Science.gov

Sample records for experiment twp-ice cloud

  1. Forecast experiments with the Community Atmospheric Model (CAM) over the Tropical Warm Pool - International Cloud Experiment (TWP-ICE)

    NASA Astrophysics Data System (ADS)

    Boyle, J. S.; Klein, S.

    2008-12-01

    The Tropical Warm Pool International Cloud Experiment (TWP-ICE) experiment took place over 20 January 2006 to 14 February 2006 centered on Darwin, Australia. The motivation behind the design of the observations for TWP-ICE was to better understand the factors that control tropical convection. Additionally, the experiment sought to describe how the characteristics of the convection affect the microphysics of the clouds, particularly the deep convective anvils and tropical cirrus. A chief goal of the TWP-ICE was to provide information of the tropical processes for the improvement of the parameterization of clouds in numerical weather prediction (NWP) and climate models. The TWP-ICE experiment combined aspects of previous observational campaigns, specifically the combination of a dense rawindsonde network, high altitude aircraft sampling and airborne and ground based radar and lidar also observations from geostationary and polar obrbiting satellites were used. The CAM experiments consisted of changing the cloud microphysics parameterizations and running with three different horizontal resolutions. The CAM simulations were performed using the finite volume dynamical core with grids of 1.9° x 2.5°, 0.9° x 1.25° and 0.47° x 0.63°. The cloud microphysics parameterizations used were the default CAM single moment scheme and a new double moment parameterization that predicts both the number and mass of liquid and ice condensate.The model was initialized by the state variables (wind, temperature, moisture and surface pressure) taken from the ECMWF operational analyses. The forecasts are for 5 days starting at 00Z. The results presented will focus on the short term day 1 ( 24-48h) of the forecasts. The validation of cloud properities requires the coordination of several different observational platforms, including the a millimeter Cloud radar and microwave radiometer at Darwin as well as rawindsondes. The new microphysics scheme produces better estimates of the cloud

  2. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    SciTech Connect

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  3. Tropical Warm Pool International Cloud Experiment (TWP-ICE): Cloud and Rain Characteristics in the Australian Monsoon

    SciTech Connect

    PT May; C Jakob; JH Mather

    2004-05-30

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them. The experiment is a collaboration between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, the Bureau of Meteorology (BoM), the National Aeronautics and Space Administration (NASA), the European Commission DG RTD-1.2, and several United States, Australian, Canadian, and European Universities. This experiment will be undertaken over a 4-week period in early 2006. January and February corresponds to the wet phase of the Australia monsoon. This season has been selected because, despite Darwin’s coastal location, the convection that occurs over and near Darwin at this time is largely of maritime origin with a large fetch over water

  4. Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE), Darwin, 2006

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Long, C. N.; Leung, L. R.; Dudhia, J.; McFarlane, S. A.; Mather, J. H.; Ghan, S. J.; Liu, X.

    2009-11-01

    Data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) were used to evaluate Weather Research and Forecasting (WRF) model simulations with foci on the performance of three six-class bulk microphysical parameterizations (BMPs). Before the comparison with data from TWP-ICE, a suite of WRF simulations were carried out under an idealized condition, in which the other physical parameterizations were turned off. The idealized simulations were intended to examine the interaction of BMP at a "cloud-resolving" scale (250 m) with the nonhydrostatic dynamic core of the WRF model. The other suite of nested WRF simulations was targeted on the objective analysis of TWP-ICE at a "cloud-permitting" scale (quasi-convective resolving, 4 km). Wide ranges of discrepancies exist among the three BMPs when compared with ground-based and satellite remote sensing retrievals for TWP-ICE. Although many processes and associated parameters may influence clouds, it is strongly believed that atmospheric processes fundamentally govern the cloud feedbacks through the interactions between the atmospheric circulations, cloudiness, and the radiative and latent heating of the atmosphere. Based on the idealized experiments, we suggest that the discrepancy is a result of the different treatment of ice-phase microphysical processes (e.g., cloud ice, snow, and graupel). Because of the turn-off of the radiation and other physical parameterizations, the cloud radiation feedback is not studied in idealized experiments. On the other hand, the "cloud-permitting" experiments engage all physical parameterizations in the WRF model so that the radiative heating processes are considered together with other physical processes. Common features between these two experiment suites indicate that the major discrepancies among the three BMPs are similar. This strongly suggests the importance of ice-phase microphysics. To isolate the influence of cloud radiation feedback, we further carried out an

  5. The microphysical and radiative properties of tropical cirrus from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE)

    NASA Astrophysics Data System (ADS)

    Um, Jun Shik

    During the 2006 Tropical Warm Pool International Cloud Experiment conducted in the region near Darwin, Australia, the Scaled Composites Proteus aircraft executed spiral profiles and flew horizontal legs through aging cirrus, fresh anvils, and cirrus of unknown origin. Data from 27 Jan., 29 Jan., and 2 Feb., when all the microphysical probes a Cloud and Aerosol Spectrometer (CAS), a Cloud Droplet Probe (CDP), a Cloud Imaging Probe (CIP), and a Cloud Particle Imager (CPI) were working, are used to investigate whether a single parameterization can be used to characterize tropical cirrus in terms of prognostic variables used in large-scale models, to calculate the single-scattering properties (scattering phase function P11 and asymmetry parameter g) of aggregates and small ice crystals that more closely match observed ice crystals, and to quantify the influences of small ice crystals on the bulk scattering properties of tropical cirrus. A combination of CDP (D < 50 mum), fits (50 < D < 125 microm), and CIP (D > 125 mum) distributions is used to represent ice crystal size distributions. The CDP measurements are used for small ice crystals because comparison between the CAS and CDP suggested the CAS was artificially amplifying small ice crystal concentrations by detecting remnants of shattered large ice crystals. Artifacts in CIP images are removed or corrected and then CIP measurements are used to represent large ice crystals. Because of the uncertainties in both the CPI and CIP for 50 < D < 125 mum, the incomplete gamma fitting method with the CDP (D < 50 mum) and CIP (D > 125 mum) measurements as input is used to characterize these distributions. A new quasi-automatic habit classification scheme is developed. For all days, small quasi-spheres dominated the contributions from all ice crystal sizes (D > 0 mum, by number) for all 3 days. The areal fraction (D > 200 mum) from bullet rosettes and their aggregates was 48% and 60% for 27 and 29 Jan., respectively, but only 7

  6. Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Wu, Xiaoqing; Zeng, Xiping; Mitovski, Toni

    2016-10-01

    The fractional entrainment rate in convective clouds is an important parameter in current convective parameterization schemes of climate models. In this paper, it is estimated using a 1-km-resolution cloud-resolving model (CRM) simulation of convective clouds from TWP-ICE (the Tropical Warm Pool-International Cloud Experiment). The clouds are divided into different types, characterized by cloud-top heights. The entrainment rates and moist static energy that is entrained or detrained are determined by analyzing the budget of moist static energy for each cloud type. Results show that the entrained air is a mixture of approximately equal amount of cloud air and environmental air, and the detrained air is a mixture of ~80 % of cloud air and 20 % of the air with saturation moist static energy at the environmental temperature. After taking into account the difference in moist static energy between the entrained air and the mean environment, the estimated fractional entrainment rate is much larger than those used in current convective parameterization schemes. High-resolution (100 m) large-eddy simulation of TWP-ICE convection was also analyzed to support the CRM results. It is shown that the characteristics of entrainment rates estimated using both the high-resolution data and CRM-resolution coarse-grained data are similar. For each cloud category, the entrainment rate is high near cloud base and top, but low in the middle of clouds. The entrainment rates are best fitted to the inverse of in-cloud vertical velocity by a second order polynomial.

  7. Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE, Darwin 2006)

    SciTech Connect

    Wang, Yi; Long, Charles N.; Leung, Lai-Yung R.; Dudhia, Jimy; McFarlane, Sally A.; Mather, James H.; Ghan, Steven J.; Liu, Xiaodong

    2009-11-05

    Data from the Tropical Warm Pool I5 nternational Cloud Experiment (TWPICE) were used to evaluate two suites of high-resolution (4-7 km, convection-resolving) simulations of the Advanced Research Weather Research and Forecasting (WRF) model with a focus on the performance of different cloud microphysics (MP) schemes. The major difference between these two suites of simulations is with and without the reinitializing process. Whenreinitialized every three days, the four cloud MP schemes evaluated can capture the general profiles of cloud fraction, temperature, water vapor, winds, and cloud liquid and ice water content (LWC and IWC, respectively). However, compared with surface measurements of radiative and moisture fluxes and satellite retrieval of top-of-the-atmosphere (TOA) fluxes, disagreements do exist. Large discrepancies with observed LWC and IWC and derived radiative heating profiles can be attributed to both the limitations of the cloud property retrievals and model performance. The simulated precipitation also shows a wide range of uncertainty as compared with observations, which could be caused by the cloud MP schemes, complexity of land-sea configuration, and the high temporal and spatial variability. In general, our result indicates the importance of large-scale initial and lateral boundary conditions in re-producing basic features of cloudiness and its vertical structures. Based on our case study, we find overall the six-hydrometer single-moment MP scheme(WSM6) [Hong and Lim, 2006] in the WRF model si25 mulates the best agree- ment with the TWPICE observational analysis.

  8. A Single Column Model Ensemble Approach Applied to the TWP-ICE Experiment

    SciTech Connect

    Davies, Laura; Jakob, Christian; Cheung, K.; Del Genio, Anthony D.; Hill, Adrian; Hume, Timothy; Keane, R. J.; Komori, T.; Larson, Vincent E.; Lin, Yanluan; Liu, Xiaohong; Nielsen, Brandon J.; Petch, Jon C.; Plant, R. S.; Singh, M. S.; Shi, Xiangjun; Song, X.; Wang, Weiguo; Whitall, M. A.; Wolf, A.; Xie, Shaocheng; Zhang, Guang J.

    2013-06-27

    Single column models (SCM) are useful testbeds for investigating the parameterisation schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best-estimate large-scale data prescribed. One method to address this uncertainty is to perform ensemble simulations of the SCM. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best-estimate product. This data is then used to carry out simulations with 11 SCM and 2 cloud-resolving models (CRM). Best-estimate simulations are also performed. All models show that moisture related variables are close to observations and there are limited differences between the best-estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the moisture budget between the SCM and CRM. Systematic differences are also apparent in the ensemble mean vertical structure of cloud variables. The ensemble is further used to investigate relations between cloud variables and precipitation identifying large differences between CRM and SCM. This study highlights that additional information can be gained by performing ensemble simulations enhancing the information derived from models using the more traditional single best-estimate simulation.

  9. A Single-column Model Ensemble Approach Applied to the TWP-ICE Experiment

    NASA Technical Reports Server (NTRS)

    Davies, L.; Jakob, C.; Cheung, K.; DelGenio, A.; Hill, A.; Hume, T.; Keane, R. J.; Komori, T.; Larson, V. E.; Lin, Y.; Liu, X.; Nielsen, B. J.; Petch, J.; Plant, R. S.; Singh, M. S.; Shi, X.; Song, X.; Wang, W.; Whithall, M. A.; Wolf, A.; Xie, S.; Zhang, G.

    2013-01-01

    Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.

  10. A single-column model ensemble approach applied to the TWP-ICE experiment

    NASA Astrophysics Data System (ADS)

    Davies, L.; Jakob, C.; Cheung, K.; Genio, A. Del; Hill, A.; Hume, T.; Keane, R. J.; Komori, T.; Larson, V. E.; Lin, Y.; Liu, X.; Nielsen, B. J.; Petch, J.; Plant, R. S.; Singh, M. S.; Shi, X.; Song, X.; Wang, W.; Whitall, M. A.; Wolf, A.; Xie, S.; Zhang, G.

    2013-06-01

    Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.

  11. Improvements in Representations of Cloud Microphysics for BBHRP and Models using Data Collected during M-PACE and TWP-ICE

    SciTech Connect

    Greg M. McFarquhar

    2010-02-22

    In our research we proposed to use data collected during the 2004 Mixed-Phase Arctic Cloud Experiment (MPACE) and the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) to improve retrievals of ice and mixed-phase clouds, to improve our understanding of how cloud and radiative processes affect cloud life cycles, and to develop and test methods for using ARM data more effectively in model. In particular, we proposed to: 1) use MPACE in-situ data to determine how liquid water fraction and cloud ice and liquid effective radius (r{sub ei} and r{sub ew}) vary with temperature, normalized cloud altitude and other variables for Arctic mixed-phase clouds, and to use these data to evaluate the performance of model parameterization schemes and remote sensing retrieval algorithms; 2) calculate rei and size/shape distributions using TWP-ICE in-situ data, investigate their dependence on cirrus type (oceanic or continental anvils or cirrus not directly traced to convection), and develop and test representations for MICROBASE; 3) conduct fundamental research enhancing our understanding of cloud/radiative interactions, concentrating on effects of small crystals and particle shapes and sizes on radiation; and 4) improve representations of microphysical processes for models (fall-out, effective density, mean scattering properties, rei and rew) and provide them to ARM PIs. In the course of our research, we made substantial progress on all four goals.

  12. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect

    Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-06-24

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-μm infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

  13. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Fridlind, Ann M.; Zipser, Edward J.; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-01-01

    The Tropical Warm Pool.International Cloud Experiment (TWP ]ICE) provided extensive observational data sets designed to initialize, force, and constrain atmospheric model simulations. In this first of a two ]part study, precipitation and cloud structures within nine cloud ]resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Seven of nine simulations overestimate convective area by 20% or more leading to general overestimation of convective rainfall. This is balanced by underestimation of stratiform rainfall by 5% to 50% despite overestimation of stratiform area by up to 65% because of a preponderance of very low stratiform rain rates in all simulations. All simulations fail to reproduce observed radar reflectivity distributions above the melting level in convective regions and throughout the troposphere in stratiform regions. Observed precipitation ]sized ice reaches higher altitudes than simulated precipitation ]sized ice despite some simulations that predict lower than observed top ]of ]atmosphere infrared brightness temperatures. For the simulations that overestimate radar reflectivity aloft, graupel is the cause with one ]moment microphysics schemes whereas snow is the cause with two ]moment microphysics schemes. Differences in simulated radar reflectivity are more highly correlated with differences in mass mean melted diameter (Dm) than differences in ice water content. Dm is largely dependent on the mass ]dimension relationship and gamma size distribution parameters such as size intercept (N0) and shape parameter (m). Having variable density, variable N0, or m greater than zero produces radar reflectivities closest to those observed.

  14. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect

    Varble, Adam; Fridlind, Ann; Zipser, Edward J.; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-10-04

    The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. In stratiform regions, there is a large spread in model results with none resembling observed distributions. Above the melting level, observed radar reflectivity decreases more gradually with height than simulated radar reflectivity. A few simulations produce unrealistically uniform and cold 10.8-μm infrared brightness temperatures, but several simulations produce distributions close to observed. Assumed ice particle size distributions appear to play a larger role than ice water contents in producing incorrect simulated radar reflectivity distributions aloft despite substantial differences in mean graupel and snow water contents across models.

  15. A Comparison of TWP-ICE Observational Data with Cloud-Resolving Model Results

    SciTech Connect

    Fridlind, A. M.; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Grabowski, Wojciech W.; Hill, A.; Jones, T. R.; Khaiyer, M. M.; Liu, G.; Minnis, Patrick; Morrison, H.; Nguyen, L.; Park, S.; Petch, Jon C.; Pinty, Jean-Pierre; Schumacher, Courtney; Shipway, Ben; Varble, A. C.; Wu, Xiaoqing; Xie, Shaocheng; Zhang, Minghua

    2012-03-13

    Observations made during the TWP-ICE campaign are used to drive and evaluate thirteen cloud-resolving model simulations with periodic lateral boundary conditions. The simulations employ 2D and 3D dynamics, one- and two-moment microphysics, several variations on large-scale forcing, and the use of observationally derived aerosol properties to prognose droplet numbers. When domain means are averaged over a 6-day active monsoon period, all simulations reproduce observed surface precipitation rate but not its structural distribution. Simulated fractional areas covered by convective and stratiform rain are uncorrelated with one another, and are both variably overpredicted by up to a factor of {approx}2. Stratiform area fractions are strongly anticorrelated with outgoing longwave radiation (OLR) but are negligibly correlated with ice water path (IWP), indicating that ice spatial distribution controls OLR more than mean IWP. Overpredictions of OLR tend to be accompanied by underpredictions of reflected shortwave radiation (RSR). When there are two simulations differing only in microphysics scheme or large-scale forcing, the one with smaller stratiform area tends to exhibit greater OLR and lesser RSR by similar amounts. After {approx}10 days, simulations reach a suppressed monsoon period with a wide range of mean precipitable water vapor, attributable in part to varying overprediction of cloud-modulated radiative flux divergence compared with observationally derived values. Differences across the simulation ensemble arise from multiple sources, including dynamics, microphysics, and radiation treatments. Close agreement of spatial and temporal averages with observations may not be expected, but the wide spreads of predicted stratiform fraction and anticorrelated OLR indicate a need for more rigorous observation-based evaluation of the underlying micro- and macrophysical properties of convective and stratiform structures.

  16. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics

    SciTech Connect

    Varble, Adam; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher R.

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, co-located UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain published results showing a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rain water contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (μ) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes, but lower RWCs than observed. Two moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and thus, may have issues balancing raindrop formation, collision coalescence, and raindrop breakup. Assuming a μ of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing μ to have values greater than 0 may improve two-moment schemes. Under-predicted stratiform rain rates are associated with under-predicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. In addition to stronger convective updrafts than observed, limited domain size prevents a large, well-developed stratiform region from developing in CRMs, while a dry bias in ECMWF analyses does the same to the LAMs.

  17. Evaluation of Cloud-Resolving and Limited Area Model Intercomparison Simulations Using TWP-ICE Observations. Part 2 ; Precipitation Microphysics

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Zipser, Edward J.; Fridland, Ann M.; Zhu, Ping; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher

    2014-01-01

    Ten 3-D cloud-resolving model (CRM) simulations and four 3-D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, colocated UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rainwater contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (mu) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes but lower RWCs. Two-moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and, thus, may have issues balancing raindrop formation, collision-coalescence, and raindrop breakup. Assuming a mu of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing mu to have values greater than 0 may improve excessive size sorting in two-moment schemes. Underpredicted stratiform rain rates are associated with underpredicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. A limited domain size also prevents a large, well-developed stratiform region like the one observed from developing in CRMs, although LAMs also fail to produce such a region.

  18. ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Ackerman, Andrew; Petch, Jon; Field, Paul; Hill, Adrian; McFarquhar, Greg; Xie, Shaocheng; Zhang, Minghua

    2010-01-01

    Specifications are provided for running a cloud-resolving model (CRM) and submitting results in a standardized format for inclusion in a n intercomparison study and archiving for public access. The simulated case study is based on measurements obtained during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) led by the U. S. department of Energy Atmospheric Radiation Measurement (ARM) program. The modeling intercomparison study is based on objectives developed in concert with the Stratospheric Processes And their Role in Climate (SPARC) program and the GEWEX cloud system study (GCSS) program. The Global Energy and Water Cycle Experiment (GEWEX) is a core project of the World Climate Research PRogramme (WCRP).

  19. Final Report for "Improved Representations of Cloud Microphysics for Model and Remote Sensing Evaluation using Data Collected during ISDAC, TWP-ICE and RACORO

    SciTech Connect

    McFarquhar, Greg M.

    2003-06-11

    We were funded by ASR to use data collected during ISDAC and TWP-ICE to evaluate models with a variety of temporal and spatial scales, to evaluate ground-based remote sensing retrievals and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. In particular, we proposed to: 1) Calculate distributions of microphysical properties observed in arctic stratus during ISDAC for initializing and evaluating LES and GCMs, and for developing parameterizations of effective particle sizes, mean fall velocities, and mean single-scattering properties for such models; 2) Improve representations of particle sizes, fall velocities and scattering properties for tropical and arctic cirrus using TWP-ICE, ISDAC and M-PACE data, and to determine the contributions that small ice crystals, with maximum dimensions D less than 50 μm, make to mass and radiative properties; 3) Study fundamental interactions between clouds and radiation by improving representations of small quasi-spherical particles and their scattering properties. We were additionally funded 1-year by ASR to use RACORO data to develop an integrated product of cloud microphysical properties. We accomplished all of our goals.

  20. Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties

    NASA Astrophysics Data System (ADS)

    Varble, Adam; Zipser, Edward J.; Fridlind, Ann M.; Zhu, Ping; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Collis, Scott; Fan, Jiwen; Hill, Adrian; Shipway, Ben

    2014-12-01

    Ten 3-D cloud-resolving model simulations and four 3-D limited area model simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high-bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias. Making snow mass more realistically proportional to D2 rather than D3 eliminates unrealistically large snow reflectivities over 40 dBZ in some simulations. Graupel, unlike snow, produces high biased reflectivity in all simulations, which is partly a result of parameterized microphysics but also partly a result of overly intense simulated updrafts. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler-retrieved values, especially in the upper troposphere. Freezing of liquid condensate, often rain, lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. The strongest simulated updraft cores are nearly undiluted, with some of the strongest showing supercell characteristics during the multicellular (presquall) stage of the event. Decreasing horizontal grid spacing from 900 to 100 m slightly weakens deep updraft vertical velocity and moderately decreases the amount of condensate aloft but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may additionally be a product of unrealistic interactions between convective dynamics, parameterized microphysics, and large-scale model forcing that promote different convective strengths than observed.

  1. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties

    SciTech Connect

    Varble, A. C.; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Collis, Scott M.; Fan, Jiwen; Hill, Adrian; Shipway, Ben

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias. Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.

  2. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    SciTech Connect

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen

    2012-10-02

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.

  3. Joint ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study: Description, Preliminary Results, and Invitation to Participate

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Ackerman, A. S.; Allen, G.; Beringer, J.; Comstock, J. M.; Field, P. R.; Gallagher, M.; Hacker, J. M.; Hume, T.; Jakob, C.; Liu, G.; Long, C. N.; Mather, J. H.; May, P. T.; McCoy, R. F.; McFarlane, S. A.; McFarquhar, G. M.; Minnis, P.; Petch, J. C.; Schumacher, C.; Turner, D. D.; Whiteway, J. A.; Williams, C. R.; Williams, P. I.; Xie, S.; Zhang, M.

    2008-12-01

    The 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) is 'the first field program in the tropics that attempted to describe the evolution of tropical convection, including the large-scale heat, moisture, and momentum budgets at 3-hourly time resolution, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment' [May et al., 2008]. A cloud- resolving model (CRM) intercomparison based on TWP-ICE is now being undertaken by the Atmospheric Radiation Measurement (ARM), GEWEX Cloud Systems Study (GCSS), and Stratospheric Processes And their Role in Climate (SPARC) programs. We summarize the 16-day case study and the wealth of data being used to provide initial and boundary conditions, and evaluate some preliminary findings in the context of existing theories of moisture evolution in the tropical tropopause layer (TTL). Overall, simulated cloud fields evolve realistically by many measures. Budgets indicate that simulated convective flux convergence of water vapor is always positive or near zero at TTL elevations, except locally at lower levels during the driest suppressed monsoon conditions, while simulated water vapor deposition to hydrometeors always exceeds sublimation on average at all TTL elevations over 24-hour timescales. The next largest water vapor budget term is generally the nudging required to keep domain averages consistent with observations, which is at least partly attributable to large-scale forcing terms that cannot be derived from measurements. We discuss the primary uncertainties.

  4. Evaluating Deep Updraft Formulation in NCAR CAM3 with High-Resolution WRF Simulations During ARM TWP-ICE

    SciTech Connect

    Wang, Weiguo; Liu, Xiaohong

    2009-02-19

    The updraft formulation used in NCAR CAM3 deep convection parameterization assumes that the fractional entrainment rate for a single updraft is height-independent and the updraft mass flux increases monotonically with height to updraft top. These assumptions are evaluated against three-dimensional high-resolution simulations from the weather research and forecast (WRF) model during the monsoon period of the DOE ARM Tropical Warm Pool -- International Cloud Experiment (TWP-ICE). Analyses of the WRF-generated updrafts suggest that the fractional entrainment rate for a single updraft decreases with height and the updraft mass flux increases with height below the top of the conditionally unstable layer but decreases above. It is suggested that the assumed updraft mass flux profile in CAM3 might be unrealistic in many cases because the updraft acceleration is affected by other drag processes in addition to entrainment. Total convective cloud mass flux and detrainment rate over the TWP-ICE domain diagnosed from the CAM3 parameterization driven by WRF meteorological fields are smaller than those derived from WRF simulations. The total entrainment rate of CAM3 is smaller than that of WRF in the lower part of cloud and larger in the upper part of cloud. Compared with WRF simulations, the CAM3-parameterized convection is too active and, as a result, excess moisture and heat may be transported to the upper troposphere by the parameterized convection. Future improvement is envisioned.

  5. Experiment to Characterize Tropical Cloud Systems

    SciTech Connect

    May, Peter T.; Mather, Jim H.; Jakob, Christian

    2005-08-02

    A major experiment to study tropical convective cloud systems and their impacts will take place around Darwin, Northern Australia in early 2006. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) is a collaboration including the DOE ARM (Atmospheric Radiation Measurement) and ARM-UAV programs, NASA centers, the Australian Bureau of Meteorology, CSIRO, and universities in the USA, Australia, Japan, the UK, and Canada. TWP-ICE will be preceded in November/December 2004 by a collaborating European aircraft campaign involving the EU SCOUT-O3 and UK NERC ACTIVE projects. Detailed atmospheric measurements will be made in the Darwin area through the whole Austral summer, giving unprecedented coverage through the pre-monsoon and monsoon periods.

  6. TWP-ICE Global Atmospheric Model Intercomparison: Convection Responsiveness and Resolution Impact

    SciTech Connect

    Lin, Yanluan; Donner, Leo J.; Petch, Jon C.; Bechtold, P.; Boyle, James; Klein, Stephen A.; Komori, T.; Wapler, K.; Willett, M.; Xie, X.; Zhao, M.; Xie, Shaocheng; McFarlane, Sally A.; Schumacher, Courtney

    2012-05-08

    Results are presented from an intercomparison of global atmospheric model (GAM) simulations of tropical convection during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE). The distinct cloud properties, precipitation, radiation, and vertical diabatic heating profiles associated with three different monsoon regimes (wet, dry, and break) from available observations are used to evaluate 9 GAM forecasts initialized daily from realistic global analyses. All models well captured the evolution of large-scale circulation and the thermodynamic fields, but cloud properties differed substantially among models. For example, liquid water path and ice water path differed by up to two orders of magnitude. Compared with the relatively well simulated top-heavy heating structures during the wet and break period, most models had difficulty in depicting the bottom-heavy heating profiles associated with cumulus congestus. The best performing models during this period were the ones whose convection scheme was most responsive to the free tropospheric humidity. Compared with the large impact of cloud and convective parameterizations on model cloud and precipitation characteristics, resolution has relatively minor impact on simulated cloud properties. However, one feature that was influence by the resolution study in several models was the diurnal cycle of precipitation. Peaking at a different time from convective precipitation, large-scale precipitation generally increases in high resolution forecasts and modulates the total precipitation diurnal cycle. Overall, the study emphasizes the importance of more environmental responsive convective parameterizations to capture various types of convection and the substantial diversity among large-scale cloud and precipitation schemes in current GAMs. This experiment has also demonstrated itself to be a very useful testbed for those developing cloud and convection schemes in these models.

  7. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    SciTech Connect

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; Klein, Stephen A.; McCoy, Renata B.; Zhang, Minghua

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence and horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.

  8. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    DOE PAGES

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; ...

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence andmore » horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.« less

  9. Validation of Model Simulations of Anvil Cirrus Properties During TWP-ICE: Final Report

    SciTech Connect

    Zipser, Edward J.

    2013-05-20

    This 3-year grant, with two extensions, resulted in a successful 5-year effort, led by Ph.D. student Adam Varble, to compare cloud resolving model (CRM) simulations with the excellent database obtained during the TWP-ICE field campaign. The objective, largely achieved, is to undertake these comparisons comprehensively and quantitatively, informing the community in ways that goes beyond pointing out errors in the models, but points out ways to improve both cloud dynamics and microphysics parameterizations in future modeling efforts. Under DOE support, Adam Varble, with considerable assistance from Dr. Ann Fridlind and others, entrained scientists who ran some 10 different CRMs and 4 different limited area models (LAMs) using a variety of microphysics parameterizations, to ensure that the conclusions of the study will have considerable generality.

  10. Evaluation of Intercomparisons of Four Different Types of Model Simulating TWP-ICE

    NASA Technical Reports Server (NTRS)

    Petch, Jon; Hill, Adrian; Davies, Laura; Fridlind, Ann; Jakob, Christian; Lin, Yanluan; Xie, Shaoecheng; Zhu, Ping

    2013-01-01

    Four model intercomparisons were run and evaluated using the TWP-ICE field campaign, each involving different types of atmospheric model. Here we highlight what can be learnt from having single-column model (SCM), cloud-resolving model (CRM), global atmosphere model (GAM) and limited-area model (LAM) intercomparisons all based around the same field campaign. We also make recommendations for anyone planning further large multi-model intercomparisons to ensure they are of maximum value to the model development community. CRMs tended to match observations better than other model types, although there were exceptions such as outgoing long-wave radiation. All SCMs grew large temperature and moisture biases and performed worse than other model types for many diagnostics. The GAMs produced a delayed and significantly reduced peak in domain-average rain rate when compared to the observations. While it was shown that this was in part due to the analysis used to drive these models, the LAMs were also driven by this analysis and did not have the problem to the same extent. Based on differences between the models with parametrized convection (SCMs and GAMs) and those without (CRMs and LAMs), we speculate that that having explicit convection helps to constrain liquid water whereas the ice contents are controlled more by the representation of the microphysics.

  11. Identifying and Tracking Individual Updraft Cores using Cluster Analysis: A TWP-ICE case study

    NASA Astrophysics Data System (ADS)

    Li, X.; Tao, W.; Collis, S. M.; Varble, A.

    2013-12-01

    Cumulus parameterizations in GCMs depend strongly on the vertical velocity structures of convective updraft cores, or plumes. There hasn't been an accurate way of identifying these cores. The majority of previous studies treat the updraft as a single grid column entity, thus missing many intrinsic characteristics, e.g., the size, strength and spatial orientation of an individual core, its life cycle, and the time variations of the entrainment/detrainment rates associated with its life cycle. In this study, we attempt to apply an innovative algorithm based on the centroid-based k-means cluster analysis to improve our understanding of convection and its associated updraft cores. Both 3-D Doppler radar retrievals and cloud-resolving model simulations of a TWP-ICE campaign case during the monsoon period will be used to test and improve this algorithm. This will provide for more in-depth comparisons between CRM simulations and observations that were not possible previously using the traditional piecewise analysis with each updraft column. The first step is to identify the strongest cores (maximum velocity >10 m/s), since they are well defined and produce definite answers when the cluster analysis algorithm is applied. The preliminary results show that the radar retrieved updraft cores are smaller in size and with the maximum velocity located uniformly at higher levels compared with model simulations. Overall, the model simulations produce much stronger cores compared with the radar retrievals. Within the model simulations, the bulk microphysical scheme simulation produces stronger cores than the spectral bin microphysical scheme. Planned researches include using high temporal-resolution simulations to further track the life cycle of individual updraft cores and study their characteristics.

  12. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  13. Development and Evaluation of a Simple Algorithm to Find Cloud Optical Depth with Emphasis on Thin Ice Clouds

    SciTech Connect

    Barnard, James C.; Long, Charles N.; Kassianov, Evgueni I.; McFarlane, Sally A.; Comstock, Jennifer M.; Freer, Matthew; McFarquhar, Greg

    2008-04-14

    We present here an algorithm for determining cloud optical depth, τ, using data from shortwave broadband irradiances, focusing on the case of optically thin clouds. This method is empirical and consists of applying a one-line equation to the shortwave flux analysis described by Long and Ackerman (2000). We apply this method to cirrus clouds observed at the Atmospheric Radiation Measurement Program’s (ARM) Darwin, Australia site during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) campaign and cirrus clouds observed at ARM’s Southern Great Plains (SGP) site. These cases were chosen because independent verification of cloud optical depth retrievals is possible. For the TWP-ICE case, the calculated optical depths compare favorably (to within about 1 unit) with a “first principles” τ calculated from a vertical profile of ice particle size distributions obtained from an aircraft sounding. For the SGP case, the results from the algorithm correspond reasonably well with τ values obtained from an average over other methods; some of which have been subject to independent verification. The medians of the two time series are 0.79 and 0.81, for the empirical and averaged values, respectively (although such close agreement is likely to be fortuitous). This tool may be applied wherever measurements of the three components of the shortwave broadband flux are available at 1- to 5-minute resolution. Because these measurements are made across the world, it then becomes possible to estimate optical depth at many locations.

  14. Characteristics of Mesoscale Organization in WRF Simulations of Convection during TWP-ICE

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Wu, Jingbo; Chen, Yonghua

    2013-01-01

    Compared to satellite-derived heating profiles, the Goddard Institute for Space Studies general circulation model (GCM) convective heating is too deep and its stratiform upper-level heating is too weak. This deficiency highlights the need for GCMs to parameterize the mesoscale organization of convection. Cloud-resolving model simulations of convection near Darwin, Australia, in weak wind shear environments of different humidities are used to characterize mesoscale organization processes and to provide parameterization guidance. Downdraft cold pools appear to stimulate further deep convection both through their effect on eddy size and vertical velocity. Anomalously humid air surrounds updrafts, reducing the efficacy of entrainment. Recovery of cold pool properties to ambient conditions over 5-6 h proceeds differently over land and ocean. Over ocean increased surface fluxes restore the cold pool to prestorm conditions. Over land surface fluxes are suppressed in the cold pool region; temperature decreases and humidity increases, and both then remain nearly constant, while the undisturbed environment cools diurnally. The upper-troposphere stratiform rain region area lags convection by 5-6 h under humid active monsoon conditions but by only 1-2 h during drier break periods, suggesting that mesoscale organization is more readily sustained in a humid environment. Stratiform region hydrometeor mixing ratio lags convection by 0-2 h, suggesting that it is strongly influenced by detrainment from convective updrafts. Small stratiform region temperature anomalies suggest that a mesoscale updraft parameterization initialized with properties of buoyant detrained air and evolving to a balance between diabatic heating and adiabatic cooling might be a plausible approach for GCMs.

  15. FIRE Arctic Clouds Experiment

    NASA Technical Reports Server (NTRS)

    Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.; Gerber, H.; Fairall, C. W.; Garrett, T. J.; Hudson, J.; Intrieri, J. M.; Jakob, C.; Jensen, T.; Lawson, P.; Marcotte, D.; Nguyen, L.

    1998-01-01

    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

  16. Study of Multi-Scale Cloud Processes Over the Tropical Western Pacific Using Cloud-Resolving Models Constrained by Satellite Data

    SciTech Connect

    Dudhia, Jimy

    2013-03-12

    TWP-ICE using satellite and ground-based observations. -- Perform numerical experiments using WRF to investigate how convection over tropical islands in the Maritime Continent interacts with large-scale circulation and affects convection in nearby regions. -- Evaluate and apply WRF as a testbed for GCM cloud parameterizations, utilizing the ability of WRF to run on multiple scales (from cloud resolving to global) to isolate resolution and physics issues from dynamical and model framework issues. Key products will be disseminated to the ARM and larger community through distribution of data archives, including model outputs from the data assimilation products and cloud resolving simulations, and publications.

  17. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    SciTech Connect

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  18. Cloud/climate sensitivity experiments

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.; Remer, L.

    1982-01-01

    A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.

  19. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    SciTech Connect

    McFarquhar, Greg

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  20. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    SciTech Connect

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection

  1. Molecular Clouds: Observation to Experiment

    SciTech Connect

    Kane, J O; Ryutov, D D; Mizuta, A; Remington, B A; Pound, M W

    2004-05-06

    Our ongoing investigation of how 'Pillars' and other structure form in molecular clouds irradiated by ultraviolet (UV) stars has revealed that the Rayleigh-Taylor instability is strongly suppressed by recombination in the photoevaporated outflow, that clumps and filaments may be key, that the evolution of structure is well-modeled by compressible hydrodynamics, and that directionality of the UV radiation may have significant effects. We discuss a generic, flexible set of laboratory experiments that can address these issues.

  2. Sensitivity of Cirrus and Mixed-phase Clouds to the Ice Nuclei Spectra in McRAS-AC: Single Column Model Simulations

    NASA Technical Reports Server (NTRS)

    Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.

    2012-01-01

    The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.

  3. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect

    Phillips, Vaughan T. J.

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition

  4. Cloud microphysical background for the Israel-4 cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel

    2015-05-01

    The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.

  5. The Mixed-Phase Arctic Cloud Experiment.

    SciTech Connect

    Verlinde, J.; Harrington, Jerry Y.; McFarquhar, Greg; Yannuzzi, V. T.; Avramov, Alexander; Greenburg, S.; Johnson, N.; Zhang, G.; Poellot, Michael; Mather, Jim H.; Turner, David D.; Eloranta, E. W.; Zak, Bernard D.; Prenni, Anthony J.; Daniel, J. S.; Kok, G. L.; Tobin, D. C.; Holz, R. E.; Sassen, Kenneth; Spangenberg, D.; Minnis, Patrick; Tooman, Tim P.; Ivey, Mark D.; Richardson, S. J.; Bahrmann, C. P.; Shupe, Matthew D.; DeMott, Paul J.; Heymsfield, Andrew J.; Schofield, R.

    2007-02-01

    In order to help bridge the gaps in our understanding of mixed-phase Arctic clouds, the Department of Energy Atmospheric Radiation Measurement Program (DOE-ARM) funded an integrated, systematic observational study. The major objective of the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted September 27–October 22, 2004 during the autumnal transition season, was to collect a focused set of observations needed to advance our understanding of the cloud microphysics, cloud dynamics, thermodynamics, radiative properties, and evolution of Arctic mixed-phase clouds. These data would then be used to improve to both detailed models of Arctic clouds and large-scale climate models. M-PACE successfully documented the microphysical structure of arctic mixed-phase clouds, with multiple in situ profiles in both single-layer and multi-layer clouds, over the two ground-based remote sensing sites at Barrow and Oliktok Point. Liquid was found in clouds with temperatures down to -30C, the coldest cloud top temperature below -40C sampled by the aircraft. The remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. Flights into arctic cirrus clouds revealed microphysics properties very similar to their mid-latitude in situ formed cousins, with dominant ice crystal habit bullet rosettes.

  6. When STAR meets the Clouds - Virtualization & Cloud Computing Experiences

    NASA Astrophysics Data System (ADS)

    Lauret, J.; Walker, M.; Goasguen, S.; Stout, L.; Fenn, M.; Balewski, J.; Hajdu, L.; Keahey, K.

    2011-12-01

    In recent years, Cloud computing has become a very attractive paradigm and popular model for accessing distributed resources. The Cloud has emerged as the next big trend. The burst of platform and projects providing Cloud resources and interfaces at the very same time that Grid projects are entering a production phase in their life cycle has however raised the question of the best approach to handling distributed resources. Especially, are Cloud resources scaling at the levels shown by Grids? Are they performing at the same level? What is their overhead on the IT teams and infrastructure? Rather than seeing the two as orthogonal, the STAR experiment has viewed them as complimentary and has studied merging the best of the two worlds with Grid middleware providing the aggregation of both Cloud and traditional resources. Since its first use of Cloud resources on Amazon EC2 in 2008/2009 using a Nimbus/EC2 interface, the STAR software team has tested and experimented with many novel approaches: from a traditional, native EC2 approach to the Virtual Organization Cluster (VOC) at Clemson University and Condor/VM on the GLOW resources at the University of Wisconsin. The STAR team is also planning to run as part of the DOE/Magellan project. In this paper, we will present an overview of our findings from using truly opportunistic resources and scaling-out two orders of magnitude in both tests and practical usage.

  7. Radar derived storm dynamics for cloud-resolving model evaluation and climate model parameterization development

    NASA Astrophysics Data System (ADS)

    Collis, S. M.; May, P. T.; Protat, A.; Fridlind, A. M.; Ackerman, A. S.; Williams, C. R.; Varble, A.; Zipser, E. J.

    2010-12-01

    The Tropical Warm Pool-International Cloud Experiment (TWP-ICE) was conducted in and around the US Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Darwin site during January and February 2006. The field program gathered observations that have been used for initializing and driving cloud-resolving models (CRMs, with periodic boundary conditions) and limited-area models (LAMs, with open boundary conditions) for submission to the model intercomparison study, which is organized by the ARM and GEWEX Cloud System Study (GCSS) programs. Measurements also included an extensive set of remotely sensed and in-situ quantities to evaluate model performance, assisting climate model parameterization development. For example, using a combination of operational Doppler radar and CPOL polartimetric research radar data vector winds have been retrieved in storms for part of the model intercomparison period. This presentation will outline the retrieval technique, show preliminary verification of the retrieved updraft intensities and showcase model-measurement comparison with output from the DHARMA cloud-resolving model focusing on vertical winds, a crucial aspect of simulated storm dynamics which exhibit a high degree of model to model variability. Initial comparison has most model updraft speeds substantially higher those retrieved from radar measurements. Investigations into the impact of sampling, scale differences and the cause for this discrepancy are ongoing as is the extension of comparisons to all CRM and LAM submissions. Details on the roll out of the American Recovery and Reinvestment Act funded precipitation radar infrastructure for ACRF and plans for geophysical retrievals from this new instrumentation will also be presented.

  8. Magellan: experiences from a Science Cloud

    SciTech Connect

    Ramakrishnan, Lavanya; Zbiegel, Piotr; Campbell, Scott; Bradshaw, Rick; Canon, Richard; Coghlan, Susan; Sakrejda, Iwona; Desai, Narayan; Declerck, Tina; Liu, Anping

    2011-02-02

    Cloud resources promise to be an avenue to address new categories of scientific applications including data-intensive science applications, on-demand/surge computing, and applications that require customized software environments. However, there is a limited understanding on how to operate and use clouds for scientific applications. Magellan, a project funded through the Department of Energy?s (DOE) Advanced Scientific Computing Research (ASCR) program, is investigating the use of cloud computing for science at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Facility (NERSC). In this paper, we detail the experiences to date at both sites and identify the gaps and open challenges from both a resource provider as well as application perspective.

  9. Preparatory studies of zero-g cloud drop coalescence experiment

    NASA Technical Reports Server (NTRS)

    Telford, J. W.; Keck, T. S.

    1979-01-01

    Experiments to be performed in a weightless environment in order to study collision and coalescence processes of cloud droplets are described. Rain formation in warm clouds, formation of larger cloud drops, ice and water collision processes, and precipitation in supercooled clouds are among the topics covered.

  10. An Apollo compatible cloud physics experiment.

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Hollinden, A. B.; Satterblom, P. R.

    1973-01-01

    Consideration of the utilization of a low-gravity environment to obtain experimental information, in the area of cloud microphysics, which cannot be obtained in ground laboratories. The experiment discussed is designed to obtain quantitative answers about evaporation and breakup of salt particles from ocean spray and other sources. In addition to salt nuclei distribution mechanisms, this breakup has ecological importance in relation to the spreading of salt mists from salted highways and spreading of brine cooling tower spray from electrical power generation plants. This experiment is being submitted for consideration on the Apollo-Soyuz Test Program in 1975.

  11. Performing quantum computing experiments in the cloud

    NASA Astrophysics Data System (ADS)

    Devitt, Simon J.

    2016-09-01

    Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.

  12. Experiment S007: Cloud top spectrometry

    NASA Technical Reports Server (NTRS)

    Saiedy, F.; Wark, D. Q.; Morgan, W. A.

    1971-01-01

    During the Gemini 5 mission, 26 spectrographic observations on various cloud types were obtained using the oxygen A band (7600 A). An example of the types of spectrum and photograph involved represents a cloud in the intertropical convergence zone. Densitometer traces of the spectra of three types of clouds (high, medium, and low) are shown. It was apparent qualitatively that radiation transmission in the oxygen band for a high cloud was much greater than that for a low cloud. The results proved the feasibility of cloud altitude measurements from a spacecraft by this method.

  13. Cloud seeding experiments: lack of bias in Florida series.

    PubMed

    Brier, G W; Cotton, G F; Simpson, J; Woodley, W L

    1972-04-14

    There has been concern about the possibility of selection bias in cloud seeding experiments. Covariates and experimental design have been used to obtain an estimate of this bias. The results indicate that there was no selection bias in the Caribbean and Florida series of cloud seeding experiments.

  14. Cloud Simulation Warm Cloud Experiments: Droplet Growth and Aerosol Scavenging.

    DTIC Science & Technology

    1988-03-02

    facility, a piston type expansion cloud chamber (Schmitt, 1981). Here the expansion is much faster than in the S- . g A i L 8 8 1 /1 4 / 8 L ~O G I O E E...RESERRC. 0 R WHITE ET AL. UNLSIFIED, 62 NOR N RFOSR-TR-00-0317 AFOSR-65-U71 F/0 4 /2 N I hhhhhhhhhhhhho 1111112-.0 1. 11111, _251120 *~~~ ~ %H .11 . C0...CLASSIFICATION AUTHORITY 3. DISTRIBUTION) AVAILABILITY OF REPORT Zb. DECLASSIFICATION I DOWNGRADING SCHEDULE ,i -. [ - .. "’_ - 4 . PERFORMING

  15. The Mixed-Phase Arctic Cloud Experiment (M-PACE)

    NASA Technical Reports Server (NTRS)

    Verlinde, J.; Harrington, J. Y.; McFarquhar, G. M.; Yannuzzi, V. T.; Avramov, A.; Greenberg, S.; Johnson, N.; Zhang, G.; Poellot, M. R.; Mather, J. H.; Turner, D. D.; Eloranta, E. W.; Zak, B. D.; Prenni, A. J.; Daniel, J. S.; Kok, G. L.; Tobin, D. C.; Holz, R.; Sassen, K.; Spangenberg, D.; Minnis, P.; Tooman, T. P.; Ivey, M. D.; Richardson, S. J.; Bahramann, C. P.

    2007-01-01

    The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted September 27 through October 22, 2004 on the North Slope of Alaska. The primary objective was to collect a data set suitable to study interactions between microphysics, dynamics and radiative transfer in mixed-phase Arctic clouds. Observations taken during the 1997/1998 Surface Heat and Energy Budget of the Arctic (SHEBA) experiment revealed that Arctic clouds frequently consist of one (or more) liquid layers precipitating ice. M-PACE sought to investigate the physical processes of these clouds utilizing two aircraft (an in situ aircraft to characterize the microphysical properties of the clouds and a remote sensing aircraft to constraint the upwelling radiation) over the Department of Energy s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The measurements successfully documented the microphysical structure of Arctic mixed-phase clouds, with multiple in situ profiles collected in both single-layer and multi-layer clouds over two ground-based remote sensing sites. Liquid was found in clouds with temperatures down to -30 C, the coldest cloud top temperature below -40 C sampled by the aircraft. Remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. The prevalence of liquid down to these low temperatures could potentially be explained by the relatively low measured ice nuclei concentrations.

  16. Cloud microphysical properties of convective clouds sampled during the Convective Precipitation Experiment (COPE) experiment.

    NASA Astrophysics Data System (ADS)

    Jackson, R.; French, J.; Leon, D.; Plummer, D. M.; Lasher-Trapp, S.; Blyth, A. M.

    2015-12-01

    The COnvective Precipitation Experiment (COPE), occurring in the southwest UK during Summer 2013, was motivated to improve quantitative precipitation forecasting, in part, with the aim to increase understanding of the warm and cold precipitation processes that can produce heavy convective rainfall in the southwest UK. In particular, we examine the creation of graupel embryos, the Hallett-Mossop process, and the effect of entrainment on these processes. To characterize the evolution of cloud microphysical properties of maturing thunderstorms, the University of Wyoming King Air sampled the tops of fresh turrets between -15 and 0. Data sampled by the Cloud Droplet Probe, Cloud Imaging grayscale Probe (CIP-Grey) and 2D Precipitation Probe during four missions are examined. Here we characterize the variability of the cloud liquid and ice particle size distributions and liquid water contents (LWC) inside updraft cores, as a function of temperature, T, and vertical velocity, w. On one of the days, the number concentration of particles with maximum dimension D > 300 μm, N>300, was less than 1 L-1, with very few ice hydrometeors observed. However, on the other missions, N>300 ranged from 1 L-1 to 250 L-1. The CIP-Grey detected liquid drops at T > -5 and a mixture of graupel and rimed columns at T < -5 for these missions, consistent with the warm rain process providing the frozen drops necessary to form graupel embryos that initiate secondary production. In general, LWC relative to adiabatic decreased from 0.75 to 0.2 with height and was lowest when N>300 > 1 L-1, consistent with precipitation growth by collision-coalescence and accretion. Finally, ice precipitation was primarily present at w < 7 m s-1 and greatest when w < 3 m s-1, suggesting that w influences the number of ice particles generated in the updraft cores sampled during COPE-MED.

  17. Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1977-01-01

    The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.

  18. Homomorphic encryption experiments on IBM's cloud quantum computing platform

    NASA Astrophysics Data System (ADS)

    Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-02-01

    Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

  19. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.

    2016-04-01

    This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  20. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, M.; Järvinen, E.; Vochezer, P.; Abdelmonem, A.; Wagner, R.; Jourdan, O.; Mioche, G.; Shcherbakov, V. N.; Schmitt, C. G.; Tricoli, U.; Ulanowski, Z.; Heymsfield, A. J.

    2015-11-01

    This study reports on the origin of ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high ice crystal complexity is dominating the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapour during the crystal growth. Indications were found that the crystal complexity is influenced by unfrozen H2SO4/H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers; the Polar Nephelometer (PN) probe of LaMP and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side- and backward scattering directions resulting in low asymmetry parameters g around 0.78. It was found that these functions have a rather low sensitivity to the crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  1. The Tropical Warm Pool International Cloud Experiment (TWPICE)

    SciTech Connect

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most comprehensive data sets of tropical cloud systems and their environmental setting and impacts ever sampled has been collected during the Tropical Warm Pool International Cloud Experiment in the area around Darwin, Northern Australia in January and February of 2006. The experiment design utilized permanent observational facilities in Darwin which include a polarimetric weather radar operated by the Australia Bureau of Meteorology (BOM) and a suite of cloud remote sensing instruments operated by the DOE Atmospheric Radiation Measurement (ARM) program. A dense network of observations added for the experiment included ocean observations and a dense balloon-borne sounding network. An integral factor in the design was to provide boundary conditions and validation data sets for a range of modelling activities and cloud retrieval development. A fleet of five research aircraft were deployed including two high altitude aircraft for characterizing cloud properties and the atmospheric state, a plane carrying airborne cloud radar and lidar and two aircraft sampling the boundary layer in great detail including fluxes, aerosols and chemistry.

  2. Clouds and the Earth's Radiant Energy System (CERES) experiment

    NASA Technical Reports Server (NTRS)

    Cooper, John E.; Barkstrom, Bruce R.; Kopia, Leonard P.

    1992-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) experiment will play a major role in NASA's planned multi-instrument multi-satellite Earth Observing System (EOS) program to observe and study the total Earth System on a global scale. The CERES experiment will provide EOS with a consistent data base of accurately known fields of radiation and of clouds; and will investigate the important question of the impact of clouds upon the radiative energy flow through the earth-atmosphere system. The CERES instruments will be an improved version of the Earth Radiation Budget Experiment (ERBE) broadband scanning radiometer instruments flown by NASA in the 1980s. This paper describes the CERES experiment approach and the current CERES instrument design status.

  3. Influence of Aerosols on the Shortwave Cloud Radiative Forcing from North Pacific Oceanic Clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX)

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.

    2007-01-01

    Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53 cm(sup -3) compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 micrometers. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth s Radiant Energy System to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -.9.9 plus or minus 4.3 W m(sup -2) for overcast conditions.

  4. The Influence of Aerosols on the Shortwave Cloud Radiative Forcing from North Pacific Oceanic Clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX)

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.

    2006-01-01

    Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53/cu cm compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 microns. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System (CERES) to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -9.9+/-4.3 W/sq m for overcast conditions.

  5. Electron cloud experiments at Fermilab: Formation and mitigation

    SciTech Connect

    Zwaska, R.; /Fermilab

    2011-06-01

    We have performed a series of experiments at Fermilab to explore the electron cloud phenomenon. The Main Injector will have its beam intensity increased four-fold in the Project X upgrade, and would be subject to instabilities from the electron cloud. We present measurements of the cloud formation in the Main Injector and experiments with materials for the mitigation of the Cloud. An experimental installation of Titanium-Nitride (TiN) coated beam pipes has been under study in the Main Injector since 2009; this material was directly compared to an adjacent stainless chamber through electron cloud measurement with Retarding Field Analyzers (RFAs). Over the long period of running we were able to observe the secondary electron yield (SEY) change and correlate it with electron fluence, establishing a conditioning history. Additionally, the installation has allowed measurement of the electron energy spectrum, comparison of instrumentation techniques, and energydependent behavior of the electron cloud. Finally, a new installation, developed in conjunction with Cornell and SLAC, will allow direct SEY measurement of material samples irradiated in the accelerator.

  6. Noctilucent cloud sampling by a multi-experiment payload.

    NASA Technical Reports Server (NTRS)

    Hallgren, D. S.; Schmalberger, D. C.; Hemenway, C. L.

    1973-01-01

    Two multi-experiment payloads were launched into noctilucent cloud displays above Kiruna, Sweden, on the nights of July 31 and Aug. 1, 1971. The payloads were part of the continuing Pandora II cosmic dust collection series and included: (1) Pandora 2 dust collection with in-flight shadowing photoelectric polarimeters to measure scattered light at 4100 and 5400 A, a plasma detector and an ion probe, and piezoelectric microphones. These payloads attempted to investigate noctilucent clouds by four simultaneous and independent techniques. The photometric data indicate that the first payload passed through a cloud, while the second payload did not. These results are confirmed by the particle collection experiment which indicates a higher collection on the first payload. Analysis of the chemical composition of the collected particles indicates an unusual amount of high atomic number elements.

  7. Empirical Modeling of Plasma Clouds Produced by the Metal Oxide Space Clouds (MOSC) Experiment

    NASA Astrophysics Data System (ADS)

    Pedersen, T.; Caton, R. G.; Miller, D.; Holmes, J. M.; Groves, K. M.

    2015-12-01

    The Metal Oxide Space Clouds (MOSC) chemical release experiments employed the ALTAIR radar as a primary measurement of plasma density in the clouds. However, the radar provides only the local plasma density along the beam line of sight, and the measurements are of limited value without context to determine the location of the radar beam relative to the larger plasma cloud. We have constructed an empirical model of the cloud locations, shapes, and sizes as a function of time for both MOSC launches using fits to all-sky images recorded from near the launch site. When combined with ALTAIR radar measurements of local plasma density at the sampled point and ionosonde measurements of the peak plasma density, a robust 4-D representation of the plasma density can be derived and used to estimate ionization yields and to study impacts on the background ionosphere and RF propagation. Optical image data was fit to a 2-D Gaussian model to derive peak intensity, background, rotation of the cloud in the horizontal plane, and half-widths in the N-S and E-W directions. The optical images show a closely linear increase in half-width after the first minute or two. Very good agreement between the model and radar integrated total electron content (TEC) measurements are obtained with a simple exponential envelope to the peak TEC within the cloud, indicating that the optical distribution closely tracks the plasma density. Comparison of TEC with peak plasma density and the observed spatial dimensions of the cloud are used to estimate the rate of change in total electron number during the period of observation and to compare with predictions of prior theoretical and numerical models.

  8. Mesoscale Modeling During Mixed-Phase Arctic Cloud Experiment

    SciTech Connect

    Avramov, A.; Harringston, J.Y.; Verlinde, J.

    2005-03-18

    Mixed-phase arctic stratus clouds are the predominant cloud type in the Arctic (Curry et al. 2000) and through various feedback mechanisms exert a strong influence on the Arctic climate. Perhaps one of the most intriguing of their features is that they tend to have liquid tops that precipitate ice. Despite the fact that this situation is colloidally unstable, these cloud systems are quite long lived - from a few days to over a couple of weeks. It has been hypothesized that mixed-phase clouds are maintained through a balance between liquid water condensation resulting from the cloud-top radiative cooling and ice removal by precipitation (Pinto 1998; Harrington et al. 1999). In their modeling study Harrington et al. (1999) found that the maintenance of this balance depends strongly on the ambient concentration of ice forming nucleus (IFN). In a follow-up study, Jiang et al. (2002), using only 30% of IFN concentration predicted by Meyers et al. (1992) IFN parameterization were able to obtain results similar to the observations reported by Pinto (1998). The IFN concentration measurements collected during the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004 over the North Slope of Alaska and the Beaufort Sea (Verlinde et al. 2005), also showed much lower values then those predicted (Prenne, pers. comm.) by currently accepted ice nucleation parameterizations (e.g. Meyers et al. 1992). The goal of this study is to use the extensive IFN data taken during M-PACE to examine what effects low IFN concentrations have on mesoscale cloud structure and coastal dynamics.

  9. Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan; Chowdhary, Jacek; Ottaviani, Matteo; Knobelspiesse, Kirk D.

    2015-01-01

    We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.

  10. Experiments on Electron Cloud Mitigation at PEP-II

    SciTech Connect

    Ng, Johnny S.T.; Pivi, Mauro T.F.; /SLAC

    2011-11-22

    The electron cloud effect has been observed at many accelerator facilities. It has been the subject of many workshops and reviews. An electron cloud is formed when low energy photoelectrons released from the vacuum chamber surfaces and ionized residual gas molecules, driven by the beam fields of passing positively charged bunches, impinge on the chamber walls and create secondary emission. It is an important issue for many currently operating facilities and the damping rings of the proposed International Linear Collider (ILC) because beam-cloud interaction can severely impact the machines performance. Systematic studies on the electron cloud effect, and its possible remedies, have been carried out in many laboratories. At SLAC, the effort has been concentrated on theoretical understanding with the aid of computer simulations, and experimental measurements with high intensity positron beams at PEP-II. Computer simulation results have been presented at ECLOUD07 and in an earlier article in this journal. In this article, we present recent results from electron cloud experiments at the positron storage ring of PEP-II. In particular, we discuss the performance of various mitigation techniques.

  11. Campaign datasets for ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    SciTech Connect

    Leung, L. Ruby; Mei, Fan; Comstock, Jennifer; DeMott, Paul; Gero, Jonathan; Hubee, John; Matthews, Alyssa; Nalli, Nicholas; Pekour, Mikhail; Prather, Kimberly; Sedlackek, Arthur; Springston, Stephen; Tomlinson, Jason; Chand, Duli

    2015-08-12

    This campaign consisted of the deployment of the DOE ARM Mobile Facility 2 (AMF2) and the ARM Aerial Facility (AAF) G-1 in a field campaign called ARM Cloud Aerosol Precipitation Experiment (ACAPEX), which took place in conjunction with CalWater 2- a NOAA field campaign. The joint CalWater 2/ACAPEX field campaign aimed to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with ARs and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. The observational strategy consisted of the use of land and offshore assets to monitor: 1. the evolution and structure of ARs from near their regions of development 2. the long-range transport of aerosols in the eastern North Pacific and potential interactions with ARs 3. how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. West Coast where ARs make landfall and post-frontal clouds are frequent.

  12. Quantitative electron and gas cloud experiments

    NASA Astrophysics Data System (ADS)

    Molvik, A. W.; Kireeff Covo, M.; Cohen, R. H.; Friedman, A.; Sharp, W. M.; Baca, David; Bieniosek, F. M.; Leister, C.; Seidl, P. A.; Vay, J.-L.

    2007-07-01

    Electrons can accumulate in and degrade the quality of positively charged beams. This is a well-known problem in proton storage rings. Heavy-ion rings are more frequently limited by gas pressure-rise effects. Both effects may limit how closely the beam radius can approach the beam-tube radius in a heavy-ion linac. We study beams of 1 MeV K + with currents of up to 180 mA in the High-Current Experiment (HCX), and compare our work with simulations. The theory and simulation results are discussed in a companion papers. We have developed the first diagnostics that quantitatively measure the accumulation of electrons in a beam [M. Kireeff Covo, A. Molvik, A. Friedman, J.-L. Vay, P. Seidl, G. Logan, D. Baca, J.L. Vujic, Phys. Rev. Lett. 97 (2006) 054801; M. Kireeff Covo, et al., Nucl. Instr. and Meth. A, 2007, in press, doi:10.1016/j.nima.2007.02.045.]. This will enable the particle balance to be measured for each source of electrons in a linac: ionization of gas, emission from walls surrounding the beam, and emission from an end wall coupled with electron drifts upstream through quadrupole magnets, and electron-trapping efficiencies can be determined. Experiments where the heavy-ion beam is transported with solenoid magnetic fields, rather than with quadrupole magnetic or electrostatic fields, are being initiated. We discuss plans for experiments using electrode sets (in the middle and at the ends of magnets) to either expel or to trap electrons within the magnets. We observe oscillations of the electron density and position in the last quadrupole magnet when we flood the beam with electrons from an end wall. These oscillations, near 6 MHz, are observed to grow from the center of the magnet while drifting upstream against the beam, in good agreement with simulations.

  13. A full spectral cumulus cloud parameterisation including aerosol effects: The Convective Cloud Field Model (CCFM)

    NASA Astrophysics Data System (ADS)

    Wagner, T. M.; Graf, H. F.; Yano, J. I.

    2009-04-01

    The convective cloud field model is a convection parameterisation based on the representation of a full cumulus cloud spectrum using a dynamical quasi-equilibrium closure. It employs a one dimensional entraining parcel model whose properties are simulated on a refined vertical resolution (~100 m) in order to capture the complex cloud microphysical processes in convective clouds. We introduced an enhanced microphysics compared to those currently used in convection parameterisations, containing warm and mixed phase cloud microphysics processes and incorporates aerosol effects by linking the cloud droplet number concentration to the aerosol amount. Similar to the Arakawa and Schubert (1974) quasi-equilibrium closure we allow for the mutual influence of clouds via the environment. Instead of assuming instantaneous stabilisation of the environment though, the clouds are dynamically interacting for the length of the large scale model time step without necessarily adopting an equilibrium situation. The model is evaluated in single column mode (SCM) for continental and tropical convection using the ARM SGP and TWP-ICE cases. Moreover it is evaluated in global mode using the global atmospheric circulation model ECHAM5. For the SCM cases the precipitation, heating and moistening rates for the simulated period is better represented than with the Tiedtke massflux scheme which is the usual convection parameterisation within ECHAM5. Moreover, we find a clear response to an enhanced aerosol loading which generally leads to a reduction of convective precipitation. Globally, the CCFM produces slightly higher convective precipitation rates and especially responds better to convective instability over lower latitudes and the storm track regions.

  14. Ionization, Charging and Electric Field Effects on Cloud Particles in the CLOUD Experiment

    NASA Astrophysics Data System (ADS)

    Nichman, L.; Järvinen, E.; Wagner, R.; Dorsey, J.; Dias, A. M.; Ehrhart, S.; Kirkby, J.; Gallagher, M. W.; Saunders, C. P.

    2015-12-01

    Ice crystals and frozen droplets play an important role in atmospheric charging and electrification processes, particularly by collision and aggregation. The dynamics of charged particles in the atmosphere can be modulated by Galactic Cosmic Rays (GCR). High electric fields also affect the alignment of charged particles, allowing more time for interactions. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN has the ability to conduct ionization, charging and high electric field experiments on liquid or ice clouds created in the chamber by adiabatic pressure reductions. A pion secondary beam from the CERN Proton Synchrotron is used to ionize the molecules in the chamber, and Ar+ Corona Ion Generator for Atmospheric Research (CIGAR) is used to inject unipolar charged ions directly into the chamber. A pressurized airgun provides rapid pressure shocks inside the chamber and induces charged ice nucleation. The cloud chamber is accompanied by a variety of analysing instruments e.g. a 3View Cloud Particle Imager (3V-CPI) coupled with an induction ring, a Scattering Intensity Measurements for the Optical detection of icE (SIMONE) and a Nano-aerosol and Air Ion Spectrometer (NAIS). Using adiabatic expansion and high electric fields we can replicate the ideal conditions for adhesion, sintering and interlocking between ice crystals. Charged cloud particles produced measurable variations in the total induced current pulse on the induction ring. The most influential factors comprised initial temperature, lapse rate and charging mechanism. The ions produced in the chamber may deposit onto larger particles and form dipoles during ice nucleation and growth. The small ion concentration was monitored by the NAIS during these runs. Possible short-term aggregates or alignment of particles were observed in-situ with the SIMONE. These and future chamber measurements of charging and aggregation could shed more light on the ambient conditions and dynamics for electrification

  15. The VOCALS Regional Experiment: Aerosol-Cloud-Precipitation Interactions in Marine Boundary Layer Cloud

    NASA Astrophysics Data System (ADS)

    Wood, R.

    2012-12-01

    Robert Wood, C.S. Bretherton, C. R. Mechoso, R. A. Weller, B. J. Huebert, H. Coe, B. A. Albrecht, P. H. Daum, D. Leon, A. Clarke, P. Zuidema, C. W. Fairall, G. Allen, S. deSzoeke, G. Feingold, J. Kazil, S. Yuter, R. George, A. Berner, C. Terai, G. Painter, H. Wang, M. Wyant, D. Mechem The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) is an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific (SEP), a region dominated by strong coastal upwelling, extensive cold SSTs, and home to the largest subtropical stratocumulus deck on Earth. VOCALS-REx took place during October and November 2008 and involved five research aircraft, two ships and two surface sites in northen Chile. A central theme of VOCALS-REx is the improved understanding of links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties. In this presentation, we will present a synthesis of results from VOCALS-REx focusing on the following questions: (a) how are aerosols, clouds and precipitation inter-related in the SEP region? (b) what microphysical-macrophysical interactions are necessary for the formation and maintenance of open cells? (c) how do cloud and MBL properties change across the strong microphysical gradients from the South American coast to the remote ocean?

  16. Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-10

    The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available.

  17. A Robust Multi-Scale Modeling System for the Study of Cloud and Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    During the past decade, numerical weather and global non-hydrostatic models have started using more complex microphysical schemes originally developed for high resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. These microphysical schemes affect the dynamic through the release of latent heat (buoyancy loading and pressure gradient) the radiation through the cloud coverage (vertical distribution of cloud species), and surface processes through rainfall (both amount and intensity). Recently, several major improvements of ice microphysical processes (or schemes) have been developed for cloud-resolving model (Goddard Cumulus Ensemble, GCE, model) and regional scale (Weather Research and Forecast, WRF) model. These improvements include an improved 3-ICE (cloud ice, snow and graupel) scheme (Lang et al. 2010); a 4-ICE (cloud ice, snow, graupel and hail) scheme and a spectral bin microphysics scheme and two different two-moment microphysics schemes. The performance of these schemes has been evaluated by using observational data from TRMM and other major field campaigns. In this talk, we will present the high-resolution (1 km) GeE and WRF model simulations and compared the simulated model results with observation from recent field campaigns [i.e., midlatitude continental spring season (MC3E; 2010), high latitude cold-season (C3VP, 2007; GCPEx, 2012), and tropical oceanic (TWP-ICE, 2006)].

  18. Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud

    NASA Astrophysics Data System (ADS)

    Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.

    2014-12-01

    The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations

  19. Retrieval of Cloud Phase Using the Moderate Resolution Imaging Spectroradiometer Data during the Mixed-Phase Arctic Cloud Experiment

    SciTech Connect

    Spangenberg, D.; Minnis, P.; Shupe, M.; Uttal, T.; Poellot, M.

    2005-03-18

    Improving climate model predictions over Earth's polar regions requires a comprehensive knowledge of polar cloud microphysics. Over the Arctic, there is minimal contrast between the clouds and background snow surface, making it difficult to detect clouds and retrieve their phase from space. Snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds make it even more difficult to determine cloud phase. Also, since determining cloud phase is the first step toward analyzing cloud optical depth, particle size, and water content, it is vital that the phase be correct in order to obtain accurate microphysical and bulk properties. Changes in these cloud properties will, in turn, affect the Arctic climate since clouds are expected to play a critical role in the sea ice albedo feedback. In this paper, the IR trispectral technique (IRTST) is used as a starting point for a WV and 11-{micro}m brightness temperature (T11) parameterization (WVT11P) of cloud phase using MODIS data. In addition to its ability to detect mixed-phase clouds, the WVT11P also has the capability to identify thin cirrus clouds overlying mixed or liquid phase clouds (multiphase ice). Results from the Atmospheric Radiation Measurement (ARM) MODIS phase model (AMPHM) are compared to the surface-based cloud phase retrievals over the ARM North Slope of Alaska (NSA) Barrow site and to in-situ data taken from University of North Dakota Citation (CIT) aircraft which flew during the Mixed-Phase Arctic Cloud Experiment (MPACE). It will be shown that the IRTST and WVT11P combined to form the AMPHM can achieve a relative high accuracy of phase discrimination compared to the surface-based retrievals. Since it only uses MODIS WV and IR channels, the AMPHM is robust in the sense that it can be applied to daytime, twilight, and nighttime scenes with no discontinuities in the output phase.

  20. Review study and evaluation of possible flight experiments relating to cloud physics experiments in space

    NASA Technical Reports Server (NTRS)

    Hunt, R. J.; Wu, S. T.

    1976-01-01

    The general objectives of the Zero-Gravity Atmospheric Cloud Physics Laboratory Program are to improve the level of knowledge in atmospheric cloud research by placing at the disposal of the terrestrial-bound atmospheric cloud physicist a laboratory that can be operated in the environment of zero-gravity or near zero-gravity. This laboratory will allow studies to be performed without mechanical, aerodynamic, electrical, or other techniques to support the object under study. The inhouse analysis of the Skylab 3 and 4 experiments in dynamics of oscillations, rotations, collisions and coalescence of water droplets under low gravity-environment is presented.

  1. Re-evaluation of the Arizona cloud-seeding experiment.

    PubMed

    Neyman, J; Osborn, H B; Scott, E L; Wells, M A

    1972-06-01

    The apparent effect of cloud seeding on the average 24-hr precipitation in the Santa Catalina Mountains during the two programs of the 7-year-long Arizona experiment was found to be a 30% loss of rain (P = 0.06). Considering rainy days only, the apparent effect is a 34% loss of rain (P = 0.03). On South-East days the apparent loss was 40% (P = 0.03). The analysis of the diurnal variation in the amounts of hourly precipitation brought out two suggestions: (i) more active silver iodide enters the clouds through seeding at their bases than at the -6 degrees C level; (ii) the population of experimental days includes two categories with opposite responses to seeding: augmentations of rain in one case and losses in the other. These suggestions require independent confirmation.

  2. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. II: Multi layered cloud

    SciTech Connect

    Morrison, H.; McCoy, Renata; Klein, Stephen A.; Xie, Shaocheng; Luo, Yali; Avramov, Alexander; Chen, Mingxuan; Cole, Jason N.; Falk, Michael; Foster, Mike; Del Genio, Anthony D.; Harrington, Jerry Y.; Hoose, Corinna; Khrairoutdinov, Marat; Larson, Vince; Liu, Xiaohong; McFarquhar, Greg; Poellot, M. R.; Von Salzen, Knut; Shipway, Ben; Shupe, Matthew D.; Sud, Yogesh C.; Turner, David D.; Veron, Dana; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey; Xu, Kuan-Man; Yang, Fanglin; Zhang, G.

    2009-05-21

    Results are presented from an intercomparison of single-column and cloud resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, the cloud-resolving models and models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models also tend to produce a larger cloud fraction than the single column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  3. Wind estimates from cloud motions - Phase 1 of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W.; Skillman, W.

    1976-01-01

    An initial experiment has been conducted to verify geostationary-satellite-derived cloud motion wind estimates with in situ aircraft wind velocity measurements. Case histories of 1/2 to 2 h were obtained for 3-10 km diameter cumulus cloud systems on 6 days. Also, one cirrus cloud case was obtained. In most cases the clouds were discrete enough that both the cloud motion and the ambient wind could be measured with the same aircraft Inertial Navigation System (INS). Since the INS drift error is the same for both the cloud motion and wind measurements, the drift error drops out of the relative motion determinations. The magnitude of the vector difference between the cloud motion and the ambient wind at the cloud base averaged 1.2 m/sec. The wind vector at higher levels in the cloud layer differed by about 3 to 5 m/sec from the cloud motion vector.

  4. Wind estimates from cloud motions: Phase 1 of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W.

    1974-01-01

    An initial experiment was conducted to verify geostationary satellite derived cloud motion wind estimates with in situ aircraft wind velocity measurements. Case histories of one-half hour to two hours were obtained for 3-10km diameter cumulus cloud systems on 6 days. Also, one cirrus cloud case was obtained. In most cases the clouds were discrete enough that both the cloud motion and the ambient wind could be measured with the same aircraft Inertial Navigation System (INS). Since the INS drift error is the same for both the cloud motion and wind measurements, the drift error subtracts out of the relative motion determinations. The magnitude of the vector difference between the cloud motion and the ambient wind at the cloud base averaged 1.2 m/sec. The wind vector at higher levels in the cloud layer differed by about 3 m/sec to 5 m/sec from the cloud motion vector.

  5. Smoke, Clouds, and Radiation-Brazil (SCAR-B) Experiment

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Hobbs, P. V.; Kirchoff, V. W. J. H.; Artaxo, P.; Remer, L. A.; Holben, B. N.; King, M. D.; Ward, D. E.; Prins, E. M.; Longo, K. M.; Mattos, L. F.; Nobre, C. A.; Spinhirne, J. D.; Ji, Q.; Thompson, A. M.; Gleason, J. F.; Christopher, S. A.; Tsay, S.-C.

    1998-01-01

    The Smoke, Clouds, and Radiation-Brazil (SCAR-B) field project took place in the Brazilian Amazon and cerrado regions in August-September 1995 as a collaboration between Brazilian and American scientists. SCAR-B, a comprehensive experiment to study biomass burning, emphasized measurements of surface biomass, fires, smoke aerosol and trace gases, clouds, and radiation. their climatic effects, and remote sensing from aircraft and satellites. It included aircraft and ground-based in situ measurements of smoke emission factors and the compositions, sizes, and optical properties of the smoke particles; studies of the formation of ozone; the transport and evolution of smoke; and smoke interactions with water vapor and clouds. This overview paper introduces SCAR-B and summarizes some of the main results obtained so far. (1) Fires: measurements of the size distribution of fires, using the 50 m resolution MODIS Airborne Simulator, show that most of the fires are small (e.g. 0.005 square km), but the satellite sensors (e.g., AVHRR and MODIS with I km resolution) can detect fires in Brazil which are responsible for 60-85% of the burned biomass: (2) Aerosol: smoke particles emitted from fires increase their radius by as much as 60%, during their first three days in the atmosphere due to condensation and coagulation, reaching a mass median radius of 0.13-0.17 microns: (3) Radiative forcing: estimates of the globally averaged direct radiative forcing due to smoke worldwide, based on the properties of smoke measured in SCAR-B (-O.l to -0.3 W m(exp -2)), are smaller than previously modeled due to a lower single-scattering albedo (0.8 to 0.9), smaller scattering efficiency (3 square meters g(exp -2) at 550 nm), and low humidification factor; and (4) Effect on clouds: a good relationship was found between cloud condensation nuclei and smoke volume concentrations, thus an increase in the smoke emission is expected to affect cloud properties. In SCAR-B, new techniques were developed

  6. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    SciTech Connect

    Leung, L Ruby

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. The ultimate goal is to reduce uncertainties in weather predictions and climate projections of droughts and floods in California. With the DOE G-1 aircraft and ARM Mobile Facility 2 (AMF2) well equipped for making aerosol and cloud measurements, ACAPEX focuses specifically on understanding how aerosols from local pollution and long-range transport affect the amount and phase of precipitation associated with atmospheric rivers. ACAPEX took place between January 12, 2015 and March 8, 2015 as part of CalWater 2015, which included four aircraft (DOE G-1, National Oceanic and Atmospheric Administration [NOAA] G-IV and P-3, and National Aeronautics and Space Administration [NASA] ER-2), the NOAA research ship Ron Brown, carrying onboard the AMF2, National Science Foundation (NSF)-sponsored aerosol and precipitation measurements at Bodega Bay, and the California Department of Water Resources extreme precipitation network.

  7. Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earth’s energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earth’s climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical “parameterizations” that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States

  8. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layered cloud

    SciTech Connect

    Morrison, H; McCoy, R B; Klein, S A; Xie, S; Luo, Y; Avramov, A; Chen, M; Cole, J; Falk, M; Foster, M; Genio, A D; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; McFarquhar, G; Poellot, M; Shipway, B; Shupe, M; Sud, Y; Turner, D; Veron, D; Walker, G; Wang, Z; Wolf, A; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  9. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud

    SciTech Connect

    Klein, Stephen A.; McCoy, Renata; Morrison, H.; Ackerman, Andrew; Avramov, Alexander; DeBoer, GIJS; Chen, Mingxuan; Cole, Jason N.; DelGenio, Anthony D.; Falk, Michael; Foster, Mike; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat; Larson, Vince; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg; Menon, Surabi; Neggers, Roel; Park, Sungsu; Poellot, M. R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben; Shupe, Matthew D.; Spangenberg, D.; Sud, Yogesh; Turner, David D.; Veron, Dana; Von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, G.

    2009-05-21

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the ARM Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of –15°C. While the cloud was water dominated, ice precipitation appears to have lowered the liquid water path to about 2/3 of the adiabatic value. The simulations, which were performed by seventeen single column and nine cloud-resolving models, generally underestimate the liquid water path with the median single-column and cloud-resolving model liquid water path a factor of 3 smaller than observed. While the simulated ice water path is in general agreement with the observed values, results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice phase microphysics is responsible for the strong model underestimate of liquid water path. Although no single factor is found to lead to a good simulation, these results emphasize the need for care in the model treatment of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be benchmark for model simulations of mixed-phase clouds.

  10. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    DOE PAGES

    Jensen, M. P.; Petersen, W. A.; Bansemer, A.; ...

    2015-12-18

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deepmore » convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. As a result, data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.« less

  11. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect

    Jensen, M. P.; Petersen, W. A.; Bansemer, A.; Bharadwaj, N.; Carey, L. D.; Cecil, D. J.; Collis, S. M.; DelGenio, A. D.; Dolan, B.; Gerlach, J.; Giangrande, S. E.; Heymsfield, A.; Heymsfield, G.; Kollias, P.; Lang, T. J.; Nesbitt, S. W.; Neumann, A.; Poellot, M.; Rutledge, S. A.; Schwaller, M.; Tokay, A.; Williams, C. R.; Wolff, D. B.; Xie, S.; Zipser, E. J.

    2015-12-18

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. As a result, data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.

  12. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect

    Jensen, Mark P.; Petersen, Walt A.; Bansemer, Aaron; Bharadwaj, Nitin; Carey, Larry; Cecil, D. J.; Collis, Scott M.; Del Genio, Anthony D.; Dolan, Brenda A.; Gerlach, J.; Giangrande, Scott; Heymsfield, Andrew J.; Heymsfield, Gerald; Kollias, Pavlos; Lang, T. J.; Nesbitt, Steve W.; Neumann, Andrea; Poellot, M. R.; Rutledge, Steven A.; Schwaller, Mathew R.; Tokay, Ali; Williams, C. R.; Wolff, D. B.; Xie, Shaocheng; Zipser, Edward J.

    2016-10-18

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. Data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.

  13. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  14. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment - Part 1: Distributions and variability

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.

    2016-07-01

    Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km

  15. The Cloud Detection and UV Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.

    2004-01-01

    We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.

  16. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  17. Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan

    SciTech Connect

    Marchand, RT; Protat, A; Alexander, SP

    2015-12-01

    Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in top-of-atmosphere (TOA) broadband radiative fluxes in this region are among the largest globally, with large implications for modeling both regional and global scale climate responses (e.g., Trenberth and Fasullo 2010, Ceppi et al. 2012). Recent analyses of model simulations suggest that model radiative errors in the Southern Ocean are due to a lack of low-level postfrontal clouds (including clouds well behind the front) and perhaps a lack of supercooled liquid water that contribute most to the model biases (Bodas-Salcedo et al. 2013, Huang et al. 2014). These assessments of model performance, as well as our knowledge of cloud and aerosol properties over the Southern Ocean, rely heavily on satellite data sets. Satellite data sets are incomplete in that the observations are not continuous (i.e., they are acquired only when the satellite passes nearby), generally do not sample the diurnal cycle, and view primarily the tops of cloud systems (especially for the passive instruments). This is especially problematic for retrievals of aerosol, low-cloud properties, and layers of supercooled water embedded within (rather than at the top of) clouds, as well as estimates of surface shortwave and longwave fluxes based on these properties.

  18. Catastrophic Collapse of Particulate Clouds: Implications From Aggregation Experiments in the USML-1 and USML-2 Glovebox. Experiment 35

    NASA Technical Reports Server (NTRS)

    Marshall, John; Freund, Friedemann; Sauke, Todd; Freund, Minoru

    1998-01-01

    Experiments with electrostatic aggregation of well-dispersed (nominally, mono-dispersed), freely suspended particles in the United States Microgravity Laboratory (USML) Glovebox have determined that filamentary aggregates are a universal product of grain interactions in relatively dense particulate clouds. Aggregate growth from the experimental particle clouds primarily involves dipole-dipole interactions for nonconducting materials; dipole interactions account for both attraction between grains as well as the cohesive force that maintains the integrity of the filamentary structures. When a cloud undergoes a turbulent-to-quiescent transition after damping of fluid and ballistic grain motions, aggregation occurs almost instantaneously and the cloud is transformed into a population of "heavier" clusters of material with organized electrical structures. This abrupt transformation could initiate catastrophic gravitational collapse of certain regions of particulate clouds, thus controlling the longevity and fate of cloud systems as diverse as protoplanetary dust disks and volcanic eruption plumes.

  19. LES Simulations of Roll Clouds Observed During Mixed- Phase Arctic Cloud Experiment

    SciTech Connect

    Greenberg, S.D.; Harrington, J.Y.; Prenni, A.; DeMott, P.

    2005-03-18

    Roll clouds, and associated roll convection, are fairly common features of the atmospheric boundary layer. While these organized cumuliform clouds are found over many regions of the planet, they are quite ubiquitous near the edge of the polar ice sheets. In particular, during periods of off-ice flow, when cold polar air flows from the ice pack over the relatively warm ocean water, strong boundary layer convection develops along with frequent rolls. According to Bruemmer and Pohlman (2000), most of the total cloud cover in the Arctic is due to roll clouds. In an effort to examine the influences of mixed-phase microphysics on the boundary layer evolution of roll clouds during off-ice flow, Olsson and Harrington (2000) used a 2D mesoscale model coupled to a bulk microphysical scheme (see Section 2). Their results showed that mixed-phase clouds produced more shallow boundary layers with weaker turbulence than liquid-phase cases. Furthermore, their results showed that because of th e reduced turbulent drag on the atmosphere in the mixed-phase case, regions of mesoscale divergence in the marginal ice-zone were significantly affected. A follow-up 2D study (Harrington and Olsson 2001) showed that the reduced turbulent intensity in mixed-phase cases was due to precipitation. Ice precipitation caused downdraft stabilization which fed back and caused a reduction in the surface heat fluxes. In this work, we extend the work of Olsson and Harrington (2000) and Harrington and Olsson (2001) by examining the impacts of ice microphysics on roll convection. We will present results that illustrate how microphysics alters roll cloud structure and dynamics.

  20. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect

    Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong

    2009-02-02

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.

  1. Numerical Experiments on the Formation and Maintenance of Cirriform Clouds.

    NASA Astrophysics Data System (ADS)

    Starr, David O'connell

    The role and relative importance of the dynamic and diabatic processes influencing the formation and maintenance of ice phase stratiform clouds are investigated at the cloud scale. The primary focus is on fair weather cirrus. A two-dimensional, time dependent, Eulerian numerical model is developed. The grid interval is 100 m and the domain is a vertical plane of (TURN) 3 km depth and (TURN) 6 km horizontal extent. The influence of larger scale processes are incorporated via a specified basic state vertical velocity and the initially specified thermodynamic structure. In addition to energy transformations between potential and kinetic forms and advection by the resolved wind field, other important physical processes, which are incorporated into the model in a parametric fashion, are transports due to subgrid scale processes, phase changes of water, infrared and short-wave radiative processes and the relative fall velocity of cloud particles. The parameterizations are based upon observations and theoretical consideration. This model is unique in its applicability to ice phase stratiform clouds. Comparable parameterizations for liquid phase stratiform clouds are given. The model is described in detail in all aspects. The approach is one of examining the sensitivity of simulations to the specification of various computational and parametric model constants and functions. The characteristics of the model are fully examined and the model is calibrated by means of comparison to observations and theory such that realistic simulations are obtained. The influence of the ice water relative fall speed on the physical properties of the cloud layer and the consequent modulation of the other cloud processes is found to be quite dramatic. Radiative processes are also found to have a significant impact. In particular, significant differences in the organization of convective elements between daytime and nighttime cases are found. Differences between ice phase and liquid phase

  2. The Deep Convective Clouds and Chemistry (DC3) Field Experiment

    NASA Astrophysics Data System (ADS)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Huntrieser, H.; Homeyer, C. R.; Nault, B.; Cohen, R. C.; Pan, L.; Ziemba, L. D.

    2014-12-01

    The Deep Convective Clouds and Chemistry (DC3) field experiment took place in the central U.S. in May and June 2012 and had the objectives of characterizing the effect of thunderstorms on the chemical composition of the lower atmosphere and determining the chemical aging of upper troposphere (UT) convective outflow plumes. DC3 employed ground-based radars, lightning mapping arrays, and weather balloon soundings in conjunction with aircraft measurements sampling the composition of the inflow and outflow of a variety of thunderstorms in northeast Colorado, West Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the UT convective plume. The DC3 data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, and chemistry in the UT that is affected by the convection. In this presentation, we give an overview of the DC3 field campaign and highlight results from the campaign that are relevant to the upper troposphere and lower stratosphere region. These highlights include stratosphere-troposphere exchange in connection with thunderstorms, the 0-12 hour chemical aging and new particle formation in the UT outflow of a dissipating mesoscale convective system observed on June 21, 2012, and UT chemical aging in convective outflow as sampled the day after convection occurred and modeled in the Weather Research and Forecasting coupled with Chemistry model.

  3. Comparison of cloud residual and background aerosol particle composition during the hill cap cloud experiment HCCT 2010 in Central Germany

    NASA Astrophysics Data System (ADS)

    Roth, A.; Mertes, S.; van Pinxteren, D.; Klimach, T.; Herrmann, H.; Schneider, J.; Borrmann, S.

    2013-12-01

    Physical and chemical characterization of cloud residual and background aerosol particles as well as aerosol-cloud interactions were investigated during the Hill Cap Cloud Thuringia (HCCT) experiment in September and October 2010 on the mountain site Schmücke (938m a.s.l.) in Germany. Background aerosol particles were sampled by an interstitial inlet whereas cloud droplets from orographic clouds were collected by a counter flow virtual impactor (CVI). Chemical composition analysis and sizing of the particles was done by single particle mass spectrometry using the bipolar Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA, particle diameter range 150 nm - 900 nm; Brands et al., 2011) and by two Aerodyne Aerosol Mass Spectrometers (C-ToF, HR-ToF). Supplementary, the particle size distribution was measured with an optical particle counter (OPC, size range 0.25 μm - 32 μm). During the field campaign about 21000 positive and negative single particle mass spectra could be obtained from cloud residual particles and about 239000 from background aerosol particles. The data were clustered by means of the fuzzy c-means algorithm. The resulting clusters consisting of mass spectra with similar fragmentation patterns were, dependent on presence and combination of peaks, assigned to certain particle types. For both sampled particle types a large portion is internally mixed with nitrate and/or sulfate. This might be an explanation, why a comparison of the composition shows a higher fraction of soot particles and amine-containing particles among cloud residuals. Furthermore cloud residuals show a decreased fraction of particles being internally mixed only with nitrate (10%) compared to background aerosol particles (19%) of the same air masses, whereas the fraction of particles containing both nitrate and sulfate increases from 39% to 63% indicating cloud processing by uptake and oxidation of SO2 (Harris et al, 2013). Brands, M., Kamphus, M., Böttger, T., Schneider

  4. X-Ray Shadowing Experiments Toward Infrared Dark Clouds

    NASA Technical Reports Server (NTRS)

    Anderson, L. E.; Snowden, S.; Bania, T. M.

    2009-01-01

    We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.

  5. Wind estimates from cloud motions - Results from Phases I, II and III of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W. C.

    1977-01-01

    An experiment is in progress to verify geostationary-satellite-derived cloud-motion wind estimates by in-situ aircraft wind-velocity measurements. One or more low-level aircraft equipped with Inertial Navigation Systems (INS) were used to define the vertical extent and horizontal motion of a cloud and to measure the ambient wind field. A high-level aircraft, also equipped with an INS, took photographs to describe the horizontal extent of the cloud field and to measure cloud motion. To date the experiment has been conducted over tropical oceans and in the western Gulf of Mexico. A total of 60 h have been spent tracking some 40 tropical cumulus and five cirrus clouds. Results for tropical cumulus clouds indicate excellent agreement between the cloud motion and the wind at cloud base. The magnitude of the vector difference between the cloud motion and the cloud-base wind is less than 1.3 m/s for 67% of the cases with track lengths of 1 h or longer. Similarly, the vector differences between the cloud motion and the wind at sub-cloud (150 m), mid-cloud, and cloud-top levels are 1.5, 3.6 and 7.0 m/s, respectively. The cirrus cloud motions agreed best with the mean wind in the cloud layer with a vector difference of about 1.6 m/s.

  6. Synergistic observations of convective cloud life-cycle during the Mid-latitude Continental Convective Clouds Experiment (MC3E)

    NASA Astrophysics Data System (ADS)

    Jensen, M. P.; Petersen, W. A.; Giangrande, S.; Heymsfield, G. M.; Kollias, P.; Rutledge, S. A.; Schwaller, M.; Zipser, E. J.

    2011-12-01

    The Midlatitude Continental Convective Clouds Experiment (MC3E) took place from 22 April through 6 June 2011 centered at the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility in north-central Oklahoma. This campaign was a joint effort between the ARM and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement mission Ground Validation program. It was the first major field campaign to take advantage of numerous new radars and other remote sensing instrumentation purchased through the American Recovery and Reinvestment Act of 2009. The measurement strategy for this field campaign was to provide a well-defined forcing dataset for modeling efforts coupled with detailed observations of cloud/precipitation dynamics and microphysics within the domain highlighted by advanced multi-scale, multi-frequency radar remote sensing. These observations are aimed at providing important insights into eight different components of convective simulation and microphysical parameterization: (1) pre-convective environment, (2) convective initiation, (3) updraft/downdraft dynamics, (4) condensate transport/detrainment/entrainment, (5) precipitation and cloud microphysics, (6) influence on the environment, (7) influence on radiation, and (8) large-scale forcing. In order to obtain the necessary dataset, the MC3E surface-based observational network included six radiosonde launch sites each launching 4-8 sondes per day, three X-band scanning ARM precipitation radars, a C-band scanning ARM precipitation radar, the NASA N-Pol (S-band) scanning radar, the NASA D3R Ka/Ku-band radar, the Ka/W-band scanning ARM cloud radar, vertically pointing radar systems at Ka-, S- and UHF band, a network of over 20 disdrometers and rain gauges and the full complement of radiation, cloud and atmospheric state observations available at the ARM facility. This surface-based network was complemented by aircraft measurements

  7. Nucleon Form Factor Experiments and the Pion Cloud

    SciTech Connect

    Kees de Jager

    2006-04-27

    The experimental and theoretical status of elastic electron scattering from the nucleon is reviewed. A wealth of new data of unprecedented precision, especially at small values of the momentum transfer, in parallel to new theoretical insights, has allowed sensitive tests of the influence of the pionic cloud surrounding the nucleon.

  8. The role of induced entrainment in past stratiform cloud seeding experiments

    NASA Astrophysics Data System (ADS)

    Walcek, C. J.

    2010-12-01

    In the late 1940s, probably the most effective and visually-obvious cloud seeding demonstrations showed that supercooled stratiform clouds could be cleared by seeding with dry ice, dropped from aircraft flying above a cloud deck. Numerous well-documents photos show areas 1-2 miles wide cleared along a flight track. The accepted mechanism of cloud clearing assumed that dry ice induced ice formation in the supercooled liquid cloud, followed by growth of ice at the expense of water, with the larger ice particles ultimately falling as snow. The mechanism was amplified by dynamic feedbacks induced by latent heat release (warming) as liquid water froze, thus propagating the dynamic and freezing/precipitation cycle laterally away from the flight track. Here we show that probably a more important effect is the entrainment and EVAPORATION of cloud water induced by turbulent mixing in the aircraft wake. Under many conditions, evaporation induced by turbulence can generate mixtures of air that are COLDER than the cloudy air or the air above the cloud, thus initiating unstable DOWNWARD (negatively-buoyant) motions, which will self-propagate laterally away from a turbulent flight track. We present here the range of environmental conditions where entrainment/evaporation would be most likely to occur in terms of the temperature difference between cloudy air and air just above cloud top, and the relative humidity of air above cloud top at different temperatures and altitudes in the atmosphere. It is suggested here that past cloud seeding experiments had little to do with glaciation, and more likely resulted from induced entrainment followed by evaporation and downward motions of negatively buoyant air resulting from cloud-top entrainment instability. Buoyancy and condensed water content of mixtures of cloudy air and cloud-free air immediately above cloud top vs. the mixing proportions. A supercooled cloud containing 0.1 g/kg liquid water at 600 mb, -20 degrees C is mixed with air

  9. In-lab in-line digital holography for cloud particle measurement experiment

    NASA Astrophysics Data System (ADS)

    Li, Huaiqi; Ji, Feng; Li, Liang; Li, Baosheng; Ma, Fei

    2016-10-01

    In terms of climate science, getting the accurate cloud particle sizes, shape and number distributions is necessary for searching the influence of cloud on the environment, radiative transfer, remote sensing measurements and understanding precipitation formation. Many methods and instruments have been developed to measure cloud particles, yet there is still restricted to one-dimensional or two-dimensional projections of particle positions, unable to get the three-dimensional information of the spatial distribution of particles. In-line holography is particularly useful for particles field measurements, because it can directly get the three-dimensional information of the particles and quickly access and storage holographic image. In this paper, the main work is using digital in-line holographic system to measure simulated cloud particles in the laboratory. For digital recording hologram reconstructing, we consider the image intensity in conjunction with the edge sharpness of the particles, to obtain an automatically selected threshold of each particle. Using the threshold, we can get a binary image to identify the particles and separate the particles from background, and then get the information such as the location, shape, particle size of particles. The experimental results show that the in-line digital holography can be used to detect the cloud particles, which can gain many parameters of the simulated cloud particles in the plane perpendicular to the optical axis, and can estimate volume parameters of the simulated cloud particles. This experiment is a basis for the further in situ detection of atmospheric cloud particles.

  10. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  11. Comparison of Electron Cloud Simulation and Experiments in the High-Current Experiment

    SciTech Connect

    Cohen, R; Friedman, A; Covo, M K; Lund, S; Molvik, A; Bieniosek, F; Seidl, P; Vay, J; Verboncoeur, J; Stoltz, P; Veitzer, S

    2004-10-07

    A set of experiments has been performed on the High-Current Experiment (HCX) facility at LBNL, in which the ion beam is allowed to collide with an end plate and thereby induce a copious supply of desorbed electrons. Through the use of combinations of biased and grounded electrodes positioned in between and downstream of the quadrupole magnets, the flow of electrons upstream into the magnets can be turned on or off. Properties of the resultant ion beam are measured under each condition. The experiment is modeled via a full three-dimensional, two species (electron and ion) particle simulation, as well as via reduced simulations (ions with appropriately chosen model electron cloud distributions, and a high-resolution simulation of the region adjacent to the end plate). The three-dimensional simulations are the first of their kind and the first to make use of a timestep-acceleration scheme that allows the electrons to be advanced with a timestep that is not small compared to the highest electron cyclotron period. The simulations reproduce qualitative aspects of the experiments, illustrate some unanticipated physical effects, and serve as an important demonstration of a developing simulation capability.

  12. Comparison of electron cloud simulation and experiments in the high-current experiment

    SciTech Connect

    Cohen, R.H.; Friedman, A.; Covo, M. Kireeff; Lund, S.M.; Molvik, A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J.-L.; Verboncoeur, J.; Stoltz, P.; Veitzer, S.

    2004-08-27

    A set of experiments has been performed on the High-Current Experiment (HCX) facility at LBNL, in which the ion beam is allowed to collide with an end plate and thereby induce a copious supply of desorbed electrons. Through the use of combinations of biased and grounded electrodes positioned in between and downstream of the quadrupole magnets, the flow of electrons upstream into the magnets can be turned on or off. Properties of the resultant ion beam are measured under each condition. The experiment is modeled via a full three-dimensional, two species (electron and ion) particle simulation, as well as via reduced simulations (ions with appropriately chosen model electron cloud distributions, and a high-resolution simulation of the region adjacent to the end plate). The three-dimensional simulations are the first of their kind and the first to make use of a timestep-acceleration scheme that allows the electrons to be advanced with a timestep that is not small compared to the highest electron cyclotron period. The simulations reproduce qualitative aspects of the experiments, illustrate some unanticipated physical effects, and serve as an important demonstration of a developing simulation capability.

  13. Model analysis of radar echo split observed in an artificial cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Masaki, Shimada; Kikuro, Tomine; Koji, Nishiyama

    2016-06-01

    An artificial cloud seeding experiment was performed over the Japan Sea in winter to show how massive seeding could be effective to mitigate heavy snowfall damage. The results showed that 20 min after cloud seeding, a portion of the radar echo beneath the seeding track was weakened to divide the radar echo into two parts. In order to analyze the results, a numerical simulation was conducted by using the Weather Research and Forecasting model verion 3.5.1. In this simulation, the seeding effects were represented as phenomena capable of changing rain particles by accreting cloud ice and snow to form graupel particles and by changing cloud liquid water to snow particles. The graupel particles fell rapidly, thus temporarily intensifying the rainfall, which subsequently decreased. Therefore, the weakened radar echo in the field experiment is deemed to have been caused by the increase in rapidly falling graupel particles.

  14. Further studies of the whitetop cloud-seeding experiment.

    PubMed

    Lovasich, J L; Neyman, J; Scott, E L; Wells, M A

    1971-01-01

    By means of two stratifications of experimental days of the Whitetop Project-into categories E and W and into categories air mass and frontal-the effects of cloud seeding on precipitation downwind, upwind, and to the sides, up to 180 miles from the seeding line, were investigated. No significant effects were found for W and frontal days. On the other hand, for E and airmass days, significant and highly significant apparent effects of seeding were found in all directions and in areas at distances up to 180 miles. All these significant apparent effects are negative, the largest of them indicating that seeding reduced precipitation to one quarter of its unseeded value.

  15. Experiment on mass-stripping of interstellar cloud following shock passage

    SciTech Connect

    Hansen, J F; Robey, H F; Klein, R I; Miles, A R

    2006-10-17

    The interaction of supernova shocks and interstellar clouds is an important astrophysical phenomenon which can lead to mass-stripping (transfer of material from cloud to surrounding flow, ''mass-loading'' the flow) and possibly increase the compression in the cloud to high enough densities to trigger star formation. Our experiments attempt to simulate and quantify the mass-stripping as it occurs when a shock passes through interstellar clouds. We drive a strong shock using 5 kJ of the 30 kJ Omega laser into a cylinder filled with low-density foam with an embedded 120 {micro}m Al sphere simulating an interstellar cloud. The density ratio between Al and foam is {approx} 9. Time-resolved x-ray radiographs show the cloud getting compressed by the shock (t {approx} 5 ns), undergoing a classical Kelvin-Helmholtz roll-up (12 ns) followed by a Widnall instability (30 ns), an inherently 3d effect that breaks the 2d symmetry of the experiment. Material is continuously being stripped from the cloud at a rate which is shown to be inconsistent with laminar models for mass-stripping (the cloud is fully stripped by 80 ns-100 ns, ten times faster than the laminar model). We present a new model for turbulent mass-stripping that agrees with the observed rate and which should scale to astrophysical conditions, which occur at even higher Reynolds numbers than the current experiment. The new model combines the integral momentum equations, potential flow past a sphere, flat plate skin friction coefficients, and Spalding's law of the wall for turbulent boundary layers.

  16. Thin Ice Clouds in Far IR Experiment: TICFIRE

    NASA Astrophysics Data System (ADS)

    Blanchet, Jean-Pierre

    The TICFIRE mission concept developed with the support of the Canadian Space Agency aims: 1) to improve measurements of water-vapor concentration in the low limit, where cold regions are most sensitive and 2) to determine the contribution of Thin Ice Clouds (TIC) to the energy balance and the role of their microphysical properties on atmospheric cooling. TICFIRE is a process-oriented mission on a micro-satellite platform dedicated to observe key parameters of TIC forming in the cold regions of the Poles and globally, in the upper troposphere. It locates cloud top profiles at the limb and measures at nadir the corresponding upwelling radiance of the atmosphere directly in the thermal window and in the Far Infrared (FIR) spectrum over cold geographical regions, precisely where most of the atmospheric thermal cooling takes place. Due to technological limitations, the FIR spectrum (17 to 50 m) is not regularly monitored by conventional sensors despite its major importance. This deficiency in key data also impacts operational weather forecasting. TICFIRE will provide on a global scale a needed contribution in calibrated radiance assimilation near the IR maximum emission to improve weather forecast. Therefore, TICFIRE is a science-driven mission with a strong operational component.

  17. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    SciTech Connect

    Leung, L. R.; Prather, K.; Ralph, R.; Rosenfeld, D.; Spackman, R.; DeMott, P.; Fairall, C.; Fan, J.; Hagos, S.; Hughes, M.; Long, C.; Rutledge, S.; Waliser, D.; Wang, H.

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  18. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  19. Elemental composition of aerosols in fourteen experiments of the Cloud Condensation Nuclei Workshop

    NASA Technical Reports Server (NTRS)

    Mach, W. H.; Hucek, R. R.

    1981-01-01

    Aeosols were collected with two Ci impactors and analyzed with proton induced X-ray emission (PIXE) for chemical composition and to detect if contamination was present. One of the impactors sampled the generated aerosols; the other impactor sampled droplets from a diffusion cloud chamber. The purpose of the experiments was to test the feasibility of a study of the transfer of chemical elements from the fine particle sizes to the coarse particle sizes, after CCN are activated and cloud droplets are formed. The data indicated that sulfur-containing aerosols did exhibit the expected transfer.

  20. Results of the Thailand Warm-Cloud Hygroscopic Particle Seeding Experiment.

    NASA Astrophysics Data System (ADS)

    Silverman, Bernard A.; Sukarnjanaset, Wathana

    2000-07-01

    A randomized, warm-rain enhancement experiment was carried out during 1995-98 in the Bhumibol catchment area in northwestern Thailand. The experiment was conducted in accordance with a randomized, floating single-target design. The seeding targets were semi-isolated, warm convective clouds, contained within a well-defined experimental unit, that, upon qualification, were selected for seeding or not seeding with calcium chloride particles in a random manner. The seeding was done by dispensing the calcium chloride particles at an average rate of 21 kg km1 per seeding pass into the updrafts of growing warm convective clouds (about 1-2 km above cloud base) that have not yet developed or, at most, have just started to develop a precipitation radar echo. The experiment was carried out by the Bureau of Royal Rainmaking and Agricultural Aviation (BRRAA) of the Ministry of Agriculture and Cooperatives as part of its Applied Atmospheric Resources Research Program, Phase 2.During the 4 yr of the experiment, a total of 67 experimental units (34 seeded and 33 nonseeded units) were qualified in accordance with the experimental design. Volume-scan data from a 10-cm Doppler radar at 5-min intervals were used to track each experimental unit, from which various radar-estimated properties of the experimental units were obtained. The statistical evaluation of the experiment was based on a rerandomization analysis of the single ratio of seeded to unseeded experimental unit lifetime properties. In 1997, the BRRAA acquired two sophisticated King Air 350 cloud-physics aircraft, providing the opportunity to obtain physical measurements of the aerosol characteristics of the environment in which the warm clouds grow, of the hydrometeor characteristics of seeded and unseeded clouds, and of the calcium chloride seeding plume dimensions and particle size distribution-information directly related to the effectiveness of the seeding conceptual model that was not directly available up to then

  1. The ARM-GPM Midlatitude Continental Convective Clouds Experiment (MC3E)

    NASA Astrophysics Data System (ADS)

    Jensen, M. P.; Kollias, P.; Petersen, W. A.; Schwaller, M. R.; Rutledge, S.; Wiscombe, W. J.

    2008-12-01

    The Mid-latitude Continental Convective Clouds Experiment (MC3E) is a joint research collaboration between the Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the National Aeronautics and Space Administration's Global Precipitation Measurement (GPM) Mission's Ground Validation Program. The intensive operational period of MC3E is proposed to be conducted during the late spring/early summer of 2011 over the ARM Southern Great Plains Climate Research Facility site in Oklahoma, United States and includes a multi-scale, multi-frequency surface-based remote sensing approach complemented by aircraft-based observations of precipitating cloud systems. The observational strategy will be aimed at improving our understanding of eight specific elements important for the parameterization of convective cloud processes including: 1) Pre-convective environment, 2) convective initiation, 3) updraft/downdraft dynamics, 4) condensate transport/detrainment, 5) precipitation/cloud microphyics, 6) influence on the environment, 7) influence on radiation and 8) large-scale forcing. These observations over land of cloud and precipitation processes (including latent heating) will further be useful for cloud modeling forcing, validation and development, and the construction of precipitation retrieval algorithms for GPM passive microwave and dual-wavelength precipitation radar systems. The ARM Southern Great Plains Climate Research Facility currently includes long-term, continuous, quality-controlled observations of cloud, precipitation, radiation, aerosol and atmospheric state embedded within the Oklahoma Mesonet and National Weather Service WSR-88D radar network. These routine observations will be complemented by a network of X-band scanning radar systems, a large-scale scanning polarized radar system, a NASA dual- polarization precipitation radar and aircraft in situ and remote sensing observations.

  2. Clouds and the Earth's Radiant Energy System (CERES) - An Earth Observing System experiment

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Barkstrom, Bruce R.

    1991-01-01

    An overview is presented of the CERES experiment that is designed not only to monitor changes in the earth's radiant energy system and cloud systems but to provide these data with enough accuracy and simultaneity to examine the critical climate/cloud feedback mechanisms which may play a major role in determining future changes in the climate system. CERES will estimate not only the flow of radiation at the top of the atmosphere, but also more complete cloud properties that will permit determination of radiative fluxes within the atmosphere and at the surface. The CERES radiation budget data is also planned for utilization in a wide range of other Earth Observing System interdisciplinary science investigations, including studies of land, biological, ocean and atmospheric processes.

  3. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  4. Multi-Layer Arctic Mixed-Phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity Experiments

    NASA Technical Reports Server (NTRS)

    Luo, Yali; Xu, Kuan-Man; Morrison, Hugh; McFarquhar, Greg M.; Wang, Zhien; Zhang, Gong

    2007-01-01

    A cloud-resolving model (CRM) is used to simulate the multiple-layer mixed-phase stratiform (MPS) clouds that occurred during a three-and-a-half day subperiod of the Department of Energy-Atmospheric Radiation Measurement Program s Mixed-Phase Arctic Cloud Experiment (M-PACE). The CRM is implemented with an advanced two-moment microphysics scheme, a state-of-the-art radiative transfer scheme, and a complicated third-order turbulence closure. Concurrent meteorological, aerosol, and ice nucleus measurements are used to initialize the CRM. The CRM is prescribed by time-varying large-scale advective tendencies of temperature and moisture and surface turbulent fluxes of sensible and latent heat. The CRM reproduces the occurrences of the single- and double-layer MPS clouds as revealed by the M-PACE observations. However, the simulated first cloud layer is lower and the second cloud layer thicker compared to observations. The magnitude of the simulated liquid water path agrees with that observed, but its temporal variation is more pronounced than that observed. As in an earlier study of single-layer cloud, the CRM also captures the major characteristics in the vertical distributions and temporal variations of liquid water content (LWC), total ice water content (IWC), droplet number concentration and ice crystal number concentration (nis) as suggested by the aircraft observations. However, the simulated mean values differ significantly from the observed. The magnitude of nis is especially underestimated by one order of magnitude. Sensitivity experiments suggest that the lower cloud layer is closely related to the surface fluxes of sensible and latent heat; the upper cloud layer is probably initialized by the large-scale advective cooling/moistening and maintained through the strong longwave (LW) radiative cooling near the cloud top which enhances the dynamical circulation; artificially turning off all ice-phase microphysical processes results in an increase in LWP by a

  5. Wind estimates from cloud motions: Preliminary results from phases 1, 2, and 3 of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W. C.

    1975-01-01

    Low level aircraft equipped with Inertial Navigation Systems (INS) were used to define the vertical extent and horizontal motion of a cloud and to measure the ambient wind field. A high level aircraft, also equipped with an INS, took photographs to describe the horizontal extent of the cloud field and to measure cloud motion. The aerial photographs were also used to make a positive identification in a satellite picture of the cloud observed by the low level aircraft. The experiment was conducted over the tropical oceans in the vicinity of Florida, Puerto Rico, Panama and in the Western Gulf of Mexico. Results for tropical cumulus clouds indicate excellent agreement between the cloud motion and the wind at the cloud base. The magnitude of the vector difference between the cloud motion and the cloud base wind is less than 1.3 m/sec for 67% of the cases with track lengths of 1 hour or longer. The cirrus cloud motions agreed best with the mean wind in the cloud layer with a vector difference of about 1.6 m/sec.

  6. The CalWater 2 - ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    NASA Astrophysics Data System (ADS)

    Leung, L. Y.; Prather, K. A.; Ralph, F. M.; Rosenfeld, D.; Spackman, J. R.; Fairall, C. W.; DeMott, P. J.; Fan, J.; Zhao, C.

    2014-12-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. While ARs are responsible for a large fraction of heavy precipitation in the western U.S. during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes. In January - March 2015, the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign will take place in northern California. Joined with CalWater 2, the field campaign aims to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with ARs and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. We will implement an observational strategy consisting of the use of land and offshore assets to monitor (1) the evolution and structure of ARs from near their regions of development, (2) long range transport of aerosols in eastern North Pacific and potential interactions with ARs, and (3) how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. West Coast where ARs make landfall and post-frontal clouds are frequent. This presentation will provide an overview of the science questions and hypotheses to be addressed by CalWater 2/ACAPEX, review key results from prior studies, and discuss recent findings from

  7. Study to perform preliminary experiments to evaluate particle generation and characterization techniques for zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Katz, U.

    1982-01-01

    Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.

  8. Artificial nest experiments in a fragmented neotropical cloud forest

    USGS Publications Warehouse

    Trujillo, G.; Ahumada, J.A.

    2005-01-01

    We conducted artificial nest experiments in a Neotropical montane forest in the eastern Andes, Colombia, in order to test the effect of placing the nests in forest fragments or continuous forests, at two nest heights and for two different climatic seasons. Predation was not consistently different between nests placed in fragments and controls. However, we found that nests on the ground had a higher daily probability of being predated than nests in the understory. Also, daily nest mortality rate (DNM) was higher in the wet season than in the dry season. Most of the predated nests were attributed to mammals (56%), and predation occurred mostly on the ground (78%). Our estimates of DNM are quite low (= 0.023) and similar to another Neotropical montane forest and other Neotropical sites. Comparisons of DNM between Neotropical and temperate sites suggests that predation rates are similar. Our results suggest that fragmentation may not have a large negative impact in nest predation for bird populations breeding in fragments compared to other sites in tropical and temperate regions. ?? The Neotropical Ornithological Society.

  9. Feasibility of reduced gravity experiments involving quiescent, uniform particle cloud combustion

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Facca, Lily T.; Berlad, Abraham L.; Tangirala, Venkat

    1989-01-01

    The study of combustible particle clouds is of fundamental scientific interest as well as a practical concern. The principal scientific interests are the characteristic combustion properties, especially flame structure, propagation rates, stability limits, and the effects of stoichiometry, particle type, transport phenomena, and nonadiabatic processes on these properties. The feasibility tests for the particle cloud combustion experiment (PCCE) were performed in reduced gravity in the following stages: (1) fuel particles were mixed into cloud form inside a flammability tube; (2) when the concentration of particles in the cloud was sufficiently uniform, the particle motion was allowed to decay toward quiescence; (3) an igniter was energized which both opened one end of the tube and ignited the suspended particle cloud; and (4) the flame proceeded down the tube length, with its position and characteristic features being photographed by high-speed cameras. Gravitational settling and buoyancy effects were minimized because of the reduced gravity enviroment in the NASA Lewis drop towers and aircraft. Feasibility was shown as quasi-steady flame propagation which was observed for fuel-rich mixtures. Of greatest scientific interest is the finding that for near-stoichiometric mixtures, a new mode of flame propagation was observed, now called a chattering flame. These flames did not propagate steadily through the tube. Chattering modes of flame propagation are not expected to display extinction limits that are the same as those for acoustically undisturbed, uniform, quiescent clouds. A low concentration of fuel particles, uniformly distributed in a volume, may not be flammable but may be made flammable, as was observed, through induced segregation processes. A theory was developed which showed that chattering flame propagation was controlled by radiation from combustion products which heated the successive discrete laminae sufficiently to cause autoignition.

  10. Our World: Cool Clouds

    NASA Video Gallery

    Learn how clouds are formed and watch an experiment to make a cloud using liquid nitrogen. Find out how scientists classify clouds according to their altitude and how clouds reflect and absorb ligh...

  11. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    SciTech Connect

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  12. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.

    1981-01-01

    In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.

  13. Microwave Transmission Through the Electron Cloud at the Fermilab Main Injector: Simulation and Comparison with Experiment

    SciTech Connect

    Lebrun, Paul L.G.; Veitzer, Seth Andrew; /Tech-X, Boulder

    2009-04-01

    Simulations of the microwave transmission properties through the electron cloud at the Fermilab Main Injector have been implemented using the plasma simulation code 'VORPAL'. Phase shifts and attenuation curves have been calculated for the lowest frequency TE mode, slightly above the cutoff frequency, in field free regions, in the dipoles and quadrupoles. Preliminary comparisons with experimental results for the dipole case are showed and will guide the next generation of experiments.

  14. EXPERIENCE IN REDUCING ELECTRON CLOUD AND DYNAMIC PRESSURE RISE IN WARM AND COLD REGIONS IN RHIC.

    SciTech Connect

    ZHANG, S.Y.; AHRENS,L.; ALLESI, J.; BAI, M.; BLASKIEWICZ, M.; CAMERON, P.; CONNOLLY, R.; DREES, A.; FISCHER, W.; GULLOTTA, J.; HE, P.; HSEUH, H.C.; HUANG, H.; LEE, R.; LITVINENKO, V.; MACKAY, W.W.; MONTAG, C.; NICOLETTI, A.; OERTER, B.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; SMART, L.; SYNDSTRUP, L.; TEPIKIAN, S.; THIEBERGER, P.; TRBOJEVIC, D.; WEI, J.; ZENO, K.

    2006-06-23

    The large scale application of non-evaporable getter coating in RHIC has been effective in reducing the electron cloud. Since beams with higher intensity and smaller bunch spacing became possible in operation, the emittance growth is of concern. Study results are reported together with experiences of machine improvements: saturated NEG coatings, anti-grazing ridges in warm sections, and the pre-pumping in cryogenic regions.

  15. Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Barkstrom, Bruce R.; Harrison, Edwin F.; Lee, Robert B., III; Smith, G. Louis; Cooper, John E.

    1996-01-01

    Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget Experiment (ERBE) radiometers. The CERES instruments will fly on several National Aeronautics and Space Administration Earth Observing System (EOS) satellites starting in 1998 and extending over at least 15 years. The CERES science investigations will provide data to extend the ERBE climate record of top-of-atmosphere shortwave (SW) and longwave (LW) radiative fluxes CERES will also combine simultaneous cloud property data derived using EOS narrowband imagers to provide a consistent set of cloud/radiation data, including SW and LW radiative fluxes at the surface and at several selected levels within the atmosphere. CERES data are expected to provide top-of-atmosphere radiative fluxes with a factor of 2 to 3 less error than the ERBE data Estimates of radiative fluxes at the surface and especially within the atmosphere will be a much greater challenge but should also show significant improvements over current capabilities.

  16. Aerosol and cloud chemistry of amines from CCS - reactivity experiments and numerical modeling

    NASA Astrophysics Data System (ADS)

    Weller, Christian; Tilgner, Andreas; Herrmann, Hartmut

    2013-04-01

    Capturing CO2 from the exhaust of power plants using amine scrubbing is a common technology. Therefore, amines can be released during the carbon capture process. To investigate the tropospheric chemical fate of amines from CO2 capturing processes and their oxidation products, the impact of aqueous aerosol particles and cloud droplets on the amine chemistry has been considered. Aqueous phase reactivity experiments of NO3 radicals and ozone with relevant amines and their corresponding nitrosamines were performed. Furthermore, nitrosamine formation and nitrosamine photolysis was investigated during laboratory experiments. These experiments implicated that aqueous phase photolysis can be an effective sink for nitrosamines and that ozone is unreactive towards amines and nitrosamines. Multiphase phase oxidation schemes of amines, nitrosamines and amides were developed, coupled to the existing multiphase chemistry mechanism CAPRAM and built into the Lagrangian parcel model SPACCIM using published and newly measured data. As a result, both deliquescent particles and cloud droplets are important compartments for the multiphase processing of amines and their products. Amines can be readily oxidised by OH radicals in the gas and cloud phase during daytime summer conditions. However, amine oxidation is restricted during winter conditions with low photochemical activity leading to long lifetimes of amines. The importance of the gas and aqueous phase depends strongly on the partitioning of the different amines. Furthermore, the simulations revealed that the aqueous formation of nitrosamines in aerosol particles and could droplets is not a relevant process under tropospheric conditions.

  17. Solar radiation absorption in the atmosphere due to water and ice clouds: Sensitivity experiments with plane-parallel clouds

    SciTech Connect

    Gautier, C.

    1995-09-01

    One cloud radiation issue that has been troublesome for several decades is the absorption of solar radiation by clouds. Many hypotheses have been proposed to explain the discrepancies between observations and modeling results. A good review of these often-competing hypotheses has been provided by Stephens and Tsay. They characterize the available hypotheses as failing into three categories: (1) those linked to cloud microphysical and consequent optical properties; (2) those linked to the geometry and heterogeneity of clouds; and (3) those linked to atmospheric absorption.Current modeling practice is seriously inconsistent with new observational inferences concerning absorption of solar radiation in the atmosphere. The author and her colleagues contend that an emphasis on R may, therefore, not be the optimal way of addressing the cloud solar absorption issue. 4 refs., 1 fig.

  18. Using High-Resolution Satellite Observations for Evaluation of Cloud and Precipitation Statistics from Cloud-Resolving Model Simulations. Part I: South China Sea Monsoon Experiment

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Hou, A.; Lau, W. K.; Shie, C.; Tao, W.; Lin, X.; Chou, M.; Olson, W. S.; Grecu, M.

    2006-05-01

    The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model during the South China Sea Monsoon Experiment (SCSMEX) is compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) radiation and cloud retrievals. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. Mesoscale organization is adequately simulated except when environmental wind shear is very weak. The partitions between convective and stratiform rain are also close to TMI and PR classification. However, the model simulated rain spectrum is quite different from either TMI or PR measurements. The model produces more heavy rains and light rains (less than 0.1 mm/hr) than the observations. The model also produces heavier vertical hydrometer profiles of rain, graupel when compared with TMI retrievals and PR radar reflectivity. Comparing GCE simulated OLR and cloud properties with CERES measurements found that the model has much larger domain averaged OLR due to smaller total cloud fraction and a much skewed distribution of OLR and cloud top than CERES observations, indicating that the model's cloud field is not wide spread, consistent with the model's precipitation activity. These results will be used as guidance for improving the model's microphysics.

  19. The Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect

    Petersen,W.; Jensen,M.; Genio, A. D.; Giangrande, S.; Heymsfield, A.; Heymsfield, G.; Hou, A.; Kollias, P.; Orr, B.; Rutledge, S.; Schwaller, M.; Zipser, E.

    2010-03-15

    The Midlatitude Continental Convective Cloud Experiment (MC3E) will take place in central Oklahoma during the April-May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy Atmospheric Radition Measurement Program and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement (GPM) mission Ground Validation program. The Intensive Observation Period leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall observations over land that have never before been available. Several different components of convective processes tangible to the convective parameterization problem are targeted such as, pre-convective environment and convective initiation, updraft / downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, influence on the environment and radiation and a detailed description of the large-scale forcing. MC3E will use a new multi-scale observing strategy with the participation of a network of distributed sensors (both passive and active). The approach is to document in 3-D not only the full spectrum of precipitation rates, but also clouds, winds and moisture in an attempt to provide a holistic view of convective clouds and their feedback with the environment. A goal is to measure cloud and precipitation transitions and environmental quantities that are important for satellite retrieval algorithms, convective parameterization in large-scale models

  20. Physico-chemical properties of cloud drop residual and interstitial particles sampled inside hill capped clouds during a field experiment in Central Europe

    NASA Astrophysics Data System (ADS)

    Mertes, S.; Schneider, J.; Merkel, M.; Roth, A.; Van Pinxteren, D.; Wiedensohler, A.; Herrmann, H.

    2011-12-01

    Aerosol-cloud interaction, particle activation and phase partitioning of ambient aerosol particles between the liquid and interstitial phase in continental boundary layer clouds were investigated during the Hill Cap Cloud Thuringia field experiment in autumn 2010 (HCCT 2010). An interstitial inlet (INT) and two counterflow virtual impactors (CVI) were operated inside cloud in order to separate and collect non-activated interstitial particles (IP) and cloud drops, respectively, on the mountain site Schmücke (938 m asl) in Central Europe. Both inlet types were designed for a separation diameter of 5 μm. Inside the CVI systems the collected drops are evaporated releasing dry cloud drop residues (CDR), which are closely related to the original cloud condensation nuclei forming the cloud. By two sets of instruments that measured the same parameter connected to each inlet type, the CDR and IP were micro-physically and chemically characterized simultaneously. Number concentration and size distribution were determined by a condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) + optical particle counter (OPC) at INT and CVI. The chemical composition of CDR and IP was inferred in various ways. The amount of black carbon in each reservoir was measured by two particle soot absorption photometers (PSAP) supplemented by a multiangle absorption photometer (MAAP) at the interstitial inlet only. The content of non-refractory chemical compounds was analyzed by a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) and a high-resolution (HR)-ToF- AMS for the CDR and IP, respectively. Filter and adsorption cartridge samples were taken at both inlet types to determine selected inorganic and organic species. The mixing state of single cloud drop residues was derived from the aircraft-based laser ablation aerosol mass spectrometer ALABAMA. During the analyzed cloud events, the cloud microphysical parameters measured by a particle volume monitor (PVM

  1. The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report

    SciTech Connect

    Jensen, M; Giangrande, S; Kollias, P

    2014-04-01

    The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place from April 22 through June 6, 2011, centered at the ARM Southern Great Plains site (http://www.arm.gov/sites/sgp) in northcentral Oklahoma. MC3E was a collaborative effort between the ARM Climate Research Facility and the National Aeronautics and Space Administration’s (NASA’s) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The campaign leveraged the largest ground-based observing infrastructure available in the central United States, including recent upgrades through the American Recovery and Reinvestment Act of 2009, combined with an extensive sounding array, remote sensing and in situ aircraft observations, and additional radar and in situ precipitation instrumentation. The overarching goal of the campaign was to provide a three-dimensional characterization of convective clouds and precipitation for the purpose of improving the representation of convective lifecycle in atmospheric models and the reliability of satellite-based retrievals of precipitation.

  2. The hydrological assessment of aerosol effects by the idealized airborne cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, B.; Chae, S.; Lee, C.; Choi, Y.

    2012-12-01

    The main source of aerosols over East Asia including the Korean Peninsula is the anthropogenic emission of atmospheric pollutants transported from Chinese industrial areas. For this reason, the researches of aerosol effects are very active in East Asian countries. In case of South Korea, aircraft measurement campaigns and airborne cloud seeding experiments for the meteorological and environmental research have been conducted over the local area of Korean Peninsula since the year of 2010. This project is related with the weather modification research to build up strategies for the regulation or enhancement of precipitation and snowpack for a severe drought in South Korea during a winter season. For this study, the aerosol effect on precipitation by the airborne cloud seeding was simulated using WRF-CHEM model with RADM2/MADE,SORGAM modules. Emission data of 10000μg/(m2s) of unspeciated primary PM2.5 were input at 0.5km altitude for aerosol scenario cases which is the height of airborne cloud seeding experiment. For the control run, the original WRF model with no chemistry/aerosol modules was used. Also, the hydrological model, SWAT (Soil and Water Assessment Tool, USDA/ARS) is incorporated to evaluate this aerosol effects hydrologically for the enhancement of precipitation or snowfall from the results of WRF-CHEM model. The target area is the Andong dam basin (1,584 km2) which is known as one of the important water resources in southern part of South Korea. The date was chosen based on the conditions of airborne cloud seeding experiment (RH>50%, Low Temp.<-3°C, Wind Speeds<5m/s, etc). During the 24 forecasting hour, the aerosol scenario case showed more amounts of accumulated precipitation (about 12%) than those of control run. According to the analysis of SWAT, the enhancement of precipitation in aerosol scenario cases of WRF-CHEM model could influence the increase of about 1.0×106m3 water resources when we assumed the 10% of effective area over the Andong dam

  3. Insights Into Atmospheric Aqueous Organic Chemistry Through Controlled Experiments with Cloud Water Surrogates

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Ramos, A.; Kirkland, J. R.; Lim, Y. B.; Seitzinger, S.

    2011-12-01

    There is considerable laboratory and field-based evidence that chemical processing in clouds and wet aerosols alters organic composition and contributes to the formation of secondary organic aerosol (SOA). Single-compound laboratory experiments have played an important role in developing aqueous-phase chemical mechanisms that aid prediction of SOA formation through multiphase chemistry. In this work we conduct similar experiments with cloud/fog water surrogates, to 1) evaluate to what extent the previously studied chemistry is observed in these more realistic atmospheric waters, and 2) to identify additional atmospherically-relevant precursors and products that require further study. We used filtered Camden and Pinelands, NJ rainwater as a surrogate for cloud water. OH radical (~10-12 M) was formed by photolysis of hydrogen peroxide and samples were analyzed in real-time by electrospray ionization mass spectroscopy (ESI-MS). Discrete samples were also analyzed by ion chromatography (IC) and ESI-MS after IC separation. All experiments were performed in duplicate. Standards of glyoxal, methylglyoxal and glycolaldehyde and their major aqueous oxidation products were also analyzed, and control experiments performed. Decreases in the ion abundance of many positive mode compounds and increases in the ion abundance of many negative mode compounds (e.g., organic acids) suggest that precursors are predominantly aldehydes, organic peroxides and/or alcohols. Real-time ESI mass spectra were consistent with the expected loss of methylglyoxal and subsequent formation of pyruvate, glyoxylate, and oxalate. New insights regarding other potential precursors and products will be provided.

  4. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    SciTech Connect

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.; Lenshow, D.H.; Mayer, S.D.

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  5. Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations

    NASA Astrophysics Data System (ADS)

    McFarquhar, Greg M.; Zhang, Gong; Poellot, Michael R.; Kok, Gregory L.; McCoy, Robert; Tooman, Tim; Fridlind, Ann; Heymsfield, Andrew J.

    2007-12-01

    During the Department of Energy's Atmospheric Radiation Measurement Program's Mixed-Phase Arctic Cloud Experiment (M-PACE) in fall 2004, the University of North Dakota Citation measured 53 profiles within single-layer stratus clouds by executing spiral ascents and descents over Barrow and Oliktok Point, Alaska, and by flying ramped ascents and descents between. Cloud phase was identified from an algorithm that uses voltage change from the Rosemount ice detector, the size distribution (SD) shape measured by the Forward Scattering Spectrometer Probe (FSSP), and manual identification of particles imaged by the Cloud Particle Imager, the two-dimensional cloud probe (2DC) and the high-volume precipitation sampler (HVPS). Size and mass distribution functions were derived using data from the FSSP, one-dimensional cloud probe, 2DC and HVPS in conjunction with total water content (TWC) measured by the Counterflow Virtual Impactor. With clouds defined as locations where TWC > 0.001 g m-3, there were a total of 513 30-s averaged SDs in single-layer clouds, of which 71% were in mixed-phase parcels, 23% in ice-phase and 6% in liquid-phase. The mixed-phase parcels were dominated by contributions from liquid drops, with the liquid mass fraction fl having averages and standard deviations of 0.89 ± 0.18 with 75% of cases having fl > 0.9. For these single-layer clouds, fl increased with normalized cloud altitude zn, defined as linearly increasing from 0 at cloud base to 1 at cloud top with fl averaging 0.96 ± 0.13 near zn = 1 and 0.70 ± 0.30 near zn = 0. The effective radius of water droplets rew increased with zn, from an average of 6.9 ± 1.8 μm near zn = 0 to 11.4 ± 2.4 μm near zn = 1, whereas the effective radius of ice crystals rei (25.2 ± 3.9 μm) was nearly independent of zn. The averaged cloud droplet number concentration and concentrations of ice crystals with maximum dimensions greater than 53 μm were 43.6 ± 30.5 × 103 L-1 and 2.8 ± 6.9 L-1, respectively, and

  6. Study of the effect of cloud inhomogeneity on the earth radiation budget experiment

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1988-01-01

    The Earth Radiation Budget Experiment (ERBE) is the most recent and probably the most intensive mission designed to gather precise measurements of the Earth's radiation components. The data obtained from ERBE is of great importance for future climatological studies. A statistical study reveals that the ERBE scanner data are highly correlated and that instantaneous measurements corresponding to neighboring pixels contain almost the same information. Analyzing only a fraction of the data set when sampling is suggested and applications of this strategy are given in the calculation of the albedo of the Earth and of the cloud-forcing over ocean.

  7. Aerosol and cloud observations from the Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Winker, D. M.

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.

  8. Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment

    SciTech Connect

    Xie, S; Boyle, J; Klein, S; Liu, X; Ghan, S

    2007-06-01

    By making use of the in-situ data collected from the recent Atmospheric Radiation Measurement Mixed-Phase Arctic Cloud Experiment, we have tested the mixed-phase cloud parameterizations used in the two major U.S. climate models, the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory climate model (AM2), under both the single-column modeling framework and the U.S. Department of Energy Climate Change Prediction Program-Atmospheric Radiation Measurement Parameterization Testbed. An improved and more physically based cloud microphysical scheme for CAM3 has been also tested. The single-column modeling tests were summarized in the second quarter 2007 Atmospheric Radiation Measurement metric report. In the current report, we document the performance of these microphysical schemes in short-range weather forecasts using the Climate Chagne Prediction Program Atmospheric Radiation Measurement Parameterizaiton Testbest strategy, in which we initialize CAM3 and AM2 with realistic atmospheric states from numerical weather prediction analyses for the period when Mixed-Phase Arctic Cloud Experiment was conducted.

  9. Dual-Polarised Doppler X-band Radar Observations of Mixed Phased Clouds from the UK's Ice in Clouds Experiment-Dust (ICE-D)

    NASA Astrophysics Data System (ADS)

    Neely, Ryan; Blyth, Alan; Bennett, Lindsay; Dufton, David; Cui, Zhiqiang; McQuaid, Jim; Price, Hannah; Murray, Benjamin; Huang, Yahui

    2016-04-01

    Here we present dual-polarised X-band radar and in situ observations of convective, altocumulus and altostratus clouds relatively close to the Sahara desert in order to examine the impact of dust on the formation of ice and precipitation. These initial results come the UK's Ice in Clouds Experiment - Dust (UK ICE-D). UK ICE-D was an aircraft and ground-based project based in Cape Verde off the coast of Senegal, Africa during August 2015. The overall goal of this experiment was to determine how desert dust affects primary nucleation of ice particles in convective and layer clouds as well as the subsequent development of precipitation and glaciation of the clouds. This was accomplished by making focused observations when dust was present in high concentrations and when almost no dust was present. Here we focus on examining the differences in hydrometeor types derived from the dual-polarised X-band radar observations observed in the high and low dust loadings with specific emphasis on the role of supercooled rain drops in these two situations.

  10. Dual-Polarised Doppler X-band Radar Observations of Mixed Phased Clouds from the UK's Ice in Clouds Experiment-Dust (ICE-D)

    NASA Astrophysics Data System (ADS)

    Neely, R. R., III; Blyth, A. M.; Bennett, L.; Dufton, D.; Cui, Z.; Huang, Y.

    2015-12-01

    Here we present dual-polarised Doppler X-band radar observations of convective, altocumulus and altostratus clouds relatively close to the Sahara desert in order to examine the impact of dust on the formation of ice and precipitation. These initial results come the UK's Ice in Clouds Experiment - Dust (UK ICE-D). UK ICE-D was an aircraft and ground-based project based in Cape Verde off the coast of Senegal, Africa during August 2015. The overall goal of this experiment was to determine how desert dust affects primary nucleation of ice particles in convective and layer clouds as well as the subsequent development of precipitation and glaciation of the clouds. This was accomplished by making focused observations when dust was present in high concentrations and when almost no dust was present. Here we focus on examining the differences in hydrometeor types derived from the dual-polarised X-band radar observations observed in the high and low dust loadings with specific emphasis on the role of supercooled rain drops in these two situations.

  11. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)

    DOE Data Explorer

    In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

  12. Areal spread of the effect of cloud seeding at the whitetop experiment.

    PubMed

    Neyman, J; Scott, E; Smith, J A

    1969-03-28

    With reference to arguments that weather modification technology is sufficiently advanced for the federal government to finance cloud-seeding operations as a means of alleviating water shortages, an analysis of the Whitetop rain stimulation experiment was performed. The average 24-hour precipitation in six concentric regions up to 180 miles from the center of the target on 102 days of cloud seeding was less than that on the 96 experimental days without seeding. For distances less than 30 miles, the apparent loss of rain due to seeding was 32 percent. With the increase in distance, this apparent loss decreased to a minimum of 9 percent for gages between 120 and 150 miles from the center. However, the 48 gages at distances between 150 and 180 miles showed a 22 percent apparent loss of rain due to seeding. The estimated average loss of rain within the whole region of about 100,000 square miles was 21 percent of what would have fallen without seeding. When a 5-year experiment, expected to produce a 5 to 10-percent increase, shows a 20-percent decrease in rainfall, the relevant technology does not appear reliable enough for practical use.

  13. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  14. The opto-mechanical design of the sub-orbital local interstellar cloud experiment (SLICE)

    NASA Astrophysics Data System (ADS)

    Kane, Robert; Nell, Nicholas; Schultz, Ted; France, Kevin; Beasley, Matthew; Burgh, Eric; Bushinsky, Rachel; Hoadley, Keri

    2013-09-01

    We present the fabrication and testing of the Sub-orbital Local Interstellar Cloud Experiment (SLICE), a rocket-borne payload for ultraviolet astrophysics in the 1020 to 1070 Å bandpass. The SLICE optical system is composed of an ultraviolet-optimized telescope feeding a Rowland Circle spectrograph. The telescope is an 8-inch Classical Cassegrain operating at F/7, with Al optics overcoated with LiF for enhanced far-ultraviolet reflectivity. The holographically-ruled grating focuses light at an open-faced microchannel plate detector employing an opaque RbBr photocathode. In this proceeding, we describe the design trades and calibration issues confronted during the build-up of this payload. We place particular emphasis on the technical details of the design, modifications, construction, and alignment procedures for SLICE in order to provide a roadmap for the optimization of future ruggedized experiments for ultraviolet imaging and spectroscopy.

  15. Radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    1992-01-01

    Results are presented of a study of the radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASE) in which daily 3D Type I nitric acid trihydrate (NAT) and Type II water ice polar stratospheric clouds (PSCs) were generated in the polar regions during AAOE and the AASE aircraft missions. Mission data on particular composition and size, together with NMC-analyzed temperatures, are used. For AAOE, both Type I and Type II clouds were formed for the time period August 23 to September 17, after which only Type I clouds formed. During AASE, while Type I clouds were formed for each day between January 3 and February 10, Type II clouds formed on only two days, January 24 and 31. Mie theory and a radiative transfer model are used to compute the radiative heating rates during the mission periods, for clear and cloudy lower sky cases. Only the Type II water ice clouds have a significant radiative effect, with the Type I NATO PSCs generating a net heating or cooling of 0.1 K/d or less.

  16. Experience of the JPL Exploratory Data Analysis Team at validating HIRS2/MSU cloud parameters

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Haskins, Robert D.; Granger-Gallegos, Stephanie; Pursch, Andrew; Delgenio, Anthony

    1992-01-01

    Validation of the HIRS2/MSU cloud parameters began with the cloud/climate feedback problem. The derived effective cloud amount is less sensitive to surface temperature for higher clouds. This occurs because as the cloud elevation increases, the difference between surface temperature and cloud temperature increases, so only a small change in cloud amount is needed to effect a large change in radiance at the detector. By validating the cloud parameters it is meant 'developing a quantitative sense for the physical meaning of the measured parameters', by: (1) identifying the assumptions involved in deriving parameters from the measured radiances, (2) testing the input data and derived parameters for statistical error, sensitivity, and internal consistency, and (3) comparing with similar parameters obtained from other sources using other techniques.

  17. Evidence of widespread effects of cloud seeding at two Arizona experiments.

    PubMed

    Neyman, J; Osborn, H B

    1971-03-01

    The average effect of two cloud seeding experiments (1957-1960; 1961, 1962, and 1964) over the Santa Catalina Mountains, Arizona, on the 24-hr precipitation at Walnut Gulch, 65 miles away, was an apparent 40% loss of rainfall (P = 0.025) on seeded, as opposed to not-seeded, experimental days. Larger apparent losses, some highly significant, were found for experimental days on which Walnut Gulch was downwind from the seeding site (but not on upwind days), and also on "second days" of the randomized pairs (but not on "first days"). The timing of significant apparent effects indicated that the afternoon maximum of precipitation, which is very pronounced on days without seeding, is either absent or weakened on days with seeding. This phenomenon was observed earlier in a study of the Whitetop Project.

  18. A statistical data analysis and plotting program for cloud microphysics experiments

    NASA Technical Reports Server (NTRS)

    Jordan, A. J.

    1981-01-01

    The analysis software developed for atmospheric cloud microphysics experiments conducted in the laboratory as well as aboard a KC-135 aircraft is described. A group of four programs was developed and implemented on a Hewlett Packard 1000 series F minicomputer running under HP's RTE-IVB operating system. The programs control and read data from a MEMODYNE Model 3765-8BV cassette recorder, format the data on the Hewlett Packard disk subsystem, and generate statistical data (mean, variance, standard deviation) and voltage and engineering unit plots on a user selected plotting device. The programs are written in HP FORTRAN IV and HP ASSEMBLY Language with the graphics software using the HP 1000 Graphics. The supported plotting devices are the HP 2647A graphics terminal, the HP 9872B four color pen plotter, and the HP 2608A matrix line printer.

  19. User experience integrated life-style cloud-based medical application.

    PubMed

    Serban, Alexandru; Lupşe, Oana Sorina; Stoicu-Tivadar, Lăcrămioara

    2015-01-01

    Having a modern application capable to automatically collect and process data from users, based on information and lifestyle answers is one of current challenges for researchers and medical science. The purpose of the current study is to integrate user experience design (UXD) in a cloud-based medical application to improve patient safety, quality of care and organizational efficiency. The process consists of collecting traditional and new data from patients and users using online questionnaires. A questionnaire dynamically asks questions about the user's current diet and lifestyle. After the user will introduce the data, the application will formulate a presumptive nutritional plan and will suggest different medical recommendations regarding a healthy lifestyle, and calculates a risk factor for diseases. This software application, by design and usability will be an efficient tool dedicated for fitness, nutrition and health professionals.

  20. The Accommodation Coefficient of Water Molecules on Ice: Results from Cirrus Cloud Experiments at the Aerosol Chamber AIDA

    NASA Astrophysics Data System (ADS)

    Skrotzki, J.; Connolly, P.; Niemand, M.; Saathoff, H.; Moehler, O.; Ebert, V.; Leisner, T.

    2010-12-01

    Cirrus clouds are pure ice clouds in the upper troposphere or lower stratosphere. One of the parameters governing the growth of ice crystals in these clouds is the accommodation coefficient of water molecules on ice. However, its magnitude is still uncertain to a large degree, since experimental results vary from below 0.01 up to unity depending on the design of the experiment and the examined ice growth process [1]. For the specific case of ice crystal growth in cirrus clouds, no previous experimental studies regarding the accommodation coefficient exist. Therefore, dedicated experiments were carried out at the cloud simulation chamber AIDA [2], examining the ice crystal growth for deposition nucleation in the temperature range from -75 °C to -40 °C. These experiments were evaluated with two different models, a simple one, which just incorporates kinetic and diffusive theory of ice crystal growth, and the more advanced and extended aerosol-cloud-precipitation interaction model (ACPIM) [3]. The outcome of these two models is compared to absolute in-situ humidity data measured within AIDA using extractive as well as open path diode laser hygrometers (TDLAS) [4]. For every experiment, this is done by varying the value of the accommodation coefficient within each model, in order to get best agreement with experimental data. The values obtained for the accommodation coefficient at different temperatures are presented and the overall uncertainties as well as the consistency between the two different models are discussed. [1] D. R. Heynes, N. J. Tro, and S. M. George, J. Phys. Chem. 1992, 96, 8502-8509 (1992) [2] O. Möhler et al., Atmos. Chem. Phys. 3, 211-223 (2003) [3] P. J. Connolly et al., Atmos. Chem. Phys. 9, 2805-2824 (2009) [4] D. W. Fahey et al., AquaVIT White Paper, avail. at https://aquavit.icg.kfa-juelich.de/AquaVit/AquaVitWiki

  1. Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment

    NASA Astrophysics Data System (ADS)

    Targino, A. C.; Krejci, R.; Noone, K. J.; Glantz, P.

    2005-09-01

    Individual ice crystal residual particles collected over Scandinavia during the INTACC (INTeraction of Aerosol and Cold Clouds) experiment in October 1999 were analyzed by Scanning Electron Microscopy (SEM) equipped with Energy-Dispersive X-ray Analysis (EDX). Samples were collected onboard the British Met Office Hercules C-130 aircraft using a Counterflow Virtual Impactor (CVI). This study is based on six samples collected in orographic clouds. The main aim of this study is to characterize cloud residual elemental composition in conditions affected by different airmasses. In total 609 particles larger than 0.1 µm diameter were analyzed and their elemental composition and morphology were determined. Thereafter a hierarchical cluster analysis was performed on the signal detected with SEM-EDX in order to identify the major particle classes and their abundance. A cluster containing mineral dust, represented by aluminosilicates, Fe-rich and Si-rich particles, was the dominating class of particles, accounting for about 57.5% of the particles analyzed, followed by low-Z particles, 23.3% (presumably organic material) and sea salt (6.7%). Sulfur was detected often across all groups, indicating ageing and in-cloud processing of particles. A detailed inspection of samples individually unveiled a relationship between ice crystal residual composition and airmass origin. Cloud residual samples from clean airmasses (that is, trajectories confined to the Atlantic and Arctic Oceans and/or with source altitude in the free troposphere) were dominated primarily by low-Z and sea salt particles, while continentally-influenced airmasses (with trajectories that originated or traveled over continental areas and with source altitude in the continental boundary layer) contained mainly mineral dust residuals. Comparison of residual composition for similar cloud ambient temperatures around -27°C revealed that supercooled clouds are more likely to persist in conditions where low-Z particles

  2. Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment

    NASA Astrophysics Data System (ADS)

    Targino, A. C.; Krejci, R.; Noone, K. J.; Glantz, P.

    2006-06-01

    Individual ice crystal residual particles collected over Scandinavia during the INTACC (INTeraction of Aerosol and Cold Clouds) experiment in October 1999 were analyzed by Scanning Electron Microscopy (SEM) equipped with Energy-Dispersive X-ray Analysis (EDX). Samples were collected onboard the British Met Office Hercules C-130 aircraft using a Counterflow Virtual Impactor (CVI). This study is based on six samples collected in orographic clouds. The main aim of this study is to characterize cloud residual elemental composition in conditions affected by different airmasses. In total 609 particles larger than 0.1 μm diameter were analyzed and their elemental composition and morphology were determined. Thereafter a hierarchical cluster analysis was performed on the signal detected with SEM-EDX in order to identify the major particle classes and their abundance. A cluster containing mineral dust, represented by aluminosilicates, Fe-rich and Si-rich particles, was the dominating class of particles, accounting for about 57.5% of the particles analyzed, followed by low-Z particles, 23.3% (presumably organic material) and sea salt (6.7%). Sulfur was detected often across all groups, indicating ageing and in-cloud processing of particles. A detailed inspection of samples individually unveiled a relationship between ice crystal residual composition and airmass origin. Cloud residual samples from clean airmasses (that is, trajectories confined to the Atlantic and Arctic Oceans and/or with source altitude in the free troposphere) were dominated primarily by low-Z and sea salt particles, while continentally-influenced airmasses (with trajectories that originated or traveled over continental areas and with source altitude in the continental boundary layer) contained mainly mineral dust residuals. Comparison of residual composition for similar cloud ambient temperatures around -27°C revealed that supercooled clouds are more likely to persist in conditions where low-Z particles

  3. Measurements of Isoprene and its Oxidation Products during the CLOUD9 Experiment

    NASA Astrophysics Data System (ADS)

    Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Coburn, Sean; Volkamer, Rainer; Hansel, Armin

    2015-04-01

    Isoprene (C5H8), being produced and emitted by the biosphere, is by far the dominant biogenic volatile organic compound (BVOC) in the atmosphere. Its complex reaction pathways with OH radicals, O3 and NO3, lead to compounds with lower volatilities and increasing water solubility. The high hydrophilicity allows for easy partitioning between the gas and liquid phase making those compounds good candidates for aqueous phase droplet chemistry that may contribute to particle growth. (Ervens et al., 2008). The CLOUD experiment (Cosmics Leaving Outdoor Droplets) at CERN allows the studying the evolution of particles originating from precursor gases in, in our case isoprene, in an ultraclean and very well controlled environmental chamber. Gas phase concentrations of isoprene and its first reaction products were measured in real-time with a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS, Graus et al., 2010) and Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS, Thalman and Volkamer, 2010). PTR-ToF-MS was calibrated using gas standards with known VOC concentrations. The PTR-ToF-MS was operated with H3O+ and NO+ as primary ions, continuously switching between both operating modes throughout the experiments. The use of different primary ions allows the discrimination of isomeric compounds like the main high NOx oxidation products methyl vinyl ketone (MVK) and methacroleine (MACR). The experiment was conducted at high isoprene concentrations and a constant level of O3. The highly water soluble gas phase oxidation products from the reaction of isoprene with O3 and OH radicals (from isoprene ozonolysis) were investigated and compared for two temperatures (+10 °C and -10 °C) and different NOx concentrations during cloud formation experiments. Here we will present first results of isoprene oxidation products observed with PTR-ToF-MS and CE-DOAS. References Ervens et al. (2008), Geophys. Res. Lett., 35, L02816 Graus et al. (2010), J. Am

  4. Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    NASA Astrophysics Data System (ADS)

    Nichman, Leonid; Fuchs, Claudia; Järvinen, Emma; Ignatius, Karoliina; Florian Höppel, Niko; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Bjerring Kristensen, Thomas; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-03-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary organic aerosol (SOA) are presented. We report observations of significant liquid-viscous SOA particle polarization transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarization ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulfate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentrations and mixtures with respect to the CLOUD 8-9 campaigns and its potential contribution to tropical troposphere layer analysis.

  5. Discrimination of water, ice and aerosols by light polarisation in the CLOUD experiment

    NASA Astrophysics Data System (ADS)

    Nichman, L.; Fuchs, C.; Järvinen, E.; Ignatius, K.; Höppel, N. F.; Dias, A.; Heinritzi, M.; Simon, M.; Tröstl, J.; Wagner, A. C.; Wagner, R.; Williamson, C.; Yan, C.; Bianchi, F.; Connolly, P. J.; Dorsey, J. R.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Hoyle, C. R.; Kristensen, T. B.; Steiner, G.; Donahue, N. M.; Flagan, R.; Gallagher, M. W.; Kirkby, J.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Stratmann, F.; Tomé, A.

    2015-11-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather and General Circulation Models (GCMs). The simultaneous detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud-particle size range below 50 μm, remains challenging in mixed phase, often unstable ice-water phase environments. The Cloud Aerosol Spectrometer with Polarisation (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure their effects on the backscatter polarisation state. Here we operate the versatile Cosmics-Leaving-OUtdoor-Droplets (CLOUD) chamber facility at the European Organisation for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water and ice particles. In this paper, optical property measurements of mixed phase clouds and viscous Secondary Organic Aerosol (SOA) are presented. We report observations of significant liquid - viscous SOA particle polarisation transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarisation ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulphate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentration and mixtures with respect to the CLOUD 8-9 campaigns and its potential contribution to Tropical Troposphere Layer (TTL) analysis.

  6. Direct Observation of Secondary Organic Aerosol Formation during Cloud Condensation-Evaporation Cycles (SOAaq) in Simulation Chamber Experiments

    NASA Astrophysics Data System (ADS)

    Doussin, J. F.; Bregonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Gratien, A.; Temime-Roussel, B.; Ravier, S.; Pangui, E.; Tapparo, A.; Kalberer, M.; Monod, A.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) undergo many reactions in the atmosphere and form a wide range of oxidised and water-soluble compounds. These compounds can partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and/or less volatile compounds which can remain in the particle phase after water evaporation and thus increase the organic aerosol mass (Ervens et al., 2011; Altieri et al., 2008; Couvidat et al., 2013). While this hypothesis is frequently discussed in the literature, so far, almost no direct observations of such a process have been provided.The aim of the present work is to study SOA formation from isoprene photooxidation during cloud condensation-evaporation cycles.The experiments were performed during the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM simulation chamber located at LISA. CESAM is a 4.2 m3 stainless steel chamber equipped with realistic irradiation sources and temperature and relative humidity (RH) controls (Wang et al., 2011). In each experiment, isoprene was allowed to oxidize during several hours in the presence on nitrogen oxides under dry conditions. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation was monitored on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The experimental protocol was optimised to generate cloud events in the simulation chamber, which allowed us to generate clouds lasting for ca. 10 minutes in the presence of light.In all experiments, we observed that during cloud formation, water-soluble gas-phase oxidation products (e.g., methylglyoxal, hydroxyacetone, acetaldehyde, formic acid, acetic acid and glycolaldehyde) readily partitioned into cloud

  7. Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment

    SciTech Connect

    Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; Yio, John J.; Cederwall, Richard T.; McCoy, Renata

    2006-10-05

    [1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related to the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Lastly, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.

  8. Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment

    DOE PAGES

    Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; ...

    2006-10-05

    [1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related tomore » the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Lastly, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.« less

  9. Evaluation of modeled cloud chemistry mechanism against laboratory irradiation experiments: The HxOy/iron/carboxylic acid chemical system

    NASA Astrophysics Data System (ADS)

    Long, Yoann; Charbouillot, Tiffany; Brigante, Marcello; Mailhot, Gilles; Delort, Anne-Marie; Chaumerliac, Nadine; Deguillaume, Laurent

    2013-10-01

    Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2rad /O2rad - and HOrad ) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to

  10. Analysis and comparison of diurnal variations of cloud radiative forcing: Earth Radiation Budget Experiment and International Satellite Cloud Climatology Project results

    SciTech Connect

    Kim, Y.

    1994-10-01

    Cloud radiative forcing (CRF) is the radiative impact of clouds on the Earth`s radiation budget. This study examines the diurnal variations of CRF using the Earth Radiation Budget Experiment (ERBE) monthly hourly flux data and the flux data derived from the International Satellite Cloud Climatology Project (ISCCP) using the Goddard Institute for Space Studies general circulation model radiation code. The results for the months of April, July, and October 1985 and January 1986 are analyzed. We found that, in general, two data sets agreed. For longwave (LW) CRF the diurnal range over land is generally greater than that observed over oceans. For the 4-month averages the ERBE values are 15.8 W/sq m and 6.8 W/sq m for land and ocean, respectively, compared with the ISCCP calculated values of 18.4 W/sq m and 8.0 W/sq m, respectively. The land/ocean contrast is largely associated with changes in cloud amount and the temperature difference between surface and cloud top. It would be more important to note that the clear-sky flux (i.e., surface temperature) variabilities are shown to be a major contributor to the large variabilities over land. The maximum diurnal range is found to be in the summer hemisphere, and the minimum values in the winter hemisphere. It is also shown that the daytime maximum and the nighttime minimum are seen over large portions of land, whereas they occur at any local hour over most oceans. For shortwave (SW) CRF the daytime maximum values are about twice as large as monthly averages, and their highest frequency occurs at local noon, indicating that solar insolation is a primary factor for the diurnal variation of SW CRF. However, the comparison of the ERBE data with the ISCCP results demonstrated that the largest differences in the diurnal range and monthly mean of LW CRF were associated with tropical convergence zones, where clear-sky fluxes could be easily biased by persistent cloudiness and the inadequate treatment of the atmospheric water vapor.

  11. Analysis and comparison of diurnal variations of cloud radiative forcing: Earth Radiation Budget Experiment and International Satellite Cloud Climatology Project results

    NASA Technical Reports Server (NTRS)

    Kim, Yongseung

    1994-01-01

    Cloud radiative forcing (CRF) is the radiative impact of clouds on the Earth's radiation budget. This study examines the diurnal variations of CRF using the Earth Radiation Budget Experiment (ERBE) monthly hourly flux data and the flux data derived from the International Satellite Cloud Climatology Project (ISCCP) using the Goddard Institute for Space Studies general circulation model radiation code. The results for the months of April, July, and October 1985 and January 1986 are analyzed. We found that, in general, two data sets agreed. For longwave (LW) CRF the diurnal range over land is generally greater than that observed over oceans. For the 4-month averages the ERBE values are 15.8 W/sq m and 6.8 W/sq m for land and ocean, respectively, compared with the ISCCP calculated values of 18.4 W/sq m and 8.0 W/sq m, respectively. The land/ocean contrast is largely associated with changes in cloud amount and the temperature difference between surface and cloud top. It would be more important to note that the clear-sky flux (i.e., surface temperature) variabilities are shown to be a major contributor to the large variabilities over land. The maximum diurnal range is found to be in the summer hemisphere, and the minimum values in the winter hemisphere. It is also shown that the daytime maximum and the nighttime minimum are seen over large portions of land, whereas they occur at any local hour over most oceans. For shortwave (SW) CRF the daytime maximum values are about twice as large as monthly averages, and their highest frequency occurs at local noon, indicating that solar insolation is a primary factor for the diurnal variation of SW CRF. However, the comparison of the ERBE data with the ISCCP results demonstrated that the largest differences in the diurnal range and monthly mean of LW CRF were associated with tropical convergence zones, where clear-sky fluxes could be easily biased by persistent cloudiness and the inadequate treatment of the atmospheric water vapor.

  12. Magnetic fields in molecular clouds: The BLASTPol and BLAST-TNG experiments

    NASA Astrophysics Data System (ADS)

    Galitzki, Nicholas

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was a suborbital experiment designed to map magnetic fields in order to study their role in star formation processes. BLASTPol made detailed polarization maps of a number of molecular clouds during its successful flight from Antarctica in 2012. The data reduction and analysis efforts over the three years following the flight have produced a number of important scientific results. The next-generation BLAST instrument (BLAST-TNG) will build off the success of the previous experiment and continue its role as a unique instrument and a test bed for new technologies. With a 16-fold increase in mapping speed, BLAST-TNG will make larger and deeper maps. Major improvements include a 2.5 m carbon fiber mirror that is 40% wider than the BLASTPol mirror and more than 3000 polarization sensitive detectors. BLAST-TNG will observe in the same three bands as BLASTpol at 250, 350, and 500 microns. The telescope will serve as a pathfinder project for microwave kinetic inductance detector (MKID) technology, as applied to feedhorn coupled submillimeter detector arrays. The liquid helium cooled cryostat will have a 28-day hold time and will utilize a closed-cycle 3He refrigerator to cool the detector arrays to 270 mK. This will enable a detailed mapping of more targets with higher polarization resolution than any other submillimeter experiment to date. My thesis describes the 2012 instrument and results while also outlining the motivation for BLAST-TNG and the instrumental design and initial testing.

  13. Overview of the Field Phase of the NASA Tropical Cloud Systems and Processes (TCSP)Experiment

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Zipser, Edward; Heymsfield, Gerald M.; Kakar, Ramesh; Halverson Jeffery; Rogers, Robert; Black, Michael

    2006-01-01

    The Tropical Cloud Systems and Processes experiment is sponsored by the National Aeronautics and Space Administration (NASA) to investigate characteristics of tropical cyclone genesis, rapid intensification and rainfall using a three-pronged approach that emphasizes satellite information, suborbital observations and numerical model simulations. Research goals include demonstration and assessment of new technology, improvements to numerical model parameterizations, and advancements in data assimilation techniques. The field phase of the experiment was based in Costa Rica during July 2005. A fully instrumented NASA ER-2 high altitude airplane was deployed with Doppler radar, passive microwave instrumentation, lightning and electric field sensors and an airborne simulator of visible and infrared satellite sensors. Other assets brought to TCSP were a low flying uninhabited aerial vehicle, and a surface-based radiosonde network. In partnership with the Intensity Forecasting Experiment of the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division, two NOAA P-3 aircraft instrumented with radar, passive microwave, microphysical, and dropsonde instrumentation were also deployed to Costa Rica. The field phase of TCSP was conducted in Costa Rica to take advantage of the geographically compact tropical cyclone genesis region of the Eastern Pacific Ocean near Central America. However, the unusual 2005 hurricane season provided numerous opportunities to sample tropical cyclone development and intensification in the Caribbean Sea and Gulf of Mexico as well. Development of Hurricane Dennis and Tropical Storm Gert were each investigated over several days in addition to Hurricane Emily as it was close to Saffir-Simpson Category 5 intensity. An overview of the characteristics of these storms along with the pregenesis environment of Tropical Storm Eugene in the Eastern Pacific will be presented.

  14. Cloud fraction, layer, and direction of movement results from sky cameras during the FIRE IFO, Coffeyville, Kansas, experiment for the period Nov. 12 through Dec. 9, 1991

    NASA Technical Reports Server (NTRS)

    Purgold, Gerald C.; Wheeler, Robert J.; Whitlock, Charles H.

    1992-01-01

    Tables and figures are presented which show local site observations of cloud fractions, the number of cloud layers, direction of movement, and precipitation data collected during the FIRE (First ISCCP Regional Experiment) Phase 2 Cirrus Intensive Field Observations (IFO) conducted in Coffeyville, Kansas during November and December, 1991. Selected data are also presented at the times of the TIROS Operational Vertical Sounder (TOVS) satellite overpass. Several major scientific projects have used surface-based observations of clouds to compare directly with those being observed from satellites. Characterizing the physical properties of clouds is extremely useful in obtaining a more accurate analysis of the effect of clouds and their movements on weather and climate. It is the purpose of this paper to report data collected during the FIRE Phase 2 IFO experiment and to provide a brief history of such a surface-based system and the technical information required for recording local cloud parameters.

  15. The 3-D Tropical Convective Cloud Spectrum in AMIE Radar Observations and Global Climate Simulations

    SciTech Connect

    Schumacher, Courtney

    2015-08-31

    During the three years of this grant performance, the PI and her research group have made a number of significant contributions towards determining properties of tropical deep convective clouds and how models depict and respond to the heating associated with tropical convective systems. The PI has also been an active ARM/ASR science team member, including playing a significant role in AMIE and GoAmazon2014/5. She served on the DOE ASR radar science steering committee and was a joint chair of the Mesoscale Convective Organization group under the Cloud Life Cycle working group. This grant has funded a number of graduate students, many of them women, and the PI and her group have presented their DOE-supported work at various universities and national meetings. The PI and her group participated in the AMIE (2011-12) and GoAmazon2014/5 (2014-15) DOE field deployments that occurred in the tropical Indian Ocean and Brazilian Amazon, respectively. AMIE observational results (DePasquale et al. 2014, Feng et al. 2014, Ahmed and Schumacher 2015) focus on the variation and possible importance of Kelvin waves in various phases of the Madden-Julian Oscillation (MJO), on the synergy of the different wavelength radars deployed on Addu Atoll, and on the importance of humidity thresholds in the tropics on stratiform rain production. Much of the PIs GoAmazon2014/5 results to date relate to overviews of the observations made during the field campaign (Martin et al. 2015, 2016; Fuentes et al. 2016), but also include the introduction of the descending arm and its link to ozone transport from the mid-troposphere to the surface (Gerken et al. 2016). Vertical motion and mass flux profiles from GoAmazon (Giangrande et al. 2016) also show interesting patterns between seasons and provide targets for model simulations. Results from TWP-ICE (Schumacher et al. 2015), which took place in Darwin, Australia in 2006 show that vertical velocity retrievals from the profilers provide structure to

  16. Cirrus Clouds Optical, Microphysical and Radiative Properties Observed During Crystal-Face Experiment: I. A Radar-Lidar Retrieval System

    NASA Technical Reports Server (NTRS)

    Mitrescu, C.; Haynes, J. M.; Stephens, G. L.; Heymsfield, G. M.; McGill, M. J.

    2004-01-01

    A method of retrieving cloud microphysical properties using combined observations from both cloud radar and lidar is introduced. This retrieval makes use of an improvement to the traditional optimal estimation retrieval method, whereby a series of corrections are applied to the state vector during the search for an iterative solution. This allows faster convergence to a solution and is less processor intensive. The method is first applied to a synthetic cloud t o demonstrate its validity, and it is shown that the retrieval reliably reproduces vertical profiles of ice water content. The retrieval method is then applied to radar and lidar observations from the CRYSTAL-FACE experiment, and vertical profiles of ice crystal diameter, number concentration, and ice water content are retrieved for a cirrus cloud layers observed one day of that experiment. The validity of the relationship between visible extinction coefficient and radar reflectivity was examined. While synthetic tests showed such a functional relationship, the measured data only partially supported such a conclusion. This is due to errors in the forward model (as explained above) as well as errors in the data sets, including possible mismatch between lidar and radar profiles or errors in the optical depth. Empirical relationships between number concentrations and mean particle diameter were also examined. The results indicate that a distinct and robust relationship exists between these retrieved quantities and it is argued that such a relationship is more than an artifact of the retrieval process offering insight into the nature of the microphysical processes taking place in cirrus.

  17. Orbital and cloud cover sampling analyses for multisatellite earth radiation budget experiments

    NASA Technical Reports Server (NTRS)

    Harrison, E. F.; Minnis, P.; Gibson, G. G.

    1983-01-01

    Computer simulations have been performed to determine the geographical and temporal coverage of various satellite orbits and scanning and nonscanning radiometers for earth radiation budget measurements. These results were used to simulate the sampling of a diurnally varying cloud and radiation field for several different satellite systems to estimate errors in regional monthly mean reflected radiation. The combined results indicate that coincient observations with a minimum of one sun-synchronous satellite and a midinclined orbit satellite are needed to obtain the required regional, zonal, and global coverage with sufficient temporal sampling for obtaining accurate estimates of monthly mean reflected solar radiation. Overall, the best sampling capability and lowest errors were obtained with a three-satellite system, i.e., two sun-synchronous satellites with different equatorial crossing times combined with either a 46 or 57-deg orbit satellite. The results from these analyses have been used in defining a joint NASA-NOAA multisatellite mission for an earth radiation budget experiment.

  18. Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE)

    NASA Technical Reports Server (NTRS)

    Winker, D. M.; McCormick, M. P.

    1994-01-01

    The Lidar In-space Technology Experiment (LITE) is a multi-wavelength backscatter lidar developed by NASA Langley Research Center to fly on the Space Shuttle. The LITE instrument is built around a three-wavelength ND:YAG laser and a 1-meter diameter telescope. The laser operates at 10 Hz and produces about 500 mJ per pulse at 1064 nm and 532 nm, and 150 mJ per pulse at 355 nm. The objective of the LITE program is to develop the engineering processes required for space lidar and to demonstrate applications of space-based lidar to remote sensing of the atmosphere. The LITE instrument was designed to study a wide range of cloud and aerosol phenomena. To this end, a comprehensive program of scientific investigations has been planned for the upcoming mission. Simulations of on-orbit performance show the instrument has sufficient sensitivity to detect even thin cirrus on a single-shot basis. Signal averaging provides the capability of measuring the height and structure of the planetary boundary layer, aerosols in the free troposphere, the stratospheric aerosol layer, and density profiles to an altitude of 40 km. The instrument has successfully completed a ground-test phase and is scheduled to fly on the Space Shuttle Discovery for a 9-day mission in September 1994.

  19. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD

    NASA Astrophysics Data System (ADS)

    Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; Ahlm, Lars; Tröstl, Jasmin; Praplan, Arnaud P.; Schobesberger, Siegfried; Kürten, Andreas; Kirkby, Jasper; Bianchi, Federico; Duplissy, Jonathan; Hansel, Armin; Jokinen, Tuija; Keskinen, Helmi; Lehtipalo, Katrianne; Leiminger, Markus; Petäjä, Tuukka; Rissanen, Matti; Rondo, Linda; Simon, Mario; Sipilä, Mikko; Williamson, Christina; Wimmer, Daniela; Riipinen, Ilona; Virtanen, Annele; Smith, James N.

    2016-11-01

    New particle formation driven by acid-base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10-30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models, which predict a higher dimethylaminium fraction when NH3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO2 to sulfate. These results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid-base pairs in particles as small as 10 nm.

  20. The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis

    DOE PAGES

    Jensen, M. P.; Toto, T.; Troyan, D.; ...

    2015-01-27

    The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentationmore » used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.« less

  1. The NASA CloudSat/GPM Light Precipitation Validation Experiment (LPVEx)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; L'Ecuyer, Tristan; Moisseev, Dmitri

    2011-01-01

    Ground-based measurements of cool-season precipitation at mid and high latitudes (e.g., above 45 deg N/S) suggest that a significant fraction of the total precipitation volume falls in the form of light rain, i.e., at rates less than or equal to a few mm/h. These cool-season light rainfall events often originate in situations of a low-altitude (e.g., lower than 2 km) melting level and pose a significant challenge to the fidelity of all satellite-based precipitation measurements, especially those relying on the use of multifrequency passive microwave (PMW) radiometers. As a result, significant disagreements exist between satellite estimates of rainfall accumulation poleward of 45 deg. Ongoing efforts to develop, improve, and ultimately evaluate physically-based algorithms designed to detect and accurately quantify high latitude rainfall, however, suffer from a general lack of detailed, observationally-based ground validation datasets. These datasets serve as a physically consistent framework from which to test and refine algorithm assumptions, and as a means to build the library of algorithm retrieval databases in higher latitude cold-season light precipitation regimes. These databases are especially relevant to NASA's CloudSat and Global Precipitation Measurement (GPM) ground validation programs that are collecting high-latitude precipitation measurements in meteorological systems associated with frequent coolseason light precipitation events. In an effort to improve the inventory of cool-season high-latitude light precipitation databases and advance the physical process assumptions made in satellite-based precipitation retrieval algorithm development, the CloudSat and GPM mission ground validation programs collaborated with the Finnish Meteorological Institute (FMI), the University of Helsinki (UH), and Environment Canada (EC) to conduct the Light Precipitation Validation Experiment (LPVEx). The LPVEx field campaign was designed to make detailed measurements of

  2. Cloud hole boring with long pulse CO(2) lasers: theory and experiment.

    PubMed

    Quigley, G P; Webster, R B; Caramana, E J; Morse, R L; York, G W

    1991-07-20

    Chemically generated CO(2) laser pulses at 10.6 microm have been used to clear a 5-cm diameter hole through a stratus-like cloud in a laboratory cloud chamber. The results show that 100% clearing can be achieved. The mechanism is shown to be droplet shattering followed by evaporation. In the experimental conditions, the channel closure is effected by turbulent mixing and droplet recondensation.

  3. Validating a large geophysical data set: Experiences with satellite-derived cloud parameters

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Haskins, Robert D.; Knighton, James E.; Pursch, Andrew; Granger-Gallegos, Stephanie

    1992-01-01

    We are validating the global cloud parameters derived from the satellite-borne HIRS2 and MSU atmospheric sounding instrument measurements, and are using the analysis of these data as one prototype for studying large geophysical data sets in general. The HIRS2/MSU data set contains a total of 40 physical parameters, filling 25 MB/day; raw HIRS2/MSU data are available for a period exceeding 10 years. Validation involves developing a quantitative sense for the physical meaning of the derived parameters over the range of environmental conditions sampled. This is accomplished by comparing the spatial and temporal distributions of the derived quantities with similar measurements made using other techniques, and with model results. The data handling needed for this work is possible only with the help of a suite of interactive graphical and numerical analysis tools. Level 3 (gridded) data is the common form in which large data sets of this type are distributed for scientific analysis. We find that Level 3 data is inadequate for the data comparisons required for validation. Level 2 data (individual measurements in geophysical units) is needed. A sampling problem arises when individual measurements, which are not uniformly distributed in space or time, are used for the comparisons. Standard 'interpolation' methods involve fitting the measurements for each data set to surfaces, which are then compared. We are experimenting with formal criteria for selecting geographical regions, based upon the spatial frequency and variability of measurements, that allow us to quantify the uncertainty due to sampling. As part of this project, we are also dealing with ways to keep track of constraints placed on the output by assumptions made in the computer code. The need to work with Level 2 data introduces a number of other data handling issues, such as accessing data files across machine types, meeting large data storage requirements, accessing other validated data sets, processing speed

  4. Aerosol and nucleation research in support of NASA cloud physics experiments in space. [ice nuclei generator for the atmospheric cloud physics laboratory on Spacelab

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D.; Gordon, G.; Saunders, C. P. R.; Reischel, M.; Black, R.

    1978-01-01

    Tasks performed in the development of an ice nucleus generator which, within the facility concept of the ACPL, would provide a test aerosol suitable for a large number and variety of potential experiments are described. The impact of Atmospheric Cloud Physics Laboratory scientific functional requirements on ice nuclei generation and characterization subsystems was established. Potential aerosol generating systems were evaluated with special emphasis on reliability, repeatability and general suitability for application in Spacelab. Possible contamination problems associated with aerosol generation techniques were examined. The ice nucleating abilities of candidate test aerosols were examined and the possible impact of impurities on the nucleating abilities of those aerosols were assessed as well as the relative merits of various methods of aerosol size and number density measurements.

  5. Jovian clouds and haze

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Baines, Kevin H.; Friedson, A. James; Banfield, Don; Ragent, Boris; Taylor, Fred W.

    Tropospheric clouds: thermochemical equilibrium theory and cloud microphysical theory, condensate cloud microphysics, tropospheric cloud and haze distribution - observations, results from the Galileo probe experiments, Galileo NIMS observations and results, Galileo SSE observations and results, recent analyses of ground-based and HST data; Tropospheric clouds and haze: optical and physical properties: partical composition, particle optical properties, size and shape, chromophores; Stratospheric haze: particle distribution, optical properties, size and shape, particle formation.

  6. A cylindrical shell model of the NASA-MPE barium ion cloud experiment.

    NASA Technical Reports Server (NTRS)

    Grauer, A. D.; Prak, J. W. L.; Jenkins, A. W., Jr.

    1973-01-01

    A computer model is developed using infinitely long concentric cylindrical shells to represent the neutral atoms, ions and electrons in the barium cloud. The neutral shells are given a distribution of positions and velocities whose parameters are chosen to be consistent with the dynamics of the release. From this distribution, the ion and electron shells are generated at random using the observed time constant for photoionization. The ion and electron shells thus formed are followed using self-consistent equations of motion. Various averages which could be compared with observation of the actual cloud are calculated at regular time intervals. An unexpected result is the predicted very early return of the magnetic field within the cloud to its ambient value.

  7. The Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) Experiment: Scientific Basis, New Analysis Tools and Some First Results (PREPRINT)

    DTIC Science & Technology

    2011-01-01

    The Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) Experiment: Scientific Basis, New Analysis Tools and Some First Results...Investigation of Cloud Systems in the Tropics (PREDICT) Experiment: Scientific Basis, New Analysis Tools and Some First Results 5a. CONTRACT NUMBER 5b. GRANT...conditions over a developing low-level distur- bance may play an important modulating role (Dvorak 1975; Sadler 1976 ; McBride and Zehr 1981). Yet, all of

  8. Ecohydrology of a seasonal cloud forest in Dhofar: 1. Field experiment

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Anke; Al Aufi, Mohammed; Amerjeed, Mansoor; Shammas, Mahaad; Eltahir, Elfatih A. B.

    2007-10-01

    We describe the ecohydrology of a unique semiarid broadleaf deciduous forest in Dhofar (Oman). The forest is surrounded by desert and is confined to a coastal area, where the summer wet season is characterized by a persistent dense cloud immersion. Using field observations, we show how clouds render the ecosystem particularly water conserving and therefore create a niche for a moist forest biome in a semiarid area in three ways. First, horizontal precipitation (collection of cloud droplets on tree canopies) added valuable water, such that about two times as much water was received below the canopy (net precipitation) compared to above (rainfall). Second, high stemflow, of about 30% to net precipitation, led to concentrated water input around the stems. Third, transpiration was suppressed during the cloudy summer season, which allowed for storage of the received water. It was only used after the end of the wet season and lasted for the following 3 months, which roughly doubled the length of the growing season. Our results demonstrate that cloud immersion may shape ecosystem hydrology in significant ways, particularly in semiarid environments.

  9. Ice clouds optical properties in the Far Infrared from the ECOWAR-COBRA Experiment

    NASA Astrophysics Data System (ADS)

    Rizzi, Rolando; Tosi, Ennio

    ECOWAR-COBRA (Earth COoling by WAter vapouR emission -Campagna di Osservazioni della Banda Rotazionale del vapor d'Acqua) field campaign took place in Italy from 3 to 17 March 2007 with the main goal of studying the scarcely sensed atmospheric emission occurring beyond 17 microns. Instrumentation involved in the campaign included two different Fourier Transforms Spectrometers (FTS) : REFIR-PAD (at Testa Grigia Station, 3500 m a.s.l.) and FTIR-ABB (at Cervinia Station, 1990 m a.s.l.). In this work cloudy sky data have been ana-lyzed. A cloud properties retrieval methodology (RT-RET), based on high spectral resolution measurements in the atmospheric window (800-1000 cm-1), is applied to both FTS sensors. Cloud properties determined from the infrared retrievals are compared with those obtained from Raman lidar taken by the BASIL Lidar system that was operating at Cervinia station. Cloud microphysical and optical properties retrieved by RT-RET are used to perform forward simulations over the entire FTSs measurements spectral interval. Results are compared to FTS data to test the ability of single scattering ice crystals models to reproduce cloudy sky radiances in the Far Infra-Red (FIR) part of the spectrum. New methods to retrieve cloud optical and microphysical properties exploiting high spectral resolution FIR measurements are also investigated.

  10. The Sound of My Rainbow, the Taste of My Clouds: The Synesthetic Experience.

    ERIC Educational Resources Information Center

    Harding, Wendy

    1997-01-01

    Describes using self-reflective synesthetic writing exercises (which prompt students to think metaphorically about crossed senses--taste of clouds, smell of anger, etc.) in creative writing with high school students. Notes how such writing allows a reader/teacher insights into students' lives and personalities. Includes student sample poems. (SR)

  11. Collision Experiment of an Arched Plasma-Filled Flux Rope and a Target Cloud of Initially Neutral Gas

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Bellan, Paul; Li, Hui; Li, Shengtai

    2016-10-01

    Shocks occur in the co-rotating interaction regions just beyond the solar corona, in the corona during CME events, and when the solar wind impacts Earth's magnetosphere. The Caltech solar loop experiment investigates shock physics by creating an arched plasma-filled flux rope that expands to collide with a pre-injected, initially-neutral gas. We focus the investigation on the situation of a heavy-gas plasma (Argon) impacting a much lighter neutral gas cloud (Hydrogen). The neutral gas target cloud ionizes immediately upon being impacted and plasma-induced shock waves propagate in the target cloud away from the impact region. Analysis of data from magnetic probes, Langmuir probes, a fast camera, and spectroscopic measurements will be presented. The measurements suggest that a thin, compressed, ionized layer of hydrogen is formed just downstream of the Argon plasma loop and that thin, supersonic shocks form further downstream and propagate obliquely away from the plasma loop. Numerical simulation of an ideal MHD plasma is underway to enable comparison of the measurements with the predictions of MHD theory.

  12. High Frequency Propagation modeling in a disturbed background ionosphere: Results from the Metal Oxide Space Cloud (MOSC) experiment

    NASA Astrophysics Data System (ADS)

    Joshi, D. R.; Groves, K. M.

    2015-12-01

    The Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud. A host of diagnostic instruments were used to probe and characterize the cloud including the ALTAIR incoherent scatter radar, multiple GPS and optical instruments, satellite radio beacons, and a dedicated network of high frequency (HF) radio links. Data from ALTAIR incoherent scatter radar and HF radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. During the first release the ionosphere was disturbed, rising rapidly and spread F formed within minutes after the release. To address the disturbed conditions present during the first release, we have developed a new method of assimilating oblique ionosonde data to generate the background ionosphere that can have numerous applications for HF systems. The link budget analysis of the received signals from the HF transmitters explains the missing low frequencies in the received signals along the great circle path. Observations and modeling confirm that the small amounts of ionized material injected in the lower-F region resulted in significant changes to the natural propagation environment.

  13. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    SciTech Connect

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; Boyle, Jim; McFarlane, Sally A.

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within the mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.

  14. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    DOE PAGES

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; ...

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less

  15. Biomass Smoke Influences on Deep Convection during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E)

    NASA Astrophysics Data System (ADS)

    Dong, X.; Logan, T.; Xi, B.

    2015-12-01

    Three deep convective cloud cases were selected during the 2011 Mid-Latitude Continental Convective Clouds Experiment (MC3E). Although biomass burning smoke advected from Mexico and Central America was the dominant source of cloud condensation nuclei (CCN) for deep convective cloud formation, the 11 May, 20 May, and 23 May cases exhibited different convective characteristics. The convection in the 11 May and 23 May cases formed in smoke laden environments in the presence of convective available potential energy (CAPE) values exceeding 1000 m2 s-2 and 3000 m2 s-2 along with low-level (0-1 km) shear of 10.3 m s-1 and 5.1 m s-1, respectively. The 11 May case had linear convection while the 23 May case featured discrete supercells. The 20 May case featured elevated linear convection that formed in a more moist environment with cleaner aerosol conditions, weak CAPE (<50 m2 s-2), and stronger low-level shear (25.6 m s-1). Though the 20 May case had the highest precipitation amount and duration, the 23 May case had the highest ice water content (IWC) in the upper levels of the convection (>9 km) suggesting a warm rain suppression mechanism caused by a combination of strong aerosol loading, large CAPE, and weak low-level wind shear. The observed results for the 20 May and 23 May cases agree well with recent modeling studies that simulated the convection and precipitation in these cases. Furthermore, the modeling of the 11 May case is suggested since the abundant amount of smoke CCN did not greatly enhance the overall precipitation amount and could be a possible aerosol-induced precipitation suppression case.

  16. Cloud Formation

    NASA Astrophysics Data System (ADS)

    Graham, Mark Talmage

    2004-05-01

    Cloud formation is crucial to the heritage of modern physics, and there is a rich literature on this important topic. In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud formation after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, "The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894."3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the formation of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud formation is never covered in physics texts.

  17. Tomographic retrieval of cloud liquid water fields from a single scanning microwave radiometer aboard a moving platform – Part 1: Field trial results from the Wakasa Bay experiment

    SciTech Connect

    Huang, D.; Gasiewski, A.; Wiscombe, W.

    2010-07-22

    Tomographic methods offer great potential for retrieving three-dimensional spatial distributions of cloud liquid water from radiometric observations by passive microwave sensors. Fixed tomographic systems require multiple radiometers, while mobile systems can use just a single radiometer. Part 1 (this paper) examines the results from a limited cloud tomography trial with a single-radiometer airborne system carried out as part of the 2003 AMSR-E validation campaign over Wakasa Bay of the Sea of Japan. During this trial, the Polarimetric Scanning Radiometer (PSR) and Microwave Imaging Radiometer (MIR) aboard the NASA P-3 research aircraft provided a useful dataset for testing the cloud tomography method over a system of low-level clouds. We do tomographic retrievals with a constrained inversion algorithm using three configurations: PSR, MIR, and combined PSR and MIR data. The liquid water paths from the PSR retrieval are consistent with those from the MIR retrieval. The retrieved cloud field based on the combined data appears to be physically plausible and consistent with the cloud image obtained by a cloud radar. We find that some vertically-uniform clouds appear at high altitudes in the retrieved field where the radar shows clear sky. This is likely due to the sub-optimal data collection strategy. This sets the stage for Part 2 of this study that aims to define optimal data collection strategies using observation system simulation experiments.

  18. Comparison of SSM/I measurements to numerically-simulated cloud and precipitation during ERICA. [Experiment for Rapidly Intesifying Cyclones

    NASA Technical Reports Server (NTRS)

    Perkey, Donald J.; Robertson, Franklin R.; Lapenta, William M.; Cohen, Charles

    1990-01-01

    The relationship between the moisture fields and the cyclone event that occurred on January 4-5, 1989 over Atlantic was investigated using preliminary 140-km and 70-km simulations of this cyclone, generated by a 3D version of the Drexel LAMPS, along with digital imagery from the SSM/I sensor. As the source of data, a sounding data set was obtained from the Experiment for Rapidly Intensifying Cyclones over the Atlantic (ERICA) Data Center. It was found that the 70-km integration produces a realistic moisture and cloud field as judged against passive microwave and IR imagery.

  19. Observations of formic and acetic acid by chemical ionization mass spectrometry in the Deep Convective Clouds and Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; McNeill, A.; Heikes, B.; O'Sullivan, D. W.; Silwal, I.

    2013-12-01

    Formic (HFo) and acetic acid (HAc) are part of the atmospheric processing of carbon and their measurement is relevant to defining oxygenated volatile organic carbon (OVOC) emissions, to examining photochemical processing of volatile organic carbon (VOC) and OVOCs, and to the photochemical processing of organic aerosol. Further, they can serve as photochemical tracers of convective transport, cloud chemical processes, and precipitation scavenging. The addition of HFo and HAc measurements to the Deep Convective Clouds and Chemistry Experiment (DC3) is relevant to the DC3 science objectives and complements the suite of chemicals already observed during DC3. The peroxide chemical ionization mass spectrometer (PCIMS) was flown aboard the NCAR Gulfstream-V platform in DC3 and while its primary function was to observe hydrogen peroxide and methylhydroperoxide it recorded signals attributed to iodide cluster ions of HFo and HAc at mass-charge ratios of 173 and 187, respectively. Post-mission laboratory experiments were performed to determine the CIMS instrument's sensitivity to these acids under the varying water vapor and sample flow conditions encountered during DC3 flights. The results of field measurements, laboratory experiments and the HFo and HAc recovery process are reported and HFo and HAc measurement quality assessed. The resultant HFo and HAc data are presented and interpreted with respect to atmospheric chemistry within measurement constraints. The DC3 observations were made in May and June 2012 and extended from the surface to 13 km over the central United States.

  20. Airborne LIDAR Measurements of Water Vapor, Ozone, Clouds, and Aerosols in the Tropics Near Central America During the TC4 Experiment

    NASA Technical Reports Server (NTRS)

    Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven

    2008-01-01

    Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.

  1. The Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment (SALTRACE 2013) - An overview

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Althausen, Dietrich; Chouza, Fernando; Dollner, Maximilian; Farrell, David; Groß, Silke; Heinold, Bernd; Kristensen, Thomas B.; Mayol-Bracero, Olga L.; Omar, Ali; Prospero, Joseph; Sauer, Daniel; Schäfler, Andreas; Toledano, Carlos; Tegen, Ina

    2015-04-01

    Saharan mineral dust is regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the Sahara. During transport, the properties of mineral dust may be modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. To investigate the aging and modification of Saharan mineral dust during long-range transport across the Atlantic Ocean, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE was designed as a closure experiment combining ground-based lidar, in-situ and sun photometer instruments deployed on Cape Verde, Barbados and Puerto Rico, with airborne measurements of the DLR research aircraft Falcon, satellite observations and model simulations. During SALTRACE, mineral dust from five dust outbreaks was studied under different atmospheric conditions and a unique data set on the chemical, microphysical and optical properties of aged mineral dust was gathered. For the first time, Lagrangian sampling of a dust plume in the Cape Verde area on 17 June 2013 which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados was realized. Further highlights of SALTRACE include the formation and evolution of tropical storm Chantal in a dusty environment and the interaction of dust with mixed-phase clouds. In our presentation, we give an overview of the SALTRACE study, discuss the meteorological situation and the dust transport during SALTRACE and highlight selected results from SALTRACE.

  2. Tomographic retrieval of cloud liquid water fields from a single scanning microwave radiometer aboard a moving platform – Part 2: Observation system simulation experiments

    SciTech Connect

    Huang, D.; Gasiewski, A.; Wiscombe, W.

    2010-07-01

    Part 1 of this research concluded that many conditions of the 2003 Wakasa Bay experiment were not optimal for the purpose of tomographic retrieval. Part 2 (this paper) then aims to find possible improvements to the mobile cloud tomography method using observation system simulation experiments. We demonstrate that the incorporation of the L{sub 1} norm total variation regularization in the tomographic retrieval algorithm better reproduces discontinuous structures than the widely used L{sub 2} norm Tikhonov regularization. The simulation experiments reveal that a typical ground-based mobile setup substantially outperforms an airborne one because the ground-based setup usually moves slower and has greater contrast in microwave brightness between clouds and the background. It is shown that, as expected, the error in the cloud tomography retrievals increases monotonically with both the radiometer noise level and the uncertainty in the estimate of background brightness temperature. It is also revealed that a lower speed of platform motion or a faster scanning radiometer results in more scan cycles and more overlap between the swaths of successive scan cycles, both of which help to improve the retrieval accuracy. The last factor examined is aircraft height. It is found that the optimal aircraft height is 0.5 to 1.0 km above the cloud top. To summarize, this research demonstrates the feasibility of tomographically retrieving the spatial structure of cloud liquid water using current microwave radiometric technology and provides several general guidelines to improve future field-based studies of cloud tomography.

  3. Alabama Ground Operations during the Deep Convective Clouds and Chemistry Experiment

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Blakeslee, Richard; Koshak, William; Bain, Lamont; Rogers, Ryan; Kozlowski, Danielle; Sherrer, Adam; Saari, Matt; Bigelbach, Brandon; Scott, Mariana; Schultz, Elise; Schultz, Chris; Gatlin, Patrick; Wingo, Matt; Phillips, Dustin; Phillips, Chris; Peterson, Harold; Bailey, Jeff; Frederickson, Terryn; Hall, John; Bart, Nicole; Becker, Melissa; Pinkney, Kurtis; Rowe, Scott; Starzec, Mariusz

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) field campaign investigates the impact of deep, midlatitude convective clouds, including their dynamical, physical and lighting processes, on upper tropospheric composition and chemistry. DC3 science operations took place from 14 May to 30 June 2012. The DC3 field campaign utilized instrumented aircraft and ground ]based observations. The NCAR Gulfstream ]V (GV) observed a variety of gas ]phase species, radiation and cloud particle characteristics in the high ]altitude outflow of storms while the NASA DC ]8 characterized the convective inflow. Groundbased radar networks were used to document the kinematic and microphysical characteristics of storms. In order to study the impact of lightning on convective outflow composition, VHF ]based lightning mapping arrays (LMAs) provided detailed three ]dimensional measurements of flashes. Mobile soundings were utilized to characterize the meteorological environment of the convection. Radar, sounding and lightning observations were also used in real ]time to provide forecasting and mission guidance to the aircraft operations. Combined aircraft and ground ]based observations were conducted at three locations, 1) northeastern Colorado, 2) Oklahoma/Texas and 3) northern Alabama, to study different modes of deep convection in a variety of meteorological and chemical environments. The objective of this paper is to summarize the Alabama ground operations and provide a preliminary assessment of the ground ]based observations collected over northern Alabama during DC3. The multi ] Doppler, dual ]polarization radar network consisted of the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR), the UAHuntsville Mobile Alabama X ]band (MAX) radar and the Hytop (KHTX) Weather Surveillance Radar 88 Doppler (WSR ]88D). Lightning frequency and structure were observed in near real ]time by the NASA MSFC Northern Alabama LMA (NALMA). Pre ]storm and inflow proximity

  4. The Optical Gravitational Lensing Experiment. OGLE-III Photometric Maps of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Soszyński, I.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Wyrzykowski, Ł.; Szewczyk, O.; Ulaczyk, K.; Poleski, R.

    2008-12-01

    We present OGLE-III Photometric Maps of the Small Magellanic Cloud. They contain precise, calibrated VI photometry of about 6.2 million stars from 41 OGLE-III fields in the SMC observed regularly in the years 2001-2008 and covering about 14 square degrees in the sky. Also precise astrometry of these objects is provided. One of the fields, SMC140, is centered on the 47 Tucanae Galactic globular cluster providing unique data on this object. We discuss quality of the data and present a few color-magnitude diagrams of the observed fields. All photometric data are available to the astronomical community from the OGLE Internet archive.

  5. Wind estimates from cloud motions - Preliminary results from phases I, II and III of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W. C.

    1976-01-01

    The accuracy of wind estimates derived from cloud motion is under investigation. Aircraft measurements of the ambient wind field have been compared with simultaneous inertial navigation system descriptions of the extent and motion of 40 tropical cumulus and 5 cirrus clouds. Preliminary results indicate that cloud-motion wind estimates are sufficiently accurate to be used in sensitive divergence, vorticity, and vertical motion calculations. The magnitude of the vector difference between the cirrus cloud velocity and the mean wind of the cloud layer was found to be about 1.6 m/sec. The major source of error is thought to be in determination of the position of the cloud. In the case of cumulus clouds, the magnitude of the vector difference between the aircraft-measured cloud motion and the cloud-base wind is less than 1.3 m/sec.

  6. Automatic Cloud Bursting under FermiCloud

    SciTech Connect

    Wu, Hao; Shangping, Ren; Garzoglio, Gabriele; Timm, Steven; Bernabeu, Gerard; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin; Noh, Seo-Young

    2013-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  7. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME

    PubMed Central

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2017-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948

  8. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

    PubMed

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2016-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

  9. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect

    Liu, Guosheng

    2013-03-15

    water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  10. Integrated framework for retrievals in a networked radar environment: Application to the Mid-latitude Continental Convective Clouds Experiment

    NASA Astrophysics Data System (ADS)

    Hardin, J. C.; Chandrasekar, C. V.; Yoshikawa, E.; Ushio, T.

    2012-12-01

    The Mid-Latitude Continental Convective Clouds Experiment (MC3E), was a joint DOE Atmospheric Radiation Measurement (ARM) and NASA Global Precipitation Measurements (GPM) field campaign that took place from April - June 2011 in Central Oklahoma centered at the ARM Southern Great Plains site. The experiment was a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign involved a large suite of observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation. The overarching goal was to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that had never before been available. The experiment consisted of a large number of ground radars, including NASA scanning dual-polarization radar systems (NPOL) at S-band, wind profilers, and a dense network of surface disdrometers. In addition to these special MC3E instruments, there were three networked scanning X-band radar systems, four wind profilers, a C-band scanning radar, a dual-wavelength (Ka/W) scanning cloud radar. There is extensive literature on the retrieval algorithms for precipitation and cloud parameters from single frequency, dual-polarization radar systems. With the cost of instruments such as radars becoming more affordable, multiple radar deployments are becoming more common in special programs, and the MC3E is a text book example of such a deployment. Networked deployments are becoming more common popularized by the

  11. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    SciTech Connect

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-03-18

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring.

  12. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool–International Cloud Experiment data

    SciTech Connect

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; Boyle, James; McFarlane, Sally A.

    2009-07-23

    Cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single column version of NCAR CAM3. For comparisons, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations were compared favorably with observations during the Tropical Warm Pool- International Cloud Experiment by US Department of Energy Atmospheric Radiation Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within the mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) content is similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and extends 2 km further downward, which are closer to observations. The dependence of the frozen water mass fraction in total condensate on temperature from the new scheme is also closer to available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is in general larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice effective radius contribute significantly to the difference in the TOA OLR in addition to cloud water path. The deep convection process affects both TOA OLR and surface downward longwave radiation. The over-frequently-triggered deep convention process in the model is not the only mechanism for the excess middle and high level clouds. Further evaluation especially for ice cloud properties based on in-situ data is needed.

  13. Aircraft observations of biomass burning emissions in the lower stratosphere during the Deep Convective Clouds and Chemistry Experiment (DC3)

    NASA Astrophysics Data System (ADS)

    Knapp, D. J.; Montzka, D.; Campos, T. L.; Flocke, F. M.; Stechman, D.; Farris, C.; Rooney, M.; Pan, L.; Apel, E. C.; Hornbrook, R. S.; Riemer, D. D.; Chen, D.; Huey, L. G.; Brock, C. A.; Froyd, K. D.; Liao, J.; Murphy, D. M.; Ryerson, T. B.; Dibb, J. E.; Scheuer, E. M.; Diskin, G. S.; Sachse, G. W.; Gao, R.; Langridge, J. M.; Hair, J. W.; Butler, C. F.; Fenn, M. A.; Fromm, M. D.; Lindsey, D.; Weinheimer, A. J.

    2012-12-01

    During test flights for the Deep Convective Clouds and Chemistry Experiment conducted in May and June of 2012, clear indications of biomass burning (BB) were observed in the Lower Stratosphere (LS). Enhancements in CO, aerosols, and CH3CN substantiate the impact of BB effluents on the studied air mass. A large complex of fires southwest of Lake Baikal in Russia had been observed to flare up significantly on May 7, 2012, leading to a strong Aerosol Index signature. The aerosol plume was tracked using AURA Ozone Monitoring Instrument (OMI) and Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observations (CALIPSO) curtains from the Baikal area, over Northern Siberia, the Aleutian Islands, South Western Canada and ultimately to the DC3 flight study area on May 14, 2012. BB tracers were sampled from the NASA DC8 and the NSF GV aircraft over a lateral range of 600km and an altitude of approximately 11.7 km which is approximately 0.5 km to 1.0 km above the local cold point tropopause.

  14. Soot effects on clouds and solar absorption: Understanding the differences in recently published soot mitigation experiments. (Invited)

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.

    2010-12-01

    Attention has been drawn to black carbon aerosols, as a target for short-term mitigation of climate warming. This measure seems attractive because soot is assumed to warm the atmosphere and at the same time has a lifetime of just a few days. Therefore regulating soot emissions could, as a short-term action, potentially buy time by slowing global warming until regulations for longer lived greenhouse gases are set in place. Currently the scientific community debates the impacts of such mitigation measures, especially when considering indirect effects. We tested with the GISS/MATRIX model, a global climate model including detailed aerosol microphysics, the effect of reducing fossil fuel emissions and bio-fuel emissions and found that opposite changes in cloud droplet number concentration lead to positive cloud forcing numbers in the bio-fuel reduction case and negative forcing numbers in the diesel mitigation case. Similar experiments have been carried out and have recently been published by other modeling groups, finding partly similar partly contradicting results to our study. In this presentation we want to explain the differences in black carbon research carried out with complex microphysical models, by focusing on the treatment of mixing state, and separation between forcings and feedbacks.

  15. A New Chicane Experiment in PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

    SciTech Connect

    Pivi, M. T.; Pivi, M.T.F.; Ng, J.S.T.; Arnett, D.; Cooper, F.; Kharakh, D.; King, F.K.; Kirby, R.E.; Kuekan, B.; Lipari, J.J.; Munro, M.; Olszewski, J.; Raubenheimer, T.O.; Seeman, J.; Spencer, C.M.; Wang, L.; Wittmer, W.; Celata, C.M.; Furman, M.A.; Smith, B.

    2008-06-11

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings, and it is expected to be a limiting factor in the performance of future colliders [1-3]. The effect is expected to be particularly severe in magnetic field regions. To test possible mitigation methods in magnetic fields, we have installed a new 4-dipole chicane experiment in the PEP-II Low Energy Ring (LER) at SLAC with both bare and TiN-coated aluminum chambers. In particular, we have observed a large variation of the electron flux at the chamber wall as a function of the chicane dipole field. We infer this is a new high order resonance effect where the energy gained by the electrons in the positron beam depends on the phase of the electron cyclotron motion with respect to the bunch crossing, leading to a modulation of the secondary electron production. Presumably the cloud density is modulated as well and this resonance effect could be used to reduce its magnitude in future colliders. We present the experimental results obtained during January 2008 until the April final shut-down of the PEP-II machine.

  16. A New Chicane Experiment In PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

    SciTech Connect

    Pivi, M.T.F.; Ng, J.S.T.; Arnett, D.; Cooper, F.; Kharakh, D.; King, F.K.; Kirby, R.E.; Kuekan, B.; Lipari, J.J.; Munro, M.; Olszewski, J.; Raubenheimer, T.O.; Seeman, J.; Smith, B.; Spencer, C.M.; Wang, L.; Wittmer, W.; Celata, C.M.; Furman, M.A.; /SLAC /LBL, Berkeley

    2008-07-03

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings, and it is expected to be a limiting factor in the performance of future colliders [1-3]. The effect is expected to be particularly severe in magnetic field regions. To test possible mitigation methods in magnetic fields, we have installed a new 4-dipole chicane experiment in the PEP-II Low Energy Ring (LER) at SLAC with both bare and TiN-coated aluminum chambers. In particular, we have observed a large variation of the electron flux at the chamber wall as a function of the chicane dipole field. We infer this is a new high order resonance effect where the energy gained by the electrons in the positron beam depends on the phase of the electron cyclotron motion with respect to the bunch crossing, leading to a modulation of the secondary electron production. Presumably the cloud density is modulated as well and this resonance effect could be used to reduce its magnitude in future colliders. We present the experimental results obtained during January 2008 until the April final shut-down of the PEP-II machine.

  17. Search Cloud

    MedlinePlus

    ... this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this page, ... chest pa and lateral Share the MedlinePlus search cloud with your users by embedding our search cloud ...

  18. The climate impact from contrails and cirrus clouds - overview from the CONCERT (CONtrail and Cirrus ExpeRimenT) campaign

    NASA Astrophysics Data System (ADS)

    Voigt, Christiane; Schumann, Ulrich; Gayet, Jean Francois; Petzold, Andreas; Krämer, Martina; Schlager, Hans; Borrmann, Stephan; Jurkat, Tina; Jeßberger, Philipp; Schäuble, Dominik

    2010-05-01

    Contrails and cirrus clouds were detected during the CONCERT-2CONTRAILS campaign (CONtrail and Cirrus ExpeRimenT) in November 2008 with the research aircraft Falcon. The Falcon was equipped with instruments to measure particle properties such as particle size distribution, extinction and particle shape as well as trace gas distributions of ozone, reactive nitrogen and halogen species and sulfur dioxide. During 5 mission flights over Western Europe numerous cirrus clouds and contrails were probed at altitudes between 9 and 11.5 km and temperatures between 213 and 237 K. 22 contrails from 11 different aircraft with ages below 10 minutes were detected in the vortex and early dispersion regime near and slightly below ice saturation. The contrail data are compared to nearby cirrus observations in terms of particle size distribution, shape, optical depth and extinction to discuss differences in their climate impact. In particular we present new observations of the contrail from a large aircraft, the A380. The evolution of the A380 contrail within its first 6 minutes of its lifetime has been observed. The A380 contrail observations are compared to contrail measurements from smaller aircraft in order to investigate the influence of the aircraft type on climate active contrail properties under similar meteorological conditions. Further, the specific climate impact from each of the measured contrail cases is assessed with the help of a new contrail cirrus prediction tool (CoCiP). The model computes the integral of the radiative forcing of the contrail over the computed life-time of the contrail and is tested with the detected contrails. It will be shown that the climate impact of contrails depends on both aircraft and meteorological parameters.

  19. Cloud radiative forcing sensitivity to Arctic synoptic regimes, surface type, cloud phase and cloud properties during the Fall 2014 Arctic Radiation, IceBridge and Sea-Ice Experiment (ARISE)

    NASA Astrophysics Data System (ADS)

    Segal-Rosenheimer, Michal; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor; LeBanc, Samuel; Schmidt, Sebastian; Song, Shi; Bucholtz, Anthony; Reid, Elizabeth; Anderson, Bruce; Corr, Chelsea; Smith, William L.; Kato, Seiji; Spangenberg, Douglas A.; Hofton, Michelle; Moore, Richard; Winstead, Edward; Thornhill, Lee K.

    2015-04-01

    Surface cloud radiative forcing (CRF) estimates in the Arctic cover a wide range of values when comparing various datasets (e.g. MERRA, CERES), and show high bias when compared to in-situ ground-based flux measurement stations (e.g. in Greenland) [Wenshan and Zender, 2014]. These high variations and biases result from an intricate relationship between the prevailing synoptic regimes, surface types (open ocean versus sea-ice), and cloud properties [e.g. Barton et al., 2012; Bennartz et al., 2013]. To date, analyses are focused on large-scale or inter-annual comparisons [e.g. Barton et al., 2012; Taylor et al., 2014], or on several specific ground-based sites [Shupe et al., 2004; Sedlar et al., 2012]. Nevertheless, smaller scale CRF variations related to the sharp changes in sea-ice cover, cloud type and synoptic regimes in autumn are still not well understood. Here, we are focusing on assessing the CRF sensitivity to a composite variable matrix of atmospheric stability regimes, cloud profiles and properties and surface type changes during the NASA ARISE campaign conducted in the Fall of 2014 during the Arctic sea-ice minimum in the Beaufort Sea. We are interested in answering the following questions: (1) what are the combinations of distinct synoptic regimes, surface types, and cloud properties that result in the lowest or highest simulated CRF values over the Arctic Beaufort Sea during the autumn 2014 sea-ice growth period?, and (2) can we relate these simulated extremes to the observations made during the ARISE campaign? We are using the libRadtran radiative transfer modeling package to calculate the CRF sensitivity matrix, with daily gridded atmospheric profiles input from MERRA re-analysis, cloud fields and properties from CALIPSO, MODIS, AVHRR, daily variations in sea-ice margins from AMSR-2, and complementary airborne measurements collected on the C-130 during the campaign. In performing sensitivity analysis, we examine CRF extremes sorted by atmospheric

  20. Linac-based positron source and generation of a high density positronium cloud for the GBAR experiment

    NASA Astrophysics Data System (ADS)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Dupré, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Ruiz, N.; Sacquin, Y.

    2013-06-01

    The aim of the recently approved GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment is to measure the acceleration of neutral antihydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high density positronium cloud as a target for antiprotons, provided by the Antiproton Decelerator (AD) - Extra Low Energy Antiproton Ring (ELENA) facility at CERN. We introduce briefly the experimental scheme and present the ongoing efforts at IRFU CEA Saclay to develop the positron source and the positron-positronium converter, which are key parts of the experiment. We have constructed a slow positron source in Saclay, based on a low energy (4.3 MeV) linear electron accelerator (linac). By using an electron target made of tungsten and a stack of thin W meshes as positron moderator, we reached a slow positron intensity that is comparable with that of 22Na-based sources using a solid neon moderator. The source feeds positrons into a high field (5 T) Penning-Malmberg trap. Intense positron pulses from the trap will be converted to slow ortho-positronium (o-Ps) by a converter structure. Mesoporous silica films appear to date to be the best candidates as converter material. We discuss our studies to find the optimal pore configuration for the positron-positronium converter.

  1. Cloud Distribution Statistics from LITE

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1998-01-01

    The Lidar In-Space Technology Experiment (LITE) mission has demonstrated the utility of spaceborne lidar in observing multilayer clouds and has provided a dataset showing the distribution of tropospheric clouds and aerosols. These unambiguous observations of the vertical distribution of clouds will allow improved verification of current cloud climatologies and GCM cloud parameterizations. Although there is now great interest in cloud profiling radar, operating in the mm-wave region, for the spacebased observation of cloud heights the results of the LITE mission have shown that satellite lidars can also make significant contributions in this area.

  2. Dimensions and aspect ratios of natural ice crystals

    DOE PAGES

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; ...

    2015-04-15

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L

  3. Dimensions and aspect ratios of natural ice crystals

    NASA Astrophysics Data System (ADS)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S.-S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2015-04-01

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at -67 < T < -35 °C and at -40 < T < -15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L-W relationships of columns

  4. Dimensions and aspect ratios of natural ice crystals

    NASA Astrophysics Data System (ADS)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S.-S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2014-12-01

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the Tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign in mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. Dimensions and aspect ratios (AR, dimension of major axis divided by dimension of minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased as temperature increased. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50±1.35 during three campaigns and 6.32±1.34 (5.46±1.34; 4.95±1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at -67 < T < -35 °C and at -40 < T < -15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L-W relationships of columns derived using

  5. The application of time-dependent ice crystal trajectory and growth model for the evaluation of cloud seeding experiment using liquid carbon dioxide

    NASA Astrophysics Data System (ADS)

    Nishiyama, K.; Wakimizu, K.; Maki, T.; Suzuki, Y.; Morita, O.; Tomine, K.

    2012-12-01

    This study evaluated the results of cloud seeding experiment conducted on 17th January, 2008, in western Kyushu, Japan, using simplified time-dependent ice crystal growth and trajectory cloud model, which is characterized by 1) depositional diffusion growth process only of an ice crystal, and 2) the pursuit of the growing ice crystal based on wind field and ice crystal terminal velocity. For the estimation of the ice crystal growth and trajectory, the model specifies ice supersaturation ratio that expresses the degree of competition growth among ice crystals formed by LC seeding for existing water vapor, assuming no effect of natural ice crystals. The model is based on ice crystal growth along a- and c-axes depending on air temperature and ice supersatuation, according to Chen and Lamb (1994). The cloud seeding experiment was conducted by applying homogeneous nucleation (rapid cooling of air mass and subsequent formation of many ice crystals~1013/g LC) of Liquid Carbon (LC) dioxide seeding under typical winter-type snowfall-inducing weather situation characterized by the outbreak of cold air masses from the Siberia. The result of aircraft horizontally-penetrating seeding of LC into lower layer (-2 degree C) of supercooled convective cloud with 1km thickness above the freezing level led to the formation of an artificially-induced 'isolated' radar echo (the left figures of Fig. 1) in dominant 'no-natural radar echo region'. In other words, natural biases were eliminated by the formation of the isolated radar echo. This fact provides the shortcut for evaluating the result of cloud seeding experiment. In the next, the observed cloud seeding results were evaluated by estimating the trajectory of artificially-induced growing ice crystal. The results show that the trajectory of artificial ice crystals depends on the degree of completion growth mode. Free growth brings rapid growth of an ice crystal and, therefore, the ice crystal falls into lower layers for a short time

  6. LDEF Interplanetary Dust Experiment - Techniques for identification and study of long-lived orbital debris clouds

    NASA Technical Reports Server (NTRS)

    Singer, S. F.; Oliver, J. P.; Weinberg, J. L.; Cooke, W. J.; Montague, N. L.; Mulholland, J. D.; Wortman, J. J.; Kassel, P. C.; Kinard, W. H.

    1991-01-01

    The Long Duration Exposure Facility (LDEF) is a 12-sided, 4.3-m-diameter, 9.1-m-long cylinder designed and built by NASA Langley to carry experiments for extended periods in space. The LDEF was first placed in orbit by the Shuttle Challenger on 7 April 1984 and recovered by the Shuttle Columbia in January 1990, only days before it was expected to burn up in the earth's atmosphere. The Interplanetary Dust Experiment (IDE) was designed to detect impacts of extra-terrestrial particles and orbital debris. The IDE detectors (which covered about 1 sq m of the surface of LDEF) were sensitive to particles ranging in size from about 0.2 to 100 microns. Data were recorded for 11.5 months before the supply of magnetic tape was exhausted. Examination of the LDEF IDE dataset shows that impacts often occurred in 'bursts', during which numerous impacts occurred in a short time (typically 3-5 min) at a rate much greater than the average impact rate. In several cases, such events reoccurred each time the LDEF returned to the same point in its orbit. Such multi-orbit event sequences were found to extend for as many as 25 or more orbits.

  7. SenSyF Experience on Integration of EO Services in a Generic, Cloud-Based EO Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Almeida, Nuno; Catarino, Nuno; Gutierrez, Antonio; Grosso, Nuno; Andrade, Joao; Caumont, Herve; Goncalves, Pedro; Villa, Guillermo; Mangin, Antoine; Serra, Romain; Johnsen, Harald; Grydeland, Tom; Emsley, Stephen; Jauch, Eduardo; Moreno, Jose; Ruiz, Antonio

    2016-08-01

    SenSyF is a cloud-based data processing framework for EO- based services. It has been pioneer in addressing Big Data issues from the Earth Observation point of view, and is a precursor of several of the technologies and methodologies that will be deployed in ESA's Thematic Exploitation Platforms and other related systems.The SenSyF system focuses on developing fully automated data management, together with access to a processing and exploitation framework, including Earth Observation specific tools. SenSyF is both a development and validation platform for data intensive applications using Earth Observation data. With SenSyF, scientific, institutional or commercial institutions developing EO- based applications and services can take advantage of distributed computational and storage resources, tailored for applications dependent on big Earth Observation data, and without resorting to deep infrastructure and technological investments.This paper describes the integration process and the experience gathered from different EO Service providers during the project.

  8. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)

    DOE Data Explorer

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  9. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    SciTech Connect

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  10. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)

    SciTech Connect

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  11. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    SciTech Connect

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  12. Cloud Processed CCN Affect Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  13. An Overview of the Lightning - Atmospheric Chemistry Aspects of the Deep Convective Clouds and Chemistry (DC3) Experiment

    NASA Technical Reports Server (NTRS)

    Pickering, K. E.; Barth, M. C.; Koshak, W.; Bucsela, E. J.; Allen, D. J.; Weinheimer, A.; Ryerson, T.; Huntrieser, H.; Bruning, E.; MacGorman, D.; Krehbiel, P.; Thomas, R.; Carey, L.

    2012-01-01

    Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the

  14. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment SALTRACE 2013 - Overview and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Ansmann, A.; Reitebuch, O.; Freudenthaler, V.; Müller, T.; Kandler, K.; Althausen, D.; Busen, R.; Dollner, M.; Dörnbrack, A.; Farrell, D. A.; Gross, S.; Heimerl, K.; Klepel, A.; Kristensen, T. B.; Mayol-Bracero, O. L.; Minikin, A.; Prescod, D.; Prospero, J. M.; Rahm, S.; Rapp, M.; Sauer, D. N.; Schaefler, A.; Toledano, C.; Vaughan, M.; Wiegner, M.

    2013-12-01

    Mineral dust is an important player in the global climate system. In spite of substantial progress in the past decade, many questions in our understanding of the atmospheric and climate effects of mineral dust remain open such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds. To close gaps in our understanding of mineral dust in the climate system, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling. During SALTRACE, the DLR research aircraft Falcon was based on Sal, Cape Verde, between 11 and 17 June, and on Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties and with a nadir-looking 2-μm wind lidar. Ground-based lidar and in-situ instruments were deployed in Barbados and Puerto Rico. Mineral dust from several dust outbreaks was measured by the Falcon between Senegal and Florida. On the eastern side of the Atlantic, dust plumes extended up to 6 km altitude, while the dust layers in the Caribbean were mainly below 4.5 km. The aerosol optical thickness of the dust outbreaks studied ranged from 0.2 to 0.6 at 500 nm in Barbados. Highlights during SALTRACE included the sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June near Barbados. The event was also captured by the ground-based lidar and in-situ instrumentation. Another highlight was the formation of tropical storm

  15. An overview of the Ice Nuclei Research Unit Jungfraujoch/Cloud and Aerosol Characterization Experiment 2013 (INUIT-JFJ/CLACE-2013)

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes

    2014-05-01

    Ice formation in mixed phase tropospheric clouds is an essential prerequisite for the formation of precipitation at mid-latitudes. Ice formation at temperatures warmer than -35°C is only possible via heterogeneous ice nucleation, but up to now the exact pathways of heterogeneous ice formation are not sufficiently well understood. The research unit INUIT (Ice NUcleation research unIT), funded by the Deutsche Forschungsgemeinschaft (DFG FOR 1525) has been established in 2012 with the objective to investigate heterogeneous ice nucleation by combination of laboratory studies, model calculation and field experiments. The main field campaign of the INUIT project (INUIT-JFJ) was conducted at the High Alpine Research Station Jungfraujoch (Swiss Alps, 3580 m asl) during January and February 2013, in collaboration with several international partners in the framework of CLACE2013. The instrumentation included a large set of aerosol chemical and physical analysis instruments (particle counters, particle sizers, particle mass spectrometers, cloud condensation nuclei counters, ice nucleus counters etc.), that were operated inside the Sphinx laboratory and sampled in mixed phase clouds through two ice selective inlets (Ice-CVI, ISI) as well as through a total aerosol inlet that was used for out-of-cloud aerosol measurements. Besides the on-line measurements, also samples for off-line analysis (ESEM, STXM) have been taken in and out of clouds. Furthermore, several cloud microphysics instruments were operated outside the Sphinx laboratory. First results indicate that a large fraction of ice residues sampled from mixed phase clouds contain organic material, but also mineral dust. Soot and lead were not found to be enriched in ice residues. The concentration of heterogeneous ice nuclei was found to be variable (ranging between < 1 and > 100 per liter) and to be strongly dependent on the operating conditions of the respective IN counter. The number size distribution of ice residues

  16. Weather Fundamentals: Clouds. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…

  17. GEWEX Cloud Systems Study (GCSS)

    NASA Technical Reports Server (NTRS)

    Moncrieff, Mitch

    1993-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.

  18. Polarization of clouds

    NASA Astrophysics Data System (ADS)

    Goloub, Philippe; Herman, Maurice; Parol, Frederic

    1995-12-01

    This paper reports the main results concerning polarization by clouds derived from POLDER (polarization and directionality of earth's reflectances) airborne version. These results tend to confirm the high information content in the polarization (phase, altimetry). The preliminary results of EUCREX'94 (European Cloud Radiation Experiment) evidenced the drastically different polarized signatures for ice crystals and water droplets. Here we report systematic and statistically significative observations over the whole EUCREX data set. The results show that the cirrus exhibit their own signature. Preliminary observations performed during CLEOPATRA'91 (Cloud Experiment Ober Pfaffenhofen And Transport) and EUCREX'94 campaigns have shown the feasibility of cloud altimetry using spectral information (443 nm and 865 nm) of the polarized light over liquid water droplets clouds. Altimetry technique has been generalized on ASTEX-SOFIA'92 and EUCREX'94 data sets. All these results are presented and discussed in this paper.

  19. Physical Validation of GPM Retrieval Algorithms Over Land: An Overview of the Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    NASA Astrophysics Data System (ADS)

    Petersen, W. A.; Jensen, M. P.

    2011-12-01

    The joint NASA GPM - DOE ARM Midlatitude Continental Convective Clouds Experiment (MC3E) was conducted from April 22-June 6, 2011, centered on the DOE-ARM Southern Great Plains Central Facility site in northern Oklahoma. GPM field campaign objectives focused on the collection of airborne and ground-based measurements of warm-season continental precipitation processes to support refinement of GPM retrieval algorithm physics over land, and to improve the fidelity of coupled cloud resolving and land-surface satellite simulator models. DOE ARM objectives were synergistically focused on relating observations of cloud microphysics and the surrounding environment to feedbacks on convective system dynamics, an effort driven by the need to better represent those interactions in numerical modeling frameworks. More specific topics addressed by MC3E include ice processes and ice characteristics as coupled to precipitation at the surface and radiometer signals measured in space, the correlation properties of rainfall and drop size distributions and impacts on dual-frequency radar retrieval algorithms, the transition of cloud water to rain water (e.g., autoconversion processes) and the vertical distribution of cloud water in precipitating clouds, and vertical draft structure statistics in cumulus convection. The MC3E observational strategy relied on NASA ER-2 high-altitude airborne multi-frequency radar (HIWRAP Ka-Ku band) and radiometer (AMPR, CoSMIR; 10-183 GHz) sampling (a GPM "proxy") over an atmospheric column being simultaneously profiled in situ by the University of North Dakota Citation microphysics aircraft, an array of ground-based multi-frequency scanning polarimetric radars (DOE Ka-W, X and C-band; NASA D3R Ka-Ku and NPOL S-bands) and wind-profilers (S/UHF bands), supported by a dense network of over 20 disdrometers and rain gauges, all nested in the coverage of a six-station mesoscale rawinsonde network. As an exploratory effort to examine land-surface emissivity

  20. Physical Validation of GPM Retrieval Algorithms Over Land: An Overview of the Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Jensen, Michael P.

    2011-01-01

    The joint NASA Global Precipitation Measurement (GPM) -- DOE Atmospheric Radiation Measurement (ARM) Midlatitude Continental Convective Clouds Experiment (MC3E) was conducted from April 22-June 6, 2011, centered on the DOE-ARM Southern Great Plains Central Facility site in northern Oklahoma. GPM field campaign objectives focused on the collection of airborne and ground-based measurements of warm-season continental precipitation processes to support refinement of GPM retrieval algorithm physics over land, and to improve the fidelity of coupled cloud resolving and land-surface satellite simulator models. DOE ARM objectives were synergistically focused on relating observations of cloud microphysics and the surrounding environment to feedbacks on convective system dynamics, an effort driven by the need to better represent those interactions in numerical modeling frameworks. More specific topics addressed by MC3E include ice processes and ice characteristics as coupled to precipitation at the surface and radiometer signals measured in space, the correlation properties of rainfall and drop size distributions and impacts on dual-frequency radar retrieval algorithms, the transition of cloud water to rain water (e.g., autoconversion processes) and the vertical distribution of cloud water in precipitating clouds, and vertical draft structure statistics in cumulus convection. The MC3E observational strategy relied on NASA ER-2 high-altitude airborne multi-frequency radar (HIWRAP Ka-Ku band) and radiometer (AMPR, CoSMIR; 10-183 GHz) sampling (a GPM "proxy") over an atmospheric column being simultaneously profiled in situ by the University of North Dakota Citation microphysics aircraft, an array of ground-based multi-frequency scanning polarimetric radars (DOE Ka-W, X and C-band; NASA D3R Ka-Ku and NPOL S-bands) and wind-profilers (S/UHF bands), supported by a dense network of over 20 disdrometers and rain gauges, all nested in the coverage of a six-station mesoscale rawinsonde

  1. Triangulation Error Analysis for the Barium Ion Cloud Experiment. M.S. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.

    1973-01-01

    The triangulation method developed specifically for the Barium Ion Cloud Project is discussed. Expression for the four displacement errors, the three slope errors, and the curvature error in the triangulation solution due to a probable error in the lines-of-sight from the observation stations to points on the cloud are derived. The triangulation method is then used to determine the effect of the following on these different errors in the solution: the number and location of the stations, the observation duration, east-west cloud drift, the number of input data points, and the addition of extra cameras to one of the stations. The pointing displacement errors, and the pointing slope errors are compared. The displacement errors in the solution due to a probable error in the position of a moving station plus the weighting factors for the data from the moving station are also determined.

  2. [Proposal of a cloud chamber experiment using diagnostic X-ray apparatus and an analysis assisted by a simulation code].

    PubMed

    Hayashi, Hiroaki; Hanamitsu, Hiroki; Nishihara, Sadamitsu; Ueno, Junji; Miyoshi, Hirokazu

    2013-04-01

    A cloud chamber is a radiation detector that can visualize the tracks of charged particles. In this study, we developed a middle-type cloud chamber for use in practical training using a diagnostic X-ray apparatus. Because our cloud chamber has a heater to vaporize ethanol and features antifogging glass, it is possible to observe the vapor trails for a long time without the need for fine adjustments. X-rays with a tube voltage of 40 kV or of 120 kV (with a 21-mm aluminum filter) were irradiated at the chamber and the various phenomena were observed. We explain these phenomena in terms of the range of electrons and/or interactions between X-rays and matter and conclude that our analysis is consistent with analysis using the Monte Carlo simulation code EGS5.

  3. Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm

    NASA Astrophysics Data System (ADS)

    Dawe, J. T.; Austin, P. H.

    2012-01-01

    A technique for the tracking of individual clouds in a Large Eddy Simulation (LES) is presented. We use this technique on an LES of a shallow cumulus cloud field based upon the Barbados Oceanographic and Meteorological Experiment (BOMEX) to calculate statistics of cloud height, lifetime, and other physical properties for individual clouds in the model. We also examine the question of nature versus nurture in shallow cumulus clouds: do properties at cloud base determine the upper-level properties of the clouds (nature), or are cloud properties determined by the environmental conditions they encounter (nurture). We find that clouds which ascend through an environment that has been pre-moistened by previous cloud activity are no more likely to reach the inversion than clouds that ascend through a drier environment. Cloud base thermodynamic properties are uncorrelated with upper-level cloud properties, while mean fractional entrainment and detrainment rates display moderate correlations with cloud properties up to the inversion. Conversely, cloud base area correlates well with upper-level cloud area and maximum cloud height. We conclude that cloud thermodynamic properties are primarily influenced by entrainment and detrainment processes, cloud area and height are primarily influenced by cloud base area, and thus nature and nurture both play roles in the dynamics of BOMEX shallow cumulus clouds.

  4. Statistical analysis of a LES shallow cumulus cloud ensemble using a cloud tracking algorithm

    NASA Astrophysics Data System (ADS)

    Dawe, J. T.; Austin, P. H.

    2011-08-01

    A technique for the tracking of individual clouds in a Large Eddy Simulation (LES) is presented. We use this technique on a LES of a shallow cumulus cloud field based upon the Barbados Oceanographic and Meteorological Experiment (BOMEX) to calculate statistics of cloud height, lifetime, and other physical properties for individual clouds in the model. We also examine the question of nature versus nurture in shallow cumulus clouds: do properties at cloud base determine the upper-level properties of the clouds (nature), or are cloud properties determined by the environmental conditions they encounter (nurture). We find that clouds which ascend through an environment that has been pre-moistened by previous cloud activity are no more likely to reach the inversion than clouds that ascend through a drier environment. Cloud base thermodynamic properties are uncorrelated with upper-level cloud properties, while mean fractional entrainment and detrainment rate displays moderate correlations with cloud properties up to the inversion. Conversely, cloud base area correlates well with upper-level cloud area and maximum cloud height. We conclude that cloud thermodynamic properties are primarily influenced by entrainment and detrainment processes, cloud area and height are primarily influenced by cloud base area, and thus nature and nurture both play roles in the dynamics of BOMEX shallow cumulus clouds.

  5. Active Imaging through Cirrus Clouds.

    PubMed

    Landesman, B; Kindilien, P; Pierson, R; Matson, C; Mosley, D

    1997-11-24

    The presence of clouds of ice particles in the uplink and downlink path of an illumination beam can severely impede the performance of an active imaging system. Depending on the optical depth of the cloud, i.e., its density and depth, the beam can be completely scattered and extinguished, or the beam can pass through the cloud with some fraction attenuated, scattered, and depolarized. In particular, subvisual cirrus clouds, i.e., high, thin cirrus clouds that cannot be observed from the ground, can affect the properties and alignment of both uplink and downlink beams. This paper discusses the potential for active imaging in the presence of cirrus clouds. We document field data results from an active imaging experiment conducted several years ago, which the authors believe to show the effects of cirrus clouds on an active imaging system. To verify these conclusions, we include the results of a simulation of the interaction of a coherent illumination scheme with a cirrus cloud.

  6. On the role of thermodynamics and cloud-aerosol-precipitation interactions over thunderstorm activity during GoAmazon and ACRIDICON-CHUVA field experiments

    NASA Astrophysics Data System (ADS)

    Albrecht, R. I.; Morales, C. A.; Hoeller, H.; Braga, R. C.; Machado, L.; Wendisch, M.; Andreae, M. O.; Rosenfeld, D.; Poeschl, U.; Biscaro, T.; Lima, W.; Eichholz, C.; Oliveira, R. A. J.; Sperling, V.; Carvalho, I.; Calheiros, A. J. P.; Amaral, L. F.; Cecchin, M.; Saraiva, J.; Saraiva, I.; Schumacher, C.; Funk, A. B.

    2015-12-01

    Based on satellite data, total (intracloud and cloud-to-ground) lightning activity climatological annual cycle over the GoAmazon area of interest (from T0 to T3 sites) shows that lightning activity is moderate (up to 10 flashes per day - fl day-1) throughout the wet (December-March) and dry (April-August) seasons, with T3 always being a little greater than T1 and T0 sites, respectively. During the dry-to-wet transition season (September-October), however, lightning activity peaks up to 25 fl day-1 at T1, followed by T3 (20 fl day-1) and T0 (15 fl day-1). The diurnal cycle reveals that the onset of deep convection during this same season starts one hour and peaks two hours earlier than the wet season. In the Amazon, cloud updrafts are primarily controlled by the local environment thermodynamics. During the dry-to-wet transition season, thermodynamics is significantly changed by land cover land cover where cloud base heights are elevated over deforested areas potentially increasing the strength of updrafts due to a better processing of the convective available potential energy, and therefore also increasing cloud electrification. The total (intracloud and cloud-to-ground) LIghtning NET(LINET - Nowcast) installed in September-October 2014 for GoAmazon IOP2 and ACRIDICON-CHUVA field experiments and the set of weather radars revealed that the thunderstorm enhancement over T1 (Manaus) during the dry-to-wet season is driven by the interaction between river breeze and the main easterly winds over Amazon basin, resulting in a locally forced convergent flow on the east side of Rio Negro which drives deep afternoon convection. In terms of atmospheric pollution, the dry-to-wet season is also marked by increased biomass burning, and the city of Manaus (T1) is a local polluted heat island. We will also present quantified thermodynamical and microphysical differences between the thunderstorms that developed over T0, T1 and T2. Our hypothesis is that cloud charge centers, total

  7. AceCloud: Molecular Dynamics Simulations in the Cloud.

    PubMed

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  8. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  9. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  10. Cloud Computing

    SciTech Connect

    Pete Beckman and Ian Foster

    2009-12-04

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  11. The Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) Experiment: Scientific Basis, New Analysis Tools and Some Ongoing Results

    NASA Astrophysics Data System (ADS)

    Montgomery, M. T.

    2012-12-01

    The principal hypotheses of a new model of tropical cyclogenesis, known as the marsupial paradigm, were tested in the context of Atlantic tropical disturbances during the National Science Foundation-sponsored Pre-Depression Investigation of Cloud systems in the Tropics (PREDICT) experiment in 2010. PREDICT was part of a tri-agency collaboration, with the National Aeronautics and Space Administration's Genesis and Rapid Intensification Processes (NASA GRIP) experiment and the National Oceanic and Atmospheric Administration's Intensity Forecasting Experiment (NOAA IFEX), intended to examine both developing and non-developing tropical disturbances. In this talk, some scientific products and examples of data collected by the PREDICT science team will be highlighted for several of the disturbances and an example of some of the recent research by PREDICT team members will be summarized.

  12. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  13. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  14. Cloud Technology May Widen Genomic Bottleneck - TCGA

    Cancer.gov

    Computational biologist Dr. Ilya Shmulevich suggests that renting cloud computing power might widen the bottleneck for analyzing genomic data. Learn more about his experience with the Cloud in this TCGA in Action Case Study.

  15. H{sub 2} EXCITATION STRUCTURE ON THE SIGHTLINES TO {delta} SCORPII AND {zeta} OPHIUCI: FIRST RESULTS FROM THE SUB-ORBITAL LOCAL INTERSTELLAR CLOUD EXPERIMENT

    SciTech Connect

    France, Kevin; Nell, Nicholas; Kane, Robert; Green, James C.; Burgh, Eric B.

    2013-07-20

    We present the first science results from the Sub-orbital Local Interstellar Cloud Experiment (SLICE): moderate resolution 1020-1070 A spectroscopy of four sightlines through the local interstellar medium. High signal-to-noise (S/N) spectra of {eta} Uma, {alpha} Vir, {delta} Sco, and {zeta} Oph were obtained during a 2013 April 21 rocket flight. The SLICE observations constrain the density, molecular photoexcitation rates, and physical conditions present in the interstellar material toward {delta} Sco and {zeta} Oph. Our spectra indicate a factor of two lower total N(H{sub 2}) than previously reported for {delta} Sco, which we attribute to higher S/N and better scattered light control in the new SLICE observations. We find N(H{sub 2}) = 1.5 Multiplication-Sign 10{sup 19} cm{sup -2} on the {delta} Sco sightline, with kinetic and excitation temperatures of 67 and 529 K, respectively, and a cloud density of n{sub H} = 56 cm{sup -3}. Our observations of the bulk of the molecular sightline toward {zeta} Oph are consistent with previous measurements (N(H{sub 2}) Almost-Equal-To 3 Multiplication-Sign 10{sup 20} cm{sup -2} at T{sub 01}(H{sub 2}) = 66 K and T{sub exc} = 350 K). However, we detect significantly more rotationally excited H{sub 2} toward {zeta} Oph than previously observed. We infer a cloud density in the rotationally excited component of n{sub H} Almost-Equal-To 7600 cm{sup -3} and suggest that the increased column densities of excited H{sub 2} are a result of the ongoing interaction between {zeta} Oph and its environment; also manifest as the prominent mid-IR bowshock observed by WISE and the presence of vibrationally excited H{sub 2} molecules observed by the Hubble Space Telescope.

  16. A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16

    NASA Astrophysics Data System (ADS)

    Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien

    2015-04-01

    The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to

  17. Cloud Computing

    DTIC Science & Technology

    2009-11-12

    Eucalyptus Systems • Provides an open-source application that can be used to implement a cloud computing environment on a datacenter • Trying to establish an...Summary Cloud Computing is in essence an economic model • It is a different way to acquire and manage IT resources There are multiple cloud providers...edgeplatform.html • Amazon Elastic Compute Cloud (EC2): http://aws.amazon.com/ec2/ • Amazon Simple Storage Solution (S3): http://aws.amazon.com/s3/ • Eucalyptus

  18. Contrasting sea-ice and open-water boundary layers during melt and freeze-up seasons: Some result from the Arctic Clouds in Summer Experiment.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan

    2016-04-01

    With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary

  19. Implications of using transmitted vs. reflected light for determining cloud properties, cloud radiative effects and aerosol-cloud-interactions

    NASA Astrophysics Data System (ADS)

    LeBlanc, S. E.; Redemann, J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Flynn, C. J.; Schmidt, S.; Pilewskie, P.; Song, S.; Woods, S.; Lawson, P.; Nenes, A.; Lin, J. J.; Ziemba, L. D.

    2015-12-01

    Light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. This difference in sampling volumes has implications when calculating the radiative effects of clouds (CRE) and aerosol-cloud-interactions (ACI). We present a comparison of retrieved cloud properties and the corresponding CRE and ACI based on transmitted and reflected light for a cloud sampled during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, 2013) field campaign. Measurements of zenith radiances were obtained from the NASA DC-8 aircraft using the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument. 4STAR was deployed on an airborne platform during SEAC4RS alongside the Solar Spectral Flux Radiometer (SSFR). To retrieve cloud properties from transmitted shortwave radiation, we use a retrieval utilizing spectrally resolved measurements. Spectral features in shortwave radiation transmitted through clouds are sensitive to changes in cloud optical thickness, effective radius, and thermodynamic phase. The spectral features due to absorption and scattering processes by liquid water and ice cloud particles include shifts in spectral slopes, curvatures, maxima, and minima of cloud-transmitted radiance. These spectral features have been quantified by 15 parameters used to retrieve cloud properties from the 4STAR zenith radiances. Retrieved cloud optical thicknesses and effective radii based on transmitted shortwave radiation are compared to their counterparts obtained from reflected shortwave radiation measured above cloud with MODIS and with the enhanced MODIS Airborne Simulator (eMAS), the Research Scanning Polarimeter (RSP), and SSFR operating aboard the NASA ER-2 aircraft. Remotely sensed cloud particle effective radius are combined with in situ measurements of cloud and aerosol particles from the NASA Langley Aerosol Research Group Experiment (LARGE) CCN Counter

  20. Cloud Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)

    2001-01-01

    Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.

  1. Cloud Control

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2012-01-01

    Your learning curriculum needs a new technological platform, but you don't have the expertise or IT equipment to pull it off in-house. The answer is a learning system that exists online, "in the cloud," where learners can access it anywhere, anytime. For trainers, cloud-based coursework often means greater ease of instruction resulting in greater…

  2. Complex Clouds

    Atmospheric Science Data Center

    2013-04-16

    ...     View Larger Image The complex structure and beauty of polar clouds are highlighted by these images acquired ... corner, the edge of the Antarctic coastline and some sea ice can be seen through some thin, high cirrus clouds. The right-hand panel ...

  3. Cloud Control

    ERIC Educational Resources Information Center

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  4. Cloud Cover

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  5. Arctic Clouds

    Atmospheric Science Data Center

    2013-04-19

    ...   View Larger Image Stratus clouds are common in the Arctic during the summer months, and are important modulators of ... from MISR's two most obliquely forward-viewing cameras. The cold, stable air causes the clouds to persist in stratified layers, and this ...

  6. The 1997 El Niño impact on clouds, water vapour, aerosols and reactive trace gases in the troposphere, as measured by the Global Ozone Monitoring Experiment

    NASA Astrophysics Data System (ADS)

    Loyola, D.; Valks, P.; Ruppert, T.; Richter, A.; Wagner, T.; Thomas, W.; van der A, R.; Meisner, R.

    2006-03-01

    The El Niño event of 1997/1998 caused dry conditions over the Indonesian area that were followed by large scale forest and savannah fires over Kalimantan, Sumatra, Java, and parts of Irian Jaya. Biomass burning was most intense between August and October 1997, and large amounts of ozone precursors, such as nitrogen oxides, carbon monoxide and hydrocarbons were emitted into the atmosphere. In this work, we use satellite measurements from the Global Ozone Monitoring Experiment (GOME) sensor to study the teleconnections between the El Niño event of 1997 and the Indonesian fires, clouds, water vapour, aerosols and reactive trace gases (nitrogen dioxide, formaldehyde and ozone) in the troposphere.

  7. Evaluation of Nimbus 7 THIR/CLE and Air Force three-dimensional Nephanalysis estimates of cloud amount. [Temperature-Humidity Infrared Radiometer/Clouds Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Stowe, L. L.

    1984-01-01

    Three different estimates of the percent of fixed geographical regions (160 x 160 km) either free of cloud (clear) or covered by low, middle, and high (opaque) cloud have been intercompared. The estimates were derived by analysts interpreting geosynchronous satellite images, with concurrent meteorological observations; from Nimbus 7 temperature humidity infrared radiometer (THIR) CLOUD ERB (CLE) data; and from Air Force three dimensional nephanalysis (3DN) data. Air Force 3DN agrees better with the analyst than THIR/CLE, except for high cloud amount; the CLE and 3DN results tend to overestimate clear amount when clear amount is large and underestimate it when clear amount is small, by 10-20 percent for CLE and by 5-10 percent for 3DN, and both agree well with the analyst in the mean. Systematic and random errors for 3DN and CLE are specified. CLE estimates of cloud amount over land at night should not be used for scientific purposes unless restricted to high cloud amount. It is believed that the CLR and 3DN are the only two digitized, global cloud type and amount data sets in existence.

  8. Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

    1994-01-01

    Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.

  9. Marine Cloud Brightening

    SciTech Connect

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  10. Marine cloud brightening.

    PubMed

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  11. Projection of the change in future extremes over Japan using a cloud-resolving model: (2) Precipitation Extremes and the results of the NHM-1km experiments

    NASA Astrophysics Data System (ADS)

    Kanada, S.; Nakano, M.; Nakamura, M.; Hayashi, S.; Kato, T.; Kurihara, K.; Sasaki, H.; Uchiyama, T.; Aranami, K.; Honda, Y.; Kitoh, A.

    2008-12-01

    In order to study changes in the regional climate in the vicinity of Japan during the summer rainy season due to global warming, experiments by a semi-cloud resolving non-hydrostatic model with a horizontal resolution of 5km (NHM-5km) have been conducted from June to October by nesting within the results of the 10-year time-integrated experiments using a hydrostatic atmospheric general circulation model with a horizontal grid of 20 km (AGCM-20km: TL959L60) for the present and future up to the year 2100. A non-hydrostatic model developed by the Japan Meteorological Agency (JMA) (JMA-NHM; Saito et al. 2001, 2006) was adopted. Detailed descriptions of the NHM-5km are shown by the poster of Nakano et al. Our results show that rainy days over most of the Japanese Islands will decrease in June and July and increase in August and September in the future climate. Especially, remarkable increases in intense precipitations such as larger than 150 - 300 mm/day are projected from the present to future climate. The 90th percentiles of regional largest values among maximum daily precipitations (R-MDPs) grow 156 to 207 mm/day in the present and future climates, respectively. It is well-known that the horizontal distribution of precipitation, especially the heavy rainfall in the vicinity of Japan, much depends on the topography. Therefore, higher resolution experiments by a cloud-resolving model with a horizontal resolution of 1km (NHM-1km) are one-way nested within the results of NHM-5km. The basic frame and design of the NHM-1km is the same as those of the NHM-5km, but the topography is finer and no cumulus parameterization is used in the NHM-1km experiments. The NHM-1km, which treats the convection and cloud microphysics explicitly, can represent not only horizontal distributions of rainfall in detail but also the 3-dimensional structures of meso-beta-scale convective systems (MCSs). Because of the limitation of computation resources, only heavy rainfall events that rank in top

  12. Introducing Cloud Computing Topics in Curricula

    ERIC Educational Resources Information Center

    Chen, Ling; Liu, Yang; Gallagher, Marcus; Pailthorpe, Bernard; Sadiq, Shazia; Shen, Heng Tao; Li, Xue

    2012-01-01

    The demand for graduates with exposure in Cloud Computing is on the rise. For many educational institutions, the challenge is to decide on how to incorporate appropriate cloud-based technologies into their curricula. In this paper, we describe our design and experiences of integrating Cloud Computing components into seven third/fourth-year…

  13. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  14. Comparison between SAGE II and ISCCP high-level clouds. 2: Locating clouds tops

    NASA Technical Reports Server (NTRS)

    Liao, Xiaohan; Rossow, William B.; Rind, David

    1995-01-01

    A comparison is made of the vertical distribution of high-level cloud tops derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements and from the International Satellite Cloud Climatology Project (ISCCP) for all Julys and Januarys in 1985 to 1990. The results suggest that ISCCP overestimates the pressure of high-level clouds by up to 50-150 mbar, particularly at low latitudes. This is caused by the frequent presence of clouds with diffuse tops (greater than 50% time when cloudy events are observed). The averaged vertical extent of the diffuse top is about 1.5 km. At midlatitudes where the SAGE II and ISCCP cloud top pressure agree best, clouds with distinct tops reach a maximum relative proportion of the total level cloud amount (about 30-40%), and diffuse-topped clouds are reduced to their minimum (30-40%). The ISCCP-defined cloud top pressure should be regarded not as the material physical height of the clouds but as the level which emits the same infrared radiance as observed. SAGE II and ISCCP cloud top pressures agree for clouds with distinct tops. There is also an indication that the cloud top pressures of optically thin clouds not overlying thicker clouds are poorly estimated by ISCCP at middle latitudes. The average vertical extent of these thin clouds is about 2.5 km.

  15. Cloud formation in substellar atmospheres

    NASA Astrophysics Data System (ADS)

    Helling, Christiane

    2009-02-01

    Clouds seem like an every-day experience. But-do we know how clouds form on brown dwarfs and extra-solar planets? How do they look like? Can we see them? What are they composed of? Cloud formation is an old-fashioned but still outstanding problem for the Earth atmosphere, and it has turned into a challenge for the modelling of brown dwarf and exo-planetary atmospheres. Cloud formation imposes strong feedbacks on the atmospheric structure, not only due to the clouds own opacity, but also due to the depletion of the gas phase, possibly leaving behind a dynamic and still supersaturated atmosphere. I summarise the different approaches taken to model cloud formation in substellar atmospheres and workout their differences. Focusing on the phase-non-equilibrium approach to cloud formation, I demonstrate the inside we gain from detailed microphysical modelling on for instance the material composition and grain size distribution inside the cloud layer on a Brown Dwarf atmosphere. A comparison study on four different cloud approaches in Brown Dwarf atmosphere simulations demonstrates possible uncertainties in interpretation of observational data.

  16. Marine cloud brightening

    PubMed Central

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  17. 27-day solar forcing of mesospheric temperature, water vapor and polar mesospheric clouds from the AIM SOFIE and CIPS satellite experiments

    NASA Astrophysics Data System (ADS)

    Thomas, Gary; Thurairajah, Brentha; von Savigny, Christian; Hervig, Mark; Snow, Martin

    2016-04-01

    Solar cycle variations of ultraviolet radiation have been implicated in the 11-year and 27-day variations of Polar Mesospheric Cloud (PMC) properties. Both of these variations have been attributed to variable solar ultraviolet heating and photolysis, but no definitive studies of the mechanisms are available. The solar forcing issue is critical toward answering the broader question of whether PMC's have undergone long-term changes, and if so, what is the nature of the responsible long-term climate forcings? One of the principal goals of the Aeronomy of Ice in the Mesosphere satellite mission was to answer the question: "How does changing solar irradiance affect PMCs and the environment in which they form?" We describe an eight-year data set from the AIM Solar Occultation for Ice Experiment (SOFIE) and the AIM Cloud Imaging and Particle Size (CIPS) experiment. Together, these instruments provide high-precision measurements of high-latitude summertime temperature (T), water vapor (H2O), and PMC ice properties for the period 2007-present. The complete temporal coverage of the summertime polar cap region for both the primary atmospheric forcings of PMC (T and H2O), together with a continually updated time series of Lyman-alpha solar irradiance, allows an in-depth study of the causes and effects of 27-day PMC variability. The small responses of these variables, relative to larger day-to-day changes from gravity waves, tides, inter-hemispheric coupling, etc. require a careful statistical analysis to isolate the solar influence. We present results for the 27-day responses of T, H2O and PMC for a total of 15 PMC seasons, (30 days before summer solstice to 60 days afterward, for both hemispheres). We find that the amplitudes and phase relationships are not consistent with the expected mechanisms of solar UV heating and photolysis - instead we postulate a primarily dynamical response, in which a periodic vertical wind heats/cools the upper mesosphere, and modulates PMC

  18. Contrasting cloud composition between coupled and decoupled marine boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2016-10-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.

  19. Survalytics: An Open-Source Cloud-Integrated Experience Sampling, Survey, and Analytics and Metadata Collection Module for Android Operating System Apps

    PubMed Central

    Mackey, Sean

    2016-01-01

    Background We describe here Survalytics, a software module designed to address two broad areas of need. The first area is in the domain of surveys and app analytics: developers of mobile apps in both academic and commercial environments require information about their users, as well as how the apps are being used, to understand who their users are and how to optimally approach app development. The second area of need is in the field of ecological momentary assessment, also referred to as experience sampling: researchers in a wide variety of fields, spanning from the social sciences to psychology to clinical medicine, would like to be able to capture daily or even more frequent data from research subjects while in their natural environment. Objective Survalytics is an open-source solution for the collection of survey responses as well as arbitrary analytic metadata from users of Android operating system apps. Methods Surveys may be administered in any combination of one-time questions and ongoing questions. The module may be deployed as a stand-alone app for experience sampling purposes or as an add-on to existing apps. The module takes advantage of free-tier NoSQL cloud database management offered by the Amazon Web Services DynamoDB platform to package a secure, flexible, extensible data collection module. DynamoDB is capable of Health Insurance Portability and Accountability Act compliant storage of personal health information. Results The provided example app may be used without modification for a basic experience sampling project, and we provide example questions for daily collection of blood glucose data from study subjects. Conclusions The module will help researchers in a wide variety of fields rapidly develop tailor-made Android apps for a variety of data collection purposes. PMID:27261155

  20. Zero-gravity cloud physics.

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.; Vaughan, W. W.

    1972-01-01

    The first results of an ongoing preliminary-concept and detailed-feasibility study of a zero-gravity earth-orbital cloud physics research facility are reviewed. Current planning and thinking are being shaped by two major conclusions of this study: (1) there is a strong requirement for and it is feasible to achieve important and significant research in a zero-gravity cloud physics facility; and (2) some very important experiments can be accomplished with 'off-the-shelf' type hardware by astronauts who have no cloud-physics background; the most complicated experiments may require sophisticated observation and motion subsystems and the astronaut may need graduate level cloud physics training; there is a large number of experiments whose complexity varies between these two extremes.

  1. Comparisons of cloud ice mass content retrieved from the radar-infrared radiometer method with aircraft data during the second international satellite cloud climatology project regional experiment (FIRE-II)

    SciTech Connect

    Matrosov, S.Y. |; Heymsfield, A.J.; Kropfli, R.A.; Snider, J.B.

    1996-04-01

    Comparisons of remotely sensed meteorological parameters with in situ direct measurements always present a challenge. Matching sampling volumes is one of the main problems for such comparisons. Aircraft usually collect data when flying along a horizontal leg at a speed of about 100 m/sec (or even greater). The usual sampling time of 5 seconds provides an average horizontal resolution of the order of 500 m. Estimations of vertical profiles of cloud microphysical parameters from aircraft measurements are hampered by sampling a cloud at various altitudes at different times. This paper describes the accuracy of aircraft horizontal and vertical coordinates relative to the location of the ground-based instruments.

  2. Alterations of Cloud Microphysics Due to Cloud Processed CCN

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Tabor, S. S.; Noble, S. R., Jr.

    2015-12-01

    High-resolution CCN spectra have revealed bimodality (Hudson et al. 2015) similar to aerosol size spectra (e.g., Hoppel et al. 1985). Bimodality is caused by chemical and physical cloud processes that increase mass or hygroscopicity of only CCN that produced activated cloud droplets. Bimodality is categorized by relative CCN concentrations (NCCN) within the two modes, Nu-Np; i.e., NCCN within the higher critical supersaturation, Sc, mode that did not undergo cloud processing minus NCCN within the lower Sc mode that was cloud processed. Lower, especially negative, Nu-Np designates greater processing. The table shows regressions between Nu-Np and characteristics of clouds nearest the CCN measurements. ICE-T MASE parameter R SL R SL Nc 0.17 93.24 -0.26 98.65 MD -0.31 99.69 0.33 99.78 σ -0.27 99.04 0.48 100.00 Ld -0.31 99.61 0.38 99.96 Table. Correlation coefficients, R, and one-tailed significance levels in percent, SL, for Nu-Np with microphysics of the clouds closest to each CCN measurement, 75 ICE-T and 74 MASE cases. Nc is cloud droplet concentration, MD is cloud droplet mean diameter, σ is standard deviation of cloud droplet spectra, Ldis drizzle drop LWC. Two aircraft field campaigns, Ice in Clouds Experiment-Tropical (ICE-T) and Marine Stratus/Stratocumulus Experiment (MASE) show opposite R signs because coalescence dominated cloud processing in low altitude ICE-T cumuli whereas chemical transformations predominated in MASE low altitude polluted stratus. Coalescence reduces Nc and NCCN, which thus increases MD, and σ, which promote Ld. Chemical transformations, e.g., SO2 to SO4, increase CCN hygroscopicity, thus reducing Sc, but not affecting Nc or NCCN. Lower Sc CCN are capable of producing greater Nc in subsequent cloud cycles, which leads to lower MD and σ which reduce Ld (figure). These observations are consistent with cloud droplet growth models for the higher vertical wind (W) of cumuli and lower W of stratus. Coalescence thus reduces the indirect

  3. CLOUD CHEMISTRY.

    SciTech Connect

    SCHWARTZ,S.E.

    2001-03-01

    Clouds present substantial concentrations of liquid-phase water, which can potentially serve as a medium for dissolution and reaction of atmospheric gases. The important precursors of acid deposition, SO{sub 2} and nitrogen oxides NO and NO{sub 2} are only sparingly soluble in clouds without further oxidation to sulfuric and nitric acids. In the case of SO{sub 2} aqueous-phase reaction with hydrogen peroxide, and to lesser extent ozone, are identified as important processes leading to this oxidation, and methods have been described by which to evaluate the rates of these reactions. The limited solubility of the nitrogen oxides precludes significant aqueous-phase reaction of these species, but gas-phase reactions in clouds can be important especially at night.

  4. Neptune's clouds

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The bright cirrus-like clouds of Neptune change rapidly, often forming and dissipating over periods of several to tens of hours. In this sequence Voyager 2 observed cloud evolution in the region around the Great Dark Spot (GDS). The surprisingly rapid changes which occur separating each panel shows that in this region Neptune's weather is perhaps as dynamic and variable as that of the Earth. However, the scale is immense by our standards -- the Earth and the GDS are of similar size -- and in Neptune's frigid atmosphere, where temperatures are as low as 55 degrees Kelvin (-360 F), the cirrus clouds are composed of frozen methane rather than Earth's crystals of water ice. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications

  5. FAR-ULTRAVIOLET DUST ALBEDO MEASUREMENTS IN THE UPPER SCORPIUS CLOUD USING THE SPINR SOUNDING ROCKET EXPERIMENT

    SciTech Connect

    Lewis, N. K.; Cook, T. A.; Wilton, K. P.; Chakrabarti, S.; France, K.; Gordon, K. D. E-mail: Kevin.France@colorado.ed

    2009-11-20

    The Spectrograph for Photometric Imaging with Numeric Reconstruction sounding rocket experiment was launched on 2000 August 4 to record far-ultraviolet (912-1450 A) spectral and spatial information for the giant reflection nebula in the Upper Scorpius region. The data were divided into three arbitrary bandpasses (912-1029 A, 1030-1200 A, and 1235-1450 A) for which stellar and nebular flux levels were derived. These flux measurements were used to constrain a radiative transfer model and to determine the dust albedo for the Upper Scorpius region. The resulting albedos were 0.28 +- 0.07 for the 912-1029 A bandpass, 0.33 +- 0.07 for the 1030-1200 A bandpass, and 0.77 +- 0.13 for the 1235-1450 A bandpass.

  6. Hydrogen peroxide and methylhydroperoxide observations by chemical ionization mass spectrometry on the GV during the Deep Convective Clouds and Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    O'Sullivan, D. W.; Silwal, I.; Treadaway, V.; McNeill, A.; Heikes, B.

    2013-12-01

    Airborne gas phase measurements of hydrogen peroxide and methylhydroperoxide were made on 22 research flights on the NCAR Gulfstream-V using chemical ionization mass spectroscopy (CIMS) during the Deep Convective Clouds and Chemistry Experiment (DC3) in May and June 2012. A multi-reagent ion CIMS method, using O2- and CO4- reagent ions, and standard additions of hydrogen peroxide and methylhydroperoxide was developed to identify and quantify hydrogen peroxide (H2O2) and methylhydroperoxide (CH3OOH) in ambient air. The DC3 field program characterized a number of active convective systems in three different regions, Colorado, Oklahoma, and Alabama with observations extending from the surface to 13 km. A few flights were also flown to characterize the photochemical aging of lofted chemicals and lightning generated oxides of nitrogen. Peroxide observations will be used to examine transport efficiency and removal in isolated convective storms and larger scale multiple convective systems. Differences in peroxide storm input and transport process will be compared across the three regions. Peroxide observations coupled with other in situ chemical species observations and meteorological parameters will be used to assess the contribution of convective transport to the photochemical budget of hydrogen peroxide and methylhydroperoxide in the upper troposphere over the United States.

  7. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    SciTech Connect

    Williams, Christopher

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  8. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect

    Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

    2013-03-14

    This three-year project, in cooperation with Professor Bob Houze at University of Washington, has been successfully finished as planned. Both ARM (the Atmospheric Radiation Measurement Program) data and cloud-resolving model (CRM) simulations were used to identify the water budgets of clouds observed in two international field campaigns. The research results achieved shed light on several key processes of clouds in climate change (or general circulation models), which are summarized below. 1. Revealed the effect of mineral dust on mesoscale convective systems (MCSs) Two international field campaigns near a desert and a tropical coast provided unique data to drive and evaluate CRM simulations, which are TWP-ICE (the Tropical Warm Pool International Cloud Experiment) and AMMA (the African Monsoon Multidisciplinary Analysis). Studies of the two campaign data were contrasted, revealing that much mineral dust can bring about large MCSs via ice nucleation and clouds. This result was reported as a PI presentation in the 3rd ASR Science Team meeting held in Arlington, Virginia in March 2012. A paper on the studies was published in the Journal of the Atmospheric Sciences (Zeng et al. 2013). 2. Identified the effect of convective downdrafts on ice crystal concentration Using the large-scale forcing data from TWP-ICE, ARM-SGP (the Southern Great Plains) and other field campaigns, Goddard CRM simulations were carried out in comparison with radar and satellite observations. The comparison between model and observations revealed that convective downdrafts could increase ice crystal concentration by up to three or four orders, which is a key to quantitatively represent the indirect effects of ice nuclei, a kind of aerosol, on clouds and radiation in the Tropics. This result was published in the Journal of the Atmospheric Sciences (Zeng et al. 2011) and summarized in the DOE/ASR Research Highlights Summaries (see http://www.arm.gov/science/highlights/RMjY5/view). 3. Used radar

  9. Transitioning ISR architecture into the cloud

    NASA Astrophysics Data System (ADS)

    Lash, Thomas D.

    2012-06-01

    Emerging cloud computing platforms offer an ideal opportunity for Intelligence, Surveillance, and Reconnaissance (ISR) intelligence analysis. Cloud computing platforms help overcome challenges and limitations of traditional ISR architectures. Modern ISR architectures can benefit from examining commercial cloud applications, especially as they relate to user experience, usage profiling, and transformational business models. This paper outlines legacy ISR architectures and their limitations, presents an overview of cloud technologies and their applications to the ISR intelligence mission, and presents an idealized ISR architecture implemented with cloud computing.

  10. Status and Operations at the Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE) - Also a Baseline Surface Radiation Network (BSRN) Station

    NASA Astrophysics Data System (ADS)

    Fabbri, B. E.; Schuster, G. L.; Denn, F. M.; Rutan, D. A.; Madigan, J. J.; Arduini, R. F.

    2012-12-01

    25 km off the coast of Virginia, a lighthouse structure has been used for scientific measurements for over a decade. The CERES Ocean Validation Experiment (COVE) at Chesapeake Light is involved in several projects and networks. This report focuses on measurements and analysis made over the last 5 years at COVE. Being part of the BSRN network, most of the instruments at COVE are radiometers that measure both downwelling and upwelling flux at visible and infrared wavelengths. Basic meteorological parameters are also monitored. A table will show all the instrumentation and measurements being collected at COVE for the BSRN network as well as other data collections for aerosol, black carbon, total column water vapor and more. The initial motivation for COVE was to serve as a surface validation site for satellites. We compare modeled and actual downwelling shortwave and longwave measurements into 3 different sky scenarios (clear, partly cloudy and cloudy) over a number of years. Results show the best agreement for the clear sky model in both shortwave and longwave, with downwelling longwave correlating and having less mean bias than downwelling shortwave. COVE provides a wide range of measurements over an ocean environment with other examinations including aerosol studies, black carbon analysis and determination of spectral albedos from Multi-Filter Rotating Shadowband Radiometers (MFRSRs). One example displays how we can use these studies and analysis to trace smoke over the COVE site and how it affects our measurements.Chesapeake Light. Home of the Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE) ` Location of Chesapeake Light. Home of COVE. 25 kilometers East of Virginia. Coordinates: 36.90 North, 75.71 West

  11. Ash cloud aviation advisories

    SciTech Connect

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.; Nasstrom, J.S.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  12. Microphysical And Macrophysical Characteristics Of Non-Precipitating Morning Shallow Clouds In Central Amazonia Using One-Year Of Data From GOAMAZON 2014/15 Experiment

    NASA Astrophysics Data System (ADS)

    Pauliquevis, T.; Barbosa, H. M.; Rosario, N. M. E. D.; Rizzo, L. V.; Correia, A. L.; Adams, D. K.; Calheiros, A. J. P.; Alves, C. F.

    2015-12-01

    Shallow cumulus cloud fields in Amazonia are typical of the morning hours. They play a critical role in the mean observed diurnal cycle of precipitation in the Amazon Basin, which is characterized by the occurrence of heavy precipitation events in the afternoon. Shallow clouds act both to reduce incident shortwave radiation at the surface and in the transport of humidity from the lowest portions of the troposphere to higher levels. These two processes are poorly represented in numerical models, but are critical in the transition to deep convection and associated precipitation. Numerical models have problems in properly representing shallow cumulus fields and their transition to deep precipitating convection, the net result of which is producing rainfall to early in the diurnal cycle. Due to their importance, detailed characterization of morning shallow clouds is critical for understanding the shallow-to-deep transition as well as providing for model validation purposes. In this study we report 16 month data of observations of shallow cumulus with respect to cloud cover (CC), cloud base height (CBH), liquid water path (LWP), precipitable water vapor (PWV) and GOES (Visible and IR)analysis. Results showed a consistent pattern of evolution in the cloud field throughout the morning period. After sunrise the cloud field starts to move from a random cloud field to an organized shallow clouds field. In fact, there is an absence of any pattern in CBH from 6LT to 7LT. Once some amount of radiation reaches the surface shallow convection is established around 8:00LT, when a mode of CBH at 100 m is established and rises to 900 m at noon. During this time interval, CC grows up to 50% (mean), however with significant variability and oscillations. With respect to microphysical properties, both LWP and PWV were remarkably stable for single mornings and for shallow clouds, with LWP/PWV ~ 6.10-4. All of these results are being compared with GOES observations of cloud fields (Visible

  13. Cloud Statistics for NASA Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    1999-01-01

    The Principal Investigator participated in two field experiments and developed a global data set on cirrus cloud frequency and optical depth to aid the development of numerical models of climate. Four papers were published under this grant. The accomplishments are summarized: (1) In SUCCESS (SUbsonic aircraft: Contrail & Cloud Effects Special Study) the Principal Investigator aided weather forecasters in the start of the field program. A paper also was published on the clouds studied in SUCCESS and the use of the satellite stereographic technique to distinguish cloud forms and heights of clouds. (2) In SHEBA (Surface Heat Budget in the Arctic) FIRE/ACE (Arctic Cloud Experiment) the Principal Investigator provided daily weather and cloud forecasts for four research aircraft crews, NASA's ER-2, UCAR's C-130, University of Washington's Convert 580, and the Canadian Atmospheric Environment Service's Convert 580. Approximately 105 forecasts were written. The Principal Investigator also made daily weather summaries with calculations of air trajectories for 54 flight days in the experiment. The trajectories show where the air sampled during the flights came from and will be used in future publications to discuss the origin and history of the air and clouds sampled by the aircraft. A paper discussing how well the FIRE/ACE data represent normal climatic conditions in the arctic is being prepared. (3) The Principal Investigator's web page became the source of information for weather forecasting by the scientists on the SHEBA ship. (4) Global Cirrus frequency and optical depth is a continuing analysis of global cloud cover and frequency distribution are being made from the NOAA polar orbiting weather satellites. This analysis is sensitive to cirrus clouds because of the radiative channels used. During this grant three papers were published which describe cloud frequencies, their optical properties and compare the Wisconsin FM Cloud Analysis to other global cloud data such as

  14. Cloud Front

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02171 Cloud Front

    These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.

    Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events ...

  16. Thin Clouds

    Atmospheric Science Data Center

    2013-04-18

    ... one of a new generation of instruments flying aboard the NASA Earth Observing System's Terra satellite, views Earth with nine cameras ... of thin cirrus minutes after MISR imaged the cloud from space. At the same time, another NASA high-altitude jet, the WB-57, flew right ...

  17. Nectar secretion on fern fronds associated with lower levels of herbivore damage: field experiments with a widespread epiphyte of Mexican cloud forest remnants

    PubMed Central

    Koptur, Suzanne; Palacios-Rios, Mónica; Díaz-Castelazo, Cecilia; Mackay, William P.; Rico-Gray, Víctor

    2013-01-01

    Background and Aims The oldest group of plants in which nectar secretions have been observed are the Polypodiopsida (ferns sensu lato). Nectaries have been reported in a dozen extant genera. The function of these nectaries has been investigated in several fern species, and in some circumstances has been demonstrated to have an antiherbivore role, attracting and maintaining biotic defence (ants and/or other predatory arthropods). This study documents foliar nectaries in Pleopeltis crassinervata, a widespread Central American epiphyte growing on a variety of trees in cloud forest areas of Veracruz, Mexico. This is a new record for this genus and species. Methods As previous experimental work on epiphytic species of Polypodium has demonstrated a protective role of ants for developing fronds, we conducted similar experiments (using nylon nail polish to cover nectaries rather than excluding ants with bands of sticky resin as in earlier work). The fronds of Pl. crassinervata developed over 6 weeks, at which time damage was assessed. The experiment was simultaneously conducted on a sympatric species lacking nectaries, Polypodium furfuraceum. Herbivore placement experiments were conducted with large and small caterpillars on both of these ferns. Key Results Fronds with nectaries covered suffered greater damage from herbivores over the course of their development, compared with fronds that had uncovered nectaries functioning normally. The parallel experiment on Po. furfuraceum showed no difference between manipulated and control fronds. Six species of ants (Brachymyrmex minutus, Crematogaster formosa, Paratrechina longicornis, Solenopsis geminata, S. picea and Wasmannia auropunctata) were observed visiting nectaries of Pl. crassinervata; most were effective in removing herbivore larvae placed on the fronds. Conclusions The long evolutionary history of ferns may explain why some previous studies of fern nectaries have shown little or no benefit to ferns from nectary visitors

  18. Insitu aircraft verification of the quality of satellite cloud winds over oceanic regions

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Skillman, W. C.

    1979-01-01

    A five year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft inertial navigation system wind measurements is presented. The final results show that satellite measured cumulus cloud motions are very good estimators of the cloud base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud base wind is given. For cumulus clouds near frontal regions, the cloud motion agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions also most closely followed the mean wind in the cloud layer.

  19. The Evolution of Cloud Computing in ATLAS

    NASA Astrophysics Data System (ADS)

    Taylor, Ryan P.; Berghaus, Frank; Brasolin, Franco; Domingues Cordeiro, Cristovao Jose; Desmarais, Ron; Field, Laurence; Gable, Ian; Giordano, Domenico; Di Girolamo, Alessandro; Hover, John; LeBlanc, Matthew; Love, Peter; Paterson, Michael; Sobie, Randall; Zaytsev, Alexandr

    2015-12-01

    The ATLAS experiment at the LHC has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This paper describes the overall evolution of cloud computing in ATLAS. The current status of the virtual machine (VM) management systems used for harnessing Infrastructure as a Service resources are discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, a system for dynamic location-based discovery of caching proxy servers, and the usage of a data federation to unify the worldwide grid of storage elements into a single namespace and access point. The usage of the experiment's high level trigger farm for Monte Carlo production, in a specialized cloud environment, is presented. Finally, we evaluate and compare the performance of commercial clouds using several benchmarks.

  20. Cloud supersaturations from CCN spectra Hoppel minima

    NASA Astrophysics Data System (ADS)

    Hudson, James G.; Noble, Stephen; Tabor, Samantha

    2015-04-01

    High-resolution cloud condensation nucleus (CCN) spectral measurements in two aircraft field projects, Marine Stratus/Stratocumulus Experiment (MASE) and Ice in Clouds Experiment-Tropical (ICE-T), often showed bimodality that had previously been observed in submicrometer aerosol size distributions obtained by differential mobility analyzers. However, a great deal of spectral shape variability from very bimodal to very monomodal was observed in close proximity. Cloud supersaturation (S) estimates based on critical S, Sc, at minimal CCN concentrations between two modes (Hoppel minima) were ascertained for 63% of 325 measured spectra. These cloud S were lower than effective S (Seff) determined by comparing ambient CCN spectra with nearby cloud droplet concentrations (Nc). Averages for the polluted MASE stratus were 0.15 and 0.23% and for the cumulus clouds of ICE-T 0.44 and 1.03%. This cloud S disagreement between the two methods might in part be due to the fact that Hoppel minima include the effects of cloud processing, which push CCN spectra toward lower S. Furthermore, there is less cloud processing by the smaller cloud droplets, which might be related to smaller droplets evaporating more readily. Significantly lower concentrations within the more bimodal spectra compared with the monomodal spectra indicated active physical processes: Brownian capture of interstitial CCN and droplet coalescence. Chemical cloud processing also contributed to bimodality, especially in MASE.

  1. Accessing commercial cloud resources within the European Helix Nebula cloud marketplace

    NASA Astrophysics Data System (ADS)

    Cordeiro, C.; De Salvo, A.; Di Girolamo, A.; Field, L.; Giordano, D.; Jones, R.; Villazon, L.

    2015-12-01

    Helix Nebula - the Science Cloud Initiative - is a public-private partnership between Europe's leading scientific research organisations and European IT cloud providers. CERN contributed to this initiative by providing a flagship use case: the workloads from the ATLAS experiment. Aiming to gain experience in managing and monitoring large-scale deployments, as well as in benchmarking the cloud resources, a sizable Monte Carlo production was performed using the Helix Nebula platform. This contribution describes the Helix Nebula initiative and summarizes the experience and the lessons learned from deploying ATLAS experiment application within large cloud setups involving several commercial providers.

  2. Liquid Cloud Responses to Soot

    NASA Astrophysics Data System (ADS)

    Koch, D. M.

    2010-12-01

    Although soot absorption warms the atmosphere, soot may cause climate cooling due to its effects on liquid clouds, including contribution to cloud condensation nuclei (CCN) and semi-direct effects. Six global models that include aerosol microphysical schemes conducted three soot experiments. The average model cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.12 Wm-2, comparable in size but opposite in sign to the respective direct atmospheric warming. In a more idealized fossil fuel black carbon only experiment, some models calculated a positive cloud response because the soot provided a deposition sink for sulfate, decreasing formation of more viable CCN. Biofuel soot particles were typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models < ±0.06 Wm-2 from clouds. The net semi-direct effect alone may also be negative in global models, as found by several previous studies. The soot-cloud effects are quite uncertain. The range of model responses was large and interrannual variability for each model can also be large. Furthermore the aerosol microphysical schemes are poorly constrained, and the non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes. However, results so far suggest that soot-induced cloud-cooling effects are comparable in magnitude to the direct warming effects from soot absorption.

  3. Validation of cloud forcing simulated by the National Center for Atmospheric Research Community Climate Model using observations from the Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Soden, B. J.

    1992-01-01

    Satellite measurements of the effect of clouds on the top of atmosphere radiative energy budget are used to validate model simulations from the National Center for Atmospheric Research Community Climate Model (NCAR CCM). The ability of the NCAR CCM to reproduce the monthly mean global distribution and temporal variability on both daily and seasonal time scales is assessed. The comparison reveals several deficiencies in the CCM cloud representation. Most notable are the difficulties in properly simulating the effect of clouds on the planetary albedo. This problem arises from discrepancies in the model's portrayal of low-level cloudiness and leads to significant errors in the absorbed solar radiation simulated by the model. The CCM performs much better in simulating the effect of clouds on the longwave radiation emitted to space, indicating its relative success in capturing the vertical distribution of cloudiness. The daily variability of the radiative effects of clouds in both the shortwave and longwave spectral regions is systematically overestimated. Analysis of the seasonal variations illustrates a distinct lack of coupling in the seasonal changes in the radiative effects of cloudiness between the tropics and mid-latitudes and between the Northern and Southern Hemisphere. Much of this problem also arises from difficulties in simulating low-level cloudiness, placing further emphasis on the need for better model parameterizations of boundary layer clouds.

  4. Analysis of the experiment on registration of X-rays from the stepped leader of a cloud-to-ground lightning discharge

    NASA Astrophysics Data System (ADS)

    Babich, Leonid P.; Kutsyk, Igor M.; Donsko, Evgeni N.; Dwyer, Joseph R.

    2013-05-01

    Using a Monte Carlo technique to simulate the transport of runaway electrons (REs) and X-rays in the atmosphere and through attenuators covering detectors, we have modeled the results of experiments to detect X-rays from triggered lightning and stepped leaders of a natural cloud-to-ground lightning. In the model, bremsstrahlung of high-energy runaway electrons (REs) generated at the leader front is assumed to be the origin of X-rays. Specific fluxes (per one RE) of photons and bremsstrahlung energy at the detectors were calculated. The analysis was executed with monoenergetic and exponential initial energy distributions of REs with different angular distributions. To reproduce the detected radiation energy of ~1-2 MeV, a generation of ~1010-1011 REs per flash is required in the case with the beam angular distribution of monoenergetic REs with the energy in the range 1-10 MeV. The same result was obtained with the exponential energy distribution of REs with the average energy 7 MeV, i.e., with the average energy in the RE avalanche. The electric field amplifies the flux of the radiation energy, and the amplification becoming stronger as the RE source approaches the ground. In the case with an isotropic angular distribution of REs in the bottom hemisphere, with no electric field, (4-5) × 109 REs are required for reproducing ~1-2 MeV of detected X-ray energy. In addition, fluxes of photons and fluxes of their energy at the detectors, energy distributions of photons and their average energy were calculated.

  5. Solar-induced 27-day variations of mesospheric temperature and water vapor from the AIM SOFIE experiment: Drivers of polar mesospheric cloud variability

    NASA Astrophysics Data System (ADS)

    Thomas, Gary E.; Thurairajah, Brentha; Hervig, Mark E.; von Savigny, Christian; Snow, Martin

    2015-11-01

    Polar Mesospheric Clouds (PMCs) are known to be influenced by changes in water vapor and temperature in the cold summertime mesopause. Solar variability of these constituents has been held responsible for 11-year and 27-day variability of PMC activity, although the detailed mechanisms are not yet understood. It is also known that the solar influence on PMC variability is a minor contributor to the overall day-to-day variability, which is dominated by effects of gravity waves, planetary waves, and inter-hemispheric coupling. To address this issue, we have analyzed 15 seasons of data taken from the Solar Occultation for Ice Experiment (SOFIE) on the Aeronomy of Ice in the Mesosphere (AIM) satellite. The SOFIE data contain precise measurements of water vapor, temperature and ice water content (among other quantities). These high-latitude measurements are made during the PMC season at the terminator, and therefore directly relate to the simultaneous measurements of mesospheric ice. Using a composite data set of Lyman-α irradiance, we correlated the time variation of the atmospheric variables with the 27-day variability of solar ultraviolet irradiance. We used a combination of time-lagged linear regression and Superposed Epoch Analysis to extract the solar contribution as sensitivity values (response/forcing) vs. height. We compare these results to previously published results, and show that the temperature sensitivity is somewhat higher, whereas the water sensitivity is nearly the same as published values. The time lags are shorter than that expected from direct solar heating and photodissociation, suggesting that the responses are due to 27-day variations of vertical winds. An analytic solution for temperature changes forced by solar irradiance variations suggests that if the response is due purely to Lyman-α heating and Newtonian cooling, the response should vary throughout the summertime season and depend primarily upon the height-dependent column density of

  6. Enabling Earth Science Through Cloud Computing

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  7. Climate Effects of Cloud Modified CCN-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Noble, S. R., Jr.; Hudson, J. G.

    2015-12-01

    Cloud condensation nuclei (CCN) play an important role in the climate system through the indirect aerosol effect (IAE). IAE is one of the least understood aspects of the climate system as many cloud processes are complicated. Many studies of aerosol-cloud interaction involve CCN interaction with cloud droplet concentrations (Nc), cloud microphysics, and radiative properties. However, fewer studies investigate how cloud processes modify CCN. Upon evaporation from non-precipitating clouds, CCN distributions develop bimodal shaped distributions (Hoppel et al. 1986). Activated CCN participate in cloud processing that is either chemical: aqueous oxidation; or physical: Brownian scavenging, collision and coalescence. Chemical processing does not change CCN concentration (NCCN) but reduces critical supersaturations (Sc; larger size) (Feingold and Kreidenweis, 2000) while physical processing reduces NCCN and Sc. These processes create the minima in the bimodal CCN distributions (Hudson et al., 2015). Updraft velocity (W) and NCCN are major factors on how these modified CCN distributions affect clouds. Panel a shows two nearby CCN distributions in the MArine Stratus/stratocumulus Experiment (MASE), which have similar concentrations, but the bimodal one (red) has been modified by cloud processing. In a simplified cloud droplet model, the modified CCN then produces higher Nc (panel b) and smaller droplet mean diameters (MD; panel c) when compared to the unmodified CCN (black) for W lower than 50 cm/s. The better CCN (lower Sc) increase competition among droplets reducing MD and droplet distribution spread (σ) which acts to reduce drizzle. Competition is created by limited available condensate due to lower S created by the low W (<50 cm/s) typical of stratus. The increased Nc of the modified CCN in stratus then increases IAE in the climate system. At higher W (>50 cm/s) typical of cumuli, Ncis reduced and MD is increased from the modified CCN distribution (panels b & c). Here

  8. On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment

    NASA Astrophysics Data System (ADS)

    Gayet, J.-F.; Mioche, G.; Bugliaro, L.; Protat, A.; Minikin, A.; Wirth, M.; Dörnbrack, A.; Shcherbakov, V.; Mayer, B.; Garnier, A.; Gourbeyre, C.

    2012-01-01

    During the CIRCLE-2 experiment carried out over Western Europe in May 2007, combined in situ and remote sensing observations allowed to describe microphysical and optical properties near-top of an overshooting convective cloud (11 080 m/-58 °C). The airborne measurements were performed with the DLR Falcon aircraft specially equipped with a unique set of instruments for the extensive in situ cloud measurements of microphysical and optical properties (Polar Nephelometer, FSSP-300, Cloud Particle Imager and PMS 2-D-C) and nadir looking remote sensing observations (DLR WALES Lidar). Quasi-simultaneous space observations from MSG/SEVIRI, CALIPSO/CALIOP-WFC-IIR and CloudSat/CPR combined with airborne RASTA radar reflectivity from the French Falcon aircraft flying above the DLR Falcon depict very well convective cells which overshoot by up to 600 m the tropopause level. Unusual high values of the concentration of small ice particles, extinction, ice water content (up to 70 cm-3, 30 km-1 and 0.5 g m-3, respectively) are experienced. The mean effective diameter and the maximum particle size are 43 μm and about 300 μm, respectively. This very dense cloud causes a strong attenuation of the WALES and CALIOP lidar returns. The SEVIRI retrieved parameters confirm the occurrence of small ice crystals at the top of the convective cell. Smooth and featureless phase functions with asymmetry factors of 0.776 indicate fairly uniform optical properties. Due to small ice crystals the power-law relationship between ice water content (IWC) and radar reflectivity appears to be very different from those usually found in cirrus and anvil clouds. For a given equivalent reflectivity factor, IWCs are significantly larger for the overshooting cell than for the cirrus. Assuming the same prevalent microphysical properties over the depth of the overshooting cell, RASTA reflectivity profiles scaled into ice water content show that retrieved IWC up to 1 g m-3 may be observed near the cloud top

  9. Southern Clouds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03026 Southern Clouds

    This image shows a system of clouds just off the margin of the South Polar cap. Taken during the summer season, these clouds contain both water-ice and dust.

    Image information: VIS instrument. Latitude 80.2S, Longitude 57.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Death of an Arctic Mixed Phase Cloud: How Changes in the Arctic Environment Influence Cloud Properties and Cloud Radiative Feedbacks

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Posselt, D. J.

    2012-12-01

    Arctic mixed phase stratocumulus clouds exert an important influence on the radiative budget over the Arctic ocean and sea ice. Field programs and numerical experiments have shown the properties of these clouds to be sensitive to changes in the surface properties, thermodynamic environment, and aerosols. While it is clear that Arctic mixed-phase clouds respond to changes in the Arctic environment, uncertainty remains as to how climate warming will affect the cloud micro- and macrophysical properties. This is in no small part due to the fact that there are nonlinear interactions between changes in atmospheric and surface properties and changes in cloud characteristics. In this study, large-eddy simulations are performed of an arctic mixed phase cloud observed during the Indirect and Semi-Direct Aerosol Campaign. A parameter-space-filling uncertainty quantification technique is used to rigorously explore how simulated arctic mixed phase clouds respond to changes in the properties of the environment. Specifically, the cloud ice and aerosol concentration, surface sensible and latent heat fluxes, and large scale temperature, water vapor, and vertical motion are systematically changed, and the properties of the resulting clouds are examined. It is found that Arctic mixed phase clouds exhibit four characteristic behaviors: stability, growth, decay, and dissipation. Sets of environmental and surface properties that lead to the emergence of each type of behavior are presented, and the implications for the response of Arctic clouds to changes in climate are explored.

  12. Biomass burning layers measured with an airborne Single Particle Soot Photometer (SP2) during the Deep Convective Clouds and Chemistry (DC3) experiment

    NASA Astrophysics Data System (ADS)

    Heimerl, K.; Weinzierl, B.; Minikin, A.; Sauer, D. N.; Fütterer, D.; Lichtenstern, M.; Schlager, H.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.; Fahey, D. W.; Huntrieser, H.

    2013-12-01

    The 2012 wildfire season in the U.S. was one of the worst in the past decade. Coinciding with the period of intense wildfires in the western U.S., the Deep Convective Clouds and Chemistry (DC3) experiment took place in the central U.S. in May and June of 2012. Although the main goal of this experiment was to characterize chemical processes in and around thunderstorms, biomass burning plumes from wildfires were also measured during almost every flight. Measurements were performed with three different research aircraft (NCAR GV, NASA DC8 and DLR Falcon 20E), accompanied by ground based measurements with radars and radiosondes, and measurements of meteorological parameters and lightning. The instrumentation aboard the DLR Falcon included measurements of the trace gases NO, CO, O3, CO2, CH4, SO2, volatile organic compounds, and a variety of aerosol microphysical parameters. To cover a wide range of aerosol particle sizes, the DLR Falcon payload included optical particle counters (UHSAS-A, FSSP-300, FSSP-100, PCASP-100X/SPP-200 and Sky-OPC 1.129), a multi-channel CPC system for measuring total and non-volatile particle concentrations and, for absorbing particles, a three-wavelength PSAP and a Single Particle Soot Photometer (SP2). We will focus on the latter in this presentation. The SP2 measures both the mass of refractory black carbon (rBC) particles as well as their optical size, providing information about the mixing state of particles in the biomass burning layers. Most biomass burning layers were found between 3 and 8 km altitude. We will discuss measurements of plumes originating from New Mexico wildfires (Little Bear wildfire on June 11th of 2012 and Whitewater-Baldy wildfire on May 29th and 30th of 2012). Peaks of the rBC mass concentration in the plumes were as high as 2μg/m3, the fraction of rBC particles with thick coatings was higher than what is usually found in the boundary layer. During the Falcon transfer flights from Germany to the U.S. and back

  13. Cloud Interactions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 1 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 258.8 East (101.2 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration

  14. Thermodynamic and cloud parameter retrieval using infrared spectral data

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.

    2005-01-01

    High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).

  15. Underestimation of Deep Convective Cloud Tops by Thermal Imagery

    NASA Technical Reports Server (NTRS)

    Sherwood, Steven C.; Chae, Jung-Hyo; Minnis, Patrick; McGill, Matthew

    2004-01-01

    The most common method of ascertaining cloud heights from space is from thermal brightness temperatures. Deep cumulus clouds of high water content are expected to radiate as black bodies. Here, cloud tops are estimated from several sensors: GOES-8, the Moderate Resolution Imaging Spectroradiometer (MODIS), the Moderate resolution Imaging Sensor (MISR), and the Goddard Cloud Physics Lidar (CPL), all collected during the CRYSTAL Florida Area Cirrus Experiment (CRYSTAL-FACE). Thermally derived cloud tops are consistently approx. 1km too low compared with independent measurements, no matter how thick the clouds are, even when the finite optical extinctions near cloud top and in thin overlying cirrus are taken into account. The bias appears to get worse for the tallest clouds. Cloud material is often present 2 km or more above the apparent cloud top. This mysterious discrepancy appears to be satellite-independent.

  16. New cloud chamber experiments on the heterogeneous ice nucleation ability of oxalic acid in the deposition nucleation and immersion freezing modes

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Wagner, R.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-12-01

    Dicarboxylic acids are ubiquitous components of the water-soluble organic fraction of the tropospheric aerosol. Their contribution to the total particulate organic carbon typically ranges from 1 - 3 wt% in urban and semi-urban areas to up to 10 wt% in remote marine atmospheres [1,2]. Oxalic acid, malonic acid, and succinic acid are usually the most abundant species, partly comprising more than 80% of the total diacid mass concentrations [3]. Several recent studies have addressed the ice nucleation potential of solid low-molecular weight dicarboxylic acids. On the one hand, the dicarboxylic acids can act as deposition mode ice nuclei provided that they are directly exposed to an ice supersaturated environment, e.g. in form of a coating layer that was formed by physical and chemical processing on prevalent particulates such as mineral dust and soot. At typical tropospheric relative humidities, diacids of low water solubility like oxalic and succinic acid may, on the other hand, also be present as solids that are immersed in aqueous inorganic and/or organic solution droplets [4,5]. These embedded crystals can act as ice nuclei in the immersion mode. Here we present new results from recent experiments at the aerosol and cloud chamber facility of the Karlsruhe Institute of Technology. The ice nucleation ability of aqueous and crystalline oxalic acid aerosol particles was investigated at expansion cooling conditions in the temperature range between 244 and 228 K [6]. Oxalic acid dihydrate particles with diameters between 0.03 to 0.8 μm, that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets, showed a high deposition mode ice activity at temperatures around 244 K. The ice onset humidity was below 110 % with respect to ice, and the ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles

  17. Estimating Cloud Cover

    ERIC Educational Resources Information Center

    Moseley, Christine

    2007-01-01

    The purpose of this activity was to help students understand the percentage of cloud cover and make more accurate cloud cover observations. Students estimated the percentage of cloud cover represented by simulated clouds and assigned a cloud cover classification to those simulations. (Contains 2 notes and 3 tables.)

  18. Microphysics and Southern Ocean Cloud Feedback

    NASA Astrophysics Data System (ADS)

    McCoy, Daniel T.

    strong indirect control of global cloud fraction by the mixed-phase cloud parameterization. As discussed above, ice crystals are so much larger than liquid droplets that a transition from ice to liquid results in a robust increase in albedo, but this effect is modulated by variations in the size of cloud droplets. Cloud droplet size is determined by the prevalence and efficacy of cloud condensation nuclei (CCN). We present observational and modeling data showing that the sources of CCN in the SO are natural and that biogenic sources account for half of the cloud droplet number concentration in summer when biological productivity and sunlight are strongest. This makes it important to accurately represent biogenic CCN sources, especially their depletion as ocean acidification destroys the calcareous marine organisms that generate the majority of CCN. Despite confirming a natural and substantially biogenic source of CCN, both the source terms of CCN and interaction of CCN with liquid clouds are still uncertain. To help validate the cloud-aerosol indirect effect in GCMs we present a recent natural experiment that occurred when the Bartharbunga-Veithivotn fissure erupted suddenly releasing several times the total sulfur emission from Europe into the Atlantic. Substantial cloud aerosol indirect effects were observed during the eruption. This natural experiment offers a scenario that may be used in GCMs to validate their modeled cloud-aerosol indirect effect. Overall, accurate representations of liquid and mixed-phase cloud microphysics in the SO are required if we want to model the Earth's climate sensitivity. Further, efforts to tune around unreasonable portrayals of SO clouds result in long-ranging biases in global cloud properties and feedbacks.

  19. Sahara Dust Cloud

    NASA Technical Reports Server (NTRS)

    2005-01-01

    AIRS retrieved total water vapor product as a region of depressed water vapor (brown in the images) migrating slowly Westward toward the Caribbean. The SAL phenomenon inhibits the formation of tropical cyclones and thus has given the West Indies and the East Coast of the US a respite from hurricanes.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  20. Martian Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 28 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during early spring near the North Pole. The linear 'ripples' are transparent water-ice clouds. This linear form is typical for polar clouds. The black regions on the margins of this image are areas of saturation caused by the build up of scattered light from the bright polar material during the long image exposure.

    Image information: VIS instrument. Latitude 68.1, Longitude 147.9 East (212.1 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS

  1. Simulation and Interpretation of the Genesis of Tropical Storm Gert (2005) as Part of the NASA Tropical Cloud Systems and Processes Experiment

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Mallen, Kevin

    2009-01-01

    Several hypotheses have been put forward for the how tropical cyclones (tropical storms and hurricanes in the Atlantic) first develop circulation at the surface, a key event that needs to occur before a storm can begin to draw energy from the warm ocean. One hypothesis suggests that the surface circulation forms from a "top-down" approach in which a storm s rotating circulation begins at middle levels of the atmosphere and builds down to the surface through processes related to light "stratiform" (horizontally extensive) precipitation. Another hypothesis suggests a bottom-up approach in which deep thunderstorm towers (convection) play the major role in spinning up the flow at the surface. These "hot towers" form in the area of the mid-level circulation and strongly concentrate this rotation at low levels within their updrafts. Merger of several of these hot towers then intensifies the surface circulation to the point in which a storm forms. This paper examines computer simulations of Tropical Storm Gert (2005), which formed in the Gulf of Mexico during the National Aeronautics and Space Administration s (NASA) Tropical Cloud Systems and Processes (TCSP) Experiment, to investigate the development of low-level circulation and, in particular, whether stratiform or hot tower processes were responsible for the storm s formation. Data from NASA satellites and from aircraft were used to show that the model did a good job of reproducing the formation and evolution of Gert. The simulation shows that a mix of both stratiform and convective rainfall occurred within Gert. While the stratiform rainfall clearly acted to increase rotation at middle levels, the diverging outflow beneath the stratiform rain worked against spinning up the low-level winds. The hot towers appeared to dominate the low-level flow, producing intense rotation within their cores and often being associated with significant pressure falls at the surface. Over time, many of these hot towers merged, with each

  2. Crater Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds

    The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater.

    Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Cloud-Top Entrainment in Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  4. Influence of Subpixel Scale Cloud Top Structure on Reflectances from Overcast Stratiform Cloud Layers

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Varnai, Tamas; Winker, David M.

    1998-01-01

    Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel, scale variations in cloud-top height (i.e., "cloud bumps"). Monte Carlo simulation, comparing ID model radiances to radiances from overcast cloud field with 1) cloud-top height variation, but constant cloud volume extinction; 2) flat tops but horizontal variations in cloud volume extinction; and 3) variations in both cloud top height and cloud extinction are performed over a approximately equal to 4 km x 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance difference. The reason 3D-1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low, sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the

  5. Uniform-Temperature Walls for Cloud Chambers

    NASA Technical Reports Server (NTRS)

    Fleischman, G.

    1985-01-01

    Flat heat pipes rapidly transfer heat to and from experimental volumes. Heat pipe vapor chamber carries heat to and from thermo electric modules. Critical surface acts as evaporator or condenser in cloud physics experiments. Used as walls of spaceborne atmospheric cloud chambers. On Earth, used as isothermal floors for environmental test chambers.

  6. Cumulus cloud transport of transient tracers

    NASA Technical Reports Server (NTRS)

    Gidel, L. T.

    1983-01-01

    A theoretical framework is developed for including cumulus cloud transport, rainout of water soluble gases, and aqueous phase chemistry into gas phase photochemical models. Cloud populations are represented as ensemble distributions of individual clouds of various heights. An individual cloud is represented as a one-dimensional, steady state plume with height-independent radius entraining air from the boundary of the cloud. The model is applied to several hypothetical atmospheric tracers to show how clouds may affect the tropospheric distributions of ozone, NO(y), SO2, peroxyacetylnitrate, hydrocarbons, and other gases. Although the numerical experiments were based on cloud mass fluxes from diagnostic studies in the tropics and thus are not representative of the entire globe, it was found that an increasing mixing ratio with height in the free troposphere can be produced for some gases with only a surface source when clouds are present. This suggests that some reactive tropospheric species with primarily surface sources may play a somewhat more important role in tropospheric chemistry than is presently believed depending on the global distribution of cloud mass fluxes. Deficiencies in existing photochemical models due to the way clouds are typically treated are discussed.

  7. Lidar cloud studies for FIRE and ECLIPS

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Grund, Christian J.; Spinhirne, James D.; Hardesty, Michael; Alvarez, James

    1990-01-01

    Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across.

  8. Clustered or regular cumulus cloud fields - The statistical character of observed and simulated cloud fields

    NASA Technical Reports Server (NTRS)

    Ramirez, Jorge A.; Bras, Rafael L.

    1990-01-01

    The spatial distribution of cumulus clouds is assumed to be the result of the effects of convective activity on the thermodynamic environment. The effects can be parameterized in terms of a stabilization function representing the time rate of change of convective available potential energy. Using these results, a new inhibition hypothesis explaining the expected characteristics of the spatial distribution of cumulus clouds is postulated. This paper performs a verification of the inhibition hypothesis on real and simulated cloud fields. In order to do so, an objective measure of the spatial characteristics of cumulus clouds is introduced. Multiple cloud experiments are performed with a three-dimensional numerical cloud model. Skylab pictures of real cumuli are also used in the verification. Results of applying this measure to simulated and observed cumulus cloud fields confirm the inhibition hypothesis.

  9. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  10. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  11. Observations of marine stratocumulus clouds during FIRE

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Randall, David A.; Nicholls, Stephen

    1988-01-01

    The First International Satellite Cloud Climatology Project Regional Experiment (FIRE) to study extensive fields of stratocumulus clouds off the coast of California is presented. Measurements on the regional and detailed local scales were taken, allowing for a wide interpretation of the mean, turbulent, microphysical, radiative, and chemical characteristics of stratocumulus. Multiple aircraft and ground-based remote-sensing systems were used to study the time evolution of the boundary layer structure over a three-week period, and probes from tethered balloons were used to measure turbulence and to collect cloud-microphysical and cloud-radiative data. The observations provide a base for studying the generation maintenance and dissipation of stratocumulus clouds, and could aid in developing numerical models and improved methods for retrieving cloud properties by satellite.

  12. Observational and Modeling Studies of Clouds and the Hydrological Cycle

    NASA Technical Reports Server (NTRS)

    Somerville, Richard C. J.

    1997-01-01

    Our approach involved validating parameterizations directly against measurements from field programs, and using this validation to tune existing parameterizations and to guide the development of new ones. We have used a single-column model (SCM) to make the link between observations and parameterizations of clouds, including explicit cloud microphysics (e.g., prognostic cloud liquid water used to determine cloud radiative properties). Surface and satellite radiation measurements were used to provide an initial evaluation of the performance of the different parameterizations. The results of this evaluation will then used to develop improved cloud and cloud-radiation schemes, which were tested in GCM experiments.

  13. Parameterization of cloud effects on the absorption of solar radiation

    NASA Technical Reports Server (NTRS)

    Davies, R.

    1983-01-01

    A radiation parameterization for the NASA Goddard climate model was developed, tested, and implemented. Interactive and off-hire experiments with the climate model to determine the limitations of the present parameterization scheme are summarized. The parameterization of Cloud absorption in terms of solar zeith angle, column water vapors about the cloud top, and cloud liquid water content is discussed.

  14. Martian Clouds Data Workshop

    NASA Technical Reports Server (NTRS)

    Lee, Steven (Editor)

    1987-01-01

    The major topics covered were a discussion of the structure of relational data base systems and features of the Britton Lee Relational Data Base Management System (RDBMS); a discussion of the workshop's objectives, approach, and research scenarios; and an overview of the Atmospheres Node User's Guide, which details the datasets stored on the Britton Lee, the structure of the query and data analysis system, and examples of the exact menu screens encountered. Also discussed were experience with the system, review of the system performance, and a strategy to produce queries and performance data retrievals of mutual interest. The goals were defined as examining correlations between cloud occurrence, water vapor abundance, and surface properties.

  15. Particle Cloud Flames in Acoustic Fields

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.; Tangirala, V.; Ross, H.; Facca, L.

    1990-01-01

    Results are presented on a study of flames supported by clouds of particles suspended in air, at pressures about 100 times lower than normal. In the experiment, an acoustic driver (4-in speaker) placed at one end of a closed tube, 0.75-m long and 0.05 m in diameter, disperses a cloud of lycopodium particles during a 0.5-sec powerful acoustic burst. Properties of the particle cloud and the flame were recorded by high-speed motion pictures and optical transmission detectors. Novel flame structures were observed, which owe their features to partial confinement, which encourages flame-acoustic interactions, segregation of particle clouds into laminae, and penetration of the flame's radiative flux density into the unburned particle-cloud regimes. Results of these experiments imply that, for particles in confined spaces, uncontrolled fire and explosion may be a threat even if the Phi(0) values are below some apparent lean limit.

  16. Could cloud-to-cloud discharges be as effective as cloud-to-ground discharges in producing NOx?

    NASA Astrophysics Data System (ADS)

    Gallardo, Laura; Cooray, Vernon

    1996-11-01

    In global models of tropospheric ozone and oxidized nitrogen, it is usually assumed that cloud-to-cloud discharges are 3 to 10×less effective than cloud-to-ground discharges in producing nitrogen oxides (NOx). This assumption is based on a limited number of observations and experiments regarding the acoustic and optical energy spectrum of lightning discharges. We claim that cloud-to-cloud and cloud-to-ground discharges dissipate similar amounts of energy and they may thereby be equally effective per discharge as NOx producers. Nevertheless, the mechanism of NOx production by electrical discharges still needs to be clarified, as well as whether there is a vertical differentiation in the production mechanism. We performed sensitivity studies with a global 3-D climatological tracer model (MOGUNTIA). The studies indicate that the simulated tropospheric distributions of oxidized nitrogen and ozone are sensitive to the vertical distribution of the lightning source assumed. Furthermore, it is shown that the strength of the global lightning source used in 3-D global model studies of oxidized nitrogen should be amplified by a factor of 2.6 if cloud-to-cloud discharges are equally effective as cloud-to-ground discharges in producing nitrogen oxides.

  17. The Oort cloud

    NASA Technical Reports Server (NTRS)

    Marochnik, Leonid S.; Mukhin, Lev M.; Sagdeev, Roald Z.

    1991-01-01

    Views of the large-scale structure of the solar system, consisting of the Sun, the nine planets and their satellites, changed when Oort demonstrated that a gigantic cloud of comets (the Oort cloud) is located on the periphery of the solar system. The following subject areas are covered: (1) the Oort cloud's mass; (2) Hill's cloud mass; (3) angular momentum distribution in the solar system; and (4) the cometary cloud around other stars.

  18. Condensed Acids In Antartic Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Starr, W. L.; Oberbeck, V. R.; Chan, K. R.; Goodman, J. K.; Livingston, J. M.; Verma, S.; Fong, W.

    1992-01-01

    Report dicusses nitrate, sulfate, and chloride contents of stratospheric aerosols during 1987 Airborne Antarctic Ozone Experiment. Emphasizes growth of HNO3*3H2O particles in polar stratospheric clouds. Important in testing theories concerning Antarctic "ozone hole".

  19. Ice Clouds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Heavy water ice clouds almost completely obscure the surface in Vastitas Borealis.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 69.5, Longitude 283.6 East (76.4 West). 19 meter/pixel resolution.

  20. In situ aircraft verification of the quality of satellite cloud winds over oceanic regions

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Skillman, W. C.; Shenk, W. E.; Steranka, J.

    1979-01-01

    A 5-year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft Inertial Navigation System wind measurements is presented. Cloud motions measured by satellite and aircraft wind measurements that were coincident in time and space, and the results from the experiment are for undisturbed to moderately disturbed oceanic weather regimes. The results show that satellite measured cumulus cloud motions are good estimators of the cloud-base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud-base wind was determined; for cumulus clouds near frontal regions, the cloud motions agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions most closely followed the mean wind in the cloud layer.

  1. Atmospheric Rivers Coming to a Cloud Near You

    SciTech Connect

    Leung, Ruby

    2014-03-29

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  2. Atmospheric Rivers Coming to a Cloud Near You

    ScienceCinema

    Leung, Ruby

    2016-07-12

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  3. The EOS CERES Global Cloud Mask

    NASA Technical Reports Server (NTRS)

    Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.

    1996-01-01

    To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.

  4. The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. VII. Classical Cepheids in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Poleski, R.; Udalski, A.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Wyrzykowski, Ł.; Szewczyk, O.; Ulaczyk, K.

    2010-03-01

    The seventh part of the OGLE-III Catalog of Variable Stars (OIII-CVS) consists of 4630 classical Cepheids in the Small Magellanic Cloud (SMC). The sample includes 2626 fundamental-mode (F), 1644 first-overtone (1O), 83 second-overtone (2O), 59 double-mode F/1O, 215 double-mode 1O/2O, and three triple-mode classical Cepheids. For each object basic parameters, multi-epoch VI photometry collected within 8 or 13 years of observations, and finding charts are provided in the OGLE Internet archive. We present objects of particular interest: exceptionally numerous sample of single-mode second-overtone pulsators, five double Cepheids, two Cepheids with eclipsing variations superimposed on the pulsation light curves. At least 139 first-overtone Cepheids exhibit low-amplitude secondary variations with periods in the range 0.60-0.65 of the primary ones. These stars populate three distinct sequences in the Petersen diagram. The origin of this secondary modulation is still unknown. Contrary to the Large Magellanic Cloud (LMC) we found only a few candidates for anomalous Cepheids in the SMC. This fact may be a clue for the explanation of the origin of the anomalous Cepheids. The period and luminosity distributions of Cepheids in both Magellanic Clouds suggest that there are two or three populations of classical Cepheids in each of the galaxies. The main difference between the LMC and SMC lays in different numbers of Cepheids in each group. We fit the period-luminosity (PL) relations of SMC Cepheids and compare them with the LMC PL laws.

  5. Surface radiation budget in the Clouds and the Earth's Radiant Energy System (CERES) effort and in the Global Energy and Water Cycle Experiment (GEWEX)

    NASA Technical Reports Server (NTRS)

    Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.

    1990-01-01

    The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.

  6. Airborne quantification of upper tropospheric NOx enhancements from lightning in deep convective storms over the continental U.S. during the Deep Convective Clouds and Chemistry (DC3) experiment

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Campos, T. L.; Cohen, R. C.; Diskin, G. S.; Flocke, F. M.; Knapp, D. J.; Garland, C.; Mikoviny, T.; Nault, B.; Peischl, J.; Sachse, G. W.; Weinheimer, A. J.; Wisthaler, A.; Ryerson, T. B.

    2012-12-01

    Airborne in-situ observations from the chemically-instrumented NASA DC8 and NSF GV research aircraft during the Deep Convective Clouds and Chemistry (DC3) experiment are used to quantify enhancements in nitrogen oxides (NOx) in the upper troposphere due to lightning in deep convective storms. Several storms were sampled over Colorado, Oklahoma, and Alabama in May and June, 2012. Inflow to these storms was primarily sampled by the DC8 aircraft between 1 and 5 km above ground level; outflow was typically sampled by both aircraft near 10 km. Storms were typically sampled over a 1-2 hour time period by a single aircraft, and often simultaneously using the two instrumented airborne platforms. In this work, we examine airborne measurements of NOx and other tracers in the outflow to attribute and quantify NOx enhancements produced from lightning. Results from several convective storms sampled during the DC3 experiment will be compared.

  7. Limits to Cloud Susceptibility

    NASA Technical Reports Server (NTRS)

    Coakley, James A., Jr.

    2002-01-01

    1-kilometer AVHRR observations of ship tracks in low-level clouds off the west coast of the U S. were used to determine limits for the degree to which clouds might be altered by increases in anthropogenic aerosols. Hundreds of tracks were analyzed to determine whether the changes in droplet radii, visible optical depths, and cloud top altitudes that result from the influx of particles from underlying ships were consistent with expectations based on simple models for the indirect effect of aerosols. The models predict substantial increases in sunlight reflected by polluted clouds due to the increases in droplet numbers and cloud liquid water that result from the elevated particle concentrations. Contrary to the model predictions, the analysis of ship tracks revealed a 15-20% reduction in liquid water for the polluted clouds. Studies performed with a large-eddy cloud simulation model suggested that the shortfall in cloud liquid water found in the satellite observations might be attributed to the restriction that the 1-kilometer pixels be completely covered by either polluted or unpolluted cloud. The simulation model revealed that a substantial fraction of the indirect effect is caused by a horizontal redistribution of cloud water in the polluted clouds. Cloud-free gaps in polluted clouds fill in with cloud water while the cloud-free gaps in the surrounding unpolluted clouds remain cloud-free. By limiting the analysis to only overcast pixels, the current study failed to account for the gap-filling predicted by the simulation model. This finding and an analysis of the spatial variability of marine stratus suggest new ways to analyze ship tracks to determine the limit to which particle pollution will alter the amount of sunlight reflected by clouds.

  8. The impact of parametrized convection on cloud feedback.

    PubMed

    Webb, Mark J; Lock, Adrian P; Bretherton, Christopher S; Bony, Sandrine; Cole, Jason N S; Idelkadi, Abderrahmane; Kang, Sarah M; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D; Zhao, Ming

    2015-11-13

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback

  9. The impact of parametrized convection on cloud feedback

    PubMed Central

    Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming

    2015-01-01

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud

  10. External calibration technique of millimeter-wave cloud radar

    NASA Astrophysics Data System (ADS)

    Wen, Tao; Zhao, Zeng-Liang; Yao, Zhi-Gang; Han, Zhi-Gang; Guo, Lin-Da

    2016-10-01

    The millimeter-wave cloud radar can provide a large number of fine and reliable information for the inversion of cloud macro and micro parameters. A key link of using the millimeter-wave cloud radar to detect the cloud is that the radar must be calibrated. Due to the precision components and severe environment of millimeter-wave cloud radar, subtle changes may take place in the operation process of cloud radar, unless the cloud radar is calibrated regularly. Although the calibration system inside the cloud radar can track and monitor the main working parameters and correct the detection results, it fails to consider the characteristics of the antenna and the mutual influence among different components of cloud radar. Therefore, the external calibration for cloud radar system is very important. Combined with the actual situation of cloud radar under domestic onboard platform, this paper builds a complete external calibration technique process of cloud radar based on the calm sea, providing the theoretical support for the external calibration experiments of the airborne and even satellite-borne millimeter-wave cloud radar developed by our country.

  11. Measurements of cloud condensation nuclei spectra within maritime cumulus cloud droplets: Implications for mixing processes

    NASA Technical Reports Server (NTRS)

    Twohy, Cynthia H.; Hudson, James G.

    1995-01-01

    In a cloud formed during adiabatic expansion, the droplet size distribution will be systematically related to the critical supersaturation of the cloud condensation nuclei (CNN), but this relationship can be complicated in entraining clouds. Useful information about cloud processes, such as mixing, can be obtained from direct measurements of the CNN involved in droplet nucleation. This was accomplished by interfacing two instruments for a series of flights in maritime cumulus clouds. One instrument, the counterflow virtual impactor, collected cloud droplets, and the nonvolatile residual nuclei of the droplets was then passed to a CCN spectrometer, which measured the critical supersaturation (S(sub c)) spectrum of the droplet nuclei. The measured S(sub c) spectra of the droplet nuclei were compared with the S(sub c) spectra of ambient aerosol particles in order to identify which CCN were actually incorporated into droplets and to determine when mixing processes were active at different cloud levels. The droplet nuclei nearly always exhibited lower median S(sub c)'s than the ambient aerosol, as expected since droplets nucleate perferentially on particles with lower critical supersaturations. Critical supersaturation spectra from nuclei of droplets near cloud base were similar to those predicted for cloud regions formed adiabatically, but spectra of droplet nuclei from middle cloud levels showed some evidence that mixing had occurred. Near cloud top, the greatest variation in the spectra of the droplet nuclei was observed, and nuclei with high S(sub c)'s were sometimes present even within relatively large droplets. This suggests that the extent of mixing increases with height in cumulus clouds and that inhomogeneous mixing may be important near cloud top. These promising initial results suggest improvements to the experimental technique that will permit more quantitative results in future experiments.

  12. Airborne In-Situ Measurements of Aerosol and Cloud Microphysical Properties in Mixed-Phase Clouds Under Varying Conditions

    NASA Astrophysics Data System (ADS)

    Comstock, J. M.; Fan, J.; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Schmid, B.

    2014-12-01

    Cloud microphysical properties impact the interaction of clouds and radiation in the atmosphere, and can influence atmospheric circulations through changes in cloud phase. Characterizing the conditions that control phase changes and the microphysical properties of mixed-phase clouds is important for improving understanding of physical processes that influence cloud phase. We characterize the aerosol and cloud microphysical properties in relation to the atmospheric dynamic and thermodynamic conditions observed in mixed-phase clouds during several aircraft-based field experiments. The Department of Energy Atmospheric Radiation Measurement program's Gulfstream-1 aircraft was used to sample aerosol and cloud properties in warm and cold clouds during several recent field experiments. We analyze in-situ observations from the CalWater and TCAP field campaigns to examine the variability of cloud properties (phase, hydrometeor size, ice and liquid water content, particle habit) with changes in aerosol, vertical velocity, and temperature. These measurements indicate that in addition to aerosol concentration, vertical velocity strength has important influence on cloud phase in mixed-phase cloud regimes.

  13. The albedo of fractal stratocumulus clouds

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Ridgway, William; Wiscombe, Warren J.; Bell, Thomas L.; Snider, Jack B.

    1994-01-01

    An increase in the planetary albedo of the earth-atmosphere system by only 10% can decrease the equilibrium surface temperature to that of the last ice age. Nevertheless, albedo biases of 10% or greater would be introduced into large regions of current climate models if clouds were given their observed liquid water amounts, because of the treatment of clouds as plane parallel. The focus on marine stratocumulus clouds is due to their important role in cloud radiative forcing and also that, of the wide variety of earth's cloud types, they are most nearly plane parallel, so that they have the least albedo bias. The fractal model employed here reproduces both the probability distribution and the wavenumber spectrum of the stratocumulus liquid water path, as observed during the First ISCCP Regional Experiment (FIRE). A single new fractal parameter 0 less than or equal to f less than or equal to 1, is introduced and determined empirically by the variance of the logarithm of the vertically integrated liquid water. The reduced reflectivity of fractal stratocumulus clouds is approximately given by the plane-parallel reflectivity evaluated at a reduced 'effective optical thickness,' which when f = 0.5 is tau(sub eff) approximately equal to 10. Study of the diurnal cycle of stratocumulus liquid water during FIRE leads to a key unexpected result: the plane-parallel albedo bias is largest when the cloud fraction reaches 100%, that is, when any bias associated with the cloud fraction vanishes. This is primarily due to the variability increase with cloud fraction. Thus, the within-cloud fractal structure of stratocumulus has a more significant impact on estimates of its mesoscale-average albedo than does the cloud fraction.

  14. Noctilucent Cloud Sightings

    NASA Video Gallery

    Polar Mesospheric Clouds form during each polar region's summer months in the coldest place in the atmosphere, 50 miles above Earth's surface. Noctilucent Clouds were first observed in 1885 by an a...

  15. Cloud Computing for radiologists.

    PubMed

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  16. Cloud microphysics and surface properties in climate

    SciTech Connect

    Stamnes, K.

    1995-09-01

    Cloud optical thickness is determined from ground-based measurements of broadband incoming solar irradiance using a radiation model in which the cloud optical depth is adjusted until computed irradiance agrees with the measured value. From spectral measurements it would be feasible to determine both optical thickness and mean drop size, which apart from cloud structure and morphology, are the most important climatic parameters of clouds. A radiative convective model is used to study the sensitivity of climate to cloud liquid water amount and cloud drop size. This is illustrated in Figure 21.1 which shows that for medium thick clouds a 10 % increase in drop size yields a surface warming of 1.5{degrees}C, which is the same as that due to a doubling of carbon dioxide. For thick clouds, a 5% decrease in drop size is sufficient to offset the warming due to doubling of carbon dioxide. A radiative transfer model for the coupled atmosphere/sea ice/ocean system is used to study the partitioning of radiative energy between the three strata, and the potential for testing such a model in terms of planned experiments in the Arctic is discussed.

  17. Spatial charge cloud size of microchannel plates.

    PubMed

    Saito, M; Saito, Y; Asamura, K; Mukai, T

    2007-02-01

    We examine the spatial evolution of charge clouds emitted by microchannel plates (MCPs). A model of this evolution is presented, along with a comparison to experimental results. We also present an experimental method to measure the charge cloud radius in which the radial charge cloud distribution is assumed to be Gaussian. When a charge cloud is released from the MCP, its initial size is determined by the number and distribution of excited channels. The size of the charge cloud is examined as a function acceleration voltage, distance between MCP and anode, and MCP bias voltage. Since electrons released from the MCP have various initial energies and angular divergence, the charge cloud size increases as it travels away from the MCP. Space charge effects also contribute to the growth of the charge cloud. The experimental results are in close agreement with our model, which includes these effects. From experiment, we also derive an approximate expression for charge cloud radius as a function of acceleration voltage and distance between MCP and anode. This expression can be used for the practical design and optimization of a position sensing system comprised of multiple anodes.

  18. Computer animation of clouds

    SciTech Connect

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  19. Comparing Point Clouds

    DTIC Science & Technology

    2004-04-01

    Point clouds are one of the most primitive and fundamental surface representations. A popular source of point clouds are three dimensional shape...acquisition devices such as laser range scanners. Another important field where point clouds are found is in the representation of high-dimensional...framework for comparing manifolds given by point clouds is presented in this paper. The underlying theory is based on Gromov-Hausdorff distances, leading

  20. Cloud clearing with a CO(2) laser in a cirrus cloud simulation facility.

    PubMed

    Waggoner, A P; Radke, L F; Buonadonna, V; Dowling, D R

    1992-09-20

    We report experiments that confirm our prediction that clouds consisting of ice crystals with properties similar to those of cirrus clouds can be cleared with relatively low pulsed CO(2) laser energy density and that the cleared channel is resistant to obscuration by recondensation of the evaporated water. For the experiments reported here, we use a unique cloud-generating apparatus consisting of a low-speed wind tunnel with water spray injectors to generate water droplets or, with ice nucleus seeding at low temperatures, ice crystals. The air temperature can be controlled over the range of ambient to -40 degrees C. A significant clearing of ice crystal clouds was observed with pulsed CO(2) laser fluence in the range 0.2 to 1.5 J/cm(2) and, as expected, recondensation was found to depend on ice particle mass concentration. At ice particle concentrations similar to those found in cirrus clouds, recondensation did not occur.

  1. Preliminary investigation of radiatively driven convection in marine stratocumulus clouds

    SciTech Connect

    Norris, P.

    1995-09-01

    Marine stratocumulus play an important yet still poorly modeled role in the climate system. These clouds cool the planet, having a large albedo, but little infrared effect. A fundamental question is whether such clouds will exist at a given time and location. Stratocumulus is often formed at higher latitudes as stratus and advected equatorward until it breaks up. Possible mechanisms for cloud breakup include strong subsidence, cloud top entrainment instability (CTEI), drizzle, solar heating and resultant boundary layer decoupling, and surface forcing. The Atlantic Stratocumulus Transition Experiment (ASTEX) was conducted to investigate these potential cloud breakup mechanisms. 5 refs., 3 figs.

  2. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J. R.; Maslanik, J. A.

    1988-01-01

    The principal objectives of this project are: (1) to develop suitable validation data sets to evaluate the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; (2) to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers; and (3) to compare synoptic cloud data from a control run experiment of the GISS climate model II with typical observed synoptic cloud patterns.

  3. Cloud Computing Explained

    ERIC Educational Resources Information Center

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  4. Clouds in Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    West, R.

    1999-01-01

    In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice cyrstals suspended in the air. The study of clouds touches on many facets of armospheric science. The chemistry of clouds is tied to the chemistry of the surrounding atmosphere.

  5. Security in the cloud.

    PubMed

    Degaspari, John

    2011-08-01

    As more provider organizations look to the cloud computing model, they face a host of security-related questions. What are the appropriate applications for the cloud, what is the best cloud model, and what do they need to know to choose the best vendor? Hospital CIOs and security experts weigh in.

  6. Clouds in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry; Anderson, Bruce; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Water vapor in the winter arctic tropopause region is important because, after the tropical tropopause region, the winter arctic tropopause has the coldest temperatures in the tropospheric northern hemisphere. This suggests the potential for cloud formation that can remove water vapor from a part of the atmosphere where radiatively active gases (such as water) exert a disproportionate influence on the earth's radiation budget. Previous work by the same authors has shown that this cloud formation extends into the stratosphere, with 20% of the parcels having ozone values of 300-350 ppbv experiencing ice saturation in any given 10 day period period during the late winter. In fact, temperatures are cold enough that 5-10% of the parcels experience saturation even if the water content is below the prevailing stratospheric value of 5 ppmv. This work describes a case study of clouds observed by aircraft near the winter arctic tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE). This provided a unique opportunity to examine dehydration processes in this region since in situ water, tracer, cloud particle, and meteorological data were all available simultaneously. During this period, temperatures were cold enough at the tropopause to produce saturation mixing ratios of 3-4 ppmv. Thus, clouds were actually observed within the stratosphere. Back trajectories indicate that the air in these clouds came from lower latitudes and altitudes. The study describes the nature of the clouds, the history of the air, and the possible implications for the upper tropospheric water budget.

  7. Cloud microstructure studies

    NASA Technical Reports Server (NTRS)

    Blau, H. H., Jr.; Fowler, M. G.; Chang, D. T.; Ryan, R. T.

    1972-01-01

    Over two thousand individual cloud droplet size distributions were measured with an optical cloud particle spectrometer flown on the NASA Convair 990 aircraft. Representative droplet spectra and liquid water content, L (gm/cu m) were obtained for oceanic stratiform and cumuliform clouds. For non-precipitating clouds, values of L range from 0.1 gm/cu m to 0.5 gm/cu m; with precipitation, L is often greater than 1 gm/cu m. Measurements were also made in a newly formed contrail and in cirrus clouds.

  8. Integrating Network Management for Cloud Computing Services

    DTIC Science & Technology

    2015-06-01

    Integrating Network Management For Cloud Computing Services Peng Sun A Dissertation Presented to the Faculty of Princeton University in Candidacy for...2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Integrating Network Management for Cloud Computing Services... integrate the management of various network components. With commercial deployment, our operational experiences feed back into revision of the

  9. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    DTIC Science & Technology

    2012-09-30

    and cloud observations in trade wind cumulus clouds using the CIRPAS aircraft with the cloud radar was designed and carried out. The observational...gradients in cloud properties off the coast. Further from the South Florida area of fair-weather cumulus clouds (Jan. 2008) where clouds with both...marine and continental characteristics were observed. This was followed by a set of observations made in 2010 of cumulus clouds in off of Barbados

  10. Analysis of Cirrus Cloud Microphysical Data

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Grainger, Cedric A.

    1999-01-01

    The First International Satellite Cloud Climatology Regional Experiment (FIRE) program has the goal of improving our capabilities to understand, model and detect the properties of climatically-important clouds. This is being undertaken through a three-pronged effort of modeling, long-term observations and short-term intensive field studies. Through examination of satellite and other data it is apparent that stratus and cirrus cloud types have the greatest impact on climate due to their radiative effects and ubiquitous nature. As a result, the FIRE program has developed two paths of investigation, each having its own subset of research objectives and measurement programs. The work conducted under this grant was directed toward furthering our understanding of cirrus cloud systems. While it is known that cirrus are climatically important, the magnitude and even sign of the impact is unclear. Cirrus clouds affect the transfer of radiation according to their physical depth and location in the atmosphere and their microphysical composition. However, significant uncertainties still exist in how cirrus clouds form and how they are maintained, what their physical properties are and how they can be parameterized in numerical models. Better remote sensing techniques for monitoring cirrus cloud systems and improved modeling of radiative transfer through ice particles are also needed. A critical element in resolving these issues is a better understanding of cirrus cloud microphysical properties and how they vary. The focus of the research to be conducted under this grant was th data collected in situ by the University of North Dakota Citation aircraft. The goals of this research were to add to the body of knowledge of cirrus cloud microphysics, particularly at the small end of the size spectrum; and analyze the spatial variation of cirrus clouds.

  11. The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. IX. RR Lyr Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Udalski, A.; Szymański, M. K.; Kubiak, J.; Pietrzyński, G.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.

    2010-09-01

    The ninth part of the OGLE-III Catalog of Variable Stars (OIII-CVS) comprises RR Lyr stars in the Small Magellanic Cloud (SMC). Our sample consists of 2475 variable stars, of which 1933 pulsate in the fundamental mode (RRab), 175 are the first overtone pulsators (RRc), 258 oscillate simultaneously in both modes (RRd) and 109 stars are suspected second-overtone pulsators (RRe). 30 objects are Galactic RR Lyr stars seen in the foreground of the SMC. We discuss some statistical features of the sample. Period distributions show distinct differences between SMC and LMC populations of RR Lyr variable stars, with the SMC stars having on average longer periods. The mean periods for RRab, RRc and RRe stars are 0.596, 0.366 and 0.293 days, respectively. The mean apparent magnitudes of RRab stars are equal to 19.70 mag in the V-band and 19.12 mag in the I-band. Spatial distribution of RRLyr stars shows that the halo of the SMC is roughly round in the sky, however the density map reveals two maxima near the center of the SMC. For each object the multi-epoch V- and I-band photometry collected over 8 or 13 years of observations and finding charts are available to the astronomical community from the OGLE Internet archive.

  12. The NASA CloudSat Education Network

    NASA Astrophysics Data System (ADS)

    Krumm, D. K.

    2006-05-01

    CloudSat, a NASA Earth System Science Pathfinder Mission, will launch into orbit the world's most advanced weather radar designed to measure properties of clouds that are essential for accurate understanding of Earth's weather and climate processes. Providing the first vertical profiles of global measurements of cloud thickness, height, water and ice content and a wide range of precipitation data linked to cloud development, CloudSat measurements will fill a critical gap in understanding how clouds affect climate. Any mission of this nature requires extensive ground-based reference data. The CloudSat Education Network provides the opportunity for schools around the world to partner with the CloudSat Science Team and the NASA-sponsored GLOBE Program. The Network will link together scientists, students, teachers, and their communities to give students meaningful, authentic and contemporary science education experiences. Student activities and learning outcomes are being developed to meet both general education outcomes and specific standards or objectives from school curricula. The main focus of the knowledge development component of the project is to help students better understand long-term climate change and the climatic processes that maintain the Earth's Energy balance. Student research with CloudSat/GLOBE data will be strongly encouraged. Scientists will receive research-quality data in support of the mission and in return will interact with teachers and their students to promote interest in science. Participation in the network throughout the duration of the project will be monitored and schools will be asked to maintain levels of participation in order to give CloudSat scientists a solid consistent base of data to support their research. The preferred base level of participation is the reporting of cloud, temperature and precipitation data according to modified GLOBE protocols approximately every 16 days coinciding with the CloudSat satellite overpass. The

  13. Annual cycle of radiation fluxes over the Arctic ocean: Sensitivity to cloud optical properties

    SciTech Connect

    Curry, J.A. ); Ebert, E.E. )

    1992-11-01

    The relationship between cloud optical properties and the radiative fluxes over the Arctic Ocean is explored by conducting a series of modeling experiments. The annual cycle of arctic cloud optical properties that are required to reproduce both the outgoing radiative fluxes at the top of the atmosphere as determined from satellite observations and the available determinations of surface radiative fluxes are derived. Existing data on cloud fraction and cloud microphysical properties are utilized. Four types of cloud are considered: low stratus clouds, midlevel clouds, citrus clouds, and wintertime ice crystal precipitation. Internally consistent annual cycles of surface temperature, surface albedo, cloud fraction and cloud optical properties, components of surface and top of atmosphere radiative fluxes, and cloud radiative forcing are presented. The modeled total cloud optical depth (weighted by cloud fraction) ranges from a low value in winter of 2 to a high summertime value of 8. Infrared emmissivities for liquid water clouds are shown to be substantially less than unity during the cold half of the year. Values of modeled surface cloud radiative forcing are positive except for two weeks in midsummer; over the course of the year clouds have a net warming effect on the surface in the Arctic. Total cloud radiative forcing at the top of the atmosphere is determined to be positive only briefly in early autumn. Surface longwave fluxes are shown to be very sensitive to the presence of lower-tropospheric ice crystal precipitation during the cold half of the year.

  14. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; de Graaf, M.; Stammes, P.

    2012-10-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressure contains information on aerosol layer pressure. For cloud free scenes, the derived FRESCO cloud pressure is close to the aerosol layer pressure, especially for optically thick aerosol layers. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressure may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO and AAI data, an estimate for the aerosol layer pressure can be given.

  15. A numerical cloud model for the support of laboratory experimentation

    NASA Technical Reports Server (NTRS)

    Hagen, D. E.

    1979-01-01

    A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.

  16. Nutrient limitation restricts growth and reproductive output in a tropical montane cloud forest bromeliad: findings from a long-term forest fertilization experiment.

    PubMed

    Lasso, Eloisa; Ackerman, James D

    2013-01-01

    From studies in seasonal lowland tropical forests, bromeliad epiphytes appear to be limited mainly by water, and to a lesser extent by nutrient supply, especially phosphorous. Less is understood about the mineral nutrition of tropical montane cloud forest (TMCF) epiphytes, even though their highest diversity is in this habitat. Nutrient limitation is known to be a key factor restricting forest productivity in TMCF, and if epiphytes are nutritionally linked to their host trees, as has been suggested, we would expect that they are also nutrient limited. We studied the effect of a higher nutrient input on reproduction and growth of the tank bromeliad Werauhia sintenisii in experimental plots located in a TMCF in Puerto Rico, where all macro- and micronutrients had been added quarterly starting in 1989 and continuing throughout the duration of this study. We found that bromeliads growing in fertilized plots were receiving litterfall with higher concentrations of N, P, and Zn and had higher concentrations of P, Zn, Fe, Al, and Na in their vegetative body. The N:P ratios found (fertilized = 27.5 and non-fertilized = 33.8) suggest that W. sintenisii may also be phosphorous limited as are lowland epiphytes. Fertilized plants had slightly longer inflorescences, and more flowers per inflorescence, than non-fertilized plants, but their flowers produced nectar in similar concentrations and quantities. Fertilized plants produced more seeds per fruit and per plant. Frequency of flowering in two consecutive years was higher for fertilized plants than for controls, suggesting that fertilized plants overcome the cost of reproduction more readily than non-fertilized plants. These results provide evidence that TMCF epiphytic bromeliads are nutrient limited like their lowland counterparts.

  17. Interpretation of MODIS Cloud Images by CloudSat/CALIPSO Cloud Vertical Profiles

    NASA Astrophysics Data System (ADS)

    Wang, T.; Fetzer, E. J.; Wong, S.; Yue, Q.

    2015-12-01

    Clouds observed by passive remote-sensing imager (Aqua-MODIS) are collocated to cloud vertical profiles observed by active profiling sensors (CloudSat radar and CALIPSO lidar) at the pixel-scale. By comparing different layers of cloud types classified in the 2B-CLDCLASS-LIDAR product from CloudSat+CALIPSO to those cloud properties observed by MODIS, we evaluate the occurrence frequencies of cloud types and cloud-overlap in CloudSat+CALIPSO for each MODIS cloud regime defined by cloud optical depth (τ) and cloud-top pressure (P) histograms. We find that about 70% of MODIS clear sky agrees with the clear category in CloudSat+CALIPSO; whereas the remainder is either single layer (~25%) cirrus (Ci), low-level cumulus (Cu), stratocumulus (Sc), or multi-layer (<5%) clouds in CloudSat+CALIPSO. Under MODIS cloudy conditions, 60%, 28%, and 8% of the occurrences show single-, double-, and triple-layer clouds, respectively in CloudSat+CALIPSO. When MODIS identifies single-layer clouds, 50-60% of the MODIS low-level clouds are categorized as stratus (Sc) in CloudSat+CALIPSO. Over the tropics, ~70% of MODIS high and optically thin clouds (considered as cirrus in the histogram) is also identified as Ci in CloudSat+CALIPSO, and ~40% of MODIS high and optically thick clouds (considered as convective in the histogram) agrees with CloudSat+CALIPSO deep convections (DC). Over mid-latitudes these numbers drop to 45% and 10%, respectively. The best agreement occurs in tropical single-layer cloud regimes, where 90% of MODIS high-thin clouds are identified as Ci by CloudSat+CALIPSO and 60% of MODIS high-thick clouds are identified as DC. Worst agreement is found for multi-layer clouds, where cirrus on top of low- and mid-level clouds in MODIS are frequently categorized as high-thick clouds by passive imaging - among these only 5-12% are DC in CloudSat+CALIPSO. It is encouraging that both MODIS low-level clouds (regardless of optical thickness) and high-level thin clouds are consistently

  18. THE CALIFORNIA MOLECULAR CLOUD

    SciTech Connect

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F. E-mail: mlombard@eso.or

    2009-09-20

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). Both a uniform foreground star density and measurements of the cloud's velocity field from CO observations indicate that this cloud is likely a coherent structure at a single distance. From comparison of foreground star counts with Galactic models, we derive a distance of 450 +- 23 pc to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of {approx} 10{sup 5} M{sub sun}, rivaling the Orion (A) molecular cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion molecular cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps of both clouds shows that the new cloud contains only 10% the amount of high extinction (A{sub K} > 1.0 mag) material as is found in the OMC. This, in turn, suggests that the level of star formation activity and perhaps the star formation rate in these two clouds may be directly proportional to the total amount of high extinction material and presumably high density gas within them and that there might be a density threshold for star formation on the order of n(H{sub 2}) {approx} a few x 10{sup 4} cm{sup -3}.

  19. Cloud interactions and merging - Numerical simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Simpson, J.

    1984-01-01

    A total of 48 numerical experiments have been performed to study cloud interactions adn merging by means of a two-dimensional multi-cell model. Two soundings of deep convection during GATE and two different magnitudes of large-scale lifting have been used as the initial conditions and as the main forcing on the model. Over two hundred groups of cloud systems with a life history of over sixty minutes have been generated under the influence of different combinations of the stratification and large-scale lifting. The results demonstrate the increase in convective activity and in amount of precipitation with increased intensity of large-scale lifting. The results also show increased occurrence of cloud merger with increased intensity of large-scale lifting. The most unfavorable environmental conditions for cloud merging are (1) less unstable stratification of the atmosphere and (2) weaker large-scale lifting. A total of fourteen cloud systems qualify as mergers. Two selected cases will be described dynamically and thermodynamically in this paper. Although these cloud mergers have been simulated under the influence of different synoptic-scale conditions, the major physical mechanism related to the cloud merging process is the same as that proposed by Simpson. Cumulus downdrafts and associated cold outflows play a dominant role in the merging process in all cases studied.

  20. What is a Cloud?

    NASA Astrophysics Data System (ADS)

    Long, C. N.; Wu, W.

    2013-12-01

    There are multiple factors that cause disagreements between differing methods using differing instruments to infer cloud amounts. But along with these issues is a fundamental concern that has permeated all comparisons and supersedes such questions as what are the uncertainty estimates of a given retrieval. To wit: what is a cloud? How can uncertainty of a cloud amount measurement be determined when there is no absolute 'truth' on what defines a cloud, as opposed to cloud-free? Recent research comparing a decade of surface- and satellite-based retrievals of cloud amount for the ARM Southern Great Plains site shows significant disagreements. While Total Sky Imager 100-degree FOV, Shortwave (SW) Radiative Flux Analysis, GOES satellite and PATMOS-x satellite amounts agree relatively well, ISCCP satellite and ARSCL time-series cloud amounts are significantly greater, 15% (ISCCP) and 8% (ARSCL) larger in average diurnal variations. In both cases, it appears that optically thin high ice is counted as 'cloud' in ARSCL and ISCCP that is not categorized as cloud by all the others. Additionally, cloud amounts from three methods (ISCCP, ARSCL, and GOES) show an overall increase of 8%-10% in the annually averaged cloud fractions from 1998 to 2009, while those from the other three (TSI, SWFA, PATMOS-x) show little trend for this period. So one wonders: are cloud amounts increasing or not over this period? The SW Flux Analysis used sky imager retrievals as 'truth' in development of the methodology (Long et al, 2006a), where sky imagery itself used human observations as the model (Long et al., 2006b). Min et al. (2008) then used SW Flux Analysis retrievals as 'truth' to develop an MFRSR-based spectral SW retrieval method. Dupont et al. (2008) show that the SW-based retrievals allow up to a visible optical depth of 0.15 (95% of occurrences) under the 'clear-sky' category which primarily consists of sub-visual cirrus, which by ancestry applies to spectral SW, sky imager and human

  1. Formation of Bidisperse Particle Clouds

    NASA Astrophysics Data System (ADS)

    Er, Jenn Wei; Zhao, Bing; Law, Adrian W. K.; Adams, E. Eric

    2014-11-01

    When a group of dense particles is released instantaneously into water, their motion has been conceptualized as a circulating particle thermal (Ruggerber 2000). However, Wen and Nacamuli (1996) observed the formation of particle clumps characterized by a narrow, fast moving core shedding particles into wakes. They observed the clump formation even for particles in the non-cohesive range as long as the source Rayleigh number was large (Ra > 1E3) or equivalently the source cloud number (Nc) was small (Nc < 3.2E2). This physical phenomenon has been investigated by Zhao et al. (2014) through physical experiments. They proposed the theoretical support for Nc dependence and categorized the formation processes into cloud formation, transitional regime and clump formation. Previous works focused mainly on the behavior of monodisperse particles. The present study further extends the experimental investigation to the formation process of bidisperse particles. Experiments are conducted in a glass tank with a water depth of 90 cm. Finite amounts of sediments with various weight proportions between coarser and finer particles are released from a cylindrical tube. The Nc being tested ranges from 6E-3 to 9.9E-2, which covers all the three formation regimes. The experimental results showed that the introduction of coarse particles promotes cloud formation and reduce the losses of finer particles into the wake. More quantitative descriptions of the effects of source conditions on the formation processes will be presented during the conference.

  2. Cloud Forensics Issues

    DTIC Science & Technology

    2014-07-01

    I N S T I T U T E F O R D E F E N S E A N A L Y S E S Cloud Forensics Issues William R. Simpson Coimbatore Chandersekaran 1 July 2014 IDA...252.227-7013 (a)(16) [Sep 2011]. Cloud Forensics Issues William R Simpson and Coimbatore Chandersekaran Abstract— Forensics is...offerings of cloud capabilities have not provided security, monitoring or attribution that would allow an effective forensics investigation. The high

  3. Cryptographic Cloud Storage

    NASA Astrophysics Data System (ADS)

    Kamara, Seny; Lauter, Kristin

    We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and non-standard cryptographic primitives in order to achieve our goal. We survey the benefits such an architecture would provide to both customers and service providers and give an overview of recent advances in cryptography motivated specifically by cloud storage.

  4. Ammonia Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter

    In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  5. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  6. Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Peters-Lidard, Christa; Lang, Stephen; Simpson, Joanne; Kumar, Sujay; Xie, Shaocheng; Eastman, Joseph L.; Shie, Chung-Lin; Geiger, James V.

    2006-01-01

    Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and compared to Atmospheric Radiation Measurement (ARM) data. This evaluation of long-term cloud-resolving model simulations focuses on the evaluation of clouds and surface fluxes. All numerical experiments, as compared to observations, simulate surface precipitation well but over-predict clouds, especially in the upper troposphere. The sensitivity of cloud properties to dimensionality and other factors is studied to isolate the origins of the over prediction of clouds. Due to the difference in buoyancy damping between 2D and 3D models, surface precipitation fluctuates rapidly with time, and spurious dehumidification occurs near the tropopause in the 2D CRM. Surface fluxes from a land data assimilation system are compared with ARM observations. They are used in place of the ARM surface fluxes to test the sensitivity of simulated clouds to surface fluxes. Summertime simulations show that surface fluxes from the assimilation system bring about a better simulation of diurnal cloud variation in the lower troposphere.

  7. SparkClouds: visualizing trends in tag clouds.

    PubMed

    Lee, Bongshin; Riche, Nathalie Henry; Karlson, Amy K; Carpendale, Sheelash

    2010-01-01

    Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations—multiple line graphs and stacked bar charts—as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.

  8. Cloud Computing: An Overview

    NASA Astrophysics Data System (ADS)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  9. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  10. Comparison between SAGE II and ISCCP high-level clouds. 1: Global and zonal mean cloud amounts

    NASA Technical Reports Server (NTRS)

    Liao, Xiaohan; Rossow, William B.; Rind, David

    1995-01-01

    Global high-level clouds identified in Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements for January and July in the period 1985 to 1990 are compared with near-nadir-looking observations from the International Satellite Cloud Climatology Project (ISCCP). Global and zonal mean high-level cloud amounts from the two data sets agree very well, if clouds with layer extinction coefficients of less than 0.008/km at 1.02 micrometers wavelength are removed from the SAGE II results and all detected clouds are interpreted to have an average horizontal size of about 75 km along the 200 km transimission path length of the SAGE II observations. The SAGE II results are much more sensitive to variations of assumed cloud size than to variations of detection threshold. The geographical distribution of cloud fractions shows good agreement, but systematic regional differences also indicate that the average cloud size varies somewhat among different climate regimes. The more sensitive SAGE II results show that about one third of all high-level clouds are missed by ISCCP but that these clouds have very low optical thicknesses (less than 0.1 at 0.6 micrometers wavelength). SAGE II sampling error in monthly zonal cloud fraction is shown to produce no bias, to be less than the intraseasonal natural variability, but to be comparable with the natural variability at longer time scales.

  11. !CHAOS: A cloud of controls

    NASA Astrophysics Data System (ADS)

    Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.

    2016-01-01

    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.

  12. Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals

    NASA Technical Reports Server (NTRS)

    Wang, Meng-Hua; King, Michael D.

    1997-01-01

    Stratocumulus Transition Experiment (ASTEX) conducted near the Azores in June 1992 and compare these results to corresponding retrievals obtained using 0.88 Am. These results provide an example of the Rayleigh scattering effects on thin clouds and further test the Rayleigh correction scheme. Using a nonabsorbing near-infrared wavelength lambda (0.88 Am) in retrieving cloud optical thickness is only applicable over oceans, however, since most land surfaces are highly reflective at 0.88 Am. Hence successful global retrievals of cloud optical thickness should remove Rayleigh scattering effects when using reflectance measurements at 0.66 Am.

  13. HI clouds in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kim, S.

    We present HI and Halpha surveys of the Large Magellanic Cloud (LMC) with the Australia Telescope Compact Array, the Parkes multibeam receiver, and the 16 inch optical telescope at the Siding Spring Observatory (SSO). Using a Fourier-plane technique, we have merged both ATCA and Parkes observations, providing an accurate set of images of the LMC sensitive to structure on scales of 9 pc upward. The spatial dynamic range (2.8 orders of magnitude), velocity resolution (1.649 km/sec per channel) allow for studies of phenomena ranging from the galaxy-wide interaction of the LMC with its close neighbors to the small-scale injection of energy from supernovae and stellar associations into the ISM of the LMC. On the large scale, the HI disk appears to be remarkably symmetric and to have a well-organized and orderly, if somewhat complex, rotational field. The bulk of the HI resides in a disk of 7.3 kpc in diameter. The mass of disk component of the LMC is 2.5 x10^9 M[sun ]and the mass within a radius of 4 kpc is about 3.5 x 10^9 M[sun ]. The structure of the neutral atomic ISM in the LMC is dominated by HI filaments combined with numerous shell, holes, and HI clouds. 23 HI supergiant shells and 103 giant shells are catalogued. Supergiant shells are defined as those regions whose extent is much larger than the HI scale height. The size distribution of HI shells follows a crude power law, N(log R) =AR^-1.5 . The HI clouds have been identified by defining a cloud to be an object composed of all pixels in right ascension, declination, and velocity that are connected and that lie above the threshold brightness temperature. The size spectrum of HI clouds is similar to the typical size spectrum of holes and shells in the HI distribution. The relationship between the size and the velocity dispersion of HI cloud is found to have the power law relationship so called as Larson's scaling law. A slope of the power law varies from 1.2 to 1.6. The virial masses of HI clouds range from 10

  14. Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Simpson, Joanne

    2007-01-01

    Independent prognostic variables in cloud-resolving modeling are chosen on the basis of the analysis of microphysical timescales in clouds versus a time step for numerical integration. Two of them are the moist entropy and the total mixing ratio of airborne water with no contributions from precipitating particles. As a result, temperature can be diagnosed easily from those prognostic variables, and cloud microphysics be separated (or modularized) from moist thermodynamics. Numerical comparison experiments show that those prognostic variables can work well while a large time step (e.g., 10 s) is used for numerical integration.

  15. Lost in Cloud

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian

    2012-01-01

    Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.

  16. Environmental Controls on Stratocumulus Cloud Fraction

    NASA Astrophysics Data System (ADS)

    Burleyson, Casey Dale

    Marine stratocumulus clouds are widespread, low, optically thick, and persist for long periods of time. Their high albedo allows stratocumulus clouds to reflect large amounts of incoming shortwave radiation. Understanding the processes that lead to changes in stratocumulus cloud fraction is critically important in capturing the effects of stratocumulus in global climate models (GCMs). This research presents two analyses which seek to better understand the governing processes that drive variability in the stratocumulus-topped boundary layer system. The diurnal cycle of marine stratocumulus in cloud-topped boundary layers is examined using ship-based meteorological data obtained during the 2008 VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). The high temporal and spatial continuity of the ship data, as well as the 31-day sample size, allows us to resolve the diurnal transition in degree of coupling of the stratocumulus-topped boundary layer. The amplitude of diurnal variation was comparable to the magnitude of longitudinal differences between regions east and west of 80°W for most of the cloud, surface, and precipitation variables examined. The diurnal cycle of precipitation is examined in terms of areal coverage, number of drizzle cells, and estimated rain rate. East of 80°W, the drizzle cell frequency and drizzle area peaks just prior to sunrise. West of 80°W, total drizzle area peaks at 3:00 am, 2-3 hours before sunrise. Peak drizzle cell frequency is three times higher west of 80°W compared to east of 80°W. The waning of drizzle several hours prior to the ramp up of shortwave fluxes may be related to the higher peak drizzle frequencies in the west. The ensemble effect of localized subcloud evaporation of precipitation may make drizzle a self-limiting process where the areal density of drizzle cells is sufficiently high. The daytime reduction in vertical velocity variance in a less coupled boundary layer is accompanied by enhanced

  17. Polarimetric Retrievals of Cloud Droplet Number Concentrations

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; Cairns, B.; Hair, J. W.; Hu, Y.; Hostetler, C. A.

    2014-12-01

    Cloud droplet number concentration (CDNC) is one of the most significant microphysical properties of liquid clouds and is essential for the understanding of aerosol-cloud interaction. It impacts radiative forcing, cloud evolution, precipitation, global climate and, through observation, can be used to monitor the cloud albedo effect, or the first indirect effect. The IPCC's Fifth Assessment Report continues to consider aerosol-cloud interactions as one of the largest uncertainties in radiative forcing of climate. The SABOR experiment, which was a NASA-led ship and air campaign off the east coast of the United States during July and August of 2014, provided an opportunity for the Research Scanning Polarimeter (RSP) to develop and cross-validate a new approach of sensing CDNC with the High Spectral Resolution Lidar (HSRL). The RSP is an airborne prototype of the Aerosol Polarimetry Sensor (APS) that was on-board the Glory satellite. It is a scanning sensor that provides high-precision measurements of polarized and full-intensity radiances at multiple angles over a wide spectral range. The distinctive feature of the polarimetric technique is that it does not make any assumption of the liquid water profile within the cloud. The approach involves (1) estimating the droplet size distribution from polarized reflectance observations in the rainbow, (2) using polarized reflectance to estimate above cloud water vapor and total reflectance to find how much near infra-red light is being absorbed in clouds, (3) finding cloud physical thickness from the absorption and cloud top pressure retrievals assuming a saturated mixing ratio for water vapor and (4) determining the cloud droplet number concentration from the physical thickness and droplet size distribution retrievals. An overview of the polarimetric technique will be presented along with the results of applying the new approach to SABOR campaign data. An analysis of the algorithm's performance when compared with the HSRL

  18. Belle II public and private cloud management in VMDIRAC system.

    NASA Astrophysics Data System (ADS)

    Grzymkowski, Rafa; Hara, Takanori; Belle computing Group, II

    2015-12-01

    The role of cloud computing technology in the distributed computing for HEP experiments grows rapidly. Some experiments (Atlas, BES-III, LHCb) already exploit private and public cloud resources for the data processing. Future experiments such as Belle II or upgraded LHC experiments will largely rely on the availability of cloud resources and therefore their computing models have to be adjusted to the specific features of cloud environment, in particular to the on-demand computing paradigm. Belle II experiment at SuperKEKB will start physics run in 2017. Belle II computing requirements are challenging. The data size at the level of hundred PB is expected after several years of operation, around 2020. The baseline solution selected for distributed processing is the DIRAC system. DIRAC can handle variety of computing resources including Grids, Clouds and independent clusters. Cloud resources can be connected by VMDIRAC module through public interfaces. In particular the mechanism of dynamic activation of new virtual machines with reserved job slots for new tasks in case of an increasing demand for computing resources is introduced. This work is focused on VMDIRAC interaction with public (Amazon EC2) and private (CC1) cloud. The solution applied by Belle II experiment and the experience from Monte Carlo production campaigns will be presented. Updated computation costs for different use cases will be shown.

  19. Learning in the Clouds?

    ERIC Educational Resources Information Center

    Butin, Dan W.

    2013-01-01

    Engaged learning--the type that happens outside textbooks and beyond the four walls of the classroom--moves beyond right and wrong answers to grappling with the uncertainties and contradictions of a complex world. iPhones back up to the "cloud." GoogleDocs is all about "cloud computing." Facebook is as ubiquitous as the sky.…

  20. On Cloud Nine

    ERIC Educational Resources Information Center

    McCrea, Bridget; Weil, Marty

    2011-01-01

    Across the U.S., innovative collaboration practices are happening in the cloud: Sixth-graders participate in literary salons. Fourth-graders mentor kindergarteners. And teachers use virtual Post-it notes to advise students as they create their own television shows. In other words, cloud computing is no longer just used to manage administrative…

  1. Cloud Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organization, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.

  2. Clouds in Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    West, R.; Murdin, P.

    2000-11-01

    What are clouds? The answer to that question is both obvious and subtle. In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice crystals suspended in the air. In the atmospheres of Venus, Mars, Jupiter, Saturn, Saturn's moon Titan, Uranus, Neptune, and possibly Pluto, they are composed of several other substances including sulfuric acid, ammonia, hydroge...

  3. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    SciTech Connect

    Liu, Y.; Wu, W.; Jensen, M. P.; Toto, T.

    2011-07-21

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997-2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

  4. Comparisons of cloud cover estimates and cloud fraction profiles from ARM's cloud-detecting instruments and GOES-8 data

    SciTech Connect

    Krueger, S K; Rodriguez, D

    1999-05-07

    The DOE's Atmospheric Radiation Measurement (ARM) Program employs both upward- and downward-looking remote-sensing instruments to measure the horizontal and vertical distributions of clouds across its Southern Great Plains (SGP) site. No single instrument is capable of completely determining these distributions over the scales of interest to ARM's Single Column Modeling (SCM) and Instantaneous Radiative Flux (IRF) groups; these groups embody the primary strategies through which ARM expects to achieve its objectives of developing and testing cloud formation parameterizations (USDOE, 1996). Collectively, however, the data from ARM's cloud-detecting instruments offer the potential for such a three-dimensional characterization. Data intercomparisons, like the ones illustrated in this paper, are steps in this direction. Examples of some initial comparisons, involving satellite, millimeter cloud radar, whole sky imager and ceilometer data, are provided herein. that many of the lessons learned can later be adapted to cloud data at the Boundary and Extended Facilities. Principally, we are concerned about: (1) the accuracy of various estimates of cloud properties at a single point, or within a thin vertical column, above the CF over time, and (2) the accuracy of various estimates of cloud properties over the Cloud and Radiation Testbed (CART) site, which can then be reduced to single, representative profiles over time. In the former case, the results are usable in the IRF and SCM strategies; in the latter case, they satisfy SCM needs specifically. The Whole Sky Imager (WSI) and ceilometer data used in one study were collected at the SGP CF between October 1 and December 31, 1996 (Shields, et. al., 1990). This three-month period, corresponding to the first set of WSI data released by ARM's Experiment Center, was sufficiently long to reveal important trends (Rodriguez, 1998).

  5. Prebiotic chemistry in clouds

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Marshall, John; Shen, Thomas

    1991-01-01

    The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.

  6. Cloud computing security.

    SciTech Connect

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  7. Outcome of the third cloud retrieval evaluation workshop

    NASA Astrophysics Data System (ADS)

    Roebeling, Rob; Baum, Bryan; Bennartz, Ralf; Hamann, Ulrich; Heidinger, Andy; Thoss, Anke; Walther, Andi

    2013-05-01

    cloud vertical placement, cloud physical properties, and cloud climatologies. We present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize actions defined to tailor CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention is given to increase the traceability and uniformity of different longterm and homogeneous records of cloud parameters.

  8. Using Clouds for MapReduce Measurement Assignments

    ERIC Educational Resources Information Center

    Rabkin, Ariel; Reiss, Charles; Katz, Randy; Patterson, David

    2013-01-01

    We describe our experiences teaching MapReduce in a large undergraduate lecture course using public cloud services and the standard Hadoop API. Using the standard API, students directly experienced the quality of industrial big-data tools. Using the cloud, every student could carry out scalability benchmarking assignments on realistic hardware,…

  9. The chemistry of phosphorus in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Thorne, L. R.; Anicich, V. G.; Prasad, S. S.; Huntress, W. T., Jr.

    1984-01-01

    Laboratory experiments show that the ion-molecule chemistry of phosphorus is significantly different from that of nitrogen in dense interstellar clouds. The PH3 molecule is not readily formed by gas-phase, ion-molecule reactions in these regions. Laboratory results used in a simple kinetic model indicate that the most abundant molecule containing phosphorus in dense clouds is PO.

  10. Cumulus cloud model estimates of trace gas transports

    NASA Technical Reports Server (NTRS)

    Garstang, Michael; Scala, John; Simpson, Joanne; Tao, Wei-Kuo; Thompson, A.; Pickering, K. E.; Harris, R.

    1989-01-01

    Draft structures in convective clouds are examined with reference to the results of the NASA Amazon Boundary Layer Experiments (ABLE IIa and IIb) and calculations based on a multidimensional time dependent dynamic and microphysical numerical cloud model. It is shown that some aspects of the draft structures can be calculated from measurements of the cloud environment. Estimated residence times in the lower regions of the cloud based on surface observations (divergence and vertical velocities) are within the same order of magnitude (about 20 min) as model trajectory estimates.

  11. Direct Observations of Excess Solar Absorption by Clouds

    NASA Technical Reports Server (NTRS)

    Pilewskie, Peter; Valero, Francisco P. J.

    1995-01-01

    Aircraft measurements of solar flux in the cloudy tropical atmosphere reveal that solar absorption by clouds is anomalously large when compared to theoretical estimates. The ratio of cloud forcing at an altitude of 20 kilometers to that at the surface is 1.58 rather than 1.0 as predicted by models. These results were derived from a cloud radiation experiment in which identical instrumentation was deployed on coordinated stacked aircraft. These findings indicate a significant difference between measurements and theory and imply that the interaction between clouds and solar radiation is poorly understood.

  12. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  13. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J. R.; Maslanik, J. A.

    1988-01-01

    The principal objectives of this project are: to develop suitable validation data sets to evaluate the effectiveness of the ISCCP operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers: and to compare synoptic cloud data from a control run experiment of the Goddard Institute for Space Studies (GISS) climate model 2 with typical observed synoptic cloud patterns. Current investigations underway are listed and the progress made to date is summarized.

  14. The effect of clouds on the earth's solar and infrared radiation budgets

    NASA Technical Reports Server (NTRS)

    Herman, G. F.; Wu, M.-L. C.; Johnson, W. T.

    1980-01-01

    The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use realistic cloud optical properties and are fully interactive with model-generated cloudiness. This simulation is compared to others in which the clouds are alternatively non-interactive with respect to the solar or thermal radiation calculations. Other cloud processes (formation, latent heat release, precipitation, vertical mixing) were accurately simulated in these experiments. It is concluded that on a global basis clouds increase the global radiation balance by 40 W/sq m by absorbing longwave radiation, but decrease it by 56 W/sq m by reflecting solar radiation to space. The net cloud effect is therefore a reduction of the radiation balance by 16 W/sq m, and is dominated by the cloud albedo effect. Changes in cloud frequency and distribution and in atmospheric and land temperatures are also reported for the control and for the non-interactive simulations. In general, removal of the clouds' infrared absorption cools the atmosphere and causes additional cloudiness to occur, while removal of the clouds' solar radiative properties warms the atmosphere and causes fewer clouds to form. It is suggested that layered clouds and convective clouds over water enter the climate system as positive feedback components, while convective clouds over land enter as negative components.

  15. Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES

    NASA Astrophysics Data System (ADS)

    Dawe, J. T.; Austin, P. H.

    2013-08-01

    Probability distribution functions of shallow cumulus cloud core entrainment and detrainment rates are calculated using 4362 individual cumulus clouds isolated from LES (large eddy simulation) using a cloud tracking algorithm. Calculation of the mutual information between fractional entrainment/detrainment and a variety of mean cloud core properties suggests that fractional entrainment rate is best predicted by the mean cloud buoyancy B and the environmental buoyancy lapse rate dθρ/dz at that level, while fractional detrainment is best predicted by the mean vertical velocity w and the critical mixing fraction χc. Fractional entrainment and detrainment rates are relatively insensitive to cloud core horizontal area, and the perimeter of horizontal cloud core sections display an a0.73 dependence. This implies that cloud core mass entrainment flux E is proportional to cloud core cross-sectional area instead of cloud core surface area, as is generally assumed. Empirical best-fit relations for ɛ(B, dθρ/dz and δ(w, χc) are found for both individual shallow cumulus clouds and cloud ensembles. It is found that clouds with high buoyancy in strong stratification experience low entrainment rates, while clouds with high vertical velocities and critical mixing fractions experience low detrainment rates.

  16. Cloud Microphysics by Thermal Wave Methods

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Bowdle, D. A.; Reischel, M.

    1985-01-01

    This experiments series is the first application of a low-gravity experimental technique to the study of cloud microphysics. The low-gravity environment is provided by the parabolic maneuver of NASA's KC-135 aircraft. The primary objective is to compare experimental observations of cloud droplet growth and evaporation in a convection free environment with a numerical model of the process. Beyond that, the work also involves the development and testing of low-gravity research techniques. In particular, passive methods of thermal control have been devised and used effectively. The study to date has shown that the method is particularly suitable for looking at interactions between adjoining portions of the cloud drop field and interactions of the drop field with a solid interface. After final analysis of the data, it is expected the results will shed light on the development of cloud droplet size spectra in natural clouds as well as the performance of certain types of cloud physics instrumentation, particularly continuous flow diffusion chambers and loud condensation nuclei counters.

  17. The seasonal cycle of low stratiform clouds

    NASA Technical Reports Server (NTRS)

    Klein, Stephen A.; Hartmann, Dennis L.

    1993-01-01

    The seasonal cycle of low stratiform clouds is studied using data from surface-based cloud climatologies. The impact of low clouds on the radiation budget is illustrated by comparison of data from the Earth Radiation Budget Experiment with the cloud climatologies. Ten regions of active stratocumulus convection are identified. These regions fall into four categories: subtropical marine, midlatitude marine, Arctic stratus, and Chinese stratus. With the exception of the Chinese region, all the regions with high amounts of stratus clouds are over the oceans. In all regions except the Arctic, the season of maximum stratus corresponds to the season of greatest lower-troposphere static stability. Interannual variations in stratus cloud amount also are related to changes in static stability. A linear analysis indicates that a 6 percent increase in stratus fractional area coverage is associated with each 1 C increase in static stability. Over midlatitude oceans, sky-obscuring fog is a large component of the summertime stratus amount. The amount of fog appears to be related to warm advection across sharp gradients of SST.

  18. Arctic Clouds Infrared Imaging Field Campaign Report

    SciTech Connect

    Shaw, J. A.

    2016-03-01

    The Infrared Cloud Imager (ICI), a passive thermal imaging system, was deployed at the North Slope of Alaska site in Barrow, Alaska, from July 2012 to July 2014 for measuring spatial-temporal cloud statistics. Thermal imaging of the sky from the ground provides high radiometric contrast during night and polar winter when visible sensors and downward-viewing thermal sensors experience low contrast. In addition to demonstrating successful operation in the Arctic for an extended period and providing data for Arctic cloud studies, a primary objective of this deployment was to validate novel instrument calibration algorithms that will allow more compact ICI instruments to be deployed without the added expense, weight, size, and operational difficulty of a large-aperture onboard blackbody calibration source. This objective was successfully completed with a comparison of the two-year data set calibrated with and without the onboard blackbody. The two different calibration methods produced daily-average cloud amount data sets with correlation coefficient = 0.99, mean difference = 0.0029 (i.e., 0.29% cloudiness), and a difference standard deviation = 0.054. Finally, the ICI instrument generally detected more thin clouds than reported by other ARM cloud products available as of late 2015.

  19. Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley

    NASA Astrophysics Data System (ADS)

    Prabha, Thara V.; Patade, S.; Pandithurai, G.; Khain, A.; Axisa, D.; Pradeep-Kumar, P.; Maheshkumar, R. S.; Kulkarni, J. R.; Goswami, B. N.

    2012-10-01

    The combined effect of humidity and aerosol on cloud droplet spectral width (σ) in continental monsoon clouds is a topic of significant relevance for precipitation and radiation budgets over monsoon regions. The droplet spectral width in polluted, dry premonsoon conditions and moist monsoon conditions observed near the Himalayan Foothills region during Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) is the focus of this study. Here σis small in premonsoon clouds developing from dry boundary layers. This is attributed to numerous aerosol particles and the absence/suppression of collision-coalescence during premonsoon. For polluted and dry premonsoon clouds,σ is constant with height. In contrast to premonsoon clouds, σ in monsoon clouds increases with height irrespective of whether they are polluted or clean. The mean radius of polluted monsoon clouds is half that of clean monsoon clouds. In monsoon clouds, both mean radius and σ decreased with total cloud droplet number concentration (CDNC). The spectral widths of premonsoon clouds were independent of total droplet number concentrations, but both σ and mean radius decreased with small droplet (diameter < 20 μm) number concentrations in the diluted part of the cloud. Observational evidence is provided for the formation of large droplets in the adiabatic regions of monsoon clouds. The number concentration of small droplets is found to decrease in the diluted cloud volumes that may be characterized by various spectral widths or mean droplet radii.

  20. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  1. Stabilization functions of unforced cumulus clouds - Their nature and components

    NASA Technical Reports Server (NTRS)

    Ramirez, Jorge A.; Bras, Rafael L.; Emanuel, Kerry A.

    1990-01-01

    The nature and the spatial distribution of cumuli within an unforced cumulus cloud field are investigated. The thermodynamic effects of convection are quantified as functions of changes of convective available potential energy (CAPE) induced by the convective overturning, and the time rate of change of CAPE is parameterized in terms of a kernel of influence or stabilization function. A three-dimensional cloud model is used to infer and quantify stabilization functions by performing single-cloud experiments. On the basis of the results obtained, a new hypothesis with respect to the spatial distribution of cumuli is postulated, which states that, under completely homogeneous external conditions and assuming a spatially random distribution of cloud-triggering mechanisms, the spatial distribution of cumuli in the resulting cloud field must be regular, as opposed to either random or clustered, because cumulus clouds tend to reduce the available energy for convection, thereby inhibiting further convection nearby.

  2. Investigation of cloud properties and atmospheric stability with MODIS

    NASA Technical Reports Server (NTRS)

    Menzel, Paul

    1993-01-01

    The work accomplished with the MAS (MODIS Airborne Simulator) during the TOGA-COARE (Tropical Ocean Global Atmosphere - Coupled Ocean Atmosphere Response Experiment) from January through June 1993 included cloud investigations with longwave CO2 channels (out to 13.9 microns) that reconfigured spectral channels. The comparison data was used with HIRS (high resolution Infrared Radiation Sounder) data from FIRE (First ISSCP Regional Experiment), CEPEX, and SCAR (Smoke Clouds, Aerosol and Radiation) data for the development of a two layer cloud CO2 slicing algorithm and the development of multi-spectral cloud detection algorithms (specifically tri-spectral) for cloud identification. Regarding the latter, a clustering analysis was added to improve cloud identification within the scatter diagram of tri-spectral (8, 11, and 12 microns) brightness temperatures. Via the regressions of the 8 - 11 and the 11 - 12 micron brightness temperature differences versus precipitable water, the problem of clear sky identification in the scatter diagram was further addressed. Comparison of the tri-spectral technique and visible channel reflectance ratioing indicate the tri-spectral infrared method distinguishes cloud phase more consistently in mixed cloud scenes rather than single phase cloud scenes where visible ratioing performs best.

  3. Point cloud-based survey for cultural heritage - An experience of integrated use of range-based and image-based technology for the San Francesco convent in Monterubbiano

    NASA Astrophysics Data System (ADS)

    Meschini, A.; Petrucci, E.; Rossi, D.; Sicuranza, F.

    2014-06-01

    The paper aims at presenting some results of a point cloud-based survey carried out through integrated methodologies based on active and passive 3D acquisition techniques for processing 3D models. This experiment is part of a research project still in progress conducted by an interdisciplinary team from the School of Architecture and Design of Ascoli Piceno and funded by the University of Camerino. We describe an experimentation conducted on the convent of San Francesco located in Monterubbiano town center (Marche, Italy). The whole complex has undergone a number of substantial changes since the year of its foundation in 1247. The survey was based on an approach blending range-based 3D data acquired by a TOF laser scanner and image-based 3D acquired using an UAV equipped with digital camera in order to survey some external parts difficult to reach with TLS. The integration of two acquisition methods aimed to define a workflow suitable to process dense 3D models from which to generate high poly and low poly 3D models useful to describe complex architectures for different purposes such as photorealistic representations, historical documentation, risk assessment analyses based on Finite Element Methods (FEM).

  4. Low cloud investigations for project FIRE: Island studies of cloud properties, surface radiation, and boundary layer dynamics. A simulation of the reflectivity over a stratocumulus cloud deck by the Monte Carlo method. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ackerman, Thomas P.; Lin, Ruei-Fong

    1993-01-01

    The radiation field over a broken stratocumulus cloud deck is simulated by the Monte Carlo method. We conducted four experiments to investigate the main factor for the observed shortwave reflectively over the FIRE flight 2 leg 5, in which reflectivity decreases almost linearly from the cloud center to cloud edge while the cloud top height and the brightness temperature remain almost constant through out the clouds. From our results, the geometry effect, however, did not contribute significantly to what has been observed. We found that the variation of the volume extinction coefficient as a function of its relative position in the cloud affects the reflectivity efficiently. Additional check of the brightness temperature of each experiment also confirms this conclusion. The cloud microphysical data showed some interesting features. We found that the cloud droplet spectrum is nearly log-normal distributed when the clouds were solid. However, whether the shift of cloud droplet spectrum toward the larger end is not certain. The decrease of number density from cloud center to cloud edges seems to have more significant effects on the optical properties.

  5. Use of cloud and radiation testbed measurements to evaluate cloud cover and convective parameterizations

    SciTech Connect

    Walcek, C.J.; Hu, Q.

    1995-04-01

    We have used temperature and humidity soundings and radiation measurements from the Atmospheric Radiation Measurement (ARM) Cloud and Radiation Testbed (CART) site in northern Oklahoma to evaluate an improved cloud cover algorithm. We have also used a new single-column model cumulus parameterization to estimate convective heating and moistening tendencies at the CART site. Our earlier analysis of cloud cover showed that relatively dry atmospheres contain small cloud amounts. We have found numerous periods during 1993 where maximum relative humidities within any layer of the atmosphere over the CART site are well below 60-80%, yet clouds are clearly reducing shortwave irradiance measured by a rotating shadowband radiometer. These ARM measurements support our earlier findings that most current climate models probably underestimate cloud coverage when relative humidities fall below the threshold humidities where clear skies are assumed. We have applied a {open_quotes}detraining-plume{close_quotes} model of cumulus convection to the June 1993 intensive observation period (16-25 June 1993). This model was previously verified with GARP Atlantic Tropical Experiment (GATE) measurements. During the June intensive observing period (IOP), relative humidities over the CART site are typically 20% less than tropical Atlantic GATE relative humidities. Our convective model calculates that evaporation of convectively induced cloud and rainwater plays a much more important role in the heating and moistening convective tendencies at the drier CART location. In particular, we predict that considerable cooling and moistening in the lower troposphere should occur due to the evaporation of convectively initiated precipitation.

  6. Japan's research on particle clouds and sprays

    NASA Technical Reports Server (NTRS)

    Sato, Jun'ichi

    1995-01-01

    Most of energy used by us is generated by combustion of liquid and solid fuels. These fuels are burned in combustors mainly as liquid sprays and pulverized solids, respectively. A knowledge of the combustion processes in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding of liquid and solid particle cloud combustion is far from complete. If combustion experiments for these fuels are performed under a normal gravity field, some experimental difficulties are encountered. These difficulties encountered include, that since the particles fall by the force of gravity it is impossible to stop the particles in the air, the falling speeds of particles are different from each other, and are depend on the particle size, the flame is lifted up and deformed by the buoyancy force, and natural convection makes the flow field more complex. Since these experimental difficulties are attributable to the gravity force, a microgravity field can eliminate the above problems. This means that the flame propagation experiments in static homogeneous liquid and solid particle clouds can be carried out under a microgravity field. This will provide much information for the basic questions related to combustion processes of particle clouds and sprays. In Japan, flame propagation processes in the combustible liquid and solid particle clouds have been studied experimentally by using a microgravity field generated by a 4.5 s dropshaft, a 10 s dropshaft, and by parabolic flight. Described in this presentation are the recent results of flame propagations studies in a homogeneous liquid particle cloud, in a mixture of liquid particles/gas fuel/air, in a PMMA particle cloud, and in a pulverized coal particle cloud.

  7. Community Cloud Computing

    NASA Astrophysics Data System (ADS)

    Marinos, Alexandros; Briscoe, Gerard

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.

  8. Interstellar molecular clouds

    NASA Astrophysics Data System (ADS)

    Bally, J.

    1986-04-01

    The physical properties of the molecular phase of the interstellar medium are studied with regard to star formation and the structure of the Galaxy. Most observations of molecular clouds are made with single-dish, high-surface precision radio telescopes, with the best resolution attainable at 0.2 to 1 arcmin; the smallest structures that can be resolved are of order 10 to the 17th cm in diameter. It is now believed that: (1) most of the mass of the Galaxy is in the form of giant molecular clouds; (2) the largest clouds and those responsible for most massive star formation are concentrated in spiral arms; (3) the molecular clouds are the sites of perpetual star formation, and are significant in the chemical evolution of the Galaxy; (4) giant molecular clouds determine the evolution of the kinematic properties of galactic disk stars; (5) the total gas content is diminishing with time; and (6) most clouds have supersonic internal motions and do not form stars on a free-fall time scale. It is concluded that though progress has been made, more advanced instruments are needed to inspect the processes operating within stellar nurseries and to study the distribution of the molecular clouds in more distant galaxies. Instruments presently under construction which are designed to meet these ends are presented.

  9. Evaluating the Usage of Cloud-Based Collaboration Services through Teamwork

    ERIC Educational Resources Information Center

    Qin, Li; Hsu, Jeffrey; Stern, Mel

    2016-01-01

    With the proliferation of cloud computing for both organizational and educational use, cloud-based collaboration services are transforming how people work in teams. The authors investigated the determinants of the usage of cloud-based collaboration services including teamwork quality, computer self-efficacy, and prior experience, as well as its…

  10. Conference on Cloud Physics, Tucson, Ariz., October 21-24, 1974, Proceedings

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Condensation and ice nucleation processes are considered, taking into account measurements of cloud nuclei and aerosol size spectra in the semiarid Southwest, the formation of sulfates and the enhancement of cloud condensation nuclei in clouds, biogenic sources of atmospheric ice nuclei, and the experimental determination of the deposition coefficient of water vapor onto ice. Other topics discussed are related to precipitation growth processes, the role of ice in cloud systems, cloud modeling, measurements in Colorado hailstorms during the national hail research experiment, cloud measurements, and measurement techniques. Attention is also given to cloud electrification, zero-gravity experiments, and the control of cloud development by larger scale motions. Individual items are announced in this issue.

  11. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    DTIC Science & Technology

    2013-09-30

    understanding of the effects of aerosol-cloud interactions and drizzle and entrainment processes in boundary layer clouds for the purpose of developing...thickness, cloud turbulence intensity, and aerosols on precipitation production; 4) study the processing of aerosols by cloud processes ; 5) explore mass...drizzle processes to the artificial introduction of CCN and giant nuclei under differing aerosol backgrounds. In addition, a set of aerosol and cloud

  12. Cloud computing basics for librarians.

    PubMed

    Hoy, Matthew B

    2012-01-01

    "Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article.

  13. A Weibull distribution accrual failure detector for cloud computing

    PubMed Central

    Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229

  14. A Weibull distribution accrual failure detector for cloud computing.

    PubMed

    Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.

  15. Where the Cloud Meets the Commons

    ERIC Educational Resources Information Center

    Ipri, Tom

    2011-01-01

    Changes presented by cloud computing--shared computing services, applications, and storage available to end users via the Internet--have the potential to seriously alter how libraries provide services, not only remotely, but also within the physical library, specifically concerning challenges facing the typical desktop computing experience.…

  16. Grids and clouds in the Czech NGI

    NASA Astrophysics Data System (ADS)

    Kundrát, Jan; Adam, Martin; Adamová, Dagmar; Chudoba, Jiří; Kouba, Tomáš; Lokajíček, Miloš; Mikula, Alexandr; Říkal, Václav; Švec, Jan; Vohnout, Rudolf

    2016-09-01

    There are several infrastructure operators within the Czech Republic NGI (National Grid Initiative) which provide users with access to high-performance computing facilities over a grid and cloud interface. This article focuses on those where the primary author has personal first-hand experience. We cover some operational issues as well as the history of these facilities.

  17. Explicit numerical study of aerosol-cloud interactions in boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Paunova, Irena T.

    Aerosol-cloud interactions, the mechanisms by which aerosols impact clouds and precipitation and clouds impact aerosols as they are released upon droplet evaporation, are investigated by means of explicit high-resolution (3 km) numerical simulations with the Mesoscale Compressible Community (MC2) model. This model, which is non-hydrostatic and compressible, was extended by including separate continuity equations for dry and activated multi-modal aerosol, and for chemical species. The sources and sinks include: particle activation, solute transfer between drops, generation of extra soluble material in clouds via oxidation of dissolved SO2, and particle regeneration. The cloud processes are represented by an advanced double-moment bulk microphysical parameterization. Three summertime cases have been evaluated: a marine stratus and a cold frontal system over the Bay of Fundy near Nova Scotia, formed on 1 Sep 1995 and extensively sampled as a part of the Radiation, Aerosol, and Cloud Experiment (RACE); and a continental stratocumulus, formed over the southern coast of Lake Erie on 11 July 2001. The marine stratus and the frontal system have been examined for the effects of aerosol on cloud properties and thoroughly evaluated against the available observations. The frontal system and the continental stratocumulus have been evaluated for the effects of cloud processing on the aerosol spectrum. The marine stratus simulations suggest a significant impact of the aerosol on cloud properties. A simulation with mechanistic activation and a uni-modal aerosol showed the best agreement with observations in regards to cloud-base and cloud-top height, droplet concentration, and liquid water content. A simulation with a simple activation parameterization failed to simulate essential bulk cloud properties: droplet concentration was significantly underpredicted and the vertical structure of the cloud was inconsistent with the observations. A simulation with a mechanistic

  18. Cloud Drop Size Distribution in Different Regions over India during CAIPEEX-2009

    NASA Astrophysics Data System (ADS)

    Morwal, Savita B.; Maheshkumar R., S.; Kulkarni J., R.

    2010-05-01

    Tropical clouds have high albedos and they decrease the amount of solar energy absorbed by the earth system, reducing heating rates. During cloud formation the number concentration of the cloud droplets depends on the number of aerosols present in the air mass. Therefore, aerosols determine the cloud properties such as number concentration of cloud droplets and their size. Recent studies have shown that size distributions of cloud droplets change with the vertical development of the cloud. The fair weather continental cumulus clouds with no precipitation have relatively narrow drop size spectrum while the continental cumulus clouds which have reached more matured stage of cumulus congetus show much broader cloud drop spectrum (Hobbs et al., 1980). The maritime clouds have even broader drop size spectrum as compared to continental clouds (Battan and Reitan, 1957). Warner (1969a; 1969b) has studied in detail the drop size distributions over the Australian coast. Such studies on cloud droplet size distributions, effective radius and their effect on cloud microphysics and dynamics are sparse or non existent in the tropical monsoon clouds occurring over the Indian sub-continent. Recently a national level observational experiment called ‘Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX)' has been conducted over the Indian region during May-September 2009. In this experiment an instrumented aircraft was used to collect in-situ observations of aerosols and cloud microphysical parameters viz. liquid water content, total water content, concentrations of aerosols, Cloud Condensation Nuclei (CCN) and cloud droplets of different sizes, temperature, humidity etc over different parts of Indian sub-continent. Utilizing the data collected through this experiment an attempt has been made to examine the characteristics of cloud droplets distributions in different regions over. The results of the investigation will be discussed. Battan, L.J. and Raitan, C

  19. Moisture and heat budgets of a cirrus cloud from aircraft measurements during FIRE

    NASA Technical Reports Server (NTRS)

    Gultepe, Ismail; Heymsfield, Andrew

    1990-01-01

    Increasing knowledge of cirrus cloud properties can contribute to general circulation model development and ultimately to a better understanding of climate. The objective was to gain a better understanding of cirrus cloud characteristics. Observations from different sensors during the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) which took place in Wisconsin over Oshkosh together with pertinent calculations are used to understand the dynamical, microphysical, and radiative characteristics of these clouds.

  20. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  1. My NASA Data Clouds

    NASA Video Gallery

    This lesson has two activities that help students develop a basic understanding of the relationship between cloud type and the form of precipitation and the relationship between the amount of water...

  2. Methanol in dark clouds

    NASA Technical Reports Server (NTRS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-01-01

    The first observation of methanol in cold dark clouds TMC 1, L 134 N, and B 335 is reported. In all three clouds, the relative abundance of methanol was found to be in the range of 10 to the -9th (i.e., almost an order of magnitude more abundant than acetaldehyde), with no observable variation between the clouds. Methanol emission showed a complex velocity structure; in TMC 1, clear indications of non-LTE were observed. Dimethyl ether was searched for in L 134 N; the upper limit of the column density of dimethyl ether in L 134 N was estimated to be 4 x 10 to the 12th/sq cm, assuming 5 K rotation temperature and LTE. This limit makes the abundance ratio (CH3)2O/CH3OH not higher than 1/5, indicating that dimethyl ether is not overabundant in this dark cloud.

  3. Noctilucent Clouds in Motion

    NASA Video Gallery

    Swedish photographer Peter Rosén took this close-up, time-lapse movieof Noctilucent Clouds (NLCs) over Stockholm, Sweden on the evening ofJuly 16, 2012. "What looked like a serene view from a di...

  4. GEOS-5 Modeled Clouds

    NASA Video Gallery

    This visualization shows clouds from a simulation using the Goddard Earth Observing System Model, Verison 5 (GEOS-5). The global atmospheric simulation covers a period from Feb 3, 2010 through Feb ...

  5. Cloud Types and Services

    NASA Astrophysics Data System (ADS)

    Jin, Hai; Ibrahim, Shadi; Bell, Tim; Gao, Wei; Huang, Dachuan; Wu, Song

    The increasing popularity of Internet services such as the Amazon Web Services, Google App Engine and Microsoft Azure have drawn a lot of attention to the Cloud Computing paradigm. Although the term "Cloud Computing" is new, the technology is an extension of the remarkable achievements of grid, virtualization, Web 2.0 and Service Oriented Architecture (SOA) technologies, and the convergence of these technologies. Moreover, interest in Cloud Computing has been motivated by many factors such as the prevalence of multi-core processors and the low cost of system hardware, as well as the increasing cost of the energy needed to operate them. As a result, Cloud Computing, in just three years, has risen to the top of the IT revolutionary technologies, and has been announced as the top technology to watch in the year 2010.

  6. Closed Large Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Large Cell Clouds in the South Pacific     ... unperturbed by cyclonic or frontal activity. When the cell centers are cloudy and the main sinking motion is concentrated at cell ...

  7. Electromagnetic scattering in clouds

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard

    1992-01-01

    Techniques used to explain the nature of the optical effects of clouds on the light produced by lightning include a Monte Carlo simulation, an equivalent medium approach, and methods based on Boltzmann transport theory. A cuboidal cloud has been considered using transform methods and a diffusion approximation. Many simplifying assumptions have been used by authors to make this problem tractable. In this report, the cloud will have a spherical shape and its interior will consist of a uniform distribution of identical spherical water droplets. The source will be modeled as a Hertz dipole, electric or magnetic, inside or outside the cloud. An impulsive source is used. Superposition may be employed to obtain a sinusoid within an envelope which describes a lightning event. The problem is investigated by transforming to the frequency domain, obtaining Green's functions, and then using the Cagniard-DeHoop method to symbolically recover the time domain solution.

  8. Reconfigurable Martian Data Cloud

    NASA Astrophysics Data System (ADS)

    Sheldon, D. J.; Moeller, R. C.; Pingree, P.; Lay, N.; Reeves, G.

    2012-06-01

    The objective is to develop a constellation of small satellites in orbit around Mars that would provide a highly scalable and dynamically allocatable high performance computing resource. Key is use of Field Programmable Gate Arrays for the cloud.

  9. Cloud Inhomogeneity from MODIS

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cahalan, Robert F.

    2004-01-01

    Two full months (July 2003 and January 2004) of MODIS Atmosphere Level-3 data from the Terra and Aqua satellites are analyzed in order to characterize the horizontal variability of cloud optical thickness and water path at global scales. Various options to derive cloud variability parameters are discussed. The climatology of cloud inhomogeneity is built by first calculating daily parameter values at spatial scales of l degree x 1 degree, and then at zonal and global scales, followed by averaging over monthly time scales. Geographical, diurnal, and seasonal changes of inhomogeneity parameters are examined separately for the two cloud phases, and separately over land and ocean. We find that cloud inhomogeneity is weaker in summer than in winter, weaker over land than ocean for liquid clouds, weaker for local morning than local afternoon, about the same for liquid and ice clouds on a global scale, but with wider probability distribution functions (PDFs) and larger latitudinal variations for ice, and relatively insensitive to whether water path or optical thickness products are used. Typical mean values at hemispheric and global scales of the inhomogeneity parameter nu (roughly the mean over the standard deviation of water path or optical thickness), range from approximately 2.5 to 3, while for the inhomogeneity parameter chi (the ratio of the logarithmic to linear mean) from approximately 0.7 to 0.8. Values of chi for zonal averages can occasionally fall below 0.6 and for individual gridpoints below 0.5. Our results demonstrate that MODIS is capable of revealing significant fluctuations in cloud horizontal inhomogenity and stress the need to model their global radiative effect in future studies.

  10. Absorption in Extended Inhomogeneous Clouds

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Vasilkov, Alexander; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick

    2008-01-01

    The launch of several different sensors, including CloudSat, into the A-train constellation of satellites allows us for the first time to compute absorption that can occur in realistic vertically inhomogeneous clouds including multiple cloud decks. CloudSat data show that these situations are common. Therefore, understanding vertically inhomogeneous clouds is important from both climate and satellite atmospheric composition remote sensing perspectives. Satellite passive sensors that operate from the near IR to the UV often rely on radiative cloud pressures derived from absorption in oxygen bands (A, B, gamma, or O2-O2 bands) or from rotational-Raman scattering in order to retrieve information about atmospheric trace gases. The radiative cloud pressure is distinct from the physical cloud top derived from thermal infrared measurements. Therefore, the combination of information from different passive sensors yields some information about the cloud vertical profile. When either or both the clouds or atmospheric absorbers (trace gases and aerosols) are vertically inhomogeneous, the use of an effective cloud pressure derived from these approaches may lead to errors. Here, we focus on several scenarios (deep convective clouds and distinct two layer clouds) based on realistic cloud optical depth vertical profiles derived from the CloudSatfMODIS combination. We focus on implications for trace-gas column amount retrievals (specifically ozone and NO2) and derived surface UV irradiance from the Ozone Monitoring Instrument (OMI) on the Atrain Aura platform.

  11. Effects of observed horizontal inhomogeneities within cirrus clouds on solar radiative transfer

    NASA Astrophysics Data System (ADS)

    Buschmann, Nicole; McFarquhar, Greg M.; Heymsfield, Andrew J.

    2002-10-01

    In situ microphysical and combined radar and radiometer measurements of 11 cirrus clouds from Central Equatorial Pacific Experiment (CEPEX), European Cloud and Radiation Experiment (EUCREX), investigation of Clouds by Ground-Based and Airborne Radar and Lidar (CARL), and First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) are used to investigate effects of horizontal cloud inhomogeneities on solar radiative transfer. A three-dimensional ray-tracing model (GRIMALDI), based on the Monte Carlo method, is used to calculate upward and downward flux densities and absorption for the spectral range from 0.38 to 4.0 μm. Radiative flux densities are calculated using the inhomogeneous clouds derived from the observations and for horizontally and vertically averaged homogeneous clouds. Horizontally averaged values of radiative flux densities and absorption for heterogeneous clouds can differ by up to 30% from those calculated for the homogeneous clouds for convectively induced tropical cirrus clouds. The midlatitude cases examined tended to be more homogeneous, and hence differences between radiative properties for the homogeneous and heterogeneous clouds did not exceed 10%. For cirrus clouds with mean optical thicknesses smaller than 5 and with relative variances of optical thickness smaller than 0.2, errors caused by the homogeneous assumption are smaller than ±10%.

  12. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    SciTech Connect

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic and characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.

  13. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE PAGES

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  14. Annual Cycle of Cloud Forcing of Surface Radiation Budget

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.; Gupta, Shashi K.

    2006-01-01

    The climate of the Earth is determined by its balance of radiation. The incoming and outgoing radiation fluxes are strongly modulated by clouds, which are not well understood. The Earth Radiation Budget Experiment (Barkstrom and Smith, 1986) provided data from which the effects of clouds on radiation at the top of the atmosphere (TOA) could be computed (Ramanathan, 1987). At TOA, clouds increase the reflected solar radiation, tending to cool the planet, and decrease the OLR, causing the planet to retain its heat (Ramanathan et al., 1989; Harrison et al., 1990). The effects of clouds on radiation fluxes are denoted cloud forcing. These shortwave and longwave forcings counter each other to various degrees, so that in the tropics the result is a near balance. Over mid and polar latitude oceans, cloud forcing at TOA results in large net loss of radiation. Here, there are large areas of stratus clouds and cloud systems associated with storms. These systems are sensitive to surface temperatures and vary strongly with the annual cycle. During winter, anticyclones form over the continents and move to the oceans during summer. This movement of major cloud systems causes large changes of surface radiation, which in turn drives the surface temperature and sensible and latent heat released to the atmosphere.

  15. FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD-CLOUD COLLISION

    SciTech Connect

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-09-10

    Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

  16. Comparison between observed and modelled radiative properties of stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Sun, Zhian; Pethick, David

    2002-10-01

    Measurements of radiative and microphysical characteristics of stratocumulus clouds in a coastal region of South Australia are reported. The measurements were taken on 14 April 1999 using two aircraft from Airborne Research Australia based at the Flinders University of South Australia during the Kangaroo Island Radiation and Cloud Experiments (KIRCE). The measurements include radiation, cloud liquid-water content, ambient temperature and humidity. A new method to process the measurements is described. Cloud albedo and absorption were determined using the observed solar irradiances at the cloud top and base and the results were compared with theoretical calculations. Five water-cloud optical parametrization schemes were tested against the observations. In addition, some observational data from the Joint Air-Sea Interaction (JASIN) experiment were used in the comparisons. It has been found that measured cloud properties from the KIRCE experiment are very similar to those of the JASIN experiment. The modelled results from most schemes are compatible and generally in good agreement with the measurements.

  17. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  18. Cloud information for FIRE from surface weather reports

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Warren, Stephen G.; London, Julius

    1990-01-01

    Surface weather observations of clouds were analyzed to obtain a global cloud climatology (Warren et al, 1986; 1988). The form of the synoptic weather code limits the types of cloud information which are available from these reports. Comparison of surface weather reports with instrumental observations during the FIRE field experiments can help to clarify the operational definitions which were made in the climatology because of the nature of the synoptic code. The long-term climatology from surface weather observations is also useful background for planning the location and timing of intensive field experiments.

  19. A Comparison between Airborne and Mountaintop Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    David, R.; Lowenthal, D. H.; Hallar, A. G.; McCubbin, I.; Avallone, L. M.; Mace, G. G.; Wang, Z.

    2014-12-01

    Complex terrain has a large impact on cloud dynamics and microphysics. Several studies have examined the microphysical details of orographically-enhanced clouds from either an aircraft or from a mountain top location. However, further research is needed to characterize the relationships between mountain top and airborne microphysical properties. During the winter of 2011, an airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured cloud droplet, ice crystal, and aerosol size distributions at SPL, located on the west summit of Mt. Werner at 3220m MSL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes while small crystal concentrations were routinely higher at the surface, suggesting ice nucleation near cloud base. The effects of aerosol concentrations and upwind stability on mountain top and downwind microphysics are considered.

  20. Evaluating The Indirect Effect of Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Dobbie, S.; Jonas, P. R.

    What effect would an increase in nucleating aerosols have on the radiative and cloud properties? What error would be incurred by evaluating the indirect effect by taking an evolved cloud and fixing the integrated water content and vary the number of ice crystals? These questions will be addressed in this work. We will use the UK LES cloud resolving model to perform a sensitivity study for cirrus clouds to the indirect effect, and will evaluate approximate methods in the process. In this work, we will initialize the base (no increase of aerosol) cirrus clouds so that the double moment scheme is constrained to agree with observations through the ef- fective radius. Effective radius is calculated using the local concentration and the ice water content. We then perform a sensitivity experiment to investigate the dependence of the average IWC, effective size, and radiative properties (including heating rates) to variations in the nucleation rate. Conclusions will be draw as to the possible ef- fect of changes in aerosol amounts on cirrus. We will determine how sensitive the cloud and radiative properties are to various aerosol increases. We will also discuss the applicability of the Meyer et al. (1992) nucleation formulae for our simulations. It is important to stress that in this work we only change the nucleation rate for the newly forming cloud. By doing this, we are not fixing the total water content and redistributing the water amongst increased ice crystals. We increase the number of aerosols available to be nucleated and allow the model to evolve the size distributions. In this way, there is competition for the water vapour, the ice particles are evolved dynamically with different fall speeds, the conversion rates to other hydrometers (such as aggregates) are affected, and the heating rates are different due to the different size distributions that evolve. We will look at how the water content, the distribution of water, and the radiative properties are affected

  1. Cloud and Radiation Studies during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, M. D.; Hobbs, P. V.; Osborne, S.; Piketh, S.; Bruintjes, R.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulphur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. Aircraft flights were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. An operational MODIS algorithm for the retrieval of cloud optical and physical properties (including optical thickness, effective particle radius, and water path) has been developed. Pixel-level MODIS retrievals (11 km spatial resolution at nadir) and gridded statistics of clouds in th SAFARI region will be presented. In addition, the MODIS Airborne Simulator flown on the ER-2 provided high spatial resolution retrievals (50 m at nadir

  2. Non-precipitating cumulus cloud study

    SciTech Connect

    Alkezweeny, A.J.

    1984-10-01

    This document describes the field experiment that was conducted in Kentucky during the period from July 20 to August 24, 1983. The objectives were to determine the vertical transport of acidic pollutants by cumulus convection and formation of acidic substances in non-precipitating clouds. The study is a research component of Task Group C (Atmospheric Processes) of the National Acid Precipitation Assessment Program. To examine the vertical transport, an SF/sub 6/ tracer was released from one aircraft, sampled by another aircraft, and sampled on the ground. The results show that pollutants from the boundary layer are lifted to the cloud layer. From there, they are intermittently transported both to the ground and to higher elevations, possibly in the vertical updrafts of towering cumulus clouds. A series of instrumented aircraft flights around the clouds were conducted to study the formation of acidic aerosols. The concentrations of SO/sub 2/, SO/sub 4/, NO/sub 3/, NH/sub 4/, NH/sub 3/, HNO/sub 3/ and trace metals were measured by filter techniques. Furthermore, NO/sub x/, O/sub 3/, light scattering, and basic meteorological parameters were measured in real-time. Detailed chemical composition of aerosols and NH/sub 3/ was also measured on the ground. Preliminary results show that the molar ratio of SO/sub 2//SO/sub 2/ + SO/sub 4/) at cloud tops is higher than at cloud bases. This indicates that sulfate aerosols were formed in the clouds. The NH/sub 3/ concentration shows higher values at nighttime than daytime and decreases sharply with increasing altitude. 3 references.

  3. Can Clouds replace Grids? Will Clouds replace Grids?

    NASA Astrophysics Data System (ADS)

    Shiers, J. D.

    2010-04-01

    The world's largest scientific machine - comprising dual 27km circular proton accelerators cooled to 1.9oK and located some 100m underground - currently relies on major production Grid infrastructures for the offline computing needs of the 4 main experiments that will take data at this facility. After many years of sometimes difficult preparation the computing service has been declared "open" and ready to meet the challenges that will come shortly when the machine restarts in 2009. But the service is not without its problems: reliability - as seen by the experiments, as opposed to that measured by the official tools - still needs to be significantly improved. Prolonged downtimes or degradations of major services or even complete sites are still too common and the operational and coordination effort to keep the overall service running is probably not sustainable at this level. Recently "Cloud Computing" - in terms of pay-per-use fabric provisioning - has emerged as a potentially viable alternative but with rather different strengths and no doubt weaknesses too. Based on the concrete needs of the LHC experiments - where the total data volume that will be acquired over the full lifetime of the project, including the additional data copies that are required by the Computing Models of the experiments, approaches 1 Exabyte - we analyze the pros and cons of Grids versus Clouds. This analysis covers not only technical issues - such as those related to demanding database and data management needs - but also sociological aspects, which cannot be ignored, neither in terms of funding nor in the wider context of the essential but often overlooked role of science in society, education and economy.

  4. Cloud draft structure and trace gas transport

    NASA Technical Reports Server (NTRS)

    Scala, John R.; Tao, Wei-Kuo; Thompson, Anne M.; Simpson, Joanne; Garstang, Michael; Pickering, Kenneth E.; Browell, Edward V.; Sachse, Glen W.; Gregory, Gerald L.; Torres, Arnold L.

    1990-01-01

    During the second Amazon Boundary Layer Experiment (ABLE 2B), meteorological observations, chemical measurements, and model simulations are utilized in order to interpret convective cloud draft structure and to analyze its role in transport and vertical distribution of trace gases. One-dimensional photochemical model results suggest that the observed poststorm changes in ozone concentration can be attributed to convective transports rather than photochemical production and the results of a two-dimensional time-dependent cloud model simulation are presented for the May 6, 1987 squall system. The mesoscale convective system exhibited evidence of significant midlevel detrainment in addition to transports to anvil heights. Chemical measurements of O3 and CO obtained in the convective environment are used to predict photochemical production within the troposphere and to corroborate the cloud model results.

  5. Acoustic Scattering from Compact Bubble Clouds.

    NASA Astrophysics Data System (ADS)

    Schindall, Jeffrey Alan

    In this study, a simple model describing the low -frequency scattering properties of high void fraction bubble clouds in both the free field and near the ocean surface is developed. This model, which is based on an effective medium approximation and acoustically compact scatters, successfully predicts the results of the bubble cloud scattering experiment carried out at Lake Seneca in New York state for frequencies consistent with the model assumptions (Roy et al., 1992). The introduction of the surface is facilitated by the method of images and is subject to the same constraint of low-acoustic frequency imposed by the compact scatterer assumption. This model is not intended to serve as an exact replicate of oceanic bubble cloud scattering. The model herein was kept simple by design, for only then can the complex physical behavior be expressed in a simple analytical form. Simple, analytic theories facilitate the exploration of parameter space, and more importantly serve to illuminate the underlying physics.

  6. Metastable Nitric Acid Trihydrate in Ice Clouds.

    PubMed

    Weiss, Fabian; Kubel, Frank; Gálvez, Óscar; Hoelzel, Markus; Parker, Stewart F; Baloh, Philipp; Iannarelli, Riccardo; Rossi, Michel J; Grothe, Hinrich

    2016-03-01

    The composition of high-altitude ice clouds is still a matter of intense discussion. The constituents in question are ice and nitric acid hydrates, but the exact phase composition of clouds and its formation mechanisms are still unknown. In this work, conclusive evidence for a long-predicted phase, alpha-nitric acid trihydrate (alpha-NAT), is presented. This phase was characterized by a combination of X-ray and neutron diffraction experiments, allowing a convincing structure solution. Furthermore, vibrational spectra (infrared and inelastic neutron scattering) were recorded and compared with theoretical calculations. A strong interaction between water ice and alpha-NAT was found, which explains the experimental spectra and the phase-transition kinetics. On the basis of these results, we propose a new three-step mechanism for NAT formation in high-altitude ice clouds.

  7. Metastable Nitric Acid Trihydrate in Ice Clouds

    PubMed Central

    Weiss, Fabian; Kubel, Frank; Gálvez, Óscar; Hoelzel, Markus; Parker, Stewart F.; Baloh, Philipp; Iannarelli, Riccardo; Rossi, Michel J.

    2016-01-01

    Abstract The composition of high‐altitude ice clouds is still a matter of intense discussion. The constituents in question are ice and nitric acid hydrates, but the exact phase composition of clouds and its formation mechanisms are still unknown. In this work, conclusive evidence for a long‐predicted phase, alpha‐nitric acid trihydrate (alpha‐NAT), is presented. This phase was characterized by a combination of X‐ray and neutron diffraction experiments, allowing a convincing structure solution. Furthermore, vibrational spectra (infrared and inelastic neutron scattering) were recorded and compared with theoretical calculations. A strong interaction between water ice and alpha‐NAT was found, which explains the experimental spectra and the phase‐transition kinetics. On the basis of these results, we propose a new three‐step mechanism for NAT formation in high‐altitude ice clouds. PMID:26879259

  8. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; Stammes, P.

    2011-12-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud-free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressures contain information on aerosol layer pressure. For cloud-free scenes, the derived FRESCO cloud pressures are close to those of the aerosol layer for optically thick aerosols. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressures may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO cloud data and AAI, an estimate for the aerosol layer pressure can be given, which can be beneficial for aviation safety and operations in case of e.g. volcanic ash plumes.

  9. A possible field test for marine cloud brightening geoengineering. A possible field test for marine cloud brightening geoengineering

    NASA Astrophysics Data System (ADS)

    Gadian, A.; Wood, R.; Coe, H.; Latham, J.

    2011-12-01

    A possible field test for marine cloud brightening geoengineering. Abstract: The Marine Cloud Brightening (MCB) geoengineering technique (Latham et al 2008) hypothesizes that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre seawater particles can enhance the cloud droplet number concentration and increase cloud albedo. Here, we propose a set of field tests to critically assess the efficacy of the MCB geoengineering proposal over a limited area. The tests are de minimus with respect to their climate effects. The tests involve three phases, with increasing logistical complexity, each of which is designed to test one or more important components of the cloud brightening scheme. Each involves the introduction and monitoring of controlled aerosol perturbations from one or more ship-based seeding platforms up to a limited area of 100x100 km2. A suite of observational platforms of increasing number and complexity, including aircraft, ships and satellites, will observe the aerosol plume and in the later experiments the cloud and albedo responses to the aerosol perturbations. These responses must include the necessary cloud physical and chemical processes which determine the efficacy of the cloud brightening scheme. Since these processes are also central to the broader problem of aerosol-cloud-climate interactions, such field tests would have significant benefits for climate science in addition to providing a critical test of the MCB hypothesis. Such field experiments should be designed and conducted in an objective manner within the framework of emerging geoengineering research governance structures. Reference: Latham J. et al.. (2008) Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil. Trans. R. Soc. A doi:10.1098/rsta.2008.0137

  10. Detecting Abnormal Machine Characteristics in Cloud Infrastructures

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Das, Kamalika; Matthews, Bryan L.

    2011-01-01

    In the cloud computing environment resources are accessed as services rather than as a product. Monitoring this system for performance is crucial because of typical pay-peruse packages bought by the users for their jobs. With the huge number of machines currently in the cloud system, it is often extremely difficult for system administrators to keep track of all machines using distributed monitoring programs such as Ganglia1 which lacks system health assessment and summarization capabilities. To overcome this problem, we propose a technique for automated anomaly detection using machine performance data in the cloud. Our algorithm is entirely distributed and runs locally on each computing machine on the cloud in order to rank the machines in order of their anomalous behavior for given jobs. There is no need to centralize any of the performance data for the analysis and at the end of the analysis, our algorithm generates error reports, thereby allowing the system administrators to take corrective actions. Experiments performed on real data sets collected for different jobs validate the fact that our algorithm has a low overhead for tracking anomalous machines in a cloud infrastructure.

  11. Cloud clearing technology assessment: Final report

    SciTech Connect

    Not Available

    1988-03-01

    This report describes work done by W.J. Schafer Associates (WJSA) in support of the Long Pulse Chemical Laser (LPCL) project at the Los Alamos National Laboratory (LANL) in 1986-1987. The present document emphasizes work in the area of cloud hole boring. It consists of the Final Task reports for Tasks II (Meteorological Statistics), III (Cloud Clearing Concept Development) and IV (Fluid Mechanics). A separate report on ASAT analyses has been prepared and was delivered to the LANL program manager in April 1988. (This document contained results from several WJSA IRAD projects which are considered proprietary, hence they are not included in this Final Report Volume.) A third document describing work on laser kinetics analyses (Task I) will be provided separately. The present document is the Final Report for this subcontract. It describes work in the areas of cloud clearing mission analysis, cloud clearing experiment recommendations, and meteorological statistics relevant to cloud clearing and laser weapon propagation. 20 refs., 29 figs., 7 tabs.

  12. The diverse use of clouds by CMS

    SciTech Connect

    Andronis, Anastasios; Bauer, Daniela; Chaze, Olivier; Colling, David; Dobson, Marc; Fayer, Simon; Girone, Maria; Grandi, Claudio; Huffman, Adam; Hufnagel, Dirk; Khan, Farrukh Aftab; Lahiff, Andrew; McCrae, Alison; Rand, Duncan; Sgaravatto, Massimo; Tiradani, Anthony; Zhang, Xiaomei

    2015-12-23

    The resources CMS is using are increasingly being offered as clouds. In Run 2 of the LHC the majority of CMS CERN resources, both in Meyrin and at the Wigner Computing Centre, will be presented as cloud resources on which CMS will have to build its own infrastructure. This infrastructure will need to run all of the CMS workflows including: Tier 0, production and user analysis. In addition, the CMS High Level Trigger will provide a compute resource comparable in scale to the total offered by the CMS Tier 1 sites, when it is not running as part of the trigger system. During these periods a cloud infrastructure will be overlaid on this resource, making it accessible for general CMS use. Finally, CMS is starting to utilise cloud resources being offered by individual institutes and is gaining experience to facilitate the use of opportunistically available cloud resources. Lastly, we present a snap shot of this infrastructure and its operation at the time of the CHEP2015 conference.

  13. The diverse use of clouds by CMS

    DOE PAGES

    Andronis, Anastasios; Bauer, Daniela; Chaze, Olivier; ...

    2015-12-23

    The resources CMS is using are increasingly being offered as clouds. In Run 2 of the LHC the majority of CMS CERN resources, both in Meyrin and at the Wigner Computing Centre, will be presented as cloud resources on which CMS will have to build its own infrastructure. This infrastructure will need to run all of the CMS workflows including: Tier 0, production and user analysis. In addition, the CMS High Level Trigger will provide a compute resource comparable in scale to the total offered by the CMS Tier 1 sites, when it is not running as part of themore » trigger system. During these periods a cloud infrastructure will be overlaid on this resource, making it accessible for general CMS use. Finally, CMS is starting to utilise cloud resources being offered by individual institutes and is gaining experience to facilitate the use of opportunistically available cloud resources. Lastly, we present a snap shot of this infrastructure and its operation at the time of the CHEP2015 conference.« less

  14. Stratocumulus cloud evolution

    SciTech Connect

    Yang, X.; Rogers, D.P.; Norris, P.M.; Johnson, D.W.; Martin, G.M.

    1994-12-31

    The structure and evolution of the extra-tropical marine atmospheric boundary layer (MABL) depends largely on the variability of stratus and stratocumulus clouds. The typical boundary-layer is capped by a temperature inversion that limits exchange with the free atmosphere. Cloud-top is usually coincident with the base of the inversion. Stratus clouds are generally associated with a well-mixed MABL, whereas daytime observations of stratocumulus-topped boundary-layers indicate that the cloud and subcloud layers are often decoupled due to shortwave radiative heating of the cloud layer. In this case the surface-based mixed layer is separated from the base of the stratocumulus (Sc) by a layer that is stable to dry turbulent mixing. This is sometimes referred to as the transition layer. Often cumulus clouds (Cu) develop in the transition layer. The cumulus tops may remain below the Sc base or they may penetrate into the Sc layer and occasionally through the capping temperature inversion. While this cloud structure is characteristic of the daytime MABL, it may persist at night also. The Cu play an important role in connecting the mixed layer to the Sc layer. If the Cu are active they transport water vapor from the sea surface that maintains the Sc against the dissipating effects of shortwave heating. The Cu, however, are very sensitive to small changes in the heat and moisture in the boundary-layer and are transient features. Here the authors discuss the effect of these small Cu on the turbulent structure of the MABL.

  15. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    NASA Technical Reports Server (NTRS)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows

  16. Remote-controlled experiments with cloud chemistry

    NASA Astrophysics Data System (ADS)

    Skilton, Ryan A.; Bourne, Richard A.; Amara, Zacharias; Horvath, Raphael; Jin, Jing; Scully, Michael J.; Streng, Emilia; Tang, Samantha L. Y.; Summers, Peter A.; Wang, Jiawei; Pérez, Eduardo; Asfaw, Nigist; Aydos, Guilherme L. P.; Dupont, Jairton; Comak, Gurbuz; George, Michael W.; Poliakoff, Martyn

    2015-01-01

    Developing cleaner chemical processes often involves sophisticated flow-chemistry equipment that is not available in many economically developing countries. For reactions where it is the data that are important rather than the physical product, the networking of chemists across the internet to allow remote experimentation offers a viable solution to this problem.

  17. Measurements of the light-absorbing material inside cloud droplets and its effect on cloud albedo

    NASA Technical Reports Server (NTRS)

    Twohy, C. H.; Clarke, A. D.; Warren, Stephen G.; Radke, L. F.; Charleson, R. J.

    1990-01-01

    Most of the measurements of light-absorbing aerosol particles made previously have been in non-cloudy air and therefore provide no insight into aerosol effects on cloud properties. Here, researchers describe an experiment designed to measure light absorption exclusively due to substances inside cloud droplets, compare the results to related light absorption measurements, and evaluate possible effects on the albedo of clouds. The results of this study validate those of Twomey and Cocks and show that the measured levels of light-absorbing material are negligible for the radiative properties of realistic clouds. For the measured clouds, which appear to have been moderately polluted, the amount of elemental carbon (EC) present was insufficient to affect albedo. Much higher contaminant levels or much larger droplets than those measured would be necessary to significantly alter the radiative properties. The effect of the concentrations of EC actually measured on the albedo of snow, however, would be much more pronounced since, in contrast to clouds, snowpacks are usually optically semi-infinite and have large particle sizes.

  18. The Research of Dr. Joanne Simpson: Fifty Years Investigating Hurricanes, Tropical Clouds and Cloud Systems

    NASA Technical Reports Server (NTRS)

    Tao, W. -K.; Halverson, J.; Adler, R.; Garstang, M.; Houze, R., Jr.; LeMone, M.; Pielke, R., Sr.; Woodley, W.; O'C.Starr, David (Technical Monitor)

    2001-01-01

    This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nin