Sample records for experimental background due

  1. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E. M.; Andreani, C.; Senesi, R.

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  2. Gamma-ray Background Spectrum and Annihilation Rate in the Baryon-symmetric Big-bang Cosmology

    NASA Technical Reports Server (NTRS)

    Puget, J. L.

    1973-01-01

    An attempt was made to acquire experimental information on the problem of baryon symmetry on a large cosmological scale by observing the annihilation products. Data cover absorption cross sections and background radiation due to other sources for the two main products of annihilation, gamma rays and neutrinos. Test results show that the best direct experimental test for the presence of large scale antimatter lies in the gamma ray background spectrum between 1 and 70 MeV.

  3. Estimation of channel parameters and background irradiance for free-space optical link.

    PubMed

    Khatoon, Afsana; Cowley, William G; Letzepis, Nick; Giggenbach, Dirk

    2013-05-10

    Free-space optical communication can experience severe fading due to optical scintillation in long-range links. Channel estimation is also corrupted by background and electrical noise. Accurate estimation of channel parameters and scintillation index (SI) depends on perfect removal of background irradiance. In this paper, we propose three different methods, the minimum-value (MV), mean-power (MP), and maximum-likelihood (ML) based methods, to remove the background irradiance from channel samples. The MV and MP methods do not require knowledge of the scintillation distribution. While the ML-based method assumes gamma-gamma scintillation, it can be easily modified to accommodate other distributions. Each estimator's performance is compared using simulation data as well as experimental measurements. The estimators' performance are evaluated from low- to high-SI areas using simulation data as well as experimental trials. The MV and MP methods have much lower complexity than the ML-based method. However, the ML-based method shows better SI and background-irradiance estimation performance.

  4. Study of the dislocation contribution to the internal friction background of gold

    NASA Astrophysics Data System (ADS)

    Baur, J.; Benoit, W.

    1987-04-01

    The dislocation contribution to the internal friction (IF) background is studied in annealed gold samples containing various dilute concentrations of platinum impurities. The measurements are performed in the kHz frequency range in order to determine the loss mechanism responsible for the high IF background observed at these low frequencies. To this end, the IF background was systematically measured as a function of frequency, vibration amplitude, temperature, and impurity concentration. The experimental results show that the high dislocation contribution observed in annealed samples is strain-amplitude independent for amplitudes in the range 10-7 to 2×10-6, but rapidly decreases for amplitudes smaller than 10-7. In particular, the dislocation contribution tends to zero when the strain amplitude tends to zero. Furthermore, this contribution is frequency independent. These observations demonstrate that the dislocation contribution cannot be explained by relaxations. In particular, this contribution cannot be attributed to a viscous damping of the dislocation motion. On the contrary, the experiments show that the IF background due to dislocations must be explained by hysteretic and athermal motions of dislocations interacting with point defects. However, these hysteretic motions are not due to breakaway of dislocations from pinning points distributed along their length. The experimental results can be explained by the presence of point defects close to the dislocations, but not on them. The mechanical energy loss is attributed to hysteretic motions of dislocations between potential minima created by point defects.

  5. Azimuthal angle dependence of the charge imbalance from charge conservation effects

    NASA Astrophysics Data System (ADS)

    BoŻek, Piotr

    2018-03-01

    The experimental search for the chiral magnetic effect in heavy-ion collisions is based on charge-dependent correlations between emitted particles. Recently, a sensitive observable comparing event-by-event distributions of the charge splitting projected on the directions along and perpendicular to the direction of the elliptic flow has been proposed. The results of a (3 + 1)-dimensional hydrodynamic model show that the preliminary experimental data of the STAR Collaboration can be explained as due to background effects, such as resonance decays and local charge conservation in the particle production. A related observable based on the third-order harmonic flow is proposed to further investigate such background effects in charge-dependent correlations.

  6. Comparative Evaluation of Two Vaccine Candidates against Experimental Leishmaniasis Due to Leishmania major Infection in Four Inbred Mouse Strains▿

    PubMed Central

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-01-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials. PMID:19726616

  7. Comparative evaluation of two vaccine candidates against experimental leishmaniasis due to Leishmania major infection in four inbred mouse strains.

    PubMed

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-11-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials.

  8. Study of the surface contamination of copper with the improved positron annihilation-induced Auger electron spectrometer at NEPOMUC

    NASA Astrophysics Data System (ADS)

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2008-10-01

    The high intensity positron source NEPOMUC at the FRM-II in Munich enables measurement times for positron annihilation-induced Auger electron spectroscopy (PAES) of only 2.4 h/spectrum, in contrast to usual lab beams with measurement times up to several days. The high electron background due to surrounding experiments in the experimental hall of the FRM-II has been eliminated and hence background free experiments have become possible. Due to this, the signal to noise ratio has been enhanced to 4.5:1, compared to 1:3 with EAES. In addition, a long-term measurement has been performed in order to observe the contamination of a polycrystalline copper foil at 150 °C.

  9. Measurement of the background in Auger-Photoemission Spectra (APECS) associated with multi-electron and inelastic valence band photoemission processes

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Hulbert, Steven; Weiss, Alex

    2014-03-01

    Auger Photoelectron Coincidence Spectroscopy (APECS), in which the Auger spectra is measured in coincidence with the core level photoelectron, is capable of pulling difficult to observe low energy Auger peaks out of a large background due mostly to inelastically scattered valence band photoelectrons. However the APECS method alone cannot eliminate the background due to valence band VB photoemission processes in which the initial photon energy is shared by 2 or more electrons and one of the electrons is in the energy range of the core level photoemission peak. Here we describe an experimental method for estimating the contributions from these background processes in the case of an Ag N23VV Auger spectra obtained in coincidence with the 4p photoemission peak. A beam of 180eV photons was incident on a Ag sample and a series of coincidence measurements were made with one cylindrical mirror analyzer (CMA) set at a fixed energies between the core and the valence band and the other CMA scanned over a range corresponding to electrons leaving the surface between 0eV and the 70eV. The spectra obtained were then used to obtain an estimate of the background in the APECS spectra due to multi-electron and inelastic VB photoemission processes. NSF, Welch Foundation.

  10. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    USDA-ARS?s Scientific Manuscript database

    Abstract. Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the mag...

  11. X-ray absorption spectroscopy to determine originating depth of electrons that form an inelastic background of Auger electron spectrum

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Cui, Yi-Tao; Murai, Takaaki; Oji, Hiroshi; Kimoto, Yasuji

    2017-07-01

    In Auger electron spectroscopy (AES), the spectral background is mainly due to inelastic scattering of Auger electrons that lose their kinetic energy in a sample bulk. To investigate the spectral components within this background for SiO2(19.3 nm)/Si(100) with known layer thickness, X-ray absorption spectroscopy (XAS) was used in the partial-electron-yield (PEY) mode at several electron kinetic energies to probe the background of the Si KLL Auger peak. The Si K-edge PEY-XAS spectra constituted of both Si and SiO2 components at each kinetic energy, and their component fractions were approximately the same as those derived from the simulated AES background for the same sample structure. The contributions of Auger electrons originating from layers at different depths to the inelastic background could thus be identified experimentally.

  12. A novel nano-photonics biosensor concept for rapid molecular diagnostics

    NASA Astrophysics Data System (ADS)

    Klunder, Dion J. W.; van Herpen, Maarten M. J. W.; Kolesnychenko, Aleksey; Hornix, Eefje; Kahya, Nicoletta; de Boer, Ruth; Stapert, Henk

    2008-04-01

    We present a novel nano-photonics biosensor concept that offers an ultra-high surface specificity and excellent suppression of background signals due to the sample fluid on top of the biosensor. In our contribution, we will briefly discuss the operation principle and fabrication of the biosensor, followed by a more detailed discussion on the experimentally determined performance parameters. Recent results on detection of fluorescently labeled molecules in a highly fluorescent background will be shown, and we will give an outlook on real-time detection of bio-molecules such as proteins and nucleic acids.

  13. Integrated bio-fluorescence sensor.

    PubMed

    Thrush, Evan; Levi, Ofer; Ha, Wonill; Wang, Ke; Smith, Stephen J; Harris, James S

    2003-09-26

    Due to the recent explosion in optoelectronics for telecommunication applications, novel optoelectronic sensing structures can now be realized. In this work, we explore the integration of optoelectronic components towards miniature and portable fluorescence sensors. The integration of these micro-fabricated sensors with microfluidics and capillary networks may reduce the cost and complexity of current research instruments and open up a world of new applications in portable biological analysis systems. A novel optoelectronic design that capitalizes on current vertical-cavity surface-emitting laser (VCSEL) technology is explored. Specifically, VCSELs, optical emission filters and PIN photodetectors are fabricated as part of a monolithically integrated near-infrared fluorescence detection system. High-performance lasers and photodetectors have been characterized and integrated to form a complete sensor. Experimental results show that sensor sensitivity is limited by laser background. The laser background is caused by spontaneous emission emitted from the side of the VCSEL excitation source. Laser background will limit sensitivity in most integrated sensing designs due to locating excitation sources and photodetectors in such close proximity, and methods are proposed to reduce the laser background in such designs so that practical fluorescent detection limits can be achieved.

  14. Stochastic gravitational wave background from light cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePies, Matthew R.; Hogan, Craig J.

    2007-06-15

    Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less

  15. Formation of 2D bright spatial solitons in lithium niobate with photovoltaic response and incoherent background

    NASA Astrophysics Data System (ADS)

    Pustozerov, A.; Shandarov, V.

    2017-12-01

    The influence of incoherent background illumination produced by light-emitting diodes (LED's) of different average wavelengths and laser diode emitting in blue region of visible on diffraction characteristics of narrow coherent light beams of He-Ne laser due to refractive index changes of Fe-doped lithium niobate sample are studied. It has been experimentally demonstrated that nonlinear diffraction of red beams with wavelength 633 nm and diameters on full width of half maximum (FWHM) near to 15 μm may be totally compensated using background light with average wavelengths 450 - 465 nm. To provide the necessary intensity of incoherent background, the combinations of spherical and cylindrical concave lenses with blue LED and laser diode module without focusing its beam have been used.

  16. Intercultural Education in Physical Education: Results of a Quasi-Experimental Intervention Study with Secondary School Students

    ERIC Educational Resources Information Center

    Grimminger-Seidensticker, Elke; Möhwald, Aiko

    2017-01-01

    Background: Due to migration processes, cultural diversity and strangeness are becoming characteristics of modern society. The competence to handle this heterogeneity--the so-called intercultural competence--is a key competence for all children and youths. Sports and physical education (PE) are often considered as a particular field for enhancing…

  17. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2018-05-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.

  18. RNase-assisted RNA chromatography

    PubMed Central

    Michlewski, Gracjan; Cáceres, Javier F.

    2010-01-01

    RNA chromatography combined with mass spectrometry represents a widely used experimental approach to identify RNA-binding proteins that recognize specific RNA targets. An important drawback of most of these protocols is the high background due to direct or indirect nonspecific binding of cellular proteins to the beads. In many cases this can hamper the detection of individual proteins due to their low levels and/or comigration with contaminating proteins. Increasing the salt concentration during washing steps can reduce background, but at the cost of using less physiological salt concentrations and the likely loss of important RNA-binding proteins that are less stringently bound to a given RNA, as well as the disassembly of protein or ribonucleoprotein complexes. Here, we describe an improved RNA chromatography method that relies on the use of a cocktail of RNases in the elution step. This results in the release of proteins specifically associated with the RNA ligand and almost complete elimination of background noise, allowing a more sensitive and thorough detection of RNA-binding proteins recognizing a specific RNA transcript. PMID:20571124

  19. Origin of the low-frequency internal friction background of gold

    NASA Astrophysics Data System (ADS)

    Baur, J.; Benoit, W.

    1986-11-01

    The internal friction (IF) background of gold is studied in the kHz frequency range. Systematic measurements of IF as a function of frequency, strain amplitude, and temperature show that the IF is due to the superposition of two contributions: the thermoelastic effect and a dislocation effect. The thermoelastic effect is responsible for the IF background observed when the strain amplitude tends to zero. It is the only contribution to the IF background which is strain amplitude independent. On the contrary, the dislocation effect contributes only to the strain amplitude-dependent IF background. This effect is proportional to the strain amplitude. In particular, it is zero when the strain amplitude tends to zero. Furthermore, the dislocation contribution is frequency independent. The experimental results show that the dislocation effect cannot be explained by a viscous damping of dislocation motion, but must be related to an hysteretic and athermal motion of dislocations.

  20. Harmonic demodulation and minimum enhancement factors in field-enhanced near-field optical microscopy.

    PubMed

    Scarpettini, A F; Bragas, A V

    2015-01-01

    Field-enhanced scanning optical microscopy relies on the design and fabrication of plasmonic probes which had to provide optical and chemical contrast at the nanoscale. In order to do so, the scattering containing the near-field information recorded in a field-enhanced scanning optical microscopy experiment, has to surpass the background light, always present due to multiple interferences between the macroscopic probe and sample. In this work, we show that when the probe-sample distance is modulated with very low amplitude, the higher the harmonic demodulation is, the better the ratio between the near-field signal and the interferometric background results. The choice of working at a given n harmonic is dictated by the experiment when the signal at the n + 1 harmonic goes below the experimental noise. We demonstrate that the optical contrast comes from the nth derivative of the near-field scattering, amplified by the interferometric background. By modelling the far and near field we calculate the probe-sample approach curves, which fit very well the experimental ones. After taking a great amount of experimental data for different probes and samples, we conclude with a table of the minimum enhancement factors needed to have optical contrast with field-enhanced scanning optical microscopy. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  1. Experimental Demonstration of Underwater Acoustic Scattering Cancellation

    PubMed Central

    Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2015-01-01

    We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85. PMID:26282067

  2. Experimental observation of self excited co-rotating multiple vortices in a dusty plasma with inhomogeneous plasma background

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2017-03-01

    We report an experimental observation of multiple co-rotating vortices in an extended dust column in the background of an inhomogeneous diffused plasma. An inductively coupled rf discharge is initiated in the background of argon gas in the source region. This plasma was later found to diffuse into the main experimental chamber. A secondary DC glow discharge plasma is produced to introduce dust particles into the plasma volume. These micron-sized poly-disperse dust particles get charged in the background of the DC plasma and are transported by the ambipolar electric field of the diffused plasma. These transported particles are found to be confined in an electrostatic potential well, where the resultant electric field due to the diffused plasma (ambipolar E-field) and glass wall charging (sheath E-field) holds the micron-sized particles against the gravity. Multiple co-rotating (anti-clockwise) dust vortices are observed in the dust cloud for a particular discharge condition. The transition from multiple vortices to a single dust vortex is observed when input rf power is lowered. The occurrence of these vortices is explained on the basis of the charge gradient of dust particles, which is orthogonal to the ion drag force. The charge gradient is a consequence of the plasma inhomogeneity along the dust cloud length. The detailed nature and the reason for multiple vortices are still under investigation through further experiments; however, preliminary qualitative understanding is discussed based on the characteristic scale length of the dust vortex. There is a characteristic size of the vortex in the dusty plasma; therefore, multiple vortices could possibly be formed in an extended dusty plasma with inhomogeneous plasma background. The experimental results on the vortex motion of particles are compared with a theoretical model and are found to be in close agreement.

  3. Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering.

    PubMed

    Jang, C; Adam, S; Chen, J-H; Williams, E D; Das Sarma, S; Fuhrer, M S

    2008-10-03

    We reduce the dimensionless interaction strength alpha in graphene by adding a water overlayer in ultrahigh vacuum, thereby increasing dielectric screening. The mobility limited by long-range impurity scattering is increased over 30%, due to the background dielectric constant enhancement leading to a reduced interaction of electrons with charged impurities. However, the carrier-density-independent conductivity due to short-range impurities is decreased by almost 40%, due to reduced screening of the impurity potential by conduction electrons. The minimum conductivity is nearly unchanged, due to canceling contributions from the electron-hole puddle density and long-range impurity mobility. Experimental data are compared with theoretical predictions with excellent agreement.

  4. Blob-hole correlation model for edge turbulence and comparisons with NSTX gas puff imaging data

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; Zweben, S. J.; Russell, D. A.

    2018-07-01

    Gas puff imaging (GPI) observations made in NSTX (Zweben et al 2017 Phys. Plasmas 24 102509) have revealed two-point spatial correlations of edge and scrape-off layer (SOL) turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlation patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or SOL), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracking of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Other properties of the experimentally observed extrema are discussed.

  5. Blob-hole correlation model for edge turbulence and comparisons with NSTX gas puff imaging data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, J. R.; Zweben, S. J.; Russell, D. A.

    We report that gas puff imaging (GPI) observations made in NSTX [Zweben S J, et al., 2017 Phys. Plasmas 24 102509] have revealed two-point spatial correlations of edge and scrape-off layer turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlationmore » patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or scrape-off layer), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracking of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Finally, other properties of the experimentally observed extrema are discussed.« less

  6. Blob-hole correlation model for edge turbulence and comparisons with NSTX gas puff imaging data

    DOE PAGES

    Myra, J. R.; Zweben, S. J.; Russell, D. A.

    2018-05-15

    We report that gas puff imaging (GPI) observations made in NSTX [Zweben S J, et al., 2017 Phys. Plasmas 24 102509] have revealed two-point spatial correlations of edge and scrape-off layer turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlationmore » patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or scrape-off layer), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracking of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Finally, other properties of the experimentally observed extrema are discussed.« less

  7. Environmental dose rate distribution along the Romanian Black Sea shore

    NASA Astrophysics Data System (ADS)

    Duliu, Octavian G.; Margineanu, Romul M.; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Bercea, Sorin

    2013-04-01

    The radiometric investigation of the natural radioactivity dose rate distribution along the most important Romanian Black Sea tourist resorts showed values between 34 and 54 nSv/h, lower than the 59 nSv/h, the average background reported for the entire Romanian territory. At the same time we have noticed that the experimental dose rates monotonously increase northward, reaching a maximum in the vicinity of Vadu and Corbu beaches, both on the southern part of the Chituc sandbank. Concurrent gamma ray spectrometric measurements, performed at the Slanic-Prahova Low-Background Radiation Laboratory for sand samples collected from the same location, have shown that the natural radionuclides have a major contribution to background radiation while anthropogenic Cs-137 plays, 26 years after Chernobyl catastrophe, a negligible role. The experimental values of activity concentrations of all radionuclides present in sand samples were used to calculate the corresponding values of dose rates to which, by adding the contribution of cosmic rays, we have obtained values coincident, within experimental uncertainties, with the experimental ones. At the same time, on Chituc sandbank, a transverse profile of dose rate distribution revealed the presence of some local maxima, two to thee times higher then the average ones. Subsequent gamma ray spectrometry showed an increased content of natural radionuclides, most probably due to a local accumulation of heavy minerals, a common occurrence in the vicinity of river deltas, in our case the Danube Delta. In such a way, the monitoring of local dose rate distribution could be very useful not only in attesting the environmental quality of various resorts and beaches, but also, in signaling the presence of heavy minerals, with beneficent economic consequences.

  8. SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults

    NASA Astrophysics Data System (ADS)

    Golafshan, Reza; Yuce Sanliturk, Kenan

    2016-03-01

    Ball bearings remain one of the most crucial components in industrial machines and due to their critical role, it is of great importance to monitor their conditions under operation. However, due to the background noise in acquired signals, it is not always possible to identify probable faults. This incapability in identifying the faults makes the de-noising process one of the most essential steps in the field of Condition Monitoring (CM) and fault detection. In the present study, Singular Value Decomposition (SVD) and Hankel matrix based de-noising process is successfully applied to the ball bearing time domain vibration signals as well as to their spectrums for the elimination of the background noise and the improvement the reliability of the fault detection process. The test cases conducted using experimental as well as the simulated vibration signals demonstrate the effectiveness of the proposed de-noising approach for the ball bearing fault detection.

  9. Application of single-shot spiral scanning for volume localization.

    PubMed

    Ra, J B; Rim, C Y; Cho, Z H

    1991-02-01

    A new technique using a spiral scan single-shot RF pulse for localized volume selection has been developed and its experimental results are presented. This technique employs an additional radial-gradient coil in conjunction with the oscillating gradients for the spiral scan to localize the 3D volume. The short selection time in this technique minimizes both signal contamination from unwanted regions and signal attenuation due to T2 decay. We provide both the theoretical background of the technique and the experimental results obtained from a phantom as well as a human volunteer. The proposed method appears simple and accurate in localizing a volume which would be used as either fast imaging or localized spectroscopy.

  10. Efimov states near a Feshbach resonance and the limits of van der Waals universality at finite background scattering length

    NASA Astrophysics Data System (ADS)

    Langmack, Christian; Schmidt, Richard; Zwerger, Wilhelm

    2018-03-01

    We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model which accounts both for the finite range of interactions and the presence of background scattering. The latter may be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states on its own. Compared to the situation with negligible background scattering, the regime where van der Waals universality applies is shifted to larger values of the resonance strength if the background scattering length is positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly. Repulsive three-body forces may, however, explain the observed variation between around -8 and -10 of the ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.

  11. Determining the 40K radioactivity in rocks using x-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Pilakouta, M.; Kallithrakas-Kontos, N.; Nikolaou, G.

    2017-09-01

    In this paper we propose an experimental method for the determination of potassium-40 (40K) radioactivity in commercial granite samples using x-ray fluorescence (XRF). The method correlates the total potassium concentration (yield) in samples deduced by XRF analysis with the radioactivity of the sample due to the 40K radionuclide. This method can be used in an undergraduate student laboratory. A brief theoretical background and description of the method, as well as some results and their interpretation, are presented.

  12. Nonlinear dust-lattice waves: a modified Toda lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, N. F.

    Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.

  13. Metal-insulator transition in AlxGa1-xAs/GaAs heterostructures with large spacer width

    NASA Astrophysics Data System (ADS)

    Gold, A.

    1991-10-01

    Analytical results are presented for the mobility of a two-dimensional electron gas in a heterostructure with a thick spacer layer α. Due to multiple-scattering effects a metal-insulator transition occurs at a critical electron density Nc=N1/2i/(4π1/2α) (Ni is the impurity density). The transport mean free path l(t) (calculated in Born approximation) at the metal-insulator transition is l(t)c=2α. A localization criterion in terms of the renormalized single-particle mean free path l(sr) is presented: kFcl(sr)c=(1/2)1/2 (kFc is the Fermi wave number at the critical density). I compare the theoretical results with recent experimental results found in AlxGa1-xAs/GaAs heterostructures with large spacer width: 1200<α<2800 Å. Remote impurity doping and homogeneous background doping are considered. The only fitting parameter used for the theoretical results is the background doping density NB=6×1013 cm-3. My theory is in fair agreement with the experimental results.

  14. Constrained sampling experiments reveal principles of detection in natural scenes.

    PubMed

    Sebastian, Stephen; Abrams, Jared; Geisler, Wilson S

    2017-07-11

    A fundamental everyday visual task is to detect target objects within a background scene. Using relatively simple stimuli, vision science has identified several major factors that affect detection thresholds, including the luminance of the background, the contrast of the background, the spatial similarity of the background to the target, and uncertainty due to random variations in the properties of the background and in the amplitude of the target. Here we use an experimental approach based on constrained sampling from multidimensional histograms of natural stimuli, together with a theoretical analysis based on signal detection theory, to discover how these factors affect detection in natural scenes. We sorted a large collection of natural image backgrounds into multidimensional histograms, where each bin corresponds to a particular luminance, contrast, and similarity. Detection thresholds were measured for a subset of bins spanning the space, where a natural background was randomly sampled from a bin on each trial. In low-uncertainty conditions, both the background bin and the amplitude of the target were fixed, and, in high-uncertainty conditions, they varied randomly on each trial. We found that thresholds increase approximately linearly along all three dimensions and that detection accuracy is unaffected by background bin and target amplitude uncertainty. The results are predicted from first principles by a normalized matched-template detector, where the dynamic normalizing gain factor follows directly from the statistical properties of the natural backgrounds. The results provide an explanation for classic laws of psychophysics and their underlying neural mechanisms.

  15. Resonant Raman scattering background in XRF spectra of binary samples

    NASA Astrophysics Data System (ADS)

    Sánchez, Héctor Jorge; Leani, Juan José

    2015-02-01

    In x-ray fluorescence analysis, spectra present singular characteristics produced by the different scattering processes. When atoms are irradiated with incident energy lower and close to an absorption edge, scattering peaks appear due to an inelastic process known as resonant Raman scattering. In this work we present theoretical calculations of the resonant Raman scattering contributions to the background of x-ray fluorescence spectra of binary samples of current technological or biological interest. On one hand, a binary alloy of Fe with traces of Mn (Mn: 0.01%, Fe: 99.99%) was studied because of its importance in the stainless steels industries. On the second hand a pure sample of Ti with V traces (Ti: 99%, V: 1%) was analyzed due to the current relevance in medical applications. In order to perform the calculations the Shiraiwa and Fujino's model was used to calculate characteristic intensities and scattering interactions. This model makes certain assumptions and approximations to achieve the calculations, especially in the case of the geometrical conditions and the incident and take-off beams. For the binary sample studied in this work and the considered experimental conditions, the calculations show that the resonant Raman scattering background is significant under the fluorescent peak, affects the symmetry of the peaks and, depending on the concentrations, overcomes the enhancements contributions (secondary fluorescence).

  16. Experimental and simulation studies on the behavior of signal harmonics in magnetic particle imaging.

    PubMed

    Murase, Kenya; Konishi, Takashi; Takeuchi, Yuki; Takata, Hiroshige; Saito, Shigeyoshi

    2013-07-01

    Our purpose in this study was to investigate the behavior of signal harmonics in magnetic particle imaging (MPI) by experimental and simulation studies. In the experimental studies, we made an apparatus for MPI in which both a drive magnetic field (DMF) and a selection magnetic field (SMF) were generated with a Maxwell coil pair. The MPI signals from magnetic nanoparticles (MNPs) were detected with a solenoid coil. The odd- and even-numbered harmonics were calculated by Fourier transformation with or without background subtraction. The particle size of the MNPs was measured by transmission electron microscopy (TEM), dynamic light-scattering, and X-ray diffraction methods. In the simulation studies, the magnetization and particle size distribution of MNPs were assumed to obey the Langevin theory of paramagnetism and a log-normal distribution, respectively. The odd- and even-numbered harmonics were calculated by Fourier transformation under various conditions of DMF and SMF and for three different particle sizes. The behavior of the harmonics largely depended on the size of the MNPs. When we used the particle size obtained from the TEM image, the simulation results were most similar to the experimental results. The similarity between the experimental and simulation results for the even-numbered harmonics was better than that for the odd-numbered harmonics. This was considered to be due to the fact that the odd-numbered harmonics were more sensitive to background subtraction than were the even-numbered harmonics. This study will be useful for a better understanding, optimization, and development of MPI and for designing MNPs appropriate for MPI.

  17. Theory and simulations of current drive via injection of an electron beam in the ACT-1 device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuda, H.; Horton, R.; Ono, M.

    1985-02-01

    One- and two-dimensional particle simulations of beam-plasma interaction have been carried out in order to understand current drive experiments that use an electron beam injected into the ACT-1 device. Typically, the beam velocity along the magnetic field is V = 10/sup 9/ cm/sec while the thermal velocity of the background electrons is v/sub t/ = 10/sup 8//cm. The ratio of the beam density to the background density is about 10% so that a strong beam-plasma instability develops causing rapid diffusion of beam particles. For both one- and two- dimensional simulations, it is found that a significant amount of beam andmore » background electrons is accelerated considerably beyond the initial beam velocity when the beam density is more than a few percent of the background plasma density. In addition, electron distribution along the magnetic field has a smooth negative slope, f' (v/sub parallel/) < 0, for v/ sub parallel/ > 0 extending v/sub parallel/ = 1.5 V approx. 2 V, which is in sharp contrast to the predictions from quasilinear theory. An estimate of the mean-free path for beam electrons due to Coulomb collisions reveals that the beam electrons can propagate a much longer distance than is predicted from a quasilinear theory, due to the presence of a high energy tail. These simulation results agree well with the experimental observations from the ACT-1 device.« less

  18. Computational and experimental investigation of plasma deflagration jets and detonation shocks in coaxial plasma accelerators

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.

    2018-02-01

    We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of the magnetic pinch. The pinch width and number density distribution are compared to experimentally obtained data to calibrate the inlet boundary conditions used to set up the plasma acceleration problem.

  19. A novel method to remove GPR background noise based on the similarity of non-neighboring regions

    NASA Astrophysics Data System (ADS)

    Montiel-Zafra, V.; Canadas-Quesada, F. J.; Vera-Candeas, P.; Ruiz-Reyes, N.; Rey, J.; Martinez, J.

    2017-09-01

    Ground penetrating radar (GPR) is a non-destructive technique that has been widely used in many areas of research, such as landmine detection or subsurface anomalies, where it is required to locate targets embedded within a background medium. One of the major challenges in the research of GPR data remains the improvement of the image quality of stone materials by means of detection of true anisotropies since most of the errors are caused by an incorrect interpretation by the users. However, it is complicated due to the interference of the horizontal background noise, e.g., the air-ground interface, that reduces the high-resolution quality of radargrams. Thus, weak or deep anisotropies are often masked by this type of noise. In order to remove the background noise obtained by GPR, this work proposes a novel background removal method assuming that the horizontal noise shows repetitive two-dimensional regions along the movement of the GPR antenna. Specifically, the proposed method, based on the non-local similarity of regions over the distance, computes similarities between different regions of the same depth in order to identify most repetitive regions using a criterion to avoid closer regions. Evaluations are performed using a set of synthetic and real GPR data. Experimental results show that the proposed method obtains promising results compared to the classic background removal techniques and the most recently published background removal methods.

  20. Simulation results of Pulse Shape Discrimination (PSD) for background reduction in INTEGRAL Spectrometer (SPI) germanium detectors

    NASA Technical Reports Server (NTRS)

    Slassi-Sennou, S. A.; Boggs, S. E.; Feffer, P. T.; Lin, R. P.

    1997-01-01

    Pulse Shape Discrimination (PSD) for background reduction will be used in the INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) imaging spectrometer (SPI) to improve the sensitivity from 200 keV to 2 MeV. The observation of significant astrophysical gamma ray lines in this energy range is expected, where the dominant component of the background is the beta(sup -) decay in the Ge detectors due to the activation of Ge nuclei by cosmic rays. The sensitivity of the SPI will be improved by rejecting beta(sup -) decay events while retaining photon events. The PSD technique will distinguish between single and multiple site events. Simulation results of PSD for INTEGRAL-type Ge detectors using a numerical model for pulse shape generation are presented. The model was shown to agree with the experimental results for a narrow inner bore closed end cylindrical detector. Using PSD, a sensitivity improvement factor of the order of 2.4 at 0.8 MeV is expected.

  1. A Stochastic Kinematic Model of Class Averaging in Single-Particle Electron Microscopy

    PubMed Central

    Park, Wooram; Midgett, Charles R.; Madden, Dean R.; Chirikjian, Gregory S.

    2011-01-01

    Single-particle electron microscopy is an experimental technique that is used to determine the 3D structure of biological macromolecules and the complexes that they form. In general, image processing techniques and reconstruction algorithms are applied to micrographs, which are two-dimensional (2D) images taken by electron microscopes. Each of these planar images can be thought of as a projection of the macromolecular structure of interest from an a priori unknown direction. A class is defined as a collection of projection images with a high degree of similarity, presumably resulting from taking projections along similar directions. In practice, micrographs are very noisy and those in each class are aligned and averaged in order to reduce the background noise. Errors in the alignment process are inevitable due to noise in the electron micrographs. This error results in blurry averaged images. In this paper, we investigate how blurring parameters are related to the properties of the background noise in the case when the alignment is achieved by matching the mass centers and the principal axes of the experimental images. We observe that the background noise in micrographs can be treated as Gaussian. Using the mean and variance of the background Gaussian noise, we derive equations for the mean and variance of translational and rotational misalignments in the class averaging process. This defines a Gaussian probability density on the Euclidean motion group of the plane. Our formulation is validated by convolving the derived blurring function representing the stochasticity of the image alignments with the underlying noiseless projection and comparing with the original blurry image. PMID:21660125

  2. Heating rates in collisionally opaque alkali-metal atom traps: Role of secondary collisions

    NASA Astrophysics Data System (ADS)

    Beijerinck, H. C. W.

    2000-12-01

    Grazing collisions with background gas are the major cause of trap loss and trap heating in atom traps. To first order, these effects do not depend on the trap density. In collisionally opaque trapped atom clouds, however, scattered atoms with an energy E larger than the effective trap depth Eeff, which are destined to escape from the atom cloud, will have a finite probability for a secondary collision. This results in a contribution to the heating rate that depends on the column density of the trapped atoms, i.e., the product of density and characteristic size of the trap. For alkali-metal atom traps, secondary collisions are quite important due to the strong long-range interaction with like atoms. We derive a simple analytical expression for the secondary heating rate, showing a dependency proportional to E1/2eff. When extrapolating to a vanishing column density, only primary collisions with the background gas will contribute to the heating rate. This contribution is rather small, due to the weak long-range interaction of the usual background gas species in an ultrahigh-vacuum system-He, Ne, or Ar-with the trapped alkali-metal atoms. We conclude that the transition between trap-loss collisions and heating collisions is determined by a cutoff energy 200 μK<=Eeff<=400 μK, much smaller than the actual trap depth E in most magnetic traps. Atoms with an energy Eeff

  3. SU-F-T-166: On the Nature of the Background Visible Light Observed in Fiber Optic Dosimetry of Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darafsheh, A; Kassaee, A; Finlay, J

    Purpose: The nature of the background visible light observed during fiber optic dosimetry of proton beams, whether it is due to Cherenkov radiation or not, has been debated in the literature recently. In this work, experimentally and by means of Monte Carlo simulations, we shed light on this problem and investigated the nature of the background visible light observed in fiber optics irradiated with proton beams. Methods: A bare silica fiber optics was embedded in tissue-mimicking phantoms and irradiated with clinical proton beams with energies of 100–225 MeV at Roberts Proton Therapy Center. Luminescence spectroscopy was performed by a CCD-coupledmore » spectrograph to analyze in detail the emission spectrum of the fiber tip across the visible range of 400–700 nm. Monte Carlo simulation was performed by using FLUKA Monte Carlo code to simulate Cherenkov light and ionizing radiation dose deposition in the fiber. Results: The experimental spectra of the irradiated silica fiber shows two distinct peaks at 450 and 650 nm, whose spectral shape is different from that of Cherenkov radiation. We believe that the nature of these peaks are connected to the point defects of silica including oxygen-deficiency center (ODC) and non-bridging oxygen hole center (NBOHC). Monte Carlo simulations confirmed the experimental observations that Cherenkov radiation cannot be solely responsible for such a signal. Conclusion: We showed that Cherenkov radiation is not the dominant visible signal observed in bare fiber optics irradiated with proton beams. We observed two distinct peaks at 450 and 650 nm whose nature is connected with the point defects of silica fiber including oxygen-deficiency center and non-bridging oxygen hole center.« less

  4. Measurements of trace constituents from atmospheric infrared emission and absorption spectra, a feasibility study

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Williams, W. J.; Murcray, D. G.

    1974-01-01

    The feasibility of detecting eight trace constituents (CH4, HCl, HF, HNO3, NH3, NO, NO2 and SO2) against the rest of the atmospheric background at various altitudes from infrared emission and absorption atmospheric spectra was studied. Line-by-line calculations and observational data were used to establish features that can be observed in the atmospheric spectrum due to each trace constituent. Model calculations were made for experimental conditions which approximately represent state of the art emission and absorption spectrometers.

  5. Blobs and drift wave dynamics

    DOE PAGES

    Zhang, Yanzeng; Krasheninnikov, S. I.

    2017-09-29

    The modified Hasegawa-Mima equation retaining all nonlinearities is investigated from the point of view of the formation of blobs. The linear analysis shows that the amplitude of the drift wave packet propagating in the direction of decreasing background plasma density increases and eventually saturates due to nonlinear effects. Nonlinear modification of the time averaged plasma density profile results in the formation of large amplitude modes locked in the radial direction, but still propagating in the poloidal direction, which resembles the experimentally observed chain of blobs propagating in the poloidal direction. Such specific density profiles, causing the locking of drift waves,more » could form naturally at the edge of tokamak due to a neutral ionization source. Thus, locked modes can grow in situ due to plasma instabilities, e.g., caused by finite resistivity. Furthermore, the modulation instability (in the poloidal direction) of these locked modes can result in a blob-like burst of plasma density.« less

  6. Exploring atmospheric radon with airborne gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Baldoncini, Marica; Albéri, Matteo; Bottardi, Carlo; Minty, Brian; Raptis, Kassandra G. C.; Strati, Virginia; Mantovani, Fabio

    2017-12-01

    222Rn is a noble radioactive gas produced along the 238U decay chain, which is present in the majority of soils and rocks. As 222Rn is the most relevant source of natural background radiation, understanding its distribution in the environment is of great concern for investigating the health impacts of low-level radioactivity and for supporting regulation of human exposure to ionizing radiation in modern society. At the same time, 222Rn is a widespread atmospheric tracer whose spatial distribution is generally used as a proxy for climate and pollution studies. Airborne gamma-ray spectroscopy (AGRS) always treated 222Rn as a source of background since it affects the indirect estimate of equivalent 238U concentration. In this work the AGRS method is used for the first time for quantifying the presence of 222Rn in the atmosphere and assessing its vertical profile. High statistics radiometric data acquired during an offshore survey are fitted as a superposition of a constant component due to the experimental setup background radioactivity plus a height dependent contribution due to cosmic radiation and atmospheric 222Rn. The refined statistical analysis provides not only a conclusive evidence of AGRS 222Rn detection but also a (0.96 ± 0.07) Bq/m3 222Rn concentration and a (1318 ± 22) m atmospheric layer depth fully compatible with literature data.

  7. Data-based Considerations in Portal Radiation Monitoring of Cargo Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weier, Dennis R.; O'Brien, Robert F.; Ely, James H.

    2004-07-01

    Radiation portal monitoring of cargo vehicles often includes a configuration of four-panel monitors that record gamma and neutron counts from vehicles transporting cargo. As vehicles pass the portal monitors, they generate a count profile over time that can be compared to the average panel background counts obtained just prior to the time the vehicle entered the area of the monitors. Pacific Northwest National Laboratory has accumulated considerable data regarding such background radiation and vehicle profiles from portal installations, as well as in experimental settings using known sources and cargos. Several considerations have a bearing on how alarm thresholds are setmore » in order to maintain sensitivity to radioactive sources while also controlling to a manageable level the rate of false or nuisance alarms. False alarms are statistical anomalies while nuisance alarms occur due to the presence of naturally occurring radioactive material (NORM) in cargo, for example, kitty litter. Considerations to be discussed include: • Background radiation suppression due to the shadow shielding from the vehicle. • The impact of the relative placement of the four panels on alarm decision criteria. • Use of plastic scintillators to separate gamma counts into energy windows. • The utility of using ratio criteria for the energy window counts rather than simply using total window counts. • Detection likelihood for these various decision criteria based on computer simulated injections of sources into vehicle profiles.« less

  8. Terahertz Absorption by Cellulose: Application to Ancient Paper Artifacts

    NASA Astrophysics Data System (ADS)

    Peccianti, M.; Fastampa, R.; Mosca Conte, A.; Pulci, O.; Violante, C.; Łojewska, J.; Clerici, M.; Morandotti, R.; Missori, M.

    2017-06-01

    Artifacts made of cellulose, such as ancient documents, pose a significant experimental challenge in the terahertz transmission spectra interpretation due to their small optical thickness. In this paper, we describe a method to recover the complex refractive index of cellulose fibers from the terahertz transmission data obtained on single freely standing paper sheets in the (0.2-3.5)-THz range. By using our technique, we eliminate Fabry-Perot effects and recover the absorption coefficient of the cellulose fibers. The obtained terahertz absorption spectra are explained in terms of absorption peaks of the cellulose crystalline phase superimposed to a background contribution due to a disordered hydrogen-bond network. The comparison between the experimental spectra with terahertz vibrational properties simulated by density-functional-theory calculations confirms this interpretation. In addition, evident changes in the terahertz absorption spectra are produced by natural and artificial aging on paper samples, whose final stage is characterized by a spectral profile with only two peaks at about 2.1 and 3.1 THz. These results can be used to provide a quantitative assessment of the state of preservation of cellulose artifacts.

  9. Alertness function of thalamus in conflict adaptation.

    PubMed

    Wang, Xiangpeng; Zhao, Xiaoyue; Xue, Gui; Chen, Antao

    2016-05-15

    Conflict adaptation reflects the ability to improve current conflict resolution based on previously experienced conflict, which is crucial for our goal-directed behaviors. In recent years, the roles of alertness are attracting increasing attention when discussing the generation of conflict adaptation. However, due to the difficulty of manipulating alertness, very limited progress has been made in this line. Inspired by that color may affect alertness, we manipulated background color of experimental task and found that conflict adaptation significantly presented in gray and red backgrounds but did not in blue background. Furthermore, behavioral and functional magnetic resonance imaging results revealed that the modulation of color on conflict adaptation was implemented through changing alertness level. In particular, blue background eliminated conflict adaptation by damping the alertness regulating function of thalamus and the functional connectivity between thalamus and inferior frontal gyrus (IFG). In contrast, in gray and red backgrounds where alertness levels are typically high, the thalamus and the right IFG functioned normally and conflict adaptations were significant. Therefore, the alertness function of thalamus is determinant to conflict adaptation, and thalamus and right IFG are crucial nodes of the neural circuit subserving this ability. Present findings provide new insights into the neural mechanisms of conflict adaptation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. ERO modelling of tungsten erosion and re-deposition in EAST L mode discharges

    NASA Astrophysics Data System (ADS)

    Xie, H.; Ding, R.; Kirschner, A.; Chen, J. L.; Ding, F.; Mao, H. M.; Feng, W.; Borodin, D.; Wang, L.

    2017-09-01

    Tungsten erosion and re-deposition at the upper outer divertor of the Experimental Advanced Superconducting Tokamak has been modelled using the 3D Monte Carlo code ERO. The measured divertor plasma condition in attached L mode discharges with upper single null configuration has been used to build the background plasma in the simulations. The tungsten gross erosion rate is mainly determined by carbon impurity in the background plasma. Increasing carbon concentration can first increase and afterwards suppress the tungsten erosion rate. Taking into account the material mixing surface model, the influence of eroded particles returning to the surface on sputtering has been studied. Sputtering by eroded particles returning to the surface can significantly enhance the gross erosion by reduction of the carbon ratio within the surface interaction layer and by increasing the erosion rate due to sputtering by both eroded tungsten and carbon particles. Modelling indicates that carbon deposition occurs on the dome plate and part of the vertical plate close to the dome plate, whereas tungsten net erosion occurs on most of the vertical plate. The modelling results are in reasonable agreement with the experimental WI spectroscopy.

  11. The impact of background organic matter and alkalinity on the degradation of the pesticide metaldehyde by two advanced oxidation processes: UV/H₂O₂ and UV/TiO₂.

    PubMed

    Autin, Olivier; Hart, Julie; Jarvis, Peter; MacAdam, Jitka; Parsons, Simon A; Jefferson, Bruce

    2013-04-15

    The impact of background constituents on the degradation of trace levels of micropollutants by two advanced oxidation processes: UV/H₂O₂ and UV/TiO₂ was studied. Experimental results demonstrated that the background scavenging rate rather than the concentration of micropollutant controls the required UV irradiation dose. The character of the natural organic matter had a limited impact on scavenging when the water source remains unchanged, however, a periodic bleed of hydrophobic material may substantially increase the minimum UV dose required to reach the desired micropollutant concentration. Moreover, in the case of UV/TiO₂, high concentrations of background organic matter do not only act as scavengers but also saturate the TiO₂ surface. Alkalinity inhibits the efficacy of UV/TiO₂ photocatalysis due to the formation of large TiO₂ aggregates. The study also demonstrated that the use of synthetic waters for treatability test purposes was an acceptable approach as long as both the background organic matter and the alkalinity were matched to that of the projected application. Finally spiking micropollutants at higher concentrations does not alter the significance of the findings as long as the background constituents represent more than 85% of the total scavenging rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Binarization algorithm for document image with complex background

    NASA Astrophysics Data System (ADS)

    Miao, Shaojun; Lu, Tongwei; Min, Feng

    2015-12-01

    The most important step in image preprocessing for Optical Character Recognition (OCR) is binarization. Due to the complex background or varying light in the text image, binarization is a very difficult problem. This paper presents the improved binarization algorithm. The algorithm can be divided into several steps. First, the background approximation can be obtained by the polynomial fitting, and the text is sharpened by using bilateral filter. Second, the image contrast compensation is done to reduce the impact of light and improve contrast of the original image. Third, the first derivative of the pixels in the compensated image are calculated to get the average value of the threshold, then the edge detection is obtained. Fourth, the stroke width of the text is estimated through a measuring of distance between edge pixels. The final stroke width is determined by choosing the most frequent distance in the histogram. Fifth, according to the value of the final stroke width, the window size is calculated, then a local threshold estimation approach can begin to binaries the image. Finally, the small noise is removed based on the morphological operators. The experimental result shows that the proposed method can effectively remove the noise caused by complex background and varying light.

  13. CERN-derived analysis of lunar radiation backgrounds

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Svoboda, Robert

    1993-01-01

    The Moon produces radiation which background-limits scientific experiments there. Early analyses of these backgrounds have either failed to take into consideration the effect of charm in particle physics (because they pre-dated its discovery), or have used branching ratios which are no longer strictly valid (due to new accelerator data). We are presently investigating an analytical program for deriving muon and neutrino spectra generated by the Moon, converting an existing CERN computer program known as GEANT which does the same for the Earth. In so doing, this will (1) determine an accurate prompt neutrino spectrum produced by the lunar surface; (2) determine the lunar subsurface particle flux; (3) determine the consequence of charm production physics upon the lunar background radiation environment; and (4) provide an analytical tool for the NASA astrophysics community with which to begin an assessment of the Moon as a scientific laboratory versus its particle radiation environment. This will be done on a recurring basis with the latest experimental results of the particle data groups at Earth-based high-energy accelerators, in particular with the latest branching ratios for charmed meson decay. This will be accomplished for the first time as a full 3-dimensional simulation.

  14. An Investigation of the Effects of Background Music on Learning of Vocabulary and Grammar and in Public Speaking.

    ERIC Educational Resources Information Center

    Wolff, Florence I.

    To determine the effect of background music during classroom instruction in vocabulary and grammar and in the delivery of speeches, sophomore high school students were divided into an experimental group (66 students) and a control group (60 students). For one semester the experimental group heard classical background music during instruction,…

  15. Effects of curvature and rotation on turbulence in the NASA low-speed centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Moore, Joan G.; Moore, John

    1992-01-01

    The flow in the NASA Low-Speed Impeller is affected by both curvature and rotation. The flow curves due to the following: (1) geometric curvature, e.g. the curvature of the hub and shroud profiles in the meridional plane and the curvature of the backswept impeller blades; and (2) secondary flow vortices, e.g. the tip leakage vortex. Changes in the turbulence and effective turbulent viscosity in the impeller are investigated. The effects of these changes on three-dimensional flow development are discussed. Two predictions of the flow in the impeller, one with, and one without modification to the turbulent viscosity due to rotation and curvature, are compared. Some experimental and theoretical background for the modified mixing length model of turbulent viscosity will also be presented.

  16. Background Underground at WIPP

    NASA Astrophysics Data System (ADS)

    Esch, Ernst-Ingo; Hime, A.; Bowles, T. J.

    2001-04-01

    Recent interest to establish a dedicated underground laboratory in the United States prompted an experimental program at to quantify the enviromental backgrounds underground at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. An outline of this program is provided along with recent experimental data on the cosmic ray muon flux at the 650 meter level of WIPP. The implications of the cosmic ray muon and fast neutron background at WIPP will be discussed in the context of new generation, low background experiments envisioned in the future.

  17. Phosphorus-defect interactions during thermal annealing of ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Keys, Patrick Henry

    Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the Florida Object Oriented Process Simulator (FLOOPS). The nucleation of defects is controlled by the diffusion-limited competition for excess interstitials between PICs and {311} clusters. The release of interstitials is driven by cluster dissolution. Modeling results show a strong correlation to those experimentally observed over a wide temporal and thermal domain using a single set of parameters. Improvements in process simulator accuracy are demonstrated with respect to dopant activation, TED, and dose loss.

  18. Cosmogenic activation of materials

    NASA Astrophysics Data System (ADS)

    Cebrián, Susana

    2017-10-01

    Experiments looking for rare events like the direct detection of dark matter particles, neutrino interactions or the nuclear double beta decay are operated deep underground to suppress the effect of cosmic rays. But, the production of radioactive isotopes in materials due to previous exposure to cosmic rays is a hazard when ultra-low background conditions are required. In this context, the generation of long-lived products by cosmic nucleons has been studied for many detector media and for other materials commonly used. Here, the main results obtained on the quantification of activation yields on the Earth’s surface will be summarized, considering both measurements and calculations following different approaches. The isotope production cross-sections and the cosmic ray spectrum are the two main ingredients when calculating this cosmogenic activation; the different alternatives for implementing them will be discussed. Activation that can take place deep underground mainly due to cosmic muons will be briefly commented too. Presently, the experimental results for the cosmogenic production of radioisotopes are scarce and discrepancies between different calculations are important in many cases, but the increasing interest on this background source which is becoming more and more relevant can help to change this situation.

  19. A solution to the cosmic ray anisotropy problem

    NASA Astrophysics Data System (ADS)

    Mertsch, P.; Funk, S.

    2015-10-01

    Observations of the cosmic ray (CR) anisotropy are widely advertised as a means of finding nearby sources. This idea has recently gained currency after the discovery of a rise in the positron fraction and is the goal of current experimental efforts, e.g., with AMS-02 on the International Space Station. Yet, even the anisotropy observed for hadronic CRs is not understood, in the sense that isotropic diffusion models overpredict the dipole anisotropy in the TeV-PeV range by almost two orders of magnitude. Here, we consider two additional effects normally not considered in isotropic diffusion models: anisotropic diffusion due to the presence of a background magnetic field and intermittency effects of the turbulent magnetic fields. We numerically explore these effect by tracking test-particles through individual realisations of the turbulent field. We conclude that a large misalignment between the CR gradient and the background field can explain the observed low level of anisotropy.

  20. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation.

    PubMed

    Chirayath, V A; Callewaert, V; Fairchild, A J; Chrysler, M D; Gladen, R W; Mcdonald, A D; Imam, S K; Shastry, K; Koymen, A R; Saniz, R; Barbiellini, B; Rajeshwar, K; Partoens, B; Weiss, A H

    2017-07-13

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.

  1. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation

    PubMed Central

    Chirayath, V. A.; Callewaert, V.; Fairchild, A. J.; Chrysler, M. D.; Gladen, R. W.; Mcdonald, A. D.; Imam, S. K.; Shastry, K.; Koymen, A. R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A. H.

    2017-01-01

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition. PMID:28703225

  2. Ship Detection from Ocean SAR Image Based on Local Contrast Variance Weighted Information Entropy

    PubMed Central

    Huang, Yulin; Pei, Jifang; Zhang, Qian; Gu, Qin; Yang, Jianyu

    2018-01-01

    Ship detection from synthetic aperture radar (SAR) images is one of the crucial issues in maritime surveillance. However, due to the varying ocean waves and the strong echo of the sea surface, it is very difficult to detect ships from heterogeneous and strong clutter backgrounds. In this paper, an innovative ship detection method is proposed to effectively distinguish the vessels from complex backgrounds from a SAR image. First, the input SAR image is pre-screened by the maximally-stable extremal region (MSER) method, which can obtain the ship candidate regions with low computational complexity. Then, the proposed local contrast variance weighted information entropy (LCVWIE) is adopted to evaluate the complexity of those candidate regions and the dissimilarity between the candidate regions with their neighborhoods. Finally, the LCVWIE values of the candidate regions are compared with an adaptive threshold to obtain the final detection result. Experimental results based on measured ocean SAR images have shown that the proposed method can obtain stable detection performance both in strong clutter and heterogeneous backgrounds. Meanwhile, it has a low computational complexity compared with some existing detection methods. PMID:29652863

  3. Noise reduction in digital holography based on a filtering algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Cao, Liangcai; Zhang, Hua; Jin, Guofan; Brady, David

    2018-02-01

    Holography is a tool to record the object wavefront by interference. Complex amplitude of the object wave is coded into a two dimensional hologram. Unfortunately, the conjugate wave and background wave would also appear at the object plane during reconstruction, as noise, which blurs the reconstructed object. From the perspective of wave, we propose a filtering algorithm to get a noise-reduced reconstruction. Due to the fact that the hologram is a kind of amplitude grating, three waves would appear when reconstruction, which are object wave, conjugate wave and background wave. The background is easy to eliminate by frequency domain filtering. The object wave and conjugate wave are signals to be dealt with. These two waves, as a whole, propagate in the space. However, when detected at the original object plane, the object wave would diffract into a sparse pattern while the conjugate wave would diffract into a diffused pattern forming the noise. Hence, the noise can be reduced based on these difference with a filtering algorithm. Both amplitude and phase distributions are truthfully retrieved in our simulation and experimental demonstration.

  4. Class of regular bouncing cosmologies

    NASA Astrophysics Data System (ADS)

    Vasilić, Milovan

    2017-06-01

    In this paper, I construct a class of everywhere regular geometric sigma models that possess bouncing solutions. Precisely, I show that every bouncing metric can be made a solution of such a model. My previous attempt to do so by employing one scalar field has failed due to the appearance of harmful singularities near the bounce. In this work, I use four scalar fields to construct a class of geometric sigma models which are free of singularities. The models within the class are parametrized by their background geometries. I prove that, whatever background is chosen, the dynamics of its small perturbations is classically stable on the whole time axis. Contrary to what one expects from the structure of the initial Lagrangian, the physics of background fluctuations is found to carry two tensor, two vector, and two scalar degrees of freedom. The graviton mass, which naturally appears in these models, is shown to be several orders of magnitude smaller than its experimental bound. I provide three simple examples to demonstrate how this is done in practice. In particular, I show that graviton mass can be made arbitrarily small.

  5. Quantitative performance measurements of bent crystal Laue analyzers for X-ray fluorescence spectroscopy.

    PubMed

    Karanfil, C; Bunker, G; Newville, M; Segre, C U; Chapman, D

    2012-05-01

    Third-generation synchrotron radiation sources pose difficult challenges for energy-dispersive detectors for XAFS because of their count rate limitations. One solution to this problem is the bent crystal Laue analyzer (BCLA), which removes most of the undesired scatter and fluorescence before it reaches the detector, effectively eliminating detector saturation due to background. In this paper experimental measurements of BCLA performance in conjunction with a 13-element germanium detector, and a quantitative analysis of the signal-to-noise improvement of BCLAs are presented. The performance of BCLAs are compared with filters and slits.

  6. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  7. Effect of a Phonon Bottleneck on Exciton and Spin Generation in Self-Assembled In1 -xGaxAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Huang, Y. Q.; Buyanova, I. A.; Yang, X. J.; Murayama, A.; Chen, W. M.

    2018-04-01

    We provide direct experimental evidence for the effect of a phonon bottleneck on exciton and spin generation in self-assembled In0.5Ga0.5As quantum dots (QDs). With the aid of tunable laser spectroscopy, we resolve and identify efficient exciton generation channels in the QDs mediated by longitudinal-optical (LO) phonons from an otherwise inhomogeneously broadened QD emission background that suffers from the phonon bottleneck effect in exciton generation. Spin-generation efficiency is found to be enhanced under the LO-assisted excitation condition due to suppressed spin relaxation accompanying accelerated exciton generation. These findings underline the importance of fine-tuning QD energy levels that will benefit potential spin-optoelectronic applications of QDs by reducing spin loss due to the phonon bottleneck.

  8. Far-from-Equilibrium Route to Superthermal Light in Bimodal Nanolasers

    NASA Astrophysics Data System (ADS)

    Marconi, Mathias; Javaloyes, Julien; Hamel, Philippe; Raineri, Fabrice; Levenson, Ariel; Yacomotti, Alejandro M.

    2018-02-01

    Microscale and nanoscale lasers inherently exhibit rich photon statistics due to complex light-matter interaction in a strong spontaneous emission noise background. It is well known that they may display superthermal fluctuations—photon superbunching—in specific situations due to either gain competition, leading to mode-switching instabilities, or carrier-carrier coupling in superradiant microcavities. Here we show a generic route to superbunching in bimodal nanolasers by preparing the system far from equilibrium through a parameter quench. We demonstrate, both theoretically and experimentally, that transient dynamics after a short-pump-pulse-induced quench leads to heavy-tailed superthermal statistics when projected onto the weak mode. We implement a simple experimental technique to access the probability density functions that further enables quantifying the distance from thermal equilibrium via the thermodynamic entropy. The universality of this mechanism relies on the far-from-equilibrium dynamical scenario, which can be mapped to a fast cooling process of a suspension of Brownian particles in a liquid. Our results open up new avenues to mold photon statistics in multimode optical systems and may constitute a test bed to investigate out-of-equilibrium thermodynamics using micro or nanocavity arrays.

  9. Fuzzy logic based sensor performance evaluation of vehicle mounted metal detector systems

    NASA Astrophysics Data System (ADS)

    Abeynayake, Canicious; Tran, Minh D.

    2015-05-01

    Vehicle Mounted Metal Detector (VMMD) systems are widely used for detection of threat objects in humanitarian demining and military route clearance scenarios. Due to the diverse nature of such operational conditions, operational use of VMMD without a proper understanding of its capability boundaries may lead to heavy causalities. Multi-criteria fitness evaluations are crucial for determining capability boundaries of any sensor-based demining equipment. Evaluation of sensor based military equipment is a multi-disciplinary topic combining the efforts of researchers, operators, managers and commanders having different professional backgrounds and knowledge profiles. Information acquired through field tests usually involves uncertainty, vagueness and imprecision due to variations in test and evaluation conditions during a single test or series of tests. This report presents a fuzzy logic based methodology for experimental data analysis and performance evaluation of VMMD. This data evaluation methodology has been developed to evaluate sensor performance by consolidating expert knowledge with experimental data. A case study is presented by implementing the proposed data analysis framework in a VMMD evaluation scenario. The results of this analysis confirm accuracy, practicability and reliability of the fuzzy logic based sensor performance evaluation framework.

  10. Quasi-causal associations of physical activity and neighborhood walkability with body mass index: a twin study.

    PubMed

    Duncan, Glen E; Cash, Stephanie Whisnant; Horn, Erin E; Turkheimer, Eric

    2015-01-01

    Physical activity, neighborhood walkability, and body mass index (BMI, kg/m(2)) associations were tested using quasi-experimental twin methods. We hypothesized that physical activity and walkability were independently associated with BMI within twin pairs, controlling for genetic and environmental background shared between them. Data were from 6376 (64% female; 58% identical) same-sex pairs, University of Washington Twin Registry, 2008-2013. Neighborhood walking, moderate-to-vigorous physical activity (MVPA), and BMI were self-reported. Residential address was used to calculate walkability. Phenotypic (non-genetically informed) and biometric (genetically informed) regression was employed, controlling for age, sex, and race. Walking and MVPA were associated with BMI in phenotypic analyses; associations were attenuated but significant in biometric analyses (Ps<0.05). Walkability was not associated with BMI, however, was associated with walking (but not MVPA) in both phenotypic and biometric analyses (Ps<0.05), with no attenuation accounting for shared genetic and environmental background. The association between activity and BMI is largely due to shared genetic and environmental factors, but a significant causal relationship remains accounting for shared background. Although walkability is not associated with BMI, it is associated with neighborhood walking (but not MVPA) accounting for shared background, suggesting a causal relationship between them. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effects on ESL Reading of Teaching Cultural Content Schemata.

    ERIC Educational Resources Information Center

    Floyd, Pamela; Carrell, Patricia

    1987-01-01

    Intermediate-level English as a second language students were examined for levels of reading comprehension. Half of each group (experimental and control) received more complete versions of test passages than the other half, and the experimental group was taught appropriate cultural background information between tests. Background knowledge did…

  12. Blob dynamics in TORPEX poloidal null configurations

    NASA Astrophysics Data System (ADS)

    Shanahan, B. W.; Dudson, B. D.

    2016-12-01

    3D blob dynamics are simulated in X-point magnetic configurations in the TORPEX device via a non-field-aligned coordinate system, using an isothermal model which evolves density, vorticity, parallel velocity and parallel current density. By modifying the parallel gradient operator to include perpendicular perturbations from poloidal field coils, numerical singularities associated with field aligned coordinates are avoided. A comparison with a previously developed analytical model (Avino 2016 Phys. Rev. Lett. 116 105001) is performed and an agreement is found with minimal modification. Experimental comparison determines that the null region can cause an acceleration of filaments due to increasing connection length, but this acceleration is small relative to other effects, which we quantify. Experimental measurements (Avino 2016 Phys. Rev. Lett. 116 105001) are reproduced, and the dominant acceleration mechanism is identified as that of a developing dipole in a moving background. Contributions from increasing connection length close to the null point are a small correction.

  13. Acoustic topological insulator and robust one-way sound transport

    NASA Astrophysics Data System (ADS)

    He, Cheng; Ni, Xu; Ge, Hao; Sun, Xiao-Chen; Chen, Yan-Bin; Lu, Ming-Hui; Liu, Xiao-Ping; Chen, Yan-Feng

    2016-12-01

    Topological design of materials enables topological symmetries and facilitates unique backscattering-immune wave transport. In airborne acoustics, however, the intrinsic longitudinal nature of sound polarization makes the use of the conventional spin-orbital interaction mechanism impossible for achieving band inversion. The topological gauge flux is then typically introduced with a moving background in theoretical models. Its practical implementation is a serious challenge, though, due to inherent dynamic instabilities and noise. Here we realize the inversion of acoustic energy bands at a double Dirac cone and provide an experimental demonstration of an acoustic topological insulator. By manipulating the hopping interaction of neighbouring ’atoms’ in this new topological material, we successfully demonstrate the acoustic quantum spin Hall effect, characterized by robust pseudospin-dependent one-way edge sound transport. Our results are promising for the exploration of new routes for experimentally studying topological phenomena and related applications, for example, sound-noise reduction.

  14. Toroidal Localized Spoof Plasmons on Compact Metadisks.

    PubMed

    Qin, Pengfei; Yang, Yihao; Musa, Muhyiddeen Yahya; Zheng, Bin; Wang, Zuojia; Hao, Ran; Yin, Wenyan; Chen, Hongsheng; Li, Erping

    2018-03-01

    Localized spoof surface plasmons (LSSPs) have recently emerged as a new research frontier due to their unique properties and increasing applications. Despite the importance, most of the current researches only focus on electric/magnetic LSSPs. Very recent research has revealed that toroidal LSSPs, LSSPs modes with multipole toroidal moments, can be achieved at a point defect in a 2D groove metal array. However, this metamaterial shows the limitations of large volume and poor compatibility to photonic integrated circuits. To overcome the above challenges, here it is proposed and experimentally demonstrated compact planar metadisks based on split ring resonators to support the toroidal LSSPs at microwave frequencies. Additionally, it is experimentally demonstrated that the toroidal LSSPs resonance is very sensitive to the structure changes and the background medium. These might facilitate its utilization in the design and application of plasmonic deformation sensors and the refractive index sensors.

  15. Genetic Diversity Influences the Response of the Brain to Developmental Lead Exposure

    PubMed Central

    Schneider, Jay S.; Talsania, Keyur; Mettil, William; Anderson, David W.

    2014-01-01

    Although extrinsic factors, such as nutritional status, and some intrinsic genetic factors may modify susceptibility to developmental lead (Pb) poisoning, no studies have specifically examined the influence of genetic background on outcomes from Pb exposure. In this study, we used gene microarray profiling to identify Pb-responsive genes in rats of different genetic backgrounds, including inbred (Fischer 344 (F344)) and outbred (Long Evans (LE), Sprague Dawley (SD)) strains, to investigate the role that genetic variation may play in influencing outcomes from developmental Pb exposure. Male and female animals received either perinatal (gestation through lactation) or postnatal (birth through weaning) exposure to Pb in food (0, 250, or 750 ppm). RNA was extracted from the hippocampus at day 55 and hybridized to Affymetrix Rat Gene 1.0 ST Arrays. There were significant strain-specific effects of Pb on the hippocampal transcriptome with 978 transcripts differentially expressed in LE rats across all experimental groups, 269 transcripts differentially expressed in F344 rats, and only 179 transcripts differentially expressed in SD rats. These results were not due to strain-related differences in brain accumulation of Pb. Further, no genes were consistently differentially regulated in all experimental conditions. There was no set of “Pb toxicity” genes that are a molecular signature for Pb neurotoxicity that transcended sex, exposure condition, and strain. These results demonstrate the influence that strain and genetic background play in modifying the brain's response to developmental Pb exposure and may have relevance for better understanding the molecular underpinnings of the lack of a neurobehavioral signature in childhood Pb poisoning. PMID:24913800

  16. Pseudomagnetic helicons

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-03-01

    The existence of pseudomagnetic helicons is predicted for strained Dirac and Weyl materials. The corresponding collective modes are reminiscent of the usual helicons in metals in strong magnetic fields but can exist even without a magnetic field due to a strain-induced background pseudomagnetic field. The properties of both pseudomagnetic and magnetic helicons are investigated in Weyl matter using the formalism of the consistent chiral kinetic theory. It is argued that the helicon dispersion relations are affected by the electric and chiral chemical potentials, the chiral shift, and the energy separation between the Weyl nodes. The effects of multiple pairs of Weyl nodes are also discussed. A simple setup for experimental detection of pseudomagnetic helicons is proposed.

  17. Collinear cluster tri-partition - the brightest observations and their treating

    NASA Astrophysics Data System (ADS)

    Pyatkov, Yu V.; Kamanin, D. V.; Lavrova, J. E.; Mkaza, N.; Malaza, V.; Strekalovsky, A. O.

    2017-06-01

    Careful studies of the fission fragments mass correlation distributions let us to reveal specific linear structures in the region of a big missing mass. It became possible due to applying of effective cleaning of this region from the background linked with scattered fragments. One of the most pronounced structure looks like a rectangle bounded by the magic nuclei. The fission events aggregated in the rectangle show a very low total kinetic energy. We propose possible scenario of forming and decay of the multi-cluster prescission configuration decisive for the experimental findings. This approach is valid as well for treating of another rare decay modes discovered in the past.

  18. Nonlinear deformation and localized failure of bacterial streamers in creeping flows

    PubMed Central

    Biswas, Ishita; Ghosh, Ranajay; Sadrzadeh, Mohtada; Kumar, Aloke

    2016-01-01

    We investigate the failure of bacterial floc mediated streamers in a microfluidic device in a creeping flow regime using both experimental observations and analytical modeling. The quantification of streamer deformation and failure behavior is possible due to the use of 200 nm fluorescent polystyrene beads which firmly embed in the extracellular polymeric substance (EPS) and act as tracers. The streamers, which form soon after the commencement of flow begin to deviate from an apparently quiescent fully formed state in spite of steady background flow and limited mass accretion indicating significant mechanical nonlinearity. This nonlinear behavior shows distinct phases of deformation with mutually different characteristic times and comes to an end with a distinct localized failure of the streamer far from the walls. We investigate this deformation and failure behavior for two separate bacterial strains and develop a simplified but nonlinear analytical model describing the experimentally observed instability phenomena assuming a necking route to instability. Our model leads to a power law relation between the critical strain at failure and the fluid velocity scale exhibiting excellent qualitative and quantitative agreeing with the experimental rupture behavior. PMID:27558511

  19. Background feature descriptor for offline handwritten numeral recognition

    NASA Astrophysics Data System (ADS)

    Ming, Delie; Wang, Hao; Tian, Tian; Jie, Feiran; Lei, Bo

    2011-11-01

    This paper puts forward an offline handwritten numeral recognition method based on background structural descriptor (sixteen-value numerical background expression). Through encoding the background pixels in the image according to a certain rule, 16 different eigenvalues were generated, which reflected the background condition of every digit, then reflected the structural features of the digits. Through pattern language description of images by these features, automatic segmentation of overlapping digits and numeral recognition can be realized. This method is characterized by great deformation resistant ability, high recognition speed and easy realization. Finally, the experimental results and conclusions are presented. The experimental results of recognizing datasets from various practical application fields reflect that with this method, a good recognition effect can be achieved.

  20. Muon background studies for shallow depth Double - Chooz near detector

    NASA Astrophysics Data System (ADS)

    Gómez, H.

    2015-08-01

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  1. CS2 analysis in presence of non-Gaussian background noise - Effect on traditional estimators and resilience of log-envelope indicators

    NASA Astrophysics Data System (ADS)

    Borghesani, P.; Antoni, J.

    2017-06-01

    Second-order cyclostationary (CS2) analysis has become popular in the field of machine diagnostics and a series of digital signal processing techniques have been developed to extract CS2 components from the background noise. Among those techniques, squared envelope spectrum (SES) and cyclic modulation spectrum (CMS) have gained popularity thanks to their high computational efficiency and simple implementation. The effectiveness of CMS and SES has been previously quantified based on the hypothesis of Gaussian background noise and has led to statistical tests for the presence of CS2 peaks in squared envelope spectra and cyclic modulation spectra. However a recently established link of CMS with SES and of SES with kurtosis has exposed a potential weakness of those indicators in the case of highly leptokurtic background noise. This case is often present in practice when the machine is subjected to highly impulsive phenomena, either due to harsh operating conditions or to electric noise generated by power electronics and captured by the sensor. This study investigates and quantifies for the first time the effect of leptokurtic noise on the capabilities of SES and CMS, by analysing three progressively harsh situations: high kurtosis, infinite kurtosis and alpha-stable background noise (for which even first and second-order moments are not defined). Then the resilience of a recently proposed family of CS2 indicators, based on the log-envelope, is verified analytically, numerically and experimentally in the case of highly leptokurtic noise.

  2. Examination of evidence for collinear cluster tri-partition

    NASA Astrophysics Data System (ADS)

    Pyatkov, Yu. V.; Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Goryainova, Z. I.; Malaza, V.; Mkaza, N.; Kuznetsova, E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.

    2017-12-01

    Background: In a series of experiments at different time-of-flight spectrometers of heavy ions we have observed manifestations of a new at least ternary decay channel of low excited heavy nuclei. Due to specific features of the effect, it was called collinear cluster tri-partition (CCT). The obtained experimental results have initiated a number of theoretical articles dedicated to different aspects of the CCT. Special attention was paid to kinematics constraints and stability of collinearity. Purpose: To compare theoretical predictions with our experimental data, only partially published so far. To develop the model of one of the most populated CCT modes that gives rise to the so-called "Ni-bump." Method: The fission events under analysis form regular two-dimensional linear structures in the mass correlation distributions of the fission fragments. The structures were revealed both at a highly statistically reliable level but on the background substrate, and at the low statistics in almost noiseless distribution. The structures are bounded by the known magic fragments and were reproduced at different spectrometers. All this provides high reliability of our experimental findings. The model of the CCT proposed here is based on theoretical results, published recently, and the detailed analysis of all available experimental data. Results: Under our model, the CCT mode giving rise to the Ni bump occurs as a two-stage breakup of the initial three body chain like the nuclear configuration with an elongated central cluster. After the first scission at the touching point with one of the side clusters, the predominantly heavier one, the deformation energy of the central cluster allows the emission of up to four neutrons flying apart isotropically. The heavy side cluster and a dinuclear system, consisting of the light side cluster and the central one, relaxed to a less elongated shape, are accelerated in the mutual Coulomb field. The "tip" of the dinuclear system at the moment of its rupture faces the heavy fragment or the opposite direction due to a single turn of the system around its center of gravity. Conclusions: Additional experimental information regarding the energies of the CCT partners and the proposed model of the process respond to criticisms concerning the kinematic constraints and the stability of collinearity in the CCT. The octupole deformed system formed after the first scission is oriented along the fission axis, and its rupture occurs predominantly after the full acceleration. Noncollinear true ternary fission and far asymmetric binary fission, observed earlier, appear to be the special cases of the decay of the prescission configuration leading to the CCT. Detection of the Ni-7268 fission fragments with a kinetic energy E <25 MeV at the mass-separator Lohengrin is proposed for an independent experimental verification of the CCT.

  3. Joint detection and tracking of size-varying infrared targets based on block-wise sparse decomposition

    NASA Astrophysics Data System (ADS)

    Li, Miao; Lin, Zaiping; Long, Yunli; An, Wei; Zhou, Yiyu

    2016-05-01

    The high variability of target size makes small target detection in Infrared Search and Track (IRST) a challenging task. A joint detection and tracking method based on block-wise sparse decomposition is proposed to address this problem. For detection, the infrared image is divided into overlapped blocks, and each block is weighted on the local image complexity and target existence probabilities. Target-background decomposition is solved by block-wise inexact augmented Lagrange multipliers. For tracking, label multi-Bernoulli (LMB) tracker tracks multiple targets taking the result of single-frame detection as input, and provides corresponding target existence probabilities for detection. Unlike fixed-size methods, the proposed method can accommodate size-varying targets, due to no special assumption for the size and shape of small targets. Because of exact decomposition, classical target measurements are extended and additional direction information is provided to improve tracking performance. The experimental results show that the proposed method can effectively suppress background clutters, detect and track size-varying targets in infrared images.

  4. Neutron capture studies with a short flight path

    NASA Astrophysics Data System (ADS)

    Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René

    The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.

  5. Improving Charging-Breeding Simulations with Space-Charge Effects

    NASA Astrophysics Data System (ADS)

    Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René

    2016-09-01

    Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.

  6. Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions

    DOE PAGES

    Yin, Yi; Liao, Jinfeng

    2016-03-03

    Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction ₋ a phenomenon known as the Chiral Magnetic Effect (CME). The quark- gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHCmore » for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. We discuss the implications for the search of CME.« less

  7. Gas Ring-Imagining Cherenkov (GRINCH) Detector for the Super BigBite Spectrometer at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Averett, Todd; Wojtsekhowski, Bogdan; Amidouch, Abdellah; Danagoulian, Samuel; Niculescu, Gabriel; Niculescu, Ioana; Jefferson Lab SBS Collaboration Collaboration

    2017-01-01

    A new gas Cherenkov detector is under construction for the upcoming SuperBigBite spectrometer research program in Hall A at Jefferson Lab. The existing BigBite spectrometer is being upgraded to handle expected increases in event rate and background rate due to the increased luminosity required for the experimental program. The detector will primarily be used to separate good electron events from significant pion and electromagnetic contamination. In contrast to typical gas Cherenkov detectors that use large-diameter photomultiplier tubes and charge integrating ADCs, this detector uses an array of 510 small-diameter tubes that are more than 25x less sensitive to background. Cherenkov radiation clusters will be identified in this array using fast TDCs and a narrow timing window relative to typical ADC gates. In addition, a new FPGA-based DAQ system is being tested to provide a PID trigger using real-time cluster finding. Details of the detector and current status of the project will be presented.

  8. An Overview of Landing Gear Dynamics

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.

    1999-01-01

    One of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Shimmy and brake-induced vibrations can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. To increase understanding of these problems, a literature survey was performed. The major focus is on work from the last ten years. Some older publications are included to understand the longevity of the problem and the background from earlier researchers. The literature survey includes analyses, testing, modeling, and simulation of aircraft landing gear; and experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear. The paper presents an overview of the problem, background information, and a history of landing gear dynamics problems and solutions. Based on the survey an assessment and recommendations of the most critically needed enhancements to the state of the art will be presented. The status of Langley work contributing to this activity will be given.

  9. The Future of Contextual Fear Learning for PTSD Research: A Methodological Review of Neuroimaging Studies.

    PubMed

    Glenn, Daniel E; Risbrough, Victoria B; Simmons, Alan N; Acheson, Dean T; Stout, Daniel M

    2017-10-21

    There has been a great deal of recent interest in human models of contextual fear learning, particularly due to the use of such paradigms for investigating neural mechanisms related to the etiology of posttraumatic stress disorder. However, the construct of "context" in fear conditioning research is broad, and the operational definitions and methods used to investigate contextual fear learning in humans are wide ranging and lack specificity, making it difficult to interpret findings about neural activity. Here we will review neuroimaging studies of contextual fear acquisition in humans. We will discuss the methodology associated with four broad categories of how contextual fear learning is manipulated in imaging studies (colored backgrounds, static picture backgrounds, virtual reality, and configural stimuli) and highlight findings for the primary neural circuitry involved in each paradigm. Additionally, we will offer methodological recommendations for human studies of contextual fear acquisition, including using stimuli that distinguish configural learning from discrete cue associations and clarifying how context is experimentally operationalized.

  10. The Rb 780-nanometer Faraday anomalous dispersion optical filter: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Yin, B.; Alvarez, L. S.; Shay, T. M.

    1994-01-01

    The Faraday anomalous dispersion optical filter may provide ultra-high background noise rejection for free-space laser communications systems. The theoretical model for the filter is reported. The experimental measurements and their comparison with theoretical results are discussed. The results show that the filter can provide a 56-dB solar background noise rejection with about a 2-GHz transmission bandwidth and no image degradation. To further increase the background noise rejection, a composite Zeeman and Faraday anomalous dispersion optical filter is designed and experimentally demonstrated.

  11. Momentum distributions for H 2 ( e , e ' p )

    DOE PAGES

    Ford, William P.; Jeschonnek, Sabine; Van Orden, J. W.

    2014-12-29

    [Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmore » state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this process can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.« less

  12. Innovative FEL schemes using variable-gap undulators

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2017-06-01

    We discuss theoretical background and experimental verification of advanced schemes for X-ray FELs using variable gap undulators (harmonic lasing self-seeded FEL, reverse taper etc.) Harmonic lasing in XFELs is an opportunity to extend operating range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental. Another interesting application of harmonic lasing is Harmonic Lasing Self-Seeded (HLSS) FEL that allows to improve longitudinal coherence and spectral power of a SASE FEL. Recently this concept was successfully tested at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. That was also the first experimental demonstration of harmonic lasing in a high-gain FEL and at a short wavelength (before it worked only in infrared FEL oscillators). Another innovative scheme that was tested at FLASH2 is the reverse tapering that can be used to produce circularly polarized radiation from a dedicated afterburner with strongly suppressed linearly polarized radiation from the main undulator. This scheme can also be used for an efficient background-free production of harmonics in an afterburner. Experiments on the frequency doubling that allowed to reach the shortest wavelength at FLASH as well as on post-saturation tapering to produce a record intencity in XUV regime are also discussed.

  13. Differential paralog divergence modulates genome evolution across yeast species

    PubMed Central

    Lynch, Bryony; Huang, Mei; Alcantara, Erica; DeSevo, Christopher G.; Pai, Dave A.; Hoang, Margaret L.

    2017-01-01

    Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200–500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution. PMID:28196070

  14. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grange, Joseph M.

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current andmore » future neutrino experiments.« less

  15. Interpreting forest and grassland biome productivity utilizing nested scales of image resolution and biogeographical analysis

    NASA Technical Reports Server (NTRS)

    Iverson, L. R.; Cook, E. A.; Graham, R. L.; Olson, J. S.; Frank, T.; Ke, Y.; Treworgy, C.; Risser, P. G.

    1986-01-01

    Several hardware, software, and data collection problems encountered were conquered. The Geographic Information System (GIS) data from other systems were converted to ERDAS format for incorporation with the image data. Statistical analysis of the relationship between spectral values and productivity is being pursued. Several project sites, including Jackson, Pope, Boulder, Smokies, and Huntington Forest are evolving as the most intensively studied areas, primarily due to availability of data and time. Progress with data acquisition and quality checking, more details on experimental sites, and brief summarizations of research results and future plans are discussed. Material on personnel, collaborators, facilities, site background, and meetings and publications of the investigators are included.

  16. Dispersion and fate of ⁹⁰Sr in the Northwestern Pacific and adjacent seas: global fallout and the Fukushima Dai-ichi accident.

    PubMed

    Maderich, V; Jung, K T; Bezhenar, R; de With, G; Qiao, F; Casacuberta, N; Masque, P; Kim, Y H

    2014-10-01

    The 3D compartment model POSEIDON-R was applied to the Northwestern Pacific and adjacent seas to simulate the transport and fate of (90)Sr in the period 1945-2010 and to perform a radiological assessment on the releases of (90)Sr due to the Fukushima Dai-ichi nuclear accident for the period 2011-2040. The contamination due to runoff of (90)Sr from terrestrial surfaces was taken into account using a generic predictive model. A dynamical food-chain model describes the transfer of (90)Sr to phytoplankton, zooplankton, molluscs, crustaceans, piscivorous and non-piscivorous fishes. Results of the simulations were compared with observation data on (90)Sr for the period 1955-2010 and the budget of (90)Sr activity was estimated. It was found that in the East China Sea and Yellow Sea the riverine influx was 1.5% of the ocean influx and it was important only locally. Calculated concentrations of (90)Sr in water, bottom sediment and marine organisms before and after the Fukushima Dai-ichi accident are in good agreement with available experimental measurements. The concentration of (90)Sr in seawater would return to the background levels within one year after leakages were stopped. The model predicts that the concentration of (90)Sr in fish after the Fukushima Dai-ichi accident shall return to the background concentrations only 2 years later due to the delay of the transfer throughout the food web and specific accumulation of (90)Sr. The contribution of (90)Sr to the maximal dose rate due to the FDNPP accident was three orders of magnitude less than that due to (137)Cs, and thus well below the maximum effective dose limits for the public. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Investigating Behavioral and Psychophysiological Reactions to Conflict-Related and Individualized Stimuli as Potential Correlates of Repression.

    PubMed

    Kessler, Henrik; Schmidt, Anna Christine; Hildenbrand, Oliver; Scharf, Daniela; Kehyayan, Aram; Axmacher, Nikolai

    2017-01-01

    Background: Repression is considered as a central defense mechanism in psychodynamic theory. It refers to the process by which "unbearable" mental contents (e.g., those related to internal conflicts) are kept out of consciousness. The process of repression is probably closely related to concepts of emotion regulation derived from a different theoretical background. This relationship is particularly relevant because it relates repression to current research in the affective neurosciences as well as to experimental studies on emotion regulation. Due to its complex and highly individual nature, repression has been notoriously difficult to investigate. We investigated repression with an individualized experiment in healthy subjects in order to establish methods to study repression in clinical populations. To this end we operationalized repression using individualized experimental conditions, and then studied potential behavioral [memory and reaction time (RT)] and psychophysiological correlates [skin conductance response (SCR)]. Method: Twenty-nine healthy female subjects were asked to freely associate to individualized cue sentences. Sentences were generated from individual psychodynamic interviews based on operationlized psychodynamic diagnosis (OPD), and were comprised of three different types: positive, negative non-conflictual, and negative conflict-related sentences. Subjects were asked to name the first three associations coming into their mind. Afterward, the remaining time was used for free association. SCR during each association trial and RT of the first given association were recorded. The memory for the first three associations was subsequently tested in an unexpected recall. Results: Associations to conflict-related cue sentences were associated with longer RTs and increased SCRs. Moreover, the unexpected recall task showed memory for these associations to be reduced. Conclusion: We interpret these findings as possible correlates of repression, in line with a history of experimental research into repression using non-individualized cues. Consequently, we suggest that this experimental paradigm could serve to investigate repression in clinical populations.

  18. The bias of experimental design, including strain background, in the determination of critical Streptococcus suis serotype 2 virulence factors

    PubMed Central

    Auger, Jean-Philippe; Chuzeville, Sarah; Roy, David; Mathieu-Denoncourt, Annabelle; Xu, Jianguo; Grenier, Daniel

    2017-01-01

    Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis. However, serotype 2 strains are genotypically and phenotypically heterogeneous. Though a multitude of virulence factors have been described for S. suis serotype 2, the lack of a clear definition regarding which ones are truly “critical” has created inconsistencies that have only recently been highlighted. Herein, the involvement of two factors previously described as being critical for S. suis serotype 2 virulence, whether the dipeptidyl peptidase IV and autolysin, were evaluated with regards to different ascribed functions using prototype strains belonging to important sequence types. Results demonstrate a lack of reproducibility with previously published data. In fact, the role of the dipeptidyl peptidase IV and autolysin as critical virulence factors could not be confirmed. Though certain in vitro functions may be ascribed to these factors, their roles are not unique for S. suis, probably due to compensation by other factors. As such, variations and discrepancies in experimental design, including in vitro assays, cell lines, and animal models, are an important source of differences between results. Moreover, the use of different sequence types in this study demonstrates that the role attributed to a virulence factor may vary according to the S. suis serotype 2 strain background. Consequently, it is necessary to establish standard experimental designs according to the experiment and purpose in order to facilitate comparison between laboratories. Alongside, studies should include strains of diverse origins in order to prevent erroneous and biased conclusions that could affect future studies. PMID:28753679

  19. Superselective intra-arterial hepatic injection of indocyanine green (ICG) for fluorescence image-guided segmental positive staining: experimental proof of the concept.

    PubMed

    Diana, Michele; Liu, Yu-Yin; Pop, Raoul; Kong, Seong-Ho; Legnèr, Andras; Beaujeux, Remy; Pessaux, Patrick; Soler, Luc; Mutter, Didier; Dallemagne, Bernard; Marescaux, Jacques

    2017-03-01

    Intraoperative liver segmentation can be obtained by means of percutaneous intra-portal injection of a fluorophore and illumination with a near-infrared light source. However, the percutaneous approach is challenging in the minimally invasive setting. We aimed to evaluate the feasibility of fluorescence liver segmentation by superselective intra-hepatic arterial injection of indocyanine green (ICG). Eight pigs (mean weight: 26.01 ± 5.21 kg) were involved. Procedures were performed in a hybrid experimental operative suite equipped with the Artis Zeego ® , multiaxis robotic angiography system. A pneumoperitoneum was established and four laparoscopic ports were introduced. The celiac trunk was catheterized, and a microcatheter was advanced into different segmental hepatic artery branches. A near-infrared laparoscope (D-Light P, Karl Storz) was used to detect the fluorescent signal. To assess the correspondence between arterial-based fluorescence demarcation and liver volume, metallic markers were placed along the fluorescent border, followed by a 3D CT-scanning, after injecting intra-arterial radiological contrast (n = 3). To assess the correspondence between arterial and portal supplies, percutaneous intra-portal angiography and intra-arterial angiography were performed simultaneously (n = 1). Bright fluorescence signal enhancing the demarcation of target segments was obtained from 0.1 mg/mL, in matter of seconds. Correspondence between the volume of hepatic segments and arterial territories was confirmed by CT angiography. Higher background fluorescence noise was found after positive staining by intra-portal ICG injection, due to parenchymal accumulation and porto-systemic shunting. Intra-hepatic arterial ICG injection, rapidly highlights hepatic target segment borders, with a better signal-to-background ratio as compared to portal vein injection, in the experimental setting.

  20. Research of the chemiluminescence detection apparatus for nutrients

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyi; Wang, Yu; Ni, Xuxiang; Yan, Huimin

    2016-10-01

    The multifunctional nutrition analyzer, which integrates four detection functions, can make fast, accurate, quantitative analysis for a variety of nutrients. In this article we focus on researching the luminescence detection system. Compared with other means, luminescence detection needs no excitation light, and the detection sensitivity is improved due to the reduction of the background light. The apparatus consists of an displacement platform, a microporous plate, a combination of an aspheric lens and a plano-convex lens, an optical fiber and a photon counter connected with a computer. A theoretical light intensity formula is established as a reference and a comparison of the experimental data. In the experiment we applies ATP detection reagent as the experimental reagent, whose magnitudes of concentration are from 10-6 mol/L to 10-12 mol/L. The sensitivity of the apparatus could reach a magnitude of concentration of 0.1nmol/L, and it is estimated to be further improved by at least two magnitudes in theory with the system and the reagent optimized.

  1. Estimating the delay-Doppler of target echo in a high clutter underwater environment using wideband linear chirp signals: Evaluation of performance with experimental data.

    PubMed

    Yu, Ge; Yang, T C; Piao, Shengchun

    2017-10-01

    A chirp signal is a signal with linearly varying instantaneous frequency over the signal bandwidth, also known as a linear frequency modulated (LFM) signal. It is widely used in communication, radar, active sonar, and other applications due to its Doppler tolerance property in signal detection using the matched filter (MF) processing. Modern sonar uses high-gain, wideband signals to improve the signal to reverberation ratio. High gain implies a high product of the signal bandwidth and duration. However, wideband and/or long duration LFM signals are no longer Doppler tolerant. The shortcoming of the standard MF processing is loss of performance, and bias in range estimation. This paper uses the wideband ambiguity function and the fractional Fourier transform method to estimate the target velocity and restore the performance. Target velocity or Doppler provides a clue for differentiating the target from the background reverberation and clutter. The methods are applied to simulated and experimental data.

  2. Monte Carlo Simulations of Background Spectra in Integral Imager Detectors

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.

    1998-01-01

    Predictions of the expected gamma-ray backgrounds in the ISGRI (CdTe) and PiCsIT (Csl) detectors on INTEGRAL due to cosmic-ray interactions and the diffuse gamma-ray background have been made using a coupled set of Monte Carlo radiation transport codes (HETC, FLUKA, EGS4, and MORSE) and a detailed, 3-D mass model of the spacecraft and detector assemblies. The simulations include both the prompt background component from induced hadronic and electromagnetic cascades and the delayed component due to emissions from induced radioactivity. Background spectra have been obtained with and without the use of active (BGO) shielding and charged particle rejection to evaluate the effectiveness of anticoincidence counting on background rejection.

  3. Speech Enhancement of Mobile Devices Based on the Integration of a Dual Microphone Array and a Background Noise Elimination Algorithm.

    PubMed

    Chen, Yung-Yue

    2018-05-08

    Mobile devices are often used in our daily lives for the purposes of speech and communication. The speech quality of mobile devices is always degraded due to the environmental noises surrounding mobile device users. Regretfully, an effective background noise reduction solution cannot easily be developed for this speech enhancement problem. Due to these depicted reasons, a methodology is systematically proposed to eliminate the effects of background noises for the speech communication of mobile devices. This methodology integrates a dual microphone array with a background noise elimination algorithm. The proposed background noise elimination algorithm includes a whitening process, a speech modelling method and an H ₂ estimator. Due to the adoption of the dual microphone array, a low-cost design can be obtained for the speech enhancement of mobile devices. Practical tests have proven that this proposed method is immune to random background noises, and noiseless speech can be obtained after executing this denoise process.

  4. Can the cosmic x ray and gamma ray background be due to reflection of a steep power law spectrum and Compton scattering by relativistic electrons?

    NASA Technical Reports Server (NTRS)

    Zycki, Piotr T.; Zdziarski, Andrzej A.; Svensson, Roland

    1991-01-01

    We reconsider the recent model for the origin in the cosmic X-ray and gamma-ray background by Rogers and Field. The background in the model is due to an unresolved population of AGNs. An individual AGN spectrum contains three components: a power law with the energy index of alpha = 1.1, an enhanced reflection component, and a component from Compton scattering by relativistic electrons with a low energy cutoff at some minimum Lorentz factor, gamma(sub min) much greater than 1. The MeV bump seen in the gamma-ray background is then explained by inverse Compton emission by the electrons. We show that the model does not reproduce the shape of the observed X-ray and gamma-ray background below 10 MeV and that it overproduces the background at larger energies. Furthermore, we find the assumptions made for the Compton component to be physically inconsistent. Relaxing the inconsistent assumptions leads to model spectra even more different from that of the observed cosmic background. Thus, we can reject the hypothesis that the high-energy cosmic background is due to the described model.

  5. Identification of Tropomyosin and Its Immunological Properties from Larvae of Cattle Tick, Boophilus annulatus

    PubMed Central

    Nabian, S; Taheri, M; Fard, R Mazaheri Nezhad; Aramoon, M

    2013-01-01

    Background Boophilus annulatus is an obligate blood feeder tick that can cause great losses in animals due to anemia and its ability to injure its host skin directly. The aim of this study was identification of cattle humoral immune response to some tick proteins during experimental infestation. Methods Immune sera against tick were collected from experimentally infested cattle with ticks. One and two-dimensional electrophoresis and Western blotting methods were used for the detection of immunogenic proteins in larval tick extract and eight of these proteins were identified by MALDITOF and MALDI-TOF-TOF mass spectrometry. Results In non-reducing one-dimensional SDS-PAGE, some bounds between 12 to more than 250-kDa appeared. In two-dimensional SDS-PAGE, numerous spot appeared and the identified immunogenic proteins by parallel immunoblotting weighted between 14 and 97 kDa. Amino acid sequences of protein spot with 37-kDa molecular weight had identity to tropomyosin based on Mascot search in NCBI. Conclusion Anti tropomyosin antibodies can be induced in experimentally infested hosts with ticks and it seems that tropomyosin can be useful for the development of anti tick vaccines. PMID:23914237

  6. Background - oriented schlieren analysis of shockwave propagation from encased and uncased explosives

    NASA Astrophysics Data System (ADS)

    Romo, Cynthia Paulinne

    High speed digital video images of encased and uncased large-scale explosions of Ammonium Nitrate Fuel Oil (ANFO), and Composition C-4 (C-4) at different masses were analyzed using the background oriented schlieren visualization technique. The encased explosions for ANFO and C-4 took place in the form of car bombs and pipe bombs respectively. The data obtained from the video footage were used to produce shock wave radius vs time profiles, as well as Mach number vs shock wave position profiles. The experimentally measured shock wave data for each explosive material were scaled using Sachs' scaling laws to a 1 kilogram charge at normal temperature and pressure. The results of C-4 were compared to literature, while the results of scaled ANFO were compared to each other, and to the results obtained during the uncased detonations. The comparison between the scaled profiles gathered from the encased and uncased detonations resulted in the identification of the relative amount of energy lost due to the fragmentation of the case. The C-4 profiles were compared to those obtained from computational simulations performed via CTH. The C-4 results showed an agreement in the data reported in literature and that obtained using the background-oriented schlieren (BOS) technique, as well as a good overall agreement with the profiles obtained computationally.

  7. A frequency domain linearized Navier-Stokes method including acoustic damping by eddy viscosity using RANS

    NASA Astrophysics Data System (ADS)

    Holmberg, Andreas; Kierkegaard, Axel; Weng, Chenyang

    2015-06-01

    In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic field in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynold's stress, due to the acoustic field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-ε turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is. A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.

  8. 78 FR 63439 - Endangered and Threatened Species: Designation of a Nonessential Experimental Population of Upper...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Experimental Population of Upper Columbia Spring-Run Chinook Salmon in the Okanogan River Subbasin, Washington... authorize the release of a nonessential experimental population (NEP) of Upper Columbia River spring-run... (301-427-8403). SUPPLEMENTARY INFORMATION: Background Information Relevant to Experimental Population...

  9. Ultra-high contrast retinal display system for single photoreceptor psychophysics

    PubMed Central

    Domdei, Niklas; Domdei, Lennart; Reiniger, Jenny L.; Linden, Michael; Holz, Frank G.; Roorda, Austin; Harmening, Wolf M.

    2017-01-01

    Due to the enormous dynamic range of human photoreceptors in response to light, studying their visual function in the intact retina challenges the stimulation hardware, specifically with regard to the displayable luminance contrast. The adaptive optics scanning laser ophthalmoscope (AOSLO) is an optical platform that focuses light to extremely small retinal extents, approaching the size of single photoreceptor cells. However, the current light modulation techniques produce spurious visible backgrounds which fundamentally limit experimental options. To remove unwanted background light and to improve contrast for high dynamic range visual stimulation in an AOSLO, we cascaded two commercial fiber-coupled acousto-optic modulators (AOMs) and measured their combined optical contrast. By compensating for zero-point differences in the individual AOMs, we demonstrate a multiplicative extinction ratio in the cascade that was in accordance with the extinction ratios of both single AOMs. When latency differences in the AOM response functions were individually corrected, single switch events as short as 50 ns with radiant power contrasts up to 1:1010 were achieved. This is the highest visual contrast reported for any display system so far. We show psychophysically that this contrast ratio is sufficient to stimulate single foveal photoreceptor cells with small and bright enough visible targets that do not contain a detectable background. Background-free stimulation will enable photoreceptor testing with custom adaptation lights. Furthermore, a larger dynamic range in displayable light levels can drive photoreceptor responses in cones as well as in rods. PMID:29359094

  10. Dust-Particle Transport in Tokamak Edge Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K

    2005-09-12

    Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensivemore » dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.« less

  11. Design and performance evaluation of the imaging payload for a remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Mojtaba; Abbasi-Moghadam, Dariush

    2012-11-01

    In this paper an analysis method and corresponding analytical tools for design of the experimental imaging payload (IMPL) of a remote sensing satellite (SINA-1) are presented. We begin with top-level customer system performance requirements and constraints and derive the critical system and component parameters, then analyze imaging payload performance until a preliminary design that meets customer requirements. We consider system parameters and components composing the image chain for imaging payload system which includes aperture, focal length, field of view, image plane dimensions, pixel dimensions, detection quantum efficiency, and optical filter requirements. The performance analysis is accomplished by calculating the imaging payload's SNR (signal-to-noise ratio), and imaging resolution. The noise components include photon noise due to signal scene and atmospheric background, cold shield, out-of-band optical filter leakage and electronic noise. System resolution is simulated through cascaded modulation transfer functions (MTFs) and includes effects due to optics, image sampling, and system motion. Calculations results for the SINA-1 satellite are also presented.

  12. Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Lobanov, S. V.; Tikhodeev, S. G.; Gippius, N. A.; Maksimov, A. A.; Filatov, E. V.; Tartakovskii, I. I.; Kulakovskii, V. D.; Weiss, T.; Schneider, C.; Geßler, J.; Kamp, M.; Höfling, S.

    2015-11-01

    We study the polarization properties of light emitted by quantum dots that are embedded in chiral photonic crystal structures made of achiral planar GaAs waveguides. A modification of the electromagnetic mode structure due to the chiral grating fabricated by partial etching of the waveguide layer has been shown to result in a high circular polarization degree ρc of the quantum dot emission in the absence of external magnetic field. The physical nature of the phenomenon can be understood in terms of the reciprocity principle taking into account the structural symmetry. At the resonance wavelength, the magnitude of | ρc| is predicted to exceed 98%. The experimentally achieved value of | ρc|=81 % is smaller, which is due to the contribution of unpolarized light scattered by grating defects, thus breaking its periodicity. The achieved polarization degree estimated removing the unpolarized nonresonant background from the emission spectra can be estimated to be as high as 96%, close to the theoretical prediction.

  13. Verbal learning in the context of background music: no influence of vocals and instrumentals on verbal learning

    PubMed Central

    2014-01-01

    Background Whether listening to background music enhances verbal learning performance is still a matter of dispute. In this study we investigated the influence of vocal and instrumental background music on verbal learning. Methods 226 subjects were randomly assigned to one of five groups (one control group and 4 experimental groups). All participants were exposed to a verbal learning task. One group served as control group while the 4 further groups served as experimental groups. The control group learned without background music while the 4 experimental groups were exposed to vocal or instrumental musical pieces during learning with different subjective intensity and valence. Thus, we employed 4 music listening conditions (vocal music with high intensity: VOC_HIGH, vocal music with low intensity: VOC_LOW, instrumental music with high intensity: INST_HIGH, instrumental music with low intensity: INST_LOW) and one control condition (CONT) during which the subjects learned the word lists. Since it turned out that the high and low intensity groups did not differ in terms of the rated intensity during the main experiment these groups were lumped together. Thus, we worked with 3 groups: one control group and two groups, which were exposed to background music (vocal and instrumental) during verbal learning. As dependent variable, the number of learned words was used. Here we measured immediate recall during five learning sessions (recall 1 – recall 5) and delayed recall for 15 minutes (recall 6) and 14 days (recall 7) after the last learning session. Results Verbal learning improved during the first 5 recall sessions without any strong difference between the control and experimental groups. Also the delayed recalls were similar for the three groups. There was only a trend for attenuated verbal learning for the group passively listened to vocals. This learning attenuation diminished during the following learning sessions. Conclusions The exposure to vocal or instrumental background music during encoding did not influence verbal learning. We suggest that the participants are easily able to cope with this background stimulation by ignoring this information channel in order to focus on the verbal learning task. PMID:24670048

  14. Comparison of Antibacterial Effects of 810 and 980- nanometer Diode Lasers on Enterococcus Faecalis in the Root Canal System -An in vitro study.

    PubMed

    Asnaashari, Mohamad; Ebad, Leila Tahmasebi; Shojaeian, Shiva

    2016-10-01

    Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load.

  15. Comparison of Antibacterial Effects of 810 and 980- nanometer Diode Lasers on Enterococcus Faecalis in the Root Canal System —An in vitro study

    PubMed Central

    Asnaashari, Mohamad; Ebad, Leila Tahmasebi

    2016-01-01

    Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load. PMID:27853346

  16. New method for analyzing dark matter direct detection data

    NASA Astrophysics Data System (ADS)

    Davis, Jonathan H.; Enßlin, Torsten; BÅ`hm, Céline

    2014-02-01

    The experimental situation of dark matter direct detection has reached an exciting crossroads, with potential hints of a discovery of dark matter (DM) from the CDMS, CoGeNT, CRESST-II and DAMA experiments in tension with null results from xenon-based experiments such as XENON100 and LUX. Given the present controversial experimental status, it is important that the analytical method used to search for DM in direct detection experiments is both robust and flexible enough to deal with data for which the distinction between signal and background points is difficult, and hence where the choice between setting a limit or defining a discovery region is debatable. In this article we propose a novel (Bayesian) analytical method, which can be applied to all direct detection experiments and which extracts the maximum amount of information from the data. We apply our method to the XENON100 experiment data as a worked example, and show that firstly our exclusion limit at 90% confidence is in agreement with their own for the 225 live days data, but is several times stronger for the 100 live days data. Secondly we find that, due to the two points at low values of S1 and S2 in the 225 days data set, our analysis points to either weak consistency with low-mass dark matter or the possible presence of an unknown background. Given the null result from LUX, the latter scenario seems the more plausible.

  17. 78 FR 44588 - Experimental Removal of Barred Owls To Benefit Threatened Northern Spotted Owls; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... experimental design, duration of the study, and the method of barred owl removal. Background The Service listed... and nonlethal), and the type of experimental design (demography vs. occupancy). All action...-FF01E00000] Experimental Removal of Barred Owls To Benefit Threatened Northern Spotted Owls; Final...

  18. Neutron spectroscopy as a fuel ion ratio diagnostic: lessons from JET and prospects for ITER.

    PubMed

    Ericsson, G; Conroy, S; Gatu Johnson, M; Andersson Sundén, E; Cecconello, M; Eriksson, J; Hellesen, C; Sangaroon, S; Weiszflog, M

    2010-10-01

    The determination of the fuel ion ratio n(t)/n(d) in ITER is required at a precision of 20%, time resolution of 100 ms, spatial resolution of a/10, and over a range of 0.016 keV and for n(T)/n(D)<0.6. A crucial issue is the signal-to-background situation in the measurement of the weak 2.5 MeV emission from DD reactions in the presence of a background of scattered 14 MeV DT neutrons. Important experimental input and corroboration for this assessment are presented from the time-of-flight neutron spectrometer at JET where the presence of a strong component of backscattered neutrons is observed. Neutron emission components on ITER due to beam-thermal and tritium-tritium reactions can further enhance the prospects for NES.

  19. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.

    PubMed

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-11-11

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

  20. Laser diagnostics for combustion temperature and species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckbreth, A.C.

    1987-01-01

    Laser approaches to combustion diagnostics are of considerable interest due to their remote, nonintrusive and in-situ character, unlimited temperature capability and potential for simultaneous temporal and spatial resolution, This book aims to make these powerful and important new tools in combustion research understandable. The focus of this text is on spectroscopically-based, spatially-precise laser techniques for temperature and chemical composition measurements in reacting and nonreacting flows. After introductory chapters providing a fundamental theoretical and experimental background, attention is directed to diagnostics based upon spontaneous Raman and Rayleigh scattering, coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence (LIFS). The book concludes withmore » a treatment of techniques which permit spatially-resolved measurements over an entire two-dimensional field simultaneously.« less

  1. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    PubMed

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.

  2. Multimodal transmission property in a liquid-filled photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Miao, Yinping; Song, Binbin; Zhang, Hao; Liu, Bo; Liu, Yange; Yan, Donglin

    2015-02-01

    The multimode interference (MMI) effect in a liquid-filled photonic crystal fiber (PCF) has been experimentally demonstrated by fully infiltrating the air-hole cladding of a solid-core PCF with the refractive index (RI) matching liquid whose RI is close to the silica background. Due to the weak mode confinement capability of the cladding region, several high-order modes are excited to establish the multimode interference effect. The multimode interferometer shows a good temperature tunability of 12.30 nm/K, which makes it a good candidate for a highly tunable optical filtering as well as temperature sensing applications. Furthermore, this MMI effect would have great promise in various applications such as highly sensitive multi-parameter sensing, tunable optically filtering, and surface-enhanced Raman scattering.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Ding, R.; Stangeby, P. C.

    The three-dimensional Monte Carlo code ERO has been used to simulate dedicated DIII-D experiments in which Mo and W samples with different sizes were exposed to controlled and well-diagnosed divertor plasma conditions to measure the gross and net erosion rates. Experimentally, the net erosion rate is significantly reduced due to the high local redeposition probability of eroded high-Z materials, which according to the modelling is mainly controlled by the electric field and plasma density within the Chodura sheath. Similar redeposition ratios were obtained from ERO modelling with three different sheath models for small angles between the magnetic field and themore » material surface, mainly because of their similar mean ionization lengths. The modelled redeposition ratios are close to the measured value. Decreasing the potential drop across the sheath can suppress both gross and net erosion because sputtering yield is decreased due to lower incident energy while the redeposition ratio is not reduced owing to the higher electron density in the Chodura sheath. Taking into account material mixing in the ERO surface model, the net erosion rate of high-Z materials is shown to be strongly dependent on the carbon impurity concentration in the background plasma; higher carbon concentration can suppress net erosion. As a result, the principal experimental results such as net erosion rate and profile and redeposition ratio are well reproduced by the ERO simulations.« less

  4. Experimental technique for simultaneous measurement of absorption-, emission cross-sections, and background loss coefficient in doped optical fibers

    NASA Astrophysics Data System (ADS)

    Karimi, M.; Seraji, F. E.

    2010-01-01

    We report a new simple technique for the simultaneous measurements of absorption-, emission cross-sections, background loss coefficient, and dopant density of doped optical fibers with low dopant concentration. Using our proposed technique, the experimental characterization of a sample Ge-Er-doped optical fiber is presented, and the results are analyzed and compared with other reports. This technique is suitable for production line of doped optical fibers.

  5. Background of SAM atom-fraction profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Frank

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which ismore » validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition.« less

  6. An Introduction to the Physiography and History of the Bisley Experimental Watersheds in the Luquillo Mountains of Puerto Rico

    Treesearch

    Frederick N. Scatena

    1989-01-01

    Paper summarizes the physiographic setting and historical uses of the Bisley experimental watersheds in the Luquillo Experimental Forest to provide background information for ecological andsilvicultural research studies initiated by the Institute of Tropical Forestry.

  7. Multivariate analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendavid, Josh; Fisher, Wade C.; Junk, Thomas R.

    2016-01-01

    The end products of experimental data analysis are designed to be simple and easy to understand: hypothesis tests and measurements of parameters. But, the experimental data themselves are voluminous and complex. Furthermore, in modern collider experiments, many petabytes of data must be processed in search of rare new processes which occur together with much more copious background processes that are of less interest to the task at hand. The systematic uncertainties on the background may be larger than the expected signal in many cases. The statistical power of an analysis and its sensitivity to systematic uncertainty can therefore usually bothmore » be improved by separating signal events from background events with higher efficiency and purity.« less

  8. High contrast imaging through adaptive transmittance control in the focal plane

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake

    2016-05-01

    High contrast imaging, in the presence of a bright background, is a challenging problem encountered in diverse applications ranging from the daily chore of driving into a sun-drenched scene to in vivo use of biomedical imaging in various types of keyhole surgeries. Imaging in the presence of bright sources saturates the vision system, resulting in loss of scene fidelity, corresponding to low image contrast and reduced resolution. The problem is exacerbated in retro-reflective imaging systems where the light sources illuminating the object are unavoidably strong, typically masking the object features. This manuscript presents a novel theoretical framework, based on nonlinear analysis and adaptive focal plane transmittance, to selectively remove object domain sources of background light from the image plane, resulting in local and global increases in image contrast. The background signal can either be of a global specular nature, giving rise to parallel illumination from the entire object surface or can be represented by a mosaic of randomly orientated, small specular surfaces. The latter is more representative of real world practical imaging systems. Thus, the background signal comprises of groups of oblique rays corresponding to distributions of the mosaic surfaces. Through the imaging system, light from group of like surfaces, converges to a localized spot in the focal plane of the lens and then diverges to cast a localized bright spot in the image plane. Thus, transmittance of a spatial light modulator, positioned in the focal plane, can be adaptively controlled to block a particular source of background light. Consequently, the image plane intensity is entirely due to the object features. Experimental image data is presented to verify the efficacy of the methodology.

  9. Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy

    NASA Astrophysics Data System (ADS)

    Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C. W.

    2012-11-01

    We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Changes of the background gas mole fractions in the sample air substantially impacted the CO2 and CH4 measurements: variation of CO2 and CH4 due to relative increase of each background gas increased as Ar < O2 < N2, suggesting similar relation for the pressure-broadening effects (PBEs) among the background gas. The pressure-broadening coefficients due to variations in O2 and Ar for CO2 and CH4 are empirically determined from these experimental results. Calculated PBEs using the pressure-broadening coefficients are linearly correlated with the differences between the mole fractions of O2 and Ar and their ambient abundances. Although the PBEs calculation showed that impact of natural variation of O2 is negligible on the CO2 and CH4 measurements, significant bias was inferred for the measurement of synthetic standard gases. For gas standards balanced with purified air, the PBEs were estimated to be marginal (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived instrument-specific water correction functions empirically for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301), and evaluated the transferability of the water correction function from G-1301 among these instruments. Although the transferability was not proven, no significant difference was found in the water vapor correction function for the investigated WS-CRDS instruments as well as the instruments reported in the past studies within the typical analytical precision at sufficiently low water concentrations (<0.7% for CO2 and <0.6% for CH4). For accurate measurements of CO2 and CH4 in ambient air, we concluded that WS-CRDS measurements should be performed under complete dehumidification of air samples, or moderate dehumidification followed by application of a water vapor correction function, along with calibration by natural air-based standard gases or purified air-balanced synthetic standard gases with the isotopic correction.

  10. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers

    PubMed Central

    Mathupala, Saroj P.; Kiousis, Sam; Szerlip, Nicholas J.

    2016-01-01

    Background Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. Methodology With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. Results/Conclusions We show the kit’s utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to sophisticated (and expensive) cell culture incubators. PMID:26862760

  11. Test System Stability and Natural Variability of a Lemna Gibba L. Bioassay

    PubMed Central

    Scherr, Claudia; Simon, Meinhard; Spranger, Jörg; Baumgartner, Stephan

    2008-01-01

    Background In ecotoxicological and environmental studies Lemna spp. are used as test organisms due to their small size, rapid predominantly vegetative reproduction, easy handling and high sensitivity to various chemicals. However, there is not much information available concerning spatial and temporal stability of experimental set-ups used for Lemna bioassays, though this is essential for interpretation and reliability of results. We therefore investigated stability and natural variability of a Lemna gibba bioassay assessing area-related and frond number-related growth rates under controlled laboratory conditions over about one year. Methology/Principal Findings Lemna gibba L. was grown in beakers with Steinberg medium for one week. Area-related and frond number-related growth rates (r(area) and r(num)) were determined with a non-destructive image processing system. To assess inter-experimental stability, 35 independent experiments were performed with 10 beakers each in the course of one year. We observed changes in growth rates by a factor of two over time. These did not correlate well with temperature or relative humidity in the growth chamber. In order to assess intra-experimental stability, we analysed six systematic negative control experiments (nontoxicant tests) with 96 replicate beakers each. Evaluation showed that the chosen experimental set-up was stable and did not produce false positive results. The coefficient of variation was lower for r(area) (2.99%) than for r(num) (4.27%). Conclusions/Significance It is hypothesised that the variations in growth rates over time under controlled conditions are partly due to endogenic periodicities in Lemna gibba. The relevance of these variations for toxicity investigations should be investigated more closely. Area-related growth rate seems to be more precise as non-destructive calculation parameter than number-related growth rate. Furthermore, we propose two new validity criteria for Lemna gibba bioassays: variability of average specific and section-by-section segmented growth rate, complementary to average specific growth rate as the only validity criterion existing in guidelines for duckweed bioassays. PMID:18769541

  12. Gene therapy with mesenchymal stem cells expressing IFN‐ß ameliorates neuroinflammation in experimental models of multiple sclerosis

    PubMed Central

    Marin‐Bañasco, C; Benabdellah, K; Melero‐Jerez, C; Oliver, B; Pinto‐Medel, M J; Hurtado‐Guerrero, I; de Castro, F; Clemente, D; Fernández, O; Martin, F; Leyva, L

    2017-01-01

    Background and Purpose Recombinant IFN‐ß is one of the first‐line treatments in multiple sclerosis (MS), despite its lack of efficacy in some patients. In this context, mesenchymal stem cells (MSCs) represent a promising therapeutic alternative due to their immunomodulatory properties and multipotency. Moreover, by taking advantage of their pathotropism, these cells can be genetically modified to be used as carriers for delivering or secreting therapeutic drugs into injured tissues. Here, we report the therapeutic effect of systemic delivery of adipose‐derived MSCs (AdMSCs), transduced with the IFN‐β gene, into mice with experimental autoimmune encephalomyelitis (EAE). Experimental Approach Relapsing–remitting and chronic progressive EAE were induced in mice. Cells were injected i.v. Disease severity, inflammation and tissue damage were assessed clinically, by flow cytometry of spleens and histopathological evaluation of the CNS respectively. Key Results Genetic engineering did not modify the biological characteristics of these AdMSCs (morphology, growth rate, immunophenotype and multipotency). Furthermore, the transduction of IFN‐ß to AdMSCs maintained and, in some cases, enhanced the functional properties of AdMSCs by ameliorating the symptoms of MS in EAE models and by decreasing indications of peripheral and central neuro‐inflammation. Conclusion and Implications Gene therapy was found to be more effective than cell therapy in ameliorating several clinical parameters in both EAE models, presumably due to the continuous expression of IFN‐β. Furthermore, it has significant advantages over AdMSC therapy, and also over systemic IFN‐ß treatment, by providing long‐term expression of the cytokine at therapeutic concentrations and reducing the frequency of injections, while minimizing dose‐limiting side effects. PMID:27882538

  13. Radiation environment simulations at the Tevatron, studies of the beam profile and measurement of the B c meson mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolas, Ludovic Y.

    2005-09-01

    The description of a computer simulation of the CDF detector at Fermilab and the adjacent accelerator parts is detailed, with MARS calculations of the radiation background in various elements of the model due to the collision of beams and machine-related losses. Three components of beam halo formation are simulated for the determination of the principal source of radiation background in CDF due to beam losses. The effect of a collimator as a protection for the detector is studied. The simulation results are compared with data taken by a CDF group. Studies of a 150 GeV Tevatron proton beam are performedmore » to investigate the transverse diffusion growth and distribution. A technique of collimator scan is used to scrape the beam under various experimental conditions, and computer programs are written for the beam reconstruction. An average beam halo growth speed is given and the potential of beam tail reconstruction using the collimator scan is evaluated. A particle physics analysis is conducted in order to detect the B c → J/Ψπ decay signal with the CDF Run II detector in 360 pb -1 of data. The cut variables and an optimization method to determine their values are presented along with a criterion for the detection threshold of the signal. The mass of the B{sub c} meson is measured with an evaluation of the significance of the signal.« less

  14. Definition and dynamic control of a continuous chromatography process independent of cell culture titer and impurities.

    PubMed

    Chmielowski, Rebecca A; Mathiasson, Linda; Blom, Hans; Go, Daniel; Ehring, Hanno; Khan, Heera; Li, Hong; Cutler, Collette; Lacki, Karol; Tugcu, Nihal; Roush, David

    2017-12-01

    Advances in cell culture technology have enabled the production of antibody titers upwards of 30g/L. These highly productive cell culture systems can potentially lead to productivity bottlenecks in downstream purification due to lower column loadings, especially in the primary capture chromatography step. Alternative chromatography solutions to help remedy this bottleneck include the utilization of continuous processing systems such as periodic counter-current chromatography (PCC). Recent studies have provided methods to optimize and improve the design of PCC for cell culture titers up to about 3g/L. This paper defines a continuous loading strategy for PCC that is independent of cell culture background and encompasses cell culture titers up to about 31g/L. Initial experimentation showed a challenge with determining a difference in change in UV280nm signal (ie. ΔUV) between cell culture feed and monoclonal antibody (mAb) concentration. Further investigation revealed UV280nm absorbance of the cell culture feedstock without antibody was outside of the linear range of detection for a given cell pathlength. Additional experimentation showed the difference in ΔUV for various cell culture feeds can be either theoretically predicted by Beer's Law given a known absorbance of the media background and impurities or experimentally determined using various UV280nm cell pathlengths. Based on these results, a 0.35mm pathlength at UV280nm was chosen for dynamic control to overcome the background signal. The pore diffusion model showed good agreement with the experimental frontal analysis data, which resulted in definition of a ΔUV setpoint range between 20 and 70% for 3C-PCC experiments. Product quality of the elution pools was acceptable between various cell culture feeds and titers up to about 41g/L. Results indicated the following ΔUV setpoints to achieve robust dynamic control and maintain 3C-PCC yield: ∼20-45% for titers greater than 10g/L depending on UV absorbance of the HCCF and ∼45-70% for titers of up to 10g/L independent of UV absorbance of the HCCF. The strategy and results presented in this paper show column loading in a continuous chromatography step can be dynamically controlled independent of the cell culture feedstock and titer, and allow for enhanced process control built into the downstream continuous operations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Background Noise Analysis in a Few-Photon-Level Qubit Memory

    NASA Astrophysics Data System (ADS)

    Mittiga, Thomas; Kupchak, Connor; Jordaan, Bertus; Namazi, Mehdi; Nolleke, Christian; Figeroa, Eden

    2014-05-01

    We have developed an Electromagnetically Induced Transparency based polarization qubit memory. The device is composed of a dual-rail probe field polarization setup colinear with an intense control field to store and retrieve any arbitrary polarization state by addressing a Λ-type energy level scheme in a 87Rb vapor cell. To achieve a signal-to-background ratio at the few photon level sufficient for polarization tomography of the retrieved state, the intense control field is filtered out through an etalon filtrating system. We have developed an analytical model predicting the influence of the signal-to-background ratio on the fidelities and compared it to experimental data. Experimentally measured global fidelities have been found to follow closely the theoretical prediction as signal-to-background decreases. These results suggest the plausibility of employing room temperature memories to store photonic qubits at the single photon level and for future applications in long distance quantum communication schemes.

  16. Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector

    NASA Astrophysics Data System (ADS)

    Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Boudjemline, K.; Boulay, M. G.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Contreras, D.; Dering, K.; Duncan, F.; Ford, R.; Gagnon, R.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Harvey, P.; Hearns, C.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; Li, O.; Lidgard, J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, T.; O'Dwyer, E.; Olsen, K. S.; Ouellet, C.; Pasuthip, P.; Pollmann, T.; Rau, W.; Retiere, F.; Ronquest, M.; Skensved, P.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Ward, M.

    2015-03-01

    The DEAP-1 7 kg single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the DEAP-3600 Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination, and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The 222 Rn decay rate in the liquid argon was measured to be between 16 and 26 μBq kg-1. We found that the background spectrum near the region of interest for Dark Matter detection in the DEAP-1 detector can be described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse shape discrimination, and leakage of events from outside the fiducial volume due to imperfect position reconstruction. These backgrounds statistically account for all observed events, and they will be strongly reduced in the DEAP-3600 detector due to its higher light yield and simpler geometry.

  17. 77 FR 18251 - Development of Animal Models of Pregnancy To Address Medical Countermeasures for Influenza in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... during pregnancy. Specifically, this workshop will address experimental design issues in selecting the... countermeasures, including influenza therapies, that may be used during pregnancy; and (3) experimental design... pharmacokinetic studies, and (3) additional issues in experimental design. Background information on the public...

  18. Effect of aluminum on the local structure of silicon in zeolites as studied by Si K edge X-ray absorption near-edge fine structure: spectra simulation with a non-muffin tin atomic background.

    PubMed

    Bugaev, Lusegen A; Bokhoven, Jeroen A van; Khrapko, Valerii V

    2009-04-09

    Experimental Si K edge X-ray absorption near-edge fine structure (XANES) of zeolite faujasite, mordenite, and beta are interpreted by means of the FEFF8 code, replacing the theoretical atomic background mu(0) by a background that was extracted from an experimental spectrum. To some extent, this diminished the effect of the inaccuracy introduced by the MT potential and accounted for the intrinsic loss of photoelectrons. The agreement of the theoretical and experimental spectra at energies above the white lines enabled us to identify structural distortion around silicon, which occurs with increasing aluminum content. The Si K edge XANES spectra are very sensitive to slight distortions in the silicon coordination. Placing an aluminum atom on a nearest neighboring T site causes a distortion in the silicon tetrahedron, shortening one of the silicon-oxygen bonds relative to the other three.

  19. High beta effects and nonlinear evolution of the TAE instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spong, D.A.

    1992-12-31

    The toroidal Alfven eigenmode has recently been observed experimentally on DIII-D and TFTR when neutral beams are injected near the Alfven velocity. This instability is also of concern for future high {beta} D-T devices where fusion by-product alpha populations will generally be super-Alfvenic. We have developed a gyrofluid model (with Landau closure) of the TAE mode which can include most of the relevant damping mechanisms (continuum damping, ion and electron damping, ion FLR and collisional trapped electron damping) as well as reproducing analytically predicted undamped growth rates relatively accurately. An important consideration in predicting future unstable TAE regimes is themore » effect of finite beta in the background plasma. Due to the Shafranov shift and distortion of the flux surfaces, the location of the stable TAE root and the continuum will shift with increasing {beta}. The net effect of this is to generally enhance continuum damping and stabilize the TAF instability. Also, as the pressure gradient drive from the background becomes increasingly important, coupling between TAE and background driven modes can alter the TAE mode. A further application of our gyrofluid model which will be discussed is the nonlinear evolution of the TAE instability. Gyrofluid models offer a convenient reduced description which is more amenable to computational nonlinear modeling than full kinetic particle models. Our results demonstrate the rise and crash phases of TAE activity similar to experimental observations. The saturation is caused by generation of m=0 n=0 components through nonlinear beatings of the n > 1 modes; these cause modifications to the original equilibrium profiles in such a direction as to decrease the instability drive. This is the gyrofluid analog of direct particle losses. The peak magnetic fluctuation level increases with increasing energetic species beta, resulting in non-resonant stochastization of magnetic field lines.« less

  20. High beta effects and nonlinear evolution of the TAE instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spong, D.A.

    1992-01-01

    The toroidal Alfven eigenmode has recently been observed experimentally on DIII-D and TFTR when neutral beams are injected near the Alfven velocity. This instability is also of concern for future high [beta] D-T devices where fusion by-product alpha populations will generally be super-Alfvenic. We have developed a gyrofluid model (with Landau closure) of the TAE mode which can include most of the relevant damping mechanisms (continuum damping, ion and electron damping, ion FLR and collisional trapped electron damping) as well as reproducing analytically predicted undamped growth rates relatively accurately. An important consideration in predicting future unstable TAE regimes is themore » effect of finite beta in the background plasma. Due to the Shafranov shift and distortion of the flux surfaces, the location of the stable TAE root and the continuum will shift with increasing [beta]. The net effect of this is to generally enhance continuum damping and stabilize the TAF instability. Also, as the pressure gradient drive from the background becomes increasingly important, coupling between TAE and background driven modes can alter the TAE mode. A further application of our gyrofluid model which will be discussed is the nonlinear evolution of the TAE instability. Gyrofluid models offer a convenient reduced description which is more amenable to computational nonlinear modeling than full kinetic particle models. Our results demonstrate the rise and crash phases of TAE activity similar to experimental observations. The saturation is caused by generation of m=0 n=0 components through nonlinear beatings of the n > 1 modes; these cause modifications to the original equilibrium profiles in such a direction as to decrease the instability drive. This is the gyrofluid analog of direct particle losses. The peak magnetic fluctuation level increases with increasing energetic species beta, resulting in non-resonant stochastization of magnetic field lines.« less

  1. Real-time people counting system using a single video camera

    NASA Astrophysics Data System (ADS)

    Lefloch, Damien; Cheikh, Faouzi A.; Hardeberg, Jon Y.; Gouton, Pierre; Picot-Clemente, Romain

    2008-02-01

    There is growing interest in video-based solutions for people monitoring and counting in business and security applications. Compared to classic sensor-based solutions the video-based ones allow for more versatile functionalities, improved performance with lower costs. In this paper, we propose a real-time system for people counting based on single low-end non-calibrated video camera. The two main challenges addressed in this paper are: robust estimation of the scene background and the number of real persons in merge-split scenarios. The latter is likely to occur whenever multiple persons move closely, e.g. in shopping centers. Several persons may be considered to be a single person by automatic segmentation algorithms, due to occlusions or shadows, leading to under-counting. Therefore, to account for noises, illumination and static objects changes, a background substraction is performed using an adaptive background model (updated over time based on motion information) and automatic thresholding. Furthermore, post-processing of the segmentation results is performed, in the HSV color space, to remove shadows. Moving objects are tracked using an adaptive Kalman filter, allowing a robust estimation of the objects future positions even under heavy occlusion. The system is implemented in Matlab, and gives encouraging results even at high frame rates. Experimental results obtained based on the PETS2006 datasets are presented at the end of the paper.

  2. Conducting omega-3 clinical trials with cardiovascular outcomes: Proceedings of a workshop held at ISSFAL 2014.

    PubMed

    Rice, Harry B; Bernasconi, Aldo; Maki, Kevin C; Harris, William S; von Schacky, Clemens; Calder, Philip C

    2016-04-01

    In contrast to earlier long-chain (LC) omega-3 (i.e. EPA and DHA) investigations, some recent studies have not demonstrated significant effects of EPA and DHA on cardiovascular disease (CVD) outcomes. The neutral findings may have been due to experimental design issues, such as: maintenance on aggressive cardiovascular drug treatment overshadowing the benefits of LC omega-3s, high background LC omega-3 intake, too few subjects in the study, treatment duration too short, insufficient LC omega-3 dosage, increase in omega-6 fatty acid intake during the study, failure to assess the LC omega-3 status of the subjects prior to and during treatment and lack of clarity concerning which mechanisms were expected to produce benefits. At the 11th ISSFAL Congress, a workshop was held on conducting LC omega-3 clinical trials with cardiovascular outcomes, with the goal of gaining a better understanding concerning aspects of experimental design that should be considered when planning clinical studies related to EPA and DHA and potential cardiovascular benefits. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. SuperCDMS Underground Detector Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less

  4. Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials.

    PubMed

    Liang, Liangbo; Zhang, Jun; Sumpter, Bobby G; Tan, Qing-Hai; Tan, Ping-Heng; Meunier, Vincent

    2017-12-26

    Ever since the isolation of single-layer graphene in 2004, two-dimensional layered structures have been among the most extensively studied classes of materials. To date, the pool of two-dimensional materials (2DMs) continues to grow at an accelerated pace and already covers an extensive range of fascinating and technologically relevant properties. An array of experimental techniques have been developed and used to characterize and understand these properties. In particular, Raman spectroscopy has proven to be a key experimental technique, thanks to its capability to identify minute structural and electronic effects in nondestructive measurements. While high-frequency (HF) intralayer Raman modes have been extensively employed for 2DMs, recent experimental and theoretical progress has demonstrated that low-frequency (LF) interlayer Raman modes are more effective at determining layer numbers and stacking configurations and provide a unique opportunity to study interlayer coupling. These advantages are due to 2DMs' unique interlayer vibration patterns where each layer behaves as an almost rigidly moving object with restoring forces corresponding to weak interlayer interactions. Compared to HF Raman modes, the relatively small attention originally devoted to LF Raman modes is largely due to their weaker signal and their proximity to the strong Rayleigh line background, which previously made their detection challenging. Recent progress in Raman spectroscopy with technical and hardware upgrades now makes it possible to probe LF modes with a standard single-stage Raman system and has proven crucial to characterize and understand properties of 2DMs. Here, we present a comprehensive and forward-looking review on the current status of exploiting LF Raman modes of 2DMs from both experimental and theoretical perspectives, revealing the fundamental physics and technological significance of LF Raman modes in advancing the field of 2DMs. We review a broad array of materials, with varying thickness and stacking configurations, discuss the effect of in-plane anisotropy, and present a generalized linear chain model and interlayer bond polarizability model to rationalize the experimental findings. We also discuss the instrumental improvements of Raman spectroscopy to enhance and separate LF Raman signals from the Rayleigh line. Finally, we highlight the opportunities and challenges ahead in this fast-developing field.

  5. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    NASA Astrophysics Data System (ADS)

    Agnolet, G.; Baker, W.; Barker, D.; Beck, R.; Carroll, T. J.; Cesar, J.; Cushman, P.; Dent, J. B.; De Rijck, S.; Dutta, B.; Flanagan, W.; Fritts, M.; Gao, Y.; Harris, H. R.; Hays, C. C.; Iyer, V.; Jastram, A.; Kadribasic, F.; Kennedy, A.; Kubik, A.; Lang, K.; Mahapatra, R.; Mandic, V.; Marianno, C.; Martin, R. D.; Mast, N.; McDeavitt, S.; Mirabolfathi, N.; Mohanty, B.; Nakajima, K.; Newhouse, J.; Newstead, J. L.; Ogawa, I.; Phan, D.; Proga, M.; Rajput, A.; Roberts, A.; Rogachev, G.; Salazar, R.; Sander, J.; Senapati, K.; Shimada, M.; Soubasis, B.; Strigari, L.; Tamagawa, Y.; Teizer, W.; Vermaak, J. I. C.; Villano, A. N.; Walker, J.; Webb, B.; Wetzel, Z.; Yadavalli, S. A.

    2017-05-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5-20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  6. Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection

    PubMed Central

    Kim, Sungho

    2015-01-01

    Sea-based infrared search and track (IRST) is important for homeland security by detecting missiles and asymmetric boats. This paper proposes a novel scheme to interpret various infrared scenes by classifying the infrared background types and detecting the coastal regions in omni-directional images. The background type or region-selective small infrared target detector should be deployed to maximize the detection rate and to minimize the number of false alarms. A spatial filter-based small target detector is suitable for identifying stationary incoming targets in remote sea areas with sky only. Many false detections can occur if there is an image sector containing a coastal region, due to ground clutter and the difficulty in finding true targets using the same spatial filter-based detector. A temporal filter-based detector was used to handle these problems. Therefore, the scene type and coastal region information is critical to the success of IRST in real-world applications. In this paper, the infrared scene type was determined using the relationships between the sensor line-of-sight (LOS) and a horizontal line in an image. The proposed coastal region detector can be activated if the background type of the probing sector is determined to be a coastal region. Coastal regions can be detected by fusing the region map and curve map. The experimental results on real infrared images highlight the feasibility of the proposed sea-based scene interpretation. In addition, the effects of the proposed scheme were analyzed further by applying region-adaptive small target detection. PMID:26404308

  7. The reactivity of Fe/Ni colloid stabilized by carboxymethylcellulose (CMC-Fe/Ni) toward chloroform.

    PubMed

    Jin, Xin; Li, Qun; Yang, Qi

    2018-05-16

    The use of stabilizers can prevent the reactivity loss of nanoparticles due to aggregation. In this study, carboxymethylcellulose (CMC) was selected as the stabilizer to synthesize a highly stable CMC-stabilized Fe/Ni colloid (CMC-Fe/Ni) via pre-aggregation stabilization. The reactivity of CMC-Fe/Ni was evaluated via the reaction of chloroform (CF) degradation. The effect of background solution which composition was affected by the preparation of Fe/Ni (Fe/Ni precursors, NaBH 4 dosage) and the addition of solute (common ions, sulfur compounds) on the reactivity of CMC-Fe/Ni was also investigated. Additionally, the dried CMC-Fe/Ni was used for characterization in terms of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that CMC stabilization greatly improved the reactivity of Fe/Ni bimetal and CF (10 mg/L) could be completely degraded by CMC-Fe/Ni (0.1 g/L) within 45 min. The use of different Fe/Ni precursors resulting in the variations of background solution seemed to have no obvious influence on the reactivity of CMC-Fe/Ni, whereas the dosage of NaBH 4 in background solution showed a negative correlation with the reactivity of CMC-Fe/Ni. Besides, the individual addition of external solutes into background solution all had an adverse effect on the reactivity of CMC-Fe/Ni, of which the poisoning effect of sulfides (Na 2 S, Na 2 S 2 O 4 ) was significant than common ions and sulfite.

  8. Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing

    PubMed Central

    Yoon, Song-Ro; Arnheim, Norman; Calabrese, Peter

    2016-01-01

    We used targeted next generation deep-sequencing (Safe Sequencing System) to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11) were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10−8) suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments. PMID:27341568

  9. Ischemia reperfusion dysfunction changes model-estimated kinetics of myofilament interaction due to inotropic drugs in isolated hearts

    PubMed Central

    Rhodes, Samhita S; Camara, Amadou KS; Ropella, Kristina M; Audi, Said H; Riess, Matthias L; Pagel, Paul S; Stowe, David F

    2006-01-01

    Background The phase-space relationship between simultaneously measured myoplasmic [Ca2+] and isovolumetric left ventricular pressure (LVP) in guinea pig intact hearts is altered by ischemic and inotropic interventions. Our objective was to mathematically model this phase-space relationship between [Ca2+] and LVP with a focus on the changes in cross-bridge kinetics and myofilament Ca2+ sensitivity responsible for alterations in Ca2+-contraction coupling due to inotropic drugs in the presence and absence of ischemia reperfusion (IR) injury. Methods We used a four state computational model to predict LVP using experimentally measured, averaged myoplasmic [Ca2+] transients from unpaced, isolated guinea pig hearts as the model input. Values of model parameters were estimated by minimizing the error between experimentally measured LVP and model-predicted LVP. Results We found that IR injury resulted in reduced myofilament Ca2+ sensitivity, and decreased cross-bridge association and dissociation rates. Dopamine (8 μM) reduced myofilament Ca2+ sensitivity before, but enhanced it after ischemia while improving cross-bridge kinetics before and after IR injury. Dobutamine (4 μM) reduced myofilament Ca2+ sensitivity while improving cross-bridge kinetics before and after ischemia. Digoxin (1 μM) increased myofilament Ca2+ sensitivity and cross-bridge kinetics after but not before ischemia. Levosimendan (1 μM) enhanced myofilament Ca2+ affinity and cross-bridge kinetics only after ischemia. Conclusion Estimated model parameters reveal mechanistic changes in Ca2+-contraction coupling due to IR injury, specifically the inefficient utilization of Ca2+ for contractile function with diastolic contracture (increase in resting diastolic LVP). The model parameters also reveal drug-induced improvements in Ca2+-contraction coupling before and after IR injury. PMID:16512898

  10. Cyber-Physical Trade-Offs in Distributed Detection Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Yao, David K. Y.; Chin, J. C.

    2010-01-01

    We consider a network of sensors that measure the scalar intensity due to the background or a source combined with background, inside a two-dimensional monitoring area. The sensor measurements may be random due to the underlying nature of the source and background or due to sensor errors or both. The detection problem is infer the presence of a source of unknown intensity and location based on sensor measurements. In the conventional approach, detection decisions are made at the individual sensors, which are then combined at the fusion center, for example using the majority rule. With increased communication and computation costs,more » we show that a more complex fusion algorithm based on measurements achieves better detection performance under smooth and non-smooth source intensity functions, Lipschitz conditions on probability ratios and a minimum packing number for the state-space. We show that these conditions for trade-offs between the cyber costs and physical detection performance are applicable for two detection problems: (i) point radiation sources amidst background radiation, and (ii) sources and background with Gaussian distributions.« less

  11. The effect of repeated laser stimuli to ink-marked skin on skin temperature-recommendations for a safe experimental protocol in humans.

    PubMed

    Madden, Victoria J; Catley, Mark J; Grabherr, Luzia; Mazzola, Francesca; Shohag, Mohammad; Moseley, G Lorimer

    2016-01-01

    Background. Nd:YAP laser is widely used to investigate the nociceptive and pain systems, generating perpetual and laser-evoked neurophysiological responses. A major procedural concern for the use of Nd:YAP laser stimuli in experimental research is the risk of skin damage. The absorption of Nd:YAP laser stimuli is greater in darker skin, or in pale skin that has been darkened with ink, prompting some ethics boards to refuse approval to experimenters wishing to track stimulus location by marking the skin with ink. Some research questions, however, require laser stimuli to be delivered at particular locations or within particular zones, a requirement that is very difficult to achieve if marking the skin is not possible. We thoroughly searched the literature for experimental evidence and protocol recommendations for safe delivery of Nd:YAP laser stimuli over marked skin, but found nothing. Methods. We designed an experimental protocol to define safe parameters for the use of Nd:YAP laser stimuli over skin that has been marked with black dots, and used thermal imaging to assess the safety of the procedure at the forearm and the back. Results. Using thermal imaging and repeated laser stimulation to ink-marked skin, we demonstrated that skin temperature did not increase progressively across the course of the experiment, and that the small change in temperature seen at the forearm was reversed during the rest periods between blocks. Furthermore, no participant experienced skin damage due to the procedure. Conclusion. This protocol offers parameters for safe, confident and effective experimentation using repeated Nd:YAP laser on skin marked with ink, thus paving the way for investigations that depend on it.

  12. Target vs. background discrimination using multispectral data in 1.5-14.5 micron

    NASA Astrophysics Data System (ADS)

    Cogliandro, Santo; Panizza, Marco; Castelli, Paola

    1987-01-01

    LOWTRAN V model calculations are compared to experimental spectral background radiance and spectral transmittance data in the 1.5 to 14.5-micron band, in order to identify the most important parameters affecting the discrimination of targets from background. Attention is accordingly given to the IR energy emitted by a reference plate at different values of temperature and emissivity vs various previously investigated backgrounds. Targets at near-ambient temperature are also considered.

  13. A theoretical and experimental investigation of the linear and nonlinear impulse responses from a magnetoplasma column

    NASA Technical Reports Server (NTRS)

    Grody, N. C.

    1973-01-01

    Linear and nonlinear responses of a magnetoplasma resulting from inhomogeneity in the background plasma density are studied. The plasma response to an impulse electric field was measured and the results are compared with the theory of an inhomogeneous cold plasma. Impulse responses were recorded for the different plasma densities, static magnetic fields, and neutral pressures and generally appeared as modulated, damped oscillations. The frequency spectra of the waveforms consisted of two separated resonance peaks. For weak excitation, the results correlate with the linear theory of a cold, inhomogeneous, cylindrical magnetoplasma. The damping mechanism is identified with that of phase mixing due to inhomogeneity in plasma density. With increasing excitation voltage, the nonlinear impulse responses display stronger damping and a small increase in the frequency of oscillation.

  14. ISR corrections to associated HZ production at future Higgs factories

    NASA Astrophysics Data System (ADS)

    Greco, Mario; Montagna, Guido; Nicrosini, Oreste; Piccinini, Fulvio; Volpi, Gabriele

    2018-02-01

    We evaluate the QED corrections due to initial state radiation (ISR) to associated Higgs boson production in electron-positron (e+e-) annihilation at typical energies of interest for the measurement of the Higgs properties at future e+e- colliders, such as CEPC and FCC-ee. We apply the QED Structure Function approach to the four-fermion production process e+e- →μ+μ- b b bar , including both signal and background contributions. We emphasize the relevance of the ISR corrections particularly near threshold and show that finite third order collinear contributions are mandatory to meet the expected experimental accuracy. We analyze in turn the rôle played by a full four-fermion calculation and beam energy spread in precision calculations for Higgs physics at future e+e- colliders.

  15. Development of an electron-ion coincidence apparatus for molecular-frame electron energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Watanabe, Noboru; Hirayama, Tsukasa; Yamada, So; Takahashi, Masahiko

    2018-04-01

    We report details of an electron-ion coincidence apparatus, which has been developed for molecular-frame electron energy loss spectroscopy studies. The apparatus is mainly composed of a pulsed electron gun, an energy-dispersive electron spectrometer, and an ion momentum imaging spectrometer. Molecular-orientation dependence of the high-energy electron scattering cross section can be examined by conducting measurements of vector correlation between the momenta of the scattered electron and fragment ion. Background due to false coincidences is significantly reduced by introducing a pulsed electron beam and pulsing scheme of ion extraction. The experimental setup has been tested by measuring the inner-shell excitation of N2 at an incident electron energy of 1.5 keV and a scattering angle of 10.2°.

  16. Infrared images target detection based on background modeling in the discrete cosine domain

    NASA Astrophysics Data System (ADS)

    Ye, Han; Pei, Jihong

    2018-02-01

    Background modeling is the critical technology to detect the moving target for video surveillance. Most background modeling techniques are aimed at land monitoring and operated in the spatial domain. A background establishment becomes difficult when the scene is a complex fluctuating sea surface. In this paper, the background stability and separability between target are analyzed deeply in the discrete cosine transform (DCT) domain, on this basis, we propose a background modeling method. The proposed method models each frequency point as a single Gaussian model to represent background, and the target is extracted by suppressing the background coefficients. Experimental results show that our approach can establish an accurate background model for seawater, and the detection results outperform other background modeling methods in the spatial domain.

  17. Feasibility study of 235U and 239Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays

    NASA Astrophysics Data System (ADS)

    Nicol, T.; Pérot, B.; Carasco, C.; Brackx, E.; Mariani, A.; Passard, C.; Mauerhofer, E.; Collot, J.

    2016-10-01

    This paper reports a feasibility study of 235U and 239Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of 235U and 239Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to 137Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of 235U or 239Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.

  18. Investigation of MHD Instabilities in Jets and Bubbles Using a Compact Coaxial Plasma Gun in a Background Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Fisher, D. M.; Wallace, B.; Gilmore, M.; Hsu, S. C.

    2016-10-01

    A compact coaxial plasma gun is employed for experimental investigation of launching plasma into a lower density background magnetized plasma. Experiments are being conducted in the linear device HelCat at UNM. Four distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. For regime I plasma jet formation, a global helical magnetic configuration is determined by a B-dot probe array data. Also the m =1 kink instability is observed and verified. Furthermore, when the jet is propagating into background magnetic field, a longer length and lifetime jet is formed. Axial shear flow caused by the background magnetic tension force contributes to the increased stability of the jet body. In regime II, a spheromak-like plasma bubble formation is identified when the gun plasma is injected into vacuum. In contrast, when the bubble propagates into a background magnetic field, the closed magnetic field configuration does not hold anymore and a lateral side, Reilgh-Taylor instability develops. Detailed experimental data and analysis will be presented for these cases.

  19. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport

    PubMed Central

    2010-01-01

    Background The finite volume solver Fluent (Lebanon, NH, USA) is a computational fluid dynamics software employed to analyse biological mass-transport in the vasculature. A principal consideration for computational modelling of blood-side mass-transport is convection-diffusion discretisation scheme selection. Due to numerous discretisation schemes available when developing a mass-transport numerical model, the results obtained should either be validated against benchmark theoretical solutions or experimentally obtained results. Methods An idealised aneurysm model was selected for the experimental and computational mass-transport analysis of species concentration due to its well-defined recirculation region within the aneurysmal sac, allowing species concentration to vary slowly with time. The experimental results were obtained from fluid samples extracted from a glass aneurysm model, using the direct spectrophometric concentration measurement technique. The computational analysis was conducted using the four convection-diffusion discretisation schemes available to the Fluent user, including the First-Order Upwind, the Power Law, the Second-Order Upwind and the Quadratic Upstream Interpolation for Convective Kinetics (QUICK) schemes. The fluid has a diffusivity of 3.125 × 10-10 m2/s in water, resulting in a Peclet number of 2,560,000, indicating strongly convection-dominated flow. Results The discretisation scheme applied to the solution of the convection-diffusion equation, for blood-side mass-transport within the vasculature, has a significant influence on the resultant species concentration field. The First-Order Upwind and the Power Law schemes produce similar results. The Second-Order Upwind and QUICK schemes also correlate well but differ considerably from the concentration contour plots of the First-Order Upwind and Power Law schemes. The computational results were then compared to the experimental findings. An average error of 140% and 116% was demonstrated between the experimental results and those obtained from the First-Order Upwind and Power Law schemes, respectively. However, both the Second-Order upwind and QUICK schemes accurately predict species concentration under high Peclet number, convection-dominated flow conditions. Conclusion Convection-diffusion discretisation scheme selection has a strong influence on resultant species concentration fields, as determined by CFD. Furthermore, either the Second-Order or QUICK discretisation schemes should be implemented when numerically modelling convection-dominated mass-transport conditions. Finally, care should be taken not to utilize computationally inexpensive discretisation schemes at the cost of accuracy in resultant species concentration. PMID:20642816

  20. Simulation of gross and net erosion of high-Z materials in the DIII-D divertor

    DOE PAGES

    Wampler, William R.; Ding, R.; Stangeby, P. C.; ...

    2015-12-17

    The three-dimensional Monte Carlo code ERO has been used to simulate dedicated DIII-D experiments in which Mo and W samples with different sizes were exposed to controlled and well-diagnosed divertor plasma conditions to measure the gross and net erosion rates. Experimentally, the net erosion rate is significantly reduced due to the high local redeposition probability of eroded high-Z materials, which according to the modelling is mainly controlled by the electric field and plasma density within the Chodura sheath. Similar redeposition ratios were obtained from ERO modelling with three different sheath models for small angles between the magnetic field and themore » material surface, mainly because of their similar mean ionization lengths. The modelled redeposition ratios are close to the measured value. Decreasing the potential drop across the sheath can suppress both gross and net erosion because sputtering yield is decreased due to lower incident energy while the redeposition ratio is not reduced owing to the higher electron density in the Chodura sheath. Taking into account material mixing in the ERO surface model, the net erosion rate of high-Z materials is shown to be strongly dependent on the carbon impurity concentration in the background plasma; higher carbon concentration can suppress net erosion. As a result, the principal experimental results such as net erosion rate and profile and redeposition ratio are well reproduced by the ERO simulations.« less

  1. Across North America tracer experiment (ANATEX): Sampling and analysis

    NASA Astrophysics Data System (ADS)

    Draxler, R. R.; Dietz, R.; Lagomarsino, R. J.; Start, G.

    Between 5 January 1987 and 29 March 1987, there were 33 releases of different tracers from each of two sites: Glasgow, MT and St. Cloud, MN. The perfluorocarbon tracers were routinely released in a 3-h period every 2.5 days, alternating between daytime and night-time tracer releases. Ground-level air samples of 24-h duration were taken at 77 sites mostly located near rawinsonde stations east of 105°W and between 26°N and 55°N. Weekly air samples were taken at 12 remote sites between San Diego, CA and Pt. Barrow, AK and between Norway and the Canary Islands. Short-term 6-h samples were collected at ground level and 200 m AGL along an arc of five towers between Tulsa, OK and Green Bay, WI. Aircraft sampling within several hundred kilometers of both tracer release sites was used to establish the initial tracer path. Experimental design required improved sampler performance, new tracers with lower atmospheric backgrounds, and improvements in analytic precision. The advances to the perfluorocarbon tracer system are discussed in detail. Results from the tracer sampling showed that the average and peak concentrations measured over the daily ground-level sampling network were consistent with what would be calculated using mass conservative approaches. however, ground-level samples from individual tracer patterns showed considerable complexity due to vertical stability or the interaction of the tracer plumes with low pressure and frontal systems. These systems could pass right through the tracer plume without appreciable effect. Aircraft tracer measurements are used to confirm the initial tracer trajectory when the narrow plume may miss the coarser spaced ground-level sampling network. Tower tracer measurements showed a more complex temporal structure than evident from the longer duration ground-level sampling sites. Few above background plume measurements were evident in the more distant remote sampling network due to larger than expected uncertainties in the ambient background concentrations.

  2. Strain-Specific Induction of Experimental Autoimmune Prostatitis (EAP) in Mice

    PubMed Central

    Jackson, Christopher M.; Flies, Dallas B.; Mosse, Claudio A.; Parwani, Anil; Hipkiss, Edward L.; Drake, Charles G.

    2013-01-01

    BACKGROUND Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. METHODS Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. RESULTS In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. CONCLUSIONS These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. PMID:23129407

  3. Secure distributed genome analysis for GWAS and sequence comparison computation

    PubMed Central

    2015-01-01

    Background The rapid increase in the availability and volume of genomic data makes significant advances in biomedical research possible, but sharing of genomic data poses challenges due to the highly sensitive nature of such data. To address the challenges, a competition for secure distributed processing of genomic data was organized by the iDASH research center. Methods In this work we propose techniques for securing computation with real-life genomic data for minor allele frequency and chi-squared statistics computation, as well as distance computation between two genomic sequences, as specified by the iDASH competition tasks. We put forward novel optimizations, including a generalization of a version of mergesort, which might be of independent interest. Results We provide implementation results of our techniques based on secret sharing that demonstrate practicality of the suggested protocols and also report on performance improvements due to our optimization techniques. Conclusions This work describes our techniques, findings, and experimental results developed and obtained as part of iDASH 2015 research competition to secure real-life genomic computations and shows feasibility of securely computing with genomic data in practice. PMID:26733307

  4. Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences

    PubMed Central

    Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong

    2016-01-01

    Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514

  5. Quantitative identification of chemical compounds by dual-soliton based coherent anti-Stokes Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Wu, Tao; Li, Yan; Wei, Haoyun

    2017-12-01

    Coherent anti-Stokes Raman scattering (CARS) is a powerful nonlinear spectroscopy technique that is rapidly gaining recognition of different molecules. Unfortunately, molecular concentration information is generally not immediately accessible from the raw CARS signal due to the nonresonant background. In addition, mainstream biomedical applications of CARS are currently hampered by a complex and bulky excitation setup. Here, we establish a dual-soliton Stokes based CARS spectroscopy scheme capable of quantifying the sample molecular, using a single fiber laser. This dual-soliton CARS scheme takes advantage of a differential configuration to achieve efficient suppression of nonresonant background and therefore allows extraction of quantitative composition information. Besides, our all-fiber based excitation source can probe the most fingerprint region (1100-1800 cm-1) with a spectral resolution of 15 cm-1 under the spectral focusing mechanism, where is considerably more information contained throughout an entire spectrum than at just a single frequency within that spectrum. Systematic studies of the scope of application and several fundamental aspects are discussed. Quantitative capability is further experimentally demonstrated through the determination of oleic acid concentration based on the linear dependence of signal on different Raman vibration bands.

  6. Single-shot ADC imaging for fMRI.

    PubMed

    Song, Allen W; Guo, Hua; Truong, Trong-Kha

    2007-02-01

    It has been suggested that apparent diffusion coefficient (ADC) contrast can be sensitive to cerebral blood flow (CBF) changes during brain activation. However, current ADC imaging techniques have an inherently low temporal resolution due to the requirement of multiple acquisitions with different b-factors, as well as potential confounds from cross talk between the deoxyhemoglobin-induced background gradients and the externally applied diffusion-weighting gradients. In this report a new method is proposed and implemented that addresses these two limitations. Specifically, a single-shot pulse sequence that sequentially acquires one gradient-echo (GRE) and two diffusion-weighted spin-echo (SE) images was developed. In addition, the diffusion-weighting gradient waveform was numerically optimized to null the cross terms with the deoxyhemoglobin-induced background gradients to fully isolate the effect of diffusion weighting from that of oxygenation-level changes. The experimental results show that this new single-shot method can acquire ADC maps with sufficient signal-to-noise ratio (SNR), and establish its practical utility in functional MRI (fMRI) to complement the blood oxygenation level-dependent (BOLD) technique and provide differential sensitivity for different vasculatures to better localize neural activity originating from the small vessels. Copyright (c) 2007 Wiley-Liss, Inc.

  7. Preliminary evaluation of factors associated with premature trial closure and feasibility of accrual benchmarks in phase III oncology trials

    PubMed Central

    Schroen, Anneke T; Petroni, Gina R; Wang, Hongkun; Gray, Robert; Wang, Xiaofei F; Cronin, Walter; Sargent, Daniel J; Benedetti, Jacqueline; Wickerham, Donald L; Djulbegovic, Benjamin; Slingluff, Craig L

    2014-01-01

    Background A major challenge for randomized phase III oncology trials is the frequent low rates of patient enrollment, resulting in high rates of premature closure due to insufficient accrual. Purpose We conducted a pilot study to determine the extent of trial closure due to poor accrual, feasibility of identifying trial factors associated with sufficient accrual, impact of redesign strategies on trial accrual, and accrual benchmarks designating high failure risk in the clinical trials cooperative group (CTCG) setting. Methods A subset of phase III trials opened by five CTCGs between August 1991 and March 2004 was evaluated. Design elements, experimental agents, redesign strategies, and pretrial accrual assessment supporting accrual predictions were abstracted from CTCG documents. Percent actual/predicted accrual rate averaged per month was calculated. Trials were categorized as having sufficient or insufficient accrual based on reason for trial termination. Analyses included univariate and bivariate summaries to identify potential trial factors associated with accrual sufficiency. Results Among 40 trials from one CTCG, 21 (52.5%) trials closed due to insufficient accrual. In 82 trials from five CTCGs, therapeutic trials accrued sufficiently more often than nontherapeutic trials (59% vs 27%, p = 0.05). Trials including pretrial accrual assessment more often achieved sufficient accrual than those without (67% vs 47%, p = 0.08). Fewer exclusion criteria, shorter consent forms, other CTCG participation, and trial design simplicity were not associated with achieving sufficient accrual. Trials accruing at a rate much lower than predicted (<35% actual/predicted accrual rate) were consistently closed due to insufficient accrual. Limitations This trial subset under-represents certain experimental modalities. Data sources do not allow accounting for all factors potentially related to accrual success. Conclusion Trial closure due to insufficient accrual is common. Certain trial design factors appear associated with attaining sufficient accrual. Defining accrual benchmarks for early trial termination or redesign is feasible, but better accrual prediction methods are critically needed. Future studies should focus on identifying trial factors that allow more accurate accrual predictions and strategies that can salvage open trials experiencing slow accrual. PMID:20595245

  8. The antinociceptive effect of systemic gabapentin is related to the type of sensitization-induced hyperalgesia

    PubMed Central

    Curros-Criado, M Mar; Herrero, Juan F

    2007-01-01

    Background Gabapentin is a structural analogue of gamma-aminobutyric acid with strong anticonvulsant and analgesic activities. Important discrepancies are observed on the effectiveness and potency of gabapentin in acute nociception and sensitization due to inflammation and neuropathy. There is also some controversy in the literature on whether gabapentin is only active in central areas of the nervous system or is also effective in the periphery. This is probably due to the use of different experimental models, routes of administration and types of sensitization. The aim of the present study was to investigate the influence of the spinal cord sensitization on the antinociceptive activity of gabapentin in the absence and in the presence of monoarthritis and neuropathy, using the same experimental protocol of stimulation and the same technique of evaluation of antinociception. Methods We studied the antinociceptive effects of iv. gabapentin in spinal cord neuronal responses from adult male Wistar rats using the recording of single motor units technique. Gabapentin was studied in the absence and in the presence of sensitization due to arthritis and neuropathy, combining noxious mechanical and repetitive electrical stimulation (wind-up). Results The experiments showed that gabapentin was effective in arthritic (max. effect of 41 ± 15% of control and ID50 of 1,145 ± 14 micromol/kg; 200 mg/kg) and neuropathic rats (max. effect of 20 ± 8% of control and ID50 of 414 ± 27 micromol/kg; 73 mg/kg) but not in normal rats. The phenomenon of wind-up was dose-dependently reduced by gabapentin in neuropathy but not in normal and arthritic rats. Conclusion We conclude that systemic gabapentin is a potent and effective antinociceptive agent in sensitization caused by arthritis and neuropathy but not in the absence of sensitization. The potency of the antinociception was directly related to the intensity of sensitization in the present experimental conditions. The effect is mainly located in central areas in neuropathy since wind-up was significantly reduced, however, an action on inflammation-induced sensitized nociceptors is also likely. PMID:17550605

  9. Detection and correction of laser induced breakdown spectroscopy spectral background based on spline interpolation method

    NASA Astrophysics Data System (ADS)

    Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 0.9998, 0.9915, 0.9895, and 0.9940 respectively). The proposed spline interpolation method exhibits better linear correlation and smaller error in the results of the quantitative analysis of Cu compared with polynomial fitting, Lorentz fitting and model-free methods, The simulation and quantitative experimental results show that the spline interpolation method can effectively detect and correct the continuous background.

  10. Background radiation in inelastic X-ray scattering and X-ray emission spectroscopy. A study for Johann-type spectrometers

    NASA Astrophysics Data System (ADS)

    Paredes Mellone, O. A.; Bianco, L. M.; Ceppi, S. A.; Goncalves Honnicke, M.; Stutz, G. E.

    2018-06-01

    A study of the background radiation in inelastic X-ray scattering (IXS) and X-ray emission spectroscopy (XES) based on an analytical model is presented. The calculation model considers spurious radiation originated from elastic and inelastic scattering processes along the beam paths of a Johann-type spectrometer. The dependence of the background radiation intensity on the medium of the beam paths (air and helium), analysed energy and radius of the Rowland circle was studied. The present study shows that both for IXS and XES experiments the background radiation is dominated by spurious radiation owing to scattering processes along the sample-analyser beam path. For IXS experiments the spectral distribution of the main component of the background radiation shows a weak linear dependence on the energy for the most cases. In the case of XES, a strong non-linear behaviour of the background radiation intensity was predicted for energy analysis very close to the backdiffraction condition, with a rapid increase in intensity as the analyser Bragg angle approaches π / 2. The contribution of the analyser-detector beam path is significantly weaker and resembles the spectral distribution of the measured spectra. Present results show that for usual experimental conditions no appreciable structures are introduced by the background radiation into the measured spectra, both in IXS and XES experiments. The usefulness of properly calculating the background profile is demonstrated in a background subtraction procedure for a real experimental situation. The calculation model was able to simulate with high accuracy the energy dependence of the background radiation intensity measured in a particular XES experiment with air beam paths.

  11. Cosmogenic production of tritium in dark matter detectors

    NASA Astrophysics Data System (ADS)

    Amaré, J.; Castel, J.; Cebrián, S.; Coarasa, I.; Cuesta, C.; Dafni, T.; Galán, J.; García, E.; Garza, J. G.; Iguaz, F. J.; Irastorza, I. G.; Luzón, G.; Martínez, M.; Mirallas, H.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Puimedón, J.; Ruiz-Chóliz, E.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2018-01-01

    The direct detection of dark matter particles requires ultra-low background conditions at energies below a few tens of keV. Radioactive isotopes are produced via cosmogenic activation in detectors and other materials and those isotopes constitute a background source which has to be under control. In particular, tritium is specially relevant due to its decay properties (very low endpoint energy and long half-life) when induced in the detector medium, and because it can be generated in any material as a spallation product. Quantification of cosmogenic production of tritium is not straightforward, neither experimentally nor by calculations. In this work, a method for the calculation of production rates at sea level has been developed and applied to some of the materials typically used as targets in dark matter detectors (germanium, sodium iodide, argon and neon); it is based on a selected description of tritium production cross sections over the entire energy range of cosmic nucleons. Results have been compared to available data in the literature, either based on other calculations or from measurements. The obtained tritium production rates, ranging from a few tens to a few hundreds of nuclei per kg and per day at sea level, point to a significant contribution to the background in dark matter experiments, requiring the application of specific protocols for target material purification, material storing underground and limiting the time the detector is on surface during the building process in order to minimize the exposure to the most dangerous cosmic ray components.

  12. Controlling the gain contribution of background emitters in few-quantum-dot microlasers

    NASA Astrophysics Data System (ADS)

    Gericke, F.; Segnon, M.; von Helversen, M.; Hopfmann, C.; Heindel, T.; Schneider, C.; Höfling, S.; Kamp, M.; Musiał, A.; Porte, X.; Gies, C.; Reitzenstein, S.

    2018-02-01

    We provide experimental and theoretical insight into single-emitter lasing effects in a quantum dot (QD)-microlaser under controlled variation of background gain provided by off-resonant discrete gain centers. For that purpose, we apply an advanced two-color excitation concept where the background gain contribution of off-resonant QDs can be continuously tuned by precisely balancing the relative excitation power of two lasers emitting at different wavelengths. In this way, by selectively exciting a single resonant QD and off-resonant QDs, we identify distinct single-QD signatures in the lasing characteristics and distinguish between gain contributions of a single resonant emitter and a countable number of off-resonant background emitters to the optical output of the microlaser. Our work addresses the important question whether single-QD lasing is feasible in experimentally accessible systems and shows that, for the investigated microlaser, the single-QD gain needs to be supported by the background gain contribution of off-resonant QDs to reach the transition to lasing. Interestingly, while a single QD cannot drive the investigated micropillar into lasing, its relative contribution to the emission can be as high as 70% and it dominates the statistics of emitted photons in the intermediate excitation regime below threshold.

  13. Lights, camera, education! The potentials of forum theatre in a learning disability nursing program.

    PubMed

    McClimens, Alex; Scott, Rachel

    2007-04-01

    Learning disability nurse education, with a current emphasis on inclusive practice and a history of listening to the person with the disability, is well placed to take advantage of more 'experimental' forms of classroom teaching. In this article we argue for the use of forum theatre as a method of addressing topics from practice within an educational setting. Based on our emergent and exploratory work with students we detail at length the theoretical background that supports such an approach and contextualise the issues with reference to a short piece of drama we have used successfully with different student groups. We feel that the success of this method is due to the involvement of students in directing their own education as well as the inclusion of individuals labelled with learning disability as an integral part of the process.

  14. Discriminative correlation filter tracking with occlusion detection

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Chen, Zhong; Yu, XiPeng; Zhang, Ting; He, Jing

    2018-03-01

    Aiming at the problem that the correlation filter-based tracking algorithm can not track the target of severe occlusion, a target re-detection mechanism is proposed. First of all, based on the ECO, we propose the multi-peak detection model and the response value to distinguish the occlusion and deformation in the target tracking, which improve the success rate of tracking. And then we add the confidence model to update the mechanism to effectively prevent the model offset problem which due to similar targets or background during the tracking process. Finally, the redetection mechanism of the target is added, and the relocation is performed after the target is lost, which increases the accuracy of the target positioning. The experimental results demonstrate that the proposed tracker performs favorably against state-of-the-art methods in terms of robustness and accuracy.

  15. Discrimination of dynamical system models for biological and chemical processes.

    PubMed

    Lorenz, Sönke; Diederichs, Elmar; Telgmann, Regina; Schütte, Christof

    2007-06-01

    In technical chemistry, systems biology and biotechnology, the construction of predictive models has become an essential step in process design and product optimization. Accurate modelling of the reactions requires detailed knowledge about the processes involved. However, when concerned with the development of new products and production techniques for example, this knowledge often is not available due to the lack of experimental data. Thus, when one has to work with a selection of proposed models, the main tasks of early development is to discriminate these models. In this article, a new statistical approach to model discrimination is described that ranks models wrt. the probability with which they reproduce the given data. The article introduces the new approach, discusses its statistical background, presents numerical techniques for its implementation and illustrates the application to examples from biokinetics.

  16. Team research at the biology-mathematics interface: project management perspectives.

    PubMed

    Milton, John G; Radunskaya, Ami E; Lee, Arthur H; de Pillis, Lisette G; Bartlett, Diana F

    2010-01-01

    The success of interdisciplinary research teams depends largely upon skills related to team performance. We evaluated student and team performance for undergraduate biology and mathematics students who participated in summer research projects conducted in off-campus laboratories. The student teams were composed of a student with a mathematics background and an experimentally oriented biology student. The team mentors typically ranked the students' performance very good to excellent over a range of attributes that included creativity and ability to conduct independent research. However, the research teams experienced problems meeting prespecified deadlines due to poor time and project management skills. Because time and project management skills can be readily taught and moreover typically reflect good research practices, simple modifications should be made to undergraduate curricula so that the promise of initiatives, such as MATH-BIO 2010, can be implemented.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prost, Lionel; Carneiro, Jean-Paul; Shemyakin, Alexander

    In a Low Energy Beam Transport line (LEBT), the emittance growth due to the beam's own space charge is typically suppressed by way of neutralization from either electrons or ions, which originate from ionization of the background gas. In cases where the beam is chopped, the neutralization pattern changes throughout the beginning of the pulse, causing the Twiss parameters to differ significantly from their steady state values, which, in turn, may result in beam losses downstream. For a modest beam perveance, there is an alternative solution, in which the beam is kept un-neutralized in the portion of the LEBT thatmore » contains the chopper. The emittance can be nearly preserved if the transition to the un-neutralized section occurs where the beam exhibits low transverse tails. This report discusses the experimental realization of such a scheme at Fermilab's PXIE, where low beam emittance dilution was demonstrated« less

  18. Spectral anomaly methods for aerial detection using KUT nuisance rejection

    NASA Astrophysics Data System (ADS)

    Detwiler, R. S.; Pfund, D. M.; Myjak, M. J.; Kulisek, J. A.; Seifert, C. E.

    2015-06-01

    This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land-water interfaces.

  19. Chem I Supplement: Nuclear Synthesis and Identification of New Elements.

    ERIC Educational Resources Information Center

    Seaborg, Glenn T.

    1985-01-01

    As background material for a paper on the transuranium elements (SE 537 837), this article reviews: (1) several descriptive terms; (2) nuclear reactions; (3) radioactive decay modes; (4) chemical background; and (5) experimental methods used in this field of research and more broadly in nuclear chemistry. (Author/JN)

  20. Preservice Teachers' Attitudes toward Inclusion and toward Students with Special Educational Needs from Different Ethnic Backgrounds

    ERIC Educational Resources Information Center

    Markova, Maria; Pit-Ten Cate, Ineke; Krolak-Schwerdt, Sabine; Glock, Sabine

    2016-01-01

    Drawing on social cognition frameworks, we experimentally examined preservice teachers' implicit attitudes toward students with special educational needs (SEN) from different ethnic backgrounds and preservice teachers' explicit attitudes toward inclusive education. Preservice teachers (N = 46) completed an evaluative priming task and…

  1. Detection of admittivity anomaly on high-contrast heterogeneous backgrounds using frequency difference EIT.

    PubMed

    Jang, J; Seo, J K

    2015-06-01

    This paper describes a multiple background subtraction method in frequency difference electrical impedance tomography (fdEIT) to detect an admittivity anomaly from a high-contrast background conductivity distribution. The proposed method expands the use of the conventional weighted frequency difference EIT method, which has been used limitedly to detect admittivity anomalies in a roughly homogeneous background. The proposed method can be viewed as multiple weighted difference imaging in fdEIT. Although the spatial resolutions of the output images by fdEIT are very low due to the inherent ill-posedness, numerical simulations and phantom experiments of the proposed method demonstrate its feasibility to detect anomalies. It has potential application in stroke detection in a head model, which is highly heterogeneous due to the skull.

  2. Sea Surface Signature of Tropical Cyclones Using Microwave Remote Sensing

    DTIC Science & Technology

    2013-01-01

    due to the ionosphere and troposphere, which have to be compensated for, and components due to the galactic and cosmic background radiation those...and corrections for sun glint, galactic and cosmic background radiation, and Stokes effects of the ionosphere. The accuracy of a given retrieval...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) Sea surface signature of tropical cyclones using microwave remote sensing Bumjun Kil

  3. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi's measurement in a low Earth orbit

    NASA Astrophysics Data System (ADS)

    Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi; Koi, Tatsumi; Madejski, Greg; Mizuno, Tsunefumi; Ohno, Masanori; Saito, Shinya; Sato, Tamotsu; Wright, Dennis H.; Enoto, Teruaki; Fukazawa, Yasushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Kobayashi, Shogo B.; Kokubun, Motohide; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Maier, Daniel; Makishima, Kazuo; Mimura, Taketo; Miyake, Katsuma; Mori, Kunishiro; Murakami, Hiroaki; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumi; Ohta, Masayuki; Ozaki, Masanobu; Sato, Goro; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yasuda, Tetsuya; Yatsu, Yoichi; Yuasa, Takayuki; Zoglauer, Andreas

    2018-05-01

    Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation of isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. The simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi4Ge3O12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.

  4. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi ’s measurement in a low Earth orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi

    Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation ofmore » isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. As a result, the simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi 4Ge 3O 12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.« less

  5. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi ’s measurement in a low Earth orbit

    DOE PAGES

    Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi; ...

    2018-02-19

    Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation ofmore » isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. As a result, the simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi 4Ge 3O 12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.« less

  6. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-Millimetre Spectrograph (BLISS) for SPICA

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M.; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda = 35-435 microns and with R = lambda/(delta)lambda approx. 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10(exp -20) W/Hz(1/2) and response time t<30ms. We expect background-limited performance from bilayers TESs with T(sub c)=65mK and G=15fW/K. However, such TESs cannot be operated at 50mK unless stray power on the devices, or dark power PD, is less than 200aW. We describe criteria for measuring P? that requires accurate knowledge of TC. Ultimately, we fabricated superconducting thermistors from Ir (T(sub c) > or = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(1/2) and tapprox.5ms for straight-beam TESs. In fact, we expected NEPapprox.1.5x10(exp -19)W/Hz(1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10(exp -19)W/Hz(1/2) in our single-pixel test system and NEP=(1.6+0.3)x10(exp -19)W/Hz(1/2) in our array test system.

  7. New method for quantification of vuggy porosity from digital optical borehole images as applied to the karstic Pleistocene limestone of the Biscayne aquifer, southeastern Florida

    USGS Publications Warehouse

    Cunningham, K.J.; Carlson, J.I.; Hurley, N.F.

    2004-01-01

    Vuggy porosity is gas- or fluid-filled openings in rock matrix that are large enough to be seen with the unaided eye. Well-connected vugs can form major conduits for flow of ground water, especially in carbonate rocks. This paper presents a new method for quantification of vuggy porosity calculated from digital borehole images collected from 47 test coreholes that penetrate the karstic Pleistocene limestone of the Biscayne aquifer, southeastern Florida. Basically, the method interprets vugs and background based on the grayscale color of each in digital borehole images and calculates a percentage of vuggy porosity. Development of the method was complicated because environmental conditions created an uneven grayscale contrast in the borehole images that makes it difficult to distinguish vugs from background. The irregular contrast was produced by unbalanced illumination of the borehole wall, which was a result of eccentering of the borehole-image logging tool. Experimentation showed that a simple, single grayscale threshold would not realistically differentiate between the grayscale contrast of vugs and background. Therefore, an equation was developed for an effective subtraction of the changing grayscale contrast, due to uneven illumination, to produce a grayscale threshold that successfully identifies vugs. In the equation, a moving average calculated around the circumference of the borehole and expressed as the background grayscale intensity is defined as a baseline from which to identify a grayscale threshold for vugs. A constant was derived empirically by calibration with vuggy porosity values derived from digital images of slabbed-core samples and used to make the subtraction from the background baseline to derive the vug grayscale threshold as a function of azimuth. The method should be effective in estimating vuggy porosity in any carbonate aquifer. ?? 2003 Published by Elsevier B.V.

  8. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  9. Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise

    NASA Technical Reports Server (NTRS)

    Eckstein, M. P.; Ahumada, A. J. Jr; Watson, A. B.

    1997-01-01

    Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance degradation when the background has high contrast and is similar in spatial frequency and/or orientation to the signal. To account for this finding, models include a contrast gain control mechanism that pools activity across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to the signal. In tasks in which the observer has to detect a known signal added to one of M different backgrounds grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control and variations in the background) interact in a task in which the signal is embedded in one of M locations in a complex spatially varying background (structured background). We use backgrounds extracted from patient digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control) from the effects of the background variations, we conduct detection experiments with three different background conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different samples of structured background. Results show that human visual detection degrades from the uniform background condition to the repeated background condition and degrades even further in the different backgrounds condition. These results suggest that both the contrast gain control mechanism and the background random variations degrade human performance in detection of a signal in a complex, spatially varying background. A filter model and added white noise are used to generate estimates of sampling efficiencies, an equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to the variations in the structured background.

  10. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability

    PubMed Central

    2014-01-01

    Background Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. Results The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. Conclusions This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens. PMID:24559060

  11. Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Brown, James L.; Prabhu, Dinesh K.; Gnoffo, Peter; Johnston, Christopher O.; Hollis, Brian

    2011-01-01

    The present paper provides the background of a focused effort to assess uncertainties in predictions of heat flux and pressure in hypersonic flight (airbreathing or atmospheric entry) using state-of-the-art aerothermodynamics codes. The assessment is performed for four mission relevant problems: (1) shock turbulent boundary layer interaction on a compression corner, (2) shock turbulent boundary layer interaction due a impinging shock, (3) high-mass Mars entry and aerocapture, and (4) high speed return to Earth. A validation based uncertainty assessment approach with reliance on subject matter expertise is used. A code verification exercise with code-to-code comparisons and comparisons against well established correlations is also included in this effort. A thorough review of the literature in search of validation experiments is performed, which identified a scarcity of ground based validation experiments at hypersonic conditions. In particular, a shortage of useable experimental data at flight like enthalpies and Reynolds numbers is found. The uncertainty was quantified using metrics that measured discrepancy between model predictions and experimental data. The discrepancy data is statistically analyzed and investigated for physics based trends in order to define a meaningful quantified uncertainty. The detailed uncertainty assessment of each mission relevant problem is found in the four companion papers.

  12. Protein Denaturation on p-T Axes--Thermodynamics and Analysis.

    PubMed

    Smeller, László

    2015-01-01

    Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies. Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman's ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure. Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.

  13. Randomization Does Not Help Much, Comparability Does

    PubMed Central

    Saint-Mont, Uwe

    2015-01-01

    According to R.A. Fisher, randomization “relieves the experimenter from the anxiety of considering innumerable causes by which the data may be disturbed.” Since, in particular, it is said to control for known and unknown nuisance factors that may considerably challenge the validity of a result, it has become very popular. This contribution challenges the received view. First, looking for quantitative support, we study a number of straightforward, mathematically simple models. They all demonstrate that the optimism surrounding randomization is questionable: In small to medium-sized samples, random allocation of units to treatments typically yields a considerable imbalance between the groups, i.e., confounding due to randomization is the rule rather than the exception. In the second part of this contribution, the reasoning is extended to a number of traditional arguments in favour of randomization. This discussion is rather non-technical, and sometimes touches on the rather fundamental Frequentist/Bayesian debate. However, the result of this analysis turns out to be quite similar: While the contribution of randomization remains doubtful, comparability contributes much to a compelling conclusion. Summing up, classical experimentation based on sound background theory and the systematic construction of exchangeable groups seems to be advisable. PMID:26193621

  14. An Investigation of Widespread Ozone Damage to the Soybean Crop in the Upper Midwest Determined From Ground-Based and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Creilson, John K.; Parker, Peter A.; Ainsworth, Elizabeth A.; Vining, G. Geoffrey; Szarka, John; Booker, Fitzgerald L.; Xu, Xiaojing

    2010-01-01

    Elevated concentrations of ground-level ozone (O3) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O3 can significantly decrease crop productivity, independent verifications of yield losses at current ambient O3 concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O3 measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O3 measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O3 levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually.

  15. Identification of delamination interface in composite laminates using scattering characteristics of lamb wave: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh Kumar; Ramadas, C.; Balachandra Shetty, P.; Satyanarayana, K. G.

    2017-04-01

    Considering the superior strength properties of polymer based composites over metallic materials, they are being used in primary structures of aircrafts. However, these polymeric materials are much more complex in behaviour due to their structural anisotropy along with existence of different materials unlike in metallic alloys. These pose challenge in flaw detection, residual strength determination and life of a structure with their high susceptibility to impact damage in the form of delaminations/disbonds or cracks. This reduces load-bearing capability and potentially leads to structural failure. With this background, this study presents a method to identify location of delamination interface along thickness of a laminate. Both numerical and experimental studies have been carried out with a view to identify the defect, on propagation, mode conversion and scattering characteristics of fundamental anti-symmetric Lamb mode (Ao) when it passed through a semi-infinite delamination. Further, the reflection and transmission scattering coefficients based on power and amplitude ratios of the scattered waves have been computed. The methodology was applied on numerically simulated delaminations to illustrate the efficacy of the method. Results showed that it could successfully identify delamination interface.

  16. Sleep, sleep-disordered breathing and metabolic consequences.

    PubMed

    Lévy, P; Bonsignore, M R; Eckel, J

    2009-07-01

    Sleep profoundly affects metabolic pathways. In healthy subjects, experimental sleep restriction caused insulin resistance (IR) and increased evening cortisol and sympathetic activation. Increased obesity in subjects reporting short sleep duration leads to speculation that, during recent decades, decreased sleeping time in the general population may have contributed to the increasing prevalence of obesity. Causal inference is difficult due to lack of control for confounders and inconsistent evidence of temporal sequence. In the general population, obstructive sleep apnoea (OSA) is associated with glucose intolerance. OSA severity is also associated with the degree of IR. However, OSA at baseline does not seem to significantly predict the development of diabetes. Prevalence of the metabolic syndrome is higher in patients with OSA than in obese subjects without OSA. Treatment with continuous positive airway pressure seems to improve glucose metabolism both in diabetic and nondiabetic OSA but mainly in nonobese subjects. The relative role of obesity and OSA in the pathogenesis of metabolic alterations is still unclear and is intensively studied in clinical and experimental models. In the intermittent hypoxia model in rodents, strong interactions are likely to occur between haemodynamic alterations, systemic inflammation and metabolic changes, modulated by genetic background. Molecular and cellular mechanisms are currently being investigated.

  17. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.

    PubMed

    Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G

    2017-11-03

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1  T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  18. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    NASA Astrophysics Data System (ADS)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.

    2017-11-01

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  19. Immunohistochemical and biochemical characteristics of BSE and CWD in experimentally infected European red deer (Cervus elaphus elaphus)

    PubMed Central

    Martin, Stuart; Jeffrey, Martin; González, Lorenzo; Sisó, Sílvia; Reid, Hugh W; Steele, Philip; Dagleish, Mark P; Stack, Michael J; Chaplin, Melanie J; Balachandran, Aru

    2009-01-01

    Background The cause of the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom (UK) was the inclusion of contaminated meat and bone meal in the protein rations fed to cattle. Those rations were not restricted to cattle but were also fed to other livestock including farmed and free living deer. Although there are no reported cases to date of natural BSE in European deer, BSE has been shown to be naturally or experimentally transmissible to a wide range of different ungulate species. Moreover, several species of North America's cervids are highly susceptible to chronic wasting disease (CWD), a transmissible spongiform encephalopathy (TSE) that has become endemic. Should BSE infection have been introduced into the UK deer population, the CWD precedent could suggest that there is a danger for spread and maintenance of the disease in both free living and captive UK deer populations. This study compares the immunohistochemical and biochemical characteristics of BSE and CWD in experimentally-infected European red deer (Cervus elpahus elaphus). Results After intracerebral or alimentary challenge, BSE in red deer more closely resembled natural infection in cattle rather than experimental BSE in small ruminants, due to the lack of accumulation of abnormal PrP in lymphoid tissues. In this respect it was different from CWD, and although the neuropathological features of both diseases were similar, BSE could be clearly differentiated from CWD by immunohistochemical and Western blotting methods currently in routine use. Conclusion Red deer are susceptible to both BSE and CWD infection, but the resulting disease phenotypes are distinct and clearly distinguishable. PMID:19635142

  20. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  1. OPTIMIZING THE PRECISION OF TOXICITY THRESHOLD ESTIMATION USING A TWO-STAGE EXPERIMENTAL DESIGN

    EPA Science Inventory

    An important consideration for risk assessment is the existence of a threshold, i.e., the highest toxicant dose where the response is not distinguishable from background. We have developed methodology for finding an experimental design that optimizes the precision of threshold mo...

  2. Mitigation strategies against radiation-induced background for space astronomy missions

    NASA Astrophysics Data System (ADS)

    Davis, C. S. W.; Hall, D.; Keelan, J.; O'Farrell, J.; Leese, M.; Holland, A.

    2018-01-01

    The Advanced Telescope for High ENergy Astrophysics (ATHENA) mission is a major upcoming space-based X-ray observatory due to be launched in 2028 by ESA, with the purpose of mapping the early universe and observing black holes. Background radiation is expected to constitute a large fraction of the total system noise in the Wide Field Imager (WFI) instrument on ATHENA, and designing an effective system to reduce the background radiation impacting the WFI will be crucial for maximising its sensitivity. Significant background sources are expected to include high energy protons, X-ray fluorescence lines, 'knock-on' electrons and Compton electrons. Due to the variety of the different background sources, multiple shielding methods may be required to achieve maximum sensitivity in the WFI. These techniques may also be of great interest for use in future space-based X-ray experiments. Simulations have been developed to model the effect of a graded-Z shield on the X-ray fluorescence background. In addition the effect of a 90nm optical blocking filter on the secondary electron background has been investigated and shown to modify the requirements of any secondary electron shielding that is to be used.

  3. Search for neutrinoless double-electron capture of 156Dy

    NASA Astrophysics Data System (ADS)

    Finch, S. W.; Tornow, W.

    2015-12-01

    Background: Multiple large collaborations are currently searching for neutrinoless double-β decay, with the ultimate goal of differentiating the Majorana-Dirac nature of the neutrino. Purpose: Investigate the feasibility of resonant neutrinoless double-electron capture, an experimental alternative to neutrinoless double-β decay. Method: Two clover germanium detectors were operated underground in coincidence to search for the de-excitation γ rays of 156Gd following the neutrinoless double-electron capture of 156Dy. 231.95 d of data were collected at the Kimballton underground research facility with a 231.57 mg enriched 156Dy sample. Results: No counts were seen above background and half-life limits are set at O (1016-1018) yr for the various decay modes of 156Dy. Conclusion: Low background spectra were efficiently collected in the search for neutrinoless double-electron capture of 156Dy, although the low natural abundance and associated lack of large quantities of enriched samples hinders the experimental reach.

  4. A salient region detection model combining background distribution measure for indoor robots.

    PubMed

    Li, Na; Xu, Hui; Wang, Zhenhua; Sun, Lining; Chen, Guodong

    2017-01-01

    Vision system plays an important role in the field of indoor robot. Saliency detection methods, capturing regions that are perceived as important, are used to improve the performance of visual perception system. Most of state-of-the-art methods for saliency detection, performing outstandingly in natural images, cannot work in complicated indoor environment. Therefore, we propose a new method comprised of graph-based RGB-D segmentation, primary saliency measure, background distribution measure, and combination. Besides, region roundness is proposed to describe the compactness of a region to measure background distribution more robustly. To validate the proposed approach, eleven influential methods are compared on the DSD and ECSSD dataset. Moreover, we build a mobile robot platform for application in an actual environment, and design three different kinds of experimental constructions that are different viewpoints, illumination variations and partial occlusions. Experimental results demonstrate that our model outperforms existing methods and is useful for indoor mobile robots.

  5. "Gaining Power through Education": Experiences of Honduran Students from High Poverty Backgrounds

    ERIC Educational Resources Information Center

    Mather, Peter C.; Zempter, Christy; Ngumbi, Elizabeth; Nakama, Yuki; Manley, David; Cox, Haley

    2017-01-01

    This is a study of students from high-poverty backgrounds attending universities in Honduras. Based on a series of individual and focus group interviews, the researchers found students from high-poverty backgrounds face numerous practical challenges in persisting in higher education. Despite these challenges, participants succeeded due to a…

  6. The Effects of Lesson Screen Background Color on Declarative and Structural Knowledge

    ERIC Educational Resources Information Center

    Clariana, Roy B.; Prestera, Gustavo E.

    2009-01-01

    This experimental investigation replicates previous investigations of the effects of left margin screen background color hue to signal lesson sections on declarative knowledge and extends those investigations by adding a measure of structural knowledge. Participants (N = 80) were randomly assigned to receive 1 of 4 computer-based lesson treatments…

  7. Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Liangbo; Zhang, Jun; Sumpter, Bobby G.

    Ever since the isolation of single-layer graphene in 2004, two-dimensional layered structures have been among the most extensively studied classes of materials. To date, the pool of two-dimensional materials (2DMs) continues to grow at an accelerated pace and already covers an extensive range of fascinating and technologically relevant properties. An array of experimental techniques have been developed and used to fully characterize and understand these properties. In particular, Raman spectroscopy has proven to be a key experimental technique, thanks to its capability to identify minute structural and electronic effects in nondestructive measurements. While high-frequency (HF) intralayer Raman modes have beenmore » extensively employed for 2DMs, recent experimental and theoretical progress has demonstrated that low-frequency (LF) interlayer Raman modes are more effective at determining layer numbers and stacking configurations, and provide a unique opportunity to study interlayer coupling. These advantages are due to 2DMs’ unique interlayer vibration patterns where each layer behaves as an almost rigidly moving object with restoring forces corresponding to weak interlayer interactions. Compared to HF Raman modes, the relatively small attention originally devoted to LF Raman modes is largely due to their weaker signal and their proximity to the strong Rayleigh line background, which previously made their detection challenging. Recent progress in Raman spectroscopy with technical and hardware upgrades now makes it possible to probe LF modes with a standard single-stage Raman system and has proven crucial to characterize and understand properties of 2DMs. Here, we present a comprehensive and forward-looking review on the current status of exploiting LF Raman modes of 2DMs from both experimental and theoretical perspectives, revealing the fundamental physics and technological significance of LF Raman modes in advancing the field of 2DMs. We review a broad array of materials, with varying thickness and stacking configurations, discuss the effect of in-plane anisotropy, and present a generalized linear chain model and interlayer bond polarizability model to rationalize the experimental findings. We also discuss the instrumental improvements of Raman spectroscopy to enhance and separate LF Raman signals from the Rayleigh line. Lastly, we highlight the opportunities and challenges ahead in this fast-developing field.« less

  8. Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials

    DOE PAGES

    Liang, Liangbo; Zhang, Jun; Sumpter, Bobby G.; ...

    2017-11-03

    Ever since the isolation of single-layer graphene in 2004, two-dimensional layered structures have been among the most extensively studied classes of materials. To date, the pool of two-dimensional materials (2DMs) continues to grow at an accelerated pace and already covers an extensive range of fascinating and technologically relevant properties. An array of experimental techniques have been developed and used to fully characterize and understand these properties. In particular, Raman spectroscopy has proven to be a key experimental technique, thanks to its capability to identify minute structural and electronic effects in nondestructive measurements. While high-frequency (HF) intralayer Raman modes have beenmore » extensively employed for 2DMs, recent experimental and theoretical progress has demonstrated that low-frequency (LF) interlayer Raman modes are more effective at determining layer numbers and stacking configurations, and provide a unique opportunity to study interlayer coupling. These advantages are due to 2DMs’ unique interlayer vibration patterns where each layer behaves as an almost rigidly moving object with restoring forces corresponding to weak interlayer interactions. Compared to HF Raman modes, the relatively small attention originally devoted to LF Raman modes is largely due to their weaker signal and their proximity to the strong Rayleigh line background, which previously made their detection challenging. Recent progress in Raman spectroscopy with technical and hardware upgrades now makes it possible to probe LF modes with a standard single-stage Raman system and has proven crucial to characterize and understand properties of 2DMs. Here, we present a comprehensive and forward-looking review on the current status of exploiting LF Raman modes of 2DMs from both experimental and theoretical perspectives, revealing the fundamental physics and technological significance of LF Raman modes in advancing the field of 2DMs. We review a broad array of materials, with varying thickness and stacking configurations, discuss the effect of in-plane anisotropy, and present a generalized linear chain model and interlayer bond polarizability model to rationalize the experimental findings. We also discuss the instrumental improvements of Raman spectroscopy to enhance and separate LF Raman signals from the Rayleigh line. Lastly, we highlight the opportunities and challenges ahead in this fast-developing field.« less

  9. Characterization and Evolution of the Swift X-ray Telescope Instrumental Background

    NASA Technical Reports Server (NTRS)

    Hill, Joanne; Pagani, C.; Morris, D. C.; Racusin, J.; Grupe, D.; Vetere, L.; Stroh, M.; Falcone, A.; Kennea, J.; Burrows, D. N.; hide

    2007-01-01

    The X-ray telescope (XRT) on board the Swift Gamma Ray Burst Explorer has successfully operated since the spacecraft launch on 20 November 2004, automatically locating GRB afterglows, measuring their spectra and lightcurves and performing observations of high-energy sources. In this work we investigate the properties of the instrumental background, focusing on its dynamic behavior on both long and short timescales. The operational temperature of the CCD is the main factor that influences the XRT background level. After the failure of the Swift active on-board temperature control system, the XRT detector now operates at a temperature range between -75C and -45C thanks to a passive cooling Heat Rejection System. We report on the long-term effects on the background caused by radiation, consisting mainly of proton irradiation in Swift's low Earth orbit and on the short-term effects of transits through the South Atlantic Anomaly (SAA), which expose the detector to periods of intense proton flux. We have determined the fraction of the detector background that is due to the internal, instrumental background and the part that is due to unresolved astrophysical sources (the cosmic X-ray background) by investigating the degree of vignetting of the measured background and comparing it to the expected value from calibration data.

  10. Polarization of the Cosmic Microwave Background: Are These Guys Serious?

    NASA Technical Reports Server (NTRS)

    Kogut, Alan

    2007-01-01

    The polarization of the cosmic microwave background (CMB) could contain the oldest information in the universe, dating from an inflationary epoch just after the Big Bang. Detecting this signal presents an experimental challenge, as it is both faint and hidden behind complicated foregrounds. The rewards, however, are great, as a positive detection would not only establish inflation as a physical reality but also provide a model-independent measurement of the relevant energy scale. I will present the scientific motivation behind measurements of the CMB polarization and discuss how recent experimental progress could lead to a detection in the not-very-distant future.

  11. Effects of Carnosine (Beta-Alanyl-L-Histidine) in an Experimental Rat Model of Acute Kidney Injury Due to Septic Shock

    PubMed Central

    Sahin, Sabiha; Donmez, Dilek Burukoglu

    2018-01-01

    Background Acute kidney injury (AKI) secondary to sepsis is a major cause of morbidity and mortality in the human intensive care unit (ICU). Kidney function and the histological findings of AKI were investigated in an experimental rat model with sepsis induced by cecal ligation and puncture (CLP) and compared with and without treatment with carnosine (beta-alanyl-L-histidine). Material/Methods Twenty-four Sprague-Dawley rats were randomly divided into three groups consisting eight rats in each: Group 1 – control; Group 2 – septic shock; and Group 3 – septic shock treated with carnosine. Femoral vein and artery catheterization were applied in all rats. Rats in Group 1 underwent laparotomy and catheterization. The other two groups with septic shock underwent laparotomy, CLP, catheterization, and bladder cannulation. Rats in Group 3 received an intraperitoneal (IP) injection of 250 mg/kg carnosine, 60 min following CLP. Rats were monitored for blood pressure, pulse rate, and body temperature to assess responses to postoperative sepsis, and 10 mL/kg saline replacement was administered. Twenty-four hours following CLP, rats were sacrificed, and blood and renal tissue samples were collected. Results Statistically significant improvements were observed in kidney function, tissue and serum malondialdehyde levels, routine blood values, biochemical indices, and in histopathological findings in rats in Group 3 who were treated with carnosine, compared with Group 2 exposed to septic shock without carnosine treatment. Conclusions Carnosine (beta-alanyl-L-histidine) has been shown to have beneficial effects in reducing AKI due to septic shock in a rat model of septicemia. PMID:29334583

  12. Hydrocarbon-Fueled Rocket Engine Plume Diagnostics: Analytical Developments and Experimental Results

    NASA Technical Reports Server (NTRS)

    Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; St. Cyr, William W.

    2006-01-01

    A viewgraph presentation describing experimental results and analytical developments about plume diagnostics for hydrocarbon-fueled rocket engines is shown. The topics include: 1) SSC Plume Diagnostics Background; 2) Engine Health Monitoring Approach; 3) Rocket Plume Spectroscopy Simulation Code; 4) Spectral Simulation for 10 Atomic Species and for 11 Diatomic Molecular Electronic Bands; 5) "Best" Lines for Plume Diagnostics for Hydrocarbon-Fueled Rocket Engines; 6) Experimental Set Up for the Methane Thruster Test Program and Experimental Results; and 7) Summary and Recommendations.

  13. High-resolution study of levels in the astrophysically important nucleus 26Mg and resulting updated level assignments

    NASA Astrophysics Data System (ADS)

    Adsley, P.; Brümmer, J. W.; Faestermann, T.; Fox, S. P.; Hammache, F.; Hertenberger, R.; Meyer, A.; Neveling, R.; Seiler, D.; de Séréville, N.; Wirth, H.-F.

    2018-04-01

    Background: The 22Ne(α ,n )25Mg reaction is an important source of neutrons for the s -process. Direct measurement of this reaction and the competing 22Ne(α ,γ )26Mg reaction are challenging due to the gaseous nature of both reactants, the low cross section and the experimental challenges of detecting neutrons and high-energy γ rays. Detailed knowledge of the resonance properties enables the rates to be constrained for s -process models. Purpose: Previous experimental studies have demonstrated a lack of agreement in both the number and excitation energy of levels in 26Mg. To try to resolve the disagreement between different experiments, proton and deuteron inelastic scattering from 26Mg have been used to identify excited states. Method: Proton and deuteron beams from the tandem accelerator at the Maier-Leibnitz Laboratorium at Garching, Munich, were incident upon enriched 26MgO targets. Scattered particles were momentum-analyzed in the Q3D magnetic spectrograph and detected at the focal plane. Results: Reassignments of states around Ex=10.8 -10.83 MeV in 26Mg suggested in previous works have been confirmed. In addition, new states in 26Mg have been observed, two below and two above the neutron threshold. Up to six additional states above the neutron threshold may have been observed compared to experimental studies of neutron reactions on 25Mg, but some or all of these states may be due to 24Mg contamination in the target. Finally, inconsistencies between measured resonance strengths and some previously accepted Jπ assignments of excited 26Mg states have been noted. Conclusion: There are still a large number of nuclear properties in 26Mg that have yet to be determined and levels that are, at present, not included in calculations of the reaction rates. In addition, some inconsistencies between existing nuclear data exist that must be resolved in order for the reaction rates to be properly calculated.

  14. Anomalous cosmic-microwave-background polarization and gravitational chirality.

    PubMed

    Contaldi, Carlo R; Magueijo, João; Smolin, Lee

    2008-10-03

    We consider the possibility that gravity breaks parity, with left and right-handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous cosmic microwave background polarization. Nonvanishing temperature-magnetic (TB) mode [and electric-magnetic mode] components emerge, revealing interesting experimental targets. Indeed, if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.

  15. Experimental methods in aquatic respirometry: the importance of mixing devices and accounting for background respiration.

    PubMed

    Rodgers, G G; Tenzing, P; Clark, T D

    2016-01-01

    In light of an increasing trend in fish biology towards using static respirometry techniques without the inclusion of a mixing mechanism and without accurately accounting for the influence of microbial (background) respiration, this paper quantifies the effect of these approaches on the oxygen consumption rates (ṀO2 ) measured from juvenile barramundi Lates calcarifer (mean ± s.e. mass = 20·31 ± 0·81 g) and adult spiny chromis damselfish Acanthochromis polyacanthus (22·03 ± 2·53 g). Background respiration changed consistently and in a sigmoidal manner over time in the treatment with a mixing device (inline recirculation pump), whereas attempts to measure background respiration in the non-mixed treatment yielded highly variable estimates of ṀO2 that were probably artefacts due to the lack of water movement over the oxygen sensor during measurement periods. This had clear consequences when accounting for background respiration in the calculations of fish ṀO2 . Exclusion of a mixing device caused a significantly lower estimate of ṀO2 in both species and reduced the capacity to detect differences between individuals as well as differences within an individual over time. There was evidence to suggest that the magnitude of these effects was dependent on the spontaneous activity levels of the fish, as the difference between mixed and non-mixed treatments was more pronounced for L. calcarifer (sedentary) than for A. polyacanthus (more spontaneously active). It is clear that respirometry set-ups for sedentary species must contain a mixing device to prevent oxygen stratification inside the respirometer. While more active species may provide a higher level of water mixing during respirometry measurements and theoretically reduce the need for a mixing device, the level of mixing cannot be quantified and may change with diurnal cycles in activity. To ensure consistency across studies without relying on fish activity levels, and to enable accurate assessments of background respiration, it is recommended that all respirometry systems should include an appropriate mixing device. © 2016 The Fisheries Society of the British Isles.

  16. Identifying green infrastructure BMPs for reducing nitrogen export to a Chesapeake Bay agricultural stream: model synthesis and extension of experimental data

    EPA Science Inventory

    Background/Question/Methods The effectiveness of riparian forest buffers and other green infrastructure for reducing nitrogen export to agricultural streams has been well described experimentally, but a clear understanding of process-level hydrological and biogeochemical control...

  17. Culturally Responsive Experimental Intervention Studies: The Development of a Rubric for Paradigm Expansion

    ERIC Educational Resources Information Center

    Bal, Aydin; Trainor, Audrey A.

    2016-01-01

    Neither legislative demand for evidence-based practices nor a focus on experimental designs for educational interventions has ameliorated the disparate educational opportunities and outcomes for youth from nondominant cultural and linguistic backgrounds. Recent initiatives to increase the rigor of intervention research in special education have…

  18. Global Binary Continuity for Color Face Detection With Complex Background

    NASA Astrophysics Data System (ADS)

    Belavadi, Bhaskar; Mahendra Prashanth, K. V.; Joshi, Sujay S.; Suprathik, N.

    2017-08-01

    In this paper, we propose a method to detect human faces in color images, with complex background. The proposed algorithm makes use of basically two color space models, specifically HSV and YCgCr. The color segmented image is filled uniformly with a single color (binary) and then all unwanted discontinuous lines are removed to get the final image. Experimental results on Caltech database manifests that the purported model is able to accomplish far better segmentation for faces of varying orientations, skin color and background environment.

  19. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.

    Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less

  20. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    DOE PAGES

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; ...

    2017-11-03

    Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less

  1. Gravity Waves and Mesospheric Clouds in the Summer Middle Atmosphere: A Comparison of Lidar Measurements and Ray Modeling of Gravity Waves Over Sondrestrom, Greenland

    NASA Technical Reports Server (NTRS)

    Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.

    2004-01-01

    We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.

  2. Superresolution microscope image reconstruction by spatiotemporal object decomposition and association: application in resolving t-tubule structure in skeletal muscle

    PubMed Central

    Sun, Mingzhai; Huang, Jiaqing; Bunyak, Filiz; Gumpper, Kristyn; De, Gejing; Sermersheim, Matthew; Liu, George; Lin, Pei-Hui; Palaniappan, Kannappan; Ma, Jianjie

    2014-01-01

    One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon count of emitters at a single frame. With fast acquisition rate, the activated emitters can last multiple frames before they transiently switch off or permanently bleach. Effectively incorporating the temporal information of these emitters is critical to improve the spatial resolution. However, majority of the existing reconstruction algorithms locate the emitters frame by frame, discarding or underusing the temporal information. Here we present a new image reconstruction algorithm based on tracklets, short trajectories of the same objects. We improve the localization accuracy by associating the same emitters from multiple frames to form tracklets and by aggregating signals to enhance the signal to noise ratio. We also introduce a weighted mean-shift algorithm (WMS) to automatically detect the number of modes (emitters) in overlapping regions of tracklets so that not only well-separated single emitters but also individual emitters within multi-emitter groups can be identified and tracked. In combination with a maximum likelihood estimator method (MLE), we are able to resolve low to medium density of overlapping emitters with improved localization accuracy. We evaluate the performance of our method with both synthetic and experimental data, and show that the tracklet-based reconstruction is superior in localization accuracy, particularly for weak signals embedded in a strong background. Using this method, for the first time, we resolve the transverse tubule structure of the mammalian skeletal muscle. PMID:24921337

  3. Superresolution microscope image reconstruction by spatiotemporal object decomposition and association: application in resolving t-tubule structure in skeletal muscle.

    PubMed

    Sun, Mingzhai; Huang, Jiaqing; Bunyak, Filiz; Gumpper, Kristyn; De, Gejing; Sermersheim, Matthew; Liu, George; Lin, Pei-Hui; Palaniappan, Kannappan; Ma, Jianjie

    2014-05-19

    One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon count of emitters at a single frame. With fast acquisition rate, the activated emitters can last multiple frames before they transiently switch off or permanently bleach. Effectively incorporating the temporal information of these emitters is critical to improve the spatial resolution. However, majority of the existing reconstruction algorithms locate the emitters frame by frame, discarding or underusing the temporal information. Here we present a new image reconstruction algorithm based on tracklets, short trajectories of the same objects. We improve the localization accuracy by associating the same emitters from multiple frames to form tracklets and by aggregating signals to enhance the signal to noise ratio. We also introduce a weighted mean-shift algorithm (WMS) to automatically detect the number of modes (emitters) in overlapping regions of tracklets so that not only well-separated single emitters but also individual emitters within multi-emitter groups can be identified and tracked. In combination with a maximum likelihood estimator method (MLE), we are able to resolve low to medium density of overlapping emitters with improved localization accuracy. We evaluate the performance of our method with both synthetic and experimental data, and show that the tracklet-based reconstruction is superior in localization accuracy, particularly for weak signals embedded in a strong background. Using this method, for the first time, we resolve the transverse tubule structure of the mammalian skeletal muscle.

  4. Recent discoveries from the cosmic microwave background: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Staggs, Suzanne; Dunkley, Jo; Page, Lyman

    2018-04-01

    Measurements of the anisotropies in the cosmic microwave background (CMB) radiation have provided a wealth of information about the cosmological model that describes the contents and evolution of the universe. These data have led to a standard model described by just six parameters. In this review we focus on discoveries made in the past decade from satellite and ground-based experiments, and look ahead to those anticipated in the coming decade. We provide an introduction to the key CMB observables including temperature and polarization anisotropies, and describe recent progress towards understanding the initial conditions of structure formation, and establishing the properties of the contents of the universe including neutrinos. Results are now being derived both from the primordial CMB signal that traces the behavior of the universe at 400 000 years of cosmic time, as well as from the signals imprinted at later times due to scattering from galaxy clusters, from the motion of electrons in the ionized universe, and from the gravitational lensing of the CMB photons. We describe current experimental methods to measure the CMB, particularly focusing on details relevant for ground and balloon-based instruments, and give an overview of the broad data analysis methods required to convert measurements of the microwave sky into cosmological parameters.

  5. Ring-push metric learning for person reidentification

    NASA Astrophysics Data System (ADS)

    He, Botao; Yu, Shaohua

    2017-05-01

    Person reidentification (re-id) has been widely studied because of its extensive use in video surveillance and forensics applications. It aims to search a specific person among a nonoverlapping camera network, which is highly challenging due to large variations in the cluttered background, human pose, and camera viewpoint. We present a metric learning algorithm for learning a Mahalanobis distance for re-id. Generally speaking, there exist two forces in the conventional metric learning process, one pulling force that pulls points of the same class closer and the other pushing force that pushes points of different classes as far apart as possible. We argue that, when only a limited number of training data are given, forcing interclass distances to be as large as possible may drive the metric to overfit the uninformative part of the images, such as noises and backgrounds. To alleviate overfitting, we propose the ring-push metric learning algorithm. Different from other metric learning methods that only punish too small interclass distances, in the proposed method, both too small and too large inter-class distances are punished. By introducing the generalized logistic function as the loss, we formulate the ring-push metric learning as a convex optimization problem and utilize the projected gradient descent method to solve it. The experimental results on four public datasets demonstrate the effectiveness of the proposed algorithm.

  6. Muon tomography in the Mont Terri underground rock laboratory

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Gibert, D.; Marteau, J.; Carlus, B.; Nussbaum, C.

    2012-04-01

    The Mont Terri underground rock laboratory (Switzerland) was excavated in a Mesozoic shale formation constituted by Opalinus clay. This impermeable formation presents suitable properties for hosting repository sites of radioactive waste. A muon telescope has been placed in this laboratory in October 2009 to establish the feasibility of the muon tomography and to test the sensor performance in a calm environment, where we are protected from atmospheric noisy particles. However, the presence of radon in the gallery as well as charged particles issued from the decay of gamma rays may create a background noise. This noise shift and smooths the signal inducing an under estimation of the rock density. The uncorrelated background has been measured by placing the planes of detection in anti-coincidence. This estimation is preponderant and has to be combined to the theoretical feasibility evaluation to determine the best experimental set-up to observe muon flux fluctuations due to density variations. The muon densitometry experience is here exposed with the estimation of its feasibility. The data acquired from different locations inside the underground laboratory are presented. They are compared to two models representing the layer above the laboratory corresponding to a minimum and a maximum muon flux expectation depending on the values of the rock density.

  7. The fragmentation of 670A MeV neon-20 as a function of depth in water. I. Experiment

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Miller, J.; Wong, M.; Rapkin, M.; Howard, J.; Spieler, H. G.; Jarret, B. V.

    1989-01-01

    We present the final analysis of an experiment to study the interaction of a beam of 670A MeV neon ions incident on a water column set to different thicknesses. The atomic number Z (and, in some cases, the isotopic mass A) of primary beam particles and of the products of nuclear interactions emerging from the water column close to the central axis of the beam was obtained for nuclei between Be (Z = 4) and Ne (Z = 10) using a time-of-flight telescope to measure the velocity and a set of silicon detectors to measure the energy loss of each particle. The fluence of particles of a given charge was obtained and normalized to the incident beam intensity. Corrections were made for accidental coincidences between multiple particles triggering the TOF telescope and for interactions in the detector. The background due to beam particles interacting in beam line elements upstream of the detector was calculated. Sources of experimental artifacts and background in particle identification experiments designed to characterize heavy ion beams for radiobiological research are summarized, and some of the difficulties inherent in this work are discussed. Complete tables of absolutely normalized fluence spectra as a function of LET are included for reference purposes.

  8. Algorithm for automatic image dodging of unmanned aerial vehicle images using two-dimensional radiometric spatial attributes

    NASA Astrophysics Data System (ADS)

    Li, Wenzhuo; Sun, Kaimin; Li, Deren; Bai, Ting

    2016-07-01

    Unmanned aerial vehicle (UAV) remote sensing technology has come into wide use in recent years. The poor stability of the UAV platform, however, produces more inconsistencies in hue and illumination among UAV images than other more stable platforms. Image dodging is a process used to reduce these inconsistencies caused by different imaging conditions. We propose an algorithm for automatic image dodging of UAV images using two-dimensional radiometric spatial attributes. We use object-level image smoothing to smooth foreground objects in images and acquire an overall reference background image by relative radiometric correction. We apply the Contourlet transform to separate high- and low-frequency sections for every single image, and replace the low-frequency section with the low-frequency section extracted from the corresponding region in the overall reference background image. We apply the inverse Contourlet transform to reconstruct the final dodged images. In this process, a single image must be split into reasonable block sizes with overlaps due to large pixel size. Experimental mosaic results show that our proposed method reduces the uneven distribution of hue and illumination. Moreover, it effectively eliminates dark-bright interstrip effects caused by shadows and vignetting in UAV images while maximally protecting image texture information.

  9. Sound levels in modern rodent housing rooms are an uncontrolled environmental variable with fluctuations mainly due to human activities

    PubMed Central

    Lauer, Amanda M.; May, Bradford J.; Hao, Ziwei Judy; Watson, Julie

    2009-01-01

    Noise in animal housing facilities is an environmental variable that can affect hearing, behavior and physiology in mice. The authors measured sound levels in two rodent housing rooms (room 1 and room 2) during several periods of 24 h. Room 1, which was subject to heavy personnel traffic, contained ventilated racks and static cages that housed large numbers of mice. Room 2 was accessed by only a few staff members and contained only static cages that housed fewer mice. In both rooms, background sound levels were about 80 dB, and transient noises caused sound levels to temporarily rise 30–40 dB above the baseline level; such peaks occurred frequently during work hours (8:30 AM to 4:30 PM) and infrequently during non-work hours. Noise peaks during work hours in room 1 occurred about two times as often as in room 2 (P = 0.01). Use of changing stations located in the rooms caused background noise to increase by about 10 dB. Loud noise and noise variability were attributed mainly to personnel activity. Attempts to reduce noise should concentrate on controlling sounds produced by in-room activities and experimenter traffic; this may reduce the variability of research outcomes and improve animal welfare. PMID:19384312

  10. Recent discoveries from the cosmic microwave background: a review of recent progress.

    PubMed

    Staggs, Suzanne; Dunkley, Jo; Page, Lyman

    2018-04-01

    Measurements of the anisotropies in the cosmic microwave background (CMB) radiation have provided a wealth of information about the cosmological model that describes the contents and evolution of the universe. These data have led to a standard model described by just six parameters. In this review we focus on discoveries made in the past decade from satellite and ground-based experiments, and look ahead to those anticipated in the coming decade. We provide an introduction to the key CMB observables including temperature and polarization anisotropies, and describe recent progress towards understanding the initial conditions of structure formation, and establishing the properties of the contents of the universe including neutrinos. Results are now being derived both from the primordial CMB signal that traces the behavior of the universe at 400 000 years of cosmic time, as well as from the signals imprinted at later times due to scattering from galaxy clusters, from the motion of electrons in the ionized universe, and from the gravitational lensing of the CMB photons. We describe current experimental methods to measure the CMB, particularly focusing on details relevant for ground and balloon-based instruments, and give an overview of the broad data analysis methods required to convert measurements of the microwave sky into cosmological parameters.

  11. Developments in Screening Tests and Strategies for Colorectal Cancer

    PubMed Central

    Sovich, Justin L.; Sartor, Zachary

    2015-01-01

    Background. Worldwide, colorectal cancer (CRC) is the third most common cancer in men and second most common in women. It is the fourth most common cause of cancer mortality. In the United States, CRC is the third most common cause of cancer and second most common cause of cancer mortality. Incidence and mortality rates have steadily fallen, primarily due to widespread screening. Methods. We conducted keyword searches on PubMed in four categories of CRC screening: stool, endoscopic, radiologic, and serum, as well as news searches in Medscape and Google News. Results. Colonoscopy is the gold standard for CRC screening and the most common method in the United States. Technological improvements continue to be made, including the promising “third-eye retroscope.” Fecal occult blood remains widely used, particularly outside the United States. The first at-home screen, a fecal DNA screen, has also recently been approved. Radiological methods are effective but seldom used due to cost and other factors. Serum tests are largely experimental, although at least one is moving closer to market. Conclusions. Colonoscopy is likely to remain the most popular screening modality for the immediate future, although its shortcomings will continue to spur innovation in a variety of modalities. PMID:26504799

  12. Zika Virus (ZIKV): a review of proposed mechanisms of transmission and associated congenital abnormalities

    PubMed Central

    Desai, Sruti K; Hartman, Steven D; Jayarajan, Shilpa; Liu, Stephanie; Gallicano, G Ian

    2017-01-01

    Zika virus (ZIKV) has been of major international public health concern following large outbreaks in the Americas occurring in 2015-2016. Most notably, ZIKV has been seen to pose dangers in pregnancy due to its association with congenital abnormalities such as microcephaly. Numerous experimental approaches have been taken to address how the virus can cross the placenta, alter normal fetal development, and disrupt specific cellular functions. Many areas concerning the mechanisms of transmission, especially from mother to fetus, are largely unknown but demand further research. Several promising new studies are presented that provide insight into possible mechanisms of transmission, different cell types affected, and immune responses towards the virus. By aiming to better understand the processes behind altered fetal neuronal development due to ZIKV infection, the hope is to find ways to increase protection of the fetus and prevent congenital abnormalities such as microcephaly. As ZIKV infection is spreading to increasingly more areas and bringing harmful outcomes and birth defects with it, it is imperative to identify the mechanisms of transmitting this infectious agent, consider different genetic backgrounds of hosts and strain types, and navigate methods to protect those affected from the detrimental effects of this newly emerging virus. PMID:28804687

  13. Potential Treatment of Inflammatory and Proliferative Diseases by Ultra-Low Doses of Ionizing Radiations

    PubMed Central

    Sanders, Charles L.

    2012-01-01

    Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10–450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans. PMID:23304108

  14. Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor.

    PubMed

    Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong

    2016-12-29

    When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications.

  15. Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor

    PubMed Central

    Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong

    2016-01-01

    When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications. PMID:28036073

  16. Data analysis in Raman measurements of biological tissues using wavelet techniques

    NASA Astrophysics Data System (ADS)

    Gaeta, Giovanni M.; Zenone, Flora; Camerlingo, Carlo; Riccio, Roberto; Moro, Gianfranco; Lepore, Maria; Indovina, Pietro L.

    2005-03-01

    Raman spectroscopy of oral tissues is a promising tool for in vivo diagnosis of oral pathologies, due to the high chemical and structural information content of Raman spectra. However, measurements on biological tissues are usually hindered by low level signals and by the presence of interfering noise and background components due to light diffusion or fluorescence processes. Numerical methods can be used in data analysis, in order to overcome these problems. In this work the wavelet multicomponent decomposition approach has been tested in a series of micro-Raman measurements performed on "in vitro" animal tissue samples. The experimental set-up was mainly composed by a He-Ne laser and a monochromator equipped with a liquid nitrogen cooled CCD equipped with a grating of 1800 grooves/mm. The laser light was focused on the sample surface by means of a 50 X optical objective. The resulting spectra were analysed using a wavelet software package and the contribution of different vibration modes have been singled out. In particular, the C=C stretching mode, and the CH2 bending mode of amide I and amide III and tyrosine contributions were present. The validity of wavelet approach in the data treatment has been also successfully tested on aspirin.

  17. Small target pre-detection with an attention mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yuehuan; Zhang, Tianxu; Wang, Guoyou

    2002-04-01

    We introduce the concept of predetection based on an attention mechanism to improve the efficiency of small-target detection by limiting the image region of detection. According to the characteristics of small-target detection, local contrast is taken as the only feature in predetection and a nonlinear sampling model is adopted to make the predetection adaptive to detect small targets with different area sizes. To simplify the predetection itself and decrease the false alarm probability, neighboring nodes in the sampling grid are used to generate a saliency map, and a short-term memory is adopted to accelerate the `pop-out' of targets. We discuss the fact that the proposed approach is simple enough in computational complexity. In addition, even in a cluttered background, attention can be led to targets in a satisfying few iterations, which ensures that the detection efficiency will not be decreased due to false alarms. Experimental results are presented to demonstrate the applicability of the approach.

  18. Exploring biological interaction networks with tailored weighted quasi-bicliques

    PubMed Central

    2012-01-01

    Background Biological networks provide fundamental insights into the functional characterization of genes and their products, the characterization of DNA-protein interactions, the identification of regulatory mechanisms, and other biological tasks. Due to the experimental and biological complexity, their computational exploitation faces many algorithmic challenges. Results We introduce novel weighted quasi-biclique problems to identify functional modules in biological networks when represented by bipartite graphs. In difference to previous quasi-biclique problems, we include biological interaction levels by using edge-weighted quasi-bicliques. While we prove that our problems are NP-hard, we also describe IP formulations to compute exact solutions for moderately sized networks. Conclusions We verify the effectiveness of our IP solutions using both simulation and empirical data. The simulation shows high quasi-biclique recall rates, and the empirical data corroborate the abilities of our weighted quasi-bicliques in extracting features and recovering missing interactions from biological networks. PMID:22759421

  19. Remedial action suitability for the Cornhusker Army Ammunition Plant site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonavinakere, S.; Rappa, P. III

    1995-12-31

    Numerous Department of Defense (DOD) sites across the nation are contaminated with explosive wastes due to munitions production during World War II, Korean Conflict and Vietnam Conflict. Production activities included explosives manufacturing, loading, packing, assembling, machining, casting and curing. Contaminants often present at these sites include TNT, RDX, HMX, Tetryl 2,4-DNT, 2,6-DNT, 1,3-DNB, 1,3,5-TNB and nitrobenzene. The Cornhusker Army Ammunition Plant (CAAP) is one such DOD site that has been determined to be contaminated with explosives. The CAAP is located approximately 2 miles west of the City of Grand Island in Hall County, Nebraska. The plant produced artillery, bombs, boosters,more » supplementary charges and various other experimental explosives. The purpose of this paper is to provide an overview of the site background, review of the remedial alternatives evaluation process and rationale behind the selection of present remedial action.« less

  20. Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooth, R.A.; Verhage, A.J.L.; Wouters, L.W.

    1990-09-01

    The photoacoustic determination of the ammonia concentration in atmospheric air by absorption of CO{sub 2} laser radiation at 9.22 {mu}m is influenced by the presence of H{sub 2}O and CO{sub 2}. Kinetic cooling due to the coupling of excited CO{sub 2} and N{sub 2} levels causes important changes in phase and amplitude of the photoacoustic signal. Theoretical background is presented to deduce the correct NH{sub 3} concentration from the signal. The experimental setup used to perform field measurements is described. Adhesion of NH{sub 3} to the walls of the resonant photoacoustic cell was investigated. Temperature effects are treated. Field datamore » of NH{sub 3} and H{sub 2}O concentrations are presented. Key words: Photoacoustics, ammonia, kinetic cooling, trace gas measurements, ammonia adhesion, acoustic resonance, CO{sub 2} laser radiation, water vapor absorption, carbon dioxide absorption.« less

  1. Environmental contamination due to shale gas development.

    PubMed

    Annevelink, M P J A; Meesters, J A J; Hendriks, A J

    2016-04-15

    Shale gas development potentially contaminates both air and water compartments. To assist in governmental decision-making on future explorations, we reviewed scattered information on activities, emissions and concentrations related to shale gas development. We compared concentrations from monitoring programmes to quality standards as a first indication of environmental risks. Emissions could not be estimated accurately because of incomparable and insufficient data. Air and water concentrations range widely. Poor wastewater treatment posed the highest risk with concentrations exceeding both Natural Background Values (NBVs) by a factor 1000-10,000 and Lowest Quality Standards (LQSs) by a factor 10-100. Concentrations of salts, metals, volatile organic compounds (VOCs) and hydrocarbons exceeded aquatic ecotoxicological water standards. Future research must focus on measuring aerial and aquatic emissions of toxic chemicals, generalisation of experimental setups and measurement technics and further human and ecological risk assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Probing Sub-GeV Mass Strongly Interacting Dark Matter with a Low-Threshold Surface Experiment.

    PubMed

    Davis, Jonathan H

    2017-11-24

    Using data from the ν-cleus detector, based on the surface of Earth, we place constraints on dark matter in the form of strongly interacting massive particles (SIMPs) which interact with nucleons via nuclear-scale cross sections. For large SIMP-nucleon cross sections, the sensitivity of traditional direct dark matter searches using underground experiments is limited by the energy loss experienced by SIMPs, due to scattering with the rock overburden and experimental shielding on their way to the detector apparatus. Hence, a surface-based experiment is ideal for a SIMP search, despite the much larger background resulting from the lack of shielding. We show using data from a recent surface run of a low-threshold cryogenic detector that values of the SIMP-nucleon cross section up to approximately 10^{-27}  cm^{2} can be excluded for SIMPs with masses above 100 MeV.

  3. Ion transport in a pH-regulated nanopore.

    PubMed

    Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2013-08-06

    Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.

  4. Precursor of transition to turbulence: spatiotemporal wave front.

    PubMed

    Bhaumik, S; Sengupta, T K

    2014-04-01

    To understand transition to turbulence via 3D disturbance growth, we report here results obtained from the solution of Navier-Stokes equation (NSE) to reproduce experimental results obtained by minimizing background disturbances and imposing deterministic excitation inside the shear layer. A similar approach was adopted in Sengupta and Bhaumik [Phys. Rev. Lett. 107, 154501 (2011)], where a route of transition from receptivity to fully developed turbulent stage was explained for 2D flow in terms of the spatio-temporal wave-front (STWF). The STWF was identified as the unit process of 2D turbulence creation for low amplitude wall excitation. Theoretical prediction of STWF for boundary layer was established earlier in Sengupta, Rao, and Venkatasubbaiah [Phys. Rev. Lett. 96, 224504 (2006)] from the Orr-Sommerfeld equation as due to spatiotemporal instability. Here, the same unit process of the STWF during transition is shown to be present for 3D disturbance field from the solution of governing NSE.

  5. High-resolution Auger-electron spectroscopy induced by positron annihilation on Fe, Ni, Cu, Zn, Pd, and Au

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Mayer, J.; Schreckenbach, K.

    2010-04-01

    Positron annihilation induced Auger electron spectroscopy (PAES) enables almost background free, non-destructive surface analysis with high surface selectivity. The Auger-spectrometer at the high intense positron source NEPOMUC now allows to record positron annihilation induced Auger spectra within a short data acquisition time of 10-80 minutes. With a new hemispherical electron energy analyzer and due to the exceptional peak to noise ratio, we succeeded to measure Auger-transitions such as the M2,3V V double peak of nickel with high energy resolution. The relative Auger-electron intensities are obtained by the analysis of the recorded positron annihilation induced Auger spectra for the surfaces of Fe, Ni, Cu, Pd and Au. It is demonstrated, that high-resolution PAES allows to determine experimentally the relative surface core annihilation probability of various atomic levels.

  6. Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar.

    PubMed

    Nakajima, T Y; Imai, T; Uchino, O; Nagai, T

    1999-08-20

    The influence of daylight and noise current on cloud and aerosol observations by realistic spaceborne lidar was examined by computer simulations. The reflected solar radiations, which contaminate the daytime return signals of lidar operations, were strictly and explicitly estimated by accurate radiative transfer calculations. It was found that the model multilayer cirrus clouds and the boundary layer aerosols could be observed during the daytime and the nighttime with only a few laser shots. However, high background noise and noise current make it difficult to observe volcanic aerosols in middle and upper atmospheric layers. Optimal combinations of the laser power and receiver field of view are proposed to compensate for the negative influence that is due to these noises. For the computer simulations, we used a realistic set of lidar parameters similar to the Experimental Lidar in-Space Equipment of the National Space Development Agency of Japan.

  7. Teaching Electric Fences: The Physics Behind the Brainiac Video

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael

    2016-11-01

    In many states, electric fences are used to prevent animals from leaving a designated area, for example for grazing. They are quite well known by most students and can therefore serve as daily-life examples of electric circuits. Besides helping to grasp the ideas of Kirchhoff's laws for voltages and currents in circuits according to loop and junction rules, they can also serve as introduction to the topic of conduction of electricity by humans and respective effects (in contrast to electric fences, the latter can also be studied experimentally in the classroom). Here we provide background information on the circuit diagrams of electrical fences that also explains the so-called Brainiac YouTube videos on the topic. While electric fences are designed not to be dangerous to humans or animals due to the short duration of the electrical pulses, students and teachers are strongly discouraged from attempting to replicate the scenes enacted in the video.

  8. Emissivity properties of silicon wafers and their application to radiation thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iuchi, T.; Seo, T.

    We studied the spectral and directional emissivities of silicon wafers using an optical polarization technique. Based on the simulation and experimental results, we developed two different radiation thermometry methods for silicon wafers, the first based on a polarized emissivity-invariant condition, and the second based on the relationship between the ratio of the p-to s-polarized radiance and the polarized emissivity. These methods can be performed at temperatures above 600 °C and over a wide wavelength range (0.9∼5 μm), irrespective of dielectric film thickness and substrate resistivity due to the dopant concentrations. Temperature measurements were estimated to have expanded uncertainties (k=2) ofmore » less than 5 °C. A radiometer system with wavelengths above 4.5 μm was successfully developed because the system was not influenced by background noise caused by a high-intensity heating lamp.« less

  9. Airy beam self-focusing in a photorefractive medium

    PubMed Central

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2016-01-01

    The unique bending and shape-preserving properties of optical Airy beams offer a large range of applications in for example beam routing, optical waveguiding, particle manipulation and plasmonics. In these applications and others, the Airy beam may experience nonlinear light-matter interactions which in turn modify the Airy beam properties and propagation. A well-known example is light self-focusing that leads to the formation of spatial soliton. Here, we unveil experimentally the self-focusing properties of a 1D-Airy beam in a photorefractive crystal under focusing conditions. The transient evolution involves both self-bending and acceleration of the initially launched Airy beam due to the onset of an off-shooting soliton and the resulting nonlocal refractive index perturbation. Both the transient and stationary self-focusing properties can be tuned by varying the bias electric field, the injected Airy beam power and the background illumination. PMID:27731356

  10. Calibrationless rotating Lorentz-force flowmeters for low flow rate applications

    NASA Astrophysics Data System (ADS)

    Hvasta, M. G.; Dudt, D.; Fisher, A. E.; Kolemen, E.

    2018-07-01

    A ‘weighted magnetic bearing’ has been developed to improve the performance of rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing reduces frictional losses within a double-sided, disc-style RLFF to negligible levels. Operating such an RLFF under ‘frictionless’ conditions provides two major benefits. First, the steady-state velocity of the RLFF magnets matches the average velocity of the flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow measurements without any calibration or prior knowledge of the fluid properties. Second, due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot be detected when conventional, high-friction bearings are used. This paper provides a brief background on RLFFs, gives a detailed description of weighted magnetic bearings, and compares experimental RLFF data to measurements taken with a commercially available flowmeter.

  11. Ambient Dose Equivalent in S. Paulo and Bauru cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umisedo, Nancy K.; Okuno, Emico; Cancio, Francisco S.

    2008-08-07

    The Laboratory of Dosimetry (Institute of Physics, University of S. Paulo) performs since 1981 the external individual monitoring of workers exposed to X and gamma rays based on thermoluminescent dosimetry (TLD). Personal dose equivalent refers only to the exposure of workers due to the working activities, and the dose due to background radiation, also measured with TLD, must be subtracted to evaluate it. A compilation of ambient dose equivalent was done to evaluate the dose due to the background radiation in the work places, and also to contribute to the knowledge of the level of indoor radiation to which themore » public is exposed.« less

  12. High temperature microelectrophoresis studies of the solid oxide/water interface

    NASA Astrophysics Data System (ADS)

    Fedkin, Mark Valentinovich

    Metal oxides are abundant components of geo-environmental systems and are widely used materials in industry. Many practical applications of oxide materials require the knowledge of their surface properties at both ambient and elevated temperatures. Due to substantial technical challenges associated with experimental studies of solid/water interfaces at elevated temperatures, consistent data on adsorption, surface charge, and zeta potential for most oxide materials are limited to temperatures less than 100°C. A high temperature microelectrophoresis technique, developed in this study, made it possible to extend the zeta potential measurements at the solid oxide/water interface to 200°C. The design of the high temperature electrophoresis cell allowed for the visual microscopic observation of the electrophoretic movement of suspended particles through pressure-tight sapphire windows. The electrophoretic mobilities of metal oxide particles suspended in aqueous solutions were measured in a DC electric field as a function of pH, ionic strength, and temperature. The experimental procedure and methods for evaluation of the main experimental parameters (electrophoretic mobility, electric field strength, high temperature pH, and cell constant) have been developed. Zeta potentials were calculated from the experimental data using O'Brien and White's (1978) numerical solution for electrophoretic mobility equation. Zeta potentials and isoelectric points (IEP) of the metal oxide/aqueous solution interface were experimentally determined for ZrO2, TiO 2(rutile), and alphaAl2O3 at 25, 120, and 200°C. The background solutions used for the preparation of suspensions were pure H2O, NaCl(aq) (10-4--10-2 mol.kg-1), and SrCl2 (10-4 mol.kg, for TiO2). For all studied materials, the IEPs were found to regularly decrease with increasing temperature, which agrees with available theoretical predictions. Thermodynamic functions, including Gibbs energy, enthalpy, and heat capacity, were estimated for the H +/OH- adsorption from the experimental IEP data using the 1-pK model of the oxide/water interface. The experimental information obtained in this study combined with data from potentiometric titration and other experimental methods form the basis for future theoretical studies of the electrical double layer at the oxide/water interface.

  13. Jetting Through the Primordial Universe

    NASA Astrophysics Data System (ADS)

    Kunnawalkam Elayavalli, Raghav

    Collisions of heavy ion nuclei at relativistic speeds (close to the speed of light), sometimes referred to as the "little bang", can recreate conditions similar to the early universe. This high temperature and very dense form of matter, now known to consist of de-confined quarks and gluons is named the quark gluon plasma (QGP). An early signature of the QGP, both theorized and seen in experiments, was the aspect of "jet quenching" and understanding that phenomenon will be the main focus of this thesis. The concept behind quenching is that a high energetic quark or gluon jet undergoes significant energy loss due to the overall structure modifications related to its fragmentation and radiation patterns as it traverses the medium. The term jet, parameterized by a fixed lateral size or the jet radius, represents the collimated spray of particles arising from an initial parton. In this thesis, Run1 experimental data from pp and heavy ion collisions at the CERN LHC is analyzed with the CMS detector. Analysis steps involved in the measurement of the inclusive jet cross section in pp, pPb and PbPb systems are outlined in detail. The pp jet cross section is compared with next to leading order theoretical calculations supplemented with non perturbative corrections for three different jet radii highlighting better comparisons for larger radii jets. Measurement of the jet yield followed by the nuclear modification factors in proton-lead at 5.02 TeV and lead-lead collisions at 2.76 TeV are presented. Since pp data at 5.02 TeV was not available in Run1, an extrapolation method is performed to derive a reference pp spectra. A new data driven technique is introduced to estimate and correct for the fake jet contribution in PbPb for low transverse momenta jets. The nuclear modification factors studied in this thesis show jet quenching to be attributed to final state effects, have a strong correlation to the event centrality, a weak inverse correlation to the jet transverse momenta and an apparent independence on the jet radii in the kinematic range studied. These measurements are compared with leading theoretical model calculations and other experimental results at the LHC leading to unanimous agreement on the qualitative nature of jet quenching. This thesis also features novel updates to the Monte Carlo heavy ion event generator JEWEL (Jet Evolution With Energy Loss) including the boson-jet production channels and also background subtraction techniques to reduce the effect of the thermal background. Keeping track of these jet-medium recoils in JEWEL due to the background subtraction techniques significantly improves its descriptions of several jet structure and sub-structure measurements at the LHC.

  14. Complexities and Perplexities: A Critical Appraisal of the Evidence for Soil-Transmitted Helminth Infection-Related Morbidity

    PubMed Central

    Nery, Susana V.; Doi, Suhail A.; Gray, Darren J.; Soares Magalhães, Ricardo J.; McCarthy, James S.; Traub, Rebecca J.; Andrews, Ross M.; Clements, Archie C. A.

    2016-01-01

    Background: Soil-transmitted helminths (STH) have acute and chronic manifestations, and can result in lifetime morbidity. Disease burden is difficult to quantify, yet quantitative evidence is required to justify large-scale deworming programmes. A recent Cochrane systematic review, which influences Global Burden of Disease (GBD) estimates for STH, has again called into question the evidence for deworming benefit on morbidity due to STH. In this narrative review, we investigate in detail what the shortfalls in evidence are. Methodology/Principal Findings: We systematically reviewed recent literature that used direct measures to investigate morbidity from STH and we critically appraised systematic reviews, particularly the most recent Cochrane systematic review investigating deworming impact on morbidity. We included six systematic reviews and meta-analyses, 36 literature reviews, 44 experimental or observational studies, and five case series. We highlight where evidence is insufficient and where research needs to be directed to strengthen morbidity evidence, ideally to prove benefits of deworming. Conclusions/Significance: Overall, the Cochrane systematic review and recent studies indicate major shortfalls in evidence for direct morbidity. However, it is questionable whether the systematic review methodology should be applied to STH due to heterogeneity of the prevalence of different species in each setting. Urgent investment in studies powered to detect direct morbidity effects due to STH is required. PMID:27196100

  15. Calibration facility for environment dosimetry instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-16

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∼10{sup −9} - 10{sup −8} Sv/h). A correct measurement of H in this rangemore » involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.« less

  16. Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binétruy, Pierre; Dufaux, Jean-François; Bohé, Alejandro

    We review several cosmological backgrounds of gravitational waves accessible to direct-detection experiments, with a special emphasis on those backgrounds due to first-order phase transitions and networks of cosmic (super-)strings. For these two particular sources, we revisit in detail the computation of the gravitational wave background and improve the results of previous works in the literature. We apply our results to identify the scientific potential of the NGO/eLISA mission of ESA regarding the detectability of cosmological backgrounds.

  17. Review of the Theoretical and Experimental Status of Dark Matter Identification with Cosmic-Ray Antideuterons

    NASA Technical Reports Server (NTRS)

    Aramaki, T.; Boggs, S.; Bufalino, S.; Dal, L.; von Doetinchem, P.; Donato, F.; Fornengo, N.; Fuke, H.; Grefe, M.; Hailey, C.; hide

    2016-01-01

    Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth's geomagnetic field, and the atmosphere. Finally, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Therefore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.

  18. Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuterons

    DOE PAGES

    Aramaki, T.; Boggs, S.; Bufalino, S.; ...

    2016-01-27

    Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or γ-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectablemore » cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth’s geomagnetic field, and the atmosphere. Lastly, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Furthermore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.« less

  19. Exploring Perspectives and Identifying Potential Challenges Encountered with Crime Scene Investigations When Developing Chemistry Curricula

    ERIC Educational Resources Information Center

    Kanu, A. Bakarr; Pajski, Megan; Hartman, Machelle; Kimaru, Irene; Marine, Susan

    2015-01-01

    In today's complex world, there is a continued demand for recently graduated forensic chemists (criminalists) who have some background in forensic experimental techniques. This article describes modern forensic experimental approaches designed and implemented from a unique instructional perspective to present certain facets of crime scene…

  20. 9. PANORAMIC VIEW WEST, FERNOW EXPERIMENTAL FOREST RESIDENCE, CHEAT DISTRICT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. PANORAMIC VIEW WEST, FERNOW EXPERIMENTAL FOREST RESIDENCE, CHEAT DISTRICT RANGER RESIDENCE AND GARAGE, IMPLEMENT BUILDING, SEED EXTRACTOR BUILDING, CONE DRYING SHED, PUMP HOUSE, OIL HOUSE, CHEAT DISTRICT RANGER OFFICE, WASH HOUSE, AND NURSERY MANAGER'S RESIDENCE. PLANTING BEDS IN BACKGROUND. - Parsons Nursery, South side of U.S. Route 219, Parsons, Tucker County, WV

  1. Pedagogical Strategies for Teaching Literacy to ESL Immigrant Students: A Meta-Analysis

    ERIC Educational Resources Information Center

    Adesope, Olusola O.; Lavin, Tracy; Thompson, Terri; Ungerleider, Charles

    2011-01-01

    Background: Many countries rely on immigrants for population growth and to maintain a skilled workforce. However, many such immigrants face literacy-related barriers to success in education and in the labour force. Aims: This meta-analysis reviews experimental and quasi-experimental studies to examine strategies for teaching English literacy to…

  2. Laser Studies of Gas Phase Radical Reactions.

    DTIC Science & Technology

    1989-01-01

    synchronised chopper ( Rofin 7500) to block the laser beam on alternate shots to allow background subtraction. Signal due to scattered laser light was...synchronised chopper ( Rofin 7500) to block the laser beam on alternate shots to allow background subtraction. Signal due to scattered laser light was...Cassufication) (U) Laser Studies of Gas Phase Radical Reactions 𔃼 ,ERSRP4AL UTHOR($) I3a. TYPE Of REPORT 13b. TIME COVERtD 14 D T8?’F JPORT (Year, Maonlth, Da

  3. Thermodynamics of weight loss diets.

    PubMed

    Fine, Eugene J; Feinman, Richard D

    2004-12-08

    BACKGROUND: It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? RESULTS: Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. CONCLUSIONS: Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms.

  4. Direct measurement of nuclear cross-section of astrophysical interest: Results and perspectives

    NASA Astrophysics Data System (ADS)

    Cavanna, Francesca; Prati, Paolo

    2018-03-01

    Stellar evolution and nucleosynthesis are interconnected by a wide network of nuclear reactions: the study of such connection is usually known as nuclear astrophysics. The main task of this discipline is the determination of nuclear cross-section and hence of the reaction rate in different scenarios, i.e. from the synthesis of a few very light isotopes just after the Big Bang to the heavy element production in the violent explosive end of massive stars. The experimental determination of reaction cross-section at the astrophysical relevant energies is extremely difficult, sometime impossible, due to the Coulomb repulsion between the interacting nuclei which turns out in cross-section values down to the fbar level. To overcome these obstacles, several experimental approaches have been developed and the adopted techniques can be roughly divided into two categories, i.e. direct and indirect methods. In this review paper, the general problem of nuclear astrophysics is introduced and discussed from the point of view of experimental approach. We focus on direct methods and in particular on the features of low-background experiments performed at underground laboratory facilities. The present knowledge of reactions involved in the Big Bang and stellar hydrogen-burning scenarios is discussed as well as the ongoing projects aiming to investigate mainly the helium- and carbon-burning phases. Worldwide, a new generation of experiment in the MeV range is in the design phase or at the very first steps and decisive progresses are expected to come in the next years.

  5. Handwriting performance in the absence of visual control in writer's cramp patients: Initial observations

    PubMed Central

    Chakarov, Vihren; Hummel, Sibylla; Losch, Florian; Schulte-Mönting, Jürgen; Kristeva, Rumyana

    2006-01-01

    Background The present study was aimed at investigating the writing parameters of writer's cramp patients and control subjects during handwriting of a test sentence in the absence of visual control. Methods Eight right-handed patients with writer's cramp and eight healthy volunteers as age-matched control subjects participated in the study. The experimental task consisted in writing a test sentence repeatedly for fifty times on a pressure-sensitive digital board. The subject did not have visual control on his handwriting. The writing performance was stored on a PC and analyzed off-line. Results During handwriting all patients developed a typical dystonic limb posture and reported an increase in muscular tension along the experimental session. The patients were significantly slower than the controls, with lower mean vertical pressure of the pen tip on the paper and they could not reach the endmost letter of the sentence in the given time window. No other handwriting parameter differences were found between the two groups. Conclusion Our findings indicate that during writing in the absence of visual feedback writer's cramp patients are slower and could not reach the endmost letter of the test sentence, but their level of automatization is not impaired and writer's cramp handwriting parameters are similar to those of the controls except for even lower vertical pressure of the pen tip on the paper, which is probably due to a changed strategy in such experimental conditions. PMID:16594993

  6. A Cross-Site Intervention in Chinese Rural Migrants Enhances HIV/AIDS Knowledge, Attitude and Behavior

    PubMed Central

    Li, Ning; Li, Xiaomei; Wang, Xueliang; Shao, Jin; Dou, Juanhua

    2014-01-01

    Background: With the influx of rural migrants into urban areas, the spread of HIV has increased significantly in Shaanxi Province (China). Migrant workers are at high risk of HIV infection due to social conditions and hardships (isolation, separation, marginalization, barriers to services, etc.). Objective: We explored the efficacy of a HIV/AIDS prevention and control program for rural migrants in Shaanxi Province, administered at both rural and urban sites. Methods: Guidance concerning HIV/AIDS prevention was given to the experimental group (266 migrants) for 1 year by the center of disease control, community health agencies and family planning department. The intervention was conducted according to the HIV/AIDS Prevention Management Manual for Rural Migrants. A control group of migrants only received general population intervention. The impact of the intervention was evaluated by administering HIV/AIDS knowledge, attitudes and sexual behavior (KAB) questionnaires after 6 and 12 months. Results: In the experimental group; 6 months of intervention achieved improvements in HIV/AIDS related knowledge. After 12 months; HIV/AIDS-related knowledge reached near maximal scores. Attitude and most behaviors scores were significantly improved. Moreover; the experimental group showed significant differences in HIV-AIDS knowledge; attitude and most behavior compared with the control group. Conclusions: The systematic long-term cross-site HIV/AIDS prevention in both rural and urban areas is a highly effective method to improve HIV/AIDS KAB among rural migrants. PMID:24762671

  7. Thermodynamics of weight loss diets

    PubMed Central

    Fine, Eugene J; Feinman, Richard D

    2004-01-01

    Background It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? Results Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. Conclusions Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms. PMID:15588283

  8. The Challenge of Promoting Self-Regulated Learning among Primary School Children with a Low Socioeconomic and Immigrant Background

    ERIC Educational Resources Information Center

    Vandevelde, Sabrina; Van Keer, Hilde; Merchie, Emmelien

    2017-01-01

    The authors explore the effects of student tutoring as an approach to provide support on self-regulated learning (SRL) to fifth- and sixth-grade students with a low socioeconomic or immigrant background. In total, 401 Flemish (Belgium) students participated. A quasi-experimental study with pretest, posttest, and retention test control group design…

  9. Gamma-Ray background spectrum and annihilation rate in the baryon-symmetric big-bang cosmology

    NASA Technical Reports Server (NTRS)

    Puget, J. L.

    1973-01-01

    An attempt was made to extract experimental data on baryon symmetry by observing annihilation products. Specifically, gamma rays and neutrons with long mean free paths were analyzed. Data cover absorption cross sections and radiation background of the 0.511 MeV gamma rays from positron annihilations and the 70 MeV gamma rays from neutral pion decay.

  10. Further Improvement of the RITS Code for Pulsed Neutron Bragg-edge Transmission Imaging

    NASA Astrophysics Data System (ADS)

    Sato, H.; Watanabe, K.; Kiyokawa, K.; Kiyanagi, R.; Hara, K. Y.; Kamiyama, T.; Furusaka, M.; Shinohara, T.; Kiyanagi, Y.

    The RITS code is a unique and powerful tool for a whole Bragg-edge transmission spectrum fitting analysis. However, it has had two major problems. Therefore, we have proposed methods to overcome these problems. The first issue is the difference in the crystallite size values between the diffraction and the Bragg-edge analyses. We found the reason was a different definition of the crystal structure factor. It affects the crystallite size because the crystallite size is deduced from the primary extinction effect which depends on the crystal structure factor. As a result of algorithm change, crystallite sizes obtained by RITS drastically approached to crystallite sizes obtained by Rietveld analyses of diffraction data; from 155% to 110%. The second issue is correction of the effect of background neutrons scattered from a specimen. Through neutron transport simulation studies, we found that the background components consist of forward Bragg scattering, double backward Bragg scattering, and thermal diffuse scattering. RITS with the background correction function which was developed through the simulation studies could well reconstruct various simulated and experimental transmission spectra, but refined crystalline microstructural parameters were often distorted. Finally, it was recommended to reduce the background by improving experimental conditions.

  11. The gelatinous extracellular matrix facilitates transport studies in kelp: visualization of pressure-induced flow reversal across sieve plates

    PubMed Central

    Knoblauch, Jan; Peters, Winfried S.; Knoblauch, Michael

    2016-01-01

    Background and Aims In vascular plants, important questions regarding phloem function remain unanswered due to problems with invasive experimental procedures in this highly sensitive tissue. Certain brown algae (kelps; Laminariales) also possess sieve tubes for photoassimilate transport, but these are embedded in large volumes of a gelatinous extracellular matrix which isolates them from neighbouring cells. Therefore, we hypothesized that kelp sieve tubes might tolerate invasive experimentation better than their analogues in higher plants, and sought to establish Nereocystis luetkeana as an experimental system. Methods The predominant localization of cellulose and the gelatinous extracellular matrix in N. luetkeana was verified using specific fluorescent markers and confocal laser scanning microscopy. Sieve tubes in intact specimens were loaded with fluorescent dyes, either passively (carboxyfluorescein diacetate; CFDA) or by microinjection (rhodamine B), and the movement of the dyes was monitored by fluorescence microscopy. Key Results Application of CFDA demonstrated source to sink bulk flow in N. luetkeana sieve tubes, and revealed the complexity of sieve tube structure, with branches, junctions and lateral connections. Microinjection into sieve elements proved comparatively easy. Pulsed rhodamine B injection enabled the determination of flow velocity in individual sieve elements, and the direct visualization of pressure-induced reversals of flow direction across sieve plates. Conclusions The reversal of flow direction across sieve plates by pressurizing the downstream sieve element conclusively demonstrates that a critical requirement of the Münch theory is satisfied in kelp; no such evidence exists for tracheophytes. Because of the high tolerance of its sieve elements to experimental manipulation, N. luetkeana is a promising alternative to vascular plants for studying the fluid mechanics of sieve tube networks. PMID:26929203

  12. A comparative study of clinical manifestations, haematological and serological responses after experimental infection with Anaplasma phagocytophilum in two Norwegian sheep breeds

    PubMed Central

    2011-01-01

    Background It has been questioned if the old native Norwegian sheep breed, Old Norse Sheep (also called Norwegian Feral Sheep), normally distributed on coastal areas where ticks are abundant, is more protected against tick-borne infections than other Norwegian breeds due to a continuously high selection pressure on pasture. The aim of the present study was to test this hypothesis in an experimental infection study. Methods Five-months-old lambs of two Norwegian sheep breeds, Norwegian White (NW) sheep and Old Norse (ON) sheep, were experimentally infected with a 16S rRNA genetic variant of Anaplasma phagocytophilum (similar to GenBank accession number M73220). The experiment was repeated for two subsequent years, 2008 and 2009, with the use of 16 lambs of each breed annually. Ten lambs of each breed were inoculated intravenously each year with 0.4 ml A. phagocytophilum-infected blood containing approximately 0.5 × 106 infected neutrophils/ml. Six lambs of each breed were used as uninfected controls. Half of the primary inoculated lambs in each breed were re-challenged with the same infectious dose at nine (2008) and twelve (2009) weeks after the first challenge. The clinical, haematological and serological responses to A. phagocytophilum infection were compared in the two sheep breeds. Results The present study indicates a difference in fever response and infection rate between breeds of Norwegian sheep after experimental infection with A. phagocytophilum. Conclusion Although clinical response seems to be less in ON-lambs compared to NW-lambs, further studies including more animals are needed to evaluate if the ON-breed is more protected against tick-borne infections than other Norwegian breeds. PMID:21314927

  13. Experimental Observation of Dark Solitons on Water Surface

    DTIC Science & Technology

    2016-06-13

    Experimental observation of dark solitons on water surface A. Chabchoub1,∗, O. Kimmoun2, H. Branger3, N. Hoffmann1, D. Proment4, M. Onorato4,5, and N...The shape and width of the soliton depend on the water depth, carrier frequency and the amplitude of the background wave. The experimental data...partic- ular, the governing equation describing the dynamics of weakly nonlinear and quasi -monochromatic waves prop- agating on the surface of water with

  14. The Effects of Certain Background Noises on the Performance of a Voice Recognition System.

    DTIC Science & Technology

    1980-09-01

    Principles in Experimental Design. New York: McGraw-Hill, 1962. Woodworth, R.S. and H. Schlosberg, Experimental Psychology, (Revised edition), New...collection iheet APPENDIX II EXPERIMENTAL PROTOCOL AND SUBJECTS’ INSTRICTJONS THIS IS AN EXPERIMENT DESIGNED TO EVALUJATE SOME ," lE RECOGNITION EQUIPMENT. I...37. CDR Paul Chatelier OUSD R&E Room 3D129 Pentagon Washington, D.C. 20301 38. Ralph Cleveland NFMSO Code 9333 Mechanicsburg, PA 17055 39. Clay Coler

  15. Injection of a coaxial-gun-produced magnetized plasma into a background helicon plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott

    2014-10-01

    A compact coaxial plasma gun is employed for experimental investigation of plasma bubble relaxation into a lower density background plasma. Experiments are being conducted in the linear device HelCat at UNM. The gun is powered by a 120-uF ignitron-switched capacitor bank, which is operated in a range of 5 to 10 kV and 100 kA. Multiple diagnostics are employed to investigate the plasma relaxation process. Magnetized argon plasma bubbles with velocities 1.2Cs, densities 1020 m-3 and electron temperature 13eV have been achieved. The background helicon plasma has density 1013 m-3, magnetic field from 200 to 500 Gauss and electron temperature 1eV. Several distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. Additionally a B-dot probe array has been employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify plasma bubble configurations. Experimental data and analysis will be presented.

  16. A technique for searching for the 2 K capture in 124Xe with a copper proportional counter

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-12-01

    An experimental technique for searching for the 2 K capture in 124Xe with a large low-background copper proportional counter is described. Such an experiment is conducted at the Baksan Neutrino Observatory of the Institute for Nuclear Research of the Russian Academy of Sciences. The experimental setup is located in the Low-Background Deep-Level Laboratory at a depth of 4900 m.w.e., where the flux of muons of cosmic rays is suppressed by a factor of 107 relative to that at the Earth's surface. The setup incorporates a proportional counter and low-background shielding (18 cm of copper, 15 cm of lead, and 8 cm of borated polyethylene). The results of processing the data obtained in 5 months of live measurement time are presented. A new limit on the half-life of 124Xe with respect to the 2 K capture is set at the level of 2.5 × 1021 years.

  17. Background noise in piezoresistive, electret condenser, and ceramic microphones.

    PubMed

    Zuckerwar, Allan J; Kuhn, Theodore R; Serbyn, Roman M

    2003-06-01

    Background noise studies have been extended from air condenser microphones to piezoresistive, electret condenser, and ceramic microphones. Theoretical models of the respective noise sources within each microphone are developed and are used to derive analytical expressions for the noise power spectral density for each type. Several additional noise sources for the piezoresistive and electret microphones, beyond what had previously been considered, were applied to the models and were found to contribute significantly to the total noise power spectral density. Experimental background noise measurements were taken using an upgraded acoustic isolation vessel and data acquisition system, and the results were compared to the theoretically obtained expressions. The models were found to yield power spectral densities consistent with the experimental results. The measurements reveal that the 1/f noise coefficient is strongly correlated with the diaphragm damping resistance, irrespective of the detection technology, i.e., air condenser, piezoresistive, etc. This conclusion has profound implications upon the expected 1/f noise component of micromachined (MEMS) microphones.

  18. Verb Form Indicates Discourse Segment Type in Biological Research Papers: Experimental Evidence

    ERIC Educational Resources Information Center

    de Waard, Anita; Maat, Henk Pander

    2012-01-01

    Corpus studies suggest that verb tense is a differentiating feature between, on the one hand, text pertaining to experimental results (involving methods and results) and on the other hand, text pertaining to more abstract concepts (i.e. regarding background knowledge in a field, hypotheses, problems or claims). In this paper, we describe a user…

  19. Third National Even Start Evaluation: Follow-Up Findings from the Experimental Design Study. NCEE 2005-3002

    ERIC Educational Resources Information Center

    Ricciuti, Anne E., St.Pierre, Robert G.; Lee, Wang; Parsad, Amanda

    2004-01-01

    Citation: Ricciuti, A.E., R.G. St.Pierre, W. Lee, A. Parsad & T. Rimdzius. Third National Even Start Evaluation: Follow-Up Findings From the Experimental Design Study. U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance. Washington, D.C., 2004. Background: The Even…

  20. Models and (some) Searches for CPT Violation: From Early Universe to the Present Era

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2017-07-01

    In the talk, I review theoretical models, inspired by quantum gravity, that may violate CPT symmetry. The amount of violation today (which is constrained severely by a plethora of experiments that I will not describe due to lack of space) need not be the same with the one that occurred in the Early Universe,. In certain models, one can obtain a precise temperature dependence of CPT violating effects, which is such that these effects are significant during the radiation era of the Universe, but are damped quickly so that they do not to affect nucleosynthesis and are negligible in the present epoch (that is, beyond experimental detection with the current experimental sensitivity). The CPT Violation (CPTV) in these models may arise from special properties of the background over which the fields of the model are propagating upon and be responsible for the generation of a matter-antimatter asymmetry, where any CP violation effects could only assist in the creation of the asymmetry, the dominant effect being CPTV. However, there are cases, where the CPTV arises as a consequence of an ill-defined CPT operator due to decoherence as a result of quantum gravity environmental degrees of freedom, inaccessible to a low-energy observer. I also discuss briefly the current-era phenomenology of some of the above models; in particular, for the ones involving decoherence-induced CPT violation, I argue that entangled states of neutral mesons (Kaons or B-systems) can provide smoking-gun sensitive tests or even falsify some of these models. If CPT is ill-defined one may also encounter violations of the spin-statistics theorem, with possible consequences for the Pauli Exclusion Principle.

  1. The associations of mobile touch screen device use with musculoskeletal symptoms and exposures: A systematic review

    PubMed Central

    Toh, Siao Hui; Coenen, Pieter; Howie, Erin K.

    2017-01-01

    Background The use of mobile touch screen devices (MTSDs) has increased rapidly over the last decade, and there are concerns that their use may have negative musculoskeletal consequences; yet evidence on the association of MTSD use with musculoskeletal symptoms and exposures is currently dispersed. The aim of this study was to systematically review available literature on musculoskeletal symptoms and exposures associated with MTSD use. The synthesised information may facilitate wise use of MTSDs and may identify areas in need of further research. Methods EMBASE, Medline, Scopus, PsycINFO and Proquest electronic databases were searched for articles published up to June 2016, using keywords describing MTSD, musculoskeletal symptoms (e.g. pain, discomfort) and musculoskeletal exposures (e.g. posture, muscle activity). Two reviewers independently screened the articles, extracted relevant data and assessed methodological quality of included studies. Due to heterogeneity in the studies, a meta-analysis was not possible and a structured narrative synthesis of the findings was undertaken. Results A total of 9,908 articles were screened for eligibility with 45 articles finally included for review. Included articles were of cross-sectional, case-control or experimental laboratory study designs. No longitudinal studies were identified. Findings were presented and discussed in terms of the amount, features, tasks and positions of MTSD use and its association with musculoskeletal symptoms and musculoskeletal exposures. Conclusions There is limited evidence that MTSD use, and various aspects of its use (i.e. amount of usage, features, tasks and positions) are associated with musculoskeletal symptoms and exposures. This is due to mainly low quality experimental and case-control laboratory studies, with few cross-sectional and no longitudinal studies. Further research is warranted in order to develop guidelines for wise use of MTSDs. PMID:28787453

  2. Does Grammatical Number Influence the Semantic Priming Between Number Cues and Words Related to Vertical Space? An Investigation Using Virtual Reality.

    PubMed

    Lachmair, Martin; Ruiz Fernandez, Susana; Gerjets, Peter

    2018-01-01

    The GES framework postulates a hierarchical order between grounded, embodied, and situated representations. Against this background, the present study investigated the relation of two effects: (i) a semantic priming between number cues and words with referents up or down in the world according to the number's magnitude which is supposed to be grounded (cf. Lachmair et al., 2014) and (ii) the compatibility between number cues and the grammatical word form of the words according to the number's multitude which is supposed to be embodied (cf. Roettger and Domahs, 2015). In two experiments words referring to objects up or down in the world and spatially neutral words were presented subsequent to the numbers "1" and "9." In Experiment 1 words were presented in singular word form and in Experiment 2 in plural word form. For the first time, Virtual Reality was used in such an experimental setup in order to reduce spatial predispositions of participants and to provide a homogeneous experimental environment for replication purposes. According to GES it was expected that the spatial semantic priming should occur in both grammatical word forms. However, the compatibility with grammatical number should only occur for the plural word form due to its markedness. The results of Experiment 1 support the spatial-semantic-priming-hypothesis but not the grammatical-number-hypothesis. The results of Experiment 2 supported only the grammatical-number-hypothesis. It is argued that the grounded spatial effect of Experiment 1 was not affected by grammatical number. However, in Experiment 2 this effect vanished due to an activated embodied reference frame according to grammatical number.

  3. Radiogenic isotopic approaches for quantifying radionuclide transport (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Depaolo, D. J.; Singleton, M. J.; Christensen, J. N.; Conrad, M. E.

    2009-12-01

    Naturally occurring variations in the isotopic compositions of U and Sr provide unique opportunities for assessing the fate and transport of radionuclides at field-scale conditions. When coupled with reactive transport models, U and Sr isotopes may also provide additional constraints on the rates of sediment-fluid or sediment-waste interactions. Such isotopic approaches can be useful for sites where subsurface characterization is complicated by a lack of accessibility or the presence of substantial heterogeneity. In addition, a variety of quantitative modeling approaches of different complexity can be used to evaluate experimentally determined parameters for radionuclide mobility at the field-scale. At the Hanford Site in eastern Washington, 87Sr/86Sr and 234U/238U ratios have been used to quantify the residence time of Sr and U in the unsaturated zone, the long-term background infiltration rate through the unsaturated zone, and to assess the influence of enhanced wastewater discharge on the regional unconfined aquifer. As a result of different processing techniques or due to interactions between caustic waste and the natural sediment, waste plumes may also inherit isotopic fingerprints (e.g. 234U/238U, 235U/238U, 236U/238U; δ15N & δ18O of nitrate) that can be used to resolve multiple sources of contamination. Finally, enriched isotopic tracers can be applied to experimental manipulations to assess the retardation of a variety of contaminants. Collectively this isotopic data contributes unique perspectives on both the hydrologic conditions across the site and the mobility of key radionuclides. Predicting the long-term fate and transport of radionuclides in the environment is often challenging due to natural heterogeneity and incomplete characterization of the subsurface, however detailed analysis of isotopic variations can provide one additional means of characterizing the subsurface.

  4. RPC based 5D tracking concept for high multiplicity tracking trigger

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Distante, L.; Liberti, B.; Paolozzi, L.; Pastori, E.; Santonico, R.

    2017-01-01

    The recently approved High Luminosity LHC project (HL-LHC) and the future colliders proposals present a challenging experimental scenario, dominated by high pileup, radiation background and a bunch crossing time possibly shorter than 5 ns. This holds as well for muon systems, where RPCs can play a fundamental role in the design of the future experiments. The RPCs, thanks to their high space-time granularity, allows a sparse representation of the particle hits, in a very large parametric space containing, in addition to 3D spatial localization, also the pulse time and width associated to the avalanche charge. This 5D representation of the hits can be exploited to improve the performance of complex detectors such as muon systems and increase the discovery potential of a future experiment, by allowing a better track pileup rejection and sharper momentum resolution, an effective measurement of the particle velocity, to tag and trigger the non-ultrarelativistic particles, and the detection local multiple track events in close proximity without ambiguities. Moreover, due to the fast response, typically for RPCs of the order of a few ns, this information can be provided promptly to the lowest level trigger. We will discus theoretically and experimentally the principles and performance of this original method.

  5. Probe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging.

    PubMed

    Taylor, Alexander J; Granwehr, Josef; Lesbats, Clémentine; Krupa, James L; Six, Joseph S; Pavlovskaya, Galina E; Thomas, Neil R; Auer, Dorothee P; Meersmann, Thomas; Faas, Henryk M

    2016-01-01

    Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI) using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental "calibration factor" to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.

  6. Examining empirical evidence of the effect of superfluidity on the fusion barrier

    NASA Astrophysics Data System (ADS)

    Scamps, Guillaume

    2018-04-01

    Background: Recent time-dependent Hartree-Fock-Bogoliubov (TDHFB) calculations predict that superfluidity enhances fluctuations of the fusion barrier. This effect is not fully understood and not yet experimentally revealed. Purpose: The goal of this study is to empirically investigate the effect of superfluidity on the distribution width of the fusion barrier. Method: Two new methods are proposed in the present study. First, the local regression method is introduced and used to determine the barrier distribution. The second method, which requires only the calculation of an integral of the cross section, is developed to determine accurately the fluctuations of the barrier. This integral method, showing the best performance, is systematically applied to 115 fusion reactions. Results: Fluctuations of the barrier for open-shell systems are, on average, larger than those for magic or semimagic nuclei. This is due to the deformation and the superfluidity. To disentangle these two effects, a comparison is made between the experimental width and the width estimated from a model that takes into account the tunneling, the deformation, and the vibration effect. This study reveals that superfluidity enhances the fusion barrier width. Conclusions: This analysis shows that the predicted effect of superfluidity on the width of the barrier is real and is of the order of 1 MeV.

  7. Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola

    PubMed Central

    Provataris, Panagiotis; Meusemann, Karen; Niehuis, Oliver; Grath, Sonja; Misof, Bernhard

    2018-01-01

    Abstract It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA methylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes associated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/transcriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects. PMID:29697817

  8. Characterization of >100 T magnetic fields associated with relativistic Weibel instability in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Ruyer, Charles; Goede, Sebastian; Roedel, Christian; Gauthier, Maxence; Zeil, Karl; Schramm, Ulrich; Glenzer, Siegfried; Fiuza, Frederico

    2016-10-01

    Weibel-type instabilities can occur in weakly magnetized and anisotropic plasmas of relevance to a wide range of astrophysical and laboratory scenarios. It leads to the conversion of a significant fraction of the kinetic energy of the plasma into magnetic energy. We will present a detailed numerical study, using 2D and 3D PIC simulations of the Weibel instability in relativistic laser-solid interactions. In this case, the instability develops due to the counter-streaming of laser-heated electrons and the background return current. We show that the growth rate of the instability is maximized near the critical density region on the rear side of the expanded plasma, producing up to 400 MG magnetic fields for Hydrogen plasmas. We have found that this strong field can be directly probed by energetic protons accelerated in rear side of the plasma by Target Normal Sheath Acceleration (TNSA). This allows the experimental characterization of the instability from the analysis of the spatial modulation of the detected protons. Our numerical results are compared with recent laser experiments with Hydrogen jets and show good agreement with the proton modulations observed experimentally. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  9. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light.

    PubMed

    Bor, E; Turduev, M; Kurt, H

    2016-08-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.

  10. Thermal analysis of a prototype cryogenic polarization modulator for use in a space-borne CMB polarization experiment

    NASA Astrophysics Data System (ADS)

    Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.

    2017-12-01

    We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.

  11. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light

    PubMed Central

    Bor, E.; Turduev, M.; Kurt, H.

    2016-01-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060

  12. Brown meagre vocalization rate increases during repetitive boat noise exposures: a possible case of vocal compensation.

    PubMed

    Picciulin, Marta; Sebastianutto, Linda; Codarin, Antonio; Calcagno, Giuliana; Ferrero, Enrico A

    2012-11-01

    This study investigated whether or not boat noise causes variations in brown meagre (Sciaena umbra) vocalizations recorded in a nearshore Mediterranean marine reserve. Six nocturnal experimental sessions were carried out from June to September 2009. In each of them, a recreational boat passed over vocalizing fish 6 times with 1 boat passage every 10 min. For this purpose three different boats were used in random order: an 8.5-m cabin-cruiser (CC), a 5-m fiberglass boat (FB), and a 7-m inflatable boat (INF). In situ continuous acoustic recordings were collected using a self-standing sonobuoy. Because boat noise levels largely exceeded both background noise and S. umbra vocalizations in the species' hearing frequency range, masking of acoustic communication was assumed. Although no immediate effect was observed during a single boat passage, the S. umbra mean pulse rate increased over multiple boat passages in the experimental condition but not in the control condition, excluding that the observed effect was due to a natural rise in fish vocalizations. The observed vocal enhancement may result either from an increased density of callers or from an increased number of pulses/sounds produced by already acoustically active individuals, as a form of vocal compensation. These two explanations are discussed.

  13. Exotic X-ray Sources from Intermediate Energy Electron Beams

    NASA Astrophysics Data System (ADS)

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.

    2003-08-01

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).

  14. Impact on quality of life in teachers after educational actions for prevention of voice disorders: a longitudinal study

    PubMed Central

    2013-01-01

    Background Voice problems are more common in teachers due to intensive voice use during routine at work. There is evidence that occupational disphonia prevention programs are important in improving the quality voice and consequently the quality of subjects’ lives. Aim To investigate the impact of educational voice interventions for teachers on quality of life and voice. Methods A longitudinal interventional study involving 70 teachers randomly selected from 11 public schools, 30 to receive educational intervention with vocal training exercises and vocal hygiene habits (experimental group) and 40 to receive guidance on vocal hygiene habits (control group control). Before the process of educational activities, the Voice-Related Quality of Life instrument (V-RQOL) was applied, and 3 months after conclusion of the activities, the subjects were interviewed again, using the same instrument. For data analysis, Prox MIXED were applied, with a level of significance α < 0.05. Results: Teachers showed significantly higher domain and overall V-RQOL scores after preventive intervention, in both control and experimental groups. Nevertheless, there was no statistical difference in scores between the groups. Conclusion Educational actions for vocal health had a positive impact on the quality of life of the participants, and the incorporation of permanent educational actions at institutional level is suggested. PMID:23445566

  15. The trigger card system for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Thompson, William; Anderson, John; Howe, Mark; Meijer, Sam; Wilkerson, John; Majorana Collaboration

    2014-09-01

    The aim of the MAJORANA DEMONSTRATOR is to demonstrate the feasibility of providing low enough background levels to search for neutrinoless double-beta decay (0 νββ) in an array of germanium detectors enriched to 87% in 76Ge. Currently, it is unknown if this decay process occurs; however, observation of such a decay process would show that lepton number is violated, confirm that neutrinos are Majorana particles, and yield information on the absolute mass scale of the neutrino. With current experimental results indicating a half-life greater than 2 x 1025 years for this decay, the minimization of background events is of critical importance. Utilizing time correlation, coincidence testing is able to reject multi-detector events that may otherwise be mistaken for 0 νββ when viewed independently. Here, we present both the hardware and software of the trigger card system, which provides a common clock to all digitizers and the muon veto system, thereby enabling the rejection of background events through coincidence testing. Current experimental results demonstrate the accuracy of the distributed clock to be within two clock pulses (20 ns) across all system components. A test system is used to validate the data acquisition system. The aim of the MAJORANA DEMONSTRATOR is to demonstrate the feasibility of providing low enough background levels to search for neutrinoless double-beta decay (0 νββ) in an array of germanium detectors enriched to 87% in 76Ge. Currently, it is unknown if this decay process occurs; however, observation of such a decay process would show that lepton number is violated, confirm that neutrinos are Majorana particles, and yield information on the absolute mass scale of the neutrino. With current experimental results indicating a half-life greater than 2 x 1025 years for this decay, the minimization of background events is of critical importance. Utilizing time correlation, coincidence testing is able to reject multi-detector events that may otherwise be mistaken for 0 νββ when viewed independently. Here, we present both the hardware and software of the trigger card system, which provides a common clock to all digitizers and the muon veto system, thereby enabling the rejection of background events through coincidence testing. Current experimental results demonstrate the accuracy of the distributed clock to be within two clock pulses (20 ns) across all system components. A test system is used to validate the data acquisition system. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle Astrophysics and REU Programs of the NSF, and the Sanford Underground Research Laboratory.

  16. Physical Activity and School Absenteeism Due to Illness in Adolescents

    ERIC Educational Resources Information Center

    de Groot, Renate; van Dijk, Martin; Savelberg, Hans; van Acker, Frederik; Kirschner, Paul

    2017-01-01

    Background: Knowledge about the beneficial role of physical activity (PA) for health and school performance is growing. Studies investigating the link between PA and school absenteeism due to illness are lacking. Therefore, we investigated associations between habitual PA and school absenteeism due to illness in adolescents and explored whether…

  17. Background in X-ray astronomy proportional counters

    NASA Technical Reports Server (NTRS)

    Bower, C. R.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.

    1991-01-01

    The authors report the results of an investigation into the nature of background events in proportional counters sensitive to X-ray photons having energy of less than 150 keV. Even with the use of thick shields composed of high-atomic-number material, a significant flux background in the detector's energy region can result from multiple Compton scattering in the mass surrounding the active region of the detector. The importance of the selection of detector components in the reduction of the background by more than an order of magnitude is emphasized. Experimental results are shown to agree qualitatively with Monte Carlo simulations. It is concluded that escape gating is a powerful means of determining the nature of background in flight detectors: the single/pair ratios reveal whether the detected events are charged particles or photons.

  18. Calibration of a Background Oriented Schlieren (BOS) Set-up

    NASA Astrophysics Data System (ADS)

    Porta, David; Echeverría, Carlos; Cardoso, Hiroki; Aguayo, Alejandro; Stern, Catalina

    2014-11-01

    We use two materials with different known indexes of refraction to calibrate a Background Oriented Schlieren (BOS) experimental set-up, and to validate the Lorenz-Lorentz equation. BOS is used in our experiments to determine local changes of density in the shock pattern of an axisymmetric supersonic air jet. It is important to validate, in particular, the Gladstone Dale approximation (index of refraction close to one) in our experimental conditions and determine the uncertainty of our density measurements. In some cases, the index of refraction of the material is well known, but in others the density is measured and related to the displacement field. We acknowledge support from UNAM through DGAPA PAPIIT IN117712 and the Graduate Program in Mechanical Engineering.

  19. The Impact of Social Referencing on Social Acceptance of Children with Disabilities and Migrant Background: An Experimental Study in Primary School Settings

    ERIC Educational Resources Information Center

    Huber, Christian; Gerullis, Anita; Gebhardt, Markus; Schwab, Susanne

    2018-01-01

    This computer-based study evaluates whether teacher feedback can have an effect on the acceptance of children with and without disabilities in inclusive, special and regular schools. The social acceptance of four children shown in photo vignettes (child with Down Syndrome, child in a wheelchair, child with migrant background and child with no…

  20. The Effects of Problem-Based Learning on Metacognitive Awareness and Attitudes toward Chemistry of Prospective Teachers with Different Academic Backgrounds

    ERIC Educational Resources Information Center

    Tosun, Cemal; Senocak, Erdal

    2013-01-01

    The aim of this study was to reveal the effects of Problem-based Learning (PBL) on the metacognitive awareness and attitudes toward chemistry of teacher candidates with different academic backgrounds. The study was carried out on one group using both pre-and post-test experimental studies. The findings of the study were obtained through…

  1. Effects of background gravity stimuli on gravity-controlled behavior

    NASA Technical Reports Server (NTRS)

    Mccoy, D. F.

    1976-01-01

    Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.

  2. Climatic influence of background and volcanic stratosphere aerosol models

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Herman, M.; Lenoble, J.; Tanre, D.

    1982-01-01

    A simple modelization of the earth atmosphere system including tropospheric and stratospheric aerosols has been derived and tested. Analytical expressions are obtained for the albedo variation due to a thin stratospheric aerosol layer. Also outlined are the physical procedures and the respective influence of the main parameters: aerosol optical thickness, single scattering albedo and asymmetry factor, and sublayer albedo. The method is applied to compute the variation of the zonal and planetary albedos due to a stratospheric layer of background H2SO4 particles and of volcanic ash.

  3. Molecular Mechanisms Involved in Tissue Swelling due to Injury and due to Exposure to Low Temperature and Massive Water and Electrolyte Loss in Diarrheal Disorders.

    DTIC Science & Technology

    1981-10-01

    documt has bees apoved foz public zeleae and 301 4 C Idixtribution is uaiaIed.83 12 20 1. " Annual Progress Report November 1980 - October 1, 1981...a brief sketch of the historical background. Background Information The most abundant components of the living cells are water, proteins and K7...sites and (b) electrostatic adsorption on fixed anionic sites (primarily 0- and Y-carboxyl groups of cell protein ) favors the smaller hydrated K over Na

  4. Doubly curved mica diffractors and their applications to x-ray microprobe fluorescence and microanalysis

    NASA Astrophysics Data System (ADS)

    Chen, Zewu

    This thesis describes the experimental work in the fabrication of doubly-curved mica diffractors and their applications in monochromatic microprobe x-ray fluorescence analysis and wavelength dispersive spectrometry. Three-dimension focusing of x-rays can be achieved by diffraction from a doubly-curved diffractor. A Johann point-focusing mica diffractor was fabricated for focusing the Cu Kα1 radiation and characterized by using a microfocus x-ray source. The intensity of the focused beam was measured to be 1.01 × 108 photons/s at the focal spot. The spot size of the focused beam was measured by the knife edge scan method. A Cu Kα1 focal spot of 43 μm x 68 μm has been obtained. Monochromatic microprobe x-ray fluorescence (MMXRF) analysis was performed by using the focused Cu Kα1 radiation. The microfocus x-ray source was operated at 30 kV and 0.1 mA. MMXRF spectra of bulk specimens of GaAs, Si, ZnSe, Mg and 40 μm thick Muscovite were recorded with a Si(Li) energy dispersive detector. Exceptional high signal-to-background ratios were observed. Due to the low background, detection limits as low as 1.6 ppm were predicted for a measurement time of 500 s for bulk specimens. The detector background was determined by recording a spectrum from an Fe55 source and was found to be a significant contribution to the total observed background. A wavelength dispersive spectrometer was designed and constructed for the use in a JEOL transmission electron microscope. A logarithmic spiral of revolution diffractor was fabricated and used explored for measurement of Ca concentration in the TEM. Bench tests were carried out by using the microfocus x-ray source. Preliminary data of tests in the TEM indicated that the spectrometer may give better performance than EDS systems previously used.

  5. Effects of Thermally Induced Microcracking on the Quasi Static and Dynamic Response of Salem Limestone

    DTIC Science & Technology

    2017-06-30

    description of a com- monly used material model that is modified in Chapter 5 based on the experimental data found in this work. 2.1 Background The quasi ...materials with varying levels of mi- crocracks. One of the intentions of this work is to establish experimental methods that can be applied to all quasi ...Projectile penetration into concrete target. To show how the experimental data obtained in this work can be used to improve quasi -brittle material

  6. Characterization and Prediction of the SPI Background

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Jean, P.; Knodlseder, J.; Skinner, G. K.; Weidenspointer, G.

    2003-01-01

    The INTEGRAL Spectrometer, like most gamma-ray instruments, is background dominated. Signal-to-background ratios of a few percent are typical. The background is primarily due to interactions of cosmic rays in the instrument and spacecraft. It characteristically varies by +/- 5% on time scales of days. This variation is caused mainly by fluctuations in the interplanetary magnetic field that modulates the cosmic ray intensity. To achieve the maximum performance from SPI it is essential to have a high quality model of this background that can predict its value to a fraction of a percent. In this poster we characterize the background and its variability, explore various models, and evaluate the accuracy of their predictions.

  7. An Effective Method for Modeling Two-dimensional Sky Background of LAMOST

    NASA Astrophysics Data System (ADS)

    Haerken, Hasitieer; Duan, Fuqing; Zhang, Jiannan; Guo, Ping

    2017-06-01

    Each CCD of LAMOST accommodates 250 spectra, while about 40 are used to observe sky background during real observations. How to estimate the unknown sky background information hidden in the observed 210 celestial spectra by using the known 40 sky spectra is the problem we solve. In order to model the sky background, usually a pre-observation is performed with all fibers observing sky background. We use the observed 250 skylight spectra as training data, where those observed by the 40 fibers are considered as a base vector set. The Locality-constrained Linear Coding (LLC) technique is utilized to represent the skylight spectra observed by the 210 fibers with the base vector set. We also segment each spectrum into small parts, and establish the local sky background model for each part. Experimental results validate the proposed method, and show the local model is better than the global model.

  8. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-mm Spectrograph (BLISS) for SPICA

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M .; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda=35-435 micron and with R=lambda/delta lambda approximately equals 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10 (sup -20) W/Hz(exp 1/2) and response time tau <30ms. We expect background-limited performance from bilayers TESs with T(sub c) = 65mK and G=15fW/K. However, such TESs cannot be operated at 50mK unless stray power on the devices, or dark power P(sub D), is less than 200aW. We describe criteria for measuring P(sub D) that requires accurate knowledge of TC. Ultimately, we fabricated superconducting thermistors from Ir (T(sub c) >= 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(sub 1/2) and Tau approximately equals 5ms for straight-beam TESs. In fact, we expected NEP approximately equals 1.5x10(exp -19)?W/Hz(sup 1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10 (sup -19)W/Hz(exp 1/2) in our single-pixel test system and NEP=(1.6+/-0.3)x10(sup -19)W/Hz(sup 1/2) in our array test system.

  9. cisMEP: an integrated repository of genomic epigenetic profiles and cis-regulatory modules in Drosophila

    PubMed Central

    2014-01-01

    Background Cis-regulatory modules (CRMs), or the DNA sequences required for regulating gene expression, play the central role in biological researches on transcriptional regulation in metazoan species. Nowadays, the systematic understanding of CRMs still mainly resorts to computational methods due to the time-consuming and small-scale nature of experimental methods. But the accuracy and reliability of different CRM prediction tools are still unclear. Without comparative cross-analysis of the results and combinatorial consideration with extra experimental information, there is no easy way to assess the confidence of the predicted CRMs. This limits the genome-wide understanding of CRMs. Description It is known that transcription factor binding and epigenetic profiles tend to determine functions of CRMs in gene transcriptional regulation. Thus integration of the genome-wide epigenetic profiles with systematically predicted CRMs can greatly help researchers evaluate and decipher the prediction confidence and possible transcriptional regulatory functions of these potential CRMs. However, these data are still fragmentary in the literatures. Here we performed the computational genome-wide screening for potential CRMs using different prediction tools and constructed the pioneer database, cisMEP (cis-regulatory module epigenetic profile database), to integrate these computationally identified CRMs with genomic epigenetic profile data. cisMEP collects the literature-curated TFBS location data and nine genres of epigenetic data for assessing the confidence of these potential CRMs and deciphering the possible CRM functionality. Conclusions cisMEP aims to provide a user-friendly interface for researchers to assess the confidence of different potential CRMs and to understand the functions of CRMs through experimentally-identified epigenetic profiles. The deposited potential CRMs and experimental epigenetic profiles for confidence assessment provide experimentally testable hypotheses for the molecular mechanisms of metazoan gene regulation. We believe that the information deposited in cisMEP will greatly facilitate the comparative usage of different CRM prediction tools and will help biologists to study the modular regulatory mechanisms between different TFs and their target genes. PMID:25521507

  10. User perception and interpretation of tornado probabilistic hazard information: Comparison of four graphical designs.

    PubMed

    Miran, Seyed M; Ling, Chen; James, Joseph J; Gerard, Alan; Rothfusz, Lans

    2017-11-01

    Effective design for presenting severe weather information is important to reduce devastating consequences of severe weather. The Probabilistic Hazard Information (PHI) system for severe weather is being developed by NOAA National Severe Storms Laboratory (NSSL) to communicate probabilistic hazardous weather information. This study investigates the effects of four PHI graphical designs for tornado threat, namely, "four-color"," red-scale", "grayscale" and "contour", on users' perception, interpretation, and reaction to threat information. PHI is presented on either a map background or a radar background. Analysis showed that the accuracy was significantly higher and response time faster when PHI was displayed on map background as compared to radar background due to better contrast. When displayed on a radar background, "grayscale" design resulted in a higher accuracy of responses. Possibly due to familiarity, participants reported four-color design as their favorite design, which also resulted in the fastest recognition of probability levels on both backgrounds. Our study shows the importance of using intuitive color-coding and sufficient contrast in conveying probabilistic threat information via graphical design. We also found that users follows a rational perceiving-judging-feeling-and acting approach in processing probabilistic hazard information for tornado. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Change of ENSO characteristics in response to global warming

    NASA Astrophysics Data System (ADS)

    Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.

    2017-12-01

    By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that the frequency of ENSO events greatly increases due to global warming, and many more extreme El Niño and La Niña events appear under the El Niño-like and the La Niña-like background warmings, respectively. This study reconciles the phenomena and mechanisms of different characteristics of ENSO changes in observations and models.

  12. Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow

    DTIC Science & Technology

    2018-02-09

    Lens-XX facility. This flow was chosen since a recent blind-code validation exercise revealed differences in CFD predictions and experimental data... experimental data that could be due to rarefied flow effects. The CFD solutions (using the US3D code) were run with no-slip boundary conditions and with...excellent agreement with that predicted by CFD. This implies that the dif- ference between CFD predictions and experimental data is not due to rarefied

  13. On the Diverse Outcome of Communication Partner Training of Significant Others of People with Aphasia: An Experimental Study of Six Cases

    ERIC Educational Resources Information Center

    Eriksson, Karin; Hartelius, Lena; Saldert, Charlotta

    2016-01-01

    Background: Communication partner training (CPT) has been shown to improve the communicative environment of people with aphasia. Interaction-focused training is one type of training that provides an individualized intervention to participants. Although shown to be effective, outcomes have mostly been evaluated in non-experimental case studies.…

  14. Early thinning experiments established by the Fort Valley Experimental Forest (P-53)

    Treesearch

    Benjamin P. De Blois; Alex. J. Finkral; Andrew J. Sánchez Meador; Margaret M. Moore

    2008-01-01

    Between 1925 and 1936, the Fort Valley Experimental Forest (FVEF) scientists initiated a study to examine a series of forest thinning experiments in second growth ponderosa pine stands in Arizona and New Mexico. These early thinning plots furnished much of the early background for the development of methods used in forest management in the Southwest. The plots ranged...

  15. Early thinning experiments established by the Fort Valley Experimental Forest

    Treesearch

    Benjamin P. De Blois; Alex. J. Finkral; Andrew J. Sanchez Meador; Margaret M. Moore

    2008-01-01

    Between 1925 and 1936, the Fort Valley Experimental Forest (FVEF) scientists initiated a study to examine a series of forest thinning experiments in second growth ponderosa pine stands in Arizona and New Mexico. These early thinning plots furnished much of the early background for the development of methods used in forest management in the Southwest. The plots ranged...

  16. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments

    PubMed Central

    2011-01-01

    Background Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR) and individual or pooled breast-tumour RNA. Results A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependant upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement) and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content. Conclusions The magnitude of systematic processing noise in a microarray experiment is variable across probes and experiments, however it is generally the case that procedures earlier in the sample-preparation workflow are liable to introduce the most noise. Careful experimental design is important to protect against noise, detailed meta-data should always be provided, and diagnostic procedures should be routinely performed prior to downstream analyses for the detection of bias in microarray studies. PMID:22133085

  17. Herschel-PACS Observations of Far-IR CO Line Emission in NGC 1068: Highly Excited Molecular Gas in the Circumnuclear Disk

    DTIC Science & Technology

    2012-08-10

    local radiation density. At millimeter wavelengths the background is dominated by the cosmic microwave background (CMB; Kamenetzky et al. 2011), but the...the observed continuum flux density Fν,obs as Jν,ext = Iν,CB + 9 16 Fν,obs Ω , (1) where Iν,CB is the sum of the CMB and cosmic IR background . We take...data, likely due to an imperfect subtraction of the telescope background , and we remove this feature using a higher order baseline fit. The integrated

  18. [Problems regarding the examination in forensic medicine].

    PubMed

    Naitow, M

    1989-10-01

    Problems encountered regarding the examination in forensic pathology are variable, even if the field of interest in limited to trauma alone. The most important problem appears to be the establishment of a causal relationship between the trauma and the death of the victim. From the materials I have contributed concerning examinations in forensic medicine, the problems inherent in the examination of the victim of traumatic shock may be introduced. The results from animal studies, which have been attempted to provide an experimental background to support the observations, are also discussed. My personal opinions on several trial cases in which there was a disagreement of opinion regarding the examination results will also be expressed. 1. Distinguishing death due to traumatic shock from death due to disease In the "Yacht school" incident, children with emotional disturbances and youths with a history of misconduct were treated with training which included physical punishment. Autopsy findings were compared between a 13-year old boy who was concluded to have died of traumatic shock from numerous beatings and a 21-year old youth who died of hemorrhagic pneumonia. In my opinion, a causative role of injury in the death was found in both cases. 2. Shock due to tourniquet This autopsy case concerns a 23-year-old male who entered a yoga training center, was tightly bound with a rope and died on the 8th day. Histological examination revealed thrombus formation in the small blood vessels and leukocyte agglutination within the blood vessels of the alveolar wall, suggesting DIC. While these findings were thought to be almost indistinguishable from those found in traumatic shock, the background conditions, including hunger, dehydration and hypothermia cannot be neglected in the evaluation. 3. Child abuse In one incident, a mother and her lover beat a 25-month old girl every day until her death. The original examination concluded that the cause of death was traumatic shock due to multiple trauma over the entire body caused by both adults. A second examination concluded that the cause of death was delayed suffocation due to binding of the chest and compression against a mattress. Based on an overall evaluation of the circumstances at the time of detection (including photographic evidence) as well as the contents of the statement made by the lover, I inferred that the head-down hanging of the child in the bathtub by the lover was directly related to the cause of death. In my opinion, the liability of the two adults in the crime was not the same.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    NASA Technical Reports Server (NTRS)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  20. Quantification of an atmospheric nucleation and growth process as a single source of aerosol particles in a city

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Varga, Veronika; Németh, Zoltán

    2017-12-01

    Effects of a new aerosol particle formation (NPF) and particle diameter growth process as a single source of atmospheric particle number concentrations were evaluated and quantified on the basis of experimental data sets obtained from particle number size distribution measurements in the city centre and near-city background of Budapest for 5 years. Nucleation strength factors for a nucleation day (NSFNUC) and for a general day (NSFGEN) were derived separately for seasons and full years. The former characteristic represents the concentration increment of ultrafine (UF) particles specifically on nucleation days with respect to accumulation-mode (regional background) concentrations (particles with equivalent diameters of 100-1000 nm; N100-1000) due solely to the nucleation process. The latter factor expresses the contribution of nucleation to particle numbers on general days; thus, it represents a longer time interval such as season or year. The nucleation source had the largest effect on the concentrations around noon and early afternoon, as expected. During this time interval, it became the major source of particles in the near-city background. Nucleation increased the daily mean concentrations on nucleation days by mean factors of 2.3 and 1.58 in the near-city background and city centre, respectively. Its effect was largest in winter, which was explained by the substantially lower N100-1000 levels on nucleation days than those on non-nucleation days. On an annual timescale, 37 % of the UF particles were generated by nucleation in the near-city background, while NPF produced 13 % of UF particles in the city centre. The differences among the annual mean values, and among the corresponding seasonal mean values, were likely caused by the variability in controlling factors from year to year. The values obtained represent the lower limits of the contributions. The shares determined imply that NPF is a non-negligible or substantial source of particles in near-city background environments and even in city centres, where the vehicular road emissions usually prevail. Atmospheric residence time of nucleation-mode particles was assessed by a decay curve analysis, and a mean of 02:30 was obtained. The present study suggests that the health-related consequences of the atmospheric NPF and growth process in cities should also be considered in addition to its urban climate implications.

  1. Evaluation of truncated LipL32 expressed by Escherichia coli and Pichia pastoris for serodiagnosis of Leptospira infection in rodents.

    PubMed

    Shiokawa, Kanae; Gamage, Chandika D; Koizumi, Nobuo; Sakoda, Yoshihiro; Shimizu, Kenta; Tsuda, Yoshimi; Yoshimatsu, Kumiko; Arikawa, Jiro

    2016-02-01

    The applicability of the recombinant LipL32 for serodiagnosis of leptospiral infection in field rodents was assessed in this study. An immunodominant region of LipL32 was determined by monoclonal antibodies, and then, truncated LipL32 (tLipL32) was designed to contain the region (87-188th amino acid). The tLipL32 was compared between two recombinant expression hosts Escherichia coli and Pichia pastoris in ELISA. With field rat sera, tLipL32 expressed by P. pastoris (tLipL32p) had high antigenicity without background reactions, while tLipL32 expressed by E. coli (tLipL32e) showed high background reactions, which were reduced by pre-adsorption of sera with E. coli. To evaluate tLipL32-ELISA, field rat sera were tentatively divided into a Leptospira infection positive (12 sera) and a negative group (12 sera) based on the results from flaB gene PCR of kidney samples and WB with whole Leptospira cell. Consequently, the sensitivity of tLipL32p-ELISA for field rat sera was 83% . A similar result was obtained from tLipL32e-ELISA with adsorbed sera, (92%). However, sensitivity of tLipL32e-ELISA using sera without an adsorption treatment was 50%. Regardless of the expression host, tLipL32-ELISA had 100% specificity and sensitivity in experimentally infected laboratory rats. These results suggest that recombinant LipL32 expressed by P. pastoris is more applicable for serodiagnosis in field rats due to a lack of background reaction.

  2. Document image binarization using "multi-scale" predefined filters

    NASA Astrophysics Data System (ADS)

    Saabni, Raid M.

    2018-04-01

    Reading text or searching for key words within a historical document is a very challenging task. one of the first steps of the complete task is binarization, where we separate foreground such as text, figures and drawings from the background. Successful results of this important step in many cases can determine next steps to success or failure, therefore it is very vital to the success of the complete task of reading and analyzing the content of a document image. Generally, historical documents images are of poor quality due to their storage condition and degradation over time, which mostly cause to varying contrasts, stains, dirt and seeping ink from reverse side. In this paper, we use banks of anisotropic predefined filters in different scales and orientations to develop a binarization method for degraded documents and manuscripts. Using the fact, that handwritten strokes may follow different scales and orientations, we use predefined sets of filter banks having various scales, weights, and orientations to seek a compact set of filters and weights in order to generate diffrent layers of foregrounds and background. Results of convolving these fiters on the gray level image locally, weighted and accumulated to enhance the original image. Based on the different layers, seeds of components in the gray level image and a learning process, we present an improved binarization algorithm to separate the background from layers of foreground. Different layers of foreground which may be caused by seeping ink, degradation or other factors are also separated from the real foreground in a second phase. Promising experimental results were obtained on the DIBCO2011 , DIBCO2013 and H-DIBCO2016 data sets and a collection of images taken from real historical documents.

  3. Current sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-Frequency Assisted Discharge

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Choueiri, Edgar Y.; Polzin, Kurt A.

    2007-01-01

    The inductive formation of current sheets in a conical theta pinch FARAD (Faraday Accelerator with Radio-frequency Assisted Discharge) thruster is investigated experimentally with time-integrated photography. The goal is to help in understanding the mechanisms and conditions controlling the strength and extent of the current sheet, which are two indices important for FARAD as a propulsion concept. The profiles of these two indices along the inside walls of the conical acceleration coil are assumed to be related to the profiles of the strength and extent of the luminosity pattern derived from photographs of the discharge. The variations of these profiles as a function of uniform back-fill neutral pressure (with no background magnetic field and all parameters held constant) provided the first clues on the nature and qualitative dependencies of current sheet formation. It was found that there is an optimal pressure for which both indices reach a maximum and that the rate of change in these indices with pressure differs on either side of this optimal pressure. This allowed the inference that current sheet formation follows a Townsend-like breakdown mechanism modified by the existence of a finite pressure-dependent radio-frequency-generated electron density background. The observation that the effective location of the luminosity pattern favors the exit-half of the conical coil is explained as the result of the tendency of the inductive discharge circuit to operate near its minimal self-inductance. Movement of the peak in the luminosity pattern towards the upstream side of the cone with increasing pressure is believed to result from the need of the circuit to compensate for the increase in background plasma resistivity due to increasing pressure.

  4. Background Oriented Schlieren Implementation in a Jet-Surface Interaction Test

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Brown, Clifford A.; Fagan, Amy

    2013-01-01

    Many current and future aircraft designs rely on the wing or other aircraft surfaces to shield the engine noise from observers on the ground. However the available data regarding how a planar surface interacts with a jet to shield and/or enhance the jet noise are currently limited. Therefore, the Jet-Surface Interaction Tests supported by NASA's Fundamental Aeronautics Program's Fixed Wing Project were undertaken to supply experimental data covering a wide range of surface geometries and positions interacting with high-speed jet flows in order to support the development of noise prediction methods. Phase 1 of the Test was conducted in the Aero-Acoustic Propulsion Laboratory at NASA Glenn Research Center and consisted of validating noise prediction schemes for a round nozzle interacting with a planar surface. Phased array data and far-field acoustic data were collected for both the shielded and reflected sides of the surface. Phase 1 results showed that the broadband shock noise was greatly reduced by the surface when the jet was operated at the over-expanded condition, however, it was unclear whether this reduction was due a change in the shock cell structure by the surface. In the present study, Background Oriented Schlieren is implemented in Phase 2 of the Jet-Surface Interaction Tests to investigate whether the planar surface interacts with the high-speed jet ow to change the shock cell structure. Background Oriented Schlieren data are acquired for under-expanded, ideally-expanded, and over-expanded ow regimes for multiple axial and radial positions of the surface at three different plate lengths. These data are analyzed with far-field noise measurements to relate the shock cell structure to the broadband shock noise produced by a jet near a surface.

  5. Optimization of Experimental Conditions of the Pulsed Current GTAW Parameters for Mechanical Properties of SDSS UNS S32760 Welds Based on the Taguchi Design Method

    NASA Astrophysics Data System (ADS)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2012-09-01

    Taguchi design method with L9 orthogonal array was implemented to optimize the pulsed current gas tungsten arc welding parameters for the hardness and the toughness of super duplex stainless steel (SDSS, UNS S32760) welds. In this regard, the hardness and the toughness were considered as performance characteristics. Pulse current, background current, % on time, and pulse frequency were chosen as main parameters. Each parameter was varied at three different levels. As a result of pooled analysis of variance, the pulse current is found to be the most significant factor for both the hardness and the toughness of SDSS welds by percentage contribution of 71.81 for hardness and 78.18 for toughness. The % on time (21.99%) and the background current (17.81%) had also the next most significant effect on the hardness and the toughness, respectively. The optimum conditions within the selected parameter values for hardness were found as the first level of pulse current (100 A), third level of background current (70 A), first level of % on time (40%), and first level of pulse frequency (1 Hz), while they were found as the second level of pulse current (120 A), second level of background current (60 A), second level of % on time (60%), and third level of pulse frequency (5 Hz) for toughness. The Taguchi method was found to be a promising tool to obtain the optimum conditions for such studies. Finally, in order to verify experimental results, confirmation tests were carried out at optimum working conditions. Under these conditions, there were good agreements between the predicted and the experimental results for the both hardness and toughness.

  6. Radioactive contamination of scintillators

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Tretyak, V. I.

    2018-03-01

    Low counting experiments (search for double β decay and dark matter particles, measurements of neutrino fluxes from different sources, search for hypothetical nuclear and subnuclear processes, low background α, β, γ spectrometry) require extremely low background of a detector. Scintillators are widely used to search for rare events both as conventional scintillation detectors and as cryogenic scintillating bolometers. Radioactive contamination of a scintillation material plays a key role to reach low level of background. Origin and nature of radioactive contamination of scintillators, experimental methods and results are reviewed. A programme to develop radiopure crystal scintillators for low counting experiments is discussed briefly.

  7. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Burca, G.; Kockelmann, W.; Minniti, T.; Senesi, R.

    2017-08-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  8. A search for neutrino oscillations using the CHOOZ 1 km baseline reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    George, Jean

    1999-10-01

    Neutrino oscillation searches are an active field of research due to the implications their discovery may have for the solar neutrino anomaly as well as for the atmospheric neutrino anomaly. Their discovery may also have broad ramifications for the Standard Model of Particle Physics as a whole. Results from an oscillation search using the CHOOZ long baseline reactor neutrino experiment are presented in this thesis. These results are based on the data taken from June 1997 through April 1998 when the two reactors ran at combined thermal power levels ranging from zero power to their full power level of 8.5 GW. Electron flavored antineutrinos emanating from the reactors were detected through the inverse beta decay channel using a liquid scintillating calorimeter located at a distance of approximately 1 km from the reactor sources. The underground experimental site (300 MWE) provided natural shielding from the background of cosmic ray muons-leading to a background rate more than an order of magnitude lower than the full power signal rate. From the agreement between the detected and expected neutrino event rates no evidence for neutrino oscillations was found (at the 90% C.L.) for the oscillation parameter space governed by Δm 2 > 0.8 × 10-3 eV2 for maximal mixing and by sin2 2Θ > 0.18 for large values of Δm2.

  9. Gas Leak Detection by Dilution of Atmospheric Oxygen

    PubMed Central

    Lambrecht, Armin; Maier, Eric; Strahl, Thomas; Herbst, Johannes

    2017-01-01

    Gas leak detection is an important issue in infrastructure monitoring and industrial production. In this context, infrared (IR) absorption spectroscopy is a major measurement method. It can be applied in an extractive or remote detection scheme. Tunable laser spectroscopy (TLS) instruments are able to detect CH4 leaks with column densities below 10 ppm·m from a distance of 30 m in less than a second. However, leak detection of non-IR absorbing gases such as N2 is not possible in this manner. Due to the fact that any leaking gas displaces or dilutes the surrounding background gas, an indirect detection is still possible. It is shown by sensitive TLS measurements of the ambient background concentration of O2 that N2 leaks can be localized with extractive and standoff methods for distances below 1 m. Minimum leak rates of 0.1 mbar·L/s were determined. Flow simulations confirm that the leakage gas typically effuses in a narrow jet. The sensitivity is mainly determined by ambient flow conditions. Compared to TLS detection of CH4 at 1651 nm, the indirect method using O2 at 761 nm is experimentally found to be less sensitive by a factor of 100. However, the well-established TLS of O2 may become a universal tool for rapid leakage screening of vessels that contain unknown or inexpensive gases, such as N2. PMID:29206133

  10. A high-efficiency gas target setup for underground experiments, and redetermination of the branching ratio of the 189.5 keV 22Ne(p,γ)23Na resonance

    NASA Astrophysics Data System (ADS)

    Ferraro, F.; Takács, M. P.; Piatti, D.; Mossa, V.; Aliotta, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Cavanna, F.; Chillery, T.; Ciani, G. F.; Corvisiero, P.; Csedreki, L.; Davinson, T.; Depalo, R.; D'Erasmo, G.; Di Leva, A.; Elekes, Z.; Fiore, E. M.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Kochanek, I.; Lugaro, M.; Marcucci, L. E.; Marigo, P.; Menegazzo, R.; Pantaleo, F. R.; Paticchio, V.; Perrino, R.; Prati, P.; Schiavulli, L.; Stöckel, K.; Straniero, O.; Szücs, T.; Trezzi, D.; Zavatarelli, S.

    2018-03-01

    The experimental study of nuclear reactions of astrophysical interest is greatly facilitated by a low-background, high-luminosity setup. The Laboratory for Underground Nuclear Astrophysics (LUNA) 400kV accelerator offers ultra-low cosmic-ray induced background due to its location deep underground in the Gran Sasso National Laboratory (INFN-LNGS), Italy, and high intensity, 250-500μA, proton and α ion beams. In order to fully exploit these features, a high-purity, recirculating gas target system for isotopically enriched gases is coupled to a high-efficiency, six-fold optically segmented bismuth germanate (BGO) γ-ray detector. The beam intensity is measured with a beam calorimeter with constant temperature gradient. Pressure and temperature measurements have been carried out at several positions along the beam path, and the resultant gas density profile has been determined. Calibrated γ-intensity standards and the well-known Ep = 278 keV 14N(p,γ)15O resonance were used to determine the γ-ray detection efficiency and to validate the simulation of the target and detector setup. As an example, the recently measured resonance at Ep = 189.5 keV in the 22Ne(p,γ)23Na reaction has been investigated with high statistics, and the γ-decay branching ratios of the resonance have been determined.

  11. Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiaoying; Liang Chuang; Fook Lee, Kim

    We demonstrate an optical-fiber-based source of polarization-entangled photon pairs with improved quality and efficiency, which has been integrated with off-the-shelf telecom components and is, therefore, well suited for quantum communication applications in the 1550-nm telecom band. Polarization entanglement is produced by simultaneously pumping a loop of standard dispersion-shifted fiber with two orthogonally polarized pump pulses, one propagating in the clockwise and the other in the counterclockwise direction. We characterize this source by investigating two-photon interference between the generated signal-idler photon pairs under various conditions. The experimental parameters are carefully optimized to maximize the generated photon-pair correlation and to minimize contaminationmore » of the entangled photon pairs from extraneously scattered background photons that are produced by the pump pulses for two reasons: (i) spontaneous Raman scattering causes uncorrelated photons to be emitted in the signal and idler bands and (ii) broadening of the pump-pulse spectrum due to self-phase modulation causes pump photons to leak into the signal and idler bands. We obtain two-photon interference with visibility >90% without subtracting counts caused by the background photons (only dark counts of the detectors are subtracted), when the mean photon number in the signal (idler) channel is about 0.02/pulse, while no interference is observed in direct detection of either the signal or idler photons.« less

  12. A study of the effects of an experimental spiral physics curriculum taught to sixth grade girls and boys

    NASA Astrophysics Data System (ADS)

    Davis, Edith G.

    The pilot study compared the effectiveness of using an experimental spiral physics curriculum to a traditional linear physics curriculum for sixth through eighth grades. The study also surveyed students' parents and principals about students' academic history and background as well as identified resilient children's attributes for academic success. The pilot study was used to help validate the testing instrument as well as help refine the complete study. The purpose of the complete study was to compare the effectiveness of using an experimental spiral physics curriculum and a traditional linear curriculum with sixth graders only; seventh and eighth graders were dropped in the complete study. The study also surveyed students' parents, teachers, and principals about students' academic history and background as well as identified resilient children's attributes for academic success. Both the experimental spiral physics curriculum and the traditional linear physics curriculum increased physics achievement; however, there was no statistically significant difference in effectiveness of teaching experimental spiral physics curriculum in the aggregated sixth grade group compared to the traditional linear physics curriculum. It is important to note that the majority of the subgroups studied did show statistically significant differences in effectiveness for the experimental spiral physics curriculum compared to the traditional linear physics curriculum. The Grounded Theory analysis of resilient student characteristics resulted in categories for future studies including the empathy factor ("E" factor), the tenacity factor ("T" factor), the relational factor ("R" factor), and the spiritual factor ("S" factor).

  13. Fluid surface compensation in digital holographic microscopy for topography measurement

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chien; Tu, Han-Yen; Lai, Xin-Ji; Wang, Sheng-Shiun; Cheng, Chau-Jern

    2012-06-01

    A novel technique is presented for surface compensation and topography measurement of a specimen in fluid medium by digital holographic microscopy (DHM). In the measurement, the specimen is preserved in a culture dish full of liquid culture medium and an environmental vibration induces a series of ripples to create a non-uniform background on the reconstructed phase image. A background surface compensation algorithm is proposed to account for this problem. First, we distinguish the cell image from the non-uniform background and a morphological image operation is used to reduce the noise effect on the background surface areas. Then, an adaptive sampling from the background surface is employed, taking dense samples from the high-variation area while leaving the smooth region mostly untouched. A surface fitting algorithm based on the optimal bi-cubic functional approximation is used to establish a whole background surface for the phase image. Once the background surface is found, the background compensated phase can be obtained by subtracting the estimated background from the original phase image. From the experimental results, the proposed algorithm performs effectively in removing the non-uniform background of the phase image and has the ability to obtain the specimen topography inside fluid medium under environmental vibrations.

  14. Enhanced Global Signal of Neutral Hydrogen Due to Excess Radiation at Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Feng, Chang; Holder, Gilbert

    2018-05-01

    We revisit the global 21 cm signal calculation incorporating a possible radio background at early times, and find that the global 21 cm signal shows a much stronger absorption feature, which could enhance detection prospects for future 21 cm experiments. In light of recent reports of a possible low-frequency excess radio background, we propose that detailed 21 cm calculations should include a possible early radio background.

  15. REMOTE SENSING OF CH4 BY COMBINING LIDAR AND OPTICAL CORRELATION SPECTROSCOPY : FIRST EXPERIMENTAL RESULTS B. Thomas1, A. Miffre1, G. David1, J.P. Cariou2, P. Rairoux1 1Laboratoire de Spectrométrie Ionique et Moléculaire, CNRS, UMR 5579 Université Lyon 1, 10 rue Ada Byron, 69622 Villeurbanne, France, patrick.rairoux@univ-lyon1.fr 2Leosphere France, 14-16 rue Jean Rostand, 91400 Orsay, France, jpcariou@leosphere.fr

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Miffre, A.; David, G.; Cariou, J.; Rairoux, P.

    2012-12-01

    In this contribution, we present a new methodology, called OCS-lidar, to remotely evaluate trace gas concentrations in the atmosphere (B. Thomas et al, 2012), as well as the first methane concentration measurements using this methodology. It is based on combining the Optical Correlation Spectroscopy (OCS) method with laser remote sensing technique (lidar). As displayed on figure 1, an Acoustic Optical Programmable Dispersive Filter is coupled with spectrally broadened femtosecond laser pulses to achieve the optical correlation between the emitted laser pulse and the methane absorption cross-section. In a first time, statistical and systematical errors of the OCS-lidar methodology have been evaluated thanks to a numerical model. The detection noise, interfering trace gases, temperature and pressure variations as well as laser pulse-to-pulse fluctuations have been considered. OCS-lidar simulations for methane concentration measurements have been achieved for background concentration (1.5 to 3 ppm), low (tens of ppm) and high sources (hundreds of ppm). Results show that background measurements are possible in the hour range while sources assessment and localization can be achieved in 10 minutes range up to 3 km range. Then, first methane concentration experimental measurements by using the OCS-lidar methodology will be presented. The laser source is an Oscillator Parametric Amplifier with emitting wavelength from 1.1 to 2 μm with 0.2 mJ at 1 kHz repetition rate. An AOPDF is used to generate correlated and non-correlated (or reference) signal. Experimental results on background methane concentration and on remote point source measurements will be presented, showing the achieved sensitivity and accuracy in both geophysical conditions.igure 1. Scheme of the OCS-Lidar principle. A broadened laser source centered on λ0-wavelength, with power spectral density P0, is used to create spectrally shaped power density P0M1 and P0M2, which are respectively correlated and anti-correlated to the target gas absorption cross-section σ(λ), (M1 and M2 are the wavelength dependent AOPDF-transmissions). In the atmosphere, these two emitted laser pulses, which undergo different absorptions due to the target gas presence, methane in our case, give rise to the output OCS-Lidar signals P1 and P2, after collection by a Lidar receiver and detection on an optical detector D.

  16. Quartz-enhanced photo-acoustic spectroscopy for breath analyses

    NASA Astrophysics Data System (ADS)

    Petersen, Jan C.; Lamard, Laurent; Feng, Yuyang; Focant, Jeff-F.; Peremans, Andre; Lassen, Mikael

    2017-03-01

    An innovative and novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for highly sensitive and selective breath gas analysis is introduced. The QEPAS sensor consists of two acoustically coupled micro- resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF). The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. Due to the very low fabrication costs the QEPAS sensor presents a clear breakthrough in the field of photoacoustic spectroscopy by introducing novel disposable gas chambers in order to avoid cleaning after each test. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). Spectroscopic measurements of methane and methanol in the 3.1 μm to 3.7 μm wavelength region is conducted. Demonstrating a resolution bandwidth of 1 cm-1. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s for methane and that the background noise is solely due to the thermal noise of the QTF. Spectra of both individual molecules as well as mixtures of molecules were measured and analyzed. The molecules are representative of exhaled breath gasses that are bio-markers for medical diagnostics.

  17. Wakefields in SLAC linac collimators

    DOE PAGES

    Novokhatski, A.; Decker, F. -J.; Smith, H.; ...

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible formore » the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.« less

  18. "Off-on" red-emitting fluorescent probes with large Stokes shifts for nitric oxide imaging in living cells.

    PubMed

    Chen, Jian-Bo; Zhang, Hui-Xian; Guo, Xiao-Feng; Wang, Hong; Zhang, Hua-Shan

    2013-09-01

    Fluorescent probes with larger Stokes shifts in the far-visible and near-infrared spectral region (600-900 nm) are more superior for cellular imaging and biological analysis due to avoiding light scattering interference, reducing autofluorescence from biological sample and encouraging deeper tissue penetration in vivo imaging. In this work, two bis-methoxyphenyl-BODIPY fluorescent probes for the detection of nitric oxide (NO) have been firstly synthesized. Under physiological conditions, these probes can react with NO to form the corresponding triazoles with 250- and 70-fold turn-on fluorescence emitting at 590 and 620 nm, respectively. Moreover, the triazole forms of these probes have large Stokes shifts of 38 nm, in contrast to 10 nm of existing BODIPY probes for NO. Excellent selectivity has been observed against other reactive oxygen/nitrogen species, ascorbic acid and biological matrix. After the evaluation of MTT assay, new fluorescent probes have been successfully applied to fluorescence imaging of NO released from RAW 264.7 macrophages by co-stimulation of lipopolysaccharide and interferon-γ. The experimental results indicate that our fluorescent probes can be powerful candidates for fluorescence imaging of NO due to the low background interference and high detection sensitivity.

  19. How Do Earthworms, Soil Texture and Plant Composition Affect Infiltration along an Experimental Plant Diversity Gradient in Grassland?

    PubMed Central

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W.; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Background Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. Methodology/Principal Findings We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Conclusions/Significance Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications. PMID:24918943

  20. Siderophile Element Depletion in the Angrite Parent Body (APB) Mantle: Due to Core Formation?

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2008-01-01

    The origin of angrites has evaded scientists due in part to unusual mineralogy, oxidized character, and small numbers of samples. Increased interest in the origin of angrites has stemmed from the recovery of approximately 10 new angrites in the past decade. These new samples have allowed meteoriticists to recognize that angrites are compositionally diverse, old, and record very early differentiation. Also, a magma ocean has been proposed to have been involved in APB early differentiation, but this remains untested for siderophile elements which are commonly cited as one of the main lines of evidence for magma oceans on the early Earth, Moon, Mars and eucrite parent body (e.g., [6]). And recent suggestions that angrites may or may not be from Mercury have also peaked interest in these achondrites. Given all of this background, a detailed understanding of the early differentiation process is desired. Previous efforts at examining siderophile element (SE) concentrations with respect to core formation processes in the APB have not resulted in any definite conclusions regarding segregation of a metallic core. The goal of this study is to summarize what is known about SE concentrations in the suite, estimate depletions of SE compared to chondrites, and apply metal/silicate experimental partition coefficients to assess whether the APB had a core.

  1. High-Speed Operation of Interband Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  2. Splenectomy Is Modifying the Vascular Remodeling of Thrombosis

    PubMed Central

    Frey, Maria K.; Alias, Sherin; Winter, Max P.; Redwan, Bassam; Stübiger, Gerald; Panzenboeck, Adelheid; Alimohammadi, Arman; Bonderman, Diana; Jakowitsch, Johannes; Bergmeister, Helga; Bochkov, Valery; Preissner, Klaus T.; Lang, Irene M.

    2014-01-01

    Background Splenectomy is a clinical risk factor for complicated thrombosis. We hypothesized that the loss of the mechanical filtering function of the spleen may enrich for thrombogenic phospholipids in the circulation, thereby affecting the vascular remodeling of thrombosis. Methods and Results We investigated the effects of splenectomy both in chronic thromboembolic pulmonary hypertension (CTEPH), a human model disease for thrombus nonresolution, and in a mouse model of stagnant flow venous thrombosis mimicking deep vein thrombosis. Surgically excised thrombi from rare cases of CTEPH patients who had undergone previous splenectomy were enriched for anionic phospholipids like phosphatidylserine. Similar to human thrombi, phosphatidylserine accumulated in thrombi after splenectomy in the mouse model. A postsplenectomy state was associated with larger and more persistent thrombi. Higher counts of procoagulant platelet microparticles and increased leukocyte–platelet aggregates were observed in mice after splenectomy. Histological inspection revealed a decreased number of thrombus vessels. Phosphatidylserine‐enriched phospholipids specifically inhibited endothelial proliferation and sprouting. Conclusions After splenectomy, an increase in circulating microparticles and negatively charged phospholipids is enhanced by experimental thrombus induction. The initial increase in thrombus volume after splenectomy is due to platelet activation, and the subsequent delay of thrombus resolution is due to inhibition of thrombus angiogenesis. The data illustrate a potential mechanism of disease in CTEPH. PMID:24584745

  3. The Effects of Varying Electronic Cigarette Warning Label Design Features On Attention, Recall, and Product Perceptions Among Young Adults.

    PubMed

    Mays, Darren; Villanti, Andrea; Niaura, Raymond S; Lindblom, Eric N; Strasser, Andrew A

    2017-12-13

    This study was a 3 (Brand: Blu, MarkTen, Vuse) by 3 (Warning Size: 20%, 30%, or 50% of advertisement surface) by 2 (Warning Background: White, Red) experimental investigation of the effects of electronic cigarette (e-cigarette) warning label design features. Young adults aged 18-30 years (n = 544) were recruited online, completed demographic and tobacco use history measures, and randomized to view e-cigarette advertisements with warning labels that varied by the experimental conditions. Participants completed a task assessing self-reported visual attention to advertisements with a-priori regions of interest defined around warning labels. Warning message recall and perceived addictiveness of e-cigarettes were assessed post-exposure. Approximately half of participants reported attending to warning labels and reported attention was greater for warnings on red versus white backgrounds. Recall of the warning message content was also greater among those reporting attention to the warning label. Overall, those who viewed warnings on red backgrounds reported lower perceived addictiveness than those who viewed warnings on white backgrounds, and e-cigarette users reported lower perceived addictiveness than non-users. Among e-cigarette users, viewing warnings on white backgrounds produced perceptions more similar to non-users. Greater recall was significantly correlated with greater perceived addictiveness. This study provides some of the first evidence that e-cigarette warning label design features including size and coloring affect self-reported attention and content recall.

  4. Sleep loss increases dissociation and affects memory for emotional stimuli.

    PubMed

    van Heugten-van der Kloet, Dalena; Giesbrecht, Timo; Merckelbach, Harald

    2015-06-01

    Because of their dreamlike character, authors have speculated about the role that the sleep-wake cycle plays in dissociative symptoms. We investigated whether sleep loss fuels dissociative symptoms and undermines cognitive efficiency, particularly memory functioning. Fifty-six healthy undergraduate students were randomly assigned to an experimental group (n = 28) and a control group (n = 28). The experimental group was deprived of sleep for 36 h in a sleep laboratory; the control group had a regular night of sleep. Sleepiness, mood, and dissociative symptoms were assessed 6 times in the experimental group (control group: 4 times). Several cognitive tasks were administered. Sleep deprivation led to an increase in dissociative symptoms, which was mediated by levels of general distress. Feelings of sleepiness preceded an increase of dissociative symptoms and deterioration of mood. Finally, sleep loss also undermined memory of emotional material, especially in highly dissociative individuals. Limitations included moderate reliability of the mood scale, limited generalizability due to student sample, and a relatively short period of intensive sleep deprivation rather than lengthy but intermittent sleep loss, representative of a clinical population. We found that sleep deprivation had significant effects on dissociation, sleepiness, and mood. Specifically, sleepiness and dissociation increased during the night, while mood deteriorated. Our findings stress the importance of sleep deficiencies in the development of dissociative symptoms. They support the view that sleep disruptions fuel distress, but also degrade memory and attentional control. It is against this background that dissociative symptoms may arise. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez, H.

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine themore » muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.« less

  6. One-dimensional analysis of the rate of plasma-assisted sputter deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmero, A.; Rudolph, H.; Habraken, F. H. P. M.

    2007-04-15

    In this article a recently developed model [A. Palmero, H. Rudolph, and F. H. P. M. Habraken, Appl. Phys. Lett. 89, 211501 (2006)] is applied to analyze the transport of sputtered material from the cathode toward the growing film when using a plasma-assisted sputtering deposition technique. The argon pressure dependence of the deposition rate of aluminum, silicon, vanadium, chromium, germanium, tantalum, and tungsten under several different experimental conditions has been analyzed by fitting experimental results from the literature to the above-mentioned theory. Good fits are obtained. Three quantities are deduced from the fit: the temperature of the cathode and ofmore » the growing film, and the value of the effective cross section for thermalization due to elastic scattering of a sputtered particle on background gas atoms. The values derived from the fits for the growing film and cathode temperature are very similar to those experimentally determined and reported in the literature. The effective cross sections have been found to be approximately the corresponding geometrical cross section divided by the average number of collisions required for the thermalization, implying that the real and effective thermalization lengths have a similar value. Finally, the values of the throw distance appearing in the Keller-Simmons model, as well as its dependence on the deposition conditions have been understood invoking the values of the cathode and film temperature, as well as of the value of the effective cross section. The analysis shows the overall validity of this model for the transport of sputtered particles in sputter deposition.« less

  7. Peer Exclusion at Physical Education

    ERIC Educational Resources Information Center

    Sotosek, Gorazd

    2016-01-01

    School sports give all pupils opportunity to learn to be tolerant to others regardless of their differences or shortcomings. This is getting more and more important due to the growing differences in physical and motor skills, different social backgrounds, besides there is a growing number of pupils having different backgrounds, nationalities, etc.…

  8. High-Ability Women and Men in Undergraduate Mathematics and Chemistry Courses.

    ERIC Educational Resources Information Center

    Bali, John; And Others

    1985-01-01

    Using samples of college students of very high ability and strong academic background, sex differences in performance and perceptions of performance in introductory chemistry and mathematics courses were studied. Considerable differences favoring men were found, and these appeared to be due primarily to differences in mathematics background.…

  9. A Field-Shaking System to Reduce the Screening Current-Induced Field in the 800-MHz HTS Insert of the MIT 1.3-GHz LTS/HTS NMR Magnet: A Small-Model Study.

    PubMed

    Lee, Jiho; Park, Dongkeun; Michael, Philip C; Noguchi, So; Bascuñán, Juan; Iwasa, Yukikazu

    2018-04-01

    In this paper, we present experimental results, of a small-model study, from which we plan to develop and apply a full-scale field-shaking system to reduce the screening current-induced field (SCF) in the 800-MHz HTS Insert (H800) of the MIT 1.3-GHz LTS/HTS NMR magnet (1.3G) currently under construction-the H800 is composed of 3 nested coils, each a stack of no-insulation (NI) REBCO double-pancakes. In 1.3G, H800 is the chief source of a large error field generated by its own SCF. To study the effectiveness of the field-shaking technique, we used two NI REBCO double-pancakes, one from Coil 2 (HCoil2) and one from Coil 3 (HCoil3) of the 3 H800 coils, and placed them in the bore of a 5-T/300-mm room-temperature bore low-temperature superconducting (LTS) background magnet. The background magnet is used not only to induce the SCF in the double-pancakes but also to reduce it by the field-shaking technique. For each run, we induced the SCF in the double-pancakes at an axial location where the external radial field Br > 0, then for the field-shaking, moved them to another location where the external axial field Bz ≫ B R . Due to the geometry of H800 and L500, top double-pancakes of 3 H800 coils will experience the considerable radial magnetic field perpendicular to the REBCO tape surface. To examine the effect of the field-shaking on the SCF, we tested each NI REBCO DP in the absence or presence of a radial field. In this paper, we report 77-K experimental results and analysis of the effect and a few significant remarks of the field-shaking.

  10. Authentication of Herbal Supplements Using Next-Generation Sequencing

    PubMed Central

    Braukmann, Thomas W. A.; Borisenko, Alex V.; Zakharov, Evgeny V.

    2016-01-01

    Background DNA-based testing has been gaining acceptance as a tool for authentication of a wide range of food products; however, its applicability for testing of herbal supplements remains contentious. Methods We utilized Sanger and Next-Generation Sequencing (NGS) for taxonomic authentication of fifteen herbal supplements representing three different producers from five medicinal plants: Echinacea purpurea, Valeriana officinalis, Ginkgo biloba, Hypericum perforatum and Trigonella foenum-graecum. Experimental design included three modifications of DNA extraction, two lysate dilutions, Internal Amplification Control, and multiple negative controls to exclude background contamination. Ginkgo supplements were also analyzed using HPLC-MS for the presence of active medicinal components. Results All supplements yielded DNA from multiple species, rendering Sanger sequencing results for rbcL and ITS2 regions either uninterpretable or non-reproducible between the experimental replicates. Overall, DNA from the manufacturer-listed medicinal plants was successfully detected in seven out of eight dry herb form supplements; however, low or poor DNA recovery due to degradation was observed in most plant extracts (none detected by Sanger; three out of seven–by NGS). NGS also revealed a diverse community of fungi, known to be associated with live plant material and/or the fermentation process used in the production of plant extracts. HPLC-MS testing demonstrated that Ginkgo supplements with degraded DNA contained ten key medicinal components. Conclusion Quality control of herbal supplements should utilize a synergetic approach targeting both DNA and bioactive components, especially for standardized extracts with degraded DNA. The NGS workflow developed in this study enables reliable detection of plant and fungal DNA and can be utilized by manufacturers for quality assurance of raw plant materials, contamination control during the production process, and the final product. Interpretation of results should involve an interdisciplinary approach taking into account the processes involved in production of herbal supplements, as well as biocomplexity of plant-plant and plant-fungal biological interactions. PMID:27227830

  11. Position specific variation in the rate of evolution in transcription factor binding sites

    PubMed Central

    Moses, Alan M; Chiang, Derek Y; Kellis, Manolis; Lander, Eric S; Eisen, Michael B

    2003-01-01

    Background The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Results Here we analyse the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikatae to study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artefacts of computational motif finding algorithms. Conclusion As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative sequence data in the identification of transcription factor binding sites and is an important step toward understanding the evolution of functional non-coding DNA. PMID:12946282

  12. Measurement of the membrane potential in small cells using patch clamp methods

    PubMed Central

    Wilson, James R; Clark, Robert B; Banderali, Umberto

    2011-01-01

    The resting membrane potential, Em, of mammalian cells is a fundamental physiological parameter. Even small changes in Em can modulate excitability, contractility and rates of cell migration. At present accurate, reproducible measurements of Em and determination of its ionic basis remain significant challenges when patch clamp methods are applied to small cells. In this study, a mathematical model has been developed which incorporates many of the main biophysical principles which govern recordings of the resting potential of “small cells”. Such a prototypical cell (approx. capacitance, 6 pF; input resistance 5 GΩ) is representative of neonatal cardiac myocytes, and other cells in the cardiovascular system (endothelium, fibroblasts) and small cells in other tissues, e.g., bone (osteoclasts) articular joints (chondrocytes) and the pancreas (β cells). Two common experimental conditions have been examined: (1) when the background K+ conductance is linear; and (2) when this K+ conductance is highly nonlinear and shows pronounced inward rectification. In the case of a linear K+ conductance, the presence of a “leakage” current through the seal resistance between the cell membrane and the patch pipette always depolarizes Em. Our calculations confirm that accurate characterization of Em is possible when the seal resistance is at least five times larger than the input resistance of the targeted cell. Measurement of Em under conditions in which the main background current includes a markedly nonlinear K+ conductance (due to inward rectification) yields complex and somewhat counter-intuitive findings. In fact, there are at least two possible stable values of resting membrane potential for a cell when the nonlinear, inwardly rectifying K+ conductance interacts with the seal current. This type of bistable behavior has been reported in a variety of small mammalian cells, including those from the heart, endothelium, smooth muscle and bone. Our theoretical treatment of these two common experimental situations provides useful mechanistic insights, and suggests practical methods by which these significant limitations, and their impact, can be minimized. PMID:21829090

  13. Emergent kink stability of a magnetized plasma jet injected into a transverse background magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Gilmore, Mark; Hsu, Scott C.; Fisher, Dustin M.; Lynn, Alan G.

    2017-11-01

    We report experimental results on the injection of a magnetized plasma jet into a transverse background magnetic field in the HelCat linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81(1), 345810104 (2015)]. After the plasma jet leaves the plasma-gun muzzle, a tension force arising from an increasing curvature of the background magnetic field induces in the jet a sheared axial-flow gradient above the theoretical kink-stabilization threshold. We observe that this emergent sheared axial flow stabilizes the n = 1 kink mode in the jet, whereas a kink instability is observed in the jet when there is no background magnetic field present.

  14. Strain-specific induction of experimental autoimmune prostatitis (EAP) in mice.

    PubMed

    Jackson, Christopher M; Flies, Dallas B; Mosse, Claudio A; Parwani, Anil; Hipkiss, Edward L; Drake, Charles G

    2013-05-01

    Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. Copyright © 2012 Wiley Periodicals, Inc.

  15. ON THE ACCURACY OF THE PROPAGATION THEORY AND THE QUALITY OF BACKGROUND OBSERVATIONS IN A SCHUMANN RESONANCE INVERSION PROCEDURE Vadim MUSHTAK, Earle WILLIAMS PARSONS LABORATORY, MIT

    NASA Astrophysics Data System (ADS)

    Mushtak, V. C.

    2009-12-01

    Observations of electromagnetic fields in the Schumann resonance (SR) frequency range (5 to 40 Hz) contain information about both the major source of the electromagnetic radiation (repeatedly confirmed to be global lightning activity) and the source-to-observer propagation medium (the Earth-ionosphere waveguide). While the electromagnetic signatures from individual lightning discharges provide preferable experimental material for exploring the medium, the properties of the world-wide lightning process are best reflected in background spectral SR observations. In the latter, electromagnetic contributions from thousands of lightning discharges are accumulated in intervals of about 10-15 minutes - long enough to present a statistically significant (and so theoretically treatable) ensemble of individual flashes, and short enough to reflect the spatial-temporal dynamics of global lightning activity. Thanks to the small (well below 1 dB/Mm) attenuation in the SR range and the accumulated nature of background SR observations, the latter present globally integrated information about lightning activity not available via other (satellite, meteorological) techniques. The most interesting characteristics to be extracted in an inversion procedure are the rates of vertical charge moment change (and their temporal variations) in the major global lightning “chimneys”. The success of such a procedure depends critically on the accuracy of the propagation theory (used to carry out “direct” calculations for the inversion) and the quality of experimental material. Due to the nature of the problem, both factors - the accuracy and the quality - can only be estimated indirectly, which requires specific approaches to assure that the estimates are realistic and more importantly, that the factors could be improved. For the first factor, simulations show that the widely exploited theory of propagation in a uniform (spherically symmetrical) waveguide provides unacceptable (up to several tens of percent) errors when used to extract the rates of charge moment change in the major “chimneys”. A comparative analysis carried out on the basis of a more accurate two-dimensional telegraph equation (TDTE) technique shows that the above inaccuracy results mainly from neglecting the major non-uniformity of the Earth-ionosphere waveguide due to the electrodynamic contrast between its day- and nighttime hemispheres. To estimate improve the quality of observations, several approaches are presented. Generally, the approaches are based on dividing the observation interval into shorter (10-sec) segments and collecting their Fourier transforms via an “accept/reject” criterion dependent on both the statistics of the segments’ energy contents within the given interval and the observational history. Such a procedure allows the removal of “bad” segments contaminated by either cultural interference or local lightning activity, instead of rejecting the whole interval as a “bad” one. Several criteria are presented, their efficiencies demonstrated, compared, and tested on actual SR observations from various stations for various seasons and times; the effect of using improved (rectified) SR data in an actual multi-station inversion procedure is demonstrated.

  16. Visual Motion Perception

    DTIC Science & Technology

    1991-08-15

    Conversely, displays Atr con- past experience to the experimental stimuli. structed %xith normal density- controlled KDE cues but %ith 5. Excluding...frame. This 3Ndisplays, gray background is displayed’ on ail introduces 50% -scintillation (density control lion even frames (labelled 1:0). Other non ...video tapes were prepared, each of whsich contained all the experimental ASL signs but distributed 1 2 3 4 into dliffereint. filter groups . Eight

  17. Overview of an Advanced Hypersonic Structural Concept Test Program

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony

    2007-01-01

    This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.

  18. Oxidative DNA damage background estimated by a system model of base excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Wilson, III, D M

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less

  19. A novel infrared small moving target detection method based on tracking interest points under complicated background

    NASA Astrophysics Data System (ADS)

    Dong, Xiabin; Huang, Xinsheng; Zheng, Yongbin; Bai, Shengjian; Xu, Wanying

    2014-07-01

    Infrared moving target detection is an important part of infrared technology. We introduce a novel infrared small moving target detection method based on tracking interest points under complicated background. Firstly, Difference of Gaussians (DOG) filters are used to detect a group of interest points (including the moving targets). Secondly, a sort of small targets tracking method inspired by Human Visual System (HVS) is used to track these interest points for several frames, and then the correlations between interest points in the first frame and the last frame are obtained. Last, a new clustering method named as R-means is proposed to divide these interest points into two groups according to the correlations, one is target points and another is background points. In experimental results, the target-to-clutter ratio (TCR) and the receiver operating characteristics (ROC) curves are computed experimentally to compare the performances of the proposed method and other five sophisticated methods. From the results, the proposed method shows a better discrimination of targets and clutters and has a lower false alarm rate than the existing moving target detection methods.

  20. Comparative Evaluation of Enalapril and Losartan in Pharmacological Correction of Experimental Osteoporosis and Fractures of Its Background

    PubMed Central

    Rajkumar, D. S. R.; Faitelson, A. V.; Gudyrev, O. S.; Dubrovin, G. M.; Pokrovski, M. V.; Ivanov, A. V.

    2013-01-01

    In the experiment on the white Wistar female rats (222 animals), the osteoprotective effect of enalapril and losartan was studied on experimental models of osteoporosis and osteoporotic fractures. It was revealed that in rats after ovariectomy, the endothelial dysfunction of microcirculation vessels of osteal tissue develops, resulting in occurrence of osteoporosis and delay of consolidation of experimental fractures. Enalapril and losartan prevented the reduction of microcirculation in bone, which was reflected in slowing the thinning of bone trabeculae and in preventing the occurrence of these microfractures, as well as increasing quality of experimental fractures healing. PMID:23401845

  1. Chuck Booten | NREL

    Science.gov Websites

    -3167 Chuck joined NREL in 2010. His research is focused on heat transfer modeling, heating, ventilating background is in experimental heat transfer and fluid mechanics. Education Ph.D. Mechanical Engineering

  2. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues.

    PubMed

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts.

  3. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues

    PubMed Central

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts. PMID:26445216

  4. Eosinophilic ascites due to severe eosinophilic ileitis

    PubMed Central

    Setia, Namrata; Ghobrial, Peter; Liron, Pantanowitz

    2010-01-01

    Background: There is a broad etiology for effusion eosinophilia that includes allergic, reactive, infectious, immune, neoplastic, and idiopathic causes. We report and describe the cytomorphologic findings of a rare case of eosinophilic ascites due to severe eosinophilic ileitis. Case Presentation: A 17-year-old male manifested acutely with eosinophilic ascites due to severe biopsy-proven subserosal eosinophilic ileitis. Isolated peritoneal fluid submitted for cytologic evaluation revealed that 65% eosinophils were present in a bloody background. The patient responded to corticosteroids, with complete resolution of his ascites. Conclusion: Eosinophilic gastroenteritis with subserosal involvement should be added to the list of causes for eosinophils in peritoneal fluid. The finding of eosinophilic ascites, with appropriate clinical and laboratory findings, may warrant the need to perform laparoscopic intestinal biopsies to confirm the diagnosis. PMID:20976207

  5. Placebo analgesia is not due to compliance or habituation: EEG and behavioural evidence.

    PubMed

    Watson, Alison; El-Deredy, Wael; Vogt, Brent A; Jones, Anthony K P

    2007-05-28

    This study was designed to resolve whether experimental placebo responses are due to either increased compliance or habituation. We stimulated both forearms and recorded laser-evoked potentials from 18 healthy volunteers treated on one arm with a sham analgesic cream and an inactive cream on the other (treatment group), and 13 volunteers with an inactive cream on both arms (controls). The treatment group showed a significant reduction in the pain ratings and laser-evoked potentials with both the sham and inactive creams. The control group showed no evidence of habituation to the laser stimulus. The results indicate that the reduction in pain during experimental placebo response is unlikely to be due to sensory habituation or compliance with the experimental instructions.

  6. Schumann resonance transients and the search for gravitational waves

    NASA Astrophysics Data System (ADS)

    Silagadze, Z. K.

    2018-02-01

    Schumann resonance transients which propagate around the globe can potentially generate a correlated background in widely separated gravitational-wave detectors. We show that due to the distribution of lightning hotspots around the globe, these transients have characteristic time lags, and this feature can be useful to further suppress such a background, especially in searches of the stochastic gravitational-wave background. A brief review of the corresponding literature on Schumann resonances and lightnings is also given.

  7. Advanced Background Subtraction Applied to Aeroacoustic Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Horne, William C.

    2015-01-01

    An advanced form of background subtraction is presented and applied to aeroacoustic wind tunnel data. A variant of this method has seen use in other fields such as climatology and medical imaging. The technique, based on an eigenvalue decomposition of the background noise cross-spectral matrix, is robust against situations where isolated background auto-spectral levels are measured to be higher than levels of combined source and background signals. It also provides an alternate estimate of the cross-spectrum, which previously might have poor definition for low signal-to-noise ratio measurements. Simulated results indicate similar performance to conventional background subtraction when the subtracted spectra are weaker than the true contaminating background levels. Superior performance is observed when the subtracted spectra are stronger than the true contaminating background levels. Experimental results show limited success in recovering signal behavior for data where conventional background subtraction fails. They also demonstrate the new subtraction technique's ability to maintain a proper coherence relationship in the modified cross-spectral matrix. Beam-forming and de-convolution results indicate the method can successfully separate sources. Results also show a reduced need for the use of diagonal removal in phased array processing, at least for the limited data sets considered.

  8. Electrochemical DNA biosensor based on the BDD nanograss array electrode

    PubMed Central

    2013-01-01

    Background The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Results Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. Conclusions The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability. PMID:23575250

  9. Scene text detection by leveraging multi-channel information and local context

    NASA Astrophysics Data System (ADS)

    Wang, Runmin; Qian, Shengyou; Yang, Jianfeng; Gao, Changxin

    2018-03-01

    As an important information carrier, texts play significant roles in many applications. However, text detection in unconstrained scenes is a challenging problem due to cluttered backgrounds, various appearances, uneven illumination, etc.. In this paper, an approach based on multi-channel information and local context is proposed to detect texts in natural scenes. According to character candidate detection plays a vital role in text detection system, Maximally Stable Extremal Regions(MSERs) and Graph-cut based method are integrated to obtain the character candidates by leveraging the multi-channel image information. A cascaded false positive elimination mechanism are constructed from the perspective of the character and the text line respectively. Since the local context information is very valuable for us, these information is utilized to retrieve the missing characters for boosting the text detection performance. Experimental results on two benchmark datasets, i.e., the ICDAR 2011 dataset and the ICDAR 2013 dataset, demonstrate that the proposed method have achieved the state-of-the-art performance.

  10. [ON HUMAN BODY REACTION TO A CHANGED GEOMAGNETIC BACKGROUND].

    PubMed

    Sterlikova, I V

    2015-01-01

    Purpose of the work was to test the concept about existence of a heliobiological relation in the Earth's middle-latitude region for which to analyze, as an example, frequency of circulatory disease exacerbation, mental and behavior disorders, and respiratory diseases (bronchial asthma). The subject and object of the experimental statistic survey have been dwellers of city of Murom (Vladimir region) located in middle-latitude geomagnetic region Φ ≈ 53 degrees. The source material in the investigation was medical data of the Murom ambulance service and geophysical data of the Borok geomagnetic observatory (Yaroslavl region). The survey went on 3 years from February, 1985 till December, 1987 and coincided with the rise of the 11th solar cycle. The largest number of calls to the ambulance service due to acute circulatory condition, mental or behavior disorders, respiratory diseases (bronchial asthma particularly) and their fatal outcome fell on periods of long absence of high-frequency geomagnetic pulsation within the frequency range of human biorhythms.

  11. First application of calorimetric low-temperature detectors in accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kraft, S.; Andrianov, V.; Bleile, A.; Egelhof, P.; Golser, R.; Kiseleva, A.; Kiselev, O.; Kutschera, W.; Meier, J. P.; Priller, A.; Shrivastava, A.; Steier, P.; Vockenhuber, C.

    2004-03-01

    For the first time, calorimetric low-temperature detectors were applied in accelerator mass spectrometry, a well-known method for determination of very small isotope ratios with high sensitivity. The aim of the experiment was to determine with high accuracy the isotope ratio of 236U/238U for several samples of natural uranium, 236U being known as a sensitive monitor for neutron flux. Measurements were performed at the VERA tandem accelerator at Vienna, Austria. The detectors consist of sapphire absorbers and superconducting transition edge thermometers operated at T≈ 1.5 K. The relative energy resolution obtained for 17.39 MeV 238U is ΔE/E=4-9×10-3, depending on the experimental conditions. This performance enabled to substantially reduce background from neighbouring isotopes and to increase the detection efficiency. Due to the high sensitivity achieved, a value of 236U/238U=6.5×10-12 could be obtained, representing the smallest 236U/238U ratio measured until now.

  12. Measurement of thick target neutron yield from the reaction (p+181 Ta) with projectiles in the range of 6-20 MeV

    NASA Astrophysics Data System (ADS)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sharma, S. C.; Joshi, D. S.; Bandyopadhyay, T.

    2018-02-01

    181Ta is a commonly used backing material for many targets in nuclear reaction studies. When the target thickness is less than the range of bombarded projectiles, the interaction via Ta(p,n) reactions in the backing can be a significant source of background. In this study, the neutron spectral yields from the reaction of protons of different energies (between 6 to 20 MeV) with a thick Ta target were determined using CR-39 detectors. The results from this study can be used as a correction factor in such situations. The parameters of registered tracks in CR-39 were analysed using an in-house image analysing program autoTRAK_n and then to derive the associated dose values. The spectral yields obtained experimentally were compared with those obtained from the theoretical calculations. The neutron yield was found to increase with increase in projectile energy mainly due to the opening of reaction channels from (p, n) to (p, 3n).

  13. Projectile channeling in chain bundle dusty plasma liquids: Wave excitation and projectile-wave interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2011-03-15

    The microscopic channeling dynamics of projectiles in subexcitable chain bundle dusty plasma liquids consisting of long chains of negatively charged dusts suspended in low pressure glow discharges is investigated experimentally using fast video-microscopy. The long distance channeling of the projectile in the channel formed by the surrounding dust chain bundles and the excitation of a narrow wake associated with the elliptical motions of the background dusts are demonstrated. In the high projectile speed regime, the drag force due to wake wave excitation increases with the decreasing projectile speed. The excited wave then leads the slowed down projectile after the projectilemore » speed is decreased below the resonant speed of wave excitation. The wave-projectile interaction causes the increasing projectile drag below the resonant speed and the subsequent oscillation around a descending average level, until the projectile settles down to the equilibrium point. Long distance projectile surfing through the resonant crest trapping by the externally excited large amplitude solitary wave is also demonstrated.« less

  14. Beta-spectrum shapes of forbidden β decays

    NASA Astrophysics Data System (ADS)

    Kostensalo, Joel; Suhonen, Jouni

    2018-03-01

    The neutrinoless ββ decay of atomic nuclei continues to attract fervent interest due to its potential to confirm the possible Majorana nature of the neutrino, and thus the nonconservation of the lepton number. At the same time, the direct dark matter experiments are looking for weakly interacting massive particles (WIMPs) through their scattering on nuclei. The neutrino-oscillation experiments on reactor antineutrinos base their analyses on speculations of β-spectrum shapes of nuclear decays, thus leading to the notorious “reactor antineutrino anomaly.” In all these experimental efforts, one encounters the problem of β-spectrum shapes of forbidden β decays, either as unwanted backgrounds or unknown components in the analyses of data. In this work, the problem of spectrum shapes is discussed and illustrated with a set of selected examples. The relation of the β-spectrum shapes to the problem of the effective value of the weak axial-vector coupling strength gA and the enhancement of the axial-charge matrix element is also pointed out.

  15. Symmetry relations in charmless B{yields}PPP decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gronau, Michael; Rosner, Jonathan L.; Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

    2005-11-01

    Strangeness-changing decays of B mesons to three-body final states of pions and kaons are studied, assuming that they are dominated by a {delta}I=0 penguin amplitude with flavor structure b{yields}s. Numerous isospin relations for B{yields}K{pi}{pi} and for underlying quasi-two-body decays are compared successfully with experiment, in some cases resolving ambiguities in fitting resonance parameters. The only exception is a somewhat small branching ratio noted in B{sup 0}{yields}K*{sup 0}{pi}{sup 0}, interpreted in terms of destructive interference between a penguin amplitude and an enhanced electroweak penguin contribution. Relations for B decays into three kaons are derived in terms of final states involving K{submore » S} or K{sub L}, assuming that {phi}K-subtracted decay amplitudes are symmetric in K and K, as has been observed experimentally. Rates due to nonresonant backgrounds are studied using a simple model, which may reduce discrete ambiguities in Dalitz plot analyses.« less

  16. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm

    PubMed Central

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895

  17. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    PubMed

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  18. A Simple and Low-Cost Monitoring System to Investigate Environmental Conditions in a Biological Research Laboratory.

    PubMed

    Gurdita, Akshay; Vovko, Heather; Ungrin, Mark

    2016-01-01

    Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a "Raspberry Pi" single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them.

  19. Plant protein-based feeds and commercial feed enable isotopic tracking of aquaculture emissions into marine macrozoobenthic bioindicator species.

    PubMed

    Kusche, Henrik; Hillgruber, Nicola; Rößner, Yvonne; Focken, Ulfert

    2017-06-01

    Brittle stars (Ophiura spp.) and other benthic macrofauna were collected in a prospective mariculture area in the North Sea to determine if these taxa could be used as indicator species to track nutrients released from future offshore aquaculture sites. We analysed natural carbon and nitrogen stable isotopic signatures in tissues from macrofauna and compared these to six feed ingredients and four experimental diets made thereof, as well as to a commercial feed with and without lipid and carbonate removal. Our data suggest practicability of using isotopic signatures of Ophiura spp. to track aquaculture-derived organic material if plant-based fish diet ingredients and commercial feed were used for fish farming in the German Exclusive Economic Zone. Diets with high fish meal content would not be detected in Ophiura spp. using isotopic measures due to the similarity with the marine background. Our data provide valuable baseline information for studies on the impact of offshore aquaculture on the marine environment.

  20. Urban light pollution - The effect of atmospheric aerosols on astronomical observations at night

    NASA Astrophysics Data System (ADS)

    Joseph, J. H.; Kaufman, Y. J.; Mekler, Y.

    1991-07-01

    The transfer of diffuse city light from a localized source through a dust-laden atmosphere with optical depth less than 0.5 has been analyzed in the source-observer plane on the basis of an approximate treatment. The effect on several types of astronomical observation at night has been studied, considering different size distributions and amounts as well as particle shapes of the aerosols. The analysis is made in terms of the signal-to-noise ratios for a given amount of aerosol. The model is applied to conditions at the Wise Astronomical Observatory in the Negev desert, and limiting backgrounds for spectroscopy, photometry, and photography of stars and extended objects have been calculated for a variety of signal-to-noise ratios. Applications to observations with different equipment at various distances from an urban area of any size are possible. Due to the use of signal-to-noise ratios, the conclusions are different for the different experimental techniques used in astronomy.

  1. Urban light pollution - The effect of atmospheric aerosols on astronomical observations at night

    NASA Technical Reports Server (NTRS)

    Joseph, Joachim H.; Mekler, Yuri; Kaufman, Yoram J.

    1991-01-01

    The transfer of diffuse city light from a localized source through a dust-laden atmosphere with optical depth less than 0.5 has been analyzed in the source-observer plane on the basis of an approximate treatment. The effect on several types of astronomical observation at night has been studied, considering different size distributions and amounts as well as particle shapes of the aerosols. The analysis is made in terms of the signal-to-noise ratios for a given amount of aerosol. The model is applied to conditions at the Wise Astronomical Observatory in the Negev desert, and limiting backgrounds for spectroscopy, photometry, and photography of stars and extended objects have been calculated for a variety of signal-to-noise ratios. Applications to observations with different equipment at various distances from an urban area of any size are possible. Due to the use of signal-to-noise ratios, the conclusions are different for the different experimental techniques used in astronomy.

  2. Conductivity noise in transmembrane ion channels due to ion concentration fluctuations via diffusion.

    PubMed

    Mak, D O; Webb, W W

    1997-03-01

    A Green's function approach is developed from first principles to evaluate the power spectral density of conductance fluctuations caused by ion concentration fluctuations via diffusion in an electrolyte system. This is applied to simple geometric models of transmembrane ion channels to obtain an estimate of the magnitude of ion concentration fluctuation noise in the channel current. Pure polypeptide alamethicin forms stable ion channels with multiple conductance states in artificial phospholipid bilayers isolated onto tips of micropipettes with gigaohm seals. In the single-channel current recorded by voltage-clamp techniques, excess noise was found after the background instrumental noise and the intrinsic Johnson and shot noises were removed. The noise que to ion concentration fluctuations via diffusion was isolated by the dependence of the excess current noise on buffer ion concentration. The magnitude of the concentration fluctuation noise derived from experimental data lies within limits estimated using our simple geometric channel models. Variation of the noise magnitude for alamethicin channels in various conductance states agrees with theoretical prediction.

  3. Pavement crack detection combining non-negative feature with fast LoG in complex scene

    NASA Astrophysics Data System (ADS)

    Wang, Wanli; Zhang, Xiuhua; Hong, Hanyu

    2015-12-01

    Pavement crack detection is affected by much interference in the realistic situation, such as the shadow, road sign, oil stain, salt and pepper noise etc. Due to these unfavorable factors, the exist crack detection methods are difficult to distinguish the crack from background correctly. How to extract crack information effectively is the key problem to the road crack detection system. To solve this problem, a novel method for pavement crack detection based on combining non-negative feature with fast LoG is proposed. The two key novelties and benefits of this new approach are that 1) using image pixel gray value compensation to acquisit uniform image, and 2) combining non-negative feature with fast LoG to extract crack information. The image preprocessing results demonstrate that the method is indeed able to homogenize the crack image with more accurately compared to existing methods. A large number of experimental results demonstrate the proposed approach can detect the crack regions more correctly compared with traditional methods.

  4. Part-based deep representation for product tagging and search

    NASA Astrophysics Data System (ADS)

    Chen, Keqing

    2017-06-01

    Despite previous studies, tagging and indexing the product images remain challenging due to the large inner-class variation of the products. In the traditional methods, the quantized hand-crafted features such as SIFTs are extracted as the representation of the product images, which are not discriminative enough to handle the inner-class variation. For discriminative image representation, this paper firstly presents a novel deep convolutional neural networks (DCNNs) architect true pre-trained on a large-scale general image dataset. Compared to the traditional features, our DCNNs representation is of more discriminative power with fewer dimensions. Moreover, we incorporate the part-based model into the framework to overcome the negative effect of bad alignment and cluttered background and hence the descriptive ability of the deep representation is further enhanced. Finally, we collect and contribute a well-labeled shoe image database, i.e., the TBShoes, on which we apply the part-based deep representation for product image tagging and search, respectively. The experimental results highlight the advantages of the proposed part-based deep representation.

  5. The ship edge feature detection based on high and low threshold for remote sensing image

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Li, Shengyang

    2018-05-01

    In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.

  6. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a high-speed camera and a set of high-speed Langmuir probes were implemented to study the effect of varying facility background pressure on thruster operation. The results show a rise in the oscillation frequency of the breathing mode with rising background pressure, which is hypothesized to be due to a shortening accelerationionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  7. Effect of subliminal stimuli on consumer behavior: negative evidence.

    PubMed

    George, S G; Jennings, L B

    1975-12-01

    The study corrected methodological weaknesses found in previous experiments designed to test the contentions of motivational research theorists that subliminal stimulation can affect buying behavior. The words "Hershey's Chocolate" were presented to a group of 18 experimental Ss below a forced-choice detection threshold. The 19 control Ss had a blank slide superimposed over the same background media. In a highly controlled buying situation neither experimental nor control Ss purchased Hershey's products, but on comparable chocolate products, the experimental Ss bought 5 and the control Ss, 3. A second study tested 15 experimental and 12 control Ss with the stimulus presented just below a recognition threshold. No experimental Ss bought Hershey's; two control Ss did. No support was found for the claims of motivational research theorists.

  8. Ultra-Low Background Measurements Of Decayed Aerosol Filters

    NASA Astrophysics Data System (ADS)

    Miley, H.

    2009-04-01

    To experimentally evaluate the opportunity to apply ultra-low background measurement methods to samples collected, for instance, by the Comprehensive Test Ban Treaty International Monitoring System (IMS), aerosol samples collected on filter media were measured using HPGe spectrometers of varying low-background technology approaches. In this way, realistic estimates of the impact of low-background methodology can be assessed on the Minimum Detectable Activities obtained in systems such as the IMS. The current measurement requirement of stations in the IMS is 30 microBq per cubic meter of air for 140Ba, or about 106 fissions per daily sample. Importantly, this is for a fresh aerosol filter. Decay varying form 3 days to one week reduce the intrinsic background from radon daughters in the sample. Computational estimates of the improvement factor for these decayed filters for underground-based HPGe in clean shielding materials are orders of magnitude less, even when the decay of the isotopes of interest is included.

  9. Development of CANDLES low background HPGe detector and half-life measurement of 180Tam

    NASA Astrophysics Data System (ADS)

    Chan, W. M.; Kishimoto, T.; Umehara, S.; Matsuoka, K.; Suzuki, K.; Yoshida, S.; Nakajima, K.; Iida, T.; Fushimi, K.; Nomachi, M.; Ogawa, I.; Tamagawa, Y.; Hazama, R.; Takemoto, Y.; Nakatani, N.; Takihira, Y.; Tozawa, M.; Kakubata, H.; Trang, V. T. T.; Ohata, T.; Tetsuno, K.; Maeda, T.; Khai, B. T.; Li, X. L.; Batpurev, T.

    2018-01-01

    A low background HPGe detector system was developed at CANDLES Experimental Hall for multipurpose use. Various low background techniques were employed, including hermatic shield design, radon gas suppression, and background reduction analysis. A new pulse shape discrimination (PSD) method was specially created for coaxial Ge detector. Using this PSD method, microphonics noise and background event at low energy region less than 200 keV can be rejected effectively. Monte Carlo simulation by GEANT4 was performed to acquire the detection efficiency and study the interaction of gamma-rays with detector system. For rare decay measurement, the detector was utilized to detect the nature's most stable isomer tantalum-180m (180Tam) decay. Two phases of tantalum physics run were completed with total livetime of 358.2 days, which Phase II has upgraded shield configuration. The world most stringent half-life limit of 180Tam has been successfully achieved.

  10. Locality-constrained anomaly detection for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Liu, Jiabin; Li, Wei; Du, Qian; Liu, Kui

    2015-12-01

    Detecting a target with low-occurrence-probability from unknown background in a hyperspectral image, namely anomaly detection, is of practical significance. Reed-Xiaoli (RX) algorithm is considered as a classic anomaly detector, which calculates the Mahalanobis distance between local background and the pixel under test. Local RX, as an adaptive RX detector, employs a dual-window strategy to consider pixels within the frame between inner and outer windows as local background. However, the detector is sensitive if such a local region contains anomalous pixels (i.e., outliers). In this paper, a locality-constrained anomaly detector is proposed to remove outliers in the local background region before employing the RX algorithm. Specifically, a local linear representation is designed to exploit the internal relationship between linearly correlated pixels in the local background region and the pixel under test and its neighbors. Experimental results demonstrate that the proposed detector improves the original local RX algorithm.

  11. Nonfiction Readers Theatre for Beginning Readers

    ERIC Educational Resources Information Center

    Fredericks, Anthony D.

    2007-01-01

    Test scores across the country show American students are far more able to read narrative than nonfiction text. Some research speculates this is due to a great lack in the background knowledge of many children. Librarians are beginning to realize that a unique fit for the school librarian is as a provider of background knowledge materials for…

  12. Eye Movements when Looking at Unusual/Weird Scenes: Are There Cultural Differences?

    ERIC Educational Resources Information Center

    Rayner, Keith; Castelhano, Monica S.; Yang, Jinmian

    2009-01-01

    Recent studies have suggested that eye movement patterns while viewing scenes differ for people from different cultural backgrounds and that these differences in how scenes are viewed are due to differences in the prioritization of information (background or foreground). The current study examined whether there are cultural differences in how…

  13. Complete Hard X-Ray Surveys, AGN Luminosity Functions and the X-Ray Background

    NASA Technical Reports Server (NTRS)

    Tueller, Jack

    2011-01-01

    AGN are believed to make up most of the Cosmic X-Ray Background (CXB) above a few keV, but this background cannot be fully resolved at energies less than 10 keV due to absorption. The Swift/BAT and INTEGRAL missions are performing the first complete hard x-ray surveys with minimal bias due to absorption. The most recent results for both missions will be presented. Although the fraction of the CXB resolved by these surveys is small, it is possible to derive unbiased number counts and luminosity functions for AGN in the local universe. The survey energy range from 15-150 keV contains the important reflection and cutoff spectral features dominate the shape of the AGN contribution to the CXB. Average spectral characteristics of survey detected AGN will be presented and compared with model distributions. The numbers of hard x-ray blazars detected in these surveys are finally sufficient to estimate this important component's contribution the cosmic background. Constraints on CXB models and their significance will be discussed.

  14. Experimenter bias and subliminal perception

    ERIC Educational Resources Information Center

    Barber, Paul J.; Rushton, J. Philippe

    1975-01-01

    It has been suggested that subliminal perception phenomena may be in part due to experimenter bias effects. Two studies that obtained positive evidence of subliminal perception were therefore replicated with experimenters tested under blind and not blind conditions. (Editor)

  15. Thermal Infrared Spectra of a Suite of Forsterite Samples and Ab-initio Modelling of theirs Spectra

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Stangarone, C.; Helbert, J.; Tribaudino, M.; Prencipe, M.

    2017-12-01

    Forsterite is the dominating component in olivine, a major constituent in ultrafemic rocks, as well as planetary bodies. Messenger X-ray spectrometer has shown that Mg-rich silicate minerals, such as enstatite and forsterite, dominate Mercury's surface (Weider et al 2012). A careful and detailed acquaintance with the forsterite spectral features and their dependence wrt environmental conditions on Mercury is needed to interpret the remote sensing data from previous and forthcoming missions. We propose an experimental vs calculation approach to reproduce and describe the spectral features of forsterite. TIR emissivity measurements are performed by the Planetary Spectroscopy Laboratory (PSL) of DLR. PSL offers the unique capability to measure the emissivity of samples at temperature up to 1000K under vacuum conditions. TIR emissivity and reflectance measurements are performed on 11 olivine samples having a different composition within the forsterite-fayalite series. When available, the sample has been measured in 2 different grain sizes (<25µm and 125-250µm ranges). Emissivity measurements are taken for temperatures from 300K to 900K step 100K in the 1-100µm spectral range. Modelling is based on ab initio calculation techniques, which allow reproducing properties of crystals, at any P/T condition, with the least possible amount of a priori empirical information. Spectra are calculated evaluating vibrational frequencies at different volume cell, here 0K, 300K and 1000K (extreme situations), taking into account zero point effects. The aim of this work is to study experimentally the effects of temperature, composition and grain sizes on emissivity band minima shifts. The outcomes will benefit the modelling of emissivity spectra with ab initio methods, already successfully enabling to foresee the bands shift due to temperature and composition, but not taking into account band shape due to grain size variations. Considering the chameleon-like effects of Mercury surface already observed (Helbert et al. 2013), this study wants to point out the main spectral features due to the composition and temperature. Our results are used to create a theoretical background to interpret the high temperature infrared emissivity spectra from MERTIS onboard the ESA BepiColombo mission to Mercury (Helbert et al. 2010).

  16. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  17. Effect of display update interval, update type, and background on perception of aircraft separation on a cockpit display on traffic information

    NASA Technical Reports Server (NTRS)

    Jago, S.; Baty, D.; Oconnor, S.; Palmer, E.

    1981-01-01

    The concept of a cockpit display of traffic information (CDTI) includes the integration of air traffic, navigation, and other pertinent information in a single electronic display in the cockpit. Concise display symbology was developed for use in later full-mission simulator evaluations of the CDTI concept. Experimental variables used included the update interval motion of the aircraft, the update type, (that is, whether the two aircraft were updated at the same update interval or not), the background (grid pattern or no background), and encounter type (straight or curved). Only the type of encounter affected performance.

  18. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  19. Consistency restrictions on maximal electric-field strength in quantum field theory.

    PubMed

    Gavrilov, S P; Gitman, D M

    2008-09-26

    Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2, one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.

  20. Extending the Search for Neutrino Point Sources with IceCube above the Horizon

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Alba, J. L. Bazo; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Carson, M.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miyamoto, H.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Paul, L.; de Los Heros, C. Pérez; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Toale, P. A.; Tooker, J.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.

    2009-11-01

    Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmospheric background is observed in a sky scan and in tests of source candidates. Upper limits are reported, which for the first time cover point sources in the southern sky up to EeV energies.

  1. Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project

    DOE PAGES

    Biassoni, M.; Brofferio, C.; Bucci, C.; ...

    2016-01-14

    Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation based technique for the rejection of surface alpha background in non- scintillating bolometric experiments is proposed in this work. The idea is to combinemore » a scintillating and a high sensitivity photon detector with a non- scintillating absorber. Finally, we present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.« less

  2. Prospects for Inflationary B-Mode Detection

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2011-01-01

    Measurements of the linear polarization of the cosmic microwave background provide a direct window into the physics of inflation. The experimental challenges are daunting: not only is the predicted signal faint compared to the photon noise limit, but it is hidden behind competing foregrounds from both local and cosmic sources. I will discuss the experimental response to these challenges and the prospects for eventual detection and characterization of the inflationary signal.

  3. Unsupervised background-constrained tank segmentation of infrared images in complex background based on the Otsu method.

    PubMed

    Zhou, Yulong; Gao, Min; Fang, Dan; Zhang, Baoquan

    2016-01-01

    In an effort to implement fast and effective tank segmentation from infrared images in complex background, the threshold of the maximum between-class variance method (i.e., the Otsu method) is analyzed and the working mechanism of the Otsu method is discussed. Subsequently, a fast and effective method for tank segmentation from infrared images in complex background is proposed based on the Otsu method via constraining the complex background of the image. Considering the complexity of background, the original image is firstly divided into three classes of target region, middle background and lower background via maximizing the sum of their between-class variances. Then, the unsupervised background constraint is implemented based on the within-class variance of target region and hence the original image can be simplified. Finally, the Otsu method is applied to simplified image for threshold selection. Experimental results on a variety of tank infrared images (880 × 480 pixels) in complex background demonstrate that the proposed method enjoys better segmentation performance and even could be comparative with the manual segmentation in segmented results. In addition, its average running time is only 9.22 ms, implying the new method with good performance in real time processing.

  4. Effects of hue, saturation, and brightness on preference: a study on Goethe's color circle with RGB color space

    NASA Astrophysics Data System (ADS)

    Camgoz, Nilgun; Yener, Cengiz

    2002-06-01

    In order to investigate preference responses for foreground- background color relationships, 85 university undergraduates in Ankara, Turkey, viewed 6 background colors (red, yellow, green, cyan, blue, and magenta) on which color squares of differing hues, saturations, and brightnesses were presented. All the background colors had maximum brightness (100%) and maximum saturation (100%). Subjects were asked to show the color square they preferred on the presented background color viewed through a computer monitor. The experimental setup consisted of a computer monitor located in a windowless room, illuminated with cove lighting. The findings of the experiment show that the brightness 100%- saturation 100% range is significantly preferred the most (p-value < 0.03). Thus, color squares that are most saturated and brightest are preferred on backgrounds of most saturated and brightest colors. Regardless of the background colors viewed, the subjects preferred blue the most (p-value < 0.01). Findings of the study are also discussed with pertinent research on the field. Through this analysis, an understanding of foreground-background color relationships in terms of preference is sought.

  5. Stacked Multilayer Self-Organizing Map for Background Modeling.

    PubMed

    Zhao, Zhenjie; Zhang, Xuebo; Fang, Yongchun

    2015-09-01

    In this paper, a new background modeling method called stacked multilayer self-organizing map background model (SMSOM-BM) is proposed, which presents several merits such as strong representative ability for complex scenarios, easy to use, and so on. In order to enhance the representative ability of the background model and make the parameters learned automatically, the recently developed idea of representative learning (or deep learning) is elegantly employed to extend the existing single-layer self-organizing map background model to a multilayer one (namely, the proposed SMSOM-BM). As a consequence, the SMSOM-BM gains several merits including strong representative ability to learn background model of challenging scenarios, and automatic determination for most network parameters. More specifically, every pixel is modeled by a SMSOM, and spatial consistency is considered at each layer. By introducing a novel over-layer filtering process, we can train the background model layer by layer in an efficient manner. Furthermore, for real-time performance consideration, we have implemented the proposed method using NVIDIA CUDA platform. Comparative experimental results show superior performance of the proposed approach.

  6. A Readout Integrated Circuit (ROIC) employing self-adaptive background current compensation technique for Infrared Focal Plane Array (IRFPA)

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Zhao, Jian; He, Yong; Jiang, Bo; Su, Yan

    2018-05-01

    A novel self-adaptive background current compensation circuit applied to infrared focal plane array is proposed in this paper, which can compensate the background current generated in different conditions. Designed double-threshold detection strategy is to estimate and eliminate the background currents, which could significantly reduce the hardware overhead and improve the uniformity among different pixels. In addition, the circuit is well compatible to various categories of infrared thermo-sensitive materials. The testing results of a 4 × 4 experimental chip showed that the proposed circuit achieves high precision, wide application and high intelligence. Tape-out of the 320 × 240 readout circuit, as well as the bonding, encapsulation and imaging verification of uncooled infrared focal plane array, have also been completed.

  7. Enhancements to the MCNP6 background source

    DOE PAGES

    McMath, Garrett E.; McKinney, Gregg W.

    2015-10-19

    The particle transport code MCNP has been used to produce a background radiation data file on a worldwide grid that can easily be sampled as a source in the code. Location-dependent cosmic showers were modeled by Monte Carlo methods to produce the resulting neutron and photon background flux at 2054 locations around Earth. An improved galactic-cosmic-ray feature was used to model the source term as well as data from multiple sources to model the transport environment through atmosphere, soil, and seawater. A new elevation scaling feature was also added to the code to increase the accuracy of the cosmic neutronmore » background for user locations with off-grid elevations. Furthermore, benchmarking has shown the neutron integral flux values to be within experimental error.« less

  8. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1985

    1985-01-01

    Presents 23 experiments, activities, field projects and computer programs in the biological and physical sciences. Instructional procedures, experimental designs, materials, and background information are suggested. Topics include fluid mechanics, electricity, crystals, arthropods, limpets, acid neutralization, and software evaluation. (ML)

  9. Appendix A : literature review.

    DOT National Transportation Integrated Search

    2013-03-01

    This appendix contains a review of the literature and other background information : germane to the experimental and analytical research presented in subsequent appendices. Table : 1 lists the sections and topics contained in this appendix and those ...

  10. Cloning and Characterization of the P-l Promoter of Bacteriophage Lambda.

    ERIC Educational Resources Information Center

    Andino, Raul H.; And Others

    1986-01-01

    Background information, experimental approach, materials needed, procedures used, and typical results obtained are provided for genetic engineering experiments. The course in which these experiments are performed is also described. (JN)

  11. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  12. Inventing the Wave Catchers.

    ERIC Educational Resources Information Center

    Fisher, Arthur

    1983-01-01

    Physicists and engineers advance the state of several arts in the design of gravitational-wave detection equipment. Provides background information and discusses the equipment (including laser interferometer), its use, and results of several experimental studies. (JN)

  13. Culture.

    PubMed

    Smith, Timothy B; Rodríguez, Melanie Domenech; Bernal, Guillermo

    2011-02-01

    This article summarizes the definitions, means, and research of adapting psychotherapy to clients' cultural backgrounds. We begin by reviewing the prevailing definitions of cultural adaptation and providing a clinical example. We present an original meta-analysis of 65 experimental and quasi-experimental studies involving 8,620 participants. The omnibus effect size of d = .46 indicates that treatments specifically adapted for clients of color were moderately more effective with that clientele than traditional treatments. The most effective treatments tended to be those with greater numbers of cultural adaptations. Mental health services targeted to a specific cultural group were several times more effective than those provided to clients from a variety of cultural backgrounds. We recommend a series of research-supported therapeutic practices that account for clients' culture, with culture-specific treatments being more effective than generally culture-sensitive treatments. © 2010 Wiley Periodicals, Inc.

  14. Standoff determination of the particle size and concentration of small optical depth clouds based on double scattering measurements: concept and experimental validation with bioaerosols.

    PubMed

    Roy, Gilles; Roy, Nathalie

    2008-03-20

    A multiple-field-of-view (MFOV) lidar is used to characterize size and optical depth of low concentration of bioaerosol clouds. The concept relies on the measurement of the forward scattered light by using the background aerosols at various distances at the back of a subvisible cloud. It also relies on the subtraction of the background aerosol forward scattering contribution and on the partial attenuation of the first-order backscattering. The validity of the concept developed to retrieve the effective diameter and the optical depth of low concentration bioaerosol clouds with good precision is demonstrated using simulation results and experimental MFOV lidar measurements. Calculations are also done to show that the method presented can be extended to small optical depth cloud retrieval.

  15. The COBRA demonstrator at the LNGS underground laboratory

    NASA Astrophysics Data System (ADS)

    Ebert, J.; Fritts, M.; Gehre, D.; Gößling, C.; Göpfert, T.; Hagner, C.; Heidrich, N.; Klingenberg, R.; Köttig, T.; Kröninger, K.; Michel, T.; Neddermann, T.; Nitsch, C.; Oldorf, C.; Quante, T.; Rajek, S.; Rebber, H.; Reinecke, O.; Rohatsch, K.; Schulz, O.; Sörensen, A.; Stekl, I.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Timm, J.; Wester, T.; Wonsak, B.; Zatschler, S.; Zuber, K.

    2016-01-01

    The COBRA demonstrator, a prototype for a large-scale experiment searching for neutrinoless double beta-decay, was built at the underground laboratory Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It consists of an array of 64 monolithic, calorimetric CdZnTe semiconductor detectors with a coplanar-grid design and a total mass of 380 g. It is used to investigate the experimental challenges faced when operating CdZnTe detectors in low-background mode, to identify potential background sources and to show the long-term stability of the detectors. The first data-taking period started in 2011 with a subset of the detectors, while the demonstrator was completed in November 2013. To date, more than 250 kg d of data have been collected. This paper describes the technical details of the experimental setup and the hardware components.

  16. CNR considerations for rapid real-time MRI tumor tracking in radiotherapy hybrid devices: Effects of B{sub 0} field strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachowicz, K., E-mail: keith.wachowicz@albertaheal

    2016-08-15

    Purpose: This work examines the subject of contrast-to-noise ratio (CNR), specifically between tumor and tissue background, and its dependence on the MRI field strength, B{sub 0}. This examination is motivated by the recent interest and developments in MRI/radiotherapy hybrids where real-time imaging can be used to guide treatment beams. The ability to distinguish a tumor from background tissue is of primary importance in this field, and this work seeks to elucidate the complex relationship between the CNR and B{sub 0} that is too often assumed to be purely linear. Methods: Experimentally based models of B{sub 0}-dependant relaxation for various tumormore » and normal tissues from the literature were used in conjunction with signal equations for MR sequences suitable for rapid real-time imaging to develop field-dependent predictions for CNR. These CNR models were developed for liver, lung, breast, glioma, and kidney tumors for spoiled gradient-echo, balanced steady-state free precession (bSSFP), and single-shot half-Fourier fast spin echo sequences. Results: Due to the pattern in which the relaxation properties of tissues are found to vary over B{sub 0} field (specifically the T{sub 1} time), there was always an improved CNR at lower fields compared to linear dependency. Further, in some tumor sites, the CNR at lower fields was found to be comparable to, or sometimes higher than those at higher fields (i.e., bSSFP CNR for glioma, kidney, and liver tumors). Conclusions: In terms of CNR, lower B{sub 0} fields have been shown to perform as well or better than higher fields for some tumor sites due to superior T{sub 1} contrast. In other sites this effect was less pronounced, reversing the CNR advantage. This complex relationship between CNR and B{sub 0} reveals both low and high magnetic fields as viable options for tumor tracking in MRI/radiotherapy hybrids.« less

  17. Dynamical influences on the moment of inertia tensor from lateral viscosity variations inferred from seismic tomographic models

    NASA Technical Reports Server (NTRS)

    Zhang, Shuxia; Yuen, David A.

    1994-01-01

    We have investigated the influences of lateral variations of viscosity on the moment of inertia tensor from viscous flows due to the density anomalies in the mantle inferred from seismic tomographic models. The scaling relations between the density and the seismic anomalies is taken as either a constant or a function increasing with depth in accord with the recent high-pressure experimental studies. The viscosity is taken as an exponential function of the 3D density anomaly. In models with an isoviscous background, the effects on the perturbed moment of inertia tensor from the lateral viscosity variations are smaller than those due to variations in the radial viscosity profiles. In mantle models with a background viscosity increasing with depth, the influences of the lateral viscosity variations are significant. The most striking feature in the latter case is that the two off-diagonal elements delta I(sub xz) and delta I(sub yz) in the inertia tensor exhibit greatest sensitivity to lateral variations of the viscosity. While the other elements of the inertia change by only about a few tens of percent in the range of lateral viscosity contrast considered (less than 300), delta I(sub xz) and delta I(sub yz) can vary up to 40 times even with a change in sign, depending on the radial viscosity stratification and the location of the strongest lateral variations. The increase in the velocity-density scaling relation with depth can reduce the influences of the lateral viscosity variations, but it does not change the overall sensitive nature of delta I(sub xz) and delta I(sub yz). This study demonstrates clearly that the lateral viscosity variations, especially in the upper mantle, must be considered in the determination of long-term polar wander, since the variations in the delta I(sub xz) and delta I(sub yz) terms are directly responsible for exciting rotational movements.

  18. A first principle approach for clover detector

    NASA Astrophysics Data System (ADS)

    Kshetri, R.

    2012-08-01

    A simple model based on probability flow arguments has been presented for understanding the clover germanium detector. Using basic concepts of absorption and scattering of gamma-rays, the operation of the clover detector has been described in terms of six probability amplitudes and a parameter. Instead of using an empirical method or simulation, this work presents the first attempt to calculate the peak-to-total and peak-to-background ratios of the clover detector using experimental data of relative single crystal efficiency and addback factor as an input. A unique feature of our approach is that these ratios could be calculated for energies where their direct measurement is impossible due to absence of a radioactive source having single monoenergetic gamma-ray of that energy. Results for four gamma-ray energies (Eγ = 1.408, 3.907, 7.029 and 10.430 MeV) have been discussed. Agreement between experimental data and analysis results has been observed. The present approach could describe clover-type detectors as well. As an example, the nine element detector has been considered. We have demonstrated that our formalism can describe both finite and infinite interactions of γ-rays with the clover crystals. The work presented in this paper follows similar philosophy as presented in a recent paper (R. Kshetri, JInst 2012 7 P04008), which deals with modeling of encapsulated type composite detectors like miniball, cluster and SPI (Spectrometer for INTEGRAL satellite).

  19. Systems biology driven software design for the research enterprise

    PubMed Central

    Boyle, John; Cavnor, Christopher; Killcoyne, Sarah; Shmulevich, Ilya

    2008-01-01

    Background In systems biology, and many other areas of research, there is a need for the interoperability of tools and data sources that were not originally designed to be integrated. Due to the interdisciplinary nature of systems biology, and its association with high throughput experimental platforms, there is an additional need to continually integrate new technologies. As scientists work in isolated groups, integration with other groups is rarely a consideration when building the required software tools. Results We illustrate an approach, through the discussion of a purpose built software architecture, which allows disparate groups to reuse tools and access data sources in a common manner. The architecture allows for: the rapid development of distributed applications; interoperability, so it can be used by a wide variety of developers and computational biologists; development using standard tools, so that it is easy to maintain and does not require a large development effort; extensibility, so that new technologies and data types can be incorporated; and non intrusive development, insofar as researchers need not to adhere to a pre-existing object model. Conclusion By using a relatively simple integration strategy, based upon a common identity system and dynamically discovered interoperable services, a light-weight software architecture can become the focal point through which scientists can both get access to and analyse the plethora of experimentally derived data. PMID:18578887

  20. Local sample thickness determination via scanning transmission electron microscopy defocus series.

    PubMed

    Beyer, A; Straubinger, R; Belz, J; Volz, K

    2016-05-01

    The usable aperture sizes in (scanning) transmission electron microscopy ((S)TEM) have significantly increased in the past decade due to the introduction of aberration correction. In parallel with the consequent increase of convergence angle the depth of focus has decreased severely and optical sectioning in the STEM became feasible. Here we apply STEM defocus series to derive the local sample thickness of a TEM sample. To this end experimental as well as simulated defocus series of thin Si foils were acquired. The systematic blurring of high resolution high angle annular dark field images is quantified by evaluating the standard deviation of the image intensity for each image of a defocus series. The derived dependencies exhibit a pronounced maximum at the optimum defocus and drop to a background value for higher or lower values. The full width half maximum (FWHM) of the curve is equal to the sample thickness above a minimum thickness given by the size of the used aperture and the chromatic aberration of the microscope. The thicknesses obtained from experimental defocus series applying the proposed method are in good agreement with the values derived from other established methods. The key advantages of this method compared to others are its high spatial resolution and that it does not involve any time consuming simulations. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. 2C-R4WM Spectroscopy of Jet Cooled NO_3

    NASA Astrophysics Data System (ADS)

    Fukushima, Masaru; Ishiwata, Takashi; Hirota, Eizi

    2016-06-01

    We have generated NO_3 from pyrolysis of N_2O_5 following supersonic free jet expansion, and carried out two color resonant four wave mixing ( 2C-R4WM ) spectroscopy of the tilde{B} ^2E' - tilde{X} ^2A_2' electronic transition. One laser was fixed to pump NO_3 to a ro-vibronic level of the tilde{B} state, and the other laser ( probe ) was scanned across two levels of the tilde{X} ^2A_2' state lying at 1051 and 1492 cm-1, the ν_1 (a_1') and ν_3 (e') fundamentals, respectively. The 2C-R4WM spectra have unexpected back-ground signal of NO_3 ( stray signal due to experimental set-up is also detected ) similar to laser induced fluorescence ( LIF ) excitation spectrum of the 0-0 band, although the back-ground signal was not expected in considering the 2C-R4WM scheme. Despite the back-ground interference, we have observed two peaks at 1051.61 and 1055.29 cm-1 in the ν_1 region of the spectrum, and the frequencies agree with the two bands, 1051.2 and 1055.3 cm-1, of our relatively higher resolution dispersed fluorescence spectrum, the former of which has been assigned to the ν_1 fundamental. Band width of both peaks, ˜ 0.2 cm-1, is broader than twice the experimental spectral-resolution, 0.04 cm-1 ( because this experiment is double resonance spectroscopy ), and the 1051.61 cm-1 peak is attributed to a Q branch band head ( a line-like Q branch ) of the ν_1 fundamental. The other branches are suspected to be hidden in noise of the back-ground signal. The 1055.29 cm-1 peak is also attributed to a Q band head. The tilde{B} ^2E'1/2 ( J' = 3/2, K' = 1 ) - tilde{X} ^2A_2' ( N'' = 1, K'' = 0 ) ro-vibronic transition was used as the pump transition. The dump ( probe ) transition to both a_1' and e' vibronic levels are then allowed as perpendicular transition. Accordingly, it cannot be determined from present results whether the 1055.29 cm-1 band is attributed to a_1' or e' (ν_3), unfortunately. The 2C-R4WM spectrum of the 1492 cm-1 band region shows one Q head at 1499.79 cm-1, which is consistent with our dispersed fluorescence spectrum. By considering with the ν_3 + ν_4 - ν_4 hot band, the present results suggest that both 1055.29 and 1499.79 cm-1 levels are a_1' level. K. Kawaguchi et al., J. Phys. Chem. A 117, 13732 (2013) and E. Hirota, J. Mol. Spectrosco. 310, 99 (2015).

  2. A Medical Student-Delivered Smoking Prevention Program, Education Against Tobacco, for Secondary Schools in Germany: Randomized Controlled Trial

    PubMed Central

    Owczarek, Andreas Dawid; Seeger, Werner; Groneberg, David Alexander; Brieske, Christian Martin; Jansen, Philipp; Klode, Joachim; Stoffels, Ingo; Schadendorf, Dirk; Izar, Benjamin; Fries, Fabian Norbert; Hofmann, Felix Johannes

    2017-01-01

    Background More than 8.5 million Germans suffer from chronic diseases attributable to smoking. Education Against Tobacco (EAT) is a multinational network of medical students who volunteer for school-based prevention in the classroom setting, amongst other activities. EAT has been implemented in 28 medical schools in Germany and is present in 13 additional countries around the globe. A recent quasi-experimental study showed significant short-term smoking cessation effects on 11-to-15-year-old adolescents. Objective The aim of this study was to provide the first randomized long-term evaluation of the optimized 2014 EAT curriculum involving a photoaging software for its effectiveness in reducing the smoking prevalence among 11-to-15-year-old pupils in German secondary schools. Methods A randomized controlled trial was undertaken with 1504 adolescents from 9 German secondary schools, aged 11-15 years in grades 6-8, of which 718 (47.74%) were identifiable for the prospective sample at the 12-month follow-up. The experimental study design included measurements at baseline (t1), 6 months (t2), and 12 months postintervention (t3), via questionnaire. The study groups consisted of 40 randomized classes that received the standardized EAT intervention (two medical student-led interactive modules taking 120 minutes total) and 34 control classes within the same schools (no intervention). The primary endpoint was the difference in smoking prevalence from t1 to t3 in the control group versus the difference from t1 to t3 in the intervention group. The differences in smoking behavior (smoking onset, quitting) between the two groups, as well as gender-specific effects, were studied as secondary outcomes. Results None of the effects were significant due to a high loss-to-follow-up effect (52.26%, 786/1504). From baseline to the two follow-up time points, the prevalence of smoking increased from 3.1% to 5.2% to 7.2% in the control group and from 3.0% to 5.4% to 5.8% in the intervention group (number needed to treat [NNT]=68). Notable differences were observed between the groups for the female gender (4.2% to 9.5% for control vs 4.0% to 5.2% for intervention; NNT=24 for females vs NNT=207 for males), low educational background (7.3% to 12% for control vs 6.1% to 8.7% for intervention; NNT=30), and migrational background (students who claimed that at least one parent was not born in Germany) at the 12-month follow-up. The intervention appears to prevent smoking onset (NNT=63) but does not appear to initiate quitting. Conclusions The intervention appears to prevent smoking, especially in females and students with a low educational background. PMID:28588007

  3. Metamaterial absorber for molecular detection and identification (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuo

    2017-03-01

    Metamaterial absorber was used for a background-suppressed surface-enhanced molecular detection technique. By utilizing the resonant coupling between plasmonic modes of a metamaterial absorber and infrared (IR) vibrational modes of a self-assembled monolayer (SAM), attomole level molecular sensitivity was experimentally demonstrated. IR absorption spectroscopy of molecular vibrations is of importance in chemical, material, medical science and so on, since it provides essential information of the molecular structure, composition, and orientation. In the vibrational spectroscopic techniques, in addition to the weak signals from the molecules, strong background degrades the signal-to-noise ratio, and suppression of the background is crucial for the further improvement of the sensitivity. Here, we demonstrate low-background resonant Surface enhanced IR absorption (SEIRA) by using the metamaterial IR absorber that offers significant background suppression as well as plasmonic enhancement. By using mask-less laser lithography technique, metamaterial absorber which consisted of 1D array of Au micro-ribbons on a thick Au film separated by a transparent gap layer made of MgF2 was fabricated. This metamaterial structure was designed to exhibit an anomalous IR absorption at 3000 cm-1, which spectrally overlapped with C-H stretching vibrational modes. 16-Mercaptohexadecanoic acid (16-MHDA) was used as a test molecule, which formed a 2-nm thick SAM with their thiol head-group chemisorbed on the Au surface. In the FTIR measurements, the symmetric and asymmetric C-H stretching modes were clearly observed as reflection peaks within a broad plasmonic absorption of the metamaterial, and 1.8 attomole molecular sensitivity was experimentally demonstrated.

  4. Combinatorial Therapies for Neurofibroma and MPNST Treatment and Prevention

    DTIC Science & Technology

    2017-08-01

    experiments utilizing genetically engineered mouse models. Consequently, we were not allowed to start actual experimental work towards the goals of this...different genetic backgrounds. Consequently, before beginning the full study, it was necessary that we will first determine the MTD for tamoxifen and...trifluoperazine in C57BL/6 mice (the genetic background of the Krox20-Cre;Nf1flox/- and P0-GGFβ3;Trp53+/- mice that are being used for our preclinical

  5. The Past, Present, and Future of Auger Lineshape Analysis

    DTIC Science & Technology

    1991-01-01

    Theoretical study of the application of positron induced Auger electron spectroscopy, Phys. Rev. B41, 3928, 1990. 295. Schultz,.P.J. and Lynn. K.G...system. The line shapes most heavily studied over the years include those of the low Z metals (e.g. Be. Li, Na. Mg. and Al), those of C and Si, and of...background signal. fuggle Two new experimental approaches almost completely eliminate the Ramaker 9 background. In one method, low energy positrons are

  6. Ship Effect Neutron Measurements And Impacts On Low-Background Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Siciliano, Edward R.

    2013-10-01

    The primary particles entering the upper atmosphere as cosmic rays create showers in the atmosphere that include a broad spectrum of secondary neutrons, muons and protons. These cosmic-ray secondaries interact with materials at the surface of the Earth, yielding prompt backgrounds in radiation detection systems, as well as inducing long-lived activities through spallation events, dominated by the higher-energy neutron secondaries. For historical reasons, the multiple neutrons produced in spallation cascade events are referred to as “ship effect” neutrons. Quantifying the background from cosmic ray induced activities is important to low-background experiments, such as neutrino-less double beta decay. Since direct measurementsmore » of the effects of shielding on the cosmic-ray neutron spectrum are not available, Monte Carlo modeling is used to compute such effects. However, there are large uncertainties (orders of magnitude) in the possible cross-section libraries and the cosmic-ray neutron spectrum for the energy range needed in such calculations. The measurements reported here were initiated to validate results from Monte Carlo models through experimental measurements in order to provide some confidence in the model results. The results indicate that the models provide the correct trends of neutron production with increasing density, but there is substantial disagreement between the model and experimental results for the lower-density materials of Al, Fe and Cu.« less

  7. A comparison of experiment and theory for sound propagation in variable area ducts

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Kaiser, J. E.; Marshall, R. L.; Hurst, C. J.

    1980-01-01

    An experimental and analytical program has been carried out to evaluate sound suppression techniques in ducts that produce refraction effects due to axial velocity gradients. The analytical program employs a computer code based on the method of multiple scales to calculate the influence of axial variations due to slow changes in the cross-sectional area as well as transverse gradients due to the wall boundary layers. Detailed comparisons between the analytical predictions and the experimental measurements have been made. The circumferential variations of pressure amplitudes and phases at several axial positions have been examined in straight and variable area ducts, with hard walls and lined sections, and with and without a mean flow. Reasonable agreement between the theoretical and experimental results has been found.

  8. An analytical and experimental study of sound propagation and attenuation in variable-area ducts. [reducing aircraft engine noise

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Kaiser, J. E.; Marshall, R. L.; Hurst, L. J.

    1978-01-01

    The performance of sound suppression techniques in ducts that produce refraction effects due to axial velocity gradients was evaluated. A computer code based on the method of multiple scales was used to calculate the influence of axial variations due to slow changes in the cross-sectional area as well as transverse gradients due to the wall boundary layers. An attempt was made to verify the analytical model through direct comparison of experimental and computational results and the analytical determination of the influence of axial gradients on optimum liner properties. However, the analytical studies were unable to examine the influence of non-parallel ducts on the optimum linear conditions. For liner properties not close to optimum, the analytical predictions and the experimental measurements were compared. The circumferential variations of pressure amplitudes and phases at several axial positions were examined in straight and variable-area ducts, hard-wall and lined sections with and without a mean flow. Reasonable agreement between the theoretical and experimental results was obtained.

  9. Effects of watershed management on sources and fluxes of water, carbon, and nitrogen in streams: Climate implications

    EPA Science Inventory

    Background/Question/Methods Due to the interactive effects of urbanization and climate variability, managing impacts on watershed hydrology and biogeochemical processing has become increasingly important, particularly due to the enhanced potential for eutrophication and hypoxia i...

  10. Immunoregulatory Actions of Epithelial Cell PPAR γ at the Colonic Mucosa of Mice with Experimental Inflammatory Bowel Disease

    PubMed Central

    Mohapatra, Saroj K.; Guri, Amir J.; Climent, Montse; Vives, Cristina; Carbo, Adria; Horne, William T.; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-01-01

    Background Peroxisome proliferator-activated receptors are nuclear receptors highly expressed in intestinal epithelial cells (IEC) and immune cells within the gut mucosa and are implicated in modulating inflammation and immune responses. The objective of this study was to investigate the effect of targeted deletion of PPAR γ in IEC on progression of experimental inflammatory bowel disease (IBD). Methodology/Principal Findings In the first phase, PPAR γ flfl; Villin Cre- (VC-) and PPAR γ flfl; Villin Cre+ (VC+) mice in a mixed FVB/C57BL/6 background were challenged with 2.5% dextran sodium sulfate (DSS) in drinking water for 0, 2, or 7 days. VC+ mice express a transgenic recombinase under the control of the Villin-Cre promoter that causes an IEC-specific deletion of PPAR γ. In the second phase, we generated VC- and VC+ mice in a C57BL/6 background that were challenged with 2.5% DSS. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to phenotypically characterize lymphocyte and macrophage populations in blood, spleen and mesenteric lymph nodes. Global gene expression analysis was profiled using Affymetrix microarrays. The IEC-specific deficiency of PPAR γ in mice with a mixed background worsened colonic inflammatory lesions, but had no effect on disease activity (DAI) or weight loss. In contrast, the IEC-specific PPAR γ null mice in C57BL/6 background exhibited more severe inflammatory lesions, DAI and weight loss in comparison to their littermates expressing PPAR γ in IEC. Global gene expression profiling revealed significantly down-regulated expression of lysosomal pathway genes and flow cytometry results demonstrated suppressed production of IL-10 by CD4+ T cells in mesenteric lymph nodes (MLN) of IEC-specific PPAR γ null mice. Conclusions/Significance Our results demonstrate that adequate expression of PPAR γ in IEC is required for the regulation of mucosal immune responses and prevention of experimental IBD, possibly by modulation of lysosomal and antigen presentation pathways. PMID:20422041

  11. Estimating background-subtracted fluorescence transients in calcium imaging experiments: a quantitative approach.

    PubMed

    Joucla, Sébastien; Franconville, Romain; Pippow, Andreas; Kloppenburg, Peter; Pouzat, Christophe

    2013-08-01

    Calcium imaging has become a routine technique in neuroscience for subcellular to network level investigations. The fast progresses in the development of new indicators and imaging techniques call for dedicated reliable analysis methods. In particular, efficient and quantitative background fluorescence subtraction routines would be beneficial to most of the calcium imaging research field. A background-subtracted fluorescence transients estimation method that does not require any independent background measurement is therefore developed. This method is based on a fluorescence model fitted to single-trial data using a classical nonlinear regression approach. The model includes an appropriate probabilistic description of the acquisition system's noise leading to accurate confidence intervals on all quantities of interest (background fluorescence, normalized background-subtracted fluorescence time course) when background fluorescence is homogeneous. An automatic procedure detecting background inhomogeneities inside the region of interest is also developed and is shown to be efficient on simulated data. The implementation and performances of the proposed method on experimental recordings from the mouse hypothalamus are presented in details. This method, which applies to both single-cell and bulk-stained tissues recordings, should help improving the statistical comparison of fluorescence calcium signals between experiments and studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Shear-strain energy rate distribution caused by the interplate locking along the Nankai Trough, southwest Japan: An integration analysis using stress tensor inversion and slip deficit inversion

    NASA Astrophysics Data System (ADS)

    Saito, T.; Noda, A.; Yoshida, K.; Tanaka, S.

    2017-12-01

    In the Nankai Trough, southwest Japan, the Philippine Sea Plate descends beneath the Eurasian plate. The locking, or the slip deficit, on the plate interface causes stress fluctuation in the inland area. The interplate locking does not always result in stress accumulation but also causes stress release. The stress increase/decrease is not determined only from the stress fluctuation but also depends on the background stress, in particular, its orientation. This study proposes a method to estimate the shear-strain energy increase/decrease distribution caused by the interplate locking. We at first investigated the background stress field in and around the Nankai Trough. The spatial distribution of the principal stress orientations and the stress ratio were estimated by analysis of 130,000 focal mechanisms of small earthquakes (e.g., Yoshida et al. 2015 Tectonophysics). For example, in an area called Chugoku region, the maximum and minimum compression axes were E-W and N-S directions, respectively. We also estimated the slip-deficit rate at the plate interface by analyzing GNSS data and calculated the stress fluctuation due to the deficit (e.g., Noda et al. 2013 GJI). The interplate locking causes the maximum compression in the direction of plate convergence. This is significantly different from the orientations of the background stress characterized by the E-W compressional strike-slip stress regime.. By combining the results of the background stress and the stress fluctuation, we made a map indicating the shear-strain energy change due to the interplate locking. In the Chugoku region, the shear-strain energy decreases due to the interplate locking. This is because the N-S compressional stress caused by the interplate locking compensates the N-S extensional stress in the background. The shear-strain energy increases in some parts of the analyzed areas. By statistically comparing the shear strain energy rate with the seismicity in the inland area, we found that the seismicity tends to be high where the interplate locking increases the shear-strain energy. Our results suggest that the stress fluctuation due to the interplate locking is not dominant in the background stress but surely contributes to the inland seismicity in southwest Japan.

  13. EVIDENCE OF FEED CONTAMINATION DUE TO SAMPLE HANDLING AND PREPARATION DURING A MASS BALANCE STUDY OF DIOXINS IN LACTATING COWS IN BACKGROUND CONDITIONS

    EPA Science Inventory

    In 1997, the United States (US) Environmental Protection Agency (EPA) conducted a mass balance study of polychlorinated dibenzo-p-dioxins (CDDs) and dibenzofurans (CDFs) in lactating cows in background conditions. The field portion of the study occurred at the US Department of A...

  14. Letter from House Minority Leader Gerald R. Ford to President Richard M. Nixon. Teaching with Documents.

    ERIC Educational Resources Information Center

    Potter, Lee Ann; Schamel, Wynell

    2001-01-01

    Provides historical background on how President Richard Nixon selected someone as vice president after Spiro T. Agnew resigned due to criminal charges. Provides background information on his choice, Gerald Ford, and discusses the process of how Ford officially became vice president. Includes a document from the Nixon Presidential Materials…

  15. Holographic corrections to the Veneziano amplitude

    NASA Astrophysics Data System (ADS)

    Armoni, Adi; Ireson, Edwin

    2017-08-01

    We propose a holographic computation of the 2 → 2 meson scattering in a curved string background, dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction due to the background curvature. The result implies a small deviation from a linear trajectory, which is a requirement of the UV regime of QCD.

  16. Teaching "United States v. Windsor": The Defense of Marriage Act and Its Constitutional Implications

    ERIC Educational Resources Information Center

    Ciocchetti, Corey

    2014-01-01

    This article represents background material that can be used e along with the "United States v. Windsor" case to teach Constitutional Law (particularly federalism, due process, and equal protection) and the legal debate surrounding same-sex marriage in America. Professors may assign it as background reading before or after a…

  17. Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection.

    PubMed

    Praveen, Bavishna B; Steuwe, Christian; Mazilu, Michael; Dholakia, Kishan; Mahajan, Sumeet

    2013-05-21

    Spectra in surface-enhanced Raman scattering (SERS) are always accompanied by a continuum emission called the 'background' which complicates analysis and is especially problematic for quantification and automation. Here, we implement a wavelength modulation technique to eliminate the background in SERS and its resonant version, surface-enhanced resonance Raman scattering (SERRS). This is demonstrated on various nanostructured substrates used for SER(R)S. An enhancement in the signal to noise ratio for the Raman bands of the probe molecules is also observed. This technique helps to improve the analytical ability of SERS by alleviating the problem due to the accompanying background and thus making observations substrate independent.

  18. Radiofrequency ablation: importance of background tissue electrical conductivity--an agar phantom and computer modeling study.

    PubMed

    Solazzo, Stephanie A; Liu, Zhengjun; Lobo, S Melvyn; Ahmed, Muneeb; Hines-Peralta, Andrew U; Lenkinski, Robert E; Goldberg, S Nahum

    2005-08-01

    To determine whether radiofrequency (RF)-induced heating can be correlated with background electrical conductivity in a controlled experimental phantom environment mimicking different background tissue electrical conductivities and to determine the potential electrical and physical basis for such a correlation by using computer modeling. The effect of background tissue electrical conductivity on RF-induced heating was studied in a controlled system of 80 two-compartment agar phantoms (with inner wells of 0.3%, 1.0%, or 36.0% NaCl) with background conductivity that varied from 0.6% to 5.0% NaCl. Mathematical modeling of the relationship between electrical conductivity and temperatures 2 cm from the electrode (T2cm) was performed. Next, computer simulation of RF heating by using two-dimensional finite-element analysis (ETherm) was performed with parameters selected to approximate the agar phantoms. Resultant heating, in terms of both the T2cm and the distance of defined thermal isotherms from the electrode surface, was calculated and compared with the phantom data. Additionally, electrical and thermal profiles were determined by using the computer modeling data and correlated by using linear regression analysis. For each inner compartment NaCl concentration, a negative exponential relationship was established between increased background NaCl concentration and the T2cm (R2= 0.64-0.78). Similar negative exponential relationships (r2 > 0.97%) were observed for the computer modeling. Correlation values (R2) between the computer and experimental data were 0.9, 0.9, and 0.55 for the 0.3%, 1.0%, and 36.0% inner NaCl concentrations, respectively. Plotting of the electrical field generated around the RF electrode identified the potential for a dramatic local change in electrical field distribution (ie, a second electrical peak ["E-peak"]) occurring at the interface between the two compartments of varied electrical background conductivity. Linear correlations between the E-peak and heating at T2cm (R2= 0.98-1.00) and the 50 degrees C isotherm (R2= 0.99-1.00) were established. These results demonstrate the strong relationship between background tissue conductivity and RF heating and further explain electrical phenomena that occur in a two-compartment system.

  19. Estimates of over-diagnosis of breast cancer due to population-based mammography screening in South Australia after adjustment for lead time effects.

    PubMed

    Beckmann, Kerri; Duffy, Stephen W; Lynch, John; Hiller, Janet; Farshid, Gelareh; Roder, David

    2015-09-01

    To estimate over-diagnosis due to population-based mammography screening using a lead time adjustment approach, with lead time measures based on symptomatic cancers only. Women aged 40-84 in 1989-2009 in South Australia eligible for mammography screening. Numbers of observed and expected breast cancer cases were compared, after adjustment for lead time. Lead time effects were modelled using age-specific estimates of lead time (derived from interval cancer rates and predicted background incidence, using maximum likelihood methods) and screening sensitivity, projected background breast cancer incidence rates (in the absence of screening), and proportions screened, by age and calendar year. Lead time estimates were 12, 26, 43 and 53 months, for women aged 40-49, 50-59, 60-69 and 70-79 respectively. Background incidence rates were estimated to have increased by 0.9% and 1.2% per year for invasive and all breast cancer. Over-diagnosis among women aged 40-84 was estimated at 7.9% (0.1-12.0%) for invasive cases and 12.0% (5.7-15.4%) when including ductal carcinoma in-situ (DCIS). We estimated 8% over-diagnosis for invasive breast cancer and 12% inclusive of DCIS cancers due to mammography screening among women aged 40-84. These estimates may overstate the extent of over-diagnosis if the increasing prevalence of breast cancer risk factors has led to higher background incidence than projected. © The Author(s) 2015.

  20. Books on Experiments and Projects at A Level

    ERIC Educational Resources Information Center

    Tawney, D. A.

    1975-01-01

    Outlines the aims of practical work by students through investigations and projects. Provides a list of sources found useful as experimental guides, ideas for projects, and background information for A level Nuffield physics. (GS)

  1. Full system engineering design and operation of an oxygen plant

    NASA Technical Reports Server (NTRS)

    Colvin, James; Schallhorn, Paul; Ramonhalli, Kumar

    1992-01-01

    The production of oxygen from the indigenous resources on Mars is described. After discussing briefly the project's background and the experimental system design, specific experimental results of the electrolytic cell are presented. At the heart of the oxygen production system is a tubular solid zirconia electrolyte cell that will electrochemically separate oxygen from a high-temperature stream of Coleman grade carbon dioxide. Experimental results are discussed and certain system efficiencies are defined. The parameters varied include (1) the cell operating temperature; (2) the carbon dioxide flow rate; and (3) the voltage applied across the cell. The results confirm our theoretical expectations.

  2. Interactive program for analysis and design problems in advanced composites technology

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Swedlow, J. L.

    1971-01-01

    During the past year an experimental program in the fracture of advanced fiber composites has been completed. The experimental program has given direction to additional experimental and theoretical work. A synthesis program for designing low weight multifastener joints in composites is proposed, based on extensive analytical background. A number of failed joints have been thoroughly analyzed to evaluate the failure hypothesis used in the synthesis procedure. Finally, a new solution is reported for isotropic and anisotropic laminates using the boundary-integral method. The solution method offers significant savings of computer core and time for important problems.

  3. Neutron induced background in the COMPTEL detector on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Busetta, M.; Byrd, R.; Collmar, W.; Connors, A.; Diehl, R.; Eymann, G.; Foster, C.

    1992-01-01

    Interactions of neutrons in a prototype of the Compton imaging telescope (COMPTEL) gamma ray detector for the Gamma Ray Observatory were studied to determine COMPTEL's sensitivity as a neutron telescope and to estimate the gamma ray background resulting from neutron interactions. The IUCF provided a pulsed neutron beam at five different energies between 18 and 120 MeV. These measurements showed that the gamma ray background from neutron interactions is greater than previously expected. It was thought that most such events would be due to interactions in the upper detector modules of COMPTEL and could be distinguished by pulse shape discrimination. Rather, the bulk of the gamma ray background appears to be due to interactions in passive material, primarily aluminum, surrounding the D1 modules. In a considerable fraction of these interactions, two or more gamma rays are produced simultaneously, with one interacting in the D1 module and the other interacting in the module of the lower (D2) detector. If the neutron interacts near the D1 module, the D1 D2 time of flight cannot distinguish such an event from a true gamma ray event. In order to assess the significance of this background, the flux of neutrons in orbit has been estimated based on observed events with neutron pulse shape signature in D1. The strength of this neutron induced background is estimated. This is compared with the rate expected from the isotropic cosmic gamma ray flux.

  4. Experimental and Computational Studies of Oxidizer and Fuel Side Addition of Ethanol to Opposed Flow Air/Ethylene Flames

    DTIC Science & Technology

    2005-02-01

    literature to be used in modeling of the results (10). 2. Background The separation of the regions of highest particulate and aromatic concentrations... modeling calculations incorporating the well-characterized C2 combustion mechanism of Frenklach et al. (10). This mechanism was developed for...experimentally and modeled , and shown to occur via different pathways within the context of a detailed chemical mechanism. In particular, ethanol

  5. Experimental Keratitis Due to Pseudomonas aeruginosa: Model for Evaluation of Antimicrobial Drugs

    PubMed Central

    Davis, Starkey D.; Chandler, John W.

    1975-01-01

    An improved method for experimental keratitis due to Pseudomonas aeruginosa is described. Essential features of the method are use of inbred guinea pigs, intracorneal injection of bacteria, subconjunctival injection of antibiotics, “blind” evaluation of results, and statistical analysis of data. Untreated ocular infections were most severe 5 to 7 days after infection. Sterilized bacterial suspensions caused no abnormalities on day 5. Tobramycin and polymyxin B were more active than gentamicin against two strains of Pseudomonas. This model is suitable for many types of quantitative studies on experimental keratitis. Images PMID:810084

  6. The acid-base titration of montmorillonite

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Sposito, G.; Bourg, A. C.

    2003-12-01

    Proton binding to clay minerals plays an important role in the chemical reactivity of soils (e.g., acidification, retention of nutrients or pollutants). If should also affect the performance of clay barriers for waste disposal. The surface acidity of clay minerals is commonly modelled empirically by assuming generic amphoteric surface sites (>SOH) on a flat surface, with fitted site densities and acidity constant. Current advances in experimental methods (notably spectroscopy) are rapidly improving our understanding of the structure and reactivity of the surface of clay minerals (arrangement of the particles, nature of the reactive surface sites, adsorption mechanisms). These developments are motivated by the difficulty of modelling the surface chemistry of mineral surfaces at the macro-scale (e.g., adsorption or titration) without a detailed (molecular-scale) picture of the mechanisms, and should be progressively incorporated into surface complexation models. In this view, we have combined recent estimates of montmorillonite surface properties (surface site density and structure, edge surface area, surface electrostatic potential) with surface site acidities obtained from the titration of alpha-Al2O3 and SiO2, and a novel method of accounting for the unknown initial net proton surface charge of the solid. The model predictions were compared to experimental titrations of SWy-1 montmorillonite and purified MX-80 bentonite in 0.1-0.5 mol/L NaClO4 and 0.005-0.5 mol/L NaNO3 background electrolytes, respectively. Most of the experimental data were appropriately described by the model after we adjusted a single parameter (silanol sites on the surface of montmorillonite were made to be slightly more acidic than those of silica). At low ionic strength and acidic pH the model underestimated the buffering capacity of the montmorillonite, perhaps due to clay swelling or to the interlayer adsorption of dissolved aluminum. The agreement between our model and the experimental data illustrates the complementarity of molecular and macro-scale descriptions of the clay reactivity.

  7. Experimental investigations of recent anomalous results in superconductivity

    NASA Astrophysics Data System (ADS)

    Souw, Victor K.

    2000-12-01

    This thesis examines three recent anomalous results associated with irreversibility in type-II superconductivity: (1) The magnetic properties of the predicted superconductors LiBeH3 and Li2BeH 4, (2) the paramagnetic transition near T = Tc in Nb, and (3) a noise transition in a YBa2Cu3O7-delta thin film near the vortex-solid transition. The investigation of Li 2BeH4 and LiBeH3 was prompted by theoretical predictions of room-temperature superconductivity for Li2BeH4 and LiBeH3 and a recent report that Li2BeH4 showed magnetic irreversibilities similar to those of type-II superconductors. A modified experimental method is introduced in order to avoid artifacts due to background signals. The resulting data is suggestive of a superparamagnetic impurity from one of the reagents used in the synthesis and after subtracting this contribution, the temperature-dependent susceptibilities of Li2 BeH4 and LiBeH3 are estimated. However, no magnetic irreversibility suggestive of superconductivity is observed. The anomalous paramagnetic transition in Nb is intriguing because Nb does not share the d-wave order parameter symmetry often invoked to explain the phenomenon in other superconductors. A modified experimental method was developed in order to avoid instrumental artifacts known to produce a similar apparently paramagnetic response, but the results of this method indicate that the paramagnetic response is a physical property of the sample. Finally, a very sharp noise transition in a YBa2Cu3O7-delta thin film was found to be distinct from previously reported features in the voltage noise commonly associated with vortex fluctuations near the irreversibility line. In each of these three cases the examination of experimental techniques is an integral part of the investigation of novel vortex behavior near the onset of irreversibility.

  8. A Virtual Reprise of the Stanley Milgram Obedience Experiments

    PubMed Central

    Slater, Mel; Antley, Angus; Davison, Adam; Swapp, David; Guger, Christoph; Barker, Chris; Pistrang, Nancy; Sanchez-Vives, Maria V.

    2006-01-01

    Background Stanley Milgram's 1960s experimental findings that people would administer apparently lethal electric shocks to a stranger at the behest of an authority figure remain critical for understanding obedience. Yet, due to the ethical controversy that his experiments ignited, it is nowadays impossible to carry out direct experimental studies in this area. In the study reported in this paper, we have used a similar paradigm to the one used by Milgram within an immersive virtual environment. Our objective has not been the study of obedience in itself, but of the extent to which participants would respond to such an extreme social situation as if it were real in spite of their knowledge that no real events were taking place. Methodology Following the style of the original experiments, the participants were invited to administer a series of word association memory tests to the (female) virtual human representing the stranger. When she gave an incorrect answer, the participants were instructed to administer an ‘electric shock’ to her, increasing the voltage each time. She responded with increasing discomfort and protests, eventually demanding termination of the experiment. Of the 34 participants, 23 saw and heard the virtual human, and 11 communicated with her only through a text interface. Conclusions Our results show that in spite of the fact that all participants knew for sure that neither the stranger nor the shocks were real, the participants who saw and heard her tended to respond to the situation at the subjective, behavioural and physiological levels as if it were real. This result reopens the door to direct empirical studies of obedience and related extreme social situations, an area of research that is otherwise not open to experimental study for ethical reasons, through the employment of virtual environments. PMID:17183667

  9. SYRCLE’s risk of bias tool for animal studies

    PubMed Central

    2014-01-01

    Background Systematic Reviews (SRs) of experimental animal studies are not yet common practice, but awareness of the merits of conducting such SRs is steadily increasing. As animal intervention studies differ from randomized clinical trials (RCT) in many aspects, the methodology for SRs of clinical trials needs to be adapted and optimized for animal intervention studies. The Cochrane Collaboration developed a Risk of Bias (RoB) tool to establish consistency and avoid discrepancies in assessing the methodological quality of RCTs. A similar initiative is warranted in the field of animal experimentation. Methods We provide an RoB tool for animal intervention studies (SYRCLE’s RoB tool). This tool is based on the Cochrane RoB tool and has been adjusted for aspects of bias that play a specific role in animal intervention studies. To enhance transparency and applicability, we formulated signalling questions to facilitate judgment. Results The resulting RoB tool for animal studies contains 10 entries. These entries are related to selection bias, performance bias, detection bias, attrition bias, reporting bias and other biases. Half these items are in agreement with the items in the Cochrane RoB tool. Most of the variations between the two tools are due to differences in design between RCTs and animal studies. Shortcomings in, or unfamiliarity with, specific aspects of experimental design of animal studies compared to clinical studies also play a role. Conclusions SYRCLE’s RoB tool is an adapted version of the Cochrane RoB tool. Widespread adoption and implementation of this tool will facilitate and improve critical appraisal of evidence from animal studies. This may subsequently enhance the efficiency of translating animal research into clinical practice and increase awareness of the necessity of improving the methodological quality of animal studies. PMID:24667063

  10. The effect of Rosmarinus herbal tea on occupational burnout in Iran Chemical Industry Investment company employees

    PubMed Central

    Mehrabi, Tayebe; Gorji, Somayeh; Zolfaghari, Behzad; Razmjoo, Rasool

    2015-01-01

    Background: Burnout is one of the most important problems that the employees encounter. Many health problems arise due to burnout which is to be dealt with by the employees and the owners in the industry. Among many different ways of dealing with this problem, herbal therapy seems to be a promising solution. The present study intended to investigate the effect of Rosmarinus officinalis (RO) on burnout in employees who work in industrial environments. Materials and Methods: An experimental study was performed to see whether RO has an effect on burnout or not. A total of 66 employees, aged between 20 and 60 years, who had worked for at least 1 year in the technical wards of Iran Chemical Industry Investment Company took part in the study. The participants were randomly assigned to two groups of control (n = 33) and RO (n = 33). The RO group received 4 g of Rosemary in 150 cc water per day for 2 months. The control group, on the other hand, did not receive anything. The data were collected via Geldard (1989) Burnout Inventory before and after the treatment. A t-test was performed to analyze the collected data. Results: The results of statistical tests showed that after intervention, the score of occupational burnout in RO group was better, and a significant difference was found between the control and experimental groups (P = 0.03), in favor of the experimental group. Conclusions: The results of the study revealed that Rosmarinus had a positive effect on burnout in employees in this study. Further studies in this field are suggested. PMID:26257801

  11. Alpha-2A Adrenoceptor Agonist Guanfacine Restores Diuretic Efficiency in Experimental Cirrhotic Ascites: Comparison with Clonidine

    PubMed Central

    Sansoè, Giovanni; Aragno, Manuela; Mastrocola, Raffaella; Mengozzi, Giulio; Parola, Maurizio

    2016-01-01

    Background In human cirrhosis, adrenergic hyperfunction causes proximal tubular fluid retention and contributes to diuretic-resistant ascites, and clonidine, a sympatholytic drug, improves natriuresis in difficult-to-treat ascites. Aim To compare clonidine (aspecific α2-adrenoceptor agonist) to SSP-002021R (prodrug of guanfacine, specific α2A-receptor agonist), both associated with diuretics, in experimental cirrhotic ascites. Methods and Results Six groups of 12 rats were studied: controls (G1); controls receiving furosemide and potassium canrenoate (G2); rats with ascitic cirrhosis due to 14-week CCl4 treatment (G3); cirrhotic rats treated (over the 11th-14th CCl4 weeks) with furosemide and canrenoate (G4), furosemide, canrenoate and clonidine (G5), or diuretics and SSP002021R (G6). Three rats of each group had their hormonal status and renal function assessed at the end of 11th, 12th, 13th, and 14th weeks of respective treatments.Cirrhotic rats in G3 and G4 gained weight over the 12th-14th CCl4 weeks. In G4, brief increase in sodium excretion over the 11th-12th weeks preceded worsening of inulin clearance and natriuresis (diuretic resistance). In comparison with G4, the addition of clonidine (G5) or guanfacine (G6) to diuretics improved, respectively, sodium excretion over the 11th-12th CCl4 weeks, or GFR and electrolytes excretion over the 13th-14th CCl4 weeks. Natriuretic responses in G5 and G6 were accompanied by reduced catecholamine serum levels. Conclusions α2A-receptor agonists restore glomerular filtration rate and natriuresis, and delay diuretic-resistant ascites in experimental advanced cirrhosis. Clonidine ameliorates diuretic-dependent natriuresis just for a short time. PMID:27384184

  12. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    NASA Astrophysics Data System (ADS)

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  13. Improvement of experimental testing and network training conditions with genome-wide microarrays for more accurate predictions of drug gene targets

    PubMed Central

    2014-01-01

    Background Genome-wide microarrays have been useful for predicting chemical-genetic interactions at the gene level. However, interpreting genome-wide microarray results can be overwhelming due to the vast output of gene expression data combined with off-target transcriptional responses many times induced by a drug treatment. This study demonstrates how experimental and computational methods can interact with each other, to arrive at more accurate predictions of drug-induced perturbations. We present a two-stage strategy that links microarray experimental testing and network training conditions to predict gene perturbations for a drug with a known mechanism of action in a well-studied organism. Results S. cerevisiae cells were treated with the antifungal, fluconazole, and expression profiling was conducted under different biological conditions using Affymetrix genome-wide microarrays. Transcripts were filtered with a formal network-based method, sparse simultaneous equation models and Lasso regression (SSEM-Lasso), under different network training conditions. Gene expression results were evaluated using both gene set and single gene target analyses, and the drug’s transcriptional effects were narrowed first by pathway and then by individual genes. Variables included: (i) Testing conditions – exposure time and concentration and (ii) Network training conditions – training compendium modifications. Two analyses of SSEM-Lasso output – gene set and single gene – were conducted to gain a better understanding of how SSEM-Lasso predicts perturbation targets. Conclusions This study demonstrates that genome-wide microarrays can be optimized using a two-stage strategy for a more in-depth understanding of how a cell manifests biological reactions to a drug treatment at the transcription level. Additionally, a more detailed understanding of how the statistical model, SSEM-Lasso, propagates perturbations through a network of gene regulatory interactions is achieved. PMID:24444313

  14. Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, T. E.

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  15. Stereoisomeric effects on dynamic viscosity versus pressure and temperature for the system cis- + trans-decalin

    NASA Astrophysics Data System (ADS)

    Miyake, Yasufumi; Boned, Christian; Baylaucq, Antoine; Bessières, David; Zéberg-Mikkelsen, Claus K.; Galliéro, Guillaume; Ushiki, Hideharu

    2007-07-01

    In order to study the influence of stereoisomeric effects on the dynamic viscosity, an extensive experimental study of the viscosity of the binary system composed of the two stereoisomeric molecular forms of decalin - cis and trans - has been carried out for five different mixtures at three temperatures (303.15, 323.15 and 343.15) K and six isobars up to 100 MPa with a falling-body viscometer (a total of 90 points). The experimental relative uncertainty is estimated to be 2%. The variations of dynamic viscosity versus composition are discussed with respect to their behavior due to stereoisomerism. Four different models with a physical and theoretical background are studied in order to investigate how they take the stereoisomeric effect into account through their required model parameters. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. Overall, a satisfactory representation of the viscosity of this binary system is found for the different models within the considered ( T, p) range taken into account their simplicity. All the models are able to distinguish between the two stereoisomeric decalin compounds. Further, based on the analysis of the model parameters performed on the pure compounds, it has been found that the use of simple mixing rules without introducing any binary interaction parameters are sufficient in order to predict the viscosity of cis + trans-decalin mixtures with the same accuracy in comparison with the experimental values as obtained for the pure compounds. In addition to these models, a semi-empirical self-referencing model and the simple mixing laws of Grunberg-Nissan and Katti-Chaudhri are also applied in the representation of the viscosity behavior of these systems.

  16. Study and development of label-free optical biosensors for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choi, Charles J.

    For the majority of assays currently performed, fluorescent or colorimetric chemical labels are commonly attached to the molecules under study so that they may be readily visualized. The methods of using labels to track biomolecular binding events are very sensitive and effective, and are employed as standardized assay protocol across research labs worldwide. However, using labels induces experimental uncertainties due to the effect of the label on molecular conformation, active binding sites, or inability to find an appropriate label that functions equivalently for all molecules in an experiment. Therefore, the ability to perform highly sensitive biochemical detection without the use of fluorescent labels would further simplify assay protocols and would provide quantitative kinetic data, while removing experimental artifacts from fluorescent quenching, shelf-life, and background fluorescence phenomena. In view of the advantages mentioned above, the study and development of optical label-free sensor technologies have been undertaken here. In general, label-free photonic crystal (PC) biosensors and metal nanodome array surface-enhanced Raman scattering (SERS) substrates, both of which are fabricated by nanoreplica molding process, have been used as the method to attack the problem. Chapter 1 shows the work on PC label-free biosensor incorporated microfluidic network for bioassay performance enhancement and kinetic reaction rate constant determination. Chapter 2 describes the work on theoretical and experimental comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Chapter 3 shows the work on integration of PC biosensor with actuate-to-open valve microfluidic chip for pL-volume combinatorial mixing and screening application. In Chapter 4, the development and characterization of SERS nanodome array is shown. Lastly, Chapter 5 describes SERS nanodome sensor incorporated tubing for point-of-care monitoring of intravenous drugs and metabolites.

  17. Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices

    DOE PAGES

    Evans, T. E.

    2015-11-13

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  18. Effect of Citrullus colocynthis hydro-alcoholic extract on hormonal and folliculogenesis process in estradiol valerate-induced PCOs rats model: An experimental study

    PubMed Central

    Barzegar, Mohammad Hossein; Khazali, Homayoun; Kalantar, Seyyed Mehdi; Khoradmehr, Arezoo

    2017-01-01

    Background: Citrullus colocynthis (CCT) is used as the anti-diabetic and antioxidant agent. Polycystic ovarian syndrome (PCOS) is a reproductive disorder which level of gonadotropins and sexual hormones are imbalanced. Objective: We evaluated the effect of CCT hydro-alcoholic extract on hormonal and folliculogenesis process in estradiol valerate-induced PCOs rats’ model. Materials and Methods: 40 female adult Wistar rats divided into five groups (n=8each: Group I (control) only injected by sesame oil as estradiol valerate solvent, group II (Sham) was orally received normal saline after estradiol valerate- induced polycystic ovarian syndrome (4 mg/rat estradiol valerate, intramuscularly), and three experimental groups, that after induction of PCOS within 60 days, received orally 50 mg/kg CCT extract (group III), 50mg/kg metformin (group IV), and CCT extract+ metformin (group V) for 20 days. The serum concentration level of luteinizing, testosterone and follicle stimulating hormones were measured using ELISA method and the serum concentration level of glucose were measured using the oxidative method (glucose meter). Histological study of ovary tissue carried out by hematoxylin-eosin staining. Results: There was a significant reduction in luteinizing hormone and testosterone in III-V groups compared to Sham group, whereas follicle stimulating hormone in III-V groups was not significantly changed in comparison with Sham group. Histological investigations showed a significant increase in number of preantral and antral follicles and corpus luteum in the experimental groups compared to group II. Conclusion: Marked improvement in hormonal and histological symptoms of PCOS may be due to CCT effects hence, CCT can potentially be considered as an effective drug for treatment of PCOS. PMID:29387832

  19. In-line interferometer for broadband near-field scanning optical spectroscopy.

    PubMed

    Brauer, Jens; Zhan, Jinxin; Chimeh, Abbas; Korte, Anke; Lienau, Christoph; Gross, Petra

    2017-06-26

    We present and investigate a novel approach towards broad-bandwidth near-field scanning optical spectroscopy based on an in-line interferometer for homodyne mixing of the near field and a reference field. In scattering-type scanning near-field optical spectroscopy, the near-field signal is usually obscured by a large amount of unwanted background scattering from the probe shaft and the sample. Here we increase the light reflected from the sample by a semi-transparent gold layer and use it as a broad-bandwidth, phase-stable reference field to amplify the near-field signal in the visible and near-infrared spectral range. We experimentally demonstrate that this efficiently suppresses the unwanted background signal in monochromatic near-field measurements. For rapid acquisition of complete broad-bandwidth spectra we employ a monochromator and a fast line camera. Using this fast acquisition of spectra and the in-line interferometer we demonstrate the measurement of pure near-field spectra. The experimental observations are quantitatively explained by analytical expressions for the measured optical signals, based on Fourier decomposition of background and near field. The theoretical model and in-line interferometer together form an important step towards broad-bandwidth near-field scanning optical spectroscopy.

  20. Investigation of detection limits for solutes in water measured by laser raman spectrometry

    USGS Publications Warehouse

    Goldberg, M.C.

    1977-01-01

    The influence of experimental parameters on detection sensitivity was determined for laser Raman analysis of dissolved solutes in water. Individual solutions of nitrate, sulfate, carbonate, bicarbonate, monohydrogen phosphate, dihydrogen phosphate, acetate ion, and acetic acid were measured. An equation is derived which expresses the signal-to-noise ratio in terms of solute concentration, measurement time, spectral slit width, laser power fluctuations, and solvent background intensity. Laser beam intensity fluctuations at the sample and solvent background intensity are the most important limiting factors.

  1. Early space experiments in materials processing

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1979-01-01

    A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se.

  2. “Ripples” on a relativistically expanding fluid

    DOE PAGES

    Shi, Shuzhe; Liao, Jinfeng; Zhuang, Pengfei

    2014-12-29

    Recent studies have shown that fluctuations of various types play important roles in the evolution of the fireball created in relativistic heavy ion collisions and bear many phenomenological consequences for experimental observables. In addition, the bulk dynamics of the fireball is well described by relativistic hydrodynamic expansion and the fluctuations on top of such expanding background can be studied within the linearized hydrodynamic framework. In this paper we present complete and analytic sound wave solutions on top of both Bjorken flow and Hubble flow backgrounds.

  3. Advanced GaAs Process Modeling. Volume 1

    DTIC Science & Technology

    1989-05-01

    COSATI CODES 18 . SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Gallium Arsenide, MESFET, Process...Background 9 3.2 Model Calculations 10 3.3 Conclusions 17 IV. ION-IMPLANTATION INTO GaAs PROFILE DETERMINATION 18 4.1 Ion Implantation Profile...Determination in GaAs 18 4.1.1. Background 18 4.1.2. Experimental Measurements 20 4.1.3. Results 22 4.1.3.1 Ion-Energy Dependence 22 4.1.3.2. Tilt and Rotation

  4. Tomographic diffractive microscopy with agile illuminations for imaging targets in a noisy background.

    PubMed

    Zhang, T; Godavarthi, C; Chaumet, P C; Maire, G; Giovannini, H; Talneau, A; Prada, C; Sentenac, A; Belkebir, K

    2015-02-15

    Tomographic diffractive microscopy is a marker-free optical digital imaging technique in which three-dimensional samples are reconstructed from a set of holograms recorded under different angles of incidence. We show experimentally that, by processing the holograms with singular value decomposition, it is possible to image objects in a noisy background that are invisible with classical wide-field microscopy and conventional tomographic reconstruction procedure. The targets can be further characterized with a selective quantitative inversion.

  5. Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.

    PubMed

    Kiran Kumar, G R; Reddy, M Ramasubba

    2018-06-08

    Traditional Spatial filters used for steady-state visual evoked potential (SSVEP) extraction such as minimum energy combination (MEC) require the estimation of the background electroencephalogram (EEG) noise components. Even though this leads to improved performance in low signal to noise ratio (SNR) conditions, it makes such algorithms slow compared to the standard detection methods like canonical correlation analysis (CCA) due to the additional computational cost. In this paper, Periodic component analysis (πCA) is presented as an alternative spatial filtering approach to extract the SSVEP component effectively without involving extensive modelling of the noise. The πCA can separate out components corresponding to a given frequency of interest from the background electroencephalogram (EEG) by capturing the temporal information and does not generalize SSVEP based on rigid templates. Data from ten test subjects were used to evaluate the proposed method and the results demonstrate that the periodic component analysis acts as a reliable spatial filter for SSVEP extraction. Statistical tests were performed to validate the results. The experimental results show that πCA provides significant improvement in accuracy compared to standard CCA and MEC in low SNR conditions. The results demonstrate that πCA provides better detection accuracy compared to CCA and on par with that of MEC at a lower computational cost. Hence πCA is a reliable and efficient alternative detection algorithm for SSVEP based brain-computer interface (BCI). Copyright © 2018. Published by Elsevier B.V.

  6. Fast gravitational wave radiometry using data folding

    NASA Astrophysics Data System (ADS)

    Ain, Anirban; Dalvi, Prathamesh; Mitra, Sanjit

    2015-07-01

    Gravitational waves (GWs) from the early universe and unresolved astrophysical sources are expected to create a stochastic GW background (SGWB). The GW radiometer algorithm is well suited to probe such a background using data from ground-based laser interferometric detectors. Radiometer analysis can be performed in different bases, e.g., isotropic, pixel or spherical harmonic. Each of these analyses possesses a common temporal symmetry which we exploit here to fold the whole data set for every detector pair, typically a few hundred to a thousand days of data, to only one sidereal day, without any compromise in precision. We develop the algebra and a software pipeline needed to fold data, accounting for the effect of overlapping windows and nonstationary noise. We implement this on LIGO's fifth science run data and validate it by performing a standard anisotropic SGWB search on both folded and unfolded data. Folded data not only leads to orders of magnitude reduction in computation cost, but it results in a conveniently small data volume of few gigabytes, making it possible to perform an actual analysis on a personal computer, as well as easy movement of data. A few important analyses, yet unaccomplished due to computational limitations, will now become feasible. Folded data, being independent of the radiometer basis, will also be useful in reducing processing redundancies in multiple searches and provide a common ground for mutual consistency checks. Most importantly, folded data will allow vast amount of experimentation with existing searches and provide substantial help in developing new strategies to find unknown sources.

  7. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields

    PubMed Central

    Kuroda, Yosuke; Kaga, Akito; Tomooka, Norihiko; Yano, Hiroshi; Takada, Yoshitake; Kato, Shin; Vaughan, Duncan

    2013-01-01

    The objective of this study was to identify quantitative trait loci (QTL) affecting fitness of hybrids between wild soybean (Glycine soja) and cultivated soybean (Glycine max). Seed dormancy and seed number, both of which are important for fitness, were evaluated by testing artificial hybrids of G. soja × G. max in a multiple-site field trial. Generally, the fitness of the F1 hybrids and hybrid derivatives from self-pollination was lower than that of G. soja due to loss of seed dormancy, whereas the fitness of hybrid derivatives with higher proportions of G. soja genetic background was comparable with that of G. soja. These differences were genetically dissected into QTL for each population. Three QTLs for seed dormancy and one QTL for total seed number were detected in the F2 progenies of two diverse cross combinations. At those four QTLs, the G. max alleles reduced seed number and severely reduced seed survival during the winter, suggesting that major genes acquired during soybean adaptation to cultivation have a selective disadvantage in natural habitats. In progenies with a higher proportion of G. soja genetic background, the genetic effects of the G. max alleles were not expressed as phenotypes because the G. soja alleles were dominant over the G. max alleles. Considering the highly inbreeding nature of these species, most hybrid derivatives would disappear quickly in early self-pollinating generations in natural habitats because of the low fitness of plants carrying G. max alleles. PMID:23919159

  8. Concept of an advanced hyperspectral remote sensing system for pipeline monitoring

    NASA Astrophysics Data System (ADS)

    Keskin, Göksu; Teutsch, Caroline D.; Lenz, Andreas; Middelmann, Wolfgang

    2015-10-01

    Areas occupied by oil pipelines and storage facilities are prone to severe contamination due to leaks caused by natural forces, poor maintenance or third parties. These threats have to be detected as quickly as possible in order to prevent serious environmental damage. Periodical and emergency monitoring activities need to be carried out for successful disaster management and pollution minimization. Airborne remote sensing stands out as an appropriate choice to operate either in an emergency or periodically. Hydrocarbon Index (HI) and Hydrocarbon Detection Index (HDI) utilize the unique absorption features of hydrocarbon based materials at SWIR spectral region. These band ratio based methods require no a priori knowledge of the reference spectrum and can be calculated in real time. This work introduces a flexible airborne pipeline monitoring system based on the online quasi-operational hyperspectral remote sensing system developed at Fraunhofer IOSB, utilizing HI and HDI for oil leak detection on the data acquired by an SWIR imaging sensor. Robustness of HI and HDI compared to state of the art detection algorithms is evaluated in an experimental setup using a synthetic dataset, which was prepared in a systematic way to simulate linear mixtures of selected background and oil spectra consisting of gradually decreasing percentages of oil content. Real airborne measurements in Ettlingen, Germany are used to gather background data while the crude oil spectrum was measured with a field spectrometer. The results indicate that the system can be utilized for online and offline monitoring activities.

  9. Current-limited electron beam injection

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1977-01-01

    The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.

  10. Modal interactions due to friction in the nonlinear vibration response of the "Harmony" test structure: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Claeys, M.; Sinou, J.-J.; Lambelin, J.-P.; Todeschini, R.

    2016-08-01

    The nonlinear vibration response of an assembly with friction joints - named "Harmony" - is studied both experimentally and numerically. The experimental results exhibit a softening effect and an increase of dissipation with excitation level. Modal interactions due to friction are also evidenced. The numerical methodology proposed groups together well-known structural dynamic methods, including finite elements, substructuring, Harmonic Balance and continuation methods. On the one hand, the application of this methodology proves its capacity to treat a complex system where several friction movements occur at the same time. On the other hand, the main contribution of this paper is the experimental and numerical study of evidence of modal interactions due to friction. The simulation methodology succeeds in reproducing complex form of dynamic behavior such as these modal interactions.

  11. Postbuckling failure of composite plates with central holes. Interim Report, Feb. 1990 - Dec. 1991 Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, H. H.; Hyer, M. W.

    1992-01-01

    The postbuckling failure of square composite plates with central holes is analyzed numerically and experimentally. The particular plates studies have stacking sequences of: (+ and - 45/0/90)(sub 2S); (+ and - 45/0(sub 2))(sub 2S); (+ and - 45/0(sub 6))(sub S); and (+ and - 45)(sub 4S). A simple plate geometry, one with a hole diameter to plate width ratio of 0.3 is compared. Failure load, failure mode, and failure location are predicted numerically by using the finite element method. Predictions are compared with experimental results. In numerical failure analysis the interlaminar shear stresses, as well as the inplane stresses are taken into account. An issue addressed in this study is the possible mode shape change of the plate during loading. It is predicted that the first three laminates fail due to excessive stresses in the fiber direction, and more importantly, that the load level is independent of whether the laminate is deformed in a one-half or two-half wave configuration. It is predicted that the fourth laminate fails due to excessive inplane shear stress. Interlaminar shear failure is not predicted for any laminates. For the first two laminates the experimental observations correlated well with the predictions. Experimentally, the third laminate failed along the side support due to interlaminar shear strength S(sub 23). The fourth experimental laminate failed due to inplane shear in the location predicted, however material softening resulted in a different failure load from predictions.

  12. Research Directions for Cyber Experimentation: Workshop Discussion Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeWaard, Elizabeth; Deccio, Casey; Fritz, David Jakob

    Sandia National Laboratories hosted a workshop on August 11, 2017 entitled "Research Directions for Cyber Experimentation," which focused on identifying and addressing research gaps within the field of cyber experimentation , particularly emulation testbeds . This report mainly documents the discussion toward the end of the workshop, which included research gaps such as developing a sustainable research infrastructure, exp anding cyber experimentation, and making the field more accessible to subject matter experts who may not have a background in computer science . Other gaps include methodologies for rigorous experimentation, validation, and uncertainty quantification, which , if addressed, also have themore » potential to bridge the gap between cyber experimentation and cyber engineering. Workshop attendees presented various ways to overcome these research gaps, however the main conclusion for overcoming these gaps is better commun ication through increased workshops, conferences, email lists, and slack chann els, among other opportunities.« less

  13. Immunoregulatory actions of epithelial cell PPAR gamma at the colonic mucosa of mice with experimental inflammatory bowel disease.

    PubMed

    Mohapatra, Saroj K; Guri, Amir J; Climent, Montse; Vives, Cristina; Carbo, Adria; Horne, William T; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-04-20

    Peroxisome proliferator-activated receptors are nuclear receptors highly expressed in intestinal epithelial cells (IEC) and immune cells within the gut mucosa and are implicated in modulating inflammation and immune responses. The objective of this study was to investigate the effect of targeted deletion of PPAR gamma in IEC on progression of experimental inflammatory bowel disease (IBD). In the first phase, PPAR gamma flfl; Villin Cre- (VC-) and PPAR gamma flfl; Villin Cre+ (VC+) mice in a mixed FVB/C57BL/6 background were challenged with 2.5% dextran sodium sulfate (DSS) in drinking water for 0, 2, or 7 days. VC+ mice express a transgenic recombinase under the control of the Villin-Cre promoter that causes an IEC-specific deletion of PPAR gamma. In the second phase, we generated VC- and VC+ mice in a C57BL/6 background that were challenged with 2.5% DSS. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to phenotypically characterize lymphocyte and macrophage populations in blood, spleen and mesenteric lymph nodes. Global gene expression analysis was profiled using Affymetrix microarrays. The IEC-specific deficiency of PPAR gamma in mice with a mixed background worsened colonic inflammatory lesions, but had no effect on disease activity (DAI) or weight loss. In contrast, the IEC-specific PPAR gamma null mice in C57BL/6 background exhibited more severe inflammatory lesions, DAI and weight loss in comparison to their littermates expressing PPAR gamma in IEC. Global gene expression profiling revealed significantly down-regulated expression of lysosomal pathway genes and flow cytometry results demonstrated suppressed production of IL-10 by CD4+ T cells in mesenteric lymph nodes (MLN) of IEC-specific PPAR gamma null mice. Our results demonstrate that adequate expression of PPAR gamma in IEC is required for the regulation of mucosal immune responses and prevention of experimental IBD, possibly by modulation of lysosomal and antigen presentation pathways.

  14. Membranes and Films from Polymers.

    ERIC Educational Resources Information Center

    Blumberg, Avrom A.

    1986-01-01

    Provides background information on polymeric films and membranes including production methods, special industrial and medical applications, laboratory preparation, and an experimental investigation of a porous cellulose acetate membrane. Presents a demonstration to distinguish between high- and low-density polyethylene. (JM)

  15. Cooking Potatoes: Experimentation and Mathematical Modeling.

    ERIC Educational Resources Information Center

    Chen, Xiao Dong

    2002-01-01

    Describes a laboratory activity involving a mathematical model of cooking potatoes that can be solved analytically. Highlights the microstructure aspects of the experiment. Provides the key aspects of the results, detailed background readings, laboratory procedures and data analyses. (MM)

  16. Ultrafine carbon particle mediated cardiovascular impairment of aged spontaneously hypertensive rats

    EPA Science Inventory

    Background: Previous studies provided compelling evidences for particulate matter (PM) associated cardiovascular health effects. Elderly individuals, particularly those with preexisting conditions like hypertension are regarded to be vulnerable. Experimental data are warranted to...

  17. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    ERIC Educational Resources Information Center

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  18. Approaches to enhance the teaching quality of experimental biochemistry for MBBS students in TSMU, China.

    PubMed

    Yu, Lijuan; Yi, Shuying; Zhai, Jing; Wang, Zhaojin

    2017-07-08

    With the internationalization of medical education in China, the importance of international students' education in medical schools is also increasing. Except foreign students majoring in Chinese language, English Bachelor of Medicine, Bachelor of Surgery (MBSS) students are the largest group of international students. Based on problems in the teaching process for experimental biochemistry, we designed teaching models adapted to the background of international students and strengthened teachers' teaching ability at Taishan Medical University. Several approaches were used in combination to promote teaching effects and increase the benefit of teaching to teachers. The primary data showed an increased passion for basic medical biochemistry and an improved theoretical background for MBSS students, which will be helpful for their later clinical medicine studies. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):360-364, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  19. Dependence of the Radiation Pressure on the Background Refractive Index

    NASA Astrophysics Data System (ADS)

    Webb, Kevin J.

    2013-07-01

    The 1978 experiments by Jones and Leslie showing that the radiation pressure on a mirror depends on the background medium refractive index have yet to be adequately explained using a force model and have provided a leading challenge to the Abraham form of the electromagnetic momentum. Those experimental results are predicted for the first time using a force representation that incorporates the Abraham momentum by utilizing the power calibration method employed in the Jones and Leslie experiments. With an extension of the same procedure, the polarization and angle independence of the experimental data are also explained by this model. Prospects are good for this general form of the electromagnetic force density to be effective in predicting other experiments with macroscopic materials. Furthermore, the rigorous representation of material dispersion makes the representation important for metamaterials that operate in the vicinity of homogenized material resonances.

  20. Autogenic-Feedback Training (AFT) as a preventive method for space motion sickness: Background and experimental design

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William B.

    1993-01-01

    Finding an effective treatment for the motion sickness-like symptoms that occur in space has become a high priority for NASA. The background research is reviewed and the experimental design of a formal life sciences shuttle flight experiment designed to prevent space motion sickness in shuttle crew members is presented. This experiment utilizes a behavioral medicine approach to solving this problem. This method, Autogenic-Feedback Training (AFT), involves training subjects to voluntarily control several of their own physiological responses to environmental stressors. AFT has been used reliably to increase tolerance to motion sickness during ground-based tests in over 200 men and women under a variety of conditions that induce motion sickness, and preliminary evidence from space suggests that AFT may be an effective treatment for space motion sickness as well. Proposed changes to this experiment for future manifests are included.

  1. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach.

    PubMed

    Ding, Fei; Wang, Zhuoxian; He, Sailing; Shalaev, Vladimir M; Kildishev, Alexander V

    2015-04-28

    We design, fabricate, and experimentally demonstrate an ultrathin, broadband half-wave plate in the near-infrared range using a plasmonic metasurface. The simulated results show that the linear polarization conversion efficiency is over 97% with over 90% reflectance across an 800 nm bandwidth. Moreover, simulated and experimental results indicate that such broadband and high-efficiency performance is also sustained over a wide range of incident angles. To further obtain a background-free half-wave plate, we arrange such a plate as a periodic array of integrated supercells made of several plasmonic antennas with high linear polarization conversion efficiency, consequently achieving a reflection-phase gradient for the cross-polarized beam. In this design, the anomalous (cross-polarized) and the normal (copolarized) reflected beams become spatially separated, hence enabling highly efficient and robust, background-free polarization conversion along with broadband operation. Our results provide strategies for creating compact, integrated, and high-performance plasmonic circuits and devices.

  2. [Effects of exposure frequency and background information on preferences for photographs of cars in different locations].

    PubMed

    Matsuda, Ken; Kusumi, Takashi; Hosomi, Naohiro; Osa, Atsushi; Miike, Hidetoshi

    2014-08-01

    This study examined the influence of familiarity and novelty on the mere exposure effect while manipulating the presentation of background information. We selected presentation stimuli that integrated cars and backgrounds based on the results of pilot studies. During the exposure phase, we displayed the stimuli successively for 3 seconds, manipulating the background information (same or different backgrounds with each presentation) and exposure frequency (3, 6, and 9 times). In the judgment phase, 18 participants judged the cars in terms of preference, familiarity, and novelty on a 7-point scale. As the number of stimulus presentations increased, the preference for the cars increased during the different background condition and decreased during the same background condition. This increased preference may be due to the increase in familiarity caused by the higher exposure frequency and novelty resulting from the background changes per exposure session. The rise in preference judgments was not seen when cars and backgrounds were presented independently. Therefore, the addition of novel features to each exposure session facilitated the mere exposure effect.

  3. Solar neutrino interactions with the double- β decay nuclei Se 82 ,   Mo 100 , and Nd 150

    DOE PAGES

    Ejiri, Hiro; Elliott, Steven Ray

    2017-05-02

    Solar neutrinos interact within double-beta decay (ββ) detectors and contribute to backgrounds for ββ experiments. Background contributions due to solar neutrino interactions with ββ nuclei of 82Se, 100Mo, and 150Nd are evaluated. They are shown to be significant for future high-sensitivity ββ experiments that may search for Majorana neutrino masses in the inverted-hierarchy mass region. In conclusion, the impact of solar neutrino backgrounds and their reduction are discussed for future ββ experiments.

  4. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting

    DOE PAGES

    Mace, Emily; Aalseth, Craig; Alexander, Tom; ...

    2016-12-21

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. In this paper, we present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120 mg of H 2O and present sensitivity results.

  5. Improving knowledge of garlic paste greening through the design of an experimental strategy.

    PubMed

    Aguilar, Miguel; Rincón, Francisco

    2007-12-12

    The furthering of scientific knowledge depends in part upon the reproducibility of experimental results. When experimental conditions are not set with sufficient precision, the resulting background noise often leads to poorly reproduced and even faulty experiments. An example of the catastrophic consequences of this background noise can be found in the design of strategies for the development of solutions aimed at preventing garlic paste greening, where reported results are contradictory. To avoid such consequences, this paper presents a two-step strategy based on the concept of experimental design. In the first step, the critical factors inherent to the problem are identified, using a 2(III)(7-4) Plackett-Burman experimental design, from a list of seven apparent critical factors (ACF); subsequently, the critical factors thus identified are considered as the factors to be optimized (FO), and optimization is performed using a Box and Wilson experimental design to identify the stationary point of the system. Optimal conditions for preventing garlic greening are examined after analysis of the complex process of green-pigment development, which involves both chemical and enzymatic reactions and is strongly influenced by pH, with an overall pH optimum of 4.5. The critical step in the greening process is the synthesis of thiosulfinates (allicin) from cysteine sulfoxides (alliin). Cysteine inhibits the greening process at this critical stage; no greening precursors are formed in the presence of around 1% cysteine. However, the optimal conditions for greening prevention are very sensitive both to the type of garlic and to manufacturing conditions. This suggests that optimal solutions for garlic greening prevention should be sought on a case-by-case basis, using the strategy presented here.

  6. Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance.

    PubMed

    Yuan, Yading; Chao, Ming; Lo, Yeh-Chi

    2017-09-01

    Automatic skin lesion segmentation in dermoscopic images is a challenging task due to the low contrast between lesion and the surrounding skin, the irregular and fuzzy lesion borders, the existence of various artifacts, and various imaging acquisition conditions. In this paper, we present a fully automatic method for skin lesion segmentation by leveraging 19-layer deep convolutional neural networks that is trained end-to-end and does not rely on prior knowledge of the data. We propose a set of strategies to ensure effective and efficient learning with limited training data. Furthermore, we design a novel loss function based on Jaccard distance to eliminate the need of sample re-weighting, a typical procedure when using cross entropy as the loss function for image segmentation due to the strong imbalance between the number of foreground and background pixels. We evaluated the effectiveness, efficiency, as well as the generalization capability of the proposed framework on two publicly available databases. One is from ISBI 2016 skin lesion analysis towards melanoma detection challenge, and the other is the PH2 database. Experimental results showed that the proposed method outperformed other state-of-the-art algorithms on these two databases. Our method is general enough and only needs minimum pre- and post-processing, which allows its adoption in a variety of medical image segmentation tasks.

  7. Active site mutant transgene confers tolerance to human β-glucuronidase without affecting the phenotype of MPS VII mice

    PubMed Central

    Sly, William S.; Vogler, Carole; Grubb, Jeffrey H.; Zhou, Mi; Jiang, Jinxing; Zhou, Xiao Yan; Tomatsu, Shunji; Bi, Yanhua; Snella, Elizabeth M.

    2001-01-01

    Mucopolysaccharidosis type VII (MPS VII; Sly syndrome) is an autosomal recessive lysosomal storage disorder due to an inherited deficiency of β-glucuronidase. A naturally occurring mouse model for this disease was discovered at The Jackson Laboratory and shown to be due to homozygosity for a 1-bp deletion in exon 10 of the gus gene. The murine model MPS VII (gusmps/mps) has been very well characterized and used extensively to evaluate experimental strategies for lysosomal storage diseases, including bone marrow transplantation, enzyme replacement therapy, and gene therapy. To enhance the value of this model for enzyme and gene therapy, we produced a transgenic mouse expressing the human β-glucuronidase cDNA with an amino acid substitution at the active site nucleophile (E540A) and bred it onto the MPS VII (gusmps/mps) background. We demonstrate here that the mutant mice bearing the active site mutant human transgene retain the clinical, morphological, biochemical, and histopathological characteristics of the original MPS VII (gusmps/mps) mouse. However, they are now tolerant to immune challenge with human β-glucuronidase. This “tolerant MPS VII mouse model” should be useful for preclinical trials evaluating the effectiveness of enzyme and/or gene therapy with the human gene products likely to be administered to human patients with MPS VII. PMID:11226217

  8. Efficient and robust pupil size and blink estimation from near-field video sequences for human-machine interaction.

    PubMed

    Chen, Siyuan; Epps, Julien

    2014-12-01

    Monitoring pupil and blink dynamics has applications in cognitive load measurement during human-machine interaction. However, accurate, efficient, and robust pupil size and blink estimation pose significant challenges to the efficacy of real-time applications due to the variability of eye images, hence to date, require manual intervention for fine tuning of parameters. In this paper, a novel self-tuning threshold method, which is applicable to any infrared-illuminated eye images without a tuning parameter, is proposed for segmenting the pupil from the background images recorded by a low cost webcam placed near the eye. A convex hull and a dual-ellipse fitting method are also proposed to select pupil boundary points and to detect the eyelid occlusion state. Experimental results on a realistic video dataset show that the measurement accuracy using the proposed methods is higher than that of widely used manually tuned parameter methods or fixed parameter methods. Importantly, it demonstrates convenience and robustness for an accurate and fast estimate of eye activity in the presence of variations due to different users, task types, load, and environments. Cognitive load measurement in human-machine interaction can benefit from this computationally efficient implementation without requiring a threshold calibration beforehand. Thus, one can envisage a mini IR camera embedded in a lightweight glasses frame, like Google Glass, for convenient applications of real-time adaptive aiding and task management in the future.

  9. Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer.

    PubMed

    Adinolfi, Valerio; Kramer, Illan J; Labelle, André J; Sutherland, Brandon R; Hoogland, S; Sargent, Edward H

    2015-01-27

    The performance of photodetectors is judged via high responsivity, fast speed of response, and low background current. Many previously reported photodetectors based on size-tuned colloidal quantum dots (CQDs) have relied either on photodiodes, which, since they are primary photocarrier devices, lack gain; or photoconductors, which provide gain but at the expense of slow response (due to delayed charge carrier escape from sensitizing centers) and an inherent dark current vs responsivity trade-off. Here we report a photojunction field-effect transistor (photoJFET), which provides gain while breaking prior photoconductors' response/speed/dark current trade-off. This is achieved by ensuring that, in the dark, the channel is fully depleted due to a rectifying junction between a deep-work-function transparent conductive top contact (MoO3) and a moderately n-type CQD film (iodine treated PbS CQDs). We characterize the rectifying behavior of the junction and the linearity of the channel characteristics under illumination, and we observe a 10 μs rise time, a record for a gain-providing, low-dark-current CQD photodetector. We prove, using an analytical model validated using experimental measurements, that for a given response time the device provides a two-orders-of-magnitude improvement in photocurrent-to-dark-current ratio compared to photoconductors. The photoJFET, which relies on a junction gate-effect, enriches the growing family of CQD photosensitive transistors.

  10. On-site infiltration of road runoff using pervious pavements with subjacent infiltration trenches as source control strategy.

    PubMed

    Fach, S; Dierkes, C

    2011-01-01

    The focus in this work was on subsoil infiltration of stormwater from parking lots. With regard to operation, reduced infiltration performance due to clogging and pollutants in seepage, which may contribute to contaminate groundwater, are of interest. The experimental investigation covered a pervious pavement with a subjacent infiltration trench draining an impervious area of 2 ha. In order to consider seasonal effects on the infiltration performance, the hydraulic conductivity was measured tri-monthly during monitoring with a mobile sprinkling unit. To assess natural deposits jointing, road bed, gravel of infiltration trenches and subsoil were analysed prior to commencement of monitoring for heavy metals, polycyclic aromatic and mineral oil type hydrocarbons. Furthermore, from 22 storm events, water samples of rainfall, surface runoff, seepage and ground water were analysed with regard to the above mentioned pollutants. The study showed that the material used for the joints had a major impact on the initial as well as the final infiltration rates. Due to its poor hydraulic conductivity, limestone gravel should not be used as jointing. Furthermore, it is recommended that materials for the infiltration facilities are ensured free of any contaminants prior to construction. Polycyclic aromatic and mineral oil type hydrocarbons were, with the exception of surface runoff, below detection limits. Heavy metal concentrations of groundwater were with the exception of lead (because of high background concentrations), below the permissible limits.

  11. Enhanced in-vivo optical coherence tomography of live mouse brain by the use of implanted micro-lens (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Hassani Nia, Iman; Dombeck, Daniel; Mohseni, Hooman

    2015-08-01

    Near-infrared optical coherence tomography (OCT) has gained a lot of attention due to the fact that it is relatively cheap, non-invasive and provides high resolution and fast method of imaging. However the main challenge of this technique is the poor signal to noise ratio of the images of the tissue at large depths due to optical scattering. The signal to noise ratio can be improved by increasing the source power, however the laser safety standards (ANSI Z136.1) restricts the maximum amount of power that can be used safely to characterize the biological tissue. In this talk, we discuss the advantage of implanting a micro-lens inside the tissue to have a higher signal to noise ratio for confocal and OCT measurements. We explain the theoretical background, experimental setup and the method of implanting the micro lens at arbitrary depths within a live mouse brain. The in-vivo 3D OCT and two-photon microscopy images of live mouse with implanted micro-lens are presented and significant enhancement of signal to noise ratio is observed. The confocal and OCT measurements have been performed with super-luminescent LEDs emitting at 1300 nm. We believe that the high resolution and high sensitivity of this technique is of fundamental importance for characterization of neural activity, monitoring the hemodynamic responses, tumors and for performing image guided surgeries.

  12. Discrimination against Students with Foreign Backgrounds: Evidence from Grading in Swedish Public High Schools

    ERIC Educational Resources Information Center

    Hinnerich, Bjorn Tyrefors; Höglin, Erik; Johannesson, Magnus

    2015-01-01

    We rigorously test for discrimination against students with foreign backgrounds in high school grading in Sweden. We analyse a random sample of national tests in the Swedish language graded both non-blindly by the student's own teacher and blindly without any identifying information. The increase in the test score due to non-blind grading is…

  13. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production

    PubMed Central

    2013-01-01

    Background During cellulosic ethanol production, cellulose hydrolysis is achieved by synergistic action of cellulase enzyme complex consisting of multiple enzymes with different mode of actions. Enzymatic hydrolysis of cellulose is one of the bottlenecks in the commercialization of the process due to low hydrolysis rates and high cost of enzymes. A robust hydrolysis model that can predict hydrolysis profile under various scenarios can act as an important forecasting tool to improve the hydrolysis process. However, multiple factors affecting hydrolysis: cellulose structure and complex enzyme-substrate interactions during hydrolysis make it diffucult to develop mathematical kinetic models that can simulate hydrolysis in presence of multiple enzymes with high fidelity. In this study, a comprehensive hydrolysis model based on stochastic molecular modeling approch in which each hydrolysis event is translated into a discrete event is presented. The model captures the structural features of cellulose, enzyme properties (mode of actions, synergism, inhibition), and most importantly dynamic morphological changes in the substrate that directly affect the enzyme-substrate interactions during hydrolysis. Results Cellulose was modeled as a group of microfibrils consisting of elementary fibrils bundles, where each elementary fibril was represented as a three dimensional matrix of glucose molecules. Hydrolysis of cellulose was simulated based on Monte Carlo simulation technique. Cellulose hydrolysis results predicted by model simulations agree well with the experimental data from literature. Coefficients of determination for model predictions and experimental values were in the range of 0.75 to 0.96 for Avicel hydrolysis by CBH I action. Model was able to simulate the synergistic action of multiple enzymes during hydrolysis. The model simulations captured the important experimental observations: effect of structural properties, enzyme inhibition and enzyme loadings on the hydrolysis and degree of synergism among enzymes. Conclusions The model was effective in capturing the dynamic behavior of cellulose hydrolysis during action of individual as well as multiple cellulases. Simulations were in qualitative and quantitative agreement with experimental data. Several experimentally observed phenomena were simulated without the need for any additional assumptions or parameter changes and confirmed the validity of using the stochastic molecular modeling approach to quantitatively and qualitatively describe the cellulose hydrolysis. PMID:23638989

  14. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper focuses on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of high-speed Langmuir probes. The results show a rise in the oscillation frequency of the "breathing" mode with rising background pressure, which is hypothesized to be due to a shortening acceleration/ionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  15. Experimental Aerodynamic Derivatives of a Sinusoidally Oscillating Airfoil in Two-Dimensional Flow

    NASA Technical Reports Server (NTRS)

    Halfman, Robert L

    1952-01-01

    Experimental measurements of the aerodynamic reactions on a symmetrical airfoil oscillating harmonically in a two-dimensional flow are presented and analyzed. Harmonic motions include pure pitch and pure translation, for several amplitudes and superimposed on an initial angle of attack, as well as combined pitch and translation. The apparatus and testing program are described briefly and the necessary theoretical background is presented. In general, the experimental results agree remarkably well with the theory, especially in the case of the pure motions. The net work per cycle for a motion corresponding to flutter is experimentally determined to be zero. Considerable consistent data for pure pitch were obtained from a search of available reference material, and several definite Reynolds number effects are evident.

  16. Experimental and numerical modeling of rarefied gas flows through orifices and short tubes

    NASA Astrophysics Data System (ADS)

    Gimelshein, S. F.; Markelov, G. N.; Lilly, T. C.; Selden, N. P.; Ketsdever, A. D.

    2005-05-01

    Flow through circular orifices with thickness-to-diameter ratios varying from 0.015 to 1.2 is studied experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to over 700. Good agreement between experimental and numerical results is observed for mass flow and thrust corrected for the experimental facility background pressure. For thick-to-thin orifice ratios of mass flow and thrust vs pressure, a minimum is established. The thick orifice propulsion efficiency is much higher than that of a thin orifice. The effects of edge roundness and surface specularity on a thick orifice specific impulse were found to be relatively small.

  17. A reduction in the asymmetry of ENSO amplitude due to global warming: The role of atmospheric feedback

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun

    2017-08-01

    This study analyzes a reduction in the asymmetry of El Niño Southern-Oscillation (ENSO) amplitude due to global warming in Coupled Model Intercomparison Project Phase 5 models. The multimodel-averaged Niño3 skewness during December-February season decreased approximately 40% in the RCP4.5 scenario compared to that in the historical simulation. The change in the nonlinear relationship between sea surface temperature (SST) and precipitation is a key factor for understanding the reduction in ENSO asymmetry due to global warming. In the historical simulations, the background SST leading to the greatest precipitation sensitivity (SST for Maximum Precipitation Sensitivity, SST_MPS) occurs when the positive SST anomaly is located over the equatorial central Pacific. Therefore, an increase in climatological SST due to global warming weakens the atmospheric response during El Niño over the central Pacific. However, the climatological SST over this region in the historical simulation is still lower than the SST_MPS for the negative SST anomaly; therefore, a background SST increase due to global warming can further increase precipitation sensitivity. The atmospheric feedbacks during La Niña are enhanced and increase the La Niña amplitude due to global warming.

  18. Research of the relationships between light dispersion and contrast of the registered image at different background brightness

    NASA Astrophysics Data System (ADS)

    Stoyanov, Stiliyan; Mardirossian, Garo

    2012-10-01

    The light diffraction is for telescope apparatuses an especially important characteristic which has an influence on the record image contrast from the eye observer. The task of the investigation is to determine to what degree the coefficient of light diffraction influences the record image brightness. The object of the theoretical research are experimental results provided from a telescope system experiment in the process of observation of remote objects with different brightness of the background in the fixed light diffraction coefficients and permanent contrast of the background in respect to the object. The received values and the ratio of the image contrast to the light diffraction coefficient is shown in a graphic view. It's settled that with increasing of the value of background brightness in permanent background contrast in respect to the object, the image contrast sharply decrease. The relationship between the increase of the light diffraction coefficient and the decrease of the brightness of the project image from telescope apparatuses can be observed.

  19. Ship detection using STFT sea background statistical modeling for large-scale oceansat remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Pei, Jihong; Xie, Weixin; Liu, Jinyuan

    2018-03-01

    Large-scale oceansat remote sensing images cover a big area sea surface, which fluctuation can be considered as a non-stationary process. Short-Time Fourier Transform (STFT) is a suitable analysis tool for the time varying nonstationary signal. In this paper, a novel ship detection method using 2-D STFT sea background statistical modeling for large-scale oceansat remote sensing images is proposed. First, the paper divides the large-scale oceansat remote sensing image into small sub-blocks, and 2-D STFT is applied to each sub-block individually. Second, the 2-D STFT spectrum of sub-blocks is studied and the obvious different characteristic between sea background and non-sea background is found. Finally, the statistical model for all valid frequency points in the STFT spectrum of sea background is given, and the ship detection method based on the 2-D STFT spectrum modeling is proposed. The experimental result shows that the proposed algorithm can detect ship targets with high recall rate and low missing rate.

  20. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.

    PubMed

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W; Popp, Jürgen

    2017-07-27

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.

Top