggests that low pH episodes alter transcriptionally active populations which shape denitrifier communities and determine their gas kinetics.

  9. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 2; Hypothalamic Growth Hormone-Releasing Factor, Somatostatin Immunoreactivity, and Messenger RNA Levels in Microgravity

    NASA Technical Reports Server (NTRS)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1994-01-01

    Immunohistochemical analyses of hypothalamic hormones carried out on tissue from rats flown on an earlier flight (Cosmos 1887) suggested preferential effects on hypophysiotropic principles involved in the regulation of growth hormone secretion and synthesis. We found that staining in the median eminence for peptides that provide both stimulatory (growth hormone-releasing factor, or GRF) and inhibitory (somatostatin, SS) influences on growth hormone secretion were depressed in flight animals relative to synchronous controls, while staining for other neuroendocrine peptides, cortocotropin-releasing factor and arginine vasopressin, were similar in these two groups. While this suggests some selective impact of weightlessness on the two principal central nervous system regulators of growth hormone dynamics, the fact that both GRF- and SS-immunoreactivity (IR) appeared affected in the same direction is somewhat problematic, and makes tentative any intimation that effects on CNS control mechanisms may be etiologically significant contributors to the sequelae of reduced growth hormone secretion seen in prolonged space flight. To provide an additional, and more penetrating, analysis we attempted in hypothalamic material harvested from animals flown on Cosmos 2044 to complement immunohistochemical analyses of GRF and SS staining with quantitative, in situ assessments of messenger RNAs encoding the precursors for both these hormones.

  10. Impact of plant growth and morphology and of sediment concentration on sediment retention efficiency of vegetative filter strips: Flume experiments and VFSMOD modeling

    NASA Astrophysics Data System (ADS)

    Lambrechts, Thomas; François, Sébastien; Lutts, Stanley; Muñoz-Carpena, Rafael; Bielders, Charles L.

    2014-04-01

    Vegetative filter strips (VFS) implemented downstream to the source of pollution can trap sediments and thus limit sediment export from agricultural fields. However, their retention efficiencies are determined by many factors, among others the type of plant species and its growth stage. The impact of plant growth and morphology, as well as of incoming sediment concentration, on the efficiency of VFS to trap sediments was assessed by means of an experimental flume. Two different plant species were tested, Lolium perenne and Trifolium repens, after 2 and 4 months of plant growth and for 2 different incoming silty-loam sediment concentrations. Measured retention efficiencies were compared to simulated values using VFSMOD based on goodness-of-fit indicators that take into account uncertainty linked to the measurements. The sediment storage capacity upstream of the VFS was limited in terms of mass, and therefore an increase in sediment concentration led to a decrease in sediment retention efficiency. After 2 months of plant growth, plant morphology affected the VFS potential to trap sediments, as reflected in the higher retention efficiency of T. repens due to its creeping shoot architecture. However, plant growth and development modified the plant morphology and VFS trapping potential. Indeed, L. perenne VFS retention efficiency increased from 35% after 2 months of growth to 50% after 4 months, due to the tillering capacity of grass species. Conversely, the trapping efficiency of T. repens decreased from 49% to 40% after 4 months. This highlights the possible degradation of VFS with time, which in the case of T.repens was due to an increased heterogeneity of plant density within the strips. These modifications of plant characteristics with growth stage, which affected sediment trapping efficiencies, can be effectively integrated into mechanistic models like VFSMOD, mainly through stem spacing and Manning's surface roughness coefficient inputs. Since these parameters

  11. The effects of phosphate supply on growth of plants from the Brasilian Cerrado: experiments with seedlings of the annual weed, Bidens gardneri Baker (Compositeae) and the tree, Qualea grandiflora (Mart.) (Vochysiaceae).

    PubMed

    Felippe, G M; Dale, J E

    1990-01-01

    Plants of the cerrado tree species Qualea grandiflora and the annual herb Bidens gardneri were grown from seed in controlled environment rooms at 30/20° C and 12 hour photoperiod. Seedlings were grown in pots or small tubes containing sand and provided with various amounts of mineral solutions based on the formulation of Hoagland and Arnon but with the phosphate content modified in some cases. In a long-term experiment lasting 213 days, plants supplied with full strength Hoagland's solution all died but plants of Qualea given 1/10 strength solution survived, although they grew very slowly. Low relative growth rates (0.008-0.036 d(-1)) were also a feature of other experiments with Qualea and calculated rates of net assimilation rate gave values of 3-7 mg CO2 dm(-2) h(-1). Expansion of the photosynthetic surface proceeded slowly and the cotyledons were the main site of photosynthesis for more than 40 days. The low rates of growth occurred despite significant uptake of phosphorus by young plants and in shortterm experiments growth was independent of the amount of phosphate supplied and accumulated. In contrast, the values of R found for plants of Bidens reached 0.24 d(-1). Growth of young plants was dependent on the external supply of phosphorus, being reduced when this was low and also when it was very high. Growth of the photosynthetic surface was also much more rapid than for Qualea and also varied with supply of phosphorus. The results are discussed in the context of the occurrence of these species in the Cerrado.

  12. Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures.

    PubMed

    Sicher, Richard C

    2015-08-05

    Elevated growth temperatures are known to affect foliar organic acid concentrations in various plant species. In the current study, citrate, malate, malonate, fumarate and succinate decreased 40 to 80% in soybean leaflets when plants were grown continuously in controlled environment chambers at 36/28 compared to 28/20 °C. Temperature effects on the above mentioned organic acids were partially reversed three days after plants were transferred among optimal and supra-optimal growth temperatures. In addition, CO2 enrichment increased foliar malate, malonate and fumarate concentrations in the supra-optimal temperature treatment, thereby mitigating effects of high temperature on respiratory metabolism. Glycerate, which functions in the photorespiratory pathway, decreased in response to CO2 enrichment at both growth temperatures. The above findings suggested that diminished levels of organic acids in soybean leaflets upon exposure to high growth temperatures were attributable to metabolic impairment and to changes of photorespiratory flux. Leaf development rates differed among temperature and CO2 treatments, which affected foliar organic acid levels. Additionally, we report that large decreases of foliar organic acids in response to elevated growth temperatures were observed in legume species.

  13. Bone, Calcium and Spaceflight: A Living Systems Experiment Relating Animals and Plants the Effects of Calcium on Plant Growth and Development

    NASA Technical Reports Server (NTRS)

    Reiss-Bubenheim, Debra; Navarro, B. J.; Souza, Kenneth A. (Technical Monitor)

    1994-01-01

    This educational outreach activity provided students with information about ARC's role in conducting life sciences research in space. Students were introduced to the scientific method while conducting a plant experiment that was correlated to the flight animal experiment. Students made daily observations, collected data and reported on their findings. This classroom experiment providing a hands-on learning opportunity about terrestrial and space biology in which exposed the students to new fields of study for future endeavors.

  14. Quantitative determination of zero-gravity effects on electronic materials processing germanium crystal growth with simultaneous interface demarcation experiment MA-060, section 5

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.; Lichtensteiger, M.; Herman, C. J.

    1982-01-01

    The crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero g conditions were investigated. The germanium (doped with gallium) system was selected because it was extensively studied on Earth and because it lends itself to a very detailed macroscopic and microscopic characterization. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. On the basis of the results obtained to date, there is no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.

  15. Determination of collision rates relevant to Weibel-like instability growth rates in classical and non-classical plasmas encountered in fast-ignition experiments

    SciTech Connect

    Hill, J M; Key, M H

    2004-10-18

    Analytical simulations of fast-electron currents induced by high-density laser-plasma interactions require estimation of various plasma and beam parameters, including temperatures, densities, and collision rates. This note describes a technique used to estimate or calculate these parameters for the case of contemporary multi-terawatt experiments using foil targets as well as for anticipated fast-ignition-scale experiments.

  16. Growth Disorders

    MedlinePlus

    ... gland problem or disease. The pituitary gland makes growth hormone, which stimulates the growth of bone and other ... of it may be very short. Treatment with growth hormone can stimulate growth. People can also have too ...

  17. Detoxication of zinc and cadmium by the freshwater protozoan Tetrahymena pyriformis. II. Growth experiments and ultrastructural studies on sequestration of heavy metals

    SciTech Connect

    Dunlop, S.; Chapman, G.

    1981-04-01

    Sublethal concentrations of zinc and cadmium limited the growth of batch cultures of the ciliate Tetrahymena pyriformis. Electron microscopy of cultured populations revealed many electron-dense cytoplasmic granules in cells exposed to zinc (60 ppM), but fewer in cells grown with less zinc (6 ppM) or cadmium (2 ppM). Ultrasturctural abnormalities were observed only in cells grown with cadmium. These contained autophagic vacuoles and had damaged nuclei. Zinc was shown to exert a protective effect against cadmium toxicity both in terms of growth and ulstructural appearance. Electron probe x-ray microanalysis revealed both zinc and cadmium within the cytoplasmic granules of cells exposed to these metals. Since the granules are normally composed predominantly of calcium and magnesium, these ions are implicated in the intracellular detoxication of zinc and cadmium. Zinc was detected only in the granules, while cadmium was also found in autophagic vacuoles and damaged nuclei.

  18. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin

    USGS Publications Warehouse

    Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hongrui, R.; Ouyang, Z.

    2008-01-01

    SWAT, a physically-based, hydrological model simulates crop growth, soil water and groundwater movement, and transport of sediment and nutrients at both the process and watershed scales. While the different versions of SWAT have been widely used throughout the world for agricultural and water resources applications, little has been done to test the performance, variability, and transferability of the parameters in the crop growth, soil water, and groundwater modules in an integrated way with multiple sets of field experimental data at the process scale. Using an multiple years of field experimental data of winter wheat (Triticum aestivum L.) in the irrigation district of the Yellow River Basin, this paper assesses the performance of the plant-soil-groundwater modules and the variability and transferability of SWAT2000. Comparison of the simulated results by SWAT to the observations showed that SWAT performed quite unsatisfactorily in LAI predictions during the senescence stage, in yield predictions, and in soil-water estimation under dry soil-profile conditions. The unsatisfactory performance in LAI prediction might be attributed to over-simplified senescence modeling; in yield prediction to the improper computation of the harvest index; and in soil water under dry conditions to the exclusion of groundwater evaporation from the soil water balance in SWAT. In this paper, improvements in crop growth, soil water, and groundwater modules in SWAT were implemented. The saturated soil profile was coupled to the oscillating groundwater table. A variable evaporation coefficient taking into account soil water deficit index, groundwater depth, and crop root depth was used to replace the fixed coefficient in computing groundwater evaporation. The soil water balance included the groundwater evaporation. The modifications improved simulations of crop evapotranspiration and biomass as well as soil water dynamics under dry soil-profile conditions. The evaluation shows that the

  19. Ameliorating Effects of Biochar Derived from Poultry Manure and White Clover Residues on Soil Nutrient Status and Plant growth Promotion - Greenhouse Experiments

    PubMed Central

    Abbasi, M. Kaleem; Anwar, Ahsan Ali

    2015-01-01

    Biochar application to agricultural soils is rapidly emerging as a new management strategy for its potential role in carbon sequestration, soil quality improvements, and plant growth promotion. The aim of our study was to investigate the effects of biochars derived from white clover residues and poultry manure on soil quality characteristics, growth and N accumulation in maize (Zea mays L.) and wheat (Triticum aestivum L.) grown in a loam soil under greenhouse conditions. Treatments comprised of: untreated control; mineral N fertilizer (urea N, UN) at the rate of 200, and 100 mg N kg-1, white clover residues biochar (WCRB), poultry manure biochar (PMB) at 30 Mg ha–1, and the possible combinations of WCRB+PMB (50:50), UN+WCRB (50:50), UN+PMB (50:50), and UN+WCRB+PMB (50:25:25). The treatments were arranged in a completely randomized design with three replications. Results indicated a significant increase in the growth and biomass production of maize and wheat supplemented with biochars alone or mixed with N fertilizer. Biochars treatments showed varying impact on plant growth depended upon the type of the biochar, and in general plant growth under PMB was significantly higher than that recorded under WCRB. The growth characteristics in the combined treatments (half biochar+half N) were either higher or equivalent to that recorded under full fertilizer N treatment (N200). The biochar treatments WCRB, PMB, and WCRB+PMB (50:50) increased maize shoot N by 18, 26 and 21%, respectively compared to the control while wheat shoot N did not show positive response. The N-uptake by maize treated with WCRB, PMB, and WCRB+PMB (50:50) was 54, 116, and 90 mg g-1 compared to the 33 mg g-1 in the control while the N-uptake by wheat was 41, 60, and 53 mg g-1 compared to 24 mg g-1 in the control. The mixed treatments (half biochar+half N) increased N-uptake by 2.3folds in maize and 1.7 to 2.5folds in wheat compared to the N100 showing increasing effect of biochar on N use efficiency

  20. Ameliorating Effects of Biochar Derived from Poultry Manure and White Clover Residues on Soil Nutrient Status and Plant growth Promotion--Greenhouse Experiments.

    PubMed

    Abbasi, M Kaleem; Anwar, Ahsan Ali

    2015-01-01

    Biochar application to agricultural soils is rapidly emerging as a new management strategy for its potential role in carbon sequestration, soil quality improvements, and plant growth promotion. The aim of our study was to investigate the effects of biochars derived from white clover residues and poultry manure on soil quality characteristics, growth and N accumulation in maize (Zea mays L.) and wheat (Triticum aestivum L.) grown in a loam soil under greenhouse conditions. Treatments comprised of: untreated control; mineral N fertilizer (urea N, UN) at the rate of 200, and 100 mg N kg(-1), white clover residues biochar (WCRB), poultry manure biochar (PMB) at 30 Mg ha(-1), and the possible combinations of WCRB+PMB (50:50), UN+WCRB (50:50), UN+PMB (50:50), and UN+WCRB+PMB (50:25:25). The treatments were arranged in a completely randomized design with three replications. Results indicated a significant increase in the growth and biomass production of maize and wheat supplemented with biochars alone or mixed with N fertilizer. Biochars treatments showed varying impact on plant growth depended upon the type of the biochar, and in general plant growth under PMB was significantly higher than that recorded under WCRB. The growth characteristics in the combined treatments (half biochar+half N) were either higher or equivalent to that recorded under full fertilizer N treatment (N200). The biochar treatments WCRB, PMB, and WCRB+PMB (50:50) increased maize shoot N by 18, 26 and 21%, respectively compared to the control while wheat shoot N did not show positive response. The N-uptake by maize treated with WCRB, PMB, and WCRB+PMB (50:50) was 54, 116, and 90 mg g(-1) compared to the 33 mg g(-1) in the control while the N-uptake by wheat was 41, 60, and 53 mg g(-1) compared to 24 mg g(-1) in the control. The mixed treatments (half biochar+half N) increased N-uptake by 2.3 folds in maize and 1.7 to 2.5 folds in wheat compared to the N100 showing increasing effect of biochar on N

  1. Bone, Calcium and Spaceflight: A Living Systems Experiment Relating Animals and Plants the Effects of Calcium on Plant Growth and Development

    NASA Technical Reports Server (NTRS)

    Reiss-Bubenheim, D.; Navarro, B.J.; Morey-Holton, E.; Dalton, Bonnie P. (Technical Monitor)

    1994-01-01

    This NASA-sponsored educational outreach activity provided local students with information about Ames Research Center's (ARC) role in conducting life sciences research in space. Students were introduced to the scientific method while conducting a plant experiment that correlated with the Spacelab Life Sciences-2 (SLS-2) flight animal experiment of Dr. Emily Morey-Holton entitled "Bone, Calcium and Spaceflight". Students made daily observations, collected data and reported on their findings. Students also had the opportunity to witness the STS-58 landing at Edwards Air Force Base in southern California and attended a briefing given by the Payload Commander, Dr. Rhea Seddon at ARC last month. This classroom experiment providing a hands-on learning opportunity about terrestrial and space biology and, hopefully, introduced the students to new fields of study for future endeavors.

  2. Protein crystal growth tray assembly

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Miller, Teresa Y. (Inventor)

    1992-01-01

    A protein crystal growth tray assembly includes a tray that has a plurality of individual crystal growth chambers. Each chamber has a movable pedestal which carries a protein crystal growth compartment at an upper end. The several pedestals for each tray assembly are ganged together for concurrent movement so that the solutions in the various pedestal growth compartments can be separated from the solutions in the tray's growth chambers until the experiment is to be activated.

  3. Offspring of Primiparous Mothers Do Not Experience Greater Mortality or Poorer Growth: Revisiting the Conventional Wisdom with Archival Records of Rhesus Macaques

    PubMed Central

    Nuñez, Chase L.; Grote, Mark N.; Wechsler, Michelle; Allen-Blevins, Cary R.; Hinde, Katie

    2015-01-01

    Female mammals often begin to reproduce before achieving somatic maturity and therefore face tradeoffs between allocating energy to reproduction or their own continued development. Constraints on primiparous females are associated with greater reproductive failure, and first-born infants often have slower growth and greater mortality and morbidity than infants born to multiparous females. Effects of early life investment may persist even after weaning when juveniles are no longer dependent on maternal care and mother’s milk. We investigated the long-term consequences of birth order in a large sample of rhesus macaques, Macaca mulatta, assigned to the outdoor breeding colony at the California National Primate Research Center (N=2724). A joint model for growth and mortality over the first three years of life allowed us to explicitly connect growth rates to survival. As expected, males are born heavier and grow faster relative to females. However, contrary to expectations, later-born males face substantially lower survival probability during their first three years, whereas first-born males survive at greater rates similar to both first-born and later-born females. Primiparous mothers are less likely to conceive during the subsequent breeding season, suggesting that their reproductive costs are greater than those of multiparous mothers. We speculate that compensatory tactics, both behavioral and physiological, of first-born offspring and their mothers, as well as the novel ecology of the captive environment, underlie these findings. The results presented here provide new insights into how maternal and infant life history tradeoffs may influence developmental trajectories even after the period of maternal dependence. PMID:26031808

  4. Learning from Inquiry-Based Laboratories in Nonmajor Biology: An Interpretive Study of the Relationships among Inquiry Experience, Epistemologies, and Conceptual Growth

    ERIC Educational Resources Information Center

    Wallace, Carolyn S.; Tsoi, Mai Yin; Calkin, Jamie; Darley, Marshall

    2003-01-01

    The use of inquiry-based laboratory in college science classes is on the rise. This study investigated how five nonmajor biology students learned from an inquiry-based laboratory experience. Using interpretive data analysis, the five students' conceptual ecologies, learning beliefs, and science epistemologies were explored. Findings indicated that…

  5. Effect of Organic Manures on the Growth of Cymbopogon citratus and Chrysopogon zizanioides for the Phytoremediation of Chromite-Asbestos Mine Waste: A Pot Scale Experiment.

    PubMed

    Kumar, Adarsh; Maiti, Subodh Kumar

    2015-01-01

    The abandoned chromite-asbestos mines are located in the Roro hills, West Singhbhum, Jharkhand, India, where mining operation ceased in 1983, and since then these mines are causing environmental pollution. The present study was planned to phytoremediate these metalloid and metal contaminated mine waste by using two aromatic grasses, Cymbopogon citratus and Chrysopogon zizanioides by applying different proportions of amendments (chicken manure, farmyard manure and garden soil). Mine waste has neutral pH, low electrical conductivity and organic carbon with higher concentration of total metals (Cr and Ni) as compared to soil. Application of manures resulted significant improvements of mine waste characteristics and plant growth, reduction in the availability of total extractable toxic metals (Cr, Ni) and increase in Mn, Zn and Cu concentration in the substrate. The maximum growth and biomass production for C. citratus and C. zizanioides were found in T-IV combination comprising of mine waste (90%), chicken manure (2.5%), farmyard manure (2.5%) and garden soil (5%). Addition of T-IV combination also resulted in low Cr and Ni accumulation in roots and reduction in translocation to shoots. Study indicates that C. citratus and C. zizanioides can be used for phytostabilization of abandoned chromite-asbestos mine waste with amendments.

  6. DMA Modulus as a Screening Parameter for Compatibility of Polymeric Containment Materials with Various Solutions for use in Space Shuttle Microgravity Protein Crystal Growth (PCG) Experiments

    NASA Technical Reports Server (NTRS)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Protein crystals are grown in microgravity experiments inside the Space Shuttle during orbit. Such crystals are basically grown in a five-component system containing a salt, buffer, polymer, organic and water. During these experiments, a number of different polymeric containment materials must be compatible with up to hundreds of different PCG solutions in various concentrations for durations up to 180 days. When such compatibility experiments are performed at NASA/MSFC (Marshall Space Flight Center) simultaneously on containment material samples immersed in various solutions in vials, the samples are rather small out of necessity. DMA4 modulus was often used as the primary screening parameter for such small samples as a pass/fail criterion for incompatibility issues. In particular, the TA Instruments DMA 2980 film tension clamp was used to test rubber O-rings as small in I.D. as 0.091 in. by cutting through the cross-section at one place, then clamping the stretched linear cord stock at each end. The film tension clamp was also used to successfully test short length samples of medical/surgical grade tubing with an O.D. of 0.125 in.

  7. Growth Problems

    MedlinePlus

    ... function and also play a role in growth. Hypothyroidism can cause slow growth because the thyroid gland ... to support normal growth. A major symptom of hypothyroidism is feeling tired or sluggish. A blood test ...

  8. Sensitivity of the curve-to-growth technique utilized in rocket experiments to determine the line shape of solar He I resonance lines

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Ogawa, H. S.

    1986-01-01

    The sensitivity of the curve-of-growth (COG) technique utilized in rocket measurements to determine the line profiles of the solar He I resonance emissions is theoretically examined with attention to the possibility of determining the line core shape using this technique. The line at 584.334 A is chosen as an illustration. Various possible source functions of the solar line have been assumed in the computation of the integrated transmitted intensity. A recent observational data set obtained by the present researchers is used as the constraint of the computation. It is confirmed that the COG technique can indeed provide a good measurement of the solar line width. However, to obtain detailed knowledge of the solar profile at line center and in the core region, (1) it is necessary to be able to carry out relative solar flux measurements with a 1-percent or better precision, and (2) it must be possible to measure the He gas pressure in the absorption cell to lower than 0.1 mtorr. While these numbers apply specifically to the present geometry, the results are readily scaled to other COG measurements using other experimental parameters.

  9. Large Area Crop Inventory Experiment (LACIE). Evaluation of the LACIE transition year crop calendar model. [Wheat growth in the Great Plains Corridor, North America

    NASA Technical Reports Server (NTRS)

    Cheffin, R. E.; Woolley, S. K. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The estimates of developmental stage dates from the LACIE adjustable crop calendar (ACC) winter wheat model was somewhat more accurate than the historical crop calendar after jointing. The ACC winter wheat model was not so accurate for the Texas Panhandle as it was for the other areas of the USPG-7 because dry soil conditions delayed fall planting in the Panhandle. Since the LACIE ACC winter wheat model does not contain a moisture term and it was started with historical planting dates, lengthy delays in planting mean that the ACC model will probably be started early and will estimate the developmental growth stages to occur too early in the season. The LACIE ACC spring wheat model was also started early in most areas because of late planting due to fields wet from melting snow and rain. The starter model used to estimate spring planting dates was not accurate under these wet soil conditions and tended to predict the developmental stages to occur earlier than the dates observed in the fields.

  10. Multistage nucleation of two-dimensional Si islands on Si(111)-7x7 during MBE growth: STM experiments and extended rate-equation model

    SciTech Connect

    Filimonov, Sergey; Cherepanov, Vasily; Voigtlaender, Bert; Hervieu, Yuri

    2007-07-15

    The submonolayer density of two-dimensional (2D) islands in Si/Si(111)-7x7 molecular beam epitaxy is measured using scanning tunneling microscopy. At a relatively low deposition temperature of 673 K, the density of 2D islands is a power function of the deposition flux N{sub 2D}{proportional_to}F{sup {chi}} with the exponent {chi}=0.24 being smaller than that predicted by the standard nucleation theory. The nonstandard scaling of the 2D island density is explained by the multistage character of the nucleation process on the Si(111)-7x7 surface which involves consecutive stages of formation of stable Si clusters, formation of pairs of clusters, and transformation of the cluster pairs to 2D islands. Using an extended rate-equation model, we analyze the temperature and growth rate dependencies of the density of single clusters, cluster pairs, and 2D islands and show that an activation barrier of {approx}1.26 eV delays the transformation of cluster pairs to 2D islands. The delayed transformation of cluster pairs to 2D islands is the reason for the nonstandard scaling of the 2D island density observed at low deposition temperatures.

  11. Chemical Control of Plant Growth.

    ERIC Educational Resources Information Center

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  12. Nutrient limitation restricts growth and reproductive output in a tropical montane cloud forest bromeliad: findings from a long-term forest fertilization experiment.

    PubMed

    Lasso, Eloisa; Ackerman, James D

    2013-01-01

    From studies in seasonal lowland tropical forests, bromeliad epiphytes appear to be limited mainly by water, and to a lesser extent by nutrient supply, especially phosphorous. Less is understood about the mineral nutrition of tropical montane cloud forest (TMCF) epiphytes, even though their highest diversity is in this habitat. Nutrient limitation is known to be a key factor restricting forest productivity in TMCF, and if epiphytes are nutritionally linked to their host trees, as has been suggested, we would expect that they are also nutrient limited. We studied the effect of a higher nutrient input on reproduction and growth of the tank bromeliad Werauhia sintenisii in experimental plots located in a TMCF in Puerto Rico, where all macro- and micronutrients had been added quarterly starting in 1989 and continuing throughout the duration of this study. We found that bromeliads growing in fertilized plots were receiving litterfall with higher concentrations of N, P, and Zn and had higher concentrations of P, Zn, Fe, Al, and Na in their vegetative body. The N:P ratios found (fertilized = 27.5 and non-fertilized = 33.8) suggest that W. sintenisii may also be phosphorous limited as are lowland epiphytes. Fertilized plants had slightly longer inflorescences, and more flowers per inflorescence, than non-fertilized plants, but their flowers produced nectar in similar concentrations and quantities. Fertilized plants produced more seeds per fruit and per plant. Frequency of flowering in two consecutive years was higher for fertilized plants than for controls, suggesting that fertilized plants overcome the cost of reproduction more readily than non-fertilized plants. These results provide evidence that TMCF epiphytic bromeliads are nutrient limited like their lowland counterparts.

  13. Plant growth controls short-term changes in soil organic carbon (SOC) stocks of croplands - new insights from the CarboZALF experiment

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Joana; Albiac Borraz, Elisa; Schmidt, Marten; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2016-04-01

    The long-term influence of crop rotations, climate conditions or soil type on soil organic carbon stock (SOC) patterns and gaseous C emissions of agricultural landscapes is widely recognized. However, the question of short-term seasonal changes in SOC within these areas remains unclear. A main reason for this is the detection problem of temporal and spatial variability in gaseous C exchange and thus, changes in SOC stocks (ΔSOC) in a high resolution. This study introduces dynamic C balances as a method to obtain seasonal changes in SOC stocks. Dynamic C balances were calculated by a combination of automatic chamber CO2 exchange measurements and empirical biomass models. Measurements were performed for three consecutive years at a colluvial depression (Colluvic Regosol) in the hummocky ground moraine landscape of NE Germany (CarboZALF experimental site). The investigated crop rotation was maize, winter fodder rye, maize, winter fodder rye, and sudangrass. The site is characterized by a gradient in ground water level (GWL) and related spatial heterogeneity in soil properties, such as SOC as well as soil nitrogen (Nt) stocks. Modelled dynamic C balances reveal that up to 79% of the standard deviation of estimated annual ΔSOC between single chambers emerged during the main period of crop growth (three months in summer). No significant changes in ΔSOC were detected outside the growing season. Instead, differences between chambers remain constant despite ΔSOC dynamics. Environmental variables (Nt stocks of Ap horizon and GWL), affecting plant-mediated C sequestration, explained up to 95% of temporal and spatial variability in CO2 exchange and ΔSOC. Thus, plant activities were the major catalyst for small scale differences in annual ΔSOC of croplands.

  14. Influence of season growth, soils and irrigation water composition on the concentration of uranium in two lettuce (Lactuca sativa L.) varieties. Field experiments

    NASA Astrophysics Data System (ADS)

    Abreu, M. M.; Neves, O.; Marcelino, M.

    2012-04-01

    Former uranium mines areas are frequently the sources of environmental radionuclides problems even many years after the closure of mining operations. A concern for inhabitants from mining areas is the use of contaminated land or irrigation water for agriculture, and the potential transfer of metals from soils to vegetables, and to humans through the food chain. The main aim of this study was to compare the uranium concentration in lettuce (Lactuca sativa L. varieties Marady and Romana) grown in different seasons (autumn and summer) and exposed to high and low uranium concentrations both in irrigation water and agricultural soil. The content of uranium in irrigation water, soil (total and available fraction) and in lettuce leaf samples was analyzed in a certified laboratory. In the field experiments, two agricultural soils were divided into two plots (four replicates each); one of them was irrigated with uranium contaminated water (0.94 to 1.14 mg/L) and the other with uncontaminated water (< 0.02 mg/L). Irrigation with contaminated water together with highest soil uranium available concentration (10 to 13 mg/kg) had negative effects on both studied lettuce varieties, namely yield reduction (up to 53% and 87% in autumn and summer experiments, respectively) and increase of uranium leaf concentration (up to 1.4 and 7 fold in autumn and summer, respectively). Effect on lettuce yield was mainly due to the high soil salinity (1.01 to 6.31 mS/cm) as a consequence of high irrigation water electrical conductivity (up to 1.82 mS/cm) and low lettuce soil salinity tolerance (1 to 3 mS/cm). The highest lettuce uranium concentration (dry weight) observed was 2.13 and 5.37 mg/kg for Marady and Romana variety, respectively. The highest uranium lettuce concentration in Romana variety was also the effect of its growing in summer season when it was subject to greatest frequency and amount of water irrigation. The consumption by an adult of the lettuce that concentrate more uranium

  15. Three-dimensional growth of human endothelial cells in an automated cell culture experiment container during the SpaceX CRS-8 ISS space mission - The SPHEROIDS project.

    PubMed

    Pietsch, Jessica; Gass, Samuel; Nebuloni, Stefano; Echegoyen, David; Riwaldt, Stefan; Baake, Christin; Bauer, Johann; Corydon, Thomas J; Egli, Marcel; Infanger, Manfred; Grimm, Daniela

    2017-04-01

    Human endothelial cells (ECs) were sent to the International Space Station (ISS) to determine the impact of microgravity on the formation of three-dimensional structures. For this project, an automatic experiment unit (EU) was designed allowing cell culture in space. In order to enable a safe cell culture, cell nourishment and fixation after a pre-programmed timeframe, the materials used for construction of the EUs were tested in regard to their biocompatibility. These tests revealed a high biocompatibility for all parts of the EUs, which were in contact with the cells or the medium used. Most importantly, we found polyether ether ketones for surrounding the incubation chamber, which kept cellular viability above 80% and allowed the cells to adhere as long as they were exposed to normal gravity. After assembling the EU the ECs were cultured therein, where they showed good cell viability at least for 14 days. In addition, the functionality of the automatic medium exchange, and fixation procedures were confirmed. Two days before launch, the ECs were cultured in the EUs, which were afterwards mounted on the SpaceX CRS-8 rocket. 5 and 12 days after launch the cells were fixed. Subsequent analyses revealed a scaffold-free formation of spheroids in space.

  16. Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts--dosimetric experiments in the hyperarid core of the Atacama Desert.

    PubMed

    Cockell, Charles S; McKay, Christopher P; Warren-Rhodes, Kim; Horneck, Gerda

    2008-02-27

    Experiments were conducted during November 2003 in the dry core of the Atacama Desert, Yungay, Chile to test the hypothesis that UV radiation, in environments where liquid water is not available, and thus enzymatic repair of UV-induced damage is inhibited, can prevent epilithic colonization. Novel dosimeters made from the cryptoendolithic, desiccation and radiation-resistant cyanobacterium Chroococcidiopsis sp. isolated from the dry Negev desert, Israel, showed that monolayers of this organism were killed within one day. The diurnal profile of microbial loss of viability was investigated with dosimeters of Bacillus subtilis, which similarly showed cell death within one day. Soil grains obtained from south of Yungay where liquid water is more abundant and transported to the hyperarid core showed killing of indigenous vegetative organisms within one day. Gypsum and mineral grain coverings of 1mm were sufficient to prevent measurable UV-induced damage of Chroococcidiopsis and B. subtilis after 8d exposure. These results show that under extreme desiccation and an ambient UV flux the surface of rocks can potentially be rendered sterile, but that millimetre thick mineral coverings can protect organisms from UV-induced killing, consistent with the observed patterns of lithophytic colonization in the Atacama Desert. These data further show that UV radiation can be an important limiting factor in surface biological rock weathering in arid regions.

  17. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    SciTech Connect

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-05-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm / shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm / shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the “International Handbook of Evaluated Criticality Safety Benchmark Experiments” have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement / shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy

  18. BIFoR FACE: A ten-year Free-Air Carbon Dioxide Enrichment (FACE) Experiment in Old Growth Deciduous English Woodland

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; MacKenzie, A. R.; Ellsworth, D.; Hemming, D.; Crous, K.; Pope, F.; Blaen, P.; Poynter, A.; Hamilton, L.; Blenkhorn, D.; Jarvis-Rouse, F.

    2015-12-01

    The Birmingham Institute of Forest research (BIFoR) will perform fundamental physical, biological, ecological, social and cultural research of direct relevance to forested landscapes worldwide. A core platform for BIFoR to study the ten-year response of a mature temperate deciduous forest ecosystem to against a large step-change in atmospheric [CO2] is the BIFoR Free-Air Carbon Dioxide Enrichment (FACE) experiment. BIFoR FACE is being established in Mill Haft, a mature (~150 year-old) oak (Quercus robur) and hazel (Corylus avellana) coppice-with-standards woodland in central England. The facility will enable elevated CO2 (eCO2) treatments to be introduced in 30 m diameter rings (3 treatment and 6 control plots), commencing in spring 2016. Under eCO2 conditions primary research questions will investigate carbon uptake and storage, corresponding nutrient limitations, and biodiversity and ecosystem responses. As well as describing the facility and experimental design, we present baseline data collected throughout 2015, prior to fumigation. These data include: biophysical tree properties; atmospheric CO2/H2O fluxes; airborne and ground laser scatterometry; leaf area index; geophysical survey data; phenology camera derivatives; soil and water chemical and physical properties; and invertebrate surveys. Data from an intensive campaign conducted during august 2015 are also shown, including in- and above- canopy characterisation of biogenic VOCs using a Proton Transfer Reaction Mass Spectrometer, aerosol loading including bioaerosols, and enhanced atmospheric chemistry. Further campaign results are presented from leaf level photosynthetic carbon-dioxide response curve (A/Ci) performed at different canopy heights on oak trees, and on the dominant understory species - hazel and sycamore (Acer pseudoplatinus) across the site. BIFoR FACE is an exciting new international facility for forest science - ideas for collaborations are encouraged. Please see http

  19. Selecting broiler chickens for ultimate pH of breast muscle: analysis of divergent selection experiment and phenotypic consequences on meat quality, growth, and body composition traits.

    PubMed

    Alnahhas, N; Berri, C; Boulay, M; Baéza, E; Jégo, Y; Baumard, Y; Chabault, M; Le Bihan-Duval, E

    2014-09-01

    drip loss (-1.6 units; P < 0.001) than in the pHu- line. Breast meat of the pHu+ line was also characterized by greater CCY (+6.1 units; P < 0.001), lower CL (-1.66 units; P < 0.01), and lower WBSF after cooking (-5.1 units; P < 0.001) compared to the pHu- line. This study highlighted that selection based on pHu can be effective in improving the processing ability of breast meat and reducing the incidence of meat quality defects without affecting chicken growth performance.

  20. Culturing Fundamentals Used To Design And Execute A Long-Term Multi-stressor Experiment To Assess Impact Of Deoxygenation, Ocean Acidification, And Warming On Benthic Foraminiferal Community Composition, Growth, And Carbonate Yield: Design And Results

    NASA Astrophysics Data System (ADS)

    Bernhard, J. M.; Wit, J. C.

    2015-12-01

    The geochemistry recorded in carbonate foraminiferal tests (shells) is often used as proxy for past oceanographic events and environments. By understanding past oceanic and climatic conditions, we can better predict future climate scenarios, a relevant ability in these times of global change. The fact that foraminifera are biological entities can be pivotal for understanding their geochemical records. Thus, growing foraminifera under known physicochemical conditions and analyzing the geochemistry of their cultured carbonate can yield insightful perspectives for proxy refinement and development. Because parameters often co-vary in nature, proper proxy calibration can only be done with materials grown in strictly controlled and known environments. This presentation will review the various crucial aspects of foraminiferal maintenance and culturing, especially from the perspective of proxy development. These fundamentals were used to design a long-term multi-stressor experiment with oxygen, pCO2 (pH), and temperature as variables to test the single, double or triple threats of deoxygenation, ocean acidification, and oceanic warming. Results on assemblage composition, survivorship and growth of a continental shelf benthic foraminiferal community will be presented. Although one agglutinated morphospecies grew in each of the five treatments, growth of individual calcareous species was more restricted. Initial results indicate that pCO2 was not the factor that impacted communities most. Supported in part by NSF OCE-1219948.

  1. Aluminum Nitride Crystal Growth

    DTIC Science & Technology

    1979-12-01

    increase the growth rate of AiN crystals from the vapor phase, and some new experiments to test this model conjecture are needed. if one’could operate...walls is much less severe,, and hence the crucible lifetime is about 88 times greater than for the -slycrystalline tungsten. In an effort to test this...added H2 to increase the growth rate is a better idea. One growth run, W253, Was made to test the single-crystal crucible method. The crystal from

  2. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  3. Eyelid Growths

    MedlinePlus

    ... a microscope). The growth is usually removed surgically. Did You Know... A growth on the eyelid that ... respond to initial treatments. Resources In This Article Did You Know 1 Did You Know... Figure 1 ...

  4. Mouth Growths

    MedlinePlus

    ... the area (for example, biting a cheek or scraping by a sharp tooth edge or dental restoration). ... growth has the appearance of thrush, doctors examine scrapings under a microscope. For other growths that have ...

  5. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Chang, C. E.; Shlichta, P. J.; Chen, P. S.; Kim, C. K.

    1974-01-01

    Two crystal growth processes considered for spacelab experiments were studied to anticipate and understand phenomena not ordinarily encountered on earth. Computer calculations were performed on transport processes in floating zone melting and on growth of a crystal from solution in a spacecraft environment. Experiments intended to simulate solution growth at micro accelerations were performed.

  6. Dendritic Growth Investigators

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Representatives of NASA materials science experiments supported the NASA exhibit at the Rernselaer Polytechnic Institute's Space Week activities, April 5 through 11, 1999. From left to right are: Angie Jackman, project manager at NASA's Marshall Space Flight Center for dendritic growth experiments; Dr. Martin Glicksman of Rennselaer Polytechnic Instutute, Troy, NY, principal investigator on the Isothermal Dendritic Growth Experiment (IDGE) that flew three times on the Space Shuttle; and Dr. Matthew Koss of College of the Holy Cross in Worcester, MA, a co-investigator on the IDGE and now principal investigator on the Transient Dendritic Solidification Experiment being developed for the International Space Station (ISS). The image at far left is a dendrite grown in Glicksman's IDGE tests aboard the Shuttle. Glicksman is also principal investigator for the Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters.

  7. Real-World Experiences

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2006-01-01

    This article presents IISME, a U.S. program that can give educators a real-world experience and that can deepen their subject-matter knowledge. It also presents the experiences of some teachers who are into this program. IISME's summer-fellowship program started out with 40 teachers and 12 companies. The group's growth picked up in 2001, when it…

  8. Effects of High-Flow Experiments from Glen Canyon Dam on Abundance, Growth, and Survival Rates of Early Life Stages of Rainbow Trout in the Lees Ferry Reach of the Colorado River

    USGS Publications Warehouse

    Korman, Josh; Kaplinski, Matthew; Melis, Theodore S.

    2010-01-01

    High-flow experiments (HFEs) from Glen Canyon Dam are primarily intended to conserve fine sediment and improve habitat conditions for native fish in the Colorado River as it flows through Grand Canyon National Park, Arizona. These experimental flows also have the potential to affect the rainbow trout (Oncorhynchus mykiss) population in the Lees Ferry tailwater reach immediately below the dam, which supports a highly valued recreational fishery and likely influences the abundance of rainbow trout in Grand Canyon. Understanding how flow regimes affect the survival and growth of juvenile rainbow trout is critical to interpreting trends in adult abundance. This study reports on the effects of HFEs in 2004 and 2008 on early life stages of rainbow trout in the Lees Ferry reach on the basis of monthly sampling of redds (egg nests) and the abundance of the age-0 trout (fertilization to about 1 to 2 months from emergence) and their growth during a 7-year period between 2003 and 2009. Multiple lines of evidence indicate that the March 2008 HFE resulted in a large increase in early survival rates of age-0 trout because of an improvement in habitat conditions. A stock-recruitment analysis demonstrated that age-0 abundance in July 2008 was more than fourfold higher than expected, given the number of viable eggs that produced these fish. A hatch-date analysis showed that early survival rates were much higher for cohorts that hatched about 1 month after the 2008 HFE (about April 15, 2008) relative to those fish that hatched before this date. These cohorts, fertilized after the 2008 HFE, would have emerged into a benthic invertebrate community that had recovered, and was possibly enhanced by, the HFE. Interannual differences in growth of age-0 trout, determined on the basis of otolith microstructure, support this hypothesis. Growth rates in the summer and fall of 2008 (0.44 mm/day) were virtually the same as in 2006 (0.46 mm/day), the highest recorded during 6 years, even though

  9. Purification optimization for a recombinant single-chain variable fragment against type 1 insulin-like growth factor receptor (IGF-1R) by using design of experiment (DoE).

    PubMed

    Song, Yong-Hong; Sun, Xue-Wen; Jiang, Bo; Liu, Ji-En; Su, Xian-Hui

    2015-12-01

    Design of experiment (DoE) is a statistics-based technique for experimental design that could overcome the shortcomings of traditional one-factor-at-a-time (OFAT) approach for protein purification optimization. In this study, a DoE approach was applied for optimizing purification of a recombinant single-chain variable fragment (scFv) against type 1 insulin-like growth factor receptor (IGF-1R) expressed in Escherichia coli. In first capture step using Capto L, a 2-level fractional factorial analysis and successively a central composite circumscribed (CCC) design were used to identify the optimal elution conditions. Two main effects, pH and trehalose, were identified, and high recovery (above 95%) and low aggregates ratio (below 10%) were achieved at the pH range from 2.9 to 3.0 with 32-35% (w/v) trehalose added. In the second step using cation exchange chromatography, an initial screening of media and elution pH and a following CCC design were performed, whereby the optimal selectivity of the scFv was obtained on Capto S at pH near 6.0, and the optimal conditions for fulfilling high DBC and purity were identified as pH range of 5.9-6.1 and loading conductivity range of 5-12.5 mS/cm. Upon a further gel filtration, the final purified scFv with a purity of 98% was obtained. Finally, the optimized conditions were verified by a 20-fold scale-up experiment. The purities and yields of intermediate and final products all fell within the regions predicted by DoE approach, suggesting the robustness of the optimized conditions. We proposed that the DoE approach described here is also applicable in production of other recombinant antibody constructs.

  10. Space Station Live: Seedling Growth

    NASA Video Gallery

    Public Affairs Officer Lori Meggs talks with Carol Jacobs, payload operations director at the Marshall Space Flight Center's POIC, about the Seedling Growth experiment talking place aboard the Inte...

  11. U.S. Population Growth.

    ERIC Educational Resources Information Center

    Dillner, Harry

    This autoinstructional lesson deals with the study of man and his environment. No previous experience or learning in this field is required. Emphasis is placed on analysis of population growth and the impact population growth and trends have on natural resource depletion. The behavioral objectives (five) are listed. The study guide for the…

  12. Protein crystal growth - Growth kinetics for tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, M. L.; Snyder, R. S.; Naumann, R.

    1986-01-01

    Results are reported from theoretical and experimental studies of the growth rate of lysozyme as a function of diffusion in earth-gravity conditions. The investigations were carried out to form a comparison database for future studies of protein crystal growth in the microgravity environment of space. A diffusion-convection model is presented for predicting crystal growth rates in the presence of solutal concentration gradients. Techniques used to grow and monitor the growth of hen egg white lysozyme are detailed. The model calculations and experiment data are employed to discuss the effects of transport and interfacial kinetics in the growth of the crystals, which gradually diminished the free energy in the growth solution. Density gradient-driven convection, caused by presence of the gravity field, was a limiting factor in the growth rate.

  13. Extrapituitary growth hormone and growth?

    PubMed

    Harvey, Steve; Baudet, Marie-Laure

    2014-09-01

    While growth hormone (GH) is obligatory for postnatal growth, it is not required for a number of growth-without-GH syndromes, such as early embryonic or fetal growth. Instead, these syndromes are thought to be dependent upon local growth factors, rather than pituitary GH. The GH gene is, however, also expressed in many extrapituitary tissues, particularly during early development and extrapituitary GH may be one of the local growth factors responsible for embryonic or fetal growth. Moreover, as the expression of the GH receptor (GHR) gene mirrors that of GH in extrapituitary tissues the actions of GH in early development are likely to be mediated by local autocrine or paracrine mechanisms, especially as extrapituitary GH expression occurs prior to the ontogeny of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of GH in embryos has also been shown to be of functional relevance in a number of species, since the immunoneutralization of endogenous GH or the blockade of GH production is accompanied by growth impairment or cellular apoptosis. The extrapituitary expression of the GH gene also persists in some central and peripheral tissues postnatally, which may reflect its continued functional importance and physiological or pathophysiological significance. The expression and functional relevance of extrapituitary GH, particularly during embryonic growth, is the focus of this brief review.

  14. Protein crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1988-01-01

    Protein crystal growth is a major experimental problem and is the bottleneck in widespread applications of protein crystallography. Research efforts now being pursued and sponsored by NASA are making fundamental contributions to the understanding of the science of protein crystal growth. Microgravity environments offer the possibility of performing new types of experiments that may produce a better understanding of protein crystal growth processes and may permit growth environments that are more favorable for obtaining high quality protein crystals. A series of protein crystal growth experiments using the space shuttle was initiated. The first phase of these experiments was focused on the development of micro-methods for protein crystal growth by vapor diffusion techniques, using a space version of the hanging drop method. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth.

  15. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1989-01-01

    Alloy 718 crack growth experiments were conducted to assess the ability of the selected path-independent (P-I) integrals to describe the elevated temperature crack growth behavior. These tests were performed on single edge notch (SEN) specimens under displacement control with multiple extensometers to monitor the specimen and crack mouth opening displacement (CMOD). The displacements in these tests were sufficiently high to induce bulk cyclic inelastic deformation of the specimen. Under these conditions, the linear elastic fracture mechanics (LEFM) parameter K does not correlate the crack growth data. The experimentally measured displacement gradients at the end of specimen gage length were used as the boundary conditions in elastic-plastic finite element method (FEM) analyses. These analyses were performed with a node release approach using CYANIDE, a GEAE FEM code, which included a gap element which is capable of efficiently simulating crack closure. Excellent correlation was obtained between the experimentally measured and predicted variation of stress and CMOD with crack length and the stress-CMOD loops for Alloy 718 tests conducted at 538 C. This confirmed the accuracy of the FEM crack growth simulation approach. The experimentally measured crack growth rate data correlated well the selected P-I integrals. These investigations have produced significant progress in developing P-I integrals as non-linear fracture mechanics parameters. The results suggest that this methodology has the potential of accurately describing elevated temperature crack growth behavior under the combined influence of thermal cycling and bulk elastic-inelastic deformation states.

  16. Growth Problems

    MedlinePlus

    ... that can lead to significantly short stature is dwarfism . Dwarfism results from abnormal growth of the bones and cartilage in the body. In many forms of dwarfism the person has abnormal body proportions, such as ...

  17. Delayed growth

    MedlinePlus

    ... ready-to-feed formula. When to Contact a Medical Professional Contact your health care provider if you are concerned about your child's growth. Medical evaluations are important even if you think developmental ...

  18. Thick silicon growth techniques

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Mlavsky, A. I.; Jewett, D. N.

    1973-01-01

    Hall mobility measurements on a number of single crystal silicon ribbons grown from graphite dies have shown some ribbons to have mobilities consistent with their resistivities. The behavior of other ribbons appears to be explained by the introduction of impurities of the opposite sign. Growth of a small single crystal silicon ribbon has been achieved from a beryllia dia. Residual internal stresses of the order of 7 to 18,000 psi have been determined to exist in some silicon ribbon, particularly those grown at rates in excess of 1 in./min. Growth experiments have continued toward definition of a configuration and parameters to provide a reasonable yield of single crystal ribbons. High vacuum outgassing of graphite dies and evacuation and backfilling of growth chambers have provided significant improvements in surface quality of ribbons grown from graphite dies.

  19. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.

  20. Spacelab J experiment descriptions

    SciTech Connect

    Miller, T.Y.

    1993-08-01

    Brief descriptions of the experiment investigations for the Spacelab J Mission which was launched from the Kennedy Space Center aboard the Endeavour in Sept. 1992 are presented. Experiments cover the following: semiconductor crystals; single crystals; superconducting composite materials; crystal growth; bubble behavior in weightlessness; microgravity environment; health monitoring of Payload Specialists; cultured plant cells; effect of low gravity on calcium metabolism and bone formation; and circadian rhythm. Separate abstracts have been prepared for articles from this report.

  1. Spacelab J experiment descriptions

    NASA Technical Reports Server (NTRS)

    Miller, Teresa Y. (Editor)

    1993-01-01

    Brief descriptions of the experiment investigations for the Spacelab J Mission which was launched from the Kennedy Space Center aboard the Endeavour in Sept. 1992 are presented. Experiments cover the following: semiconductor crystals; single crystals; superconducting composite materials; crystal growth; bubble behavior in weightlessness; microgravity environment; health monitoring of Payload Specialists; cultured plant cells; effect of low gravity on calcium metabolism and bone formation; and circadian rhythm.

  2. Surrogate Seeds For Growth Of Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  3. Exploring Old Growth Forests: A Teacher's Manual.

    ERIC Educational Resources Information Center

    Lemieux, Chris; Powers, Jennene; Quinby, Peter; Schultz, Caroline; Stabb, Mark

    "Exploring Old Growth Forests" is an Ontario (Canada) program that provides secondary students with hands-on experiences in old growth forests. Activity-based and student-centered, the program aims to develop student awareness of the importance of old growth forests and the need to conserve them. This manual provides teachers with…

  4. Solidification under microgravity conditions - Dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Winsa, E.

    1987-01-01

    The experimental approach and apparatus of a zero-gravity active crystal growth experiment to test dendritic growth theory at low supercoolings are discussed. The experiment consists of 20 experimental cycles. Estimates have been made as to how low gravitational accelerations would have to be reduced to observe convection-free dendritic growth at supercoolings from 0.01-1.0 K. The experiment requires temperature control of + or - 2 mK and photographic resolution of a few microns with a depth of field of + or - 6 mm. The thermostatic bath and temperature control system, photographic system, growth chamber, and dendrite detection system are described in detail.

  5. Population growth and consumption.

    PubMed

    Chalkley, K

    1997-04-01

    The relationship between population growth, resource consumption, and environmental degradation is complex. The rise in "greenhouse gases" that will cause climatic change is clearly due to human activity, and pollutants are often concentrated in densely populated areas. However, even an area with a negative population growth, such as Russia, can experience severe environmental degradation due to poor management. Consumption patterns have the most effect on ozone depletion, while population growth threatens biodiversity of and within species through the destruction of ecosystems. Migration joins population growth and social factors, such as land inequality, as major causes of deforestation, and global demand for water is expected to increase faster than the rate of population growth. Coastal development and over-fishing threaten to deplete the oceans, while soil quality is threatened by inappropriate land use. Estimates of the earth's carrying capacity range from less than 3 billion to more than 44 billion people, indicating how difficult it is to assess this figure. Development efforts throughout the world may lead to human gains that will ultimately be negated by environmental losses. These factors have led to growing support for environmentally sustainable development.

  6. Summaries of early materials processing in space experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Mason, D.

    1979-01-01

    Objectives, methods, and results of low-gravity materials processing experiments are summarized, and a bibliography of published results for each experiment is provided. Included are drop tower experiments, the Apollo demonstration experiments, the skylab experiments and demonstration experiments, and the Apollo-Soyuz experiments and demonstrations. The findings of these experiments in the fields of crystal growth, metallurgy, and fluid behavior are summarized.

  7. Growth Kinetics in Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Hessinger, Uwe

    Growth kinetics in heteroepitaxial growth are related to the nucleation and growth of atomic-height islands during the deposition of a material on a dissimilar substrate. Experimental measurements of the initial morphology of CaF_2 films deposited on Si(111) substrates were performed. These measurements consisted of photoemission spectroscopy and diffraction, which give sub-nanometer scale information averaged over the entire sample, and plan-view transmission electron microscopy, which gives localized information on a scale of several nanometers. These results, combined with others in the literature, revealed four distinct growth morphologies dependent on the deposition rate, substrate temperature and spacing between atomic-height steps on the surface, two of which had not been previously explained. A model based on two extant theories of homoepitaxial growth kinetics was developed to explain the different observed growth morphologies for the heteroepitaxial system CaF_2/Si(111). The first theory deals with whether the initial nucleation will occur at substrate steps or through adatom collisions on flat terraces, while the second deals with the nucleation of subsequent layers as these initial atomic islands increase in size. In extending these theories to heteroepitaxy, very different rates of upper-layer nucleation for the different size islands that nucleated at steps and on terraces are predicted. By applying this theory to CaF_2/Si(111), the diffusion barriers for CaF_2 molecule migration both on the reacted Si-Ca-F interface layer and on subsequent CaF_2 layers was extracted. The four different growth morphologies are explained within a common framework. The theory is quite general, and should apply to most heteroepitaxial systems. These theories were extended to predict a means by which the upper-layer nucleation may be inhibited while the underlying layer is completed. This method involves initiating the growth at conditions favoring many, small islands on

  8. Biotechnology Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity biotechnology experiments carried out on the Shuttle/Mir program. Four experiments investigated the growth of protein crystals, and three investigated cellular growth. Many hundreds of protein samples were processed using four different techniques. The objective of these experiments was to determine optimum conditions for the growth of very high quality single crystals to be used for structure determination. The Biotechnology System (BTS) was used to process the three cell growth investigations. The samples processed by these experiments were: bovine chondrocytes, human renal epithelial cells, and human breast cancer cells and endothelial cells. The objective was to determine the unique properties of cell aggregates produced in the microgravity environment.

  9. Chemical Growth Regulators for Guayule Plants

    NASA Technical Reports Server (NTRS)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R.

    1982-01-01

    Test Tubes containing Guayule - tissue cultures were used in experiments to test effects of chemical-growth regulators. The shoots grew in response to addition of 2-(3,4-dichlorophenoxy)-triethylamine (triethylamine (TEA) derivative) to agar medium. Preliminary results indicate that a class of compounds that promotes growth in soil may also promote growth in a culture medium. Further experiments are needed to define the effect of the TEA derivative.

  10. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  11. Shaped Crystal Growth

    NASA Astrophysics Data System (ADS)

    Tatartchenko, Vitali A.

    Crystals of specified shape and size (shaped crystals) with controlled crystal growth (SCG) defect and impurity structure have to be grown for the successful development of modern engineering. Since the 1950s many hundreds of papers and patents concerned with shaped growth have been published. In this chapter, we do not try to enumerate the successful applications of shaped growth to different materials but rather to carry out a fundamental physical and mathematical analysis of shaping as well as the peculiarities of shaped crystal structures. Four main techniques, based on which the lateral surface can be shaped without contact with the container walls, are analyzed: the Czochralski technique (CZT), the Verneuil technique (VT), the floating zone technique (FZT), and technique of pulling from shaper (TPS). Modifications of these techniques are analyzed as well. In all these techniques the shape of the melt meniscus is controlled by surface tension forces, i.e., capillary forces, and here they are classified as capillary shaping techniques (CST). We look for conditions under which the crystal growth process in each CST is dynamically stable. Only in this case are all perturbations attenuated and a crystal of constant cross section shaping technique (CST) grown without any special regulation. The dynamic stability theory of the crystal growth process for all CST is developed on the basis of Lyapunov's dynamic stability theory. Lyapunov's equations for the crystal growth processes follow from fundamental laws. The results of the theory allow the choice of stable regimes for crystal growth by all CST as well as special designs of shapers in TPS. SCG experiments by CZT, VT, and FZT are discussed but the main consideration is given to TPS. Shapers not only allow crystal of very complicated cross section to be grown but provide a special distribution of impurities. A history of TPS is provided later in the chapter, because it can only be described after explanation of the

  12. Gonads directly regulate growth in teleosts.

    PubMed

    Bhatta, Sandip; Iwai, Toshiharu; Miura, Chiemi; Higuchi, Masato; Shimizu-Yamaguchi, Sonoko; Fukada, Haruhisa; Miura, Takeshi

    2012-07-10

    In general, there is a relationship between growth and reproduction, and gonads are known to be important organs for growth, but direct evidence for their role is lacking. Here, using a fish model, we report direct evidence that gonads are endocrine organs equal to the pituitary in controlling body growth. Gonadal loss of function, gain of function, and rescue of growth were investigated in tilapia. Gonadectomy experiments were carried out in juvenile males and females. Gonadectomy significantly retarded growth compared with controls; however, this retardation was rescued by the implantation of extirpated gonads. Because gonads express growth hormone, it is possible that gonads control body growth through the secretion of growth hormone and/or other endocrine factors. We propose that gonads are integral players in the dynamic regulation of growth in teleosts.

  13. Population growth.

    PubMed

    1984-01-01

    Despite efforts to reduce population growth, the World Bank projects a world population of 10 billion by 2050, with 7 billion living in developing countries. From October 1979 to September 1984, the US Agency for International Development (AID) funded the Research Triangle Institute's (RTI) Integrated Population and Development Planning (IPDP) project to assess rapid population growth effects in 25 developing countries. In October 1984, US AID extended funding for the program, nicknamed INPLAN, for 3 years, at a cost of $6.3 million. Up to 50% of people in developing countries are under age 15, a fact that guarantees large population increases for the next 50-75 years. Also, many regions have been slow to correlate high fertility with socioeconomic development, and in some areas, fertility is actually increasing. INPLAN aims to make governments more aware of population dynamics and to provide training and tools for effective development planning. 40% of INPLAN's work will be done in Africa, 25% in Latin America, and 20% in Asia, with some activity in the Near East. One project in Egypt, involving the use of model generation by microcomputer, was developed by RTI to show rural to urban migration and rapid population growth affects on the educational system. INPLAN expects to develop several other planning sector models on labor force and employment, health and family planning, food supply, housing, and urban development, and apply them to 20-25 countries. Another project provided 9 microcomputer systems and training to Nigerian government agencies. IMPLAN will purchase and distribute 60 such systems in the future.

  14. Experiences on IGSCC crack manufacturing

    SciTech Connect

    Veron, P.

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  15. College-Student Personal-Growth and Attributions of Cause

    ERIC Educational Resources Information Center

    Anderson, W. P., Jr.; Lopez-Baez, Sandra I.

    2012-01-01

    Little is known about levels of personal growth attributed by students to typical college life experiences. This paper documents two studies of student self-reported and posttraumatic growth and compares growth levels across populations. Both studies measure student attributions of cause to academic and non-academic experiences, respectively. It…

  16. Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Steinbach, I.; Karma, A.; deGroh, H. C., III

    1999-01-01

    The objective of the research is to quantitatively determine and understand the fundamental mechanisms that control the microstructural evolution during solidification of an assemblage of equiaxed dendritic crystals. A microgravity experiment will be conducted to obtain benchmark data on the transient growth and interaction of up to four equiaxed crystals of a pure and transparent metal analog (succinonitrile, SCN) under strictly diffusion dominated conditions. Of interest in the experiment are the transient evolution of the primary and secondary dendrite tip speeds, the dendrite morphology (i.e., tip radii, branch spacings, etc.) and solid fraction, the tip selection criterion, and the temperature field in the melt for a range of initial supercoolings and, thus, interaction "strengths" between the crystals. The experiment thus extends the microgravity measurements of Glicksman and coworkers for steady growth of a single dendrite [Isothermal Dendritic Growth Experiment (IDGE), first flown on USMP-2] to a case where growth transients are introduced due to thermal interactions between neighboring dendrites - a situation more close to actual casting conditions. Corresponding earth-based experiments will be conducted to ascertain the influence of melt convection. The experiments are supported by a variety of analytical models and numerical simulations. The data will primarily be used to develop and test theories of transient dendritic growth and the solidification of multiple interacting equiaxed crystals in a supercooled melt.

  17. Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    The objective of the research is to quantitatively determine and understand the fundamental mechanisms that control the microstructural evolution during equiaxed dendritic solidification. A microgravity experiment will be conducted to obtain benchmark data on the transient growth and interaction of up to four equiaxed crystals of a pure and transparent metal analog (succinonitrile, SCN) under strictly diffusion-dominated conditions. Of interest in the experiment are the transient evolution of the primary and secondary dendrite tip speeds, the dendrite morphology and solid fraction, the tip selection criterion, and the temperature field in the melt for a range of interaction "strengths" between the crystals. The experiment extends the microgravity measurements of Glicksman and co-workers isothermal dendritic growth experiment (IDGE) for steady growth of a single dendrite to a case where growth transients are introduced due to thermal interactions between neighboring dendrites - a situation closer to actual casting conditions. Corresponding Earth-based experiments will be conducted to ascertain the influence of melt convection. The experiments are supported by a variety of analytical models and numerical simulations. The data will be used to develop and test theories of transient dendritic growth and the solidification of multiple interacting equiaxed crystals in a supercooled melt.

  18. Diamond growth in mantle fluids

    NASA Astrophysics Data System (ADS)

    Bureau, Hélène; Frost, Daniel J.; Bolfan-Casanova, Nathalie; Leroy, Clémence; Esteve, Imène; Cordier, Patrick

    2016-11-01

    In the upper mantle, diamonds can potentially grow from various forms of media (solid, gas, fluid) with a range of compositions (e.g. graphite, C-O-H fluids, silicate or carbonate melts). Inclusions trapped in diamonds are one of the few diagnostic tools that can constrain diamond growth conditions in the Earth's mantle. In this study, inclusion-bearing diamonds have been synthesized to understand the growth conditions of natural diamonds in the upper mantle. Diamonds containing syngenetic inclusions were synthesized in multi-anvil presses employing starting mixtures of carbonates, and silicate compositions in the presence of pure water and saline fluids (H2O-NaCl). Experiments were performed at conditions compatible with the Earth's geotherm (7 GPa, 1300-1400 °C). Results show that within the timescale of the experiments (6 to 30 h) diamond growth occurs if water and carbonates are present in the fluid phase. Water promotes faster diamond growth (up to 14 mm/year at 1400 °C, 7 GPa, 10 g/l NaCl), which is favorable to the inclusion trapping process. At 7 GPa, temperature and fluid composition are the main factors controlling diamond growth. In these experiments, diamonds grew in the presence of two fluids: an aqueous fluid and a hydrous silicate melt. The carbon source for diamond growth must be carbonate (CO32) dissolved in the melt or carbon dioxide species in the aqueous fluid (CO2aq). The presence of NaCl affects the growth kinetics but is not a prerequisite for inclusion-bearing diamond formation. The presence of small discrete or isolated volumes of water-rich fluids is necessary to grow inclusion-bearing peridotitic, eclogitic, fibrous, cloudy and coated diamonds, and may also be involved in the growth of ultradeep, ultrahigh-pressure metamorphic diamonds.

  19. Playing Games with Games People Play. Contributions of Gestalt Theory to Individual Counseling. Self-Discovery through Art: A Group Experience. A Review of Personal Research on Experimental-Gestalt Growth Groups. Gestalt Dreamwork as a Method for Self Discovery.

    ERIC Educational Resources Information Center

    Guinan, James F.; And Others

    The existential Gestalt approach to facilitating the human growth process is discussed, from somewhat different vantage points, in these papers. Two seek to elaborate the basic principles and facilitating "techniques" of Gestalt therapy, while maintaining that one can truly understand only by experiencing. The use of Focus Groups, in which a focal…

  20. Cell Growth Enhancement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  1. Psychology Experiments.

    ERIC Educational Resources Information Center

    McGraw, Ken; Tew, Mark D.; Williams, John E.

    2001-01-01

    A goal of the PsychExperiments project was to reduce the financial burden on psychology departments for hardware/software used in their laboratories. In its third year, the PsychExperiments site now hosts 39 experiments. Over 200 classrooms worldwide have signed up as official site users and there have been nearly 10,000 data sessions conducted.…

  2. Halogen lamp experiment, HALEX

    NASA Technical Reports Server (NTRS)

    Schmitt, G.; Stapelmann, J.

    1986-01-01

    The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.

  3. Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  4. Gravitational effects in dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Singh, N. B.; Chopra, M.

    1983-01-01

    The theories of diffusion-controlled dendritic crystallization will be reviewed briefly, along with recently published critical experiments on the kinetics and morphology of dendritic growth in pure substances. The influence of the gravitational body force on dendrite growth kinetics will be shown to be highly dependent on the growth orientation with respect to the gravity vector and on the level of the thermal supercooling. In fact, an abrupt transition occurs at a critical supercooling, above which diffusional transport dominates the growth process and below which convective transport dominates. Our most recent work on binary mixtures shows that dilute solute additions influence the crystallization process indirectly, by altering the interfacial stability, rather than by directly affecting the transport mode. Directions for future studies in this field will also be discussed.

  5. Understanding customer experience.

    PubMed

    Meyer, Christopher; Schwager, Andre

    2007-02-01

    Anyone who has signed up for cell phone service, attempted to claim a rebate, or navigated a call center has probably suffered from a company's apparent indifference to what should be its first concern: the customer experiences that culminate in either satisfaction or disappointment and defection. Customer experience is the subjective response customers have to direct or indirect contact with a company. It encompasses every aspect of an offering: customer care, advertising, packaging, features, ease of use, reliability. Customer experience is shaped by customers' expectations, which largely reflect previous experiences. Few CEOs would argue against the significance of customer experience or against measuring and analyzing it. But many don't appreciate how those activities differ from CRM or just how illuminating the data can be. For instance, the majority of the companies in a recent survey believed they have been providing "superior" experiences to customers, but most customers disagreed. The authors describe a customer experience management (CEM) process that involves three kinds of monitoring: past patterns (evaluating completed transactions), present patterns (tracking current relationships), and potential patterns (conducting inquiries in the hope of unveiling future opportunities). Data are collected at or about touch points through such methods as surveys, interviews, focus groups, and online forums. Companies need to involve every function in the effort, not just a single customer-facing group. The authors go on to illustrate how a cross-functional CEM system is created. With such a system, companies can discover which customers are prospects for growth and which require immediate intervention.

  6. The Growth of Large Single Crystals.

    ERIC Educational Resources Information Center

    Baer, Carl D.

    1990-01-01

    Presented is an experiment which demonstrates principles of experimental design, solubility, and crystal growth and structure. Materials, procedures and results are discussed. Suggestions for adapting this activity to the high school laboratory are provided. (CW)

  7. USML-1 Glovebox experiments

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1995-01-01

    This report covers the development of and results from three experiments that were flown in the Materials Science Glovebox on USML-1: Marangoni convection in Closed Containers (MCCC), Double Float Zone (DFZ), and Fiber Pulling in Microgravity (FPM). The Glovebox provided a convenient, low cost method for doing simple 'try and see' experiments that could test new concepts or elucidate microgravity phenomena. Since the Glovebox provided essentially one (or possibly two levels of confinement, many of the stringent verification and test requirements on the experiment apparatus could be relaxed and a streamlined test and verification plan for flight qualification could be implemented. Furthermore, the experiments were contained in their own carrying cases whose external configurations could be identified early in the integration sequence for stowage considerations while delivery of the actual experiment apparatus could be postponed until only a few months before flight. This minimized the time fluids must be contained and reduced the possibility of corrosive reactions that could ruin the experiment. In many respects, this exercise was as much about developing a simpler, cheaper way of doing crew-assisted science as it was about the actual scientific accomplishments of the individual experiments. The Marangoni Convection in Closed Containers experiment was designed to study the effects of a void space in a simulated Bridgman crystal growth configuration and to determine if surface tension driven convective flows that may result from thermal gradients along any free surfaces could affect the solidification process. The Fiber Pulling in Microgravity experiment sought to separate the role of gravity drainage from capillarity effects in the break-up of slender cylindrical liquid columns. The Stability of a Double Float Zone experiment explored the feasibility of a quasi-containerless process in which a solidifying material is suspended by two liquid bridges of its own melt.

  8. History * Autobiography * Growth: (Fifty Years since Dartmouth)

    ERIC Educational Resources Information Center

    Doecke, Brenton

    2016-01-01

    This essay explores how my professional experiences as an English educator have been shaped by the values and beliefs that are typically associated with the Dartmouth Seminar of 1966 as they were presented by John Dixon in his immensely influential report of that seminar, "Growth Through English." Rather than seeing "Growth"…

  9. Wheat growth monitoring with radar vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave remote sensing can help in the monitoring of crop growth. Many experiments have been carried out to investigate the sensitivity of microwave sensors to crop growth parameters. These have clearly shown that canopy structure and water content can greatly affect the measurements. For agricult...

  10. Growth of Corophium volutator under laboratory conditions.

    PubMed

    Kater, Belinda J; Jol, Johan G; Smit, Mathijs G D

    2008-04-01

    Temperature-dependent growth is an important factor in the population model of Corophium volutator that was developed to translate responses in a 10-day acute bioassay to ecological consequences for the population. The growth rate, however, was estimated from old data, based on a Swedish population. Therefore, new growth rates are estimated herein from two experiments using Corophium volutator. To save time, a tool was developed to use image analysis to measure Corophium volutator. The experiments show that Corophium volutator has a low growth rate at low temperatures (5-10 degrees C). At higher temperatures no difference in growth rate between 15 degrees C and 25 degrees C was found. The growth rate from these experiments is comparable to data found in literature. A new relationship between temperature and individual growth was estimated, and incorporated into the Corophium population model. As the model also uses the same temperature relationship for reproduction, the modelled population growth rate at different temperatures changes as a result of the new data. The new growth rate and the updated temperature relationship result in reduced tolerance to external stressors, as previously predicted by the model.

  11. Simulated Experiments

    ERIC Educational Resources Information Center

    Snadden, R. B.; Runquist, O.

    1975-01-01

    Presents an experiment in which a programmable calculator is employed as a data generating system for simulated laboratory experiments. The example used as an illustration is a simulated conductimetric titration of an aqueous solution of HC1 with an aqueous solution of NaOH. (Author/EB)

  12. TRIO experiment

    SciTech Connect

    Clemmer, R.G.; Finn, P.A.; Malecha, R.F.; Misra, B.; Billone, M.C.; Bowers, D.L.; Fischer, A.K.; Greenwood, L.R.; Mattas, R.F.; Tam, S.W.

    1984-09-01

    The TRIO experiment is a test of in-situ tritium recovery and heat transfer performance of a miniaturized solid breeder blanket assembly. The assembly (capsule) was monitored for temperature and neutron flux profiles during irradiation and a sweep gas flowed through the capsule to an anaytical train wherein the amounts of tritium in its various chemical forms were determined. The capsule was designed to operate at different temperatures and sweep gas conditions. At the end of the experiment the amount of tritium retained in the solid was at a concentration of less than 0.1 wppM. More than 99.9% of tritium generated during the experiment was successfully recovered. The results of the experiment showed that the tritium inventories at the beginning and at the end of the experiment follow a relationship which appears to be characteristic of intragranular diffusion.

  13. Osimertinib in the treatment of patients with epidermal growth factor receptor T790M mutation-positive metastatic non-small cell lung cancer: clinical trial evidence and experience.

    PubMed

    Sullivan, Ivana; Planchard, David

    2016-12-01

    Patients with advanced epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) are particularly sensitive to treatment with first- or second-generation EGFR tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib, which block the cell-signaling pathways that drive the growth of tumor cells. Unfortunately, the majority of patients develop resistance to them after a median duration of response of around 10 months, and in over half of these patients the emergence of the EGFR T790M resistance mutation is detected. Osimertinib is an oral, highly selective, irreversible inhibitor of both EGFR-activating mutations and the T790M-resistance mutation, while sparing the activity of wild-type EGFR This article reviews clinical trial development of osimertinib in patients with NSCLC, presenting efficacy and safety evidence for its value in the EGFR T790M mutation-positive population and in different settings, including patients with metastatic disease. The preclinical background of clinically acquired resistance to osimertinib is presented and the combination tactics being investigated in an attempt to circumvent this are addressed.

  14. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  15. Microgravity Materials and Biotechnology Experiments

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus

    1998-01-01

    Presentation will deal with an overview of the Materials Science and Biotechnology/Crystal Growth flight experiments and their requirements for a successful execution. It will also deal with the hardware necessary to perform these experiments as well as the hardware requirements. This information will serve as a basis for the Abstract: workshop participants to review the poss7ibilifies for a low cost unmanned carrier and the simple automation to carry-out experiments in a microgravity environment with little intervention from the ground. The discussion will include what we have now and what will be needed to automate totally the hardware and experiment protocol at relatively low cost.

  16. Mixture Experiments

    SciTech Connect

    Piepel, Gregory F.

    2007-12-01

    A mixture experiment involves combining two or more components in various proportions or amounts and then measuring one or more responses for the resulting end products. Other factors that affect the response(s), such as process variables and/or the total amount of the mixture, may also be studied in the experiment. A mixture experiment design specifies the combinations of mixture components and other experimental factors (if any) to be studied and the response variable(s) to be measured. Mixture experiment data analyses are then used to achieve the desired goals, which may include (i) understanding the effects of components and other factors on the response(s), (ii) identifying components and other factors with significant and nonsignificant effects on the response(s), (iii) developing models for predicting the response(s) as functions of the mixture components and any other factors, and (iv) developing end-products with desired values and uncertainties of the response(s). Given a mixture experiment problem, a practitioner must consider the possible approaches for designing the experiment and analyzing the data, and then select the approach best suited to the problem. Eight possible approaches include 1) component proportions, 2) mathematically independent variables, 3) slack variable, 4) mixture amount, 5) component amounts, 6) mixture process variable, 7) mixture of mixtures, and 8) multi-factor mixture. The article provides an overview of the mixture experiment designs, models, and data analyses for these approaches.

  17. Dendritic Growth in Undercooled Melts

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1985-01-01

    The kinetic and morphological behavior of systems solidifying at small undercooling were investigated with emphasis on the role of convective and diffusive transport and the influence of gravity. A data base was established for pure succinonitrile which permits a comprehensive check on diffusional dendrite growth theory and the development of scaling laws to extend the theory to other material systems. A departure from diffusional-controlled growth was observed which becomes more significant at smaller undercoolings. A shuttle experiment is prepared to test the theory at the low undercoolings where convective effects begin to dominate.

  18. Hydronuclear experiments

    SciTech Connect

    Thorn, R.N.; Westervelt, D.R.

    1987-02-01

    Hydronuclear experiments, a method for assessing some aspects of nuclear weapon safety, were conducted at Los Alamos during the 1958 to 1961 moratorium on nuclear testing. The experiments resulted in subcritical multiplying assemblies or a very slight degree of supercriticality and, in some cases, involved a slight, but insignificant, fission energy release. These experiments helped to identify so-called one-point safety problems associated with some of the nuclear weapons systems of that time. The need for remedial action was demonstrated, although some of the necessary design changes could not be made until after the resumption of weapons testing at the end of 1961.

  19. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  20. Interpretive Experiments

    ERIC Educational Resources Information Center

    DeHaan, Frank, Ed.

    1977-01-01

    Describes an interpretative experiment involving the application of symmetry and temperature-dependent proton and fluorine nmr spectroscopy to the solution of structural and kinetic problems in coordination chemistry. (MLH)

  1. Wanted: Experiments

    ERIC Educational Resources Information Center

    McDaniel, Floyd D.

    1974-01-01

    Describes a project to produce a series of laboratory manuals and instructional materials in which nuclear experiments are presented for the undergraduate advanced laboratory. The manuals are being compiled in the areas of physics, chemistry, geology and environmental sciences. (BR)

  2. Disseminated thrombosis-induced growth plate necrosis in rat: a unique model for growth plate arrest.

    PubMed

    Nyska, Meir; Shabat, Shay; Long, Philip H; Howard, Charles; Ezov, Nathan; Levin-Harrus, Tal; Mittelman, Moshe; Redlich, Meir; Yedgar, Saul; Nyska, Abraham

    2005-01-01

    Exposure of rats to 2-butoxyethanol (BE) produces early hemolytic anemia and disseminated thrombosis. This leads to infarctions in multiple organs, including bones and cartilage. BE, administered for different durations of exposure in two separate experiments, produced metaphyseal vascular thrombosis, growth plate infarction, and partial or complete physeal growth arrest. This reproducible model may serve as a useful tool in the study of some conditions that manifest growth plate damage. The suitability of this model for investigating the pathogenesis of growth plate necrosis and as a model for potential therapy for various human growth plate disorders are discussed.

  3. Experiment Databases

    NASA Astrophysics Data System (ADS)

    Vanschoren, Joaquin; Blockeel, Hendrik

    Next to running machine learning algorithms based on inductive queries, much can be learned by immediately querying the combined results of many prior studies. Indeed, all around the globe, thousands of machine learning experiments are being executed on a daily basis, generating a constant stream of empirical information on machine learning techniques. While the information contained in these experiments might have many uses beyond their original intent, results are typically described very concisely in papers and discarded afterwards. If we properly store and organize these results in central databases, they can be immediately reused for further analysis, thus boosting future research. In this chapter, we propose the use of experiment databases: databases designed to collect all the necessary details of these experiments, and to intelligently organize them in online repositories to enable fast and thorough analysis of a myriad of collected results. They constitute an additional, queriable source of empirical meta-data based on principled descriptions of algorithm executions, without reimplementing the algorithms in an inductive database. As such, they engender a very dynamic, collaborative approach to experimentation, in which experiments can be freely shared, linked together, and immediately reused by researchers all over the world. They can be set up for personal use, to share results within a lab or to create open, community-wide repositories. Here, we provide a high-level overview of their design, and use an existing experiment database to answer various interesting research questions about machine learning algorithms and to verify a number of recent studies.

  4. Growth laws and mechanisms of global control in bacteria

    NASA Astrophysics Data System (ADS)

    Scott, Matthew

    2009-03-01

    The growth laws of Schaechter, Maaløe and Kjeldgaard are among the most striking discoveries in bacterial growth physiology: cell composition (mass/cell, RNA/cell, etc.) is a simple function of growth rate alone -- irrespective of how that growth rate is established. I will review the growth laws, and discuss recent experiments that have uncovered new laws. A systems-level mathematical model is developed that suggests the growth laws arise from the partitioning of the protein synthesizing machinery of the cell (the ribosomes), and furthermore indicates a deep connection between growth rate control and central metabolism.

  5. Plant Growth Facility (PGF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In a microgravity environment aboard the Space Shuttle Columbia Life and Microgravity Mission STS-78, compression wood formation and hence altered lignin deposition and cell wall structure, was induced upon mechanically bending the stems of the woody gymnosperms, Douglas fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda). Although there was significant degradation of many of the plant specimens in space-flight due to unusually high temperatures experienced during the mission, it seems evident that gravity had little or no effect on compression wood formation upon bending even in microgravity. Instead, it apparently results from alterations in the stress gradient experienced by the plant itself during bending under these conditions. This preliminary study now sets the stage for long-term plant growth experiments to determine whether compression wood formation can be induced in microgravity during phototropic-guided realignment of growing woody plant specimens, in the absence of any externally provided stress and strain.

  6. Growth hormone deficiency

    MedlinePlus

    ... dosage of the medicine. Serious side effects of growth hormone treatment are rare. Common side effects include: Headache Fluid ... years. The rate of growth then slowly decreases. Growth hormone therapy does not work for all children. Left untreated, ...

  7. Growth Plate Fractures

    MedlinePlus

    .org Growth Plate Fractures Page ( 1 ) The bones of children and adults share many of the same risks for injury. But because they ... to a unique injury called a growth plate fracture. Growth plates are areas of cartilage located near ...

  8. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D. L.; Schruben, J.

    1982-01-01

    Thermal models were developed that accurately predict the thermally generated stresses in the web crystal which, if too high, cause the crystal to degenerate. The application of the modeling results to the design of low-stress experimental growth configurations will allow the growth of wider web crystals at higher growth velocities. A new experimental web growth machine was constructed. This facility includes all the features necessary for carrying out growth experiments under steady thermal conditions. Programmed growth initiation was developed to give reproducible crystal starts. Width control permits the growth of long ribbons at constant width. Melt level is controlled to 0.1 mm or better. Thus, the capability exists to grow long web crystals of constant width and thickness with little operator intervention, and web growth experiments can now be performed with growth variables controlled to a degree not previously possible.

  9. Growth of electronic materials in microgravity

    NASA Technical Reports Server (NTRS)

    Matthiesen, D. H.

    1991-01-01

    A growth experiment aimed at growing two selenium-doped gallium arsenide crystals, each of which are one inch in diameter and 3.45 inches in length, is described. Emphasis is placed on the effect of microgravity on the segregation behavior of electronic materials. The lessons learned from the 1975 ASTP mission have been incorporated in this experiment.

  10. Gravity and Skeletal Growth

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Turner, Russell T.

    1999-01-01

    Two simultaneous experiments were performed using 5-week-old male Sprague Dawley rats; in one study, the rats were flown in low earth orbit; in the other study, the hindlimbs of the growing rats were elevated to prevent weight bearing. Following 9 d of unloading, weight bearing was restored for 4, 28, and 76 hrs. Afterwards, additional hindlimb unloading experiments were performed to evaluate the skeletal response to 0, 2, 4, 6, 8, 10, 12, 16, and 24 hrs of restored weight bearing following 7 d of unloading. Cancellous and cortical bone histomorphometry were evaluated in the left tibia at the proximal metaphysis and in the left femur at mid-diaphysis, respectively. Steady-state mRNA levels for bone matrix proteins and skeletal signaling peptides were determined in total cellular RNA extracted from trabeculae from the right proximal tibiametaphysis and periosteum from the right femur. Spaceflight and hindlimb unloading each resulted in cancellous osteopenia, as well as a tendency towards decreased periosteal bone formation. Both models for skeletal unloading resulted in site specific reductions in mRNA levels for transforming growth factor-beta (sub 1) (TGF-beta) osteocalcin (OC), and prepro-alpha (I) subunit of type 1 collagen (collagen) and little or no changes in mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAP) and insulin-like growth factor I (IGF-I). Restoration of normal weight bearing resulted in transient increases in mRNA levels for the bone matrix proteins and TGF-beta in the proximal metaphysis and periosteum and no changes in either GAP or IGF-I mRNA levels. The timecourse for the response differed between the two skeletal compartments; the tibial metaphysis responded much more quickly to reloading. These results suggest that the skeletal adaptation to acute physiological changes in mechanical usage are mediated, in part, by changes in mRNA levels for bone matrix proteins and TGF-beta.

  11. The Experiment

    NASA Astrophysics Data System (ADS)

    Mariana Nicoara, Floare

    2016-04-01

    My name is Nicoara Floarea and I am teacher at Secondary School Calatele and I teach students from preparatory class and the second grade . They are six-eight years old. In my activity, for introducing scientific concepts to my students, I use various and active methods or traditional methods including experiments. The experiment stimulates students' curiosity, their creativity, the understanding and knowledge taught accessibility. I propose you two such experiments: The life cycle of the plants (long-term experiment, with rigorous observation time):We use beans, wheat or other; They are grown in pots and on the cotton soaked with water,keeping under students' observation protecting them ( just soak them regularly) and we waiting the plants rise. For discussions and comments of plant embryo development we use the plants which rose on the cotton soaked with water plants at the end of the first week. Last school year we had in the pot climbing beans which in May made pods. They were not too great but our experiment was a success. The students could deduce that there will develop those big beans which after drying will be planted again. The influence of light on plants (average duration experiment with the necessary observation time): We use two pots in which plants are of the same type (two geraniums), one of them is situated so as to get direct sunlight and other plant we put in a closed box. Although we wet both plants after a week we see that the plant that benefited from sunlight has turned strain in direct sunlight, developing normally in return the plant out of the box I have yellowed leaves, photosynthesis does not She has occurred . Students will understand the vital role of the Sun in plants' life, both in the classroom and in nature. The experiment is a method of teaching students extremely pleasant, with a remarkable percentage of acquiring more knowledge.

  12. Time for Experience: Growing up under the Experience Economy

    ERIC Educational Resources Information Center

    Argenton, Gerald

    2015-01-01

    Experience is one of the major paths to growth and autonomy, and as such, of outstanding educational value. But it also has a much wider sociocultural context, rooted in life itself. It is about learning that which cannot be taught, learning to think, which precedes all other-defined forms of education. It is an encounter with the unknown, where…

  13. Xeml Lab: a tool that supports the design of experiments at a graphical interface and generates computer-readable metadata files, which capture information about genotypes, growth conditions, environmental perturbations and sampling strategy.

    PubMed

    Hannemann, Jan; Poorter, Hendrik; Usadel, Björn; Bläsing, Oliver E; Finck, Alex; Tardieu, Francois; Atkin, Owen K; Pons, Thijs; Stitt, Mark; Gibon, Yves

    2009-09-01

    Data mining depends on the ability to access machine-readable metadata that describe genotypes, environmental conditions, and sampling times and strategy. This article presents Xeml Lab. The Xeml Interactive Designer provides an interactive graphical interface at which complex experiments can be designed, and concomitantly generates machine-readable metadata files. It uses a new eXtensible Mark-up Language (XML)-derived dialect termed XEML. Xeml Lab includes a new ontology for environmental conditions, called Xeml Environment Ontology. However, to provide versatility, it is designed to be generic and also accepts other commonly used ontology formats, including OBO and OWL. A review summarizing important environmental conditions that need to be controlled, monitored and captured as metadata is posted in a Wiki (http://www.codeplex.com/XeO) to promote community discussion. The usefulness of Xeml Lab is illustrated by two meta-analyses of a large set of experiments that were performed with Arabidopsis thaliana during 5 years. The first reveals sources of noise that affect measurements of metabolite levels and enzyme activities. The second shows that Arabidopsis maintains remarkably stable levels of sugars and amino acids across a wide range of photoperiod treatments, and that adjustment of starch turnover and the leaf protein content contribute to this metabolic homeostasis.

  14. Experiment 2042

    SciTech Connect

    Dash, Zora V.; Dennis, Bert R.; Dreesen, Donald S.; Fehler, Michael C.; House, Leigh S.; Walter, Fritz; Zyvoloski, George A.

    1984-09-10

    Experiment 2042, an injection test in EE-3, was conducted from May 15, 1984 through May 19, 1984. During this four day test ~2 million gallons of water were injected with a maximum injection rate of ~10BPM at 6000 psi. It was planned as a pumping test of the lower zone of well EE-3 (the open hole region from 11,400 ft to 11,648 ft) to test the reservoir characteristics and fracture-seismic system first created during Experiment 2025. However early in the experiment it became apparent that there was some sort connection between the lower zone and the upper "low pressure" zone in EE-3 (from the casing shoe at 10374 ft to about 10900 ft). Available information ruled out a packer failure or other direct connection between these zones so the experiment was continued as planned. Although not a major goal of the experiment, it was hoped that fractures would propagate from EE-3 to EE-2, so hydraulic communication could be established between the two wells, however this did not occur.

  15. Experiment ueber den Einflusse von Metaboliten und Antimetaboliten am Modell von Trichomonas Vaginalis. IV. Mitteilung: Vitamine, die das Wachstum von Trichomonas Vaginalis Beguenstigen (Experiments on the Influence of Metabolites and Antimetabolites on the Model of Trichomonas Vaginalis. IV. Communication: Vitamins Favouring the Growth of Trichomonas Vaginalis),

    DTIC Science & Technology

    A number of vitamins have been investigated for their influence upon Trichomonas vaginalis . At a concentration of 0.20 mg ml vitamin A has...stimulating action upon the growth of Trichomonas vaginalis . Vitamin D2 has been shown to favour Trichomonas multiplication in all experimental series...Vitamin D3 generally favours the Trichomonas vaginalis population. Addition of vitamin E resulted in enhanced multiplication of Trichomonas and longer

  16. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  17. An Apparatus for Growth of Small Crystals From Solutions.

    ERIC Educational Resources Information Center

    Mitrovic, Mico M.

    1995-01-01

    Describes an apparatus for crystal growth that was designed to study growth kinetics of small crystals from solutions and to obtain crystals of various substances. Describes the use of the apparatus in laboratory practical experiments in the field of crystal growth physics within the course "Solid State Physics". (JRH)

  18. Growth of Campylobacter Incubated Aerobically in Media Supplemented with Peptones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Campylobacter cultures incubated aerobically in media supplemented with peptones was studied, and additional experiments were conducted to compare growth of the bacteria in media supplemented with peptones to growth in media supplemented with fumarate-pyruvate-minerals-vitamins (FPMV). A b...

  19. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  20. Posttraumatic Stress and Growth in Student Service Members and Veterans: The Role of Personal Growth Initiative

    ERIC Educational Resources Information Center

    Borowa, Dominika; Robitschek, Christine; Harmon, Kevin Andrew; Shigemoto, Yuki

    2016-01-01

    Objective: This study explored the extent to which personal growth initiative (PGI) may predict posttraumatic stress and growth in student service members/veterans (SSM/V). Participants: Participants were 136 SSM/V (79% men) representing multiple branches of the armed forces. Forty-four percent of participants reported having combat experience.…

  1. A Group Experience with Physically Handicapped Children.

    ERIC Educational Resources Information Center

    Castle, Norma

    1980-01-01

    Describes a group experience program developed as an alternative to the long-term hospitalization of physically handicapped children. The program emphasizes emotional growth through participation in meetings designed to counteract dependency. (CM)

  2. Some Experiments With Agar-Grown Seedlings

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1973-01-01

    Two percent agar gel is reported as a better medium for germination and growth studies. Students can be encouraged to undertake many simple experiments and make precise observations by using this medium. (PS)

  3. HEGRA Experiment

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The La Palma cosmic-ray observatory HEGRA (High-Energy Gamma-Ray Astronomy) is an air shower experiment, located at the OBSERVATORIO DEL ROQUE DE LOS MUCHACHOS (2200 m above sea level, 28.75°N, 17.89°W) on the Canary island of La Palma, and is operated by institutes from Germany, Spain and Yerevan....

  4. Military Nurses’ Experience in Disaster Response

    DTIC Science & Technology

    2016-06-07

    Known” versus “Unknown,” “Structured” versus “Chaos,” “Prepared” versus “Making Do,” “Strength” versus “Emotionality,” and “Existential Growth ...Existential Growth .” Outcomes of the study indicated that disaster training should become part of core nursing curriculum, military training should...deep emotions ranging from fulfillment to frustration. Most classified the disaster response as beneficial, a growth experience in which they learned

  5. Breast Cancer and Posttraumatic Growth

    PubMed Central

    İnan, Figen Şengün; Üstün, Besti

    2014-01-01

    The current methods for early diagnosis and increased treatment options have improved survival rates in breast cancer. Breast cancer diagnosis effects individuals in physical, psychological and social dimensions either positively or negatively. In the literature, usually the negative effects encountered in the period after the diagnosis of breast cancer are mostly described, with limited data on the positive effects. Nevertheless, the identification of positive changes and defining its determinants is important in supporting and strengthening posttraumatic growth in this group. The objective of this review is to explain posttraumatic growth and its determinants in breast cancer during the post-treatment period in accordance with the relevant literature. In our evaluation, it was noticed that breast cancer survivors experience posttraumatic growth in the post-treatment period, but the literature is limited in explaining the nature of posttraumatic growth and its determinants. Both qualitative and quantitative research that will provide in-depth information on the subject, explaining culture-specific posttraumatic growth and related factors, are required. PMID:28331647

  6. Factors affecting bone growth.

    PubMed

    Gkiatas, Ioannis; Lykissas, Marios; Kostas-Agnantis, Ioannis; Korompilias, Anastasios; Batistatou, Anna; Beris, Alexandros

    2015-02-01

    Bone growth and development are products of the complex interactions of genetic and environmental factors. Longitudinal bone growth depends on the growth plate. The growth plate has 5 different zones-each with a different functional role-and is the final target organ for longitudinal growth. Bone length is affected by several systemic, local, and mechanical factors. All these regulation systems control the final length of bones in a complicated way. Despite its significance to bone stability, bone growth in width has not been studied as extensively as longitudinal bone growth. Bone growth in width is also controlled by genetic factors, but mechanical loading regulates periosteal apposition. In this article, we review the most recent data regarding bone growth from the embryonic age and analyze the factors that control bone growth. An understanding of this complex system is important in identifying metabolic and developmental bone diseases and fracture risk.

  7. Temperature affects insulin-like growth factor I and growth of juvenile southern flounder, Paralichthys lethostigma.

    PubMed

    Luckenbach, J Adam; Murashige, Ryan; Daniels, Harry V; Godwin, John; Borski, Russell J

    2007-01-01

    Temperature profoundly influences growth of heterothermic vertebrates. However, few studies have investigated the effects of temperature on growth and insulin-like growth factor I (IGF-I) in fishes. The aim of this study was to examine effects of temperature on growth and establish whether IGF-I may mediate growth at different temperatures in southern flounder, Paralichthys lethostigma. In two experiments, juvenile flounder were reared at 23 and 28 degrees C and growth was monitored for either 117 or 197 days. Growth was similar across treatments in both experiments until fish reached approximately 100 mm total length. Body size then diverged with fish at 23 degrees C ultimately growing 65-83% larger than those at 28 degrees C. Muscle IGF-I mRNA, plasma IGF-I, and hepatosomatic index (HSI) were significantly higher in flounder at 23 degrees C, whereas hepatic IGF-I mRNA abundance did not differ with treatment. Muscle IGF-I mRNA was correlated with HSI, while plasma IGF-I was correlated with body size, hepatic IGF-I mRNA, and HSI. These results demonstrate a strong effect of temperature on flounder growth and show that temperature-induced variation in growth is associated with differences in systemic IGF-I and local (i.e., muscle) IGF-I mRNA levels. The results also support the use of plasma IGF-I and HSI as indicators of flounder growth status.

  8. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  9. Transport Experiments

    NASA Technical Reports Server (NTRS)

    Hall, Timothy M.; Wuebbles, Donald J.; Boering, Kristie A.; Eckman, Richard S.; Lerner, Jean; Plumb, R. Alan; Rind, David H.; Rinsland, Curtis P.; Waugh, Darryn W.; Wei, Chu-Feng

    1999-01-01

    MM II defined a series of experiments to better understand and characterize model transport and to assess the realism of this transport by comparison to observations. Measurements from aircraft, balloon, and satellite, not yet available at the time of MM I [Prather and Remsberg, 1993], provide new and stringent constraints on model transport, and address the limits of our transport modeling abilities. Simulations of the idealized tracers the age spectrum, and propagating boundary conditions, and conserved HSCT-like emissions probe the relative roles of different model transport mechanisms, while simulations of SF6 and C02 make the connection to observations. Some of the tracers are related, and transport diagnostics such as the mean age can be derived from more than one of the experiments for comparison to observations. The goals of the transport experiments are: (1) To isolate the effects of transport in models from other processes; (2) To assess model transport for realistic tracers (such as SF6 and C02) for comparison to observations; (3) To use certain idealized tracers to isolate model mechanisms and relationships to atmospheric chemical perturbations; (4) To identify strengths and weaknesses of the treatment of transport processes in the models; (5) To relate evaluated shortcomings to aspects of model formulation. The following section are included:Executive Summary, Introduction, Age Spectrum, Observation, Tropical Transport in Models, Global Mean Age in Models, Source-Transport Covariance, HSCT "ANOY" Tracer Distributions, and Summary and Conclusions.

  10. Community Capacity Building as a vital mechanism for enhancing the growth and efficacy of a sustainable scientific software ecosystem: experiences running a real-time bi-coastal "Open Science for Synthesis" Training Institute for young Earth and Environmental scientists

    NASA Astrophysics Data System (ADS)

    Schildhauer, M.; Jones, M. B.; Bolker, B.; Lenhardt, W. C.; Hampton, S. E.; Idaszak, R.; Rebich Hespanha, S.; Ahalt, S.; Christopherson, L.

    2014-12-01

    Continuing advances in computational capabilities, access to Big Data, and virtual collaboration technologies are creating exciting new opportunities for accomplishing Earth science research at finer resolutions, with much broader scope, using powerful modeling and analytical approaches that were unachievable just a few years ago. Yet, there is a perceptible lag in the abilities of the research community to capitalize on these new possibilities, due to lacking the relevant skill-sets, especially with regards to multi-disciplinary and integrative investigations that involve active collaboration. UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS), and the University of North Carolina's Renaissance Computing Institute (RENCI), were recipients of NSF OCI S2I2 "Conceptualization awards", charged with helping define the needs of the research community relative to enabling science and education through "sustained software infrastructure". Over the course of our activities, a consistent request from Earth scientists was for "better training in software that enables more effective, reproducible research." This community-based feedback led to creation of an "Open Science for Synthesis" Institute— a innovative, three-week, bi-coastal training program for early career researchers. We provided a mix of lectures, hands-on exercises, and working group experience on topics including: data discovery and preservation; code creation, management, sharing, and versioning; scientific workflow documentation and reproducibility; statistical and machine modeling techniques; virtual collaboration mechanisms; and methods for communicating scientific results. All technologies and quantitative tools presented were suitable for advancing open, collaborative, and reproducible synthesis research. In this talk, we will report on the lessons learned from running this ambitious training program, that involved coordinating classrooms among two remote sites, and

  11. The impact of space research on semiconductor crystal growth technology

    NASA Technical Reports Server (NTRS)

    Witt, A. F.

    1983-01-01

    Crystal growth experiments in reduced gravity environment and related ground-based research have contributed significantly to the establishment of a scientific basis for semiconductor growth from the melt. NASA-sponsored research has been instrumental in the introduction of heat pipes for heat and mass transfer control in crystal growth and in the development of magnetic field induced melt stabilization, approaches primarily responsible for recent advances in crystal growth technology.

  12. Closeup of fluids experiment apparatus (FEA) with outside housing removed

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A closeup of the fluids experiment apparatus (FEA) with the outside housing removed. It will house shuttle mission 41-D's student experiment, 'The Purification and Growth of Single Crystal Indium by the Float Zone Technique in a zero gravity environment'.

  13. Astronaut Daniel Bursch with CPCG experiment on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Daniel W. Bursch, mission specialist, is pictured on Discovery's middeck with the Commercial Protein Crystal Growth (CPCG) experiment. This experiment is designed to explore the structure of specific protein molecules in space-grown crystals.

  14. Personal growth and the transition to grandfatherhood.

    PubMed

    Taubman-Ben-ari, Orit; Findler, Liora; Ben Shlomo, Shirley

    2012-01-01

    The study examined personal growth among new grandfathers (n = 101, age 45-67), 2 to 24 months after the birth of their first grandchild. Specifically, it investigated the contribution of internal resources (self-esteem), perceived characteristics of the situation (grandparenthood distress and cognitive appraisals of threat, challenge, and self-efficacy), and external resources (perceived marital relationship) to the experience of growth. Associations with several background variables, including age, education, health and economic status, grandchild's age, and frequency of grandfather-grandchild meetings, were also examined. The results showed that lower internal resources, a positive assessment of the situation, and lower education were most closely associated with a higher experience of growth in first-time grandfathers. The discussion relates to the uniqueness of focusing on grandfathers and the potential for personal growth in this new family role.

  15. IV. Growth Failure in Institutionalized Children

    PubMed Central

    Johnson, Dana E.; Gunnar, Megan R.

    2013-01-01

    Children within institutional care settings experience significant global growth suppression, which is more profound in children with a higher baseline risk of growth impairment (e.g., low birth weight [LBW] infants and children exposed to alcohol in utero). Nutritional insufficiencies as well as suppression of the growth hormone–insulin-like growth factor axis (GH-IGF-1) caused by social deprivation likely both contribute to the etiology of psychosocial growth failure within these settings. Their relative importance and the consequent clinical presentations probably relate to the age of the child. While catch-up growth in height and weight are rapid when children are placed in a more nurturing environment, many factors, particularly early progression through puberty, compromise final height. Potential for growth recovery is greatest in younger children and within more nurturing environments where catch-up in height and weight is positively correlated with caregiver sensitivity and positive regard. Growth recovery has wider implications for child well-being than size alone, because catch-up in height is a positive predictor of cognitive recovery as well. Even with growth recovery, persistent abnormalities of the hypothalamic-pituitary-adrenal system or the exacerbation of micronutrient deficiencies associated with robust catch-up growth during critical periods of development could potentially influence or be responsible for the cognitive, behavioral, and emotional sequelae of early childhood deprivation. Findings in growth-restricted infants and those children with psychosocial growth are similar, suggesting that children experiencing growth restriction within institutional settings may also share the risk of developing the metabolic syndrome in adulthood (obesity, Type 2 diabetes mellitus, hypertension, heart disease). Psychosocial deprivation within any care-giving environment during early life must be viewed with as much concern as any severely debilitating

  16. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  17. Zinc and growth.

    PubMed

    Nishi, Y

    1996-08-01

    Zinc is an essential nutrients and plays an important role in growth and sexual function. Zinc deficiency has been known to cause growth retardation and hypogonadism. Several mechanisms of growth retardation and hypogonadism due to zinc deficiency have been suggested. Zinc affects growth hormone (GH) metabolism. Conversely, GH affects zinc metabolism. Zinc deficiency may result in reduced GH production and/or insulin-like growth factor-I (IGF-I). Zinc deficiency may also affect bone metabolism and gonadal function. The interrelationships among zinc, growth, gonadal function, and GH-IGF-I axis appears to be complex.

  18. Growth dilution of metals in microalgal biofilms.

    PubMed

    Hill, Walter R; Larsen, Ingvar L

    2005-03-15

    Despite the key role microalgae play in introducing toxicants into aquatic food webs, little is known about the effects of environmental factors on metal accumulation by these primary producers. Environmental factors such as light and nutrients alter growth rates and may consequently influence metal concentrations in microalgae through growth dilution. Laboratory experiments suggested that metal uptake and elimination by microalgal biofilms were gradual enough to enable dilution of metals within the biofilms by photosynthetically accrued carbon, and a simple kinetic model of metal accumulation predicted significant variation in metal content due to growth dilution over the natural range of microalgal growth rates. The ratio of metal uptake to carbon uptake by microalgal biofilms decreased exponentially with increasing light in short-term laboratory experiments because photosynthesis was much more sensitive to a light gradient than was metal uptake. The effect of light on biofilm metal concentrations was confirmed in situ with a long-term experiment in which experimental shading of biofilms in a metal-contaminated stream decreased biofilm growth rates and caused a 3x increase in biofilm concentrations of twelve metals, including methylmercury. Slow growth at the primary producer level is a likely contributor to higher biotic metal concentrations in shaded, oligotrophic, or cold ecosystems.

  19. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1990-01-01

    The effect of low gravity on the growth of protein crystals and those parameters which will affect growth and crystal quality was studied. The proper design of the flight hardware and experimental protocols are highly dependent on understanding the factors which influence the nucleation and growth of crystals of biological macromolecules. Thus, those factors are investigated and the body of knowledge which has been built up for small molecule crystallization. These data also provide a basis of comparison for the results obtained from low-g experiments. The flows around growing crystals are detailed. The preliminary study of the growth of isocitrate lyase, the crystal morphologies found and the preliminary x ray results are discussed. The design of two apparatus for protein crystal growth by temperature control are presented along with preliminary results.

  20. Composition and Recorders: A Motivating Experience

    ERIC Educational Resources Information Center

    Birnie, Rebecca A.

    2014-01-01

    Composition with students on the elementary level sparks imagination and creativity while engaging students in an experience that can demonstrate personal musical growth. Traditionally, music educators have not been taught how to compose music, let alone lead their students in composing experiences. As music educators take the beginning steps of…

  1. Pharmaceutical experiment aboard STS-67 mission

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut William G. Gregory, pilot, works with a pharmaceutical experiment on the middeck of the Earth-orbiting Space Shuttle Endeavour during the STS-67 mission. Commercial Materials Dispersion Apparatus Instruments Technology Associates Experiments (CMIX-03) includes not only pharmaceutical, but also biotechnology, cell biology, fluids, and crystal growth investigation

  2. Threshold Barrier of Carbon Nanotube Growth

    NASA Astrophysics Data System (ADS)

    Yuan, Qinghong; Hu, Hong; Ding, Feng

    2011-10-01

    A previously overlooked step of carbon nanotube (CNT) growth, incorporating C atoms into the CNT wall through the CNT-catalyst interface, is studied by density functional theory calculations. A significant barrier for incorporating C atoms into the CNT wall (˜2eV for most used catalysts, Fe, Co, and Ni) is revealed and the incorporation can be the threshold step of CNT growth in most experiments. In addition, the temperature dependent CNT growth rate is calculated and our calculation demonstrates that growing 0.1-1 m long CNTs in 1 h is theoretically possible.

  3. Lipid tubule growth by osmotic pressure

    NASA Astrophysics Data System (ADS)

    Rangamani, Padmini; Zhang, Di; Orster, George; Shen, Amy

    2013-11-01

    We present here a procedure for growing lipid tubules in vitro. This method allows us to grow tubules of consistent shape and structure and thus can be a useful tool for nano-engineering applications. There are three stages during the tubule growth process: initiation, elongation and termination. Balancing the forces that act on the tubule head shows that the growth of tubules during the elongation phase depends on the balance between osmotic pressure and the viscous drag exerted on the membrane from the substrate and the external fluid. Using a combination of mathematical modeling and experiment, we identify the key forces that control tubule growth during the elongation phase.

  4. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  5. (Plant growth with limited water)

    SciTech Connect

    Not Available

    1992-01-01

    When water is in short supply, soybean stem growth is inhibited by a physical limitation followed in a few hours by metabolic changes that reduce the extensibility of the cell walls. The extensibility then becomes the main limitation. With time, there is a modest recovery in extensibility along with an accumulation of a 28kD protein in the walls of the growth-affected cells. A 3lkD protein that was 80% similar in amino acid sequence also was present but did not accumulate in the walls of the stem cells. In the stem, growth was inhibited and the mRNA for the 28kD protein increased in response to water deprivation but the mRNA for the 3 1 kD protein did not. The roots continued to grow and the mRNA for the 28kD protein did not accumulate but the mRNA for the 3lkD protein did. Thus, there was a tissuespecific response of gene expression that correlated with the contrasting growth response to low water potential in the same seedlings. Further work using immunogold labeling, fluorescence labeling, and western blotting gave evidence that the 28kD protein is located in the cell wall as well as several compartments in the cytoplasm. Preliminary experiments indicate that the 28kD protein is a phosphatase.

  6. The growth of birdwings

    NASA Technical Reports Server (NTRS)

    Meunier, K.

    1980-01-01

    Growth and order allometry is defined and applied to the growth of bird effects of negative wing allometry discussed with regard to body size and flight power. Transposition and evolutionary significance are explained.

  7. Growth Charts (For Parents)

    MedlinePlus

    ... Measured on One Growth Chart? No. Girls and boys are measured on different growth charts because they ... include: Ages birth to 36 months (3 years): Boys' length- and weight-for-age Girls' length- and ...

  8. Your Child's Growth

    MedlinePlus

    ... properly? Physical growth refers to the increases in height and weight and other body changes that happen ... quite a bit. By age 2, growth in height usually continues at a fairly steady rate of ...

  9. Regional Smart Growth Alliances

    EPA Pesticide Factsheets

    This page describes the Urban Land Institute regional smart growth alliances that received funding from EPA to help support economic development, accommodate growth, enhance quality of, and protect the environment in regions across the country.

  10. Nerve growth factor promotes human hemopoietic colony growth and differentiation.

    PubMed Central

    Matsuda, H; Coughlin, M D; Bienenstock, J; Denburg, J A

    1988-01-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been cloned. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. NGF also causes histamine release from rat peritoneal mast cells in vitro, and we have shown elsewhere that it causes significant, dose-dependent, generalized mast cell proliferation in the rat in vivo when administered neonatally. Our experiments now indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by polyclonal and monoclonal antibodies to NGF. We conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, we postulate that NGF plays an important biological role in a variety of repair processes. PMID:3413109

  11. Effect of tannins on the in viro growth of Escherichia coli O157:H7 and in vivo growth of generic Escherichia coli excreted from steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of commercially available chestnut and mimosa tannins in vitro (experiment 1) or in vivo (experiment 2) on the growth or recovery of Escherichia coli O157:H7 or generic fecal E. coli was evaluated. In experiment 1, the mean growth rate of E. coli O157:H7, determined via the measurement o...

  12. Transformations of emotional experience.

    PubMed

    de Cortiñas, Lia Pistiner

    2013-06-01

    In this paper the author approaches mental pain and the problems in a psychoanalytic treatment of patients with difficulties in the psychic transformation of their emotional experiences. The author is interested in the symbolic failure related to the obstruction of development of phantasies, dreams, dream-thoughts, etc. She differentiates symbolization disturbances related to hypertrophic projective identification from a detention of these primitive communications and emotional isolation. She puts forward the conjecture that one factor in the arrest of this development is the detention of projective identifications and that, when this primitive means of communication is re-established in a container-contained relationship of mutual benefit, this initiates the development of a symbolization process that can replace the pathological 'protection'. Another hypothesis she develops is that of inaccessible caesuras that, associated with the detention of projective identification, obstruct any integrative or interactive movement. This caesura and the detention of projective identifications affect mental functions needed for dealing with mental pain. The personality is left with precarious mental equipment for transforming emotional experiences. How can a psychoanalytical process stimulate the development of creative symbolization, transforming the emotional experiences and leading towards mental growth? The author approaches the clinical problem with the metaphor of the psychic birth of emotional experience. The modulation of mental pain in a container-contained relationship is a central problem for the development of the human mind. For discovering and giving a meaning to emotional experience, the infant depends on reverie, a function necessary in order to develop an evolved consciousness capable of being aware, which is different from the rudimentary consciousness that perceives but does not understand. The development of mature mental equipment is associated with the

  13. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    have performed experiments to determine whether mechanical stimulation of cultured avian muscle cells alters their response to anabolic steroids or glucocorticoids. In static cultures, testosterone had no effect on muscle cell growth, but 5alpha-dihydrotestosterone and the synthetic steroid stanozolol increased cell growth by up to 18% and 30%, respectively, after a three day exposure. We completed development of a new IBM-based mechanical cell stimulator system to provide greater flexibility in operating and monitoring our experiments. Our previous long term studies on myofiber growth were designed around a perfusion system of our own design. We have recently changed to performing these studies using a modified CELLCO cartridge bioreactor system Z since it has been certified as the ground-based model for the Shuttle's Space Tissue Loss (STL) F= Cell Culture Module. The current goals of this aspect of the project are three fold: 1) to design a Z cell culture system for studying avian skeletal myofiber atrophy on the Shuttle and Space Station; 0 2) to expand the use of bioreactors to cells which do not grow in either suspension or attached to the hollow fibers; and 3) to combine the bioreactor system with our computerized mechanical cell stimulator to have a better in vitro model to study tension/gravity/stretch regulation of skeletal muscle size. Preliminary studies also reported on involved : (1) how release of tension can induce rapid atrophy of tissues cultured avian skeletal muscle cells, and (2) a mechanism to transfer and maintain avian skeletal muscle organoids in modified cartridges in the Space Tissue Loss Module.

  14. [Growth hormone treatment update].

    PubMed

    2014-02-01

    Short stature in children is a common cause for referral to pediatric endocrinologists, corresponding most times to normal variants of growth. Initially growth hormone therapy was circumscribed to children presenting growth hormone deficiency. Since the production of recombinant human hormone its use had spread to other pathologies.

  15. Coupled growth in immiscible alloys

    NASA Astrophysics Data System (ADS)

    Andrews, J. Barry; Hayes, Larry C.; Arikawa, Y.; O'Dell, S.; Cheney, A.

    1996-07-01

    This paper discusses the flight experiment 'Coupled Growth in Hypermonotectics' schedules to fly aboard the life and microgravity spacelab mission during the summer of 1996. The experiment is designed to directionally solidify samples in immiscible alloy systems in an attempt to obtain an improved understanding of the physics controlling the solidification process. This paper specifically addresses some of the unique difficulties concerning ampoule design for these experiments. As an example, an ampoule material must be utilized that is not wet by the minor immiscible liquid phase. In addition, a means must be provided to accommodate thermal contraction and solidification shrinkage during processing in order to avoid free surface formation on the melt. An attempt has also been made to control thermal end effects in order to obtain a relatively constant growth rate during processing. The final design results in an ampoule assembly that contains insulating segments, dummy samples, moving pistons and a high temperature spring assembly. The details of this design and the results of ground based testing will be discussed.

  16. Zeolite crystal growth in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

    1991-01-01

    The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

  17. Growth and growth hormone: An overview.

    PubMed

    Teran, Enrique; Chesner, Jaclyn; Rapaport, Robert

    2016-06-01

    Growth is a good indicator of a child's health. Growth disturbances, including short stature or growth failure, could be indications of illnesses such as chronic disease, nutritional deficits, celiac disease or hormonal abnormalities. Therefore, a careful assessment of the various requirements for normal growth needs to be done by history, physical examination, and screening laboratory tests. More details will be reviewed about the GH-IGF axis, its abnormalities with special emphasis on GH deficiency, its diagnosis and treatment. GH treatment indications in the US will be reviewed and a few only will be highlighted. They will include GH deficiency, as well as the treatment of children born SGA, including the results of a US study using FDA approved dose of 0.48mg/kg/week. GH deficiency in adults will also be briefly reviewed. Treatment of patients with SHOX deficiency will also be discussed. Possible side effects of GH treatment and the importance of monitoring safety will be highlighted.

  18. Growth hormone, growth factors, and acromegaly

    SciTech Connect

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  19. A new growth curve model for biological growth: some inferential studies on the growth of Cirrhinus mrigala.

    PubMed

    Bhowmick, Amiya Ranjan; Bhattacharya, Sabyasachi

    2014-08-01

    Growth of living organisms is a fundamental biological process. It depicts the physiological development of the species related to the environment. Mathematical development of growth curve models has a long history since its birth. We propose a mathematical model to describe the evolution of relative growth rate as a function of time based on a real life experiment on a major Indian Carp Cirrhinus mrigala. We establish that the proposed model is able to describe the fish growth dynamics more accurately for our experimental data than some existing models e.g. logistic, Gompertz, exponential. Approximate expressions of the points of inflection and the time of achieving the maximum relative growth rate are derived. We study, in detail, the existence of a nonlinear least squares estimator of the model parameters and their consistency properties. Test-statistics is developed to study the equality of points of inflection and equality of the amount of time necessary to achieve the maximum relative growth rate for a species at two different locations. Using the theory of variance stabilizing transformations, we propose a new test statistic to test the effect of the decay parameter for the proposed growth law. The testing procedure is found to be more sensitive in comparison with the test based on nonlinear least squares estimates. Our proposed model provides a general framework to model growth in other disciplines as well.

  20. Supervision of School Counseling Students: A Focus on Personal Growth, Wellness, and Development

    ERIC Educational Resources Information Center

    Smith, Adina; Koltz, Rebecca L.

    2015-01-01

    Results of a grounded theory study exploring the experiences and processes of school counseling students' professional and personal growth are provided. The researchers used focus groups over a two-year period to better comprehend students their experiences of growth. Several themes emerged: defining personal growth, wellness, and clinical growth…

  1. Telomere dynamics in wild brown trout: effects of compensatory growth and early growth investment.

    PubMed

    Näslund, Joacim; Pauliny, Angela; Blomqvist, Donald; Johnsson, Jörgen I

    2015-04-01

    After a period of food deprivation, animals often respond with a period of faster than normal growth. Such responses have been suggested to result in decreased chromosomal maintenance, which in turn may affect the future fitness of an individual. Here, we present a field experiment in which a food deprivation period of 24 days was enforced on fish from a natural population of juvenile brown trout (Salmo trutta) at the start of the high-growth season in spring. The growth of the food-deprived fish and a non-deprived control group was then monitored in the wild during 1 year. Fin tissue samples were taken at the start of the experiment and 1 year after food deprivation to monitor the telomere dynamics, using reduced telomere length as an indicator of maintenance cost. The food-deprived fish showed partial compensatory growth in both mass and length relative to the control group. However, we found no treatment effects on telomere dynamics, suggesting that growth-compensating brown trout juveniles are able to maintain their telomeres during their second year in the stream. However, body size at the start of the experiment, reflecting growth rate during their first year of life, was negatively correlated with change in telomere length over the following year. This result raises the possibility that rapid growth early in life induces delayed costs in cellular maintenance.

  2. Island growth as a growth mode in atomic layer deposition: A phenomenological model

    NASA Astrophysics Data System (ADS)

    Puurunen, Riikka L.; Vandervorst, Wilfried

    2004-12-01

    Atomic layer deposition (ALD) has recently gained world-wide attention because of its suitability for the fabrication of conformal material layers with thickness in the nanometer range. Although the principles of ALD were realized about 40 years ago, the description of many physicochemical processes that occur during ALD growth is still under development. A constant amount of material deposited in an ALD reaction cycle, that is, growth-per-cycle (GPC), has been a paradigm in ALD through decades. The GPC may vary, however, especially in the beginning of the ALD growth. In this work, a division of ALD processes to four classes is proposed, on the basis of how the GPC varies with the number of ALD reaction cycles: linear growth, substrate-enhanced growth, and substrate-inhibited growth of type 1 and type 2. Island growth is identified as a likely origin for type 2 substrate-inhibited growth, where the GPC increases and goes through a maximum before it settles to a constant value characteristic of a steady growth. A simple phenomenological model is developed to describe island growth in ALD. The model assumes that the substrate is unreactive with the ALD reactants, except for reactive defects. ALD growth is assumed to proceed symmetrically from the defects, resulting islands of a conical shape. Random deposition is the growth mode on the islands. The model allows the simulation of GPC curves, surface fraction curves, and surface roughness, with physically significant parameters. When the model is applied to the zirconium tetrachloride/water and the trimethylaluminum/water ALD processes on hydrogen-terminated silicon, the calculated GPC curves and surface fractions agree with the experiments. The island growth model can be used to assess the occurrence of island growth, the size of islands formed, and point of formation of a continuous ALD-grown film. The benefits and limitations of the model and the general characteristics of type 2 substrate-inhibited ALD are

  3. Growth in Cushing syndrome.

    PubMed

    Voutilainen, R; Leisti, S; Perheentupa, J

    1985-07-01

    Pre- and post-operative growth was analysed in eight children with Cushing syndrome. Six children had Cushing's disease; three of them were treated by bilateral adrenalectomy and three by transphenoidal pituitary adenectomy. One child had an adrenocortical adenoma and another primary adrenocortical nodular dysplasia. The typical cushingoid habitus was not always present during hypercortisolism. In contrast, abnormal deceleration of longitudinal growth and increase in relative weight were constant. The slowing of growth started 0.2-5.1 years before diagnosis. In four children these changes concurred. In three others the excessive weight gain preceded the slowing of growth, by 2.5-7.0 years. In one patient the deceleration appeared first; this was a girl with concomitant coeliac disease. This pattern of growth change occurring before (normal slowing of growth in) late puberty should raise the possibility of hypercortisolism. There was a suggestion of a better growth recovery in Cushing disease after pituitary adenectomy than after bilateral adrenalectomy.

  4. Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria.

    PubMed

    Lindgren, B; Laurila, A

    2005-07-01

    In ectothermic organisms, declining season length and lower temperature towards higher latitudes often select for latitudinal variation in growth and development. However, the energetic mechanisms underlying this adaptive variation are largely unknown. We investigated growth, food intake and growth efficiency of Rana temporaria tadpoles from eight populations along a 1500 km latitudinal gradient across Sweden. To gain an insight into the mechanisms of adaptation at organ level, we also examined variation in tadpole gut length. The tadpoles were raised at two temperatures (16 and 20 degrees C) in a laboratory common garden experiment. We found increased growth rate towards higher latitudes, regardless of temperature treatment. This increase in growth was not because of a higher food intake rate, but populations from higher latitudes had higher growth efficiency, i.e. they were more efficient at converting ingested food into body mass. Low temperature reduced growth efficiency most strongly in southern populations. Relative gut length increased with latitude, and tadpoles at low temperature tended to have longer guts. However, variation in gut length was not the sole adaptive explanation for increased growth efficiency as latitude and body length still explained significant amounts of variation in growth efficiency. Hence, additional energetic adaptations are probably involved in growth efficiency variation along the latitudinal gradient.

  5. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Smith, Craig D.; Smith, H. Wilson; Vijay-Kumar, Senadhi; Senadhi, Shobha E.; Ealick, Steven E.; Carter, Daniel C.; Snyder, Robert S.

    1989-01-01

    The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. Space Shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  6. Student Observe Microgravity Space Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Paula Crawford (assisted by an American Sign Language interpreter) lectures students about materials science research in space during the U.S. Microgravity Payload-4 mission (STS-87, Nov. 19 - Dec. 5, 1997) in the visitor's center set up by the Isothermal Dendritic Growth Experiment (IDGE) team at Rensselaer Polytechnic Institute (RPI) in Troy, NY. IDGE, flown on three Space Shuttle mission, is yielding new insights into virtually all industrially relevant metal and alloy forming operation. Photo credit: Rensselaer Polytechnic Institute (RPI)

  7. Plant growth strategies are remodeled by spaceflight

    PubMed Central

    2012-01-01

    Background Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment. Results In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length) was uniformly smaller than comparably aged Ground Control plants in both cultivars. Conclusions Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS – suggesting that other tropisms (such as

  8. Cloud Simulation Warm Cloud Experiments: Droplet Growth and Aerosol Scavenging.

    DTIC Science & Technology

    1988-03-02

    facility, a piston type expansion cloud chamber (Schmitt, 1981). Here the expansion is much faster than in the S- . g A i L 8 8 1 /1 4 / 8 L ~O G I O E E...RESERRC. 0 R WHITE ET AL. UNLSIFIED, 62 NOR N RFOSR-TR-00-0317 AFOSR-65-U71 F/0 4 /2 N I hhhhhhhhhhhhho 1111112-.0 1. 11111, _251120 *~~~ ~ %H .11 . C0...CLASSIFICATION AUTHORITY 3. DISTRIBUTION) AVAILABILITY OF REPORT Zb. DECLASSIFICATION I DOWNGRADING SCHEDULE ,i -. [ - .. "’_ - 4 . PERFORMING

  9. Growth Characteristics Downstream of a Shallow Bump: Computation and Experiment

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Grosch, Chester E.

    1996-01-01

    Measurements of the velocity field created by a shallow bump on a wall revealed that an energy peak in the spanwise spectrum associated with the driver decays and an initially small-amplitude secondary mode rapidly grows with distance downstream of the bump. Linear theories could not provide an explanation for this growing mode. The present Navier-Stokes simulation replicates and confirms the experimental results. Insight into the structure of the flow was obtained from a study of the results of the calculations and is presented.

  10. Growth and growth factors in diabetes mellitus.

    PubMed Central

    Salardi, S; Tonioli, S; Tassoni, P; Tellarini, M; Mazzanti, L; Cacciari, E

    1987-01-01

    Growth of 79 children with diabetes was analysed at diagnosis and again after one to 10.7 years of treatment with insulin. Both sexes were tall at onset, whereas at the last observation boys alone showed significant growth retardation. Height standard deviation score (SDS), however, showed no significant fall either in 32 subjects reassessed after five years of disease or in 18 subjects examined at full stature. Skeletal maturity was not significantly impaired after treatment. Pubertal growth spurt was reduced, especially in girls and in subjects with onset of disease at or around puberty. We found no significant correlation between height and height velocity SDS and glycosylated haemoglobin values or secretion of growth hormone during the arginine test. Somatomedin C values were correlated with height velocity SDS in prepubertal boys. The results of this study suggest that there are interferences in the growth of children with diabetes but that they do not seem to have a significant influence on adult height. PMID:3813637

  11. Prevalent vegetation growth enhancement in urban environment

    PubMed Central

    Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng

    2016-01-01

    Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued. PMID:27185955

  12. Prevalent vegetation growth enhancement in urban environment.

    PubMed

    Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng

    2016-05-31

    Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued.

  13. "Growth" Pilot Now Open to All States

    ERIC Educational Resources Information Center

    Hoff, David J.

    2007-01-01

    All states that meet federal criteria will now be allowed to take part in the U.S. Department of Education's 2-year-old experiment with "growth models," which let states measure individual students' achievement gains as a way of ensuring accountability under the No Child Left Behind Act. After originally capping participation at 10…

  14. Dartmouth Houses "Limits to Growth" Legacy.

    ERIC Educational Resources Information Center

    Lepkowski, Wil

    1981-01-01

    Reviews the work, experiences, and views of Dennis L. and Donella Meadows, past-principal investigators of the "Limits to Growth" study. Focuses on current "Limits" work at Dartmouth's Resource Policy Center founded by D. L. Meadows with National Science Foundation support. Core activity at the Center is modeling for policy…

  15. The Growth of Complexity: Shaping Meaningful Lives.

    ERIC Educational Resources Information Center

    Larson, Reed; Csikszentmihalyi, Mihaly

    1997-01-01

    As an outgrowth of the theory of flow, looks at some fine distinctions regarding the adolescent's optimal conditions for growth. Points to the importance of the adolescent's ability to reinterpret conflicts which crop up in raw experience, to overcome psychic entropy with long-term challenges or "life themes," and to find new meaning and…

  16. Detached Growth of Germanium by Directional Solidification

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Volz, M. P.; Cobb, S.; Motakef, S.; Szofran, F. R.

    2004-01-01

    The conditions of detached solidification under controlled pressure differential across the meniscus were investigated. Uncoated and graphite- or BN-coated silica and pBN crucibles were used. Detached and partly detached growth was achieved in pBN and BN-coated crucibles, respectively. The results of the experiments are discussed based on the theory of Duffar et al.

  17. Modeling Fish Growth in Low Dissolved Oxygen

    ERIC Educational Resources Information Center

    Neilan, Rachael Miller

    2013-01-01

    This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…

  18. Crystal growth furnace safety system validation

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.

    1994-01-01

    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).

  19. Motivating and Evaluating Growth in Ballet Technique

    ERIC Educational Resources Information Center

    White, Julie Hammond

    2012-01-01

    In teaching young dancers ballet, the utilization of effective assessments in partnership with supportive and creative teaching strategies can transform not only the learning experience, but the dancer as well. In this article, the author shares a "growth grade rubric" that specifically addresses three areas in ballet training: (1) skills and…

  20. Material Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.

  1. Growth of breastfed infants.

    PubMed

    Nommsen-Rivers, Laurie A; Dewey, Kathryn G

    2009-10-01

    Understanding normal growth for the healthy breastfed infant is an important component of promoting and supporting child health in general and breastfeeding in particular. In this article, we summarize what is known regarding differences in growth between breastfed and formula-fed infants; we describe the development and use of infant growth references and growth standards; we introduce the new World Health Organization growth velocity standards for early infancy (which provide standards for gain in g/day during the first weeks of life); and, in closing, we present a snapshot of recent data from a cohort of breastfed newborns in Sacramento, CA, and examine how their early weight gain compares to the new growth velocity standards.

  2. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  3. Does solar radiation affect the growth of tomato seeds relative to their environment?

    NASA Technical Reports Server (NTRS)

    Holzer, Kristi

    1995-01-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as I plan to note growth in artificial verses natural environment as the basic experiment.

  4. Does solar radiation affect the growth of tomato seeds relative to their environment?

    SciTech Connect

    Holzer, K.

    1995-09-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as the authors plans to note growth in artificial verses natural environment as the basic experiment.

  5. Acoustic and Electrical Property Changes Due to Microbial Growth and Biofilm Formation in Porous Media

    EPA Science Inventory

    A laboratory study was conducted to investigate the effect of microbial growth and biofilm formation on compressional waves, and complex conductivity during stimulated microbial growth. Over the 29 day duration of the experiment, compressional wave amplitudes and arrival times f...

  6. Political economy of population growth.

    PubMed

    Mehta, S; Mehta, H S

    1987-01-01

    Tracing the origin of political economy as a class-science, this paper focuses on the political economy of population growth. Exposing the limitations of Malthusian ideas and their invalidity even for the capitalist economies, it discusses the subsequent revival of the Malthusian model during the period of de-colonization and the misinterpretation of the relationship between population growth and development in the developing and developed countries. Taking India, China, and Japan as some case studies, the paper examines the relationship between birth rate levels and some correlates. It elaborates on the Indian experience, emphasizing the association of population growth with poverty and unemployment and lays bare some of the hidden causes of these phenomena. The authors examine some interstate variations in India and identify constraints and prospects of the existing population policy. The paper proposes outlines of a democratic population policy as an integral part of India's development strategy which should recognize human beings not simply as consumers but also as producers of material values. It pleads for 1) restructuring of property relations; 2) bringing down the mortality rates and raising of the literacy levels, especially among females; and 3) improving nutritional levels, as prerequisites for bringing down birth rates.

  7. Corticosteroids and growth.

    PubMed

    Fine, R N

    1993-10-01

    In summary, corticosteroids suppress linear growth. The growth suppression is mediated by perturbations in growth factors as evidenced by: (1) abnormal spontaneous GH secretion and a blunted response to provocative stimuli and (2) decreased local production of IGF-I. Corticosteroids suppress GH responses by altering somatostatin tone. In addition, corticosteroids are anti-anabolic with resultant protein wasting. Exogenous administration of rhGH is effective in reversing all the clinical catabolic effects of corticosteroids. The duel factors of corticosteroids and uremia which are growth suppressive can be overcome by exogenous rhGH administration.

  8. Smart Growth and Transportation

    EPA Pesticide Factsheets

    Describes the relationship between smart growth and transportation, focusing smart and sustainable street design, transit-oriented development, parking management, sustainable transportation planning, and related resources.

  9. Leaf growth is conformal

    NASA Astrophysics Data System (ADS)

    Alim, Karen; Armon, Shahaf; Shraiman, Boris I.; Boudaoud, Arezki

    2016-10-01

    Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour.

  10. ELF3 controls thermoresponsive growth in Arabidopsis.

    PubMed

    Box, Mathew S; Huang, B Emma; Domijan, Mirela; Jaeger, Katja E; Khattak, Asif Khan; Yoo, Seong Jeon; Sedivy, Emma L; Jones, D Marc; Hearn, Timothy J; Webb, Alex A R; Grant, Alastair; Locke, James C W; Wigge, Philip A

    2015-01-19

    Plant development is highly responsive to ambient temperature, and this trait has been linked to the ability of plants to adapt to climate change. The mechanisms by which natural populations modulate their thermoresponsiveness are not known. To address this, we surveyed Arabidopsis accessions for variation in thermal responsiveness of elongation growth and mapped the corresponding loci. We find that the transcriptional regulator EARLY FLOWERING3 (ELF3) controls elongation growth in response to temperature. Through a combination of modeling and experiments, we show that high temperature relieves the gating of growth at night, highlighting the importance of temperature-dependent repressors of growth. ELF3 gating of transcriptional targets responds rapidly and reversibly to changes in temperature. We show that the binding of ELF3 to target promoters is temperature dependent, suggesting a mechanism where temperature directly controls ELF3 activity.

  11. Learning improves growth rate in grasshoppers.

    PubMed

    Dukas, R; Bernays, E A

    2000-03-14

    To quantify the adaptive significance of insect learning, we documented the behavior and growth rate of grasshoppers (Schistocerca americana) in an environment containing two artificial food types, one providing a balanced diet of protein and carbohydrate, which maximizes growth, and the other being carbohydrate-deficient, which is unsuitable for growth. Grasshoppers in the Learning treatment experienced a predictable environment, where the spatial location, taste, and color of each food source remained constant throughout the experiment. In contrast, grasshoppers of the Random treatment developed in a temporally varying environment, where the spatial location, taste, and color of the balanced and deficient food types randomly alternated twice each day. Our results show that the grasshoppers that could employ associative learning for diet choice experienced higher growth rates than individuals of the Random treatment, demonstrating the adaptive significance of learning in a small short-lived insect.

  12. Growth of solid solution single crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1987-01-01

    Based on the thermophysical properties of Hg sub 1-x Cd sub x Te alloys, the reasons are discussed for the failure of conventional Bridgman-Stockbarger growth methods to produce high quality homogeneous crystals in the presence of Earth's gravity. The deleterious effects are considered which arise from the dependence of the thermophysical properties on temperature and composition and from the large amount of heat carried by the fused silica ampules. An improved growth method, developed to optimize heat flow conditions, is described and experimental results are presented. The problems associated with growth in a gravitational environment are discussed. The anticipated advantages of growth in microgravity are given and the implications of the requirements for spaceflight experiments are summarized.

  13. Growth of solid solution single crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1988-01-01

    Based on the thermophysical properties of Hg sub 1-x Cd sub x Te alloys, the reasons are discussed for the failure of conventional Bridgman-Stockbarger growth methods to produce high quality homogeneous crystals in the prescence of Earth's gravity. The deleterious effects are considered which arise from the dependence of the thermophysical properties on temperature and composition and from the large amount of heat carried by the fused silica ampules. An improved growth method, developed to optimize heat flow conditions, is described and experimental results are presented. The problems associated with growth in a gravitational environment are discussed. The anticipated advantages of growth in microgravity are given and the implications of the requirements for spaceflight experiments are summarized.

  14. Population growth rates: issues and an application.

    PubMed Central

    Godfray, H Charles J; Rees, Mark

    2002-01-01

    Current issues in population dynamics are discussed in the context of The Royal Society Discussion Meeting 'Population growth rate: determining factors and role in population regulation'. In particular, different views on the centrality of population growth rates to the study of population dynamics and the role of experiments and theory are explored. Major themes emerging include the role of modern statistical techniques in bringing together experimental and theoretical studies, the importance of long-term experimentation and the need for ecology to have model systems, and the value of population growth rate as a means of understanding and predicting population change. The last point is illustrated by the application of a recently introduced technique, integral projection modelling, to study the population growth rate of a monocarpic perennial plant, its elasticities to different life-history components and the evolution of an evolutionarily stable strategy size at flowering. PMID:12396521

  15. Activist model of political party growth

    NASA Astrophysics Data System (ADS)

    Jeffs, Rebecca A.; Hayward, John; Roach, Paul A.; Wyburn, John

    2016-01-01

    The membership of British political parties has a direct influence on their political effectiveness. This paper applies the mathematics of epidemiology to the analysis of the growth and decline of such memberships. The party members are divided into activists and inactive members, where all activists influence the quality of party recruitment, but only a subset of activists recruit and thus govern numerical growth. The activists recruit for only a limited period, which acts as a restriction on further party growth. This Limited Activist model is applied to post-war and recent memberships of the Labour, Scottish National and Conservative parties. The model reproduces data trends, and relates realistically to historical narratives. It is concluded that the political parties analysed are not in danger of extinction but experience repeated periods of growth and decline in membership, albeit at lower numbers than in the past.

  16. Optical diagnostics of solution crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, Tharayil G.; Lal, Ravindra B.

    1995-01-01

    Solution crystal growth monitoring of LAP/TGS crystals by various optical diagnostics systems, such as conventional and Mach-Zehnder (M-Z) interferometers, optical heterodyne technique, and ellipsometry, is under development. The study of the dynamics of the crystal growth process requires a detailed knowledge of crystal growth rate and the concentration gradient near growing crystals in aqueous solution. Crystal growth rate can be measured using conventional interferometry. Laser beam reflections from the crystal front as well as the back surface interfere with each other, and the fringe shift due to the growing crystal yields information about the growth rate. Our preliminary results indicate a growth rate of 6 A/sec for LAP crystals grown from solution. Single wavelength M-Z interferometry is in use to calculate the concentration gradient near the crystal. Preliminary investigation is in progress using an M-Z interferometer with 2 cm beam diameter to cover the front region of the growing crystal. In the optical heterodyne technique, phase difference between two rf signals (250 KHZ) is measured of which one is a reference signal, and the other growth signal, whose phase changes due to a change in path length as the material grows. From the phase difference the growth rate can also be calculated. Our preliminary results indicate a growth rate of 1.5 A/sec. the seed and solution temperatures were 26.46 C and 27.92 C respectively, and the solution was saturated at 29.0 C. an ellipsometer to measure the growth rate and interface layer is on order from JOBIN YVON, France. All these systems are arranged in such a manner that measurements can be made either sequentially or simultaneously. These techniques will be adapted for flight experiment.

  17. The role of microtubule dynamics in growth cone motility and axonal growth

    PubMed Central

    1995-01-01

    The growth cone contains dynamic and relatively stable microtubule populations, whose function in motility and axonal growth is uncharacterized. We have used vinblastine at low doses to inhibit microtubule dynamics without appreciable depolymerization to probe the role of these dynamics in growth cone behavior. At doses of vinblastine that interfere only with dynamics, the forward and persistent movement of the growth cone is inhibited and the growth cone wanders without appreciable forward translocation; it quickly resumes forward growth after the vinblastine is washed out. Direct visualization of fluorescently tagged microtubules in these neurons shows that in the absence of dynamic microtubules, the remaining mass of polymer does not invade the peripheral lamella and does not undergo the usual cycle of bundling and splaying and the growth cone stops forward movement. These experiments argue for a role for dynamic microtubules in allowing microtubule rearrangements in the growth cone. These rearrangements seem to be necessary for microtubule bundling, the subsequent coalescence of the cortex around the bundle to form new axon, and forward translocation of the growth cone. PMID:7822411

  18. Probabilistic Gompertz model of irreversible growth.

    PubMed

    Bardos, D C

    2005-05-01

    Characterizing organism growth within populations requires the application of well-studied individual size-at-age models, such as the deterministic Gompertz model, to populations of individuals whose characteristics, corresponding to model parameters, may be highly variable. A natural approach is to assign probability distributions to one or more model parameters. In some contexts, size-at-age data may be absent due to difficulties in ageing individuals, but size-increment data may instead be available (e.g., from tag-recapture experiments). A preliminary transformation to a size-increment model is then required. Gompertz models developed along the above lines have recently been applied to strongly heterogeneous abalone tag-recapture data. Although useful in modelling the early growth stages, these models yield size-increment distributions that allow negative growth, which is inappropriate in the case of mollusc shells and other accumulated biological structures (e.g., vertebrae) where growth is irreversible. Here we develop probabilistic Gompertz models where this difficulty is resolved by conditioning parameter distributions on size, allowing application to irreversible growth data. In the case of abalone growth, introduction of a growth-limiting biological length scale is then shown to yield realistic length-increment distributions.

  19. A Collaborative Partnership Responds to Funding Lags, Tradition, and Growth.

    ERIC Educational Resources Information Center

    Dill, Vicky

    1989-01-01

    This article describes how St. Cloud State University solved a number of its growth problems, related to increased teacher education program enrollment, by utilizing a district/university partnership model that springs from an active field experience program. (IAH)

  20. Investigation of crystal growth from solutions

    NASA Technical Reports Server (NTRS)

    Miyagawa, I.

    1975-01-01

    Growth of organic compounds from solution, in particular Rochelle salt and triglycine sulphate, was investigated. Ground-based experiments showed that gravity-driven convection currents in the growth solution influenced defect production in crystals, degraded ferroelectric quality, and indicated that an experiment done in a zero-gravity environment would be beneficial. A crystal of Rochelle salt was grown on board Skylab-4. The quality of this crystal was compared to earth-grown crystals and its unusual features were studied. A typical defect produced in this convection-free environment was a long straight tube extending in the direction of the c crystal axis. These tubes were much longer and more regularly arranged than in similar earth-grown crystals. The crystal was actually several crystals with corresponding axes parallel to each other. Ferroelectric hysteresis experiments showed that some parts of the crystal had many defects, while other parts were of extremely good quality.

  1. Approaches to growth faltering.

    PubMed

    Poindexter, Brenda

    2014-01-01

    Postnatal growth failure remains a nearly universal complication of extreme prematurity. The incidence of postnatal growth failure is inversely related to gestational age. Unfortunately, by the time growth faltering is recognized, the nutrient deficits that have accumulated can be difficult, if not impossible, to recover. The perceived severity of illness in the first week can significantly impact decisions made related to early nutritional support. It is becoming increasingly clear that optimizing nutrient intake in the first few weeks of life is critical to reduce growth faltering. In order to promote growth and reduce growth faltering, a goal of 120 kcal/kg/day and 3.8 g/kg/day of protein should be supplied to very low birth weight infants by the end of the first week. A combined strategy of both parenteral and enteral nutrition is necessary to ensure that adequate protein and energy intake is delivered and that nutrient deficits are minimized. Finally, careful monitoring of growth--including both linear and head circumference growth--is necessary to achieve optimal outcomes.

  2. Modeling Exponential Population Growth

    ERIC Educational Resources Information Center

    McCormick, Bonnie

    2009-01-01

    The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…

  3. Growth Charts (For Parents)

    MedlinePlus

    ... the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to ... indicate that there's a growth problem because the child is not following ... certain points in development, when it's normal for growth rates to vary ...

  4. Plant Growth Regulators.

    ERIC Educational Resources Information Center

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  5. Impact of Population Growth

    ERIC Educational Resources Information Center

    Ehrlich, Paul R.; Holdren, John P.

    1971-01-01

    Discusses the interrelated crises in population growth, natural resources, and environmental quality. Major problems include population control, redirection of technology, closed resource cycles, equitable opportunity distribution and prosperity. Population growth is regarded as causing a disportionate world-wide negative environmental impact.…

  6. An Evaluation of Growth in a University Programme.

    ERIC Educational Resources Information Center

    Enright, Robert D.; Hendel, Darwin D.

    1979-01-01

    This study examined the moral growth effects on 18 college students of year-long participation in ACTION, a volunteer antipoverty program. While scores on the Defining Issues Test did not indicate increased moral growth, students generally viewed their agency learning experience more positively than their university classes. (Author/SJL)

  7. A study of crystal growth by solution technique

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1981-01-01

    The mechanism of crystal growth by solution technique was studied. A low temperature solution crystal growth setup was developed. Crystals of triglycine sulfate (TGS) were grown using this arrangement. Some additional tasks were performed toward fabrication of experiments for future space flight.

  8. Ammonia And Ethylene Optrodes For Research On Plant Growth

    NASA Technical Reports Server (NTRS)

    Zhou, Quan; Tabacco, Mary Beth

    1995-01-01

    Fiber-optic sensors developed for use in measuring concentrations of ammonia and ethylene near plants during experiments on growth of plants in enclosed environments. Developmental fiber-optic sensors satisfy need to measure concentrations as low as few parts per billion (ppb) and expected to contribute to research on roles of ethylene and ammonia in growth of plants.

  9. Fun Microbiology: How To Measure Growth of a Fungus.

    ERIC Educational Resources Information Center

    Mitchell, James K.; And Others

    1997-01-01

    Describes an experiment to demonstrate a simple method for measuring fungus growth by monitoring the effect of temperature on the growth of Trichoderma viride. Among the advantages that this experimental model provides is introducing students to the importance of using the computer as a scientific tool for analyzing and presenting data. (AIM)

  10. Personal Growth Groups: Measuring Outcome and Evaluating Impact

    ERIC Educational Resources Information Center

    Young, Tabitha L.; Reysen, Rebekah; Eskridge, Talunja; Ohrt, Jonathan H.

    2013-01-01

    Although researchers speculate counselor-trainees who participate in personal growth groups as part of their course curriculum experience essential group processes and personal growth, there is a lack of empirical evidence supporting this claim. This quantitative study investigates counselor-trainee's perceptions of the therapeutic, developmental,…

  11. Coarsening Experiment Prepared for Flight

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark

    2003-01-01

    The Coarsening in Solid-Liquid Mixtures-2 (CSLM-2) experiment is a materials science spaceflight experiment whose purpose is to investigate the kinetics of competitive particle growth within a liquid matrix. During coarsening, small particles shrink by losing atoms to larger particles, causing the larger particles to grow. In this experiment, solid particles of tin will grow (coarsen) within a liquid lead-tin eutectic matrix. The following figures show the coarsening of tin particles in a lead-tin (Pb-Sn) eutectic as a function of time. By conducting this experiment in a microgravity environment, we can study a greater range of solid volume fractions, and the effects of sedimentation present in terrestrial experiments will be negligible. The CSLM-2 experiment flew November 2002 on space shuttle flight STS-113 for operation on the International Space Station, but it could not be run because of problems with the Microgravity Science Glovebox in the U.S. Laboratory module. Additional samples will be sent to ISS on subsequent shuttle flights.

  12. Growth and inequality

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2015-11-01

    How are growth and inequality related? Evidently, this question is of prime importance in the social sciences, as socioeconomic inequality is one of the major forces shaping the course of human history. Moreover, this question is of importance also in the physical sciences, as the notion of socioeconomic inequality can be applied to analyze physical growth. In this paper we consider general growth processes whose dynamics are governed by ordinary differential equations, and present a comprehensive inequality-based socioeconophysical study of their evolutions. From a social-sciences perspective, the results established describe the inequality that will be generated by different types of economic growth. From a physical-sciences perspective, the results established provide a socioeconomic classification of growth processes.

  13. [Growth hormone signaling pathways].

    PubMed

    Zych, Sławomir; Szatkowska, Iwona; Czerniawska-Piatkowska, Ewa

    2006-01-01

    The substantial improvement in the studies on a very complicated mechanism-- growth hormone signaling in a cell, has been noted in last decade. GH-induced signaling is characterized by activation of several pathways, including extracellular signal-regulated kinase (ERK), the signal transducer and activator of transcription and phosphatidylinositol-3 kinase (PI3) pathways. This review shows a current model of the growth hormone receptor dimerization, rotation of subunits and JAK2 kinase activation as the initial steps in the cascade of events. In the next stages of the signaling process, the GH-(GHR)2-(JAK2)2 complex may activate signaling molecules such as Stat, IRS-1 and IRS-2, and particularly all cascade proteins that activate MAP kinase. These pathways regulate basal cellular functions including target gene transcription, enzymatic activity and metabolite transport. Therefore growth hormone is considered as a major regulator of postnatal growth and metabolism, probably for mammary gland growth and development too.

  14. Coarsening Experiment Being Prepared for Flight

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark

    2001-01-01

    The Coarsening in Solid-Liquid Mixtures-2 (CSLM-2) experiment is a materials science space flight experiment whose purpose is to investigate the kinetics of competitive particle growth within a liquid matrix. During coarsening, small particles shrink by losing atoms to larger particles, causing the larger particles to grow. In this experiment, solid particles of tin will grow (coarsen) within a liquid lead-tin eutectic matrix. The preceding figures show the coarsening of tin particles in a lead-tin eutectic as a function of time. By conducting this experiment in a microgravity environment, we can study a greater range of solid volume fractions, and the effects of sedimentation present in terrestrial experiments will be negligible. The CSLM-2 experiment is slated to fly onboard the International Space Station. The experiment will be run in the Microgravity Science Glovebox installed in the U.S. Laboratory module.

  15. Developing future plant experiments for spaceflight

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Brown, C. S.; Hinkle, C. R.; Sager, J. C.; Knott, W. M.

    1990-01-01

    Experiments are described which were designed to support the constructing and using clinostats for studies of microgravity effects and for measuring photosynthesis and respiration in plants in clinostat experiments. Particular attention is given to the development and testing a clinostat for rotating the Space Shuttle Mid-Deck Locker Plant Growth Unit (PGU), a sealed chamber for plan growth and gas exchange measurements on a clinostat, and a porous tube plant nutrient delivery system for the PGU. Design diagrams of these items are presented together with the results of tests.

  16. Using Spreadsheets To Model Population Growth, Competition and Predation in Nature.

    ERIC Educational Resources Information Center

    Carter, Ashley J. R.

    1999-01-01

    Describes how to place mathematical equations modeling population growth into a spreadsheet that performs calculations quickly and easily. Suggests experiments that can be performed with the spreadsheets. (WRM)

  17. Ultraslow growth rates of giant gypsum crystals

    PubMed Central

    Van Driessche, A. E. S.; García-Ruíz, J. M.; Tsukamoto, K.; Patiño-Lopez, L. D.; Satoh, H.

    2011-01-01

    Mineralogical processes taking place close to equilibrium, or with very slow kinetics, are difficult to quantify precisely. The determination of ultraslow dissolution/precipitation rates would reveal characteristic timing associated with these processes that are important at geological scale. We have designed an advanced high-resolution white-beam phase-shift interferometry microscope to measure growth rates of crystals at very low supersaturation values. To test this technique, we have selected the giant gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in mineral formation. They are thought to form by a self-feeding mechanism driven by solution-mediated anhydrite-gypsum phase transition, and therefore they must be the result of an extremely slow crystallization process close to equilibrium. To calculate the formation time of these crystals we have measured the growth rates of the {010} face of gypsum growing from current Naica waters at different temperatures. The slowest measurable growth rate was found at 55 °C, 1.4 ± 0.2 × 10-5 nm/s, the slowest directly measured normal growth rate for any crystal growth process. At higher temperatures, growth rates increase exponentially because of decreasing gypsum solubility and higher kinetic coefficient. At 50 °C neither growth nor dissolution was observed indicating that growth of giant crystals of gypsum occurred at Naica between 58 °C (gypsum/anhydrite transition temperature) and the current temperature of Naica waters, confirming formation temperatures determined from fluid inclusion studies. Our results demonstrate the usefulness of applying advanced optical techniques in laboratory experiments to gain a better understanding of crystal growth processes occurring at a geological timescale. PMID:21911400

  18. Ultraslow growth rates of giant gypsum crystals.

    PubMed

    Van Driessche, A E S; García-Ruíz, J M; Tsukamoto, K; Patiño-Lopez, L D; Satoh, H

    2011-09-20

    Mineralogical processes taking place close to equilibrium, or with very slow kinetics, are difficult to quantify precisely. The determination of ultraslow dissolution/precipitation rates would reveal characteristic timing associated with these processes that are important at geological scale. We have designed an advanced high-resolution white-beam phase-shift interferometry microscope to measure growth rates of crystals at very low supersaturation values. To test this technique, we have selected the giant gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in mineral formation. They are thought to form by a self-feeding mechanism driven by solution-mediated anhydrite-gypsum phase transition, and therefore they must be the result of an extremely slow crystallization process close to equilibrium. To calculate the formation time of these crystals we have measured the growth rates of the {010} face of gypsum growing from current Naica waters at different temperatures. The slowest measurable growth rate was found at 55 °C, 1.4 ± 0.2 × 10(-5) nm/s, the slowest directly measured normal growth rate for any crystal growth process. At higher temperatures, growth rates increase exponentially because of decreasing gypsum solubility and higher kinetic coefficient. At 50 °C neither growth nor dissolution was observed indicating that growth of giant crystals of gypsum occurred at Naica between 58 °C (gypsum/anhydrite transition temperature) and the current temperature of Naica waters, confirming formation temperatures determined from fluid inclusion studies. Our results demonstrate the usefulness of applying advanced optical techniques in laboratory experiments to gain a better understanding of crystal growth processes occurring at a geological timescale.

  19. FGF signalling regulates bone growth through autophagy.

    PubMed

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.

  20. Optimality and sub-optimality in a bacterial growth law.

    PubMed

    Towbin, Benjamin D; Korem, Yael; Bren, Anat; Doron, Shany; Sorek, Rotem; Alon, Uri

    2017-01-19

    Organisms adjust their gene expression to improve fitness in diverse environments. But finding the optimal expression in each environment presents a challenge. We ask how good cells are at finding such optima by studying the control of carbon catabolism genes in Escherichia coli. Bacteria show a growth law: growth rate on different carbon sources declines linearly with the steady-state expression of carbon catabolic genes. We experimentally modulate gene expression to ask if this growth law always maximizes growth rate, as has been suggested by theory. We find that the growth law is optimal in many conditions, including a range of perturbations to lactose uptake, but provides sub-optimal growth on several other carbon sources. Combining theory and experiment, we genetically re-engineer E. coli to make sub-optimal conditions into optimal ones and vice versa. We conclude that the carbon growth law is not always optimal, but represents a practical heuristic that often works but sometimes fails.