Science.gov

Sample records for experimental brain edema

  1. Arginine-Vasopressin Receptor Blocker Conivaptan Reduces Brain Edema and Blood-Brain Barrier Disruption after Experimental Stroke in Mice

    PubMed Central

    Zeynalov, Emil; Jones, Susan M.; Seo, Jeong-Woo; Snell, Lawrence D.; Elliott, J. Paul

    2015-01-01

    Background Stroke is a major cause of morbidity and mortality. Stroke is complicated by brain edema and blood-brain barrier (BBB) disruption, and is often accompanied by increased release of arginine-vasopressin (AVP). AVP acts through V1a and V2 receptors to trigger hyponatremia, vasospasm, and platelet aggregation which can exacerbate brain edema. The AVP receptor blockers conivaptan (V1a and V2) and tolvaptan (V2) are used to correct hyponatremia, but their effect on post-ischemic brain edema and BBB disruption remains to be elucidated. Therefore, we conducted this study to investigate if these drugs can prevent brain edema and BBB disruption in mice after stroke. Methods Experimental mice underwent the filament model of middle cerebral artery occlusion (MCAO) with reperfusion. Mice were treated with conivaptan, tolvaptan, or vehicle. Treatments were initiated immediately at reperfusion and administered IV (conivaptan) or orally (tolvaptan) for 48 hours. Physiological variables, neurological deficit scores (NDS), plasma and urine sodium and osmolality were recorded. Brain water content (BWC) and Evans Blue (EB) extravasation index were evaluated at the end point. Results Both conivaptan and tolvaptan produced aquaresis as indicated by changes in plasma and urine sodium levels. However plasma and urine osmolality was changed only by conivaptan. Unlike tolvaptan, conivaptan improved NDS and reduced BWC in the ipsilateral hemisphere: from 81.66 ± 0.43% (vehicle) to 78.28 ± 0.48% (conivaptan, 0.2 mg, p < 0.05 vs vehicle). Conivaptan also attenuated the EB extravasation from 1.22 ± 0.08 (vehicle) to 1.01 ± 0.02 (conivaptan, 0.2 mg, p < 0.05). Conclusion Continuous IV infusion with conivaptan for 48 hours after experimental stroke reduces brain edema, and BBB disruption. Conivaptan but not tolvaptan may potentially be used in patients to prevent brain edema after stroke. PMID:26275173

  2. Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema.

    PubMed

    Penet, Marie-France; Viola, Angèle; Confort-Gouny, Sylviane; Le Fur, Yann; Duhamel, Guillaume; Kober, Frank; Ibarrola, Danielle; Izquierdo, Marguerite; Coltel, Nicolas; Gharib, Bouchra; Grau, Georges E; Cozzone, Patrick J

    2005-08-10

    The first in vivo magnetic resonance study of experimental cerebral malaria is presented. Cerebral involvement is a lethal complication of malaria. To explore the brain of susceptible mice infected with Plasmodium berghei ANKA, multimodal magnetic resonance techniques were applied (imaging, diffusion, perfusion, angiography, spectroscopy). They reveal vascular damage including blood-brain barrier disruption and hemorrhages attributable to inflammatory processes. We provide the first in vivo demonstration for blood-brain barrier breakdown in cerebral malaria. Major edema formation as well as reduced brain perfusion was detected and is accompanied by an ischemic metabolic profile with reduction of high-energy phosphates and elevated brain lactate. In addition, angiography supplies compelling evidence for major hemodynamics dysfunction. Actually, edema further worsens ischemia by compressing cerebral arteries, which subsequently leads to a collapse of the blood flow that ultimately represents the cause of death. These findings demonstrate the coexistence of inflammatory and ischemic lesions and prove the preponderant role of edema in the fatal outcome of experimental cerebral malaria. They improve our understanding of the pathogenesis of cerebral malaria and may provide the necessary noninvasive surrogate markers for quantitative monitoring of treatment.

  3. Perforin expression by CD8 T cells is sufficient to cause fatal brain edema during experimental cerebral malaria.

    PubMed

    Huggins, Matthew; Johnson, Holly L; Jin, Fang; N'Songo, Aurelie; Hanson, Lisa M; LaFrance, Stephanie J; Butler, Noah S; Harty, John T; Johnson, Aaron J

    2017-03-06

    Human cerebral malaria (HCM) is a serious complication of Plasmodium falciparum infection. The most severe outcomes for patients include coma, permanent neurological deficits, and death. Recently, a large-scale magnetic resonance imaging (MRI) study in humans identified brain swelling as the most prominent predictor of fatal HCM. Therefore, in this study we sought to define the mechanism controlling brain edema through the use of the murine experimental cerebral malaria (ECM) model. Specifically, we investigated the ability of CD8 T cells to initiate brain edema during ECM. We determined that areas of blood-brain barrier (BBB) permeability colocalized with a reduction of the cerebral endothelial cell tight junction proteins claudin-5 and occludin. Furthermore, through small animal MRI we analyzed edema and vascular leakage. Using gadolinium enhanced T1-weighted MRI we determined that vascular permeability is not homogeneous, but rather confined to specific regions of the brain. Our findings show that BBB permeability was localized within the brainstem, olfactory bulb, and lateral ventricle. Concurrently with the initiation of vascular permeability, T2-weighted MRI revealed edema and brain swelling. Importantly, ablation of the cytolytic effector molecule perforin fully protected against vascular permeability and edema. Furthermore, perforin production specifically by CD8 T cells was required to cause fatal edema during ECM. We propose that CD8 T cells initiate BBB breakdown through perforin mediated disruption of tight junctions. In turn, leakage from the vasculature into the parenchyma causes brain swelling and edema. This results in a breakdown of homeostatic maintenance that likely contributes to ECM pathology.

  4. Aquaporin-4 Deletion in Mice Reduces Encephalopathy and Brain Edema in Experimental Acute Liver Failure

    PubMed Central

    Rama Rao, Kakulavarapu V.; Verkman, A. S.; Curtis, Kevin M.; Norenberg, Michael D.

    2014-01-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6 ± 0.3 and 2.3 ± 0.4 %, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. PMID:24321433

  5. Lycium barbarum Extracts Protect the Brain from Blood-Brain Barrier Disruption and Cerebral Edema in Experimental Stroke

    PubMed Central

    Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.

    2012-01-01

    Background and Purpose Ischemic stroke is a destructive cerebrovascular disease and a leading cause of death. Yet, no ideal neuroprotective agents are available, leaving prevention an attractive alternative. The extracts from the fruits of Lycium barbarum (LBP), a Chinese anti-aging medicine and food supplement, showed neuroprotective function in the retina when given prophylactically. We aim to evaluate the protective effects of LBP pre-treatment in an experimental stroke model. Methods C57BL/6N male mice were first fed with either vehicle (PBS) or LBP (1 or 10 mg/kg) daily for 7 days. Mice were then subjected to 2-hour transient middle cerebral artery occlusion (MCAO) by the intraluminal method followed by 22-hour reperfusion upon filament removal. Mice were evaluated for neurological deficits just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, immunohistochemical analysis, and Western blot experiments. Evans blue (EB) extravasation was determined to assess blood-brain barrier (BBB) disruption after MCAO. Results LBP pre-treatment significantly improved neurological deficits as well as decreased infarct size, hemispheric swelling, and water content. Fewer apoptotic cells were identified in LBP-treated brains by TUNEL assay. Reduced EB extravasation, fewer IgG-leaky vessels, and up-regulation of occludin expression were also observed in LBP-treated brains. Moreover, immunoreactivity for aquaporin-4 and glial fibrillary acidic protein were significantly decreased in LBP-treated brains. Conclusions Seven-day oral LBP pre-treatment effectively improved neurological deficits, decreased infarct size and cerebral edema as well as protected the brain from BBB disruption, aquaporin-4 up-regulation, and glial activation. The present study suggests that LBP may be used as a prophylactic neuroprotectant in patients at high risk for ischemic stroke. PMID:22438957

  6. Brain Edema After Ischaemic Stroke

    PubMed Central

    Dostovic, Zikrija; Dostovic, Ernestina; Smajlovic, Dzevdet; Ibrahimagic, Omer C.; Avdic, Leila

    2016-01-01

    Objectives: To determine the incidence of brain edema after ischaemic stroke and its impact on the outcome of patients in the acute phase of ischaemic stroke. Patients and Methods: We retrospectively analyzed 114 patients. Ischaemic stroke and brain edema are verified by computed tomography. The severity of stroke was determined by National Institutes of Health Stroke Scale. Laboratory findings were made during the first four days of hospitalization, and complications were verified by clinical examination and additional tests. Results: In 9 (7.9%) patients developed brain edema. Pneumonia was the most common complication (12.3%). Brain edema had a higher incidence in women, patients with hypertension and elevated serum creatinine values, and patients who are suffering from diabetes. There was no significant correlation between brain edema and survival in patients after acute ischaemic stroke. Patients with brain edema had a significantly higher degree of neurological deficit as at admission, and at discharge (p = 0.04, p = 0.004). Conclusion: The cerebral edema is common after acute ischaemic stroke and no effect on survival in the acute phase. The existence of brain edema in acute ischaemic stroke significantly influence the degree of neurological deficit. PMID:27994292

  7. Quantitation of brain edema and localisation of aquaporin 4 expression in relation to susceptibility to experimental cerebral malaria.

    PubMed

    Ampawong, Sumate; Combes, Valéry; Hunt, Nicholas H; Radford, Jane; Chan-Ling, Tailoi; Pongponratn, Emsri; Grau, Georges E R

    2011-08-15

    The pathogenic mechanisms underlying the occurrence of cerebral malaria (CM) are still incompletely understood but, clearly, cerebral complications may result from concomitant microvessel obstruction and inflammation. The extent to which brain edema contributes to pathology has not been investigated. Using the model of P. berghei ANKA infection, we compared brain microvessel morphology of CM-susceptible and CM-resistant mice. By quantitative planimetry, we provide evidence that CM is characterized by enlarged perivascular spaces (PVS). We show a dramatic aquaporin 4 (AQP4) upregulation, selectively at the level of astrocytic foot processes, in both CM and non-CM disease, but significantly more pronounced in mice with malarial-induced neurological syndrome. This suggests that a threshold of AQP4 expression is needed to lead to neurovascular pathology, a view that is supported by significantly higher levels in mice with clinically overt CM. Numbers of intravascular leukocytes significantly correlated with both PVS enlargement and AQP4 overexpression. Thus, brain edema could be a contributing factor in CM pathogenesis and AQP4, specifically in its astrocytic location, a key molecule in this mechanism. Since experimental CM is associated with substantial brain edema, it models paediatric CM better than the adult syndrome and it is tempting to evaluate AQP4 in the former context. If AQP4 changes are confirmed in human CM, it may represent a novel target for therapeutic intervention.

  8. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs

    PubMed Central

    Michinaga, Shotaro; Koyama, Yutaka

    2015-01-01

    Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them. PMID:25941935

  9. [The effects of a benzopyrone derivative in experimental brain edema due to cold in the rabbit].

    PubMed

    Góngora Castillo, C; Gómez de Segura, I A; López Bravo, A; de Miguel del Campo, E

    1993-01-01

    On this study, parenchymal changes during a cerebral edema caused by thermic injury (cool) on the rabbit, are analyzed. The work was based on the ultrastructural findings obtained by transmission electronic microscopy and on the effects produced by a benzopironic derived (F-117 Hydrosmina). The injury was produced with solid CO2, previous a craniectomy, on the dura mater of the left hemisphere. Forty rabbits were included into the study, the animals were distributed into five groups (n = 8): a control group and 4 treatment groups. One of the groups received treatment without previous cerebral injury. The group of rabbits with doses of 50 mg/Kg of weight showed focal and diffuse areas of edema alternating with less damaged areas, the edema was evident on the white substance. This group also showed a dissociation of the myelinic fibers and an intracytoplasmatic tumefaction into the glial cells. These findings contrast with the histopathological findings obtained from the rabbits (V), the extracellular edema was poor, the myelinic fiber disorganization was minimal with no vacuolar degeneration and no structural mitochondrial changes had been showed. The discontinuance of the hematoencephalic barrier caused by the cool could be a possible mechanism that causes the opening of the endothelial unions from the capillary vessels, changing their membranes and resulting in a free penetration of the molecule into the cerebral parenchyma.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Radiosurgery for brain metastases and cerebral edema.

    PubMed

    Gazit, Inbal; Har-Nof, Sagi; Cohen, Zvi R; Zibly, Zion; Nissim, Uzi; Spiegelmann, Roberto

    2015-03-01

    The objective of this study was to assess reduction in cerebral edema following linear accelerator radiosurgery (LINAC) as first line therapy for brain metastasis. We reviewed the medical records of all patients who underwent LINAC radiosurgery for brain metastasis at our institution during 2010-2012, and who had not previously undergone either surgery or whole brain radiotherapy. Data were analyzed for 55 brain metastases from 46 patients (24 males), mean age 59.9 years. During the 2 months following LINAC radiosurgery, the mean steroid dose decreased from 4.8 to 2.6 mg/day, the mean metastasis volume decreased from 3.79±4.12 cc to 2.8±4.48 cc (p=0.001), and the mean edema volume decreased from 16.91±30.15 cc to 12.85±24.47 cc (p=0.23). The 17 patients with reductions of more than 50% in brain edema volume had single metastases. Edema volume in the nine patients with two brain metastases remained stable in five patients (volume change <10%, 0-2 cc) and increased in four patients (by >10%, 2-14 cc). In a subanalysis of eight metastases with baseline edema volume greater than 40 cc, edema volume decreased from 77.27±37.21 cc to 24.84±35.6 cc (p=0.034). Reductions in brain edema were greater in metastases for which non-small-cell lung carcinoma and breast cancers were the primary diseases. Overall, symptoms improved in most patients. No patients who were without symptoms or who had no signs of increased intracranial pressure at baseline developed signs of intracranial pressure following LINAC radiosurgery. In this series, LINAC stereotactic radiosurgery for metastatic brain lesions resulted in early reduction in brain edema volume in single metastasis patients and those with large edema volumes, and reduced the need for steroids.

  11. Evaluation of brain edema using magnetic resonance proton relaxation times

    SciTech Connect

    Fu, Y.; Tanaka, K.; Nishimura, S. )

    1990-01-01

    Experimental and clinical studies on the evaluation of water content in cases of brain edema were performed in vivo, using MR proton relaxation times (longitudinal relaxation time, T1; transverse relaxation time, T2). Brain edema was produced in the white matter of cats by the direct infusion method. The correlations between proton relaxation times obtained from MR images and the water content of white matter were studied both in autoserum-infused cats and in saline-infused cats. The correlations between T1 as well as T2 and the water content in human vasogenic brain edema were also examined and compared with the data obtained from the serum group. T1 and T2 showed good correlations with the water content of white matter not only in the experimental animals but also in the clinical cases. The quality of the edema fluid did not influence relaxation time and T1 seemed to represent almost solely the water content of the tissue. T2, however, was affected by the nature of existence of water and was more sensitive than T1 in detecting extravasated edema fluid. It seems feasible therefore to evaluate the water content of brain edema on the basis of T1 values.

  12. The neuroprotective effect of olive leaf extract is related to improved blood-brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia.

    PubMed

    Mohagheghi, Fatemeh; Bigdeli, Mohammad Reza; Rasoulian, Bahram; Hashemi, Payman; Pour, Marzyeh Rashidi

    2011-01-15

    Recent studies suggest that olive extracts suppress inflammation and reduce stress oxidative injury. We sought to extend these observations in an in vivo study of rat cerebral ischemia-reperfusion injury. Four groups, each of 18 Wister rats, were studied. One (control) group received distilled water, while three treatment groups received oral olive leaf extract (50, 75 and 100mg/kg/day respectively). After 30 days, blood lipid profiles were determined, before a 60 min period of middle cerebral artery occlusion (MCAO). After 24h reperfusion, neurological deficit scores, infarct volume, brain edema, and blood-brain barrier permeability were each assessed in subgroups of six animals drawn from each main group. Olive leaf extract reduced the LDL/HDL ratio in doses 50, 75, and 100mg/kg/day in comparison to the control group (P<0.001), and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 50mg/kg/day vs. 75 mg/kg/day vs. 100mg/kg/day, attenuated corrected infarct volumes were 209.79 ± 33.05 mm(3) vs. 164.36 ± 13.44 mm(3) vs. 123.06 ± 28.83 mm(3) vs. 94.71 ± 33.03 mm(3); brain water content of the infarcted hemisphere 82.33 ± 0.33% vs. 81.33 ± 0.66% vs. 80.75 ± 0.6% vs. 80.16 ± 0.47%, and blood-brain barrier permeability of the infarcted hemisphere 11.22 ± 2.19 μg/g vs. 9.56 ± 1.74 μg/g vs. 6.99 ± 1.48 μg/g vs. 5.94 ± 1.73 μg/g tissue (P<0.05 and P<0.01 for measures in doses 75 and 100mg/kg/day vs. controls respectively). Oral administration of olive leaf extract reduces infarct volume, brain edema, blood-brain barrier permeability, and improves neurologic deficit scores after transient middle cerebral artery occlusion in rats.

  13. HEPES prevents edema in rat brain slices.

    PubMed

    MacGregor, D G; Chesler, M; Rice, M E

    2001-05-11

    Brain slices gain water when maintained in bicarbonate-buffered artificial cerebro-spinal fluid (ACSF) at 35 degrees C. We previously showed that this edema is linked to glutamate receptor activation and oxidative stress. An additional factor that may contribute to swelling is acidosis, which arises from high CO2 tension in brain slices. To examine the role of acidosis in slice edema, we added N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) to osmotically balanced ACSF (HEPES-ACSF), thereby increasing buffering capacity beyond that provided by bicarbonate/CO2. Water gain was markedly inhibited in HEPES-ACSF. After 3 h incubation in HEPES-ACSF at 35 degrees C, water gain was limited to that of fresh slices after 1 h recovery in ACSF at room temperature. The effect of HEPES in decreasing slice water gain was concentration dependent from 0.3 to 20 mM. The inhibition of water gain by HEPES suggests that tissue acidosis is a contributing factor in brain slice edema.

  14. Acute therapeutic modalities for experimental vasogenic edema.

    PubMed

    Harbaugh, R D; James, H E; Marshall, L F; Shapiro, H M; Laurin, R

    1979-12-01

    Experimental vasogenic cerebral edema was created in rabbits with a cold-induced left occipital cortical lesions. Intracranial pressure (ICP), intracranial elastance (Em), water content, hemispheric brain tissue volume, electrolytes, electroencephalograms, behavior, and gross pathology were studied. Various therapeutic modalities were employed alone or in combination to reduce ICP acutely: acetazolamide, furosemide, mannitol, pentobarbital, lorazepam, and dexamethasone. All therapies except dexamethasone were effective in reducing ICP. Peak ICP reduction occurred at 27 +/- 9.8 (SD) minutes with mannitol and at 71.4 +/- 15.5 minutes with acetazolamide, with the remaining agents and combinations falling between these two extreme values. Em improved by 31.7 +/- 17.02% in all therapuetic trials except those employing acetazolamide and lorazepam. With therapy, there was a reduction in the water content of the hemispheres, but the difference from that in the untreated, lesioned animals was not statistically significant. In the lesioned left hemisphere, sodium content was increased by acetazolamide (p less than 0.005), furosemide (p less than 0.025), pentobarbital (p less than 0.05), and the combination of dexamethasone, pentobarbital, and mannitol (p less than 0.005). Significant reduction was noted in the lesioned group for the potassium content of the left hemisphere in the dexamethasone (p less than 0.05), pentobarbital (p less than 0.025), and combination groups containing these agents (p less than 0.005 to 0.025). (Neurosurgery, 5: 656--665, 1979).

  15. [Brain edema--historical aspects and contemporary suggestions].

    PubMed

    Meskheli, M K; Gereshidze, M M

    2007-01-01

    The aim of this article was to show the historical aspects of elaboration of the brain edema study. To draft the main stages of study development from naive medievals suggestions till the creation of modern technologies and the possibility of the brain edema neurovisualization. The possibility to watch and control these processes grants the real perspective to enhance the effectiveness of the brain edema therapy.

  16. Proton nuclear magnetic resonance studies on brain edema

    SciTech Connect

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-06-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research.

  17. Mathematical modelling of blood-brain barrier failure and edema

    NASA Astrophysics Data System (ADS)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  18. Aquaporins in Brain Edema and Neuropathological Conditions

    PubMed Central

    Filippidis, Aristotelis S.; Carozza, Richard B.; Rekate, Harold L.

    2016-01-01

    The aquaporin (AQP) family of water channels are a group of small, membrane-spanning proteins that are vital for the rapid transport of water across the plasma membrane. These proteins are widely expressed, from tissues such as the renal epithelium and erythrocytes to the various cells of the central nervous system. This review will elucidate the basic structure and distribution of aquaporins and discuss the role of aquaporins in various neuropathologies. AQP1 and AQP4, the two primary aquaporin molecules of the central nervous system, regulate brain water and CSF movement and contribute to cytotoxic and vasogenic edema, where they control the size of the intracellular and extracellular fluid volumes, respectively. AQP4 expression is vital to the cellular migration and angiogenesis at the heart of tumor growth; AQP4 is central to dysfunctions in glutamate metabolism, synaptogenesis, and memory consolidation; and AQP1 and AQP4 adaptations have been seen in obstructive and non-obstructive hydrocephalus and may be therapeutic targets. PMID:28036023

  19. Critical Care Management of Cerebral Edema in Brain Tumors.

    PubMed

    Esquenazi, Yoshua; Lo, Victor P; Lee, Kiwon

    2017-01-01

    Cerebral edema associated with brain tumors is extremely common and can occur in both primary and metastatic tumors. The edema surrounding brain tumors results from leakage of plasma across the vessel wall into the parenchyma secondary to disruption of the blood-brain barrier. The clinical signs of brain tumor edema depend on the location of the tumor as well as the extent of the edema, which often exceeds the mass effect induced by the tumor itself. Uncontrolled cerebral edema may result in increased intracranial pressure and acute herniation syndromes that can result in permanent neurological dysfunction and potentially fatal herniation. Treatment strategies for elevated intracranial pressure consist of general measures, medical interventions, and surgery. Alhough the definitive treatment for the edema may ultimately be surgical resection of the tumor, the impact of the critical care management cannot be underestimated and thus patients must be vigilantly monitored in the intensive care unit. In this review, we discuss the pathology, pathophysiology, and clinical features of patients presenting with cerebral edema. Imaging findings and treatment modalities used in the intensive care unit are also discussed.

  20. Edema

    MedlinePlus

    ... Schedules Nutrient Shortfall Questionnaire Home Diseases and Conditions Edema Edema Condition Family HealthSeniors Share Edema Table of Contents1. Overview2. Causes3. Diagnosis4. Treatment5. Questions ...

  1. Effects of metformin treatment on glioma-induced brain edema

    PubMed Central

    Zhao, Bin; Wang, Xiaoke; Zheng, Jun; Wang, Hailiang; Liu, Jun

    2016-01-01

    Considerable evidence has demonstrated that metformin can activate 5’-AMP-activated protein kinase (AMPK) signaling pathway, which plays a critical role in protection of endothelial cell permeability. Hence, the present study evaluated the effects of metformin on blood brain barrier permeability and AQP4 expression in vitro, and assessed the effects of metformin treatment on tumor-induced brain edema in vivo. Hypoxia or VEGF exposure enhanced bEnd3 endothelial cell monolayer permeability and attenuated the expression of tight junction proteins including Occludin, Claudin-5, ZO-1, and ZO-2. However, 0.5 mM metformin treatment protected bEnd3 endothelial cell monolayer from hypoxia or VEGF-induced permeability, which was correlated with increased expression of tight junction proteins. Furthermore, metformin treatment attenuated AQP4 protein expression in cultured astrocytes. Such an effect involved the activation of AMPK and inhibition of NF-κB. Finally, metformin treatment dose-dependently reduced glioma induced vascular permeability and cerebral edema in vivo in rats. Thus, our results suggested that metformin may protect endothelial cell tight junction, prevent damage to the blood brain barrier induced by brain tumor growth, and alleviate the formation of cerebral edema. Furthermore, since the formation of cytotoxic edema and AQP4 expression was positively correlated, our results indicated that metformin may reduce the formation of cytotoxic edema. However, given that AQP4 plays a key role in the elimination of cerebral edema, attenuation of AQP4 expression by metformin may reduce the elimination of cerebral edema. Hence, future studies will be necessary to dissect the specific mechanisms of metformin underlying the dynamics of tumor-induced brain edema in vivo. PMID:27648126

  2. Effects of metformin treatment on glioma-induced brain edema.

    PubMed

    Zhao, Bin; Wang, Xiaoke; Zheng, Jun; Wang, Hailiang; Liu, Jun

    2016-01-01

    Considerable evidence has demonstrated that metformin can activate 5'-AMP-activated protein kinase (AMPK) signaling pathway, which plays a critical role in protection of endothelial cell permeability. Hence, the present study evaluated the effects of metformin on blood brain barrier permeability and AQP4 expression in vitro, and assessed the effects of metformin treatment on tumor-induced brain edema in vivo. Hypoxia or VEGF exposure enhanced bEnd3 endothelial cell monolayer permeability and attenuated the expression of tight junction proteins including Occludin, Claudin-5, ZO-1, and ZO-2. However, 0.5 mM metformin treatment protected bEnd3 endothelial cell monolayer from hypoxia or VEGF-induced permeability, which was correlated with increased expression of tight junction proteins. Furthermore, metformin treatment attenuated AQP4 protein expression in cultured astrocytes. Such an effect involved the activation of AMPK and inhibition of NF-κB. Finally, metformin treatment dose-dependently reduced glioma induced vascular permeability and cerebral edema in vivo in rats. Thus, our results suggested that metformin may protect endothelial cell tight junction, prevent damage to the blood brain barrier induced by brain tumor growth, and alleviate the formation of cerebral edema. Furthermore, since the formation of cytotoxic edema and AQP4 expression was positively correlated, our results indicated that metformin may reduce the formation of cytotoxic edema. However, given that AQP4 plays a key role in the elimination of cerebral edema, attenuation of AQP4 expression by metformin may reduce the elimination of cerebral edema. Hence, future studies will be necessary to dissect the specific mechanisms of metformin underlying the dynamics of tumor-induced brain edema in vivo.

  3. Glycerol accumulation in edema formation following diffuse traumatic brain injury.

    PubMed

    Ali, Ahmer; Konakondla, Sanjay; Zwagerman, Nathan T; Peng, Changya; Schafer, Steven; Ding, Jamie Y; Dornbos, David; Sikharam, Chaitanya; Geng, Xiaokun; Guthikonda, Murali; Kreipke, Christian W; Rafols, José A; Ding, Yuchuan

    2012-06-01

    Traumatic brain injury (TBI) induces brain edema via water and glycerol transport channels, called aquaporins (AQPs). The passage of glycerol across brain cellular compartments has been shown during edema. Using a modified impact/head acceleration rodent model of diffuse TBI, we assessed the role of hypoxia inducible factor (HIF)-1alpha in regulating AQP9 expression and glycerol accumulation during the edema formation. Adult (400-425 g) male Sprague-Dawley rats received a closed head injury with a weight drop (450 g, 2-m height) and were allowed to survive up to 48 hours. Some rat groups were administered 2-methoxyestradiol (2ME2, a HIF-1alpha inhibitor) 30 minutes after injury and were euthanized at 4 and 24 hours after injury. Brain edema was measured directly by water content, and glycerol concentration was determined by the Cayman Glycerol Assay. HIF-1alpha and AQP9 protein levels were assessed by Western immunoblotting. This study demonstrated a significant (P<0·05) increase in brain water content at 4-48 hours following impact. Cerebral glycerol was significantly (P<0.05) up-regulated at as early as 1 hour and remained at high levels for up to 48 hours. Similarly, significant (P<0.05) increases in HIF-1alpha and AQP9 protein levels were found at 1 hour and up to 48 hours after injury. Compared to untreated but injured rats, inhibition of HIF-1alpha by 2ME2 significantly (P<0.05) reduced the TBI-induced AQP9 up-regulation. This reduction was temporally associated with significant (P<0.05) decreases in both edema and glycerol accumulation. The data suggested an associated induction of HIF-1alpha, AQP9, and extracellular glycerol accumulation in edema formation following diffuse TBI. The implication of HIF-1alpha and AQP9 underlying TBI-induced edema formation offers possibilities for novel TBI therapies.

  4. Edema

    MedlinePlus

    Edema means swelling caused by fluid in your body's tissues. It usually occurs in the feet, ankles ... it can involve your entire body. Causes of edema include Eating too much salt Sunburn Heart failure ...

  5. Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.

    PubMed

    Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi

    2012-04-01

    Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.

  6. Ontogenetic aspects of traumatic brain edema--facts and suggestions.

    PubMed

    Bauer, R; Walter, B; Fritz, H; Zwiener, U

    1999-02-01

    Diffuse brain swelling (DBS) after severe traumatic brain injury (TBI) occurs more commonly in children than adults. Most of the recent clinical studies suggest that young children are more negatively affected by DBS. Until now studies in young animals in which the pathophysiology of DBS was evaluated remained seldom. However, pathogenetic mechanisms of edema formation after TBI in the immature brain appeared to be different in comparison to adult brains. There are evidences that vasogenic as well as cytotoxic edema components may be responsible for the development of DBS. Besides mechanical disturbance, the blood-brain barrier seems to be strongly endangered by oxidative stress after TBI because regional antioxidative capacity is obviously diminished. In addition, cytotoxic components of DBS may be caused by at least two different mechanisms. First, it was shown that a sustained posttraumatic cerebral hypoperfusion occurs in the immature brain. Moreover, a transient increase of NMDA receptor expression at this period of life may be responsible for an increased threat of intracellular sodium ion accumulation in brain cells. Obviously, brain swelling can be detrimental because it can elevate intracranial pressure, impair CBF, and may represent ongoing secondary brain injury.

  7. [The role of BDNF in brain ischemia pulmonary edema].

    PubMed

    Zhang, Yun-Hui; Wang, Ting-Hua

    2012-11-01

    Brain ischemia pulmonary edema(BIPE)is a critical type of the neurogenic pulmonary edema (NPE), with acute development and progression and high mortality. The study on mechanism of BIPE has important scientific significance and substantial practice values. NPE, as a complicated physiopathology condition, is not resulted from single factor but systemic events including the changes in nervous system, body fluid regulation and endocrine involved in central nervous system after the injury. The studies on this topic in this current issue suggested that brain-derived neurotrophic factor (BDNF) could involve in the pathogenesis procedure of NPE following brain ischemia, which indicated that the crucial role of BDNF in the NPE after BIPE. The findings of these studies pave a way for the treatment of BIPE by using BDNF administration in future clinic trail.

  8. Ischemic Postconditioning Alleviates Brain Edema After Focal Cerebral Ischemia Reperfusion in Rats Through Down-Regulation of Aquaporin-4.

    PubMed

    Han, Dong; Sun, Miao; He, Ping-Ping; Wen, Lu-Lu; Zhang, Hong; Feng, Juan

    2015-07-01

    Cerebral edema is a serious complication associated with cerebral ischemia/reperfusion (I/R). Aquaporin-4 (AQP4) plays a role in generating postischemic edema after reperfusion. Recently, ischemic postconditioning (Postcond) has been shown to produce neuroprotective effects and reduce brain edema in rats after cerebral I/R. It is unclear if ischemic Postcond alleviates brain edema injury through regulation of AQP4. In this study, middle cerebral artery occlusion (MCAO) was induced in rats by filament insertion for 2 h following 24-h reperfusion: ischemic Postcond treatment was performed before reperfusion in the experimental group. We used the wet-dry weight ratio and transmission electron microscopy to evaluate brain edema after 24 h of reperfusion. We used immunohistochemistry and Western blot analyses to evaluate the distribution and expression of AQP4. Ischemic Postcond significantly reduced the water content of the brain tissue and swelling of the astrocytic foot processes. AQP4 expression increased in the I/R and Postcond groups compared to the sham group, but it decreased in the Postcond group compared to the I/R group. The results of our study suggest that ischemic Postcond effectively reduces brain edema after reperfusion by inhibiting AQP4 expression. The data in this study support the use of ischemic Postcond for alleviating brain edema after cerebral I/R.

  9. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    PubMed

    Timaru-Kast, Ralph; Luh, Clara; Gotthardt, Philipp; Huang, Changsheng; Schäfer, Michael K; Engelhard, Kristin; Thal, Serge C

    2012-01-01

    After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation

  10. Edema

    MedlinePlus

    ... one position for too long Eating too much salty food Premenstrual signs and symptoms Pregnancy Edema can ... Do you restrict your intake of salt and salty foods? Do you drink alcohol? Do you seem ...

  11. Synthesis and evaluation of the anti-inflammatory effects of niflumic acid lipophilic prodrugs in brain edema.

    PubMed

    el Kihel, L; Bourass, J; Richomme, P; Petit, J Y; Letourneux, Y

    1996-11-01

    Five new lipophilic prodrugs of the non-steroidal anti-inflammatory drug, niflumic acid (Nifluril, CAS 4394-00-7), were synthetized and evaluated on the experimental brain edema (injection of phospholipase A2). The effect of these drugs in comparison with dexamethasone which elicits a marked effect on clinical and experimental brain edema was evaluated. Niflumic acid was vectorised by cholesterol, hexadecanol and by three 1,3-diacylglycerols. The anti-inflammatory activity of these compounds on experimental brain edema was evaluated by determination of the prostaglandin E2 (PGE2) brain tissue concentration. Niflumic acid reduced the prostaglandin E2 production more significantly than dexamethasone. Niflumic acid prodrug forms (1,3-dihexadecanoyl-2-[2-[3-(trifluoromethyl)anilino]nicotinoyl] glycerol and 1,3-dihexadecanoyl-2-[2-[3-(trifluoromethyl)anilino]nicotinoyloxybuta noyl] glycerol also showed a marked anti-inflammatory activity at low concentrations.

  12. Opioid receptor agonists reduce brain edema in stroke.

    PubMed

    Yang, Li; Wang, Hezhen; Shah, Kaushik; Karamyan, Vardan T; Abbruscato, Thomas J

    2011-04-06

    Cerebral edema is a leading cause of mortality in stroke patients. The purpose of this study was to assess a non-selective opioid receptor agonist, biphalin, in decreasing reducing brain edema formation using both in vitro and in vivo models of stroke. For the in situ model of ischemia, hippocampal slices were exposed to oxygen glucose deprivation (OGD) conditions and we observed that hippocampal water content was increased, compared to normoxia. Treatment with the mu agonist, Tyr-D-Ala', N-CH, -Phe4, Glyol-Enkephalin (DAMGO), delta opioid agonists, D-pen(2), D-phe(5) enkephalin (DPDPE), and kappa agonist, U50 488, all significantly decreased brain slice water gain. Interestingly, the non-selective agonist, biphalin, exhibited a statistically significant (P<0.01) greater effect in decreasing water content in OGD-exposed hippocampal slices, compared with mu, delta, and kappa selective opioid agonists. Moreover, biphalin exhibited anti-edematous effects in a dose responsive manner. The non-selective opioid antagonist, naloxone, returned the water content nearly back to original OGD values for all opioid agonist treatments, supporting that these effects were mediated by an opioid receptor pathway. Furthermore, biphalin significantly decreased edema (53%) and infarct (48%) ratios, and neuronal recovery from stroke, compared with the vehicle-treated groups in a 12h permanent middle cerebral artery occlusion (MCAO) model of focal ischemia. Biphalin also significantly decreased the cell volume increase in primary neuronal cells exposed to OGD condition. These data suggest that opioid receptor activation may provide neuroprotection during stroke and further investigations are needed in the development of novel opioid agonist as efficacious treatments for brain ischemia.

  13. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    NASA Astrophysics Data System (ADS)

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-09-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.

  14. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    PubMed Central

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-01-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality. PMID:27623738

  15. Proton-nuclear magnetic resonance relaxation times in brain edema

    SciTech Connect

    Kamman, R.L.; Go, K.G.; Berendsen, H.J. )

    1990-01-01

    Proton relaxation times of protein solutions, bovine brain, and edematous feline brain tissue were studied as a function of water concentration, protein concentration, and temperature. In accordance with the fast proton exchange model for relaxation, a linear relation could be established between R1 and the inverse of the weight fraction of tissue water. This relation also applied to R2 of gray matter and of protein solutions. No straightforward relation with water content was found for R2 of white matter. Temperature-dependent studies indicated that in this case, the slow exchange model for relaxation had to be applied. The effect of macromolecules in physiological relevant concentrations on the total relaxation behavior of edematous tissue was weak. Total water content changes predominantly affected the relaxation rates. The linear relation may have high clinical potential for assessment of the status of cerebral edema on the basis of T1 and T2 readings from MR images.

  16. Transient receptor potential vanilloid type 4 channels mediate Na-K-Cl-co-transporter-induced brain edema after traumatic brain injury.

    PubMed

    Lu, Kwok-Tung; Huang, Tai-Chun; Tsai, Ya-Hsin; Yang, Yi-Ling

    2017-03-01

    Na(+) -K(+) -2Cl(-) co-transporter (NKCC1) plays an important role in traumatic brain injury (TBI)-induced brain edema via the MAPK cascade. The transient receptor potential vanilloid type 4 (TRPV4) channel participates in neurogenic inflammation, pain transmission, and edema. In this study, we investigated the relationship between NKCC1 and TRPV4 and the related signaling pathways in TBI-induced brain edema and neuronal damage. TBI was induced by the calibrated weight-drop device. Adult male Wistar rats were randomly assigned into sham and experimental groups for time-course studies of TRPV4 expression after TBI. Hippocampal TRPV4, NKCC1, MAPK, and PI-3K cascades were analyzed by western blot, and brain edema was also evaluated among the different groups. Expression of hippocampal TRPV4 peaked at 8 h after TBI, and phosphorylation of the MAPK cascade and Akt was significantly elevated. Administration of either the TRPV4 antagonist, RN1734, or NKCC1 antagonist, bumetanide, significantly attenuated TBI-induced brain edema through decreasing the phosphorylation of MEK, ERK, and Akt proteins. Bumetanide injection inhibited TRPV4 expression, which suggests NKCC1 activation is critical to TRPV4 activation. Our results showed that hippocampal NKCC1 activation increased TRPV4 expression after TBI and then induced severe brain edema and neuronal damage through activation of the MAPK cascade and Akt-related signaling pathway.

  17. Cerebral Edema in Traumatic Brain Injury: Pathophysiology and Prospective Therapeutic Targets.

    PubMed

    Winkler, Ethan A; Minter, Daniel; Yue, John K; Manley, Geoffrey T

    2016-10-01

    Traumatic brain injury is a heterogeneous disorder resulting from an external force applied to the head. The development of cerebral edema plays a central role in the evolution of injury following brain trauma and is closely associated with neurologic outcomes. Recent advances in the understanding of the molecular and cellular pathways contributing to the posttraumatic development of cerebral edema have led to the identification of multiple prospective therapeutic targets. The authors summarize the pathogenic mechanisms underlying cerebral edema and highlight the molecular pathways that may be therapeutically targeted to mitigate cerebral edema and associated sequelae following traumatic brain injury.

  18. Simulating vasogenic brain edema using chronic VEGF infusion.

    PubMed

    Piazza, Martin; Munasinghe, Jeeva; Murayi, Roger; Edwards, Nancy; Montgomery, Blake; Walbridge, Stuart; Merrill, Marsha; Chittiboina, Prashant

    2017-01-06

    OBJECTIVE To study peritumoral brain edema (PTBE), it is necessary to create a model that accurately simulates vasogenic brain edema (VBE) without introducing a complicated tumor environment. PTBE associated with brain tumors is predominantly a result of vascular endothelial growth factor (VEGF) secreted by brain tumors, and VEGF infusion alone can lead to histological blood-brain barrier (BBB) breakdown in the absence of tumor. VBE is intimately linked to BBB breakdown. The authors sought to establish a model for VBE with chronic infusion of VEGF that can be validated by serial in-vivo MRI and histological findings. METHODS Male Fischer rats (n = 182) underwent stereotactic striatal implantation of MRI-safe brain cannulas for chronic infusion of VEGF (2-20 µg/ml). Following a preinfusion phase (4-6 days), the rats were exposed to VEGF or control rat serum albumin (1.5 µl/hr) for as long as 144 hours. Serial MRI was performed during infusion on a high-field (9.4-T) machine at 12-24, 24-36, 48-72, and 120-144 hours. Rat brains were then collected and histological analysis was performed. RESULTS Control animals and animals infused with 2 µg/ml of VEGF experienced no neurological deficits, seizure activity, or abnormal behavior. Animals treated with VEGF demonstrated a significantly larger volume (42.90 ± 3.842 mm(3)) of T2 hyper-attenuation at 144 hours when compared with the volume (8.585 ± 1.664 mm(3)) in control animals (mean difference 34.31 ± 4.187 mm(3), p < 0.0001, 95% CI 25.74-42.89 mm(3)). Postcontrast T1 enhancement in the juxtacanalicular region indicating BBB breakdown was observed in rats undergoing infusion with VEGF. At the later time periods (120-144 hrs) the volume of T1 enhancement (34.97 ± 8.99 mm(3)) was significantly less compared with the region of edema (p < 0.0001). Histologically, no evidence of necrosis or inflammation was observed with VEGF or control infusion. Immunohistochemical analysis demonstrated astrocyte activation, vascular

  19. [Study of brain edema by an infusion edema Model--the method and characteristics of the model].

    PubMed

    Takagi, H; Marmarou, A; Lax, F; Horoupian, D S

    1983-09-01

    In this report, we have described the way of making the infusion edema model, physiological changes of various parameters during this procedure, distribution of water content in white and gray matter and the light and electron microscopic findings of this edema model, for the further understanding of vasogenic edema of the brain. To make the infusion edema model, 25-G needle was stereotaxically inserted into the left frontal white matter of the cat brain. Through the polyethylene catheter with three way stop cock, this catheter was connected to the pressure transducer and slow infusion pump. By this way, we can monitor the pressure of infusing fluid into the white matter. Normal saline was infused with initial rate of 0.75 microliter/min for the first 2 hours. The inflow rate was increased to 1.5 microliter/min for the next one hour, and then changed to 3.0 microliters/min for maintenance inflow rate. The total amount of infused volume was 0.5 ml in this study. During making the infusion edema model, blood pressure and PaCO2 changed little. Intracranial pressure slightly increased from 5.8 to 15.1 mmHg. Pressure volume index (PVI) changed from 0.74 to 0.64, suggesting the changes of intracranial compliance. The water content measured by specific gravimetric technique showed nearly the same water contents and distribution of edema fluid in the white matter of the cat as in the cryogenic injury model. Pathological findings of this infusion edema model demonstrated that the infused liquid was accumulated in the extracellular space of white matter without damaging the tight junction, and endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Rapamycin alleviates brain edema after focal cerebral ischemia reperfusion in rats.

    PubMed

    Guo, Wei; Feng, Guoying; Miao, Yanying; Liu, Guixiang; Xu, Chunsheng

    2014-06-01

    Brain edema is a major consequence of cerebral ischemia reperfusion. However, few effective therapeutic options are available for retarding the brain edema progression after cerebral ischemia. Recently, rapamycin has been shown to produce neuroprotective effects in rats after cerebral ischemia reperfusion. Whether rapamycin could alleviate this brain edema injury is still unclear. In this study, the rat stroke model was induced by a 1-h left transient middle cerebral artery occlusion using an intraluminal filament, followed by 48 h of reperfusion. The effects of rapamycin (250 μg/kg body weight, intraperitoneal; i.p.) on brain edema progression were evaluated. The results showed that rapamycin treatment significantly reduced the infarct volume, the water content of the brain tissue and the Evans blue extravasation through the blood-brain barrier (BBB). Rapamycin treatment could improve histological appearance of the brain tissue, increased the capillary lumen space and maintain the integrity of BBB. Rapamycin also inhibited matrix metalloproteinase 9 (MMP9) and aquaporin 4 (AQP4) expression. These data imply that rapamycin could improve brain edema progression after reperfusion injury through maintaining BBB integrity and inhibiting MMP9 and AQP4 expression. The data of this study provide a new possible approach for improving brain edema after cerebral ischemia reperfusion by administration of rapamycin.

  1. Correlation between subacute sensorimotor deficits and brain edema in two mouse models of intracerebral hemorrhage

    PubMed Central

    Krafft, Paul R.; McBride, Devin W.; Lekic, Tim; Rolland, William B.; Mansell, Charles E.; Ma, Qingyi; Tang, Jiping; Zhang, John H.

    2014-01-01

    Formation of brain edema after intracerebral hemorrhage (ICH) is highly associated with its poor outcome, thus it is clinically important to understand the effect brain edema has on outcome. However, the relationship between cerebral edema and behavioral deficits has not been thoroughly examined in the preclinical setting. Hence, this study aimed to evaluate the ability of common sensorimotor tests to predict the extent of brain edema in two mouse models of ICH. One hundred male CD-1 mice were subjected to sham surgery or ICH induction via intrastriatal injection of either autologous blood (30 μL) or bacterial collagenase (0.0375 U or 0.075 U). At 24 and 72 hours after surgery, animals underwent a battery of behavioral tests, including the modified Garcia neuroscore (Neuroscore), corner turn test (CTT), forelimb placing test (FPT), wire hang task (WHT) and beam walking (BW). Brain edema was evaluated via the wet weight/dry weight method. Intrastriatal injection of autologous blood or bacterial collagenase resulted in a significant increase in brain water content and associated sensorimotor deficits (p<0.05). A significant correlation between brain edema and sensorimotor deficits was observed for all behavioral tests except for WHT and BW. Based on these findings, we recommend implementing the Neuroscore, CTT and/or FPT in preclinical studies of unilateral ICH in mice. PMID:24518201

  2. Hypoxia-inducible factor-1α contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain.

    PubMed

    Higashida, Tetsuhiro; Peng, Changya; Li, Jie; Dornbos, David; Teng, Kailing; Li, Xiaohua; Kinni, Harish; Guthikonda, Murali; Ding, Yuchuan

    2011-02-01

    Brain edema following stroke is a critical clinical problem due to its association with increased morbidity and mortality. Despite its significance, present treatment for brain edema simply provides symptomatic relief due to the fact that molecular mechanisms underlying brain edema remain poorly understood. The present study investigated the role of hypoxia-inducible factor-1α (HIF-1α) and aquaporins (AQP-4 and -9) in regulating cerebral glycerol accumulation and inducing brain edema in a rodent model of stroke. Two-hours of middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in male Sprague-Dawley rats (250-280 g). Anti-AQP-4 antibody, anti-AQP-9 antibody, or 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α) was given at the time of MCAO. The rats were sacrificed at 1 and 24 hours after reperfusion and their brains were examined. Extracellular and intracellular glycerol concentration of brain tissue was calculated with an enzymatic glycerol assay. The protein expressions of HIF-1α, AQP-4 and AQP-9 were determined by Western blotting. Brain edema was measured by brain water content. Compared to control, edema (p < 0.01), increased glycerol (p < 0.05), and enhanced expressions of HIF-1α, AQP-4, and AQP-9 (p < 0.05) were observed after stroke. With inhibition of AQP-4, AQP-9 or HIF-1α, edema and extracellular glycerol were significantly (p < 0.01) decreased while intracellular glycerol was increased (p < 0.01) 1 hour after stroke. Inhibition of HIF-1α with 2ME2 suppressed (p < 0.01) the expression of AQP-4 and AQP-9. These findings suggest that HIF-1α serves as an upstream regulator of cerebral glycerol concentrations and brain edema via a molecular pathway involving AQP-4 and AQP-9. Pharmacological blockade of this pathway in stroke patients may provide novel therapeutic strategies.

  3. Prevention of status epilepticus-induced brain edema and neuronal cell loss by repeated treatment with high-dose levetiracetam.

    PubMed

    Itoh, Kouichi; Inamine, Moriyoshi; Oshima, Wataru; Kotani, Masaharu; Chiba, Yoichi; Ueno, Masaki; Ishihara, Yasuhiro

    2015-05-22

    The management of status epilepticus (SE) is important to prevent mortality and the development of post-SE symptomatic epilepsy. Acquired epilepsy after an initial brain insult by SE can be experimentally reproduced in the murine model of SE induced by pilocarpine. In the present study, we evaluated the possibility of treatment with a high-dose of levetiracetam in this model. Repeated treatment with high-dose levetiracetam after termination of SE by diazepam significantly prevented the incidence of spontaneous recurrent seizures and mortality for at least 28 days. To determine the brain alterations after SE, magnetic resonance imaging was performed. Both T2-weighted imaging and diffusion-weighted imaging showed changes in the limbic regions. These changes in the limbic regions demonstrated the development of cytotoxic edema three hours after SE, followed by the development of vasogenic edema two days after SE. In the pilocarpine-SE model, the incidence of spontaneous recurrent seizures after SE was strongly associated with neuronal damage within a few hours to days after SE by the development of vasogenic edema via the breakdown of the blood-brain barrier in the limbic regions. High-dose levetiracetam significantly suppressed the parameters in the limbic areas. These data indicate that repeated treatment with high-dose levetiracetam for at least two days after SE termination by diazepam is important for controlling the neuronal damage by preventing brain edema. Therefore, these findings suggest that early treatment with high-dose levetiracetam after SE termination by diazepam may protect against adverse sequelae via the inhibition of neurotoxicity induced by brain edema events.

  4. Failed First Craniotomy and Tumor Removal of Parasagittal Meningioma with Severe Peritumoral Brain Edema

    PubMed Central

    Shim, Youngbo

    2016-01-01

    Parasagittal meningioma often presents as peritumoral brain edema (PTBE). The risk of edema increases when the tumor occludes the superior sagittal sinus (SSS). Although PTBE may be expected based on the patient’s symptoms or radiologic findings, extensive brain swelling and extracranial herniation during elective surgery are rare. Herniation during surgery could lead to irreversible neurological damage and even brain rupture. We report a case of a failed routine craniotomy for a parasagittal meningioma with complete occlusion of the posterior third of the SSS in a 30-year-old male patient. The patient developed extensive brain swelling and extracranial herniation during surgery. PMID:27867923

  5. Electron microscopic features of brain edema in rodent cerebral malaria in relation to glial fibrillary acidic protein expression.

    PubMed

    Ampawong, Sumate; Chaisri, Urai; Viriyavejakul, Parnpen; Nontprasert, Apichart; Grau, Georges E; Pongponratn, Emsri

    2014-01-01

    The mechanisms leading to cerebral malaria (CM) are not completely understood. Brain edema has been suggested as having an important role in experimental CM. In this study, CBA/CaH mice were infected with Plasmodium berghei ANKA blood-stage and when typical symptoms of CM developed on day 7, brain tissues were processed for electron-microscopic and immunohistochemical studies. The study demonstrated ultrastructural hallmarks of cerebral edema by perivascular edema and astroglial dilatation confirming existing evidence of vasogenic and cytogenic edema. This correlates closely with the clinical features of CM. An adaptive response of astrocytic activity, represented by increasing glial fibrillary acidic protein (GFAP) expression in the perivascular area and increasing numbers of large astrocyte clusters were predominately found in the CM mice. The presence of multivesicular and lamellar bodies indicates the severity of cerebral damage in experimental CM. Congestion of the microvessels with occluded white blood cells (WBCs), parasitized red blood cells (PRBCs) and platelets is also a crucial covariate role for CM pathogenesis.

  6. Fluid Intake Related to Brain Edema in Acute Middle Cerebral Artery Infarction.

    PubMed

    Dharmasaroja, Pornpatr A

    2016-02-01

    Evidence of the appropriate amount of fluid intake during the first few days after acute stroke was scarce. Concerns were raised in patients with acute malignant middle cerebral infarction, who tended to have malignant brain edema later. The purpose of the study was to evaluate the effect of fluid intake on the occurrence of malignant brain edema in patients with acute middle cerebral artery infarction. Patients with acute middle cerebral artery infarction who had National Institute of Health Stroke Scale (NIHSS) score of at least 15 were included. Baseline characteristics and amount of fluid intake during the first few days were compared in patients with and without malignant brain edema. One hundred ninety-three patients were studied. Mean NIHSS score was 20. Malignant brain edema occurred in 69 patients (36%). Higher amount of fluid intake (>1650 ml or >28 ml/kg/day or >93% of daily maintenance fluid) showed a significant association with malignant brain edema (OR = 13.86, 95% CI 5.11-37.60, p value <0.001). Decompressive surgery was performed in 35 patients (18%). With mean follow-up of 12 months, 49 patients (49/184, 27%) had favorable outcomes (modified Rankin scale (mRS) 0-2) at final follow-up. Seventy-nine patients (79/184, 43%) died. In the subgroup of patients with malignant brain edema, 39 patients (39/65, 60%) died and only 11% (7/65 patients) had favorable outcome. High amount of fluid intake in the first few days of acute middle cerebral infarction was related to the occurrence of malignant brain edema.

  7. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation

    PubMed Central

    Choi, Kang-Ho; Lee, Eun-Bin; Lee, Jung-Kil; Kim, Joon-Tae; Kim, Ja-Hae; Lee, Min-Cheol; Lee, Hong-Joon; Cho, Ki-Hyun

    2016-01-01

    Cerebral edema from the disruption of the blood-brain barrier (BBB) after cerebral ischemia is a major cause of morbidity and mortality as well as a common event in patients with stroke. Caveolins (Cavs) are thought to regulate BBB functions. Here, we report for the first time that Cav-1 overexpression (OE) decreased brain edema from BBB disruption following ischemic insult. Edema volumes and Cav-1 expression levels were measured following photothrombosis and middle cerebral artery occlusion (MCAO). Endothelial cells that were transduced with a Cav-1 lentiviral expression vector were transplanted into rats. BBB permeability was quantified with Evans blue extravasation. Edema volume was determined from measures of the extravasation area, brain water content, and average fluorescence intensity after Cy5.5 injections. Tight junction (TJ) protein expression was measured with immunoblotting. Cav-1 expression levels and vasogenic brain edema correlated strongly after ischemic insult. Cav-1 expression and BBB disruption peaked 3 d after the MCAO. In addition, intravenous administration of endothelial cells expressing Cav-1 effectively increased the Cav-1 levels 3 d after the MCAO ischemic insult. Importantly, Cav-1 OE ameliorated the vasogenic edema by inhibiting the degradation of TJ protein expression in the acute phase of ischemic stroke. These results suggested that Cav-1 OE protected the integrity of the BBB mainly by preventing the degradation of TJ proteins in rats. These findings need to be confirmed in a clinical setting in human subjects. PMID:27708218

  8. Experimental traumatic brain injury

    PubMed Central

    2010-01-01

    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury. PMID:20707892

  9. Human neuronal changes in brain edema and increased intracranial pressure.

    PubMed

    Faragó, Nóra; Kocsis, Ágnes Katalin; Braskó, Csilla; Lovas, Sándor; Rózsa, Márton; Baka, Judith; Kovács, Balázs; Mikite, Katalin; Szemenyei, Viktor; Molnár, Gábor; Ozsvár, Attila; Oláh, Gáspár; Piszár, Ildikó; Zvara, Ágnes; Patócs, Attila; Barzó, Pál; Puskás, László G; Tamás, Gábor

    2016-08-04

    Functional and molecular changes associated with pathophysiological conditions are relatively easily detected based on tissue samples collected from patients. Population specific cellular responses to disease might remain undiscovered in samples taken from organs formed by a multitude of cell types. This is particularly apparent in the human cerebral cortex composed of a yet undefined number of neuron types with a potentially different involvement in disease processes. We combined cellular electrophysiology, anatomy and single cell digital PCR in human neurons identified in situ for the first time to assess mRNA expression and corresponding functional changes in response to edema and increased intracranial pressure. In single pyramidal cells, mRNA copy numbers of AQP1, AQP3, HMOX1, KCNN4, SCN3B and SOD2 increased, while CACNA1B, CRH decreased in edema. In addition, single pyramidal cells increased the copy number of AQP1, HTR5A and KCNS1 mRNAs in response to increased intracranial pressure. In contrast to pyramidal cells, AQP1, HMOX1and KCNN4 remained unchanged in single cell digital PCR performed on fast spiking cells in edema. Corroborating single cell digital PCR results, pharmacological and immunohistochemical results also suggested the presence of KCNN4 encoding the α-subunit of KCa3.1 channels in edema on pyramidal cells, but not on interneurons. We measured the frequency of spontaneous EPSPs on pyramidal cells in both pathophysiological conditions and on fast spiking interneurons in edema and found a significant decrease in each case, which was accompanied by an increase in input resistances on both cell types and by a drop in dendritic spine density on pyramidal cells consistent with a loss of excitatory synapses. Our results identify anatomical and/or physiological changes in human pyramidal and fast spiking cells in edema and increased intracranial pressure revealing cell type specific quantitative changes in gene expression. Some of the edema

  10. Sulfonylurea receptor 1 contributes to the astrocyte swelling and brain edema in acute liver failure.

    PubMed

    Jayakumar, A R; Valdes, V; Tong, X Y; Shamaladevi, N; Gonzalez, W; Norenberg, M D

    2014-02-01

    Astrocyte swelling (cytotoxic brain edema) is the major neurological complication of acute liver failure (ALF), a condition in which ammonia has been strongly implicated in its etiology. Ion channels and transporters are known to be involved in cell volume regulation, and a disturbance in these systems may result in cell swelling. One ion channel known to contribute to astrocyte swelling/brain edema in other neurological disorders is the ATP-dependent, nonselective cation (NCCa-ATP) channel. We therefore examined its potential role in the astrocyte swelling/brain edema associated with ALF. Cultured astrocytes treated with 5 mM ammonia showed a threefold increase in the sulfonylurea receptor type 1 (SUR1) protein expression, a marker of NCCa-ATP channel activity. Blocking SUR1 with glibenclamide significantly reduced the ammonia-induced cell swelling in cultured astrocytes. Additionally, overexpression of SUR1 in ammonia-treated cultured astrocytes was significantly reduced by cotreatment of cells with BAY 11-7082, an inhibitor of NF-κB, indicating the involvement of an NF-κB-mediated SUR1 upregulation in the mechanism of ammonia-induced astrocyte swelling. Brain SUR1 mRNA level was also found to be increased in the thioacetamide (TAA) rat model of ALF. Additionally, we found a significant increase in SUR1 protein expression in rat brain cortical astrocytes in TAA-treated rats. Treatment with glibenclamide significantly reduced the brain edema in this model of ALF. These findings strongly suggest the involvement of NCCa-ATP channel in the astrocyte swelling/brain edema in ALF and that targeting this channel may represent a useful approach for the treatment of the brain edema associated with ALF.

  11. Dynamics of rabbit brain edema in focal lesion and perilesion area after traumatic brain injury: a MRI study.

    PubMed

    Wei, Xiao-Er; Zhang, Yu-Zhen; Li, Yue-Hua; Li, Ming-Hua; Li, Wen-Bin

    2012-09-20

    To understand the dynamics of brain edema in different areas after traumatic brain injury (TBI) in rabbit, we used dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) to monitor blood-brain barrier (BBB) permeability and cytotoxic brain edema after weight drop-induced TBI in rabbit. The dynamics of BBB permeability and brain edema were quantified using K(trans) and apparent diffusion coefficient (ADC) in the focal and perifocal lesion areas, as well as the area contralateral to the lesion. In the focal lesion area, K(trans) began to increase at 3 h post-TBI, peaked at 3 days, and decreased gradually while remaining higher than sham injury animals at 7 and 30 days. ADC was more variable, increased slightly at 3 h, decreased to its lowest value at 7 days, then increased to a peak at 30 days. In the perifocal lesion area, K(trans) began to increase at 1 day, peaked at 3-7 days, and returned to control level by 30 days. ADC showed a trend to increase at 1 day, followed by a continuous increase thereafter. In the contralateral area, no changes in K(trans) and ADC were observed at any time-point. These data demonstrate that different types of brain edema predominate in the focal and perifocal lesion areas. Specifically cytotoxic edema was predominant in the focal lesion area while vasogenic edema predominated in the perifocal area in acute phase. Furthermore, secondary opening of the BBB after TBI may appear if secondary injury is not controlled. BBB damage may be a driving force for cytotoxic brain edema and could be a new target for TBI intervention.

  12. Apolipoprotein E-Mimetic COG1410 Reduces Acute Vasogenic Edema following Traumatic Brain Injury

    PubMed Central

    Cao, Fang; Wu, Yue; Zhong, Jianjun; Liu, Jieshi; Qin, Xinghu; Chen, Ligang; Vitek, Michael P.; Li, Fengqiao; Xu, Lu

    2016-01-01

    Abstract The degree of post-traumatic brain edema and dysfunction of the blood–brain barrier (BBB) influences the neurofunctional outcome after a traumatic brain injury (TBI). Previous studies have demonstrated that the administration of apolipoprotein E-mimetic peptide COG1410 reduces the brain water content after subarachnoid hemorrhage, intra-cerebral hemorrhage, and focal brain ischemia. However, the effects of COG1410 on vasogenic edema following TBI are not known. The current study evaluated the effects of 1 mg/kg daily COG1410 versus saline administered intravenously after a controlled cortical impact (CCI) injury on BBB dysfunction and vasogenic edema at an acute stage in mice. The results demonstrated that treatment with COG1410 suppressed the activity of matrix metalloproteinase-9, reduced the disruption of the BBB and Evans Blue dye extravasation, reduced the TBI lesion volume and vasogenic edema, and decreased the functional deficits compared with mice treated with vehicle, at an acute stage after CCI. These findings suggest that COG1410 is a promising preclinical therapeutic agent for the treatment of traumatic brain injury. PMID:26192010

  13. Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice.

    PubMed

    Jie, Pinghui; Tian, Yujing; Hong, Zhiwen; Li, Lin; Zhou, Libin; Chen, Lei; Chen, Ling

    2015-01-01

    Brain edema is an important pathological process during stroke. Activation of transient receptor potential vanilloid 4 (TRPV4) causes an up-regulation of matrix metalloproteinases (MMPs) in lung tissue. MMP can digest the endothelial basal lamina to destroy blood brain barrier, leading to vasogenic brain edema. Herein, we tested whether TRPV4-blockage could inhibit brain edema through inhibiting MMPs in middle cerebral artery occlusion (MCAO) mice. We found that the brain water content and Evans blue extravasation at 48 h post-MCAO were reduced by a TRPV4 antagonist HC-067047. The increased MMP-2/9 protein expression in hippocampi of MCAO mice was attenuated by HC-067046, but only the increased MMP-9 activity was blocked by HC-067047. The loss of zonula occludens-1 (ZO-1) and occludin protein in MCAO mice was also attenuated by HC-067047. Moreover, MMP-2/9 protein expression increased in mice treated with a TRPV4 agonist GSK1016790A, but only MMP-9 activity was increased by GSK1016790A. Finally, ZO-1 and occludin protein expression was decreased by GSK1016790A, which was reversed by an MMP-9 inhibitor. We conclude that blockage of TRPV4 may inhibit brain edema in cerebral ischemia through inhibiting MMP-9 activation and the loss of tight junction protein.

  14. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity.

    PubMed

    Kunze, Reiner; Urrutia, Andrés; Hoffmann, Angelika; Liu, Hui; Helluy, Xavier; Pham, Mirko; Reischl, Stefan; Korff, Thomas; Marti, Hugo H

    2015-04-01

    Brain edema is a hallmark of various neuropathologies, but the underlying mechanisms are poorly understood. We aim to characterize how tissue hypoxia, together with oxidative stress and inflammation, leads to capillary dysfunction and breakdown of the blood-brain barrier (BBB). In a mouse stroke model we show that systemic treatment with dimethyl fumarate (DMF), an antioxidant drug clinically used for psoriasis and multiple sclerosis, significantly prevented edema formation in vivo. Indeed, DMF stabilized the BBB by preventing disruption of interendothelial tight junctions and gap formation, and decreased matrix metalloproteinase activity in brain tissue. In vitro, DMF directly sustained endothelial tight junctions, inhibited inflammatory cytokine expression, and attenuated leukocyte transmigration. We also demonstrate that these effects are mediated via activation of the redox sensitive transcription factor NF-E2 related factor 2 (Nrf2). DMF activated the Nrf2 pathway as shown by up-regulation of several Nrf2 target genes in the brain in vivo, as well as in cerebral endothelial cells and astrocytes in vitro, where DMF also increased protein abundance of nuclear Nrf2. Finally, Nrf2 knockdown in endothelial cells aggravated subcellular delocalization of tight junction proteins during ischemic conditions, and attenuated the protective effect exerted by DMF. Overall, our data suggest that DMF protects from cerebral edema formation during ischemic stroke by targeting interendothelial junctions in an Nrf2-dependent manner, and provide the basis for a completely new approach to treat brain edema.

  15. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

    PubMed Central

    2012-01-01

    Introduction Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. Methods Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. Results Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. Conclusions Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes. PMID:23036239

  16. Telmisartan reduced cerebral edema by inhibiting NLRP3 inflammasome in mice with cold brain injury.

    PubMed

    Wei, Xin; Hu, Chen-Chen; Zhang, Ya-Li; Yao, Shang-Long; Mao, Wei-Ke

    2016-08-01

    The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury (TBI) and the potential mechanisms related to the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) pyrin domain-containing 3 (NLRP3) inflammasome activation. TBI model was established by cold-induced brain injury. Male C57BL/6 mice were randomly assigned into 3, 6, 12, 24, 48 and 72 h survival groups to investigate cerebral edema development with time and received 0, 5, 10, 20 and 40 mg/kg telmisartan by oral gavage, 1 h prior to TBI to determine the efficient anti-edemic dose. The therapeutic window was identified by post-treating 30 min, 1 h, 2 h and 4 h after TBI. Blood-brain barrier (BBB) integrity, the neurological function and histological injury were assessed, at the same time, the mRNA and protein expression levels of NLRP3 inflammasome, IL-1β and IL-18 concentrations in peri-contused brain tissue were measured 24 h post TBI. The results showed that the traumatic cerebral edema occurred from 6 h, reached the peak at 24 h and recovered to the baseline 72 h after TBI. A single oral dose of 5, 10 and 20 mg/kg telmisartan could reduce cerebral edema. Post-treatment up to 2 h effectively limited the edema development. Furthermore, prophylactic administration of telmisartan markedly inhibited BBB impairment, NLRP3, apoptotic speck-containing protein (ASC) and Caspase-1 activation, as well as IL-1β and IL-18 maturation, subsequently improved the neurological outcomes. In conclusion, telmisartan can reduce traumatic cerebral edema by inhibiting the NLRP3 inflammasome-regulated IL-1β and IL-18 accumulation.

  17. Polynitroxylated-pegylated hemoglobin attenuates fluid requirements and brain edema in combined traumatic brain injury plus hemorrhagic shock in mice

    PubMed Central

    Brockman, Erik C; Bayır, Hülya; Blasiole, Brian; Shein, Steven L; Fink, Ericka L; Dixon, CEdward; Clark, Robert SB; Vagni, Vincent A; Ma, Li; Hsia, Carleton JC; Tisherman, Samuel A; Kochanek, Patrick M

    2013-01-01

    Polynitroxylated-pegylated hemoglobin (PNPH), a bovine hemoglobin decorated with nitroxide and polyethylene glycol moieties, showed neuroprotection vs. lactated Ringer's (LR) in experimental traumatic brain injury plus hemorrhagic shock (TBI+HS). Hypothesis: Resuscitation with PNPH will reduce intracranial pressure (ICP) and brain edema and improve cerebral perfusion pressure (CPP) vs. LR in experimental TBI+HS. C57/BL6 mice (n=20) underwent controlled cortical impact followed by severe HS to mean arterial pressure (MAP) of 25 to 27 mm Hg for 35 minutes. Mice (n=10/group) were then resuscitated with a 20 mL/kg bolus of 4% PNPH or LR followed by 10 mL/kg boluses targeting MAP>70 mm Hg for 90 minutes. Shed blood was then reinfused. Intracranial pressure was monitored. Mice were killed and %brain water (%BW) was measured (wet/dry weight). Mice resuscitated with PNPH vs. LR required less fluid (26.0±0.0 vs. 167.0±10.7 mL/kg, P<0.001) and had a higher MAP (79.4±0.40 vs. 59.7±0.83 mm Hg, P<0.001). The PNPH-treated mice required only 20 mL/kg while LR-resuscitated mice required multiple boluses. The PNPH-treated mice had a lower peak ICP (14.5±0.97 vs. 19.7±1.12 mm Hg, P=0.002), higher CPP during resuscitation (69.2±0.46 vs. 45.5±0.68 mm Hg, P<0.001), and lower %BW vs. LR (80.3±0.12 vs. 80.9±0.12%, P=0.003). After TBI+HS, resuscitation with PNPH lowers fluid requirements, improves ICP and CPP, and reduces brain edema vs. LR, supporting its development. PMID:23801241

  18. Effects of Aquaporin 4 Knockdown on Brain Edema of the Uninjured Side After Traumatic Brain Injury in Rats

    PubMed Central

    Chen, Jian-Qiang; Zhang, Cheng-Cheng; Jiang, Sheng-Nan; Lu, Hong; Wang, Wei

    2016-01-01

    Background Traumatic brain injury (TBI) induces edema on the uninjured side (i.e., contralateral brain tissue; CBT). We evaluated the role of AQP4 in CBT edema formation following TBI. Material/Methods Mild or severe TBI was induced using a controlled cortical impact model in rats, immediately followed by intraventricular siRNA infusions. The effects of AQP4 siRNA on CBT edema were assessed at up to 168 h. Results Mild or severe TBI induced different patterns of CBT edema. Furthermore, following mild TBI, brain water content (BWC) was increased at 72 h thereafter and AQP4 expression was increased after 168 h, relative to non-injured rats (i.e., sham). AQP4 interference reduced AQP4 expression 48 h thereafter and BWC 72 h thereafter, relative to control siRNA. In contrast, following severe TBI, BWC was increased 1 h thereafter and AQP4 expression was transiently enhanced after 1 h, relative to sham. However, AQP4 interference reduced AQP4 expression after 1 h and BWC 24 h thereafter, relative to control siRNA. Finally, apparent diffusion coefficient (ADC) value in CBT was positively correlated with AQP4 expression level following severe, but not mild, TBI. AQP4 interference disrupted this correlation. Conclusions AQP4 interference reduces CBT edema formation, and ADC value may predict TBI severity. PMID:27930615

  19. [The effect of fenibut on the ultrastructure of the brain mitochondria in traumatic edema and swelling].

    PubMed

    Novikov, V E; Naperstnikov, V V

    1994-01-01

    Rat experiments using electron microscopy have established that profound destructive changes occur in the mitochondria in the intra- and perifocal traumatic area in dynamics of traumatic edema-swelling. With phenibut, 50 mg/kg, there is an increase in the number of mitochondria in the brain tissue of the perifocal area, their destructive changes are less pronounced. It is assumed that the positive effect of phenibut on brain bioenergetic processes in the posttraumatic period is associated with the changes.

  20. Increased brain edema following 5-aminolevulinic acid mediated photodynamic in normal and tumor bearing rats

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Angell-Petersen, Even; Spetalen, Signe; Mathews, Marlon; Madsen, Steen J.

    2007-02-01

    Introduction: Failure of treatment for high grade gliomas is usually due to local recurrence at the site of surgical resection indicating that a more aggressive form of local therapy, such as PDT, could be of benefit. PDT causes damage to both tumor cells as well as cerebral blood vessels leading to degradation of the blood brain barrier with subsequent increase of brain edema. The increase in brain edema following ALA-PDT was evaluated in terms of animal survival, histopatological changes in normal brain and tumor tissue and MRI scanning. The effect of steroid treatment, to reduce post-treatment PDT induced edema, was also examined. Methods:Tumors were established in the brains of inbred BD-IX and Fisher rats. At various times following tumor induction the animals were injected with ALA ip. and four hours later light treatment at escalating fluences and fluence rates were given. Nontumor bearing control animals were also exposed to ALA-PDT in a similar manner to evaluate damage to normal brain and degree of blood brain barrier (BBB) disruption. Results: Despite a very low level of PpIX production in normal brain, with a 200:1 tumor to normal tissue selectivity ratio measured at a distance of 2 mm from the tumor border, many animals succumbed shortly after treatment. A total radiant energy of 54 J to non-tumor bearing animals resulted in 50% mortality within 5 days of treatment. Treatment of tumor bearing animals with moderate fluence levels produced similar brain edema compared to higher fluence levels. ALA PDT in nontumor bearing animals produced edema that was light dose dependent. PDT appeared to open the BBB for a period of 24-48 hrs after which it was restored. The addition of post operative steroid treatment reduced the incident of post treatment morbidity and mortality. Conclusions: T2 and contrast enhanced T1 MRI scanning proved to be a highly effective and non-evasive modality in following the development of the edema reaction and the degree and time

  1. Therapeutic implications of melatonin in cerebral edema.

    PubMed

    Rathnasamy, Gurugirijha; Ling, Eng-Ang; Kaur, Charanjit

    2014-12-01

    Cerebral edema/brain edema refers to the accumulation of fluid in the brain and is one of the fatal conditions that require immediate medical attention. Cerebral edema develops as a consequence of cerebral trauma, cerebral infarction, hemorrhages, abscess, tumor, hypoxia, and other toxic or metabolic factors. Based on the causative factors cerebral edema is differentiated into cytotoxic cerebral edema, vasogenic cerebral edema, osmotic and interstitial cerebral edema. Treatment of cerebral edema depends on timely diagnosis and medical assistance. Pragmatic treatment strategies such as antihypertensive medications, nonsteroidal anti-inflammatory drugs, barbiturates, steroids, glutamate and N-methyl-D-aspartate receptor antagonists and trometamol are used in clinical practice. Although the above mentioned treatment approaches are being used, owing to the complexity of the mechanisms involved in cerebral edema, a single therapeutic strategy which could ameliorate cerebral edema is yet to be identified. However, recent experimental studies have suggested that melatonin, a neurohormone produced by the pineal gland, could be an effective alternative for treating cerebral edema. In animal models of stroke, melatonin was not only shown to reduce cerebral edema but also preserved the blood brain barrier. Melatonin's beneficial effects were attributed to its properties, such as being a potent anti-oxidant, and its ability to cross the blood brain barrier within minutes after its administration. This review summarizes the beneficial effects of melatonin when used for treating cerebral edema.

  2. [Conductivity reconstruction of edema in human brain based on modified genetic algorithm].

    PubMed

    Liun, Jicheng; Huang, Kama; Hu, Yayi

    2007-04-01

    It is the intent of this study to estimate the progression or regression of edema at the bedside continuously. Based on the theoretic model, the Adaptive Genetic Algorithm (AGA) has been applied in the calculation of conductivity reconstruction. Dynamic crossover and mutation operators which are based on Haiming Distance are brought forward in this paper to maintain generation's diversity. Then, both AGA and Standard GA (SGA) have been applied in the conductivity reconstruction of edema in human brain. It is shown that AGA not only has attained a higher degree of efficiency but also has enhanced the capability to converge to the best answer.

  3. Reduction of cerebral edema after traumatic brain injury using an osmotic transport device.

    PubMed

    McBride, Devin W; Szu, Jenny I; Hale, Chris; Hsu, Mike S; Rodgers, Victor G J; Binder, Devin K

    2014-12-01

    Traumatic brain injury (TBI) is significant, from a public health standpoint, because it is a major cause of the morbidity and mortality of young people. Cerebral edema after a TBI, if untreated, can lead to devastating damage of the remaining tissue. The current therapies of severe TBI (sTBI), as outlined by the Brain Trauma Foundation, are often ineffective, thus a new method for the treatment of sTBI is necessary. Herein, the reduction of cerebral edema, after TBI, using an osmotic transport device (OTD) was evaluated. Controlled cortical impact (CCI) was performed on adult female CD-1 mice, and cerebral edema was allowed to form for 3 h, followed by 2 h of treatment. The treatment groups were craniectomy only, craniectomy with a hydrogel, OTD without bovine serum albumin (BSA), and OTD. After CCI, brain water content was significantly higher for animals treated with a craniectomy only, craniectomy with a hydrogel, and OTD without BSA, compared to that of control animals. However, when TBI animals were treated with an OTD, brain water content was not significantly higher than that of controls. Further, brain water content of TBI animals treated with an OTD was significantly reduced, compared to that of untreated TBI animals, TBI animals treated with a craniectomy and a hydrogel, and TBI animals treated with an OTD without BSA. Here, we demonstrate the successful reduction of cerebral edema, as determined by brain water content, after TBI using an OTD. These results demonstrate proof of principle for direct water extraction from edematous brain tissue by direct osmotherapy using an OTD.

  4. Transcranial measurement of diffuse light reflectance from brain edema in rats: effect of change in the blood flow

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshinori; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Saitoh, Daizoh; Shima, Katsuji; Okada, Yoshiaki; Ashida, Hiroshi; Obara, Minoru

    2005-04-01

    We assumed that edema causes a decrease in the scattering coefficient of brain tissue and hence a decrease in the intensity of diffuse reflectance from the brain. On the basis of this assumption, we attempted to transcranially detect a formation of brain edema by measuring diffuse light reflectance. In rats, edema was induced by making a cold injury in the brain. The skull was irradiated with 633-nm and 532-nm laser light delivered through an optical fiber, and the diffuse light reflectance from the brain was collected with another optical fiber. We observed that reflectance intensities were significantly decreased around the cold injury both at 633 nm and 532 nm, suggesting that scattering coefficient of brain tissue was reduced due to a formation of edema in this area. In the injury, reflectance intensity was increased at 532 nm, indicating that cerebral blood volume was decreased in this region.

  5. Acute ethanol-induced changes in edema and metabolite concentrations in rat brain.

    PubMed

    Liu, Huimin; Zheng, Wenbin; Yan, Gen; Liu, Baoguo; Kong, Lingmei; Ding, Yan; Shen, Zhiwei; Tan, Hui; Zhang, Guishan

    2014-01-01

    The aim of this study is to describe the acute effects of EtOH on brain edema and cerebral metabolites, using diffusion weight imaging (DWI) and proton magnetic resonance spectroscopy ((1)H-MRS) at a 7.0T MR and to define changes in apparent diffusion coefficient (ADC) values and the concentration of metabolites in the rat brain after acute EtOH intoxication. ADC values in each ROI decreased significantly at 1 h and 3 h after ethanol administration. ADC values in frontal lobe were decreased significantly compared with other regions at 3 h. For EtOH/Cr+PCr and cerebral metabolites (Cho, Tau, and Glu) differing over time, no significant differences for Ins, NAA, and Cr were observed in frontal lobes. Regression analysis revealed a significant association between TSEtOH/Cr+PCr and TSCho, TSTau, TSGlu, and TSADC. The changes of ADC values in different brain regions reflect the process of the cytotoxic edema in vivo. The characterization of frontal lobes metabolites changes and the correlations between TSEtOH/Cr+PCr and TSCho, TSTau, and TSGlu provide a better understanding for the biological mechanisms in neurotoxic effects of EtOH on the brain. In addition, the correlations between TSEtOH/Cr+PCr and TSADC will help us to understand development of the ethanol-induced brain cytotoxic edema.

  6. Perilesional edema in brain metastasis from non-small cell lung cancer (NSCLC) as predictor of response to radiosurgery (SRS).

    PubMed

    Tini, Paolo; Nardone, Valerio; Pastina, Pierpaolo; Battaglia, Giuseppe; Vinciguerra, Claudia; Carfagno, Tommaso; Rubino, Giovanni; Carbone, Salvatore Francesco; Sebaste, Lucio; Cerase, Alfonso; Federico, Antonio; Pirtoli, Luigi

    2017-03-04

    Radiosurgery (SRS) is widely used in the treatment of brain oligo-metastases from NSCLC. The aim of present study is to evaluate the extent of perilesional edema in brain metastases as predictive factor of treatment response. This single center retrospective study included 42 consecutive patients (January 2011-December 2014) with 1-2 brain metastasis from NSCLC treated with Radiosurgery (SRS). Extent of perilesional edema was measured as maximal extension from the edge of lesion and classified as minor (<10 mm) or major (≥10 mm). We analyzed Modality of Brain Recurrence (MBR), classified as in-field or out-of- field, and Brain Progression Free-Survival (BPFS) after treatment stratified according to extent of perilesional edema. Analyzing modality of brain recurrence and BPFS, after a median follow-up of 6 months, we found that patients with minor edema had a better radiological response to SRS with none in-field recurrences and a lower risk of the onset of new brain lesions (out-of-field recurrence). Instead, patients group with major edema had a worse response rate of lesions treated, further, a higher risk of out-of-field brain relapse. Extent of perilesional edema in brain metastasis from NSCLC could be a predictive factor of response and brain progression after SRS treatment alone.

  7. Cerebral edema following iodine-131 therapy for thyroid carcinoma metastatic to the brain

    SciTech Connect

    Datz, F.L.

    1986-05-01

    Brain metastases are rare in well-differentiated thyroid carcinoma but when present they can lead to the patient's death. Iodine-131 therapy for intracerebral thyroid carcinoma metastases causes radiation-induced acute cerebral edema that can lead to CNS complications and even death. We present a case in which a patient with intracerebral /sup 131/I uptake developed seizures, slurred speech, and muscle weakness 12 hr following /sup 131/I therapy. The patient's CT scan, post-therapy, confirmed an intracranial metastasis with a significant amount of surrounding edema. Radiotherapists, when using external beam radiation to treat intracerebral metastases, commonly place these patients on steroids, glycerol, or mannitol prior to instituting therapy, to prevent complications from radiation-induced cerebral edema. This technique could be applied to /sup 131/I therapy of intracranial thyroid carcinoma metastases as well.

  8. Dexamethasone exacerbates cerebral edema and brain injury following lithium-pilocarpine induced status epilepticus.

    PubMed

    Duffy, B A; Chun, K P; Ma, D; Lythgoe, M F; Scott, R C

    2014-03-01

    Anti-inflammatory therapies are the current most plausible drug candidates for anti-epileptogenesis and neuroprotection following prolonged seizures. Given that vasogenic edema is widely considered to be detrimental for outcome following status epilepticus, the anti-inflammatory agent dexamethasone is sometimes used in clinic for alleviating cerebral edema. In this study we perform longitudinal magnetic resonance imaging in order to assess the contribution of dexamethasone on cerebral edema and subsequent neuroprotection following status epilepticus. Lithium-pilocarpine was used to induce status epilepticus in rats. Following status epilepticus, rats were either post-treated with saline or with dexamethasone sodium phosphate (10mg/kg or 2mg/kg). Brain edema was assessed by means of magnetic resonance imaging (T2 relaxometry) and hippocampal volumetry was used as a marker of neuronal injury. T2 relaxometry was performed prior to, 48 h and 96 h following status epilepticus. Volume measurements were performed between 18 and 21 days after status epilepticus. Unexpectedly, cerebral edema was worse in rats that were treated with dexamethasone compared to controls. Furthermore, dexamethasone treated rats had lower hippocampal volumes compared to controls 3 weeks after the initial insult. The T2 measurements at 2 days and 4 days in the hippocampus correlated with hippocampal volumes at 3 weeks. Finally, the mortality rate in the first week following status epilepticus increased from 14% in untreated rats to 33% and 46% in rats treated with 2mg/kg and 10mg/kg dexamethasone respectively. These findings suggest that dexamethasone can exacerbate the acute cerebral edema and brain injury associated with status epilepticus.

  9. Potassium Aspartate Attenuates Brain Injury Induced by Controlled Cortical Impact in Rats Through Increasing Adenosine Triphosphate (ATP) Levels, Na+/K+-ATPase Activity and Reducing Brain Edema

    PubMed Central

    Gu, Yi; Zhang, Jie; Zhao, Yumei; Su, Yujin; Zhang, Yazhuo

    2016-01-01

    Background Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). Material/Methods TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. Results We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (p<0.05 and p<0.001, respectively) and decreased the cortical lesion volume (p<0.05 and p<0.001, respectively) compared with vehicle-only treatment. PA treatment at the dose of 125 mg/kg attenuated brain edema and ameliorated BBB integrity. In addition, PA treatment significantly reduced the loss of ATP (p<0.01), reduced lactic acid levels (p<0.001), and increased the activity of Na+/K+-ATPase (p<0.01). Conclusions Our results indicate PA has neuroprotective effects on TBI through increasing ATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA. PMID:27959885

  10. Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks.

    PubMed

    Demirhan, Ayşe; Toru, Mustafa; Guler, Inan

    2015-07-01

    Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.

  11. Central Role of Maladapted Astrocytic Plasticity in Ischemic Brain Edema Formation

    PubMed Central

    Wang, Yu-Feng; Parpura, Vladimir

    2016-01-01

    Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the resulting reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas, associated with maladapted astrocytic plasticity. The astrocytic plasticity includes both morphological and functional plasticity. The former involves a reactive gliosis and the subsequent glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K+ and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein (GFAP) and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the BBB. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but also leads to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation. PMID:27242440

  12. Nicotinamide reduces acute cortical neuronal death and edema in the traumatically injured brain.

    PubMed

    Hoane, Michael R; Gilbert, David R; Holland, Michael A; Pierce, Jeremy L

    2006-11-06

    Previous studies have shown that administration of nicotinamide (Vitamin B(3)) in animal models of traumatic brain injury (TBI) and ischemia significantly reduced the size of infarction or injury and improved functional recovery. The present study evaluated the ability of nicotinamide to provide acute neuroprotection and edema reduction following TBI. Groups of rats were assigned to nicotinamide (500mg/kg) or saline (1.0ml/kg) treatment conditions and received contusion injuries or sham surgeries. Drug treatment was administered 15min following injury. Brains were harvested 24h later and either processed for histology or water content. Frozen sections were stained with the degenerating neuron stain (Fluoro-Jade B) (FJ) and cell counts were performed at the site of injury. Additional brains were processed for water content (a measure of injury-induced edema). Results of this study showed that administration of nicotinamide following TBI significantly reduced the number of FJ(+) neurons in the injured cortex compared to saline-treated animals. Examination of the water content of the brains also revealed that administration of nicotinamide significantly attenuated the amount of water compared to saline-treated animals in the injured cortex. These results indicate that nicotinamide administration significantly reduced neuronal death and attenuated cerebral edema following injury. The current findings suggest that nicotinamide significantly modulates acute pathophysiological processes following injury and that this may account for its beneficial effects on recovery of function following injury.

  13. Fast axonal transport in early experimental disc edema.

    PubMed

    Radius, R L; Anderson, D R

    1980-02-01

    Previous work has documented impairment of slow axonal transport in papilledema, but the abnormalities in rapid transport were less certain. Therefore fast axonal transport was studied in 19 primate eyes subjected to ocular hypotony for 6 to 72 hr following surgical fistulization of the anterior chamber. Mild, irregular alterations in fast axonal transport were detected only after nerve head swelling was apparent. These changes in fast transport mechanisms in cases of nerve head edema occur after, and may be secondary to, impaired slow axoplasmic flow and the resultant axonal swelling. Furthermore, since prolonged complete interruption of axonal transport is theoretically inconsistent with the continued normal neuron function characteristic of papilledema and, moreover, since previous data shows a "slowdown" rather than complete blockade of axonal transport in papilledema, it is likely that in eyes with papilledema there does not exist a complete flock of axonal transport. Therefore we hypothesize that the swelling results when slow axoplasmic flow is locally slowed down but not totally stopped, with the axon distention producing secondary mild, irregular changes in fast axonal transport.

  14. Effect of lavender oil (Lavandula angustifolia) on cerebral edema and its possible mechanisms in an experimental model of stroke.

    PubMed

    Vakili, Abedin; Sharifat, Shaghayegh; Akhavan, Maziar Mohammad; Bandegi, Ahmad Reza

    2014-02-22

    Lavender belongs to the family Labiatae and has a variety of cosmetic uses as well as therapeutic purposes in herbal medicine. The present study was conducted to evaluate the protective effect of lavender oil against brain edema and its possible mechanisms in an experimental model of stroke. Under Laser-Doppler Flowmetry, focal cerebral ischemia was induced by the transient occlusion of the middle cerebral artery for 1h in rats. Lavender oil (100, 200, and 400 mg/kg ip (and/or vehicle was injected at the onset of ischemia. Infarct size, cerebral edema, functional outcome, and oxidative stress biomarkers were evaluated using standard methods. Western blotting was used to determine the protein expression of VEGF, Bax, and Bcl-2. Treatment with lavender oil at doses of 200 and 400 mg/kg significantly diminished infarct size, brain edema, and improved functional outcome after cerebral ischemia (P<0.001). Lavender oil (200 mg/kg) also reduced the content of malondialdehyde and increased the activities of superoxide dismutase, glutathione peroxidase, and total antioxidant capacity (P<0.001). Although lavender oil enhanced VEGF expression (P=0.026), it could not decrease the Bax-to-Bcl-2 ratio (pro- to anti-apoptotic proteins) in the rat brain (P>0.05). The results indicated that lavender oil has neuroprotective activity against cerebral ischemia and alleviated neurological function in rats, and the mechanism may be related to augmentation in endogenous antioxidant defense, inhibiting oxidative stress, and increasing VEGF expression in the rat brain. However, lavender oil could not suppress the apoptosis pathway.

  15. Glucocorticoids in the management of peritumoral brain edema: a review of molecular mechanisms

    PubMed Central

    Murayi, Roger; Chittiboina, Prashant

    2016-01-01

    Peritumoral brain edema (PTBE) is mediated by blood-brain barrier breakdown. PTBE results from interstitial vasogenic brain edema due to vascular endothelial growth factor and other inflammatory products of brain tumors. Glucocorticoids (GCs) are the mainstay for treatment of PTBE despite significant systemic side effects. GCs are thought to affect multiple cell types in the edematous brain. Here, we review preclinical studies of GC effects on edematous brain and review mechanisms underlying GC action on tumor cells, endothelial cells, and astrocytes. GCs may reduce tumor cell viability and suppress vascular endothelial growth factor (VEGF) production in tumor cells. Modulation of expression and distribution of tight junction proteins occludin, claudin-5, and ZO-1 in endothelial cells likely plays a central role in GC action on endothelial cells. GCs may also have an effect on astrocyte angiopoietin production and limited effect on astrocyte aquaporin. A better understanding of these molecular mechanisms may lead to the development of novel therapeutics for management of PTBE with a better side effect profile. PMID:27613642

  16. Feasibility of using diffuse reflectance spectroscopy for the quantification of brain edema

    NASA Astrophysics Data System (ADS)

    Rodriguez, Juan G.; Sisson, Cynthia; Hendricks, Chad; Pattillo, Chris; McWaters, Megan; Hardjasudarma, Mardjohan; Quarles, Chad; Yaroslavsky, Anna N.; Yaroslavsky, Ilya V.; Battarbee, Harold

    2001-05-01

    Many diseased states of the brain can result in the displacement of brain tissues and restrict cerebral blood flow, disrupting function in a life-threatening manner. Clinical examples where displacements are observed include venous thromboses, hematomas, strokes, tumors, abscesses, and, particularly, brain edema. For the latter, the brain tissue swells, displacing the cerebral spinal fluid (CSF) layer that surrounds it, eventually pressing itself against the skull. Under such conditions, catheters are often inserted into the brain's ventricles or the subarachnoid space to monitor increased pressure. These are invasive procedures that incur increased risk of infection and consequently are used reluctantly by clinicians. Recent studies in the field of biomedical optics have suggested that the presence or absence of the CSF layer can lead to dramatic changes in NIR signals obtained from diffuse reflectance measurements around the head. In this study, we consider how this sensitivity of NIR signals to CSF might be exploited to non-invasively monitor the onset and resolution of brain edema.

  17. The apparent diffusion coefficient does not reflect cytotoxic edema on the uninjured side after traumatic brain injury.

    PubMed

    Lu, Hong; Lei, Xiaoyan

    2014-05-01

    After traumatic brain injury, vasogenic and cytotoxic edema appear sequentially on the involved side. Neuroimaging investigations of edema on the injured side have employed apparent diffusion coefficient measurements in diffusion tensor imaging. We investigated the changes occurring on the injured and uninjured sides using diffusion tensor imaging/apparent diffusion coefficient and histological samples in rats. We found that, on the injured side, that vasogenic edema appeared at 1 hour and intracellular edema appeared at 3 hours. Mixed edema was observed at 6 hours, worsening until 12-24 hours post-injury. Simultaneously, microglial cells proliferated at the trauma site. Apparent diffusion coefficient values increased at 1 hour, decreased at 6 hours, and increased at 12 hours. The uninjured side showed no significant pathological change at 1 hour after injury. Cytotoxic edema appeared at 3 hours, and vasogenic edema was visible at 6 hours. Cytotoxic edema persisted, but vasogenic edema tended to decrease after 12-24 hours. Despite this complex edema pattern on the uninjured side with associated pathologic changes, no significant change in apparent diffusion coefficient values was detected over the first 24 hours. Apparent diffusion coefficient values accurately detected the changes on the injured side, but did not detect the changes on the uninjured side, giving a false-negative result.

  18. Perilesional brain edema and seizure activity in patients with calcified neurocysticercosis

    PubMed Central

    Nash, Theodore E.; Pretell, E. Javier; Lescano, Andres. G.; Bustos, Javier A.; Gilman, Robert H.; Gonzalez, Armando E.; Garcia, Héctor H.

    2013-01-01

    Background Cysticercosis due to Taenia solium is a leading cause of adult acquired seizures and epilepsy that frequently occurs in patients with only calcified larval cysts. Transient episodes of perilesional brain edema occur around calcified foci but its importance, association with seizures, incidence, and pathophysiology are unknown. Methods One hundred and ten persons with only calcified lesions and a history of seizures or severe headaches were followed prospectively in a cohort design to assess the incidence of seizure relapses. In a nested case-control sub study, perilesional edema was assessed by MRI at the time a seizure occurred in the symptomatic patient and in a matched asymptomatic control, amongst the 110 followed. Results Median follow up was 32.33 months (SD 19.99). Twenty-nine people had an incident seizure with an estimated 5 year seizure incidence of 36%. Twenty-four patients of the 29 with seizure relapse had an MRI evaluation within five days of the event. Perilesional edema was found in 12 (50.0%) compared to 2 of 23 asymptomatic matched controls (8.7%). Conclusions Perilesional edema occurs frequently and is associated with episodic seizure activity in calcified neurocysticercosis. Our findings are likely representative of symptomatic patients in endemic regions and suggest a unique and possibly preventable cause of seizures in this population. PMID:18986841

  19. Multi-fractal texture features for brain tumor and edema segmentation

    NASA Astrophysics Data System (ADS)

    Reza, S.; Iftekharuddin, K. M.

    2014-03-01

    In this work, we propose a fully automatic brain tumor and edema segmentation technique in brain magnetic resonance (MR) images. Different brain tissues are characterized using the novel texture features such as piece-wise triangular prism surface area (PTPSA), multi-fractional Brownian motion (mBm) and Gabor-like textons, along with regular intensity and intensity difference features. Classical Random Forest (RF) classifier is used to formulate the segmentation task as classification of these features in multi-modal MRIs. The segmentation performance is compared with other state-of-art works using a publicly available dataset known as Brain Tumor Segmentation (BRATS) 2012 [1]. Quantitative evaluation is done using the online evaluation tool from Kitware/MIDAS website [2]. The results show that our segmentation performance is more consistent and, on the average, outperforms other state-of-the art works in both training and challenge cases in the BRATS competition.

  20. Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats.

    PubMed

    Vakili, Abedin; Mojarrad, Somye; Akhavan, Maziar Mohammad; Rashidy-Pour, Ali

    2011-03-04

    Cerebral edema is the most common cause of neurological deterioration and mortality during acute ischemic stroke. Despite the clinical importance of cerebral ischemia, the underlying mechanisms remain poorly understood. Recent studies suggest a role for TNF-α in the brain edema formation. To further investigate whether TNF-α would play a role in brain edema formation, we examined the effects of pentoxifylline (PTX, an inhibitor of TNF-α synthesis) on the brain edema and TNF-α levels in a model of transient focal cerebral ischemia. The right middle cerebral artery (MCA) of rats was occluded for 60 min using the intraluminal filament method. The animals received PTX (60 mg/kg) immediately, 1, 3, or 6h post-ischemic induction. Twenty-four hours after induction of ischemic injury, permeability of the blood-brain barrier (BBB) and brain edema were determined by in situ brain perfusion of Evans Blue (EB) and wet-to-dry weight ratio, respectively. TNF-α protein levels in ischemic cortex were also measured at 1, 4, and 24h after the beginning of an ischemic stroke by using an enzyme-linked immunosorbent assay method. The administration of PTX up to 6h after occlusion of the MCA significantly reduced the brain edema. Moreover, PTX significantly reduced the concentration of TNF-α in ischemic brain cortex up to 4h post-transient focal stroke (P<0.002). Finally, treatment by PTX led to a significant decrease in EB extravasations (P<0.001). Our data demonstrate that PTX administration up to 6h after ischemia can reduce brain edema in a model of transient focal cerebral ischemia. The beneficial effects of PTX may be mediated, at least in part, through a decline in TNF-α production and BBB breakdown.

  1. The effects of Tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats.

    PubMed

    Tang, Chao; Xue, Hongli; Bai, Changlin; Fu, Rong; Wu, Anhua

    2010-12-01

    Disruption of blood-brain barrier (BBB) and edema formation play a key role in the development of neurological dysfunction after cerebral ischemia. In this study, the effects of Tanshinone IIA (Tan IIA), one of the active ingredients of Salvia miltiorrhiza root, on the BBB and brain edema after transient middle cerebral artery occlusion in rats were examined. Our study demonstrated that Tan IIA reduced brain infarct area, water content in the ischemic hemisphere. Furthermore, Tan IIA significantly decreased BBB permeability to Evans blue, suppressed the expression of intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), inhibited the degradation of tight junction proteins zonula occludens-1 (ZO-1) and Occludin. These results demonstrated that Tan IIA was effective for attenuating the extent of brain edema formation in response to ischemia injury in rats, partly by Tan IIA's protective effect on the BBB. Our results may have implications in the treatment of brain edema in cerebral ischemia.

  2. Rifaximin, but not growth factor 1, reduces brain edema in cirrhotic rats

    PubMed Central

    Òdena, Gemma; Miquel, Mireia; Serafín, Anna; Galan, Amparo; Morillas, Rosa; Planas, Ramon; Bartolí, Ramon

    2012-01-01

    AIM: To compare rifaximin and insulin-like growth factor (IGF)-1 treatment of hyperammonemia and brain edema in cirrhotic rats with portal occlusion. METHODS: Rats with CCl4-induced cirrhosis with ascites plus portal vein occlusion and controls were randomized into six groups: Cirrhosis; Cirrhosis + IGF-1; Cirrhosis + rifaximin; Controls; Controls + IGF-1; and Controls + rifaximin. An oral glutamine-challenge test was performed, and plasma and cerebral ammonia, glucose, bilirubin, transaminases, endotoxemia, brain water content and ileocecal cultures were measured and liver histology was assessed. RESULTS: Rifaximin treatment significantly reduced bacterial overgrowth and endotoxemia compared with cirrhosis groups, and improved some liver function parameters (bilirubin, alanine aminotransferase and aspartate aminotransferase). These effects were associated with a significant reduction in cerebral water content. Blood and cerebral ammonia levels, and area-under-the-curve values for oral glutamine-challenge tests were similar in rifaximin-treated cirrhotic rats and control group animals. By contrast, IGF-1 administration failed to improve most alterations observed in cirrhosis. CONCLUSION: By reducing gut bacterial overgrowth, only rifaximin was capable of normalizing plasma and brain ammonia and thereby abolishing low-grade brain edema, alterations associated with hepatic encephalopathy. PMID:22563196

  3. Predictors of malignant brain edema in middle cerebral artery infarction observed on CT angiography.

    PubMed

    Kim, Hoon; Jin, Seon Tak; Kim, Young Woo; Kim, Seong Rim; Park, Ik Seong; Jo, Kwang Wook

    2015-03-01

    Patients with middle cerebral artery (MCA) infarction accompanied by MCA occlusion with or without internal carotid artery (ICA) occlusion have a poor prognosis, as a result of brain cell damage caused by both the infarction and by space-occupying and life-threatening edema formation. Multiple treatments can reduce the likelihood of edema formation, but tend to show limited efficacy. Decompressive hemicraniectomy with duroplasty has been promising for improving functional outcomes and reducing mortality, particularly improved functional outcomes can be achieved with early decompressive surgery. Therefore, identifying patients at risk for developing fatal edema is important and should be performed as early as possible. Sixty-four patients diagnosed with major MCA infarction with MCA occlusion within 8 hours of symptom onset were retrospectively reviewed. Early clinical, laboratory, and computed tomography angiography (CTA) parameters were analyzed for malignant brain edema (MBE). Twenty of the 64 patients (31%) had MBE, and the clinical outcome was poor (3month modified Rankin Scale >2) in 95% of them. The National Institutes of Health Stroke Scale (NIHSS) score, Alberta Stroke Program Early Computed Tomography Score, Clot Burden Score, and Collateral Score (CS) showed statically significant differences in both groups. Multivariable analyses adjusted for age and sex identified the independent predictors of MBE: NIHSS score >18 (odds ratio [OR]: 4.4, 95% confidence interval [CI]: 1.2-16.0, p=0.023) and CS on CTA <2 (OR: 7.28, 95% CI: 1.7-30.3,p=0.006). Our results provide useful information for selecting patients in need of aggressive treatment such as decompressive surgery.

  4. Volumetric Electromagnetic Phase-Shift Spectroscopy of Brain Edema and Hematoma

    PubMed Central

    Gonzalez, Cesar A.; Valencia, Jose A.; Mora, Alfredo; Gonzalez, Fernando; Velasco, Beatriz; Porras, Martin A.; Salgado, Javier; Polo, Salvador M.; Hevia-Montiel, Nidiyare; Cordero, Sergio; Rubinsky, Boris

    2013-01-01

    Motivated by the need of poor and rural Mexico, where the population has limited access to advanced medical technology and services, we have developed a new paradigm for medical diagnostic based on the technology of “Volumetric Electromagnetic Phase Shift Spectroscopy” (VEPS), as an inexpensive partial substitute to medical imaging. VEPS, can detect changes in tissue properties inside the body through non-contact, multi-frequency electromagnetic measurements from the exterior of the body, and thereby provide rapid and inexpensive diagnostics in a way that is amenable for use in economically disadvantaged parts of the world. We describe the technology and report results from a limited pilot study with 46 healthy volunteers and eight patients with CT radiology confirmed brain edema and brain hematoma. Data analysis with a non-parametric statistical Mann-Whitney U test, shows that in the frequency range of from 26 MHz to 39 MHz, VEPS can distinguish non-invasively and without contact, with a statistical significance of p<0.05, between healthy subjects and those with a medical conditions in the brain. In the frequency range of between 153 MHz to 166 MHz it can distinguish with a statistical significance of p<0.05 between subjects with brain edema and those with a hematoma in the brain. A classifier build from measurements in these two frequency ranges can provide instantaneous diagnostic of the medical condition of the brain of a patient, from a single set of measurements. While this is a small-scale pilot study, it illustrates the potential of VEPS to change the paradigm of medical diagnostic of brain injury through a VEPS classifier-based technology. Obviously substantially larger-scale studies are needed to verify and expand on the findings in this small pilot study. PMID:23691001

  5. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats.

    PubMed

    Lv, Qiushi; Fan, Xinying; Xu, Gelin; Liu, Qian; Tian, Lili; Cai, Xiaoyi; Sun, Wenshan; Wang, Xiaomeng; Cai, Qiankun; Bao, Yuanfei; Zhou, Lulu; Zhang, Yao; Ge, Liang; Guo, Ruibing; Liu, Xinfeng

    2013-02-01

    Traumatic brain injury (TBI) remains the leading cause of injury-related death and disability. Brain edema, one of the most major complications of TBI, contributes to elevated intracranial pressure, and poor prognosis following TBI. Nerve growth factor (NGF) appears to be a viable strategy to treat brain edema and TBI. Unfortunately, due to its poor blood-brain barrier (BBB) permeability, the clinical application of NGF has been greatly limited. We previously demonstrated that intranasal NGF could bypass the BBB and distribute throughout the brain. Here we further studied whether intranasal NGF could attenuate TBI-induced brain edema and its putative mechanisms. TBI was produced by a modified weight-drop model. We found that intranasal administration of NGF (5μg/d) attenuated the brain edema, as assayed by hemisphere water content, at 12h, 24h and 72h after TBI induction. This attenuation was associated with a prominent decrease of the content of aquaporin-4, which plays a pivotal role in the formation of brain edema. By the use of RT-PCR and ELISA, we showed that intranasal NGF markedly inhibited the transcription and expression of pro-inflammatory cytokines including IL-1β and TNF-α. An electrophoretic mobility shift assay (EMSA) displayed a significant activation of nuclear factor-κB following TBI, which was, however, much lowered in the NGF-treated rats. Furthermore, upon intranasal NGF supplementation, mitochondria-mediated apoptosis following TBI was minimized, as indicated by upregulation of Bcl-2 and downregulation of caspase-3. Collectively, our findings suggested that intranasal NGF may be a promising strategy to treat brain edema and TBI.

  6. The protective effect of HET0016 on brain edema and blood-brain barrier dysfunction after cerebral ischemia/reperfusion.

    PubMed

    Liu, Yu; Wang, Di; Wang, Huan; Qu, Youyang; Xiao, Xingjun; Zhu, Yulan

    2014-01-28

    N-hydroxy-N-(4-butyl-2-methylphenyl) formamidine (HET0016) is a specific 20-hydroxyeicosatetraenoic acid (20-HETE) inhibitor which was first synthesized in 2001. It has been demonstrated that HET0016 reduces cerebral infarction volume in rat middle cerebral artery occlusion (MCAO) models. However, little is known about the role of HET0016 in the blood-brain barrier (BBB) dysfunction after cerebral ischemia/reperfusion (I/R) injury. The present study was designed to examine the effect of HET0016 in a MCAO and reperfusion rat model to determine whether it protects against brain edema and BBB disruption. Rats were subjected to 90 min MCAO, followed by 4, 24, 48, and 72 h reperfusion. Brain edema was measured according to the wet and dry weight method. BBB permeability based on the extravasation of Evans blue and sodium fluorescein was detected. BBB ultrastructure alterations were presented through transmission electron microscope. Superoxide production in ischemic tissue was also measured by dihydroethidium fluorescent probe. Western blot was used to analyze the expression of Claudin-5, ZO-1, MMP-9, and JNK pathway. At 24h after reperfusion, HET0016 reduced brain edema and BBB leakage. Ultrastructural damage of BBB and the increase of superoxide production were attenuated by HET0016 treatment. Western blot showed that HET0016 suppressed the activation of MMP-9 and JNK pathway but restored the expression of Claudin-5 and ZO-1. In conclusion, these results suggest that HET0016 protects BBB dysfunction after I/R by regulating the expression of MMP-9 and tight junction proteins. Furthermore, inhibition of oxidative stress and JNK pathway may be involved in this protecting effect.

  7. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    PubMed

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  8. Sulfasalazine impacts on ferroptotic cell death and alleviates the tumor microenvironment and glioma-induced brain edema

    PubMed Central

    Sehm, Tina; Fan, Zheng; Ghoochani, Ali; Rauh, Manfred; Engelhorn, Tobias; Minakaki, Georgia; Dörfler, Arnd; Klucken, Jochen; Buchfelder, Michael

    2016-01-01

    The glutamate transporter xCT (SCL7a11, system Xc-, SXC) is an emerging key player in glutamate/cysteine/glutathione homeostasis in the brain and in cancer. xCT expression correlates with the grade of malignancy. Here, we report on the use of the U.S. Food and Drug Administration and EMA-approved xCT inhibitor, sulfasalazine (SAS) in gliomas. SAS does not affect cell viability in gliomas at concentrations below 200 μM. At higher concentrations SAS becomes gliomatoxic. Mechanistically SAS inhibits xCT and induces ferroptotic cell death in glioma cells. There is no evidence for impact on autophagic flux following SAS application. However, SAS can potentiate the efficacy of the standard chemotherapeutic and autophagy-inducing agent temozolomide (Temcat, Temodal or Temodar®). We also investigated SAS in non-transformed cellular constituents of the brain. Neurons and brain tissue are almost non-responding to SAS whereas isolated astrocytes are less sensitive towards SAS toxicity compared to gliomas. In vivo SAS treatment does not affect experimental tumor growth and treated animals revealed comparable tumor volume as untreated controls. However, SAS treatment resulted in reduced glioma-derived edema and, hence, total tumor volume burden as revealed by T2-weighted magnetic resonance imaging. Altogether, we show that SAS can be utilized for targeting the glutamate antiporter xCT activity as a tumor microenvironment-normalizing drug, while crucial cytotoxic effects in brain tumors are minor. PMID:27074570

  9. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    NASA Astrophysics Data System (ADS)

    Xie, J.; Qian, Z.; Yang, T.; Li, W.; Hu, G.

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient (μs') and BWC. By recording μs' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  10. Association Between a Quantitative CT Scan Measure of Brain Edema and Outcome After Cardiac Arrest

    PubMed Central

    Metter, Robert B.; Rittenberger, Jon C.; Guyette, Francis X.; Callaway, Clifton W.

    2011-01-01

    Background Cerebral edema is one physical change associated with brain injury and decreased survival after cardiac arrest. Edema appears on computed tomography (CT) scan of the brain as decreased x-ray attenuation by gray matter. This study tested whether the gray matter attenuation to white matter attenuation ratio (GWR) was associated with survival and functional recovery. Methods Subjects were patients hospitalized after cardiac arrest at a single institution between 1/1/2005 and 7/30/2010. Subjects were included if they had non-traumatic cardiac arrest and a non-contrast CT scan within 24 hours after cardiac arrest. Attenuation (Hounsfield Units) was measured in gray matter (caudate nucleus, putamen, thalamus, and cortex) and in white matter (internal capsule, corpus callosum and centrum semiovale). The GWR was calculated for basal ganglia and cerebrum. Outcomes included survival and functional status at hospital discharge. Results For 680 patients, 258 CT scans were available, but 18 were excluded because of hemorrhage (10), intravenous contrast (3) or technical artifact (5), leaving 240 CT scans for analysis. Lower GWR values were associated with lower initial Glasgow Coma Scale motor score. Overall survival was 36%, but decreased with decreasing GWR. The average of basal ganglia and cerebrum GWR provided the best discrimination. Only 2/58 subjects with average GWR<1.20 survived and both were treated with hypothermia. The association of GWR with functional outcome was completely explained by mortality when GWR<1.20. Conclusions Subjects with severe cerebral edema, defined by GWR<1.20, have very low survival with conventional care, including hypothermia. GWR estimates pre-treatment likelihood of survival after cardiac arrest. PMID:21592642

  11. Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN

    NASA Astrophysics Data System (ADS)

    Pradhan, Nandita; Sinha, A. K.

    2008-03-01

    This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.

  12. Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury

    PubMed Central

    Naderi, Vida; Khaksari, Mohammad; Abbasi, Reza; Maghool, Fatemeh

    2015-01-01

    Objective(s): Estrogen (E2) has neuroprotective effects on blood-brain-barrier (BBB) after traumatic brain injury (TBI). In order to investigate the roles of estrogen receptors (ERs) in these effects, ER-α antagonist (MPP) and, ER-β antagonist (PHTPP), or non-selective estrogen receptors antagonist (ICI 182780) were administered. Materials and Methods: Ovariectomized rats were divided into 10 groups, as follows: Sham, TBI, E2, oil, MPP+E2, PHTPP+E2, MPP+PHTPP+E2, ICI+E2, MPP, and DMSO. E2 (33.3 µg/Kg) or oil were administered 30 min after TBI. 1 dose (150 µg/Kg) of each of MPP, PHTPP, and (4 mg/kg) ICI182780 was injected two times, 24 hr apart, before TBI and estrogen treatment. BBB disruption (Evans blue content) and brain edema (brain water content) evaluated 5 hr and 24 hr after the TBI were evaluated, respectively. Results: The results showed that E2 reduced brain edema after TBI compared to vehicle (P<0.01). The brain edema in the MPP+E2 and PHTPP+E2 groups decreased compared to the vehicle (P<0.001). There was no significant difference in MPP+PHTPP+E2 and ICI+E2 compared to TBI. This parameter in MPP was similar to vehicle. Evans blue content in E2 group was lower than vehicle (P<0.05). The inhibitory effect of E2 on Evans blue was not reduced by MPP+E2 and PHTPP+E2 groups, but decreased by treatment with MPP+PHTPP or ICI. MPP had no effect on Evans blue content. Conclusion: A combined administration of MPP and PHTPP or ICI inhibited the E2-induced decrease in brain edema and BBB disruption; this may suggest that these effects were mediated via both receptors. PMID:25810887

  13. Receptor for advanced glycation end products and neuronal deficit in the fatal brain edema of diabetic ketoacidosis.

    PubMed

    Hoffman, William H; Artlett, Carol M; Zhang, Weixian; Kreipke, Christian W; Passmore, Gregory G; Rafols, Jose A; Sima, Anders A F

    2008-10-31

    Radiologic and neuropsychologic studies suggest that diabetes mellitus causes structural changes in the brain and adversely effects cognitive development. Experimental animal models of type 1 diabetes mellitus (T1DM) have advanced these findings by demonstrating duration-related neuronal and cognitive deficits in T1DM BB/Wor rats. We studied the expression of receptor for advanced glycation end products (RAGE) and neuronal densities in the brains of two patients who died as the result of clinical brain edema(BE)that developed during the treatment of severe diabetic ketoacidosis (DKA). RAGE was markedly and diffusely expressed in blood vessels, neurons, and the choroid plexus and co-localized with glial fibrillary acidic protein (GFAP) in astrocytes. Significant neuronal loss was seen in the hippocampus and frontal cortex. Astrocytosis was present and white matter was atrophied in both cases when compared to age-matched controls. Our data supports that a neuroinflammatory response occurs in the BE associated with DKA, and that even after a relatively short duration of poorly controlled T1DM, the pathogenesis of primary diabetic encephalopathy can be initiated.

  14. L-histidine but not D-histidine attenuates brain edema following cryogenic injury in rats.

    PubMed

    Ikeda, Y; Mochizuki, Y; Matsumoto, H; Nakamura, Y; Dohi, K; Jimbo, H; Shimazu, M; Hayashi, M; Matsumoto, K

    2000-01-01

    Oxygen free radicals have been implicated in the genesis of traumatic brain injury and brain edema (BE). Recent studies have suggested that hydroxyl radical can initiate lipid peroxidation, thus producing lipid-free radicals that may become important sources of singlet oxygen. L-histidine, a singlet oxygen scavenger, potentially can be used to treat BE. In this study we investigated the effects of L-histidine and D-histidine on BE following cryogenic injury in rats. Male Wistar rats were anaesthetized with chloral hydrate. Vasogenic BE was produced by a cortical freezing lesion. Generation of singlet oxygen from photoactivation of rose bengal was studied by electron spin resonance (ESR). Animals were separated into four groups: sham rats (n = 5), saline-treated rats (n = 10), L-histidine treated rats (n = 6) and D-histidine treated rats (n = 7). Each agent (100 mg/kg) was administered intravenously at 30 minutes before lesion production. Animals were sacrificed at 24 hours after lesion production and the brain water content was determined by the dry-wet weight method. L-histidine had no effect on rectal and brain temperature. Election Spin Resonance studies demonstrated that L-histidine is a singlet oxygen scavenger. L-histidine but not D-histidine significantly attenuated BE following cryogenic injury (p < 0.05). In conclusion, L-histidine is useful in the treatment of traumatic BE.

  15. Depot delivery of dexamethasone and cediranib for the treatment of brain tumor associated edema in an intracranial rat glioma model.

    PubMed

    Ong, Qunya; Hochberg, Fred H; Cima, Michael J

    2015-11-10

    Treatments of brain tumor associated edema with systemically delivered dexamethasone, the standard of care, and cediranib, a novel anti-edema agent, are associated with systemic toxicities in brain tumor patients. A tunable, reservoir-based drug delivery device was developed to investigate the effects of delivering dexamethasone and cediranib locally in the brain in an intracranial 9L gliosarcoma rat model. Reproducible, sustained releases of both dexamethasone and solid dispersion of cediranib in polyvinylpyrrolidone (AZD/PVP) from these devices were achieved. The water-soluble AZD/PVP, which exhibited similar bioactivity as cediranib, was developed to enhance the release of cediranib from the device. Local and systemic administration of both dexamethasone and cediranib was equally efficacious in alleviating edema but had no effect on tumor growth. Edema reduction led to modest but significant improvement in survival. Local delivery of dexamethasone prevented dexamethasone-induced weight loss, an adverse effect seen in animals treated with systemic dexamethasone. Local deliveries of dexamethasone and cediranib via these devices used only 2.36% and 0.21% of the systemic doses respectively, but achieved similar efficacy as systemic drug deliveries without the side effects associated with systemic administration. Other therapeutic agents targeting brain tumor can be delivered locally in the brain to provide similar improved treatment outcomes.

  16. Lack of sex-linked differences in cerebral edema and aquaporin-4 expression after experimental stroke

    PubMed Central

    Liu, Xiaoqin; Zhang, Wenri; Alkayed, Nabil J; Froehner, Stanley C; Adams, Marvin E; Amiry-Moghaddam, Mahmood; Ottersen, Ole Petter; Hurn, Patricia D; Bhardwaj, Anish

    2009-01-01

    Aquaporin-4 (AQP4) has been shown to be important in the evolution of stroke-associated cerebral edema. However, the role of AQP4 in stroke-associated cerebral edema as it pertains to sex has not been previously studied. The perivascular pool of AQP4 is important in the influx and efflux of water during focal cerebral ischemia. We used mice with targeted disruption of the gene encoding α-syntrophin (α-Syn−/−) that lack the perivascular AQP4 pool but retain the endothelial pool of this protein. Infarct volume at 72h after transient focal ischemia (90 mins) in isoflurane-anesthetized mice was attenuated in both sexes with α-Syn deletion as compared with their wild-type (WT) counterparts. There were no sex differences in hemispheric water content in WT and α-Syn−/− mice or regional AQP4 expression in WT mice. In neither sex did α-Syn deletion lead to alterations in end-ischemic regional cerebral blood flow (rCBF). These data suggest that after experimental stroke: (1) there is no difference in stroke-associated cerebral edema based on sex, (2) AQP4 does not involve in sex-based differences in stroke volume, and (3) perivascular pool of AQP4 has no significant role in end-ischemic rCBF. PMID:18648381

  17. Bilateral sphenoid wing metastases of prostate cancer presenting with extensive brain edema.

    PubMed

    Lindsberg, P J; Tatlisumak, T; Tienari, J; Brander, A

    1999-05-01

    A 76-year-old man insidiously developed diffuse neurological symptoms: cognitive decline, dysphagia, dysphasia and mental disturbance. Computed tomography of the cranium revealed widespread bilateral brain edema and symmetrical bilateral sphenoid wing hyperostosis. Adjacent to the hyperostosis that resembled skull base meningiomas, two separate parenchymatous temporal lobe lesions enhancing with contrast medium were observed. The patient had earlier been diagnosed to have prostatic carcinoma. Dexamethasone therapy resulted in discontinuation of the neurological symptoms. The diagnosis of metastasized adenocarcinoma of the prostate was confirmed histologically on autopsy after a sudden death from pneumonia. Intracranial metastases of prostate cancer may have a predilection site at the sphenoid wing, and can mimic a skull base meningioma. Intracranial spread of prostatic adenocarcinoma should be considered in elderly men as a treatable cause of gradual neurological deterioration, especially if cranial malignancy or hyperostosis is found.

  18. Intranasal Administration of the Antisecretory Peptide AF-16 Reduces Edema and Improves Cognitive Function Following Diffuse Traumatic Brain Injury in the Rat

    PubMed Central

    Clausen, Fredrik; Hansson, Hans-Arne; Raud, Johan; Marklund, Niklas

    2017-01-01

    A synthetic peptide with antisecretory activity, antisecretory factor (AF)-16, improves injury-related deficits in water and ion transport and decreases intracranial pressure after experimental cold lesion injury and encephalitis although its role in traumatic brain injury (TBI) is unknown. AF-16 or an inactive reference peptide was administrated intranasally 30 min following midline fluid percussion injury (mFPI; n = 52), a model of diffuse mild-moderate TBI in rats. Sham-injured (n = 14) or naïve (n = 24) animals were used as controls. The rats survived for either 48 h or 15 days post-injury. At 48 h, the animals were tested in the Morris water maze (MWM) for memory function and their brains analyzed for cerebral edema. Here, mFPI-induced brain edema compared to sham or naïve controls that was significantly reduced by AF-16 treatment (p < 0.05) although MWM performance was not altered. In the 15-day survival groups, the MWM learning and memory abilities as well as histological changes were analyzed. AF-16-treated brain-injured animals shortened both MWM latency and swim path in the learning trials (p < 0.05) and improved probe trial performance compared to brain-injured controls treated with the inactive reference peptide. A modest decrease by AF-16 on TBI-induced changes in hippocampal glial acidic fibrillary protein (GFAP) staining (p = 0.11) was observed. AF-16 treatment did not alter any other immunohistochemical analyses (degenerating neurons, beta-amyloid precursor protein (β-APP), and Olig2). In conclusion, intranasal AF-16-attenuated brain edema and enhanced visuospatial learning and memory following diffuse TBI in the rat. Intranasal administration early post-injury of a promising neuroprotective substance offers a novel treatment approach for TBI. PMID:28261150

  19. Protection of Vascular Endothelial Growth Factor to Brain Edema Following Intracerebral Hemorrhage and Its Involved Mechanisms: Effect of Aquaporin-4

    PubMed Central

    Dong, Qiang

    2013-01-01

    Vascular endothelial growth factor (VEGF) has protective effects on many neurological diseases. However, whether VEGF acts on brain edema following intracerebral hemorrhage (ICH) is largely unknown. Our previous study has shown aquaporin-4 (AQP4) plays an important role in brain edema elimination following ICH. Meanwhile, there is close relationship between VEGF and AQP4. In this study, we aimed to test effects of VEGF on brain edema following ICH and examine whether they were AQP4 dependent. Recombinant human VEGF165 (rhVEGF165) was injected intracerebroventricularly 1 d after ICH induced by microinjecting autologous whole blood into striatum. We detected perihemotomal AQP4 protein expression, then examined the effects of rhVEGF165 on perihemotomal brain edema at 1 d, 3 d, and 7 d after injection in wild type (AQP4+/+) and AQP4 knock-out (AQP4−/−) mice. Furthermore, we assessed the possible signal transduction pathways activated by VEGF to regulate AQP4 expression via astrocyte cultures. We found perihemotomal AQP4 protein expression was highly increased by rhVEGF165. RhVEGF165 alleviated perihemotomal brain edema in AQP4+/+ mice at each time point, but had no effect on AQP4−/− mice. Perihemotomal EB extravasation was increased by rhVEGF165 in AQP4−/− mice, but not AQP4+/+ mice. RhVEGF165 reduced neurological deficits and increased Nissl’s staining cells surrounding hemotoma in both types of mice and these effects were related to AQP4. RhVEGF165 up-regulated phospharylation of C-Jun amino-terminal kinase (p-JNK) and extracellular signal-regulated kinase (p-ERK) and AQP4 protein in cultured astrocytes. The latter was inhibited by JNK and ERK inhibitors. In conclusion, VEGF reduces neurological deficits, brain edema, and neuronal death surrounding hemotoma but has no influence on BBB permeability. These effects are closely related to AQP4 up-regulation, possibly through activating JNK and ERK pathways. The current study may present new insights to

  20. A simple prediction score system for malignant brain edema progression in large hemispheric infarction

    PubMed Central

    Jo, KwangWook; Bajgur, Suhas S.; Kim, Hoon; Choi, Huimahn A.; Huh, Pil-Woo; Lee, Kiwon

    2017-01-01

    Malignant brain edema (MBE) due to hemispheric infarction can result in brain herniation, poor outcomes, and death; outcome may be improved if certain interventions, such as decompressive craniectomy, are performed early. We sought to generate a prediction score to easily identify those patients at high risk for MBE. 121 patients with large hemispheric infarction (LHI) (2011 to 2014) were included. Patients were divided into two groups: those who developed MBE and those who did not. Independent predictors of MBE were identified by logistic regression and a score was developed. Four factors were independently associated with MBE: baseline National Institutes of Health Stroke Scale (NIHSS) score (p = 0.048), Alberta Stroke Program Early Computed Tomography Score (ASPECTS) (p = 0.007), collateral score (CS) (p<0.001) and revascularization failure (p = 0.013). Points were assigned for each factor as follows: NIHSS ≤ 8 (= 0), 9–17 (= 1), ≥ 18 (= 2); ASPECTS≤ 7 (= 1), >8 (= 0); CS<2 (= 1), ≥2 (= 0); revascularization failure (= 1),success (= 0). The MBE Score (MBES) represents the sum of these individual points. Of 26 patients with a MBES of 0 to 1, none developed MBE. All patients with a MBES of 6 developed MBE. Both MBE development and functional outcomes were strongly associated with the MBES (p = 0.007 and 0.002, respectively). The MBE score is a simple reliable tool for the prediction of MBE. PMID:28178299

  1. Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia.

    PubMed

    Yao, Xiaoming; Derugin, Nikita; Manley, Geoffrey T; Verkman, A S

    2015-01-01

    Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet lining the blood-brain barrier. AQP4 deletion in mice is associated with improved outcomes in global cerebral ischemia produced by transient carotid artery occlusion, and focal cerebral ischemia produced by permanent middle cerebral artery occlusion (MCAO). Here, we investigated the consequences of 1-h transient MCAO produced by intraluminal suture blockade followed by 23 h of reperfusion. In nine AQP4(+/+) and nine AQP4(-/-) mice, infarct volume was significantly reduced by an average of 39 ± 4% at 24h in AQP4(-/-) mice, cerebral hemispheric edema was reduced by 23 ± 3%, and Evans Blue extravasation was reduced by 31 ± 2% (mean ± SEM). Diffusion-weighted magnetic resonance imaging showed greatest reduction in apparent diffusion coefficient around the occlusion site after reperfusion, with remarkably lesser reduction in AQP4(-/-) mice. The reduced infarct volume in AQP4(-/-) mice following transient MCAO supports the potential utility of therapeutic AQP4 inhibition in stroke.

  2. Improvement of cold injury-induced mouse brain edema by endothelin ETB antagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A.

    PubMed

    Michinaga, Shotaro; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Minami, Shizuho; Kimura, Akimasa; Hatanaka, Shunichi; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Koyama, Yutaka

    2015-09-01

    Brain edema is a potentially fatal pathological state that often occurs after brain injuries such as ischemia and trauma. However, therapeutic agents that fundamentally treat brain edema have not yet been established. We previously found that endothelin ETB receptor antagonists attenuate the formation and maintenance of vasogenic brain edema after cold injury in mice. In this study, the effects of ETB antagonists on matrixmetalloproteinase (MMP)9 and vascular endothelial growth factor (VEGF)-A expression were examined in the cold injury model. Cold injury was performed in the left brain of male ddY mice (5-6 weeks old) for the induction of vasogenic edema. Expression of MMP9 and VEGF-A mRNA in the mouse cerebrum was increased by cold injury. Immunohistochemical observations showed that the MMP9 and VEGF-A were mainly produced in reactive astrocytes in the damaged cerebrum. Intracerebroventricular administration of BQ788 (10 μg) or IRL-2500 (10 μg) (selective ETB antagonists) attenuated brain edema and disruption of the blood-brain barrier after cold injury. BQ788 and IRL-2500 reversed the cold injury-induced increases in MMP9 and VEGF-A expression. The induction of reactive astrocytes producing MMP9 and VEGF-A in the damaged cerebrum was attenuated by BQ788 and IRL-2500. These results suggest that attenuations of astrocytic MMP9 and VEGF-A expression by ETB antagonists may be involved in the amelioration of vasogenic brain edema.

  3. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    PubMed

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability.

  4. Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice.

    PubMed

    Homsi, Shadi; Federico, Fabiola; Croci, Nicole; Palmier, Bruno; Plotkine, Michel; Marchand-Leroux, Catherine; Jafarian-Tehrani, Mehrnaz

    2009-09-29

    One of the severe complications following traumatic brain injury (TBI) is cerebral edema and its effective treatment is of great interest to prevent further brain damage. This study investigated the effects of minocycline, known for its anti-inflammatory properties, on cerebral edema and its respective inflammatory markers by comparing different dose regimens, on oxidative stress and on neurological dysfunction following TBI. The weight drop model was used to induce TBI in mice. The brain water content was measured to evaluate cerebral edema. Inflammatory markers were detected by ELISA (IL-1beta), zymography and Western blot (MMP-9). The oxidative stress marker (glutathione levels) and neurological function were measured by Griffith technique and string test, respectively. Minocycline was administered i.p. once (5 min), twice (5 min and 3 h) or triple (5 min, 3 h and 9 h) following TBI. The first dose of minocycline only varied (45 or 90 mg/kg), whereas the following doses were all at 45 mg/kg. The single and double administrations of minocycline reduced the increase of inflammatory markers at 6 h post-TBI. Minocycline also reduced cerebral edema at this time point, only after double administration and at the high dose regimen, although with no effect on the TBI-induced oxidized glutathione increase. The anti-edematous effect of minocycline persisted up to 24 h, upon a triple administration, and accompanied by a neurological recovery. In conclusion, we reported an anti-edematous effect of minocycline after TBI in mice according to a specific treatment regimen. These findings emphasize that the beneficial effects of minocycline depend on the treatment regimen following a brain injury.

  5. Inhibition of Myosin light-chain kinase attenuates cerebral edema after traumatic brain injury in postnatal mice.

    PubMed

    Rossi, Janet L; Todd, Tracey; Bazan, Nicolas G; Belayev, Ludmila

    2013-10-01

    Traumatic brain injury (TBI) in children less than 8 years of age leads to decline in intelligence and executive functioning. Neurological outcomes after TBI correlate to development of cerebral edema, which affect survival rates after TBI. It has been shown that myosin light-chain kinase (MLCK) increases cerebral edema and that pretreatment with an MLCK inhibitor (ML-7) reduces cerebral edema. The aim of this study was to determine whether inhibition of MLCK after TBI in postnatal day 24 (PND-24) mice would prevent breakdown of the blood-brain barrier (BBB) and development of cerebral edema and improve neurological outcome. We used a closed head injury model of TBI. ML-7 or saline treatment was administered at 4 h and every 24 h until sacrifice or 5 days after TBI. Mice were sacrificed at 24 h, 48 h, and 72 h and 7 days after impact. Mice treated with ML-7 after TBI had decreased levels of MLCK-expressing cells (20.7±4.8 vs. 149.3±40.6), less albumin extravasation (28.3±11.2 vs. 116.2±60.7 mm(2)) into surrounding parenchymal tissue, less Evans Blue extravasation (339±314 vs. 4017±560 ng/g), and showed a significant difference in wet/dry weight ratio (1.9±0.07 vs. 2.2±0.05 g), compared to saline-treated groups. Treatment with ML-7 also resulted in preserved neurological function measured by the wire hang test (57 vs. 21 sec) and two-object novel recognition test (old vs. new, 10.5 touches). We concluded that inhibition of MLCK reduces cerebral edema and preserves neurological function in PND-24 mice.

  6. Effects of Different Doses of Levetiracetam on Aquaporin 4 Expression in Rats with Brain Edema Following Fluid Percussion Injury

    PubMed Central

    Jin, Hongbo; Li, Wenling; Dong, Changzheng; Ma, Li; Wu, Jiang; Zhao, Wenqing

    2016-01-01

    Background This study was designed to investigate the effects of different doses of levetiracetam on aquaporin 4 (AQP4) expression in rats after fluid percussion injury. Material/Methods Sprague-Dawley rats were randomly divided into 4 groups: sham operation group, traumatic brain injury group, low-dose levetiracetam group, and high-dose levetiracetam group. Brain edema models were established by fluid percussion injury, and intervened by the administration of levetiracetam. Samples from the 4 groups were collected at 2, 6, 12, and 24 h, and at 3 and 7 days after injury. Histological observation was performed using hematoxylin-eosin staining and immunohistochemical staining. AQP4 and AQP4 mRNA expression was detected using Western blot assay and RT-PCR. Brain water content was measured by the dry-wet method. Results Compared with the traumatic brain injury group, brain water content, AQP4 expression, and AQP4 mRNA expression were lower in the levetiracetam groups at each time point and the differences were statistically significant (P<0.05). The intervention effects of high-dose levetiracetam were more apparent. Conclusions Levetiracetam can lessen brain edema from fluid percussion injury by down-regulating AQP4 and AQP4 mRNA expression. There is a dose-effect relationship in the preventive effect of levetiracetam within a certain extent. PMID:26927633

  7. Effects of Different Doses of Levetiracetam on Aquaporin 4 Expression in Rats with Brain Edema Following Fluid Percussion Injury.

    PubMed

    Jin, Hongbo; Li, Wenling; Dong, Changzheng; Ma, Li; Wu, Jiang; Zhao, Wenqing

    2016-02-29

    BACKGROUND This study was designed to investigate the effects of different doses of levetiracetam on aquaporin 4 (AQP4) expression in rats after fluid percussion injury. MATERIAL AND METHODS Sprague-Dawley rats were randomly divided into 4 groups: sham operation group, traumatic brain injury group, low-dose levetiracetam group, and high-dose levetiracetam group. Brain edema models were established by fluid percussion injury, and intervened by the administration of levetiracetam. Samples from the 4 groups were collected at 2, 6, 12, and 24 h, and at 3 and 7 days after injury. Histological observation was performed using hematoxylin-eosin staining and immunohistochemical staining. AQP4 and AQP4 mRNA expression was detected using Western blot assay and RT-PCR. Brain water content was measured by the dry-wet method. RESULTS Compared with the traumatic brain injury group, brain water content, AQP4 expression, and AQP4 mRNA expression were lower in the levetiracetam groups at each time point and the differences were statistically significant (P<0.05). The intervention effects of high-dose levetiracetam were more apparent. CONCLUSIONS Levetiracetam can lessen brain edema from fluid percussion injury by down-regulating AQP4 and AQP4 mRNA expression. There is a dose-effect relationship in the preventive effect of levetiracetam within a certain extent.

  8. Effect of barrier opening on brain edema in human brain tumors.

    PubMed

    Sato, S; Suga, S; Yunoki, K; Mihara, B

    1994-01-01

    Blood-brain barrier (BBB) opening was carried out in 10 patients with cerebral lesions, and the MRI findings were evaluated following the barrier opening. An intra-arterial injection of 10% glycerol (4 ml/kg, 1 approximately 2 ml/s) was given as a hyperosmotic solution. T2-weighted MRI was undertaken using a TOSHIBA 22A at 30 minutes after BBB opening. Barrier-opening MRI was performed 10 times in 10 patients, including 5 cases of glioblastoma multiforme, 2 cases of astrocytoma, 1 case of malignant lymphoma, 1 case of cerebral contusion and 1 case of neurinoma. The high-intensity area (HIA) was compared with that in MRI without barrier opening. Three types of changes of HIA in MRI were observed after BBB opening as follows. Type 1: Expansion of the HIA was noted in 4 of 5 cases of glioblastoma multiforme, the 1 case of malignant lymphoma and the 1 case of cerebral contusion. Type 2: Almost no change was observed in the 1 case of neuronoma. Type 3: A decrease in HIA was noted in the 2 cases of astrocytoma and in 1 case of glioblastoma multiforme. The MRI following BBB opening evidently showed 3 types of changes according to the degree of BBB disruption. Glioblastoma multiforme or contusion with a severely disrupted BBB revealed an increase in HIA following barrier opening. Benign posterior fossa neurinoma showed no change in HIA after barrier opening. Moderate malignant tumors exhibited a decrease in HIA on barrier-opening MRI. It was concluded that malignant tumors have a severely damaged BBB, which is readily disrupted by osmotic barrier opening.

  9. Application of Blood-Brain Barrier Permeability Imaging in Global Cerebral Edema

    PubMed Central

    Ivanidze, Jana; Kallas, Omar N.; Gupta, Ajay; Weidman, Elizabeth; Baradaran, Hediyeh; Mir, Danial; Giambrone, Ashley; Segal, Alan Z.; Claassen, Jan; Sanelli, Pina C.

    2016-01-01

    Background and Purpose Blood brain barrier permeability (BBBP) is not presently routinely evaluated in the clinical setting. Global cerebral edema (GCE) occurs after SAH and is associated with BBB disruption. Detection of GCE is challenging using current imaging techniques. Our purpose was to apply BBBP imaging in patients with GCE using extended pass CT Perfusion (CTP). Methods SAH patients underwent CTP in the early phase after aneurysmal rupture (days 0-3) and were classified as GCE or non-GCE using established non-contrast CT criteria. CTP were post-processed into BBBP quantitative maps of PS (permeability surface area product), K-trans (volume transfer constant from blood plasma to extravascular extracellular space, EES), Kep (washout rate constant of the contrast agent from EES to intravascular space), VE (EES volume per unit of tissue volume), VP (plasmatic volume per unit of tissue volume) and F (plasma flow) using Olea Sphere software. Mean values were compared using t-tests. Results 22 patients were included in the analysis. Kep (1.32 versus 1.52, p < 0.0001), K-trans (0.15 versus 0.19, p < 0.0001), VP (0.51 versus 0.57, p = 0.0007) and F (1176 versus 1329, p = 0.0001) were decreased in GCE compared to non-GCE while VE (0.81 versus 0.39, p < 0.0001) was increased. Conclusion Extended CTP was utilized to evaluate BBBP in SAH patients with and without GCE. Kep is an important indicator of altered BBBP in patients with decreased blood flow, as Kep is flow-independent. Further study of BBBP is needed to improve diagnosis and monitoring of GCE. PMID:27127002

  10. Purinergic 2Y1 receptor stimulation decreases cerebral edema and reactive gliosis in a traumatic brain injury model.

    PubMed

    Talley Watts, Lora; Sprague, Shane; Zheng, Wei; Garling, R Justin; Jimenez, David; Digicaylioglu, Murat; Lechleiter, James

    2013-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children and young adults. Neuroprotective agents that may promote repair or counteract damage after injury do not currently exist. We recently reported that stimulation of the purinergic receptor subtype P2Y(1)R using 2-methylthioladenosine 5' diphosphate (2MeSADP) significantly reduced cytotoxic edema induced by photothrombosis. Here, we tested whether P2Y(1)R stimulation was neuroprotective after TBI. A controlled closed head injury model was established for mice using a pneumatic impact device. Brains were harvested at 1, 3, or 7 days post-injury and assayed for morphological changes by immunocytochemistry, Western blot analysis, and wet/dry weight. Cerebral edema and expression of both aquaporin type 4 and glial fibrillary acidic protein were increased at all time points examined. Immunocytochemical measurements in both cortical and hippocampal slices also revealed significant neuronal swelling and reactive gliosis. Treatment of mice with 2MeSADP (100 μM) or MRS2365 (100 μM) 30 min after trauma significantly reduced all post-injury symptoms of TBI including edema, neuronal swelling, reactive gliosis, and AQ4 expression. The neuroprotective effect was lost in IP(3)R2-/- mice treated with 2MeSADP. Immunocytochemical labeling of brain slices confirmed that P2Y(1)R expression was defined to cortical and hippocampal astrocytes, but not neurons. Taken together, the data show that stimulation of astrocytic P2Y(1)Rs significantly reduces brain injury after acute trauma and is mediated by the IP(3)-signaling pathway. We suggest that enhancing astrocyte mitochondrial metabolism offers a promising neuroprotective strategy for a broad range of brain injuries.

  11. Hyperbaric oxygen therapy ameliorates local brain metabolism, brain edema and inflammatory response in a blast-induced traumatic brain injury model in rabbits.

    PubMed

    Zhang, Yongming; Yang, Yanyan; Tang, Hong; Sun, Wenjiang; Xiong, Xiaoxing; Smerin, Daniel; Liu, Jiachuan

    2014-05-01

    Many studies suggest that hyperbaric oxygen therapy (HBOT) can provide some clinically curative effects on blast-induced traumatic brain injury (bTBI). The specific mechanism by which this occurs still remains unknown, and no standardized time or course of hyperbaric oxygen treatment is currently used. In this study, bTBI was produced by paper detonators equivalent to 600 mg of TNT exploding at 6.5 cm vertical to the rabbit's head. HBO (100% O2 at 2.0 absolute atmospheres) was used once, 12 h after injury. Magnetic resonance spectroscopy was performed to investigate the impact of HBOT on the metabolism of local injured nerves in brain tissue. We also examined blood-brain barrier (BBB) integrity, brain water content, apoptotic factors, and some inflammatory mediators. Our results demonstrate that hyperbaric oxygen could confer neuroprotection and improve prognosis after explosive injury by promoting the metabolism of local neurons, inhibiting brain edema, protecting BBB integrity, decreasing cell apoptosis, and inhibiting the inflammatory response. Furthermore, timely intervention within 1 week after injury might be more conducive to improving the prognosis of patients with bTBI.

  12. Effect of Polyphenols on Oxidative Stress and Mitochondrial Dysfunction in Neuronal Death and Brain Edema in Cerebral Ischemia

    PubMed Central

    Panickar, Kiran S.; Anderson, Richard A.

    2011-01-01

    Polyphenols are natural substances with variable phenolic structures and are elevated in vegetables, fruits, grains, bark, roots, tea, and wine. There are over 8000 polyphenolic structures identified in plants, but edible plants contain only several hundred polyphenolic structures. In addition to their well-known antioxidant effects, select polyphenols also have insulin-potentiating, anti-inflammatory, anti-carcinogenic, anti-viral, anti-ulcer, and anti-apoptotic properties. One important consequence of ischemia is neuronal death and oxidative stress plays a key role in neuronal viability. In addition, neuronal death may be initiated by the activation of mitochondria-associated cell death pathways. Another consequence of ischemia that is possibly mediated by oxidative stress and mitochondrial dysfunction is glial swelling, a component of cytotoxic brain edema. The purpose of this article is to review the current literature on the contribution of oxidative stress and mitochondrial dysfunction to neuronal death, cell swelling, and brain edema in ischemia. A review of currently known mechanisms underlying neuronal death and edema/cell swelling will be undertaken and the potential of dietary polyphenols to reduce such neural damage will be critically reviewed. PMID:22174658

  13. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice.

    PubMed

    Kimbler, Donald E; Shields, Jessica; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2012-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Cerebral edema, the abnormal accumulation of fluid within the brain parenchyma, contributes to elevated intracranial pressure (ICP) and is a common life-threatening neurological complication following TBI. Unfortunately, neurosurgical approaches to alleviate increased ICP remain controversial and medical therapies are lacking due in part to the absence of viable drug targets. In the present study, genetic inhibition (P2X7-/- mice) of the purinergic P2x7 receptor attenuated the expression of the pro-inflammatory cytokine, interleukin-1β (IL-1β) and reduced cerebral edema following controlled cortical impact, as compared to wild-type mice. Similarly, brilliant blue G (BBG), a clinically non-toxic P2X7 inhibitor, inhibited IL-1β expression, limited edemic development, and improved neurobehavioral outcomes after TBI. The beneficial effects of BBG followed either prophylactic administration via the drinking water for one week prior to injury or via an intravenous bolus administration up to four hours after TBI, suggesting a clinically-implementable therapeutic window. Notably, P2X7 localized within astrocytic end feet and administration of BBG decreased the expression of glial fibrillary acidic protein (GFAP), a reactive astrocyte marker, and attenuated the expression of aquaporin-4 (AQP4), an astrocytic water channel that promotes cellular edema. Together, these data implicate P2X7 as a novel therapeutic target to prevent secondary neurological injury after TBI, a finding that warrants further investigation.

  14. Interferon-Stimulated Gene 15 Upregulation Precedes the Development of Blood-Brain Barrier Disruption and Cerebral Edema after Traumatic Brain Injury in Young Mice.

    PubMed

    Rossi, Janet L; Todd, Tracey; Daniels, Zachary; Bazan, Nicolas G; Belayev, Ludmila

    2015-07-15

    Recent studies show that myosin light chain kinase (MLCK) plays a pivotal role in development of cerebral edema, a known complication following traumatic brain injury (TBI) in children and a contributing factor to worsened neurologic recovery. Interferon-stimulated gene 15 (ISG15) is upregulated after cerebral ischemia and is neuroprotective. The significant role of ISG15 after TBI has not been studied. Postnatal Day (PND) 21 and PND24 mice were subjected to lateral closed-skull injury with impact depth of 2.0 or 2.25 mm. Behavior was examined at 7 d using two-object novel recognition and Wire Hang tests. Mice were sacrificed at 6 h, 12 h, 24 h, 48 h, 72 h, and 7 d. ISG15 and MLCK were analyzed by Western blot and immunohistochemistry, blood-brain barrier (BBB) disruption with Evans Blue (EB), and cerebral edema with wet/dry weights. EB extravasation and edema peaked at 72 h in both ages. PND21 mice had more severe neurological deficits, compared with PND24 mice. PND24 mice showed peak ISG15 expression at 6 h, and PND21 mice at 72 h. MLCK peaked in both age groups at 12 h and co-localized with ISG15 on immunohistochemistry and co-immunoprecipitation. These studies provide evidence, ISG15 is elevated following TBI in mice, preceding MLCK elevation, development of BBB disruption, and cerebral edema.

  15. Effect of siRNA‑induced inhibition of IL‑6 expression in rat cerebral gliocytes on cerebral edema following traumatic brain injury.

    PubMed

    Xu, Bin; Yu, Dong-Ming; Liu, Fu-Sheng

    2014-10-01

    The present study aimed to investigate the effect of RNA interference (RNAi) on the inhibition of interleukin (IL)‑6 expression in rat cerebral gliocytes in vitro and rat cerebral traumatic tissues in vivo, as well as the effect of RNAi on cerebral edema. pSUPER vectors containing IL‑6 small hairpin RNA (pSUPER‑IL‑6 1‑5) were designed, constructed and transfected into C6 rat glioma cells using cationic liposomes. ELISA was used to select the plasmid with the strongest interference effect. A freefall method was used to generate a rat brain injury model and rats were randomly divided into treatment, empty plasmid and control groups (n=14/group). IL‑6 levels, water content and sodium content were determined in the brain tissues at 24 and 72 h post‑injury. pSUPER‑IL‑6 was effectively transfected into C6 cells and was found to inhibit the expression of IL‑6 rather than IL‑8. The pSUPER‑IL‑6 1 vector was most effective in inducing RNAi. In vivo, IL‑6 levels were observed to be lowest in the interference group and there were statistically significant differences in water and sodium content among the experimental groups (P<0.05). RNAi was found to inhibit IL‑6 expression in vivo and in vitro in rat cerebral gliocytes, and the reduction of the IL‑6 levels was found to reduce post‑traumatic cerebral edema.

  16. Cannabinoid type 2 receptor stimulation attenuates brain edema by reducing cerebral leukocyte infiltration following subarachnoid hemorrhage in rats.

    PubMed

    Fujii, Mutsumi; Sherchan, Prativa; Krafft, Paul R; Rolland, William B; Soejima, Yoshiteru; Zhang, John H

    2014-07-15

    Early brain injury (EBI), following subarachnoid hemorrhage (SAH), comprises blood-brain barrier (BBB) disruption and consequent edema formation. Peripheral leukocytes can infiltrate the injured brain, thereby aggravating BBB leakage and neuroinflammation. Thus, anti-inflammatory pharmacotherapies may ameliorate EBI and provide neuroprotection after SAH. Cannabinoid type 2 receptor (CB2R) agonism has been shown to reduce neuroinflammation; however, the precise protective mechanisms remain to be elucidated. This study aimed to evaluate whether the selective CB2R agonist, JWH133 can ameliorate EBI by reducing brain-infiltrated leukocytes after SAH. Adult male Sprague-Dawley rats were randomly assigned to the following groups: sham-operated, SAH with vehicle, SAH with JWH133 (1.0mg/kg), or SAH with a co-administration of JWH133 and selective CB2R antagonist SR144528 (3.0mg/kg). SAH was induced by endovascular perforation, and JWH133 was administered 1h after surgery. Neurological deficits, brain water content, Evans blue dye extravasation, and Western blot assays were evaluated at 24h after surgery. JWH133 improved neurological scores and reduced brain water content; however, SR144528 reversed these treatment effects. JWH133 reduced Evans blue dye extravasation after SAH. Furthermore, JWH133 treatment significantly increased TGF-β1 expression and prevented an SAH-induced increase in E-selectin and myeloperoxidase. Lastly, SAH resulted in a decreased expression of the tight junction protein zonula occludens-1 (ZO-1); however, JWH133 treatment increased the ZO-1 expression. We suggest that CB2R stimulation attenuates neurological outcome and brain edema, by suppressing leukocyte infiltration into the brain through TGF-β1 up-regulation and E-selectin reduction, resulting in protection of the BBB after SAH.

  17. Intracranial and systemic effects of osmotic and oncotic therapy in experimental cerebral edema.

    PubMed

    Albright, A L; Latchaw, R E; Robinson, A G

    1984-03-01

    Experiments were carried out to compare the effectiveness of oncotic and osmotic therapy in dogs with experimental cerebral edema caused by a left parietal cold lesion. Animals were divided into five groups and treated for 6 hours with either crystalloid (control group), or mannitol, albumin, furosemide, or albumin/furosemide (treatment groups). The cerebral effects of therapy were evaluated by intracranial pressure (ICP) measurements and by postmortem evaluations of water content, using computerized tomography (CT) density measurements and wet-dry weight measurements. The ICP was significantly reduced by all treatments except albumin alone, and was reduced equally by mannitol, furosemide, and albumin/furosemide. The CT density of the lesion area was significantly increased by all treatments. The density of the contralateral nonlesioned hemisphere was significantly increased by all treatments except albumin. The water content of the lesion area was significantly decreased by all treatments; water content of the opposite hemisphere was not significantly reduced. The systemic effects of therapy were evaluated by measuring net fluid balance, wedge pressures, hematocrits, free water clearance, and vasopressin. Negative fluid balance without an increase in hematocrit or in vasopressin secretion occurred only in dogs treated with albumin/furosemide. Such oncodiuretic therapy seems to cause normovolemic dehydration and to have cerebral effects similar to mannitol and furosemide, without their undesirable systemic effects.

  18. Activation of peroxisome proliferator activated receptor γ in brain inhibits inflammatory pain, dorsal horn expression of Fos, and local edema

    PubMed Central

    Morgenweck, J.; Abdel-aleem, O.S.; McNamara, K.C.; Donahue, R.R.; Badr, M.Z.; Taylor, B.K.

    2009-01-01

    Systemic administration of thiazolidinediones reduces peripheral inflammation in vivo, presumably by acting at peroxisome proliferator-activated receptor γ (PPARγ) in peripheral tissues. Based on a rapidly growing body of literature indicating the CNS as a functional target of PPARγ actions, we postulated that brain PPARγ modulates peripheral edema and the processing of inflammatory pain signals in the dorsal horn of the spinal cord. To test this in the plantar carrageenan model of inflammatory pain, we measured paw edema, heat hyperalgesia, and dorsal horn expression of the immediate-early gene c-fos after intracerebroventricular (ICV) administration of PPARγ ligands or vehicle. We found that ICV rosiglitazone (0.5–50 µg) or 15d-PGJ2 (50–200 µg), but not vehicle, dose-dependently reduced paw thickness, paw volume and behavioral withdrawal responses to noxious heat. These anti-inflammatory and anti-hyperalgesia effects result from direct actions in the brain and not diffusion to other sites, because intraperitoneal and intrathecal administration of rosiglitazone (50 µg) and 15d-PGJ2 (200 µg) had no effect. PPARγ agonists changed neither overt behavior nor motor coordination, indicating that non-specific behavioral effects do not contribute to PPAR ligand-induced anti-hyperalgesia. ICV administration of structurally dissimilar PPARγ antagonists (either GW9662 or BADGE) reversed the anti-inflammatory and anti-hyperalgesic actions of both rosiglitazone and 15d-PGJ2. To evaluate the effects of PPARγ agonists on a classic marker of noxious stimulus-evoked gene expression, we quantified Fos protein expression in the dorsal horn. The number of carrageenan-induced Fos-like immunoreactive profiles was less in rosiglitazone-treated rats as compared to vehicle controls. We conclude that pharmacological activation of PPARγ in the brain rapidly inhibits local edema and the spinal transmission of noxious inflammatory signals. PMID:19891980

  19. Intralipid Vehicle Does Not Interfere with the Efficacy of Progesterone in Attenuating Edema following Traumatic Brain Injury.

    PubMed

    Wali, Bushra; Stein, Donald G; Sayeed, Iqbal

    2017-02-27

    The recent disappointing results of phase III trials for progesterone (PROG) in traumatic brain injury (TBI) have triggered speculation about reasons for the negative outcomes. One confounding factor may have been the vehicle used to administer PROG. Virtually all of the many pre-clinical experiments informing the clinical trials and reporting beneficial PROG effects used more soluble 2-hydroxypropyl-b-cyclodextrin as a vehicle given intraperitoneally or subcutaneously rather than a lipid formulation given intravenously (IV). The present investigation compared the effect of PROG infusion with that of lipid emulsion (Intralipid(®)) as a carrier/vehicle on edema following TBI in rats. Eight-mg/kg doses of PROG with 20% Intralipid were given IV via central venous catheter beginning 1 h post-injury over a 1 h duration (1.2 mL/h). Animals were killed and brains removed at 24 h post-injury. All the brain-injured groups showed more edema compared with the control group. However, PROG+Intralipid significantly attenuated cerebral swelling compared with Intralipid alone. No difference was observed between the TBI-alone and Intralipid groups. Although this study used much a smaller volume and shorter duration of Intralipid infusion than the clinical trials (up to 5 days of continuous infusion), our results suggest that the use of Intralipid in rats did not prevent or mask the beneficial effect of PROG.

  20. Modeling the Presence of Myelin and Edema in the Brain Based on Multi-Parametric Quantitative MRI

    PubMed Central

    Warntjes, Marcel; Engström, Maria; Tisell, Anders; Lundberg, Peter

    2016-01-01

    The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R1 and R2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume, and excess parenchymal water partial volume. The model parameters were obtained using spatially normalized brain images of a group of 20 healthy controls. The pathological brain was modeled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of edema. The method was tested on spatially normalized brain images of a group of 20 age-matched multiple sclerosis (MS) patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL), a 38 mL smaller myelin volume (119 vs. 157 mL), and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL). Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6 ± 1.5% lower for gray matter (GM) structures and 2.8 ± 1.0% lower for white matter (WM) structures. The excess parenchymal water partial volume was 9 ± 10% larger for GM and 5 ± 2% larger for WM. Manually placed ROIs indicated that the results using the template ROIs may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects: a 45-year-old healthy subject, a 72-year-old healthy subject, and a 45-year-old MS patient. The observed results agreed with the expected behavior considering both age and disease. In conclusion, the proposed model may provide clinically important parameters, such as the total brain volume, degree of myelination, and

  1. Pulmonary edema

    MedlinePlus

    ... congestion; Lung water; Pulmonary congestion; Heart failure - pulmonary edema ... Pulmonary edema is often caused by congestive heart failure . When the heart is not able to pump efficiently, blood ...

  2. Inhaled nitric oxide for the brain dead donor with neurogenic pulmonary edema during anesthesia for organ donation: a case report

    PubMed Central

    Park, Eun Sun; Lee, A-Ran; Lee, Sang Hyun; Kim, An Suk; Park, Soon Eun; Cho, Young Woo

    2014-01-01

    Neurogenic pulmonary edema (NPE) in brain dead organ donors occurring after an acute central nervous system insult threatens organ preservation of potential organ donors and the outcome of organ donation. Hence the active and immediate management of NPE is critical. In this case, a 50-year-old male was admitted to the intensive care unit (ICU) for organ donation. He was hypoxic due to NPE induced by spontaneous intracerebral hemorrhage and intraventricular hemorrhage. Protective ventilatory management, intermittent recruitment maneuvers, and supportive treatment were maintained in the ICU and the operating room (OR). Despite this management, the hypoxemia worsened after the OR admission. So inhaled nitric oxide (NO) therapy was performed during the operation, and the hypoxic phenomena showed remarkable improvement. The organ retrieval was successfully completed. Therefore, NO inhalation can be helpful in the improvement of hypoxemia caused by NPE in brain dead organ donors during anesthesia for the organ donation. PMID:25237451

  3. Effect of acute poly(ADP-ribose) polymerase inhibition by 3-AB on blood-brain barrier permeability and edema formation after focal traumatic brain injury in rats.

    PubMed

    Lescot, Thomas; Fulla-Oller, Laurence; Palmier, Bruno; Po, Christelle; Beziaud, Tiphaine; Puybasset, Louis; Plotkine, Michel; Gillet, Brigitte; Meric, Philippe; Marchand-Leroux, Catherine

    2010-06-01

    Recent evidence supports a crucial role for matrix metalloproteinase-9 (MMP-9) in blood-brain barrier (BBB) disruption and vasogenic edema formation after traumatic brain injury (TBI). Although the exact causes of MMP-9 upregulation after TBI are not fully understood, several arguments suggest a contribution of the enzyme poly(ADP-ribose)polymerase (PARP) in the neuroinflammatory response leading to MMP-9 activation. The objectives of this study were to evaluate the effect of PARP inhibition by 3-aminobenzamide (3-AB) (1) on MMP-9 upregulation and BBB integrity, (2) on edema formation as assessed by magnetic resonance imaging (MRI), (3) on neuron survival as assessed by (1)H magnetic resonance spectroscopy ((1)H-MRS), and (4) on neurological deficits at the acute phase of TBI. Western blots and zymograms showed blunting of MMP-9 upregulation 6 h after TBI. BBB permeability was decreased at the same time point in 3-AB-treated rats compared to vehicle-treated rats. Cerebral MRI showed less "free" water in 3-AB-treated than in vehicle-treated rats 6 h after TBI. MRI findings 24 h after TBI indicated predominant cytotoxic edema, and at this time point no significant differences were found between 3-AB- and vehicle-treated rats with regard to MMP-9 upregulation, BBB permeability, or MRI changes. At both 6 and 24 h, neurological function was better in the 3-AB-treated than in the vehicle-treated rats. These data suggest that PARP inhibition by 3-AB protected the BBB against hyperpermeability induced by MMP-9 upregulation, thereby decreasing vasogenic edema formation 6 h after TBI. Furthermore, our data confirm the neuroprotective effect of 3-AB at the very acute phase of TBI.

  4. Effect of estrogen and/or progesterone administration on traumatic brain injury-caused brain edema: the changes of aquaporin-4 and interleukin-6.

    PubMed

    Soltani, Zahra; Khaksari, Mohammad; Shahrokhi, Nader; Mohammadi, Gholamabbas; Mofid, Behshad; Vaziri, Ali; Amiresmaili, Sedigheh

    2016-03-01

    The role of aquaporin-4 (AQP4) and interleukin-6 (IL-6) in the development of brain edema post-traumatic brain injury (TBI) has been indicated. The present study was designed to investigate the effect(s) of administration of progesterone (P) and/or estrogen (E) on brain water content, AQP4 expression, and IL-6 levels post-TBI. The ovariectomized rats were divided into 11 groups: sham, one vehicle, two vehicles, E1, E2, P1, P2, E1 + P1, E1 + P2, E2 + P1, and E2 + P2. The brain AQP4 expression, IL-6 levels, and water content were evaluated 24 h after TBI induced by Marmarou's method. The low (E1 and P1) and high (E2 and P2) doses of estrogen and progesterone were administered 30 min post-TBI. The results showed that brain water content and AQP4 expression decreased in the E1, E2, P1, and P2-treated groups. The administration of E1 decreased IL-6 levels. Addition of progesterone decreased the inhibitory effect of E1 and E2 on the accumulation of water in the brain. Administration of E1 + P1 and E1 + P2 decreased the inhibitory effect of E1 on the IL-6 levels and AQP4 protein expression. Our findings suggest that estrogen or progesterone by itself has more effective roles in decrease of brain edema than combination of both. Possible mechanism may be mediated by the alteration of AQP4 and IL-6 expression. However, further studies are required to verify the exact mechanism.

  5. Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood-brain barrier Na/H exchanger.

    PubMed

    O'Donnell, Martha E; Chen, Yi-Je; Lam, Tina I; Taylor, Kelleen C; Walton, Jeffrey H; Anderson, Steven E

    2013-02-01

    Cerebral edema forms in the early hours of ischemic stroke by processes involving increased transport of Na and Cl from blood into brain across an intact blood-brain barrier (BBB). Our previous studies provided evidence that the BBB Na-K-Cl cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema and infarct in rats subjected to permanent middle cerebral artery occlusion (pMCAO). More recently, we showed that BBB Na/H exchanger activity is also stimulated by hypoxia, aglycemia, and AVP. The present study was conducted to further investigate the possibility that a BBB Na/H exchanger also participates in edema formation during ischemic stroke. Sprague-Dawley rats were subjected to pMCAO and then brain edema and Na content assessed by magnetic resonance imaging diffusion-weighed imaging and magnetic resonance spectroscopy Na spectroscopy, respectively, for up to 210 minutes. We found that intravenous administration of the specific Na/H exchange inhibitor HOE-642 significantly decreased brain Na uptake and reduced cerebral edema, brain swelling, and infarct volume. These findings support the hypothesis that edema formation and brain Na uptake during the early hours of cerebral ischemia involve BBB Na/H exchanger activity as well as Na-K-Cl cotransporter activity.

  6. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4.

    PubMed

    Laird, Melissa D; Shields, Jessica S; Sukumari-Ramesh, Sangeetha; Kimbler, Donald E; Fessler, R David; Shakir, Basheer; Youssef, Patrick; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2014-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Cerebral edema, a life-threatening medical complication, contributes to elevated intracranial pressure (ICP) and a poor clinical prognosis after TBI. Unfortunately, treatment options to reduce post-traumatic edema remain suboptimal, due in part, to a dearth of viable therapeutic targets. Herein, we tested the hypothesis that cerebral innate immune responses contribute to edema development after TBI. Our results demonstrate that high-mobility group box protein 1 (HMGB1) was released from necrotic neurons via a NR2B-mediated mechanism. HMGB1 was clinically associated with elevated ICP in patients and functionally promoted cerebral edema after TBI in mice. The detrimental effects of HMGB1 were mediated, at least in part, via activation of microglial toll-like receptor 4 (TLR4) and the subsequent expression of the astrocytic water channel, aquaporin-4 (AQP4). Genetic or pharmacological (VGX-1027) TLR4 inhibition attenuated the neuroinflammatory response and limited post-traumatic edema with a delayed, clinically implementable therapeutic window. Human and rodent tissue culture studies further defined the cellular mechanisms demonstrating neuronal HMGB1 initiates the microglial release of interleukin-6 (IL-6) in a TLR4 dependent mechanism. In turn, microglial IL-6 increased the astrocytic expression of AQP4. Taken together, these data implicate microglia as key mediators of post-traumatic brain edema and suggest HMGB1-TLR4 signaling promotes neurovascular dysfunction after TBI.

  7. Delayed cytokine expression in rat brain following experimental contusion.

    PubMed

    Holmin, S; Schalling, M; Höjeberg, B; Nordqvist, A C; Skeftruna, A K; Mathiesen, T

    1997-03-01

    Proinflammatory cytokines mediate brain injury in experimental studies. This study was undertaken to analyze the production of proinflammatory cytokines in experimental contusion. A brain contusion causing delayed edema was mimicked experimentally in rats using a weight-drop model. Intracerebral expression of the cytokines interleukin (IL)-1 beta, tumor necrosis factor-alpha (TNF alpha), IL-6, and interferon-gamma (IFN gamma) was studied by in situ hybridization and immunohistochemistry. The animals were killed at 6 hours or 1, 2, 4, 6, 8, or 16 days postinjury. In the injured area, no messenger (m)RNA expression was seen during the first 2 days after the trauma. On Days 4 to 6 posttrauma, however, strong IL-1 beta, TNF alpha, and IL-6 mRNA expression was detected in mononuclear cells surrounding the contusion. Expression of IFN gamma was not detected. Immunohistochemical double labeling confirmed the in situ hybridization results and demonstrated that mononuclear phagocytes and astrocytes produced IL-1 beta and that mainly astrocytes produced TNF alpha. The findings showed, somewhat unexpectedly, a late peak of intracerebral cytokine production in the injured area and in the contralateral corpus callosum, allowing for both local and global effects on the brain. An unexpected difference in the cellular sources of TNF alpha and IL-1 beta was detected. The cytokine pattern differs from that seen in other central nervous system inflammatory diseases and trauma models, suggesting that the intracerebral immune response is not a uniform event. The dominance of late cytokine production indicates that many cytokine effects are late events in an experimental contusion: Different pathogenic mechanisms may thus be operative at different times after brain injury.

  8. Estradiol reduces activity of the blood-brain barrier Na-K-Cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion.

    PubMed

    O'Donnell, Martha E; Lam, Tina I; Tran, Lien Q; Foroutan, Shahin; Anderson, Steven E

    2006-10-01

    Estrogen has been shown to protect against stroke-induced brain damage, yet the mechanism is unknown. During the early hours of stroke, cerebral edema forms as increased transport of Na and Cl from blood into brain occurs across an intact blood-brain barrier (BBB). We showed previously that a luminal BBB Na-K-Cl cotransporter is stimulated by hypoxia and arginine vasopressin (AVP), factors present during cerebral ischemia, and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema in rats subjected to permanent middle cerebral artery occlusion (MCAO). The present study was conducted to determine whether estrogen protects in stroke at least in part by reducing activity of the BBB cotransporter, thereby decreasing edema formation. Ovariectomized rats were subjected to 210 mins of permanent MCAO after 7-day or 30-min pretreatment with 17beta-estradiol and then brain swelling and 2,3,5-triphenyltetrazolium chloride staining were assessed as measures of brain edema and lesion volume, respectively. Diffusion-weighed imaging was used to monitor permanent MCAO-induced decreases in apparent diffusion coefficient (ADC) values, an index of changes in brain water distribution and mobility. Na-K-Cl cotransporter activity of cerebral microvascular endothelial cells (CMECs) was assessed as bumetanide-sensitive K influx and cotransporter abundance by Western blot analysis after estradiol treatment. Estradiol significantly decreased brain swelling and lesion volume and attenuated the decrease in ADC values during permanent MCAO. Estradiol also abolished CMEC cotransporter stimulation by chemical hypoxia or AVP and decreased cotransporter abundance. These findings support the hypothesis that estrogen attenuates stimulation of BBB Na-K-Cl cotransporter activity, reducing edema formation during stroke.

  9. β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia.

    PubMed

    Yan, W; Zhao, X; Chen, H; Zhong, D; Jin, J; Qin, Q; Zhang, H; Ma, S; Li, G

    2016-06-21

    Dystroglycan (DG) is widely expressed in various tissues, and throughout the cerebral microvasculature. It consists of two subunits, α-DG and β-DG, and the cleavage of the latter by matrix metalloproteinase (MMP)-2 and -9 underlies a number of physiological and pathological processes. However, the involvement of MMP-2/-9-mediated β-DG cleavage in cerebral ischemia remains uncertain. In astrocytes, DG is crucial for maintaining the polarization of aquaporin-4 (AQP4), which plays a role in the regulation of cytotoxic and vasogenic edema. The present study aimed to explore the effects of MMP-2/-9-mediated β-DG cleavage on AQP4 polarization and brain edema in acute cerebral ischemia. A model of cerebral ischemia was established via permanent middle cerebral artery occlusion (pMCAO) in male C57BL/6 mice. Western blotting, real-time polymerase chain reaction (PCR), immunohistochemical staining, immunofluorescent staining, electron microscopy, and light microscopy were used. Captopril was applied as a selective MMP-2/-9 inhibitor. Recombinant mouse MMP (rmMMP)-2 and -9 were used in an in vitro cleavage experiment. The present study demonstrated evidence of β-DG cleavage by MMP-2/-9 in pMCAO mouse brains; this cleavage was implicated in AQP4 redistribution and brain edema in cerebral ischemia. In addition, captopril exacerbated cytotoxic edema and ameliorated vasogenic edema at 24h after pMCAO, and alleviated brain edema and neurological deficit at 48h and 72h. In conclusion, this study provides novel insight into the effects of MMP-2/-9-mediated β-DG cleavage in acute cerebral ischemia. Such findings might facilitate the development of a therapeutic strategy for the optimization of MMP-2/-9 targeted treatment in cerebral ischemia.

  10. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    PubMed

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  11. Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model.

    PubMed

    Tao, Yihao; Tang, Jun; Chen, Qianwei; Guo, Jing; Li, Lin; Yang, Liming; Feng, Hua; Zhu, Gang; Chen, Zhi

    2015-03-30

    Germinal matrix hemorrhage (GMH) is one of the most common and devastating cerebrovascular events that affect premature infants, resulting in a significant socioeconomic burden. However, GMH has been largely unpreventable, and clinical treatments are mostly inadequate. In the present study, we tested the hypothesis that JWH133, a selective CB2 receptor agonist, could attenuate brain injury and neurological deficits in a clostridial collagenase VII induced GMH model in seven-day-old (P7) S-D rat pups. Up to 1h post-injury, the administration of JWH133 (1mg/kg, intraperitoneal injection) significantly attenuated brain edema at 24h post-GMH, which was reversed by a selective CB2R antagonist, SR144528 (3mg/kg, intraperitoneal injection). Long-term brain morphology and neurofunctional outcomes were also improved. In contrast, JWH133 did not have a noticeable effect on the hematoma volume during the acute phase. These data also showed that microglia activation and inflammatory cytokine (TNF-α) release were significantly inhibited by JWH133 after GMH. This current study suggests a potential clinical utility for CB2R agonists as a potential therapy to reduce neurological injury and improve patient outcomes after GMH.

  12. Pulmonary Edema

    MedlinePlus

    ... suddenly or develop over time. Sudden (acute) pulmonary edema symptoms Extreme shortness of breath or difficulty breathing ( ... fatal if not treated. Long-term (chronic) pulmonary edema symptoms Having more shortness of breath than normal ...

  13. Reduced grey matter metabolism due to white matter edema allows optimal assessment of brain tumors on 18F-FDG-PET.

    PubMed

    Pourdehnad, Michael; Basu, Sandip; Duarte, Paulo; Okpaku, Aubrey S; Saboury, Babak; Hustinx, Roland; Alavi, Abass

    2011-01-01

    The main aim of this research was to demonstrate that the cortical and subcortical grey matter hypometabolism as revealed by fluorine-18 fluorodesoxyglucose-positron emission tomography ((18)F-FDG-PET) imaging in brain tumors is related to associated edema as demonstrated by magnetic resonance imaging (MRI). This in turn enhances the ability to assess disease activity in the tumor and the degree of loss of cerebral function in the adjacent and distant structures. We evaluated brain T1 and T2 weighted MRI and (18)F-FDG-PET scans of 29 patients (19 adult, 10 pediatric) with history of brain tumor. Tumor histology types included 21 gliomas, 1 melanoma, 1 primitive neuroectodermal tumor, 3 medulloblastomas and 3 ependymomas. The majority of scans were performed within the same week (94% <1 month. The extent of hypo and hypermetabolism was assessed on the (18)F-FDG-PET scans. A template of 12 regions of interest (ROI) was applied and the laterality indices of the regional counts (signal intensity) were computed. Extent of edema, enhancement, and anatomical change were assessed on the MRI scans. Extent of edema in the same ROI was evaluated by a 6-point semiquantitative scale and laterality indices were generated. Metabolic activity of the grey matter was correlated with the extent of edema using these indices. In all cases where edema was present, significant hypometabolism was observed in the adjacent structures. Overall, there was a strong correlation between the extent of edema and severity of hypometabolism (r=0.92, P=0.01). This was true regardless of the location of edema, whether there was history of radiation treatment (r=0.91, P=0.03), or not (r=0.97, P=0.17). In conclusion, edema independent of underlying variables appeared to contribute significantly to cortical and sub-cortical grey matter hypometabolism observed in patients with brain tumors. This would indicate that brain tumors can be successfully assessed by (18)F-FDG-PET and therefore the efforts for

  14. Neuroinflammatory pathways in binge alcohol-induced neuronal degeneration: oxidative stress cascade involving aquaporin, brain edema, and phospholipase A2 activation.

    PubMed

    Collins, Michael A; Neafsey, Edward J

    2012-01-01

    Chronic binge alcohol exposure in adult rat models causes neuronal degeneration in the cortex and hippocampus that is not reduced by excitotoxic receptor antagonists, but is prevented by antioxidants. Neuroinflammatory (glial-neuronal) signaling pathways are believed to underlie the oxidative stress and brain damage. Based on our experimental results as well as increased knowledge about the pro-neuroinflammatory potential of glial water channels, we propose that induction of aquaporin-4 can be a critical initiating factor in alcohol's neurotoxic effects, through the instigation of cellular edema-based neuroinflammatory cascades involving increased phospholipase A2 activities, polyunsaturated fatty acid release/membrane depletion, decreased prosurvival signaling, and oxidative stress. A testable scheme for this pathway is presented that incorporates recent findings in the alcohol-brain literature indicating a role for neuroimmune activation (upregulation of NF-kappaB, proinflammatory cytokines, and toll-like receptors). We present the argument that such neuroimmune activation could be associated with or even dependent on increased aquaporin-4 and glial swelling as well.

  15. The effect of butylphthalide on the brain edema, blood-brain barrier of rats after focal cerebral infarction and the expression of Rho A.

    PubMed

    Hu, Jinyang; Wen, Qingping; Wu, Yue; Li, Baozhu; Gao, Peng

    2014-06-01

    The aim of this study was to explore the effect of butylphthalide on the brain edema, blood-brain barrier of rats of rats after focal cerebral infarction and the expression of Rho A. A total of 195 sprague-dawley male rats were randomly divided into control group, model group, and butylphthalide group (40 mg/kg, once a day, by gavage). The model was made by photochemical method. After surgery 3, 12, 24, 72, and 144 h, brain water content was done to see the effect of butylphthalide for the cerebral edema. Evans blue extravasation method was done to see the changes in blood-brain barrier immunohistochemistry, and Western blot was done to see the expression of Rho A around the infarction. Compared with the control group, the brain water content of model group and butylphthalide group rats was increased, the permeability of blood-brain barrier of model group and butylphthalide group rats was increased, and the Rho A protein of model group and butylphthalide group rats was increased. Compared with the model group, the brain water content of butylphthalide group rats was induced (73.67 ± 0.67 vs 74.14 ± 0.46; 74.89 ± 0.57 vs 75.61 ± 0.52; 77.49 ± 0.34 vs 79.33 ± 0.49; 76.31 ± 0.56 vs 78.01 ± 0.48; 72.36 ± 0.44 vs 73.12 ± 0.73; P < 0.05), the permeability of blood-brain barrier of butylphthalide group rats was induced (319.20 ± 8.11 vs 394.60 ± 6.19; 210.40 ± 9.56 vs 266.40 ± 7.99; 188.00 ± 9.22 vs 232.40 ± 7.89; 288.40 ± 7.86 vs 336.00 ± 6.71; 166.60 ± 6.23 vs 213.60 ± 13.79; P < 0.05), and the Rho A protein of butylphthalide group rats was decreased (western blot result: 1.2230 ± 0.0254 vs 1.3970 ± 0.0276; 1.5985 ± 0.0206 vs 2.0368 ± 0.0179; 1.4229 ± 0.0167 vs 1.7930 ± 0.0158;1.3126 ± 0.0236 vs 1.5471 ± 0.0158; P < 0.05). The butylphthalide could reduce the brain edema, protect the blood-brain barrier, and decrease the expression of Rho A around the infarction.

  16. Human brain mapping: Experimental and computational approaches

    SciTech Connect

    Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J.; Sanders, J.; Belliveau, J.

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

  17. YiQiFuMai powder injection ameliorates blood-brain barrier dysfunction and brain edema after focal cerebral ischemia-reperfusion injury in mice.

    PubMed

    Cao, Guosheng; Ye, Xinyi; Xu, Yingqiong; Yin, Mingzhu; Chen, Honglin; Kou, Junping; Yu, Boyang

    2016-01-01

    YiQiFuMai powder injection (YQFM) is a modern preparation derived from the traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the People's Republic of China, mainly for the treatment of microcirculatory disturbance-related diseases. However, little is known about its role in animals with ischemic stroke. The aim of this study was to examine the effect of YQFM on brain edema and blood-brain barrier (BBB) dysfunction induced by cerebral ischemia-reperfusion (I/R) injury. Male C57BL/6J mice underwent right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg) was then given intraperitoneally (IP). The results demonstrated that YQFM significantly decreased infarct size, improved neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and histopathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and upregulated the expression of zona occludens-1 (ZO-1) and occludin, which was confirmed by Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving BBB dysfunction via upregulation of the expression of tight junction proteins.

  18. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury

    PubMed Central

    Requena, Daniela F.; Abdullah, Osama M.; Casper, T. Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R.

    2016-01-01

    Abstract Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI. PMID:26247583

  19. A new strategy of CyberKnife treatment system based radiosurgery followed by early use of adjuvant bevacizumab treatment for brain metastasis with extensive cerebral edema.

    PubMed

    Wang, Yang; Wang, Enmin; Pan, Li; Dai, Jiazhong; Zhang, Nan; Wang, Xin; Liu, Xiaoxia; Mei, Guanghai; Sheng, Xiaofang

    2014-09-01

    Bevacizumab blocks the effects of vascular endothelial growth factor in leakage-prone capillaries and has been suggested as a new treatment for cerebral radiation edema and necrosis. CyberKnife is a new, frameless stereotactic radiosurgery system. This work investigated the safety and efficacy of CyberKnife followed by early bevacizumab treatment for brain metastasis with extensive cerebral edema. The eligibility criteria of the patients selected for radiosurgery followed by early use of adjuvant bevacizumab treatment were: (1) brain tumors from metastasis with one solitary brain lesion and symptomatic extensive cerebral edema; (2) >18 years of age; (3) the patient refused surgery due to the physical conditions and the risk of surgery; (4) no contraindications for bevacizumab. (5) bevacizumab was applied for a minimum of 2 injections and a maximum of 6 injections with a 2-week interval between treatments, beginning within 2 weeks of the CyberKnife therapy; (6) Karnofsky performance status (KPS) ≥30. Tumor size and edema were monitored by magnetic resonance imaging (MRI). Dexamethasone dosage, KPS, adverse event occurrence and associated clinical outcomes were also recorded. Eight patients were accrued for this new treatment. Radiation dose ranged from 20 to 33 Gy in one to five sessions, prescribed to the 61-71 % isodose line. Bevacizumab therapy was administered 3-10 days after completion of CyberKnife treatment for a minimum of two cycles (5 mg/kg, at 2-week intervals). MRI revealed average reductions of 55.8 % (post-gadolinium) and 63.4 % (T2/FLAIR). Seven patients showed significant clinical neurological improvements. Dexamethasone was reduced in all patients, with five successfully discontinuing dexamethasone treatment 4 weeks after bevacizumab initiation. Hypertension, a bevacizumab-related adverse event, occurred in one patient. After 3-8 months, all patients studied were alive and primary brain metastases were under control, 2 developed new brain

  20. Effect of partial liquid ventilation on pulmonary vascular permeability and edema after experimental acute lung injury.

    PubMed

    Lange, N R; Kozlowski, J K; Gust, R; Shapiro, S D; Schuster, D P

    2000-07-01

    We evaluated the effects of partial liquid ventilation (PLV) with two different dosages of the perfluorocarbon LiquiVent (perflubron) on pulmonary vascular permeability and edema formation after oleic acid (OA)-induced acute lung injury in dogs. We used imaging with positron emission tomography to measure fractional pulmonary blood flow, lung water concentration (LWC), and the pulmonary transcapillary escape rate (PTCER) of (68)Ga-labeled transferrin at 5 and 21 h after lung injury in five dogs undergoing conventional mechanical ventilation (CMV), five dogs undergoing low-dose PLV (perflubron at 10 ml/kg), and four dogs undergoing high dose PLV (perflubron at 30 ml/kg). A positive end-expiratory pressure of 7.5 cm H(2)O was used in all dogs. After OA (0.08 ml/kg)- induced lung injury, there were no significant differences or trends for PTCER or LWC at any time when the PLV groups were compared with the CMV group. However, lung tissue myeloperoxidase activity was significantly lower in the combined PLV group than in the CMV group (p = 0.016). We conclude that after OA-induced lung injury, the addition of PLV to CMV does not directly attenuate pulmonary vascular leak or lung water accumulation. Rather, the benefits of such treatment may be due to modifications of the inflammatory response.

  1. What Is Macular Edema?

    MedlinePlus Videos and Cool Tools

    ... Español Eye Health / Eye Health A-Z Macular Edema Sections What Is Macular Edema? What Causes Macular ... Edema Diagnosis Macular Edema Treatment What Is Macular Edema? Dec. 01, 2010 Macular edema is swelling or ...

  2. Deficiency of tenascin-C and attenuation of blood-brain barrier disruption following experimental subarachnoid hemorrhage in mice.

    PubMed

    Fujimoto, Masashi; Shiba, Masato; Kawakita, Fumihiro; Liu, Lei; Shimojo, Naoshi; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Suzuki, Hidenori

    2016-06-01

    OBJECT Tenascin-C (TNC), a matricellular protein, is induced in the brain following subarachnoid hemorrhage (SAH). The authors investigated if TNC causes brain edema and blood-brain barrier (BBB) disruption following experimental SAH. METHODS C57BL/6 wild-type (WT) or TNC knockout (TNKO) mice were subjected to SAH by endovascular puncture. Ninety-seven mice were randomly allocated to WT sham-operated (n = 16), TNKO sham-operated (n = 16), WT SAH (n = 34), and TNKO SAH (n = 31) groups. Mice were examined by means of neuroscore and brain water content 24-48 hours post-SAH; and Evans blue dye extravasation and Western blotting of TNC, matrix metalloproteinase (MMP)-9, and zona occludens (ZO)-1 at 24 hours post-SAH. As a separate study, 16 mice were randomized to WT sham-operated, TNKO sham-operated, WT SAH, and TNKO SAH groups (n = 4 in each group), and activation of mitogen-activated protein kinases (MAPKs) was immunohistochemically evaluated at 24 hours post-SAH. Moreover, 40 TNKO mice randomly received an intracerebroventricular injection of TNC or phosphate-buffered saline, and effects of exogenous TNC on brain edema and BBB disruption following SAH were studied. RESULTS Deficiency of endogenous TNC prevented neurological impairments, brain edema formation, and BBB disruption following SAH; it was also associated with the inhibition of both MMP-9 induction and ZO-1 degradation. Endogenous TNC deficiency also inhibited post-SAH MAPK activation in brain capillary endothelial cells. Exogenous TNC treatment abolished the neuroprotective effects shown in TNKO mice with SAH. CONCLUSIONS Tenascin-C may be an important mediator in the development of brain edema and BBB disruption following SAH, mechanisms for which may involve MAPK-mediated MMP-9 induction and ZO-1 degradation. TNC could be a molecular target against which to develop new therapies for SAH-induced brain injuries.

  3. Experimental missile wound to the brain.

    PubMed

    Carey, M E; Sarna, G S; Farrell, J B; Happel, L T

    1989-11-01

    Among civilians in the United States, 33,000 gunshot wound deaths occur each year; probably half of these involve the head. In combat, head wounds account for approximately half of the immediate mortality when death can be attributed to a single wound. No significant reduction in the neurosurgical mortality associated with these wounds has occurred between World War II and the Vietnam conflict, and very little research into missile wounds of the brain has been undertaken. An experimental model has been developed in the anesthetized cat whereby a ballistic injury to the brain may be painlessly reproduced in order that the pathophysiological effects of brain wounding may be studied and better treatments may be designed to lower the mortality and morbidity rates associated with gunshot wounds. Prominent among physiological effects observed in this model was respiratory arrest even though the missile did not injure the brain stem directly. The incidence of prolonged respiratory arrest increased with increasing missile energy, but arrest was often reversible provided respiratory support was given. It is possible that humans who receive a brain wound die from missile-induced apnea instead of brain damage per se. The mortality rate in humans with brain wounding might be reduced by prompt respiratory support. Brain wounding was associated with persistently increased intracranial pressure and reduced cerebral perfusion pressure not entirely attributable to intracranial bleeding. The magnitude of these derangements appeared to be missile energy-dependent and approached dangerous levels in higher-energy wounds. All wounded cats exhibited postwounding increases in blood glucose concentrations consistent with a generalized stress reaction. A transient rise in hematocrit also occurred immediately after wounding. Both of these phenomena could prove deleterious to optimal brain function after injury.

  4. Reexpansion pulmonary edema.

    PubMed

    Tarver, R D; Broderick, L S; Conces, D J

    1996-01-01

    Reexpansion pulmonary edema is a rare complication attending the rapid reexpansion of a chronically collapsed lung, such as occurs after evacuation of a large amount of air or fluid from the pleural space. The condition usually appears unexpectedly and dramatically-immediately or within 1 h in 64% of patients and within 24 h in the remainder. The clinical manifestations are varied; they range from roentgenographic findings alone in asymptomatic patients to severe cardiorespiratory insufficiency. The radiographic evidence of reexpansion pulmonary edema is a unilateral alveolar filling pattern, seen within a few hours of reexpansion of the lung. The edema may progress for 24-48 h and persist for 4-5 days. Human data on the pathophysiology of reexpansion pulmonary edema derive from small series of patients, case reports, and reviews of the literature. On the other hand, a larger body of data exists on experimental reexpansion pulmonary edema in cats, monkeys, rabbits, sheep, and goats. This review examines the clinical and experimental evidence for reexpansion pulmonary edema. In addition, we detail the historical background, clinical setting, treatment, and outcome of reexpansion pulmonary edema.

  5. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet.

    PubMed

    Lo, Amy C Y; Chen, Ann Y S; Hung, Victor K L; Yaw, Lai Ping; Fung, Maggie K L; Ho, Maggie C Y; Tsang, Margaret C S; Chung, Stephen S M; Chung, Sookja K

    2005-08-01

    Stroke patients have increased levels of endothelin-1 (ET-1), a strong vasoconstrictor, in their plasma or cerebrospinal fluid. Previously, we showed high level of ET-1 mRNA expression in astrocytes after hypoxia/ischemia. It is unclear whether the contribution of ET-1 induction in astrocytes is protective or destructive in cerebral ischemia. Here, we generated a transgenic mouse model that overexpress ET-1 in astrocytes (GET-1) using the glial fibrillary acidic protein promoter to examine the role of astrocytic ET-1 in ischemic stroke by challenging these mice with transient middle cerebral artery occlusion (MCAO). Under normal condition, GET-1 mice showed no abnormality in brain morphology, cerebrovasculature, absolute cerebral blood flow, blood-brain barrier (BBB) integrity, and mean arterial blood pressure. Yet, GET-1 mice subjected to transient MCAO showed more severe neurologic deficits and increased infarct, which were partially normalized by administration of ABT-627 (ET(A) antagonist) 5 mins after MCAO. In addition, GET-1 brains exhibited more Evans blue extravasation and showed decreased endothelial occludin expression after MCAO, correlating with higher brain water content and increased cerebral edema. Aquaporin 4 expression was also more pronounced in astrocytic end-feet on blood vessels in GET-1 ipsilateral brains. Our current data suggest that astrocytic ET-1 has deleterious effects on water homeostasis, cerebral edema and BBB integrity, which contribute to more severe ischemic brain injury.

  6. YiQiFuMai powder injection ameliorates blood–brain barrier dysfunction and brain edema after focal cerebral ischemia–reperfusion injury in mice

    PubMed Central

    Cao, Guosheng; Ye, Xinyi; Xu, Yingqiong; Yin, Mingzhu; Chen, Honglin; Kou, Junping; Yu, Boyang

    2016-01-01

    YiQiFuMai powder injection (YQFM) is a modern preparation derived from the traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the People’s Republic of China, mainly for the treatment of microcirculatory disturbance-related diseases. However, little is known about its role in animals with ischemic stroke. The aim of this study was to examine the effect of YQFM on brain edema and blood–brain barrier (BBB) dysfunction induced by cerebral ischemia–reperfusion (I/R) injury. Male C57BL/6J mice underwent right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg) was then given intraperitoneally (IP). The results demonstrated that YQFM significantly decreased infarct size, improved neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and histopathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and upregulated the expression of zona occludens-1 (ZO-1) and occludin, which was confirmed by Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving BBB dysfunction via upregulation of the expression of tight junction proteins. PMID:26834461

  7. The effect of saponification on the mucopolysaccharides of the ground substance of the human brain: the relation to focal edema and multiple sclerosis.

    PubMed

    Feigin, I

    1981-03-01

    The acid mucopolysaccharides of brain tissues are disclosed by their metachromatic staining with toluidine blue following saponification with potassium hydroxide, presumably as a result of the liberation of acid groups previously esterified. Earlier histochemical studies had disclosed the presence of neutral mucopolysaccharides by staining with the periodic acid-Schiff technique, and such staining is intensified by prior saponification. Many biochemical studies have reported the presence of both acid and neutral mucopolysaccharides in brain tissues. Within the white matter following brain edema, the quantity of stained mucopolysaccharides is decreased in the plaques of multiple sclerosis and pontine myelinolysis, and in the lesions of diffuse sclerosis. All of these are characterized by myelin loss with relative preservation of axons. The known physiological effects of the mucopolysaccharides on the water content of normal tissues, and on the properties and diffusability of the increments of fluid that constitute edema, lead to the suggestion that edema may play a major role in the pathogenesis of the demyelinating diseases, including multiple sclerosis.

  8. Role of PiCCO monitoring for the integrated management of neurogenic pulmonary edema following traumatic brain injury: A case report and literature review.

    PubMed

    Lin, Xiaoping; Xu, Zhijun; Wang, Pengfei; Xu, Yan; Zhang, Gensheng

    2016-10-01

    Neurogenic pulmonary edema (NPE) is occasionally observed in patients with traumatic brain injury (TBI); however, this condition is often underappreciated. NPE is frequently misdiagnosed due to its atypical clinical performance, thus delaying appropriate treatment. A comprehensive management protocol of NPE in patients with TBI has yet to be established. The current study reported the case of a 67-year-old man with severe TBI who was transferred to our intensive care unit (ICU). On day 7 after hospitalization, the patient suddenly suffered tachypnea, tachycardia, systemic hypertension and hypoxemia during lumbar cistern drainage. Intravenous diuretics, tranquilizer and glucocorticoid were administered due to suspected left heart failure attack. Chest radiography examination supported the diagnosis of pulmonary edema; however, hypotension and hypovolemia were subsequently observed. Pulse index continuous cardiac output (PiCCO) hemodynamic monitoring and bedside echocardiography were performed, which excluded the diagnosis of cardiac pulmonary edema, and thus the diagnosis of NPE was confirmed. Goal-directed therapy by dynamic PiCCO monitoring was then implemented. In addition, levosimendan, an inotropic agent, was introduced to improve cardiac output. The patient had complete recovered from pulmonary edema and regained consciousness on day 11 of hospitalization. The current case demonstrated that PiCCO monitoring may serve a central role in the integrated management of NPE in patients with TBI. Levosimendan may be a potential medicine in treating cardiac dysfunction, along with its benefit from improving neurological function in NPE patients.

  9. Role of PiCCO monitoring for the integrated management of neurogenic pulmonary edema following traumatic brain injury: A case report and literature review

    PubMed Central

    Lin, Xiaoping; Xu, Zhijun; Wang, Pengfei; Xu, Yan; Zhang, Gensheng

    2016-01-01

    Neurogenic pulmonary edema (NPE) is occasionally observed in patients with traumatic brain injury (TBI); however, this condition is often underappreciated. NPE is frequently misdiagnosed due to its atypical clinical performance, thus delaying appropriate treatment. A comprehensive management protocol of NPE in patients with TBI has yet to be established. The current study reported the case of a 67-year-old man with severe TBI who was transferred to our intensive care unit (ICU). On day 7 after hospitalization, the patient suddenly suffered tachypnea, tachycardia, systemic hypertension and hypoxemia during lumbar cistern drainage. Intravenous diuretics, tranquilizer and glucocorticoid were administered due to suspected left heart failure attack. Chest radiography examination supported the diagnosis of pulmonary edema; however, hypotension and hypovolemia were subsequently observed. Pulse index continuous cardiac output (PiCCO) hemodynamic monitoring and bedside echocardiography were performed, which excluded the diagnosis of cardiac pulmonary edema, and thus the diagnosis of NPE was confirmed. Goal-directed therapy by dynamic PiCCO monitoring was then implemented. In addition, levosimendan, an inotropic agent, was introduced to improve cardiac output. The patient had complete recovered from pulmonary edema and regained consciousness on day 11 of hospitalization. The current case demonstrated that PiCCO monitoring may serve a central role in the integrated management of NPE in patients with TBI. Levosimendan may be a potential medicine in treating cardiac dysfunction, along with its benefit from improving neurological function in NPE patients. PMID:27698733

  10. Increased toll-like receptor 4 in cerebral endothelial cells contributes to the astrocyte swelling and brain edema in acute hepatic encephalopathy.

    PubMed

    Jayakumar, Arumugam R; Tong, Xiao Y; Curtis, Kevin M; Ruiz-Cordero, Roberto; Abreu, Maria T; Norenberg, Michael D

    2014-03-01

    Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll-like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4-silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up-regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide-treated TLR4 knock-out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood-borne noxious agents.

  11. Molecular pathophysiology of cerebral edema

    PubMed Central

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  12. Molecular pathophysiology of cerebral edema.

    PubMed

    Stokum, Jesse A; Gerzanich, Volodymyr; Simard, J Marc

    2016-03-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema.

  13. Elevated pulmonary artery pressure and brain natriuretic peptide in high altitude pulmonary edema susceptible non-mountaineers

    PubMed Central

    Gupta, Rajinder K.; Himashree, G.; Singh, Krishan; Soree, Poonam; Desiraju, Koundinya; Agrawal, Anurag; Ghosh, Dishari; Dass, Deepak; Reddy, Prassana K.; Panjwani, Usha; Singh, Shashi Bala

    2016-01-01

    Exaggerated pulmonary pressor response to hypoxia is a pathgonomic feature observed in high altitude pulmonary edema (HAPE) susceptible mountaineers. It was investigated whether measurement of basal pulmonary artery pressure (Ppa) and brain natriuretic peptide (BNP) could improve identification of HAPE susceptible subjects in a non-mountaineer population. We studied BNP levels, baseline hemodynamics and the response to hypoxia (FIo2 = 0.12 for 30 min duration at sea level) in 11 HAPE resistant (no past history of HAPE, Control) and 11 HAPE susceptible (past history of HAPE, HAPE-S) subjects. Baseline Ppa (19.31 ± 3.63 vs 15.68 ± 2.79 mm Hg, p < 0.05) and plasma BNP levels (52.39 ± 32.9 vs 15.05 ± 9.6 pg/ml, p < 0.05) were high and stroke volume was less (p < 0.05) in HAPE-S subjects compared to control. Acute hypoxia produced an exaggerated increase in heart rate (p < 0.05), mean arterial pressure (p < 0.05) and Ppa (28.2 ± 5.8 vs 19.33 ± 3.74 mm Hg, p < 0.05) and fall in peripheral oxygen saturation (p < 0.05) in HAPE-S compared to control. Receiver operating characteristic (ROC) curves showed that Ppa response to acute hypoxia was the best variable to identify HAPE susceptibility (AUC 0.92) but BNP levels provided comparable information (AUC 0.85). BNP levels are easy to determine and may represent an important marker for the determination of HAPE susceptibility. PMID:26892302

  14. Clinical Outcomes of Wulingsan Subtraction Decoction Treatment of Postoperative Brain Edema and Fever as a Complication of Glioma Neurosurgery

    PubMed Central

    Jin, Wei-rong; Zhang, Feng-e; Diao, Bao-zhong; Zhang, Yue-ying

    2016-01-01

    Objective. To evaluate the efficacy of Wulingsan subtraction (五苓散加减 WLSS) decoction in the treatment of postoperative brain edema and fever as a complication of glioma neurosurgery. Methods. This retrospective study was conducted at the Department of Neurosurgery of Liaocheng People's Hospital. Patients hospitalized between March 2011 and December 2014 were divided into three groups: Group A received WLSS oral liquid (50 mL), twice a day; Group B received an intravenous infusion of mannitol; and Group C received WLSS combined with mannitol (n = 30 patients per group). All patients were treated for 10 days continuously. Therapeutic efficacy was evaluated by measuring body temperature and indicators of renal function before and 3, 5, and 10 days after treatment. Results. Compared to the other two groups, significantly greater clinical efficacy was observed in the patients treated with mannitol (Group B; P < 0.05), although marked clinical efficacy was also observed over time in patients treated with WLSS (Group A). After 5 days, the quantifiable effects of the WLSS and mannitol combination group (Group C) were substantial (P < 0.05). The renal damage in Group B was more obvious after 5 days and 10 days. Conclusion. Compared with mannitol treatment alone, WLSS combined with mannitol induced a more rapid reduction in body temperature. Our findings suggest that patients should be started on mannitol for 3 days and then switched to WLSS to achieve obvious antipyretic effects and protect renal function. This method of treatment should be considered for clinical applications. PMID:27019661

  15. Effect of propofol post-treatment on blood-brain barrier integrity and cerebral edema after transient cerebral ischemia in rats.

    PubMed

    Lee, Jae Hoon; Cui, Hui Song; Shin, Seo Kyung; Kim, Jeong Min; Kim, So Yeon; Lee, Jong Eun; Koo, Bon-Nyeo

    2013-11-01

    Although propofol has been reported to offer neuroprotection against cerebral ischemia injury, its impact on cerebral edema following ischemia is not clear. The objective of this investigation is to evaluate the effects of propofol post-treatment on blood-brain barrier (BBB) integrity and cerebral edema after transient cerebral ischemia and its mechanism of action, focusing on modulation of aquaporins (AQPs), matrix metalloproteinases (MMPs), and hypoxia inducible factor (HIF)-1α. Cerebral ischemia was induced in male Sprague-Dawley rats (n = 78) by occlusion of the right middle cerebral artery for 1 h. For post-treatment with propofol, 1 mg kg(-1) min(-1) of propofol was administered for 1 h from the start of reperfusion. Nineteen rats undergoing sham surgery were also included in the investigation. Edema and BBB integrity were assessed by quantification of cerebral water content and extravasation of Evans blue, respectively, following 24 h of reperfusion. In addition, the expression of AQP-1, AQP-4, MMP-2, and MMP-9 was determined 24 h after reperfusion and the expression of HIF-1α was determined 8 h after reperfusion. Propofol post-treatment significantly reduced cerebral edema (P < 0.05) and BBB disruption (P < 0.05) compared with the saline-treated control. The expression of AQP-1, AQP-4, MMP-2, and MMP-9 at 24 h and of HIF-1α at 8 h following ischemia/reperfusion was significantly suppressed in the propofol post-treatment group (P < 0.05). Propofol post-treatment attenuated cerebral edema after transient cerebral ischemia, in association with reduced expression of AQP-1, AQP-4, MMP-2, and MMP-9. The decreased expression of AQPs and MMPs after propofol post-treatment might result from suppression of HIF-1α expression.

  16. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury.

    PubMed

    Marmarou, Christina R; Liang, Xiuyin; Abidi, Naqeeb H; Parveen, Shanaz; Taya, Keisuke; Henderson, Scott C; Young, Harold F; Filippidis, Aristotelis S; Baumgarten, Clive M

    2014-09-18

    A secondary and often lethal consequence of traumatic brain injury is cellular edema that we posit is due to astrocytic swelling caused by transmembrane water fluxes augmented by vasopressin-regulated aquaporin-4 (AQP4). We therefore tested whether vasopressin 1a receptor (V1aR) inhibition would suppress astrocyte AQP4, reduce astrocytic edema, and thereby diminish TBI-induced edematous changes. V1aR inhibition by SR49059 significantly reduced brain edema after cortical contusion injury (CCI) in rat 5h post-injury. Injured-hemisphere brain water content (n=6 animals/group) and astrocytic area (n=3/group) were significantly higher in CCI-vehicle (80.5±0.3%; 18.0±1.4 µm(2)) versus sham groups (78.3±0.1%; 9.5±0.9 µm(2)), and SR49059 blunted CCI-induced increases in brain edema (79.0±0.2%; 9.4±0.8µm(2)). CCI significantly up-regulated GFAP, V1aR and AQP4 protein levels and SR49059 suppressed injury induced up regulation (n=6/group). In CCI-vehicle, sham and CCI-SR49059 groups, GFAP was 1.58±0.04, 0.47±0.02, and 0.81±0.03, respectively; V1aR was 1.00±0.06, 0.45±0.05, and 0.46±0.09; and AQP4 was 2.03±0.34, 0.49±0.04, and 0.92±0.22. Confocal immunohistochemistry gave analogous results. In CCI-vehicle, sham and CCI-SR49059 groups, fluorescence intensity of GFAP was 349±38, 56±5, and 244±30, respectively, V1aR was 601±71, 117.8±14, and 390±76, and AQP4 was 818±117, 158±5, and 458±55 (n=3/group). The results support that edema was predominantly cellular following CCI and documented that V1aR inhibition with SR49059 suppressed injury-induced up regulation of GFAP, V1A and AQP4, blunting edematous changes. Our findings suggest V1aR inhibitors may be potential therapeutic tools to prevent cellular swelling and provide treatment for post-traumatic brain edema.

  17. Molecular pathology of brain edema after severe burns in forensic autopsy cases with special regard to the importance of reference gene selection.

    PubMed

    Wang, Qi; Ishikawa, Takaki; Michiue, Tomomi; Zhu, Bao-Li; Guan, Da-Wei; Maeda, Hitoshi

    2013-09-01

    Brain edema is believed to be linked to high mortality incidence after severe burns. The present study investigated the molecular pathology of brain damage and responses involving brain edema in forensic autopsy cases of fire fatality (n = 55) compared with sudden cardiac death (n = 11), mechanical asphyxia (n = 13), and non-brain injury cases (n = 22). Postmortem mRNA and immunohistochemical expressions of aquaporins (AQPs), claudin5 (CLDN5), and matrix metalloproteinases (MMPs) were examined. Prolonged deaths due to severe burns showed an increase in brain water content, but relative mRNA quantification, using different normalization methods, showed inconsistent results: in prolonged deaths due to severe burns, higher expression levels were detected for all markers when three previously validated reference genes, PES1, POLR2A, and IPO8, were used for normalization, higher for AQP1 and MMP9 when GAPDH alone was used for normalization and higher for MMP9, but lower for MMP2 when B2M alone was used for normalization. Additionally, when B2M alone was used for normalization, higher expression of AQP4 was detected in acute fire deaths. Furthermore, the expression stability values of these five reference genes calculated by geNorm demonstrated that B2M was the least stable one, followed by GAPDH. In immunostaining, only AQP1 and MMP9 showed differences among the causes of death: they were evident in most prolonged deaths due to severe burns. These findings suggest that systematic analysis of gene expressions using real-time PCR might be a useful procedure in forensic death investigation, and validation of reference genes is crucial.

  18. Progress in Drug Treatment of Cerebral Edema.

    PubMed

    Deng, Y Y; Shen, F C; Xie, D; Han, Q P; Fang, M; Chen, C B; Zeng, H K

    2016-01-01

    Cerebral edema causes intracranial hypertension (ICH) which leads to severe outcome of patients in the clinical setting. Effective anti-edema therapy may significantly decrease the mortality in a variety of neurological conditions. At present drug treatment is a cornerstone in the management of cerebral edema. Osmotherapy has been the mainstay of pharmacologic therapy. Mannitol and hypertonic saline (HS) are the most commonly used osmotic agents. The relative safety and efficacy of HS and mannitol in the treatment of cerebral edema and reduction of enhanced ICP have been demonstrated in the past decades. Apart from its osmotic force, HS exerts anti-edema effects partly through inhibition of Na(+)-K(+)-2Cl(-) Cotransporter-1 (NKCC1) and aquaporin 4 (AQP4) expression in astrocytes. Melatonin may also reduce brain edema and exert neuroprotective effect on several central nervous system diseases through inhibition of inflammatory response. The inhibitors of Na/H exchanger, NKCC and AQP4 may attenuate brain edema formation through inhibition of excessive transportation of ion and water from blood into the cerebral tissue. In this review we survey some of the most recent findings in the drug treatment of brain edema focusing on the use of osmotherapy, melatonin and inhibitors of ion cotransporters and water channels. A better understanding of the molecular mechanism of these agents would help to improve in the clinical management of patients with brain edema.

  19. Numerical impact simulation of gradually increased kinetic energy transfer has the potential to break up folded protein structures resulting in cytotoxic brain tissue edema.

    PubMed

    von Holst, Hans; Li, Xiaogai

    2013-07-01

    Although the consequences of traumatic brain injury (TBI) and its treatment have been improved, there is still a substantial lack of understanding the mechanisms. Numerical simulation of the impact can throw further lights on site and mechanism of action. A finite element model of the human head and brain tissue was used to simulate TBI. The consequences of gradually increased kinetic energy transfer was analyzed by evaluating the impact intracranial pressure (ICP), strain level, and their potential influences on binding forces in folded protein structures. The gradually increased kinetic energy was found to have the potential to break apart bonds of Van der Waals in all impacts and hydrogen bonds at simulated impacts from 6 m/s and higher, thereby superseding the energy in folded protein structures. Further, impacts below 6 m/s showed none or very slight increase in impact ICP and strain levels, whereas impacts of 6 m/s or higher showed a gradual increase of the impact ICP and strain levels reaching over 1000 KPa and over 30%, respectively. The present simulation study shows that the free kinetic energy transfer, impact ICP, and strain levels all have the potential to initiate cytotoxic brain tissue edema by unfolding protein structures. The definition of mild, moderate, and severe TBI should thus be looked upon as the same condition and separated only by a gradual severity of impact.

  20. Reperfusion pulmonary edema

    SciTech Connect

    Klausner, J.M.; Paterson, I.S.; Mannick, J.A.; Valeri, C.R.; Shepro, D.; Hechtman, H.B. )

    1989-02-17

    Reperfusion following lower-torso ischemia in humans leads to respiratory failure manifest by pulmonary hypertension, hypoxemia, and noncardiogenic pulmonary edema. The mechanism of injury has been studied in the sheep lung lymph preparation, where it has been demonstrated that the reperfusion resulting in pulmonary edema is due to an increase in microvascular permeability of the lung to protein. This respiratory failure caused by reperfusion appears to be an inflammatory reaction associated with intravascular release of the chemoattractants leukotriene B{sub 4} and thromboxane. Histological studies of the lung in experimental animals revealed significant accumulation of neutrophils but not platelets in alveolar capillaries. The authors conclude that thromboxane generated and released from the ischemic tissue is responsible for the transient pulmonary hypertension. Second, it is likely that the chemoattractants are responsible for leukosequestration, and third, neutrophils, oxygen-derived free radicals, and thromboxane moderate the altered lung permeability.

  1. Ursolic Acid Ameliorates Early Brain Injury After Experimental Traumatic Brain Injury in Mice by Activating the Nrf2 Pathway.

    PubMed

    Ding, Hui; Wang, Handong; Zhu, Lin; Wei, Wuting

    2017-02-01

    Previous studies have indicated oxidative stress and inflammatory injury as significant contributors to the secondary damage associated with traumatic brain injury (TBI). Ursolic acid (UA) has been demonstrated to exert anti-oxidative and anti-inflammatory effects on cerebral ischemia by activating the nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. However, the effects of UA on TBI remain unclear. The aim of this study is to evaluate the potential roles of UA in the activation of the Nrf2 pathway using an experimental TBI model and the underlying mechanism. Wild-type (WT) and Nrf2((-/-)) mice were divided into eight groups: (1) sham; (2) TBI; (3) TBI + vehicle; (4) TBI + 50 mg/kg UA; (5) TBI + 100 mg/kg UA; (6) TBI + 150 mg/kg UA; (7) TBI + Nrf2((-/-)) + vehicle; (8) TBI + Nrf2((-/-)) + UA. All mice underwent the TBI with the exception of the sham group. The neurologic outcomes of the mice were evaluated at 24 h after TBI, as well as the expression of Nrf2, NQO1, HO1,SOD, GPx, and MDA. Treatment of UA significantly ameliorated brain edema and the neurological insufficiencies after TBI. In addition, UA treatment markedly strengthened the nuclear translocation of Nrf2 protein and increased the expression of NQO1 and HO1. Moreover, UA significantly increased the expression of AKT, an Nrf2 upstream factor, suggesting that UA play a neuroprotective role through the activation of the Nrf2-ARE signal pathway. On the contrary, UA showed no neuroprotective effect on the Nrf2((-/-)) mice. These data indicated that UA increases the activity of antioxidant enzymes and attenuated brain injury via Nrf2 factor.

  2. [Effects of alcohol consumption on traumatic brain injury].

    PubMed

    Katada, Ryuichi

    2011-10-01

    It has been well known that alcohol consumption affects traumatic brain injury. The mechanism of detrimental effect of ethanol on traumatic brain injury has not been clarified. This review focused on the relationship among traumatic brain injury, ethanol and aquaporin-4. We have reported that ethanol increased brain edema after brain contusion and decreased survival rates in rats. It was suggested that increasing brain edema by ethanol after brain contusion may be caused by oxidative stress. Brain edema consists of cytotoxic brain edema, vasogenic brain edema, interstitial brain edema and osmotic edema. Ethanol mainly increases cytotoxic brain edema. Both alcohol consumption and brain contusion cause oxidative stress. Antioxidant treatment decreases cytotoxic brain edema. Aquaporin-4, an water channel, was increased by ethanol 24 hr after traumatic brain injury in rat. The aquaporin-4 inhibitor decreased brain edema after brain contusion and increased survival rates under ethanol consumption. Aquaporin-4 may have strict relation between ethanol and brain edema increasing after brain contusion.

  3. Novel treatment targets for cerebral edema.

    PubMed

    Walcott, Brian P; Kahle, Kristopher T; Simard, J Marc

    2012-01-01

    Cerebral edema is a common finding in a variety of neurological conditions, including ischemic stroke, traumatic brain injury, ruptured cerebral aneurysm, and neoplasia. With the possible exception of neoplasia, most pathological processes leading to edema seem to share similar molecular mechanisms of edema formation. Challenges to brain-cell volume homeostasis can have dramatic consequences, given the fixed volume of the rigid skull and the effect of swelling on secondary neuronal injury. With even small changes in cellular and extracellular volume, cerebral edema can compromise regional or global cerebral blood flow and metabolism or result in compression of vital brain structures. Osmotherapy has been the mainstay of pharmacologic therapy and is typically administered as part of an escalating medical treatment algorithm that can include corticosteroids, diuretics, and pharmacological cerebral metabolic suppression. Novel treatment targets for cerebral edema include the Na(+)-K(+)-2Cl(-) co-transporter (NKCC1) and the SUR1-regulated NC(Ca-ATP) (SUR1/TRPM4) channel. These two ion channels have been demonstrated to be critical mediators of edema formation in brain-injured states. Their specific inhibitors, bumetanide and glibenclamide, respectively, are well-characterized Food and Drug Administration-approved drugs with excellent safety profiles. Directed inhibition of these ion transporters has the potential to reduce the development of cerebral edema and is currently being investigated in human clinical trials. Another class of treatment agents for cerebral edema is vasopressin receptor antagonists. Euvolemic hyponatremia is present in a myriad of neurological conditions resulting in cerebral edema. A specific antagonist of the vasopressin V1A- and V2-receptor, conivaptan, promotes water excretion while sparing electrolytes through a process known as aquaresis.

  4. Cytotoxic edema: mechanisms of pathological cell swelling

    PubMed Central

    Liang, Danny; Bhatta, Sergei; Gerzanich, Volodymyr; Simard, J. Marc

    2009-01-01

    Cerebral edema is caused by a variety of pathological conditions that affect the brain. It is associated with two separate pathophysiological processes with distinct molecular and physiological antecedents: those related to cytotoxic (cellular) edema of neurons and astrocytes, and those related to transcapillary flux of Na+ and other ions, water, and serum macromolecules. In this review, the authors focus exclusively on the first of these two processes. Cytotoxic edema results from unchecked or uncompensated influx of cations, mainly Na+, through cation channels. The authors review the different cation channels that have been implicated in the formation of cytotoxic edema of astrocytes and neurons in different pathological states. A better understanding of these molecular mechanisms holds the promise of improved treatments of cerebral edema and of the secondary injury produced by this pathological process. PMID:17613233

  5. Effect of carnosine on rats under experimental brain ischemia.

    PubMed

    Gallant, S; Kukley, M; Stvolinsky, S; Bulygina, E; Boldyrev, A

    2000-06-01

    The effect of dietary carnosine on the behavioral and biochemical characteristics of rats under experimental ischemia was studied. Carnosine was shown to improve the animals orientation and learning in "Open Field" and "T-Maze" tests, and this effect was accompanied with an increase in glutamate binding to N-methyl-D-aspartate (NMDA) receptors in brain synaptosomes. Long-term brain ischemia induced by both sides' occlusion of common carotid arteries resulted in 55% mortality of experimental rats, and those who survived were characterized by partial suppression of orientation in T-maze. In the group of rats treated with carnosine, mortality after ischemic attack was decreased (from 55% to 17%) and most of the learning parameters were kept at the pre-ischemic level. Monoamine oxidase B (MAO B) activity in brain of the carnosine treated rats was not changed by ischemia significantly (compared to that of ischemic untreated rats) but NMDA binding to brain synaptosomal membranes being increased by ischemic attack was significantly suppressed and reached the level characteristic of normal brain. The suggestion was made that carnosine possesses a dual effect on NMDA receptors resulting in increase in their amount after long-term treatment but decrease the capacity to bind NMDA after ischemic attack.

  6. Pathogenesis of optic disc edema in raised intracranial pressure.

    PubMed

    Hayreh, Sohan Singh

    2016-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with

  7. PATHOGENESIS OF OPTIC DISC EDEMA IN RAISED INTRACRANIAL PRESSURE

    PubMed Central

    Hayreh, Sohan Singh

    2015-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with

  8. Protective effects of intraperitoneal vitamin C, aprotinin and melatonin administration on retinal edema during experimental uveitis in the guinea pig.

    PubMed

    Kükner, A Sahap; Kükner, Aysel; Naziroğlu, Mustafa; Colakoğlu, Neriman; Celebi, Serdal; Yilmaz, Turgut; Aydemir, Orhan

    2004-01-01

    A considerable amount of clinical and experimental evidence exists suggesting the involvement of reactive oxygen substances (ROS) in the aetiology of uveitis. The activated phagocytic system of polymorphonuclear leucocytes in uveitis is involved in the generation of ROS. In addition to their direct free radical scavenging action, aprotinin, melatonin and vitamin C are known to protect against oedema formation and can preserve plasma membrane fluidity and free radical production. Histological changes in the retina that occur during uveitis are not well explained. The purpose of this study was to determine whether vitamin C, aprotinin and melatonin can protect the retina from damage accompanying experimental uveitis (EU). Thirty adult male guinea pigs were divided into five groups of six animals each. The first group was used as control. The right eyes of groups 2, 3, 4 and 5 received an intravitreal injection of bovine serum albumin for induction of experimental uveitis. At the same time and also on the consecutive third day, groups 3, 4 and 5 received intraperitoneal injections of vitamin C (ascorbic acid, 100 mg kg(-1) body wt), aprotinin (20,000 kIU kg(-1) body wt) and melatonin (10 mg kg(-1) body wt), respectively. The animals were killed on the sixth day. The average thickness of the retina and inner plexiform layer for each eye was measured in sagittal section near the optic nerve and expressed in microns. The thickness of the retina and inner plexiform layer in the control group was significantly (p < 0.01) lower than in the group EU as compared with the group EU plus vitamin C, group EU plus aprotinin, group EU plus melatonin (p < 0.05). The thicknesses of the retina and inner plexiform layer in group EU plus vitamin C, group EU plus aprotinin and group EU plus melatonin were significantly (p < 0.01) lower than that in the group EU. The difference in thickness of the retina and inner plexiform layer among the groups 3, 4 and 5 was not significant (p > 0

  9. Magnetic Resonance Imaging in Experimental Traumatic Brain Injury.

    PubMed

    Shen, Qiang; Watts, Lora Tally; Li, Wei; Duong, Timothy Q

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. Common causes of TBI include falls, violence, injuries from wars, and vehicular and sporting accidents. The initial direct mechanical damage in TBI is followed by progressive secondary injuries such as brain swelling, perturbed cerebral blood flow (CBF), abnormal cerebrovascular reactivity (CR), metabolic dysfunction, blood-brain-barrier disruption, inflammation, oxidative stress, and excitotoxicity, among others. Magnetic resonance imaging (MRI) offers the means to noninvasively probe many of these secondary injuries. MRI has been used to image anatomical, physiological, and functional changes associated with TBI in a longitudinal manner. This chapter describes controlled cortical impact (CCI) TBI surgical procedures, a few common MRI protocols used in TBI imaging, and, finally, image analysis pertaining to experimental TBI imaging in rats.

  10. Quantitative evaluation of hyperbaric oxygen efficacy in experimental traumatic brain injury: an MRI study.

    PubMed

    Wei, Xiao-Er; Li, Yue-Hua; Zhao, Hui; Li, Ming-Hua; Fu, Min; Li, Wen-Bin

    2014-02-01

    To use DCE-magnetic resonance imaging (MRI) and diffusion-weighted imaging to evaluate the hyperbaric oxygen efficacy (HBO) in experimental traumatic brain injury (TBI). Forty-two rabbits were randomly divided into four groups: TBI, TBI + HBO, sham group, sham + HBO. The TBI + HBO and sham + HBO received a total of 10 HBO treatments within 7 days following TBI, and MRI was performed within a month after TBI. Functional assessments were performed pre-TBI, and at 1 and 30 days. In focal lesion area, K(trans) in TBI + HBO group was lower than TBI group at both acute and subacute phase (p < 0.05). ADC was higher in TBI + HBO group than TBI group at acute phase (p < 0.01), but lower at subacute phase (p < 0.05). In perifocal area, K(trans) were lower in TBI + HBO group than TBI group at acute phase (p < 0.01) after TBI. ADC was lower in the TBI + HBO group than in the TBI group at both acute and subacute phase (p < 0.01).The VCS was higher in TBI + HBO group than TBI group at 30 days (p < 0.05). HBO could improve the impaired BBB and cytotoxic edema after TBI and promote the recovery of neurofunction.

  11. Mechanisms of Astrocyte-Mediated Cerebral Edema

    PubMed Central

    Stokum, Jesse A.; Kurland, David B.; Gerzanich, Volodymyr; Simard, J. Marc

    2014-01-01

    Cerebral edema formation stems from disruption of blood brain barrier (BBB) integrity and occurs after injury to the CNS. Due to the restrictive skull, relatively small increases in brain volume can translate into impaired tissue perfusion and brain herniation. In excess, cerebral edema can be gravely harmful. Astrocytes are key participants in cerebral edema by virtue of their relationship with the cerebral vasculature, their unique compliment of solute and water transport proteins, and their general role in brain volume homeostasis. Following the discovery of aquaporins, passive conduits of water flow, aquaporin 4 (AQP4) was identified as the predominant astrocyte water channel. Normally, AQP4 is highly enriched at perivascular endfeet, the outermost layer of the BBB, whereas after injury, AQP4 expression disseminates to the entire astrocytic plasmalemma, a phenomenon termed dysregulation. Arguably, the most important role of AQP4 is to rapidly neutralize osmotic gradients generated by ionic transporters. In pathological conditions, AQP4 is believed to be intimately involved in the formation and clearance of cerebral edema. In this review, we discuss aquaporin function and localization in the BBB during health and injury, and we examine post-injury ionic events that modulate AQP4- dependent edema formation. PMID:24996934

  12. Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury

    PubMed Central

    Lisembee, Amanda M.

    2012-01-01

    Disruption and consequent reorganization of central nervous system circuits following traumatic brain injury may manifest as functional deficits and behavioral morbidities. We previously reported axotomy and neuronal atrophy in the ventral basal (VB) complex of the thalamus, without gross degeneration after experimental diffuse brain injury in adult rats. Pathology in VB coincided with the development of late-onset aberrant behavioral responses to whisker stimulation, which lead to the current hypothesis that neurodegeneration after experimental diffuse brain injury includes the primary somatosensory barrel cortex (S1BF), which receives projection of VB neurons and mediates whisker somatosensation. Over 28 days after midline fluid percussion brain injury, argyrophilic reaction product within superficial layers and layer IV barrels at 1 day progresses into the cortex to subcortical white matter by 7 days, and selective inter-barrel septa and subcortical white matter labeling at 28 days. Cellular consequences were determined by stereological estimates of neuronal nuclear volumes and number. In all cortical layers, neuronal nuclear volumes significantly atrophied by 42–49% at 7 days compared to sham, which marginally attenuated by 28 days. Concomitantly, the number of healthy neurons was reduced by 34–45% at 7 days compared to sham, returning to control levels by 28 days. Progressive neurodegeneration, including argyrophilic reaction product and neuronal nuclear atrophy, indicates injury-induced damage and reorganization of the reciprocal thalamocortical projections that mediate whisker somatosensation. The rodent whisker barrel circuit may serve as a discrete model to evaluate the causes and consequences of circuit reorganization after diffuse brain injury. PMID:21597967

  13. Distribution of opiate alkaloids in brain tissue of experimental animals.

    PubMed

    Djurendic-Brenesel, Maja; Pilija, Vladimir; Mimica-Dukic, Neda; Budakov, Branislav; Cvjeticanin, Stanko

    2012-12-01

    The present study examined regional distribution of opiate alkaloids from seized heroin in brain regions of experimental animals in order to select parts with the highest content of opiates. Their analysis should contribute to resolve causes of death due to heroin intake. The tests were performed at different time periods (5, 15, 45 and 120 min) after male and female Wistar rats were treated with seized heroin. Opiate alkaloids (codeine, morphine, acetylcodeine, 6-acetylmorphine and 3,6-diacetylmorphine) were quantitatively determined in brain regions known for their high concentration of µ-opiate receptors: cortex, brainstem, amygdala and basal ganglia, by using gas chromatography-mass spectrometry (GC-MS). The highest content of opiate alkaloids in the brain tissue of female animals was found 15 min and in male animals 45 min after treatment. The highest content of opiates was determined in the basal ganglia of the animals of both genders, indicating that this part of brain tissue presents a reliable sample for identifying and assessing contents of opiates after heroin intake.

  14. Meta-analysis on brain representation of experimental dental pain.

    PubMed

    Lin, C-S; Niddam, D M; Hsu, M-L

    2014-02-01

    Functional magnetic resonance imaging (fMRI) has been widely used for investigating the brain representation associated with dental pain evoked by pulpal electrical stimulation. However, because of the heterogeneity of experimental designs and the small sample size of individual studies, the common brain representation regarding dental pain has remained elusive. We used imaging meta-analysis to investigate six dental pain-related fMRI studies (n = 87) and tested 3 hypotheses: (1) Dental pain is associated with the 'core' pain-related network; (2) pain-related brain activation is somatotopically organized in the somatosensory cortex; and (3) dental pain is associated with the cognitive-affective network related to pain. Qualitative and quantitative meta-analyses revealed: (1) common activation of the core pain-related network, including the somatosensory cortex, the insula, and the cingulate cortex; (2) inconsistency in somatotopically organized activation of the primary somatosensory cortex; and (3) common activation in the dorsolateral prefrontal cortex, suggesting a role of re-appraisal and coping in the experience of dental pain. In conclusion, fMRI combined with pulpal stimulation can effectively evoke activity in the pain-related network. The dental pain-related brain representation disclosed the mechanisms of how sensory and cognitive-affective factors shape dental pain, which will help in the development of more effective customized methods for central pain control.

  15. Experimental model for civilian ballistic brain injury biomechanics quantification.

    PubMed

    Zhang, Jiangyue; Yoganandan, Narayan; Pintar, Frank A; Guan, Yabo; Gennarelli, Thomas A

    2007-01-01

    Biomechanical quantification of projectile penetration using experimental head models can enhance the understanding of civilian ballistic brain injury and advance treatment. Two of the most commonly used handgun projectiles (25-cal, 275 m/s and 9 mm, 395 m/s) were discharged to spherical head models with gelatin and Sylgard simulants. Four ballistic pressure transducers recorded temporal pressure distributions at 308kHz, and temporal cavity dynamics were captured at 20,000 frames/second (fps) using high-speed digital video images. Pressures ranged from 644.6 to -92.8 kPa. Entry pressures in gelatin models were higher than exit pressures, whereas in Sylgard models entry pressures were lower or equivalent to exit pressures. Gelatin responded with brittle-type failure, while Sylgard demonstrated a ductile pattern through formation of micro-bubbles along projectile path. Temporary cavities in Sylgard models were 1.5-2x larger than gelatin models. Pressures in Sylgard models were more sensitive to projectile velocity and diameter increase, indicating Sylgard was more rate sensitive than gelatin. Based on failure patterns and brain tissue rate-sensitive characteristics, Sylgard was found to be an appropriate simulant. Compared with spherical projectile data, full-metal jacket (FMJ) projectiles produced different temporary cavity and pressures, demonstrating shape effects. Models using Sylgard gel and FMJ projectiles are appropriate to enhance understanding and mechanisms of ballistic brain injury.

  16. [Cardiogenic and non cardiogenic pulmonary edema: pathomechanisms and causes].

    PubMed

    Glaus, T; Schellenberg, S; Lang, J

    2010-07-01

    The development of pulmonary edema is divided in cardiogenic and non-cardiogenic. Cardiogenic edema pathogenically is caused by elevated hydrostatic pressure in the pulmonary capillaries due to left sided congestive heart failure. Non-cardiogenic pulmonary edema is categorized depending on the underlying pathogenesis in low-alveolar pressure, elevated permeability or neurogenic edema. Some important examples of causes are upper airway obstruction like in laryngeal paralysis or strangulation for low alveolar pressure, leptospirosis and ARDS for elevated permeability, and epilepsy, brain trauma and electrocution for neurogenic edema. The differentiation between cardiogenic versus non-cardiogenic genesis is not always straightforward, but most relevant, because treatment markedly differs between the two. Of further importance is the identification of the specific underlying cause in non-cardiogenic edema, not only for therapeutic but particularly for prognostic reasons. Depending on the cause the prognosis ranges from very poor to good chance of complete recovery.

  17. A quantitative brain map of experimental cerebral malaria pathology

    PubMed Central

    Schwartz, Jean-Marc; Greig, Rachel; Mironov, Aleksandr; de Souza, J. Brian; Cruickshank, Sheena M.; Craig, Alister G.; Milner, Danny A.; Allan, Stuart M.

    2017-01-01

    The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM. PMID:28273147

  18. Experimental models of perinatal hypoxic-ischemic brain damage.

    PubMed

    Vannucci, R C

    1993-01-01

    Animal research has provided important information on the pathogenesis of and neuropathologic responses to perinatal cerebral hypoxia-ischemia. In experimental animals, structural brain damage from hypoxia-ischemia has been produced in immature rats, rabbits, guinea pigs, sheep and monkeys (18, 20, 24, 25, 38). Of the several available animal models, the fetal and newborn rhesus monkey and immature rat have been studied most extensively because of their similarities to humans in respect to the physiology of reproduction and their neuroanatomy at or shortly following birth. Given the frequency of occurrence of human perinatal hypoxic-ischemic brain damage and the multiple, often severe neurologic handicaps which ensue in infants and children, it is not surprising that the above described animal models have been developed. These models have provided the basis for investigations to clarify not only physiologic and biochemical mechanisms of tissue injury but also the efficacy of specific management strategies. Hopefully, such animal research will continue to provide important information regarding how best to prevent or minimize the devastating consequences of perinatal cerebral hypoxia-ischemia.

  19. Epileptogenesis following experimentally induced traumatic brain injury - a systematic review.

    PubMed

    Chandel, Shammy; Gupta, Sunil Kumar; Medhi, Bikash

    2016-04-01

    Traumatic brain injury (TBI) is a complex neurotrauma in civilian life and the battlefield with a broad spectrum of symptoms, long-term neuropsychological disability, as well as mortality worldwide. Posttraumatic epilepsy (PTE) is a common outcome of TBI with unknown mechanisms, followed by posttraumatic epileptogenesis. There are numerous rodent models of TBI available with varying pathomechanisms of head injury similar to human TBI, but there is no evidence for an adequate TBI model that can properly mimic all aspects of clinical TBI and the first successive spontaneous focal seizures follow a single episode of neurotrauma with respect to epileptogenesis. This review aims to provide current information regarding the various experimental animal models of TBI relevant to clinical TBI. Mossy fiber sprouting, loss of dentate hilar neurons along with recurrent seizures, and epileptic discharge similar to human PTE have been studied in fluid percussion injury, weight-drop injury, and cortical impact models, but further refinement of animal models and functional test is warranted to better understand the underlying pathophysiology of posttraumatic epileptogenesis. A multifaceted research approach in TBI model may lead to exploration of the potential treatment measures, which are a major challenge to the research community and drug developers. With respect to clinical setting, proper patient data collection, improved clinical trials with advancement in drug delivery strategies, blood-brain barrier permeability, and proper monitoring of level and effects of target drug are also important.

  20. Registration of multimodal brain images: some experimental results

    NASA Astrophysics Data System (ADS)

    Chen, Hua-mei; Varshney, Pramod K.

    2002-03-01

    Joint histogram of two images is required to uniquely determine the mutual information between the two images. It has been pointed out that, under certain conditions, existing joint histogram estimation algorithms like partial volume interpolation (PVI) and linear interpolation may result in different types of artifact patterns in the MI based registration function by introducing spurious maxima. As a result, the artifacts may hamper the global optimization process and limit registration accuracy. In this paper we present an extensive study of interpolation-induced artifacts using simulated brain images and show that similar artifact patterns also exist when other intensity interpolation algorithms like cubic convolution interpolation and cubic B-spline interpolation are used. A new joint histogram estimation scheme named generalized partial volume estimation (GPVE) is proposed to eliminate the artifacts. A kernel function is involved in the proposed scheme and when the 1st order B-spline is chosen as the kernel function, it is equivalent to the PVI. A clinical brain image database furnished by Vanderbilt University is used to compare the accuracy of our algorithm with that of PVI. Our experimental results show that the use of higher order kernels can effectively remove the artifacts and, in cases when MI based registration result suffers from the artifacts, registration accuracy can be improved significantly.

  1. Differential permeability of the blood-brain barrier in experimental brain metastases produced by human neoplasms implanted into nude mice.

    PubMed Central

    Zhang, R. D.; Price, J. E.; Fujimaki, T.; Bucana, C. D.; Fidler, I. J.

    1992-01-01

    This study clarified whether and when the blood-brain barrier in experimental brain metastases is impaired by using hydrosoluble sodium fluorescein (MW 376) as a blood-brain barrier function indicator. Cells from eight human tumor lines (four melanomas, two breast carcinomas, one colon carcinoma, and one renal carcinoma) were inoculated into the internal carotid artery of nude mice. Brain metastases at different stages of development were sampled and the permeability of the blood-brain barrier around the metastases determined. Histologic examination showed two patterns of tumor growth. In the first, tumor cells formed isolated, well-defined nodules in the parenchyma of the brain. In lesions smaller than 0.2 mm2, the blood-brain barrier was intact. In the second, small diffuse nests of tumor cells were distributed throughout the brain parenchyma. The blood-brain barrier was intact until the small tumor cell colonies coalesced to form large tumor masses. These results suggest that the permeability of the blood-brain barrier varies among different experimental brain metastases and that its function is related to the growth pattern and size of the lesions. Images Figure 1 Figure 5 Figure 6 PMID:1443046

  2. Nimesulide as a promising neuroprotectant in brain ischemia: new experimental evidences.

    PubMed

    Candelario-Jalil, Eduardo

    2008-04-01

    Nimesulide is a preferential inhibitor of cyclooxygenase-2 (COX-2) and it is one of the most prescribed non-steroidal anti-inflammatory drugs (NSAID) worldwide. Nimesulide was recently shown to have neuroprotective properties in animal models of acute neurologic injury. In particular, nimesulide is highly effective in reducing ischemic brain injury. This neuroprotective efficacy has been demonstrated in animal models of transient and permanent focal cerebral ischemia, global brain ischemia, embolic stroke, and chronic cerebral hypoperfusion. Nimesulide has been shown to reduce infarction, improve neurological function, attenuate blood-brain barrier disruption and edema, and reduce leukocyte infiltration into the ischemic brain. These beneficial effects have been observed even when the first treatment is given several hours after the onset of ischemia, demonstrating the wide therapeutic time window for nimesulide's neuroprotection. This is of great relevance since most stroke patients reach the emergency room several hours after the onset of symptoms, a time at which most medical interventions are not effective. In addition, nimesulide produces a long-lasting neuroprotection. This is of importance since some 'neuroprotective' compounds only produce a delay in cell death, and not a permanent protection. Its several mechanisms of action in neuroprotection make nimesulide a desirable and promising candidate as therapy for acute brain ischemia. This article reviews recent knowledge on the effects of nimesulide against brain injury, with particular emphasis in cerebral ischemia, and makes a critical appraisal of its therapeutic potential in the management of patients with brain ischemia.

  3. von-Willebrand factor influences blood brain barrier permeability and brain inflammation in experimental allergic encephalomyelitis.

    PubMed

    Noubade, Rajkumar; del Rio, Roxana; McElvany, Benjamin; Zachary, James F; Millward, Jason M; Wagner, Denisa D; Offner, Halina; Blankenhorn, Elizabeth P; Teuscher, Cory

    2008-09-01

    Weibel-Palade bodies within endothelial cells are secretory granules known to release von Willebrand Factor (VWF), P-selectin, chemokines, and other stored molecules following histamine exposure. Mice with a disrupted VWF gene (VWFKO) have endothelial cells that are deficient in Weibel-Palade bodies. These mice were used to evaluate the role of VWF and/or Weibel-Palade bodies in Bordetella pertussis toxin-induced hypersensitivity to histamine, a subphenotype of experimental allergic encephalomyelitis, the principal autoimmune model of multiple sclerosis. No significant differences in susceptibility to histamine between wild-type and VWFKO mice were detected after 3 days; however, histamine sensitivity persisted significantly longer in VWFKO mice. Correspondingly, encephalomyelitis onset was earlier, disease was more severe, and blood brain barrier (BBB) permeability was significantly increased in VWFKO mice, as compared with wild-type mice. Moreover, inflammation was selectively increased in the brains, but not spinal cords, of VWFKO mice as compared with wild-type mice. Early increases in BBB permeability in VWFKO mice were not due to increased encephalitogenic T-cell activity since BBB permeability did not differ in adjuvant-treated VWFKO mice as compared with littermates immunized with encephalitogenic peptide plus adjuvant. Taken together, these data indicate that VWF and/or Weibel-Palade bodies negatively regulate BBB permeability changes and autoimmune inflammatory lesion formation within the brain elicited by peripheral inflammatory stimuli.

  4. Diabetic macular edema.

    PubMed

    Stefánsson, Einar

    2009-07-01

    A variety of treatment options are available for the treatment of diabetic macular edema. They include laser photocoagulation, anti-VEGF drugs, intravitreal steroids, and vitrectomy with or without release of vitreoretinal traction. A full understanding of the physiological mechanisms of these treatment modalities allows sensible combination of treatment options. Retinal photocoagulation has repeatedly been shown to improve retinal oxygenation, as does vitrectomy. Oxygen naturally reduces VEGF production and thereby decreases leakage of plasma proteins from capillaries into the tissue. In addition, vitrectomy allows faster clearance of cytokines, such as VEGF, from the retina into the vitreous cavity. The VEGF-lowering effect of photocoagulation and vitrectomy can be augmented with anti-VEGF drugs and corticosteroids reduce the effect of VEGF on capillary permeability. Starling's law explains vasogenic edema, which is controlled by osmotic and hydrostatic gradients between vessel and tissue. It explains how VEGF-induced vascular permeability causes plasma protein to leak into the tissue interstitial space, thus decreasing the osmotic pressure gradient between vessel and tissue, resulting in water accumulation, i.e. edema. This is reversed by reducing VEGF production, which is achieved with laser treatment; or by removing VEGF with antibodies or vitrectomy; or by reducing the permeability effect with steroids. At the same time, Starling's law takes into account hemodynamic changes that affect the hydrostatic gradient. High arterial blood pressure and hypoxic vasodilatation increase the hydrostatic pressure in the microcirculation, which increases water flux from vessel to tissue and induce edema. Treatment of arterial hypertension or reversal of retinal hypoxia with laser reverses this pathophysiology and reduces edema. Newton's third law explains, that vitreoretinal traction decreases hydrostatic tissue pressure in the retina, increases the pressure gradient

  5. Neuroimmunological Blood Brain Barrier Opening in Experimental Cerebral Malaria

    PubMed Central

    Baer, Kerstin; Mikolajczak, Sebastian A.; Kappe, Stefan H. I.; Frevert, Ute

    2012-01-01

    Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological

  6. Postobstructive pulmonary edema.

    PubMed

    Udeshi, Ashish; Cantie, Shawn Michael; Pierre, Edgar

    2010-09-01

    Postobstructive pulmonary edema (POPE; also known as negative pressure pulmonary edema) is a potentially life-threatening complication in which pulmonary edema occurs shortly after the relief of an upper airway obstruction. The incidence of POPE has been reported to be as high as 1 in 1000 general anesthetic cases and commonly presents as acute respiratory distress that requires immediate intervention. This review examines the 2 subclasses of POPE and describes the etiologic factors, pathophysiology, clinical manifestations, diagnostic criteria, and treatment strategies associated with each. The aim of this review was to equip clinicians with the knowledge base necessary to identify patients at increased risk for POPE and to expeditiously diagnose and treat this potentially catastrophic complication.

  7. X-linked inhibitor of apoptosis inhibits apoptosis and preserves the blood-brain barrier after experimental subarachnoid hemorrhage.

    PubMed

    Gao, Cheng; Yu, Hongwei; Yan, Cong; Zhao, Wenyang; Liu, Yao; Zhang, Dongdong; Li, Jingwei; Liu, Nan

    2017-03-22

    Early brain injury following subarachnoid hemorrhage (SAH) strongly determines the prognosis of patients suffering from an aneurysm rupture, and apoptosis is associated with early brain injury after SAH. This study was designed to explore the role of X-linked inhibitor of apoptosis (XIAP) in early brain injury following SAH. The expression of XIAP was detected using western blotting and real-time RT-PCR in an autologous blood injection model of SAH. We also studied the role of XIAP in early brain injury and detected apoptosis-related proteins. The results showed that XIAP was significantly up-regulated in the cortex and hippocampus and that XIAP was mainly expressed in neuronal cells following SAH. The inhibition of endogenous XIAP aggravated blood-brain barrier disruption, neurological deficits and brain edema. Recombinant XIAP preserved the blood-brain barrier, improved the neurological scores and ameliorated brain edema. Recombinant XIAP treatment also decreased the expression of cleaved caspase-3, caspase-8 and caspase-9, whereas there was no effect on the expression of p53, apoptosis-inducing factor or cytochrome c. These results show that XIAP acts as an endogenous neuroprotective and anti-apoptotic agent following SAH. The effects of XIAP on early brain injury was associated with the inhibition of the caspase-dependent apoptosis pathway.

  8. X-linked inhibitor of apoptosis inhibits apoptosis and preserves the blood-brain barrier after experimental subarachnoid hemorrhage

    PubMed Central

    Gao, Cheng; Yu, Hongwei; Yan, Cong; Zhao, Wenyang; Liu, Yao; Zhang, Dongdong; Li, Jingwei; Liu, Nan

    2017-01-01

    Early brain injury following subarachnoid hemorrhage (SAH) strongly determines the prognosis of patients suffering from an aneurysm rupture, and apoptosis is associated with early brain injury after SAH. This study was designed to explore the role of X-linked inhibitor of apoptosis (XIAP) in early brain injury following SAH. The expression of XIAP was detected using western blotting and real-time RT-PCR in an autologous blood injection model of SAH. We also studied the role of XIAP in early brain injury and detected apoptosis-related proteins. The results showed that XIAP was significantly up-regulated in the cortex and hippocampus and that XIAP was mainly expressed in neuronal cells following SAH. The inhibition of endogenous XIAP aggravated blood-brain barrier disruption, neurological deficits and brain edema. Recombinant XIAP preserved the blood-brain barrier, improved the neurological scores and ameliorated brain edema. Recombinant XIAP treatment also decreased the expression of cleaved caspase-3, caspase-8 and caspase-9, whereas there was no effect on the expression of p53, apoptosis-inducing factor or cytochrome c. These results show that XIAP acts as an endogenous neuroprotective and anti-apoptotic agent following SAH. The effects of XIAP on early brain injury was associated with the inhibition of the caspase-dependent apoptosis pathway. PMID:28327595

  9. [Limb edema and lymphoscintigraphy].

    PubMed

    Bourgeois, P; Munck, D; Belgrado, J P; Leduc, O; Leduc, A

    2003-02-01

    Lymphoscintigraphic investigations represent techniques of nuclear medicine very contributive for the management and treatment of the limb edemas, either primary or secundary. Their principle is presented and methodologies proposed in the literature are reviewed. Their diagnostic contributions are detailed. The sensitivities and specificities of several protocols of investigation are reported. Some limitations of these examinations are analyzed and discussed. Clinical indications for their use are proposed and their interest with regard to the various treatments that can be applied to these limb edemas is discussed.

  10. Twenty-Four-Hour Real-Time Continuous Monitoring of Cerebral Edema in Rabbits Based on a Noninvasive and Noncontact System of Magnetic Induction

    PubMed Central

    Li, Gen; Ma, Ke; Sun, Jian; Jin, Gui; Qin, Mingxin; Feng, Hua

    2017-01-01

    Cerebral edema is a common disease, secondary to craniocerebral injury, and real-time continuous monitoring of cerebral edema is crucial for treating patients after traumatic brain injury. This work established a noninvasive and noncontact system by monitoring the magnetic induction phase shift (MIPS) which is associated with brain tissue conductivity. Sixteen rabbits (experimental group n = 10, control group, n = 6) were used to perform a 24 h MIPS and intracranial pressure (ICP) simultaneously monitored experimental study. For the experimental group, after the establishment of epidural freeze-induced cerebral edema models, the MIPS presented a downward trend within 24 h, with a change magnitude of −13.1121 ± 2.3953°; the ICP presented an upward trend within 24 h, with a change magnitude of 12–41 mmHg. The ICP was negatively correlated with the MIPS. In the control group, the MIPS change amplitude was −0.87795 ± 1.5146 without obvious changes; the ICP fluctuated only slightly at the initial value of 12 mmHg. MIPS had a more sensitive performance than ICP in the early stage of cerebral edema. These results showed that this system is basically capable of monitoring gradual increases in the cerebral edema solution volume. To some extent, the MIPS has the potential to reflect the ICP changes. PMID:28282851

  11. Experimental human endotoxemia enhances brain activity during social cognition.

    PubMed

    Kullmann, Jennifer S; Grigoleit, Jan-Sebastian; Wolf, Oliver T; Engler, Harald; Oberbeck, Reiner; Elsenbruch, Sigrid; Forsting, Michael; Schedlowski, Manfred; Gizewski, Elke R

    2014-06-01

    Acute peripheral inflammation with corresponding increases in peripheral cytokines affects neuropsychological functions and induces depression-like symptoms. However, possible effects of increased immune responses on social cognition remain unknown. Therefore, this study investigated the effects of experimentally induced acute inflammation on performance and neural responses during a social cognition task assessing Theory of Mind (ToM) ability. In this double-blind randomized crossover functional magnetic resonance imaging study, 18 healthy right-handed male volunteers received an injection of bacterial lipopolysaccharide (LPS; 0.4 ng/kg) or saline, respectively. Plasma levels of pro- and anti-inflammatory cytokines as well as mood ratings were analyzed together with brain activation during a validated ToM task (i.e. Reading the Mind in the Eyes Test). LPS administration induced pronounced transient increases in pro- (IL-6, TNF-α) and anti-inflammatory (IL-10, IL-1ra) cytokines as well as decreases in mood. Social cognition performance was not affected by acute inflammation. However, altered neural activity was observed during the ToM task after LPS administration, reflected by increased responses in the fusiform gyrus, temporo-parietal junction, superior temporal gyrus and precuneus. The increased task-related neural responses in the LPS condition may reflect a compensatory strategy or a greater social cognitive processing as a function of sickness.

  12. Inosine improves functional recovery after experimental traumatic brain injury.

    PubMed

    Dachir, Shlomit; Shabashov, Dalia; Trembovler, Victoria; Alexandrovich, Alexander G; Benowitz, Larry I; Shohami, Esther

    2014-03-25

    Despite years of research, no effective therapy is yet available for the treatment of traumatic brain injury (TBI). The most prevalent and debilitating features in survivors of TBI are cognitive deficits and motor dysfunction. A potential therapeutic method for improving the function of patients following TBI would be to restore, at least in part, plasticity to the CNS in a controlled way that would allow for the formation of compensatory circuits. Inosine, a naturally occurring purine nucleoside, has been shown to promote axon collateral growth in the corticospinal tract (CST) following stroke and focal TBI. In the present study, we investigated the effects of inosine on motor and cognitive deficits, CST sprouting, and expression of synaptic proteins in an experimental model of closed head injury (CHI). Treatment with inosine (100 mg/kg i.p. at 1, 24 and 48 h following CHI) improved outcome after TBI, significantly decreasing the neurological severity score (NSS, p<0.04 vs. saline), an aggregate measure of performance on several tasks. It improved non-spatial cognitive performance (object recognition, p<0.016 vs. saline) but had little effect on sensorimotor coordination (rotarod) and spatial cognitive functions (Y-maze). Inosine did not affect CST sprouting in the lumbar spinal cord but did restore levels of the growth-associated protein GAP-43 in the hippocampus, though not in the cerebral cortex. Our results suggest that inosine may improve functional outcome after TBI.

  13. Edema and pain reduction using transcutaneous electrical nerve stimulation treatment

    PubMed Central

    Choi, Yeong-Deok; Lee, Jung-Ho

    2016-01-01

    [Purpose] The purpose of this study was to investigate the impact on the edema and pain when applying transcutaneous electrical nerve stimulation. [Subjects and Methods] Eleven patients who were diagnosed with lymphedema were selected as the subjects of the study. The experimental group received transcutaneous electrical nerve stimulation treatment on edema regions three times per week for four weeks. Surface tape measurement was used to measure changes in lower extremity edema. Pain intensity was measured using the visual analog scale. [Results] The edema decrements in the experimental group were significantly larger than those in the control group. The pain decrements in the experimental group were significantly larger than those in the control group. [Conclusion] In conclusion, application of transcutaneous electrical nerve stimulation was confirmed to be effective in reducing edema and pain. PMID:27942125

  14. Latest advances in edema

    NASA Technical Reports Server (NTRS)

    Villavicencio, J. L.; Hargens, A. R.; Pikoulicz, E.

    1996-01-01

    Basic concepts in the physiopathology of edema are reviewed. The mechanisms of fluid exchange across the capillary endothelium are explained. Interstitial flow and lymph formation are examined. Clinical disorders of tissue and lymphatic transport, microcirculatory derangements in venous disorders, protein disorders, and lymphatic system disorders are explored. Techniques for investigational imaging of the lymphatic system are explained.

  15. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Serduc, Raphaël; van de Looij, Yohan; Francony, Gilles; Verdonck, Olivier; van der Sanden, Boudewijn; Laissue, Jean; Farion, Régine; Bräuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda; Segebarth, Christoph; Rémy, Chantal; Lahrech, Hana

    2008-03-01

    Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p < 0.05) was observed in the irradiated cortex 1 day after exposure to 312 Gy, (2) a 0.7% increase (p < 0.05) in the CWC was measured in the irradiated hemispheres 1 day after exposure to 1000 Gy. The results demonstrate the presence of a minor and transient cellular edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org

  16. BRAIN DAMAGE AND BEHAVIOR, A CLINICAL-EXPERIMENTAL STUDY.

    ERIC Educational Resources Information Center

    SCHULMAN, JEROME L.; AND OTHERS

    THIS MONOGRAPH RELATES RESULTS OF A STUDY WHICH WAS UNDERTAKEN TO ATTEMPT TO ANSWER THREE QUESTIONS--TO WHAT EXTENT DO EIGHT TECHNIQUES COMMONLY USED TO DIAGNOSE BRAIN DAMAGE CO-VARY, TO WHAT EXTENT DO THE VARIOUS BEHAVIORAL SYMPTOMS THAT OCCUR WITH BRAIN DAMAGE CO-VARY, AND TO WHAT EXTENT DO THE DIAGNOSTIC MEASURES, SINGLY OR IN GROUPS, PREDICT…

  17. Transient Idiopathic Primary Penoscrotal Edema

    PubMed Central

    Namir, Sody A; Trattner, Akiva

    2013-01-01

    We present the case of a male born prematurely at 32 weeks gestation by cesarean section following overt symptoms of maternal preeclampsia. He developed severe penoscrotal edema anew one month from birth. No remarkable exposure or trauma was identified. This unexplained swelling remained uniform till 4 months of age, while the penile edema resolved spontaneously. A small benign hydrocele remained unchanged, since onset of the edema and continued after the edema subsided. This is the first report of persistent, but transient penoscrotal edema resolving in a 3 months course, without any apparent explanation, a possible pathogenetic mechanism was suggested. PMID:24082210

  18. Development and experimentation of an eye/brain/task testbed

    NASA Technical Reports Server (NTRS)

    Harrington, Nora; Villarreal, James

    1987-01-01

    The principal objective is to develop a laboratory testbed that will provide a unique capability to elicit, control, record, and analyze the relationship of operator task loading, operator eye movement, and operator brain wave data in a computer system environment. The ramifications of an integrated eye/brain monitor to the man machine interface are staggering. The success of such a system would benefit users of space and defense, paraplegics, and the monitoring of boring screens (nuclear power plants, air defense, etc.)

  19. Cysteamine alleviates early brain injury via reducing oxidative stress and apoptosis in a rat experimental subarachnoid hemorrhage model.

    PubMed

    Zhang, Zong-Yong; Yang, Ming-Feng; Wang, Tao; Li, Da-Wei; Liu, Yun-Lin; Zhang, Jin-Hui; Sun, Bao-Liang

    2015-05-01

    Oxidative stress plays an important role in the pathogenesis of early brain injury (EBI) following subarachnoid hemorrhage (SAH). The aim of this study was to assess whether cysteamine prevents post-SAH oxidative stress injury via its antioxidative and anti-apoptotic effects. It was observed that intraperitoneal administration of cysteamine (20 mg/kg/day) could significantly alleviate EBI (including neurobehavioral deficits, brain edema, blood-brain barrier permeability, and cortical neuron apoptosis) after SAH in rats. Meanwhile, cysteamine treatment reduced post-SAH elevated the reactive oxygen species level, the concentration of malondialdehyde, 3-nitrotyrosine, and 8-hydroxydeoxyguanosine and increased the glutathione peroxidase enzymatic activity, the concentration of glutathione and brain-derived neurotrophic factor in brain cortex at 48 h after SAH. These results indicated that administration of cysteamine may ameliorate EBI and provide neuroprotection after SAH in rat models.

  20. Multiparametric magnetic resonance imaging of acute experimental brain ischaemia.

    PubMed

    Kauppinen, Risto A

    2014-07-01

    Ischaemia is a condition in which blood flow either drops to zero or proceeds at severely decreased levels that cannot supply sufficient oxidizable substrates to maintain energy metabolism in vivo. Brain, a highly oxidative organ, is particularly susceptible to ischaemia. Ischaemia leads to loss of consciousness in seconds and, if prolonged, permanent tissue damage is inevitable. Ischaemia primarily results in a collapse of cerebral energy state, followed by a series of subtle changes in anaerobic metabolism, ion and water homeostasis that eventually initiate destructive internal and external processes in brain tissue. (31)P and (1)H NMR spectroscopy were initially used to evaluate anaerobic metabolism in brain. However, since the early 1990s (1)H Magnetic Resonance Imaging (MRI), exploiting the nuclear magnetism of tissue water, has become the key method for assessment of ischaemic brain tissue. This article summarises multi-parametric (1)H MRI work that has exploited diffusion, relaxation and magnetisation transfer as 'contrasts' to image ischaemic brain in preclinical models for the first few hours, with a view to assessing evolution of ischaemia and tissue viability in a non-invasive manner.

  1. Effects of sex steroid hormones on neuromedin S and neuromedin U2 receptor expression following experimental traumatic brain injury

    PubMed Central

    Khaksari, Mohammad; Maghool, Fatemeh; Asadikaram, Gholamreza; Hajializadeh, Zahra

    2016-01-01

    Objective(s): Neuroprotective effects of female gonadal steroids are mediated through several pathways involving multiple peptides and receptors after traumatic brain injury (TBI). Two of these peptides are including the regulatory peptides neuromedin U (NMU) and neuromedin S (NMS), and their common receptor neuromedin U2 receptor (NMUR2). This study investigates the effects of physiological doses of estradiol and progesterone on brain edema, NMS and NMU as well as NMUR2 expression following TBI. Materials and Methods: Ovariectomized female rats were given high-and low-dose of female sex steroid hormones through implantation of capsules for a week before trauma. The brain NMUR2 expression, prepro-NMS expression, NMU content, and water content (brain edema) were evaluated 24 hr after TBI induced by Marmarou’s method. Results: Percentage of brain water content in high- and low-dose estradiol, and in high- and low- dose progesterone was less than vehicle (P<0.01). Results show high expression of prepro-NMS in high dose progesterone (TBI-HP) rats compared to the high dose estrogen (TBI-HE), as well as vehicle (P<0.01). NMU content in low-dose progesterone (TBI-LP) group was more than that of vehicle group (P<0.001). Furthermore a difference in NMU content observed between TBI-HP compared to TBI-HE, and vehicle (P<0.05). The NMUR2 mRNA expression revealed an upregulation in TBI-HP rats compared to the TBI-HE group (P<0.001). Conclusion: Findings indicate that progesterone attenuates brain edema and induces an increase in NMS and its receptor which may mediate the anti-edematous effect of progesterone after TBI. PMID:27872704

  2. Clinical and radiologic features of pulmonary edema.

    PubMed

    Gluecker, T; Capasso, P; Schnyder, P; Gudinchet, F; Schaller, M D; Revelly, J P; Chiolero, R; Vock, P; Wicky, S

    1999-01-01

    Pulmonary edema may be classified as increased hydrostatic pressure edema, permeability edema with diffuse alveolar damage (DAD), permeability edema without DAD, or mixed edema. Pulmonary edema has variable manifestations. Postobstructive pulmonary edema typically manifests radiologically as septal lines, peribronchial cuffing, and, in more severe cases, central alveolar edema. Pulmonary edema with chronic pulmonary embolism manifests as sharply demarcated areas of increased ground-glass attenuation. Pulmonary edema with veno-occlusive disease manifests as large pulmonary arteries, diffuse interstitial edema with numerous Kerley lines, peribronchial cuffing, and a dilated right ventricle. Stage 1 near drowning pulmonary edema manifests as Kerley lines, peribronchial cuffing, and patchy, perihilar alveolar areas of airspace consolidation; stage 2 and 3 lesions are radiologically nonspecific. Pulmonary edema following administration of cytokines demonstrates bilateral, symmetric interstitial edema with thickened septal lines. High-altitude pulmonary edema usually manifests as central interstitial edema associated with peribronchial cuffing, ill-defined vessels, and patchy airspace consolidation. Neurogenic pulmonary edema manifests as bilateral, rather homogeneous airspace consolidations that predominate at the apices in about 50% of cases. Reperfusion pulmonary edema usually demonstrates heterogeneous airspace consolidations that predominate in the areas distal to the recanalized vessels. Postreduction pulmonary edema manifests as mild airspace consolidation involving the ipsilateral lung, whereas pulmonary edema due to air embolism initially demonstrates interstitial edema followed by bilateral, peripheral alveolar areas of increased opacity that predominate at the lung bases. Familiarity with the spectrum of radiologic findings in pulmonary edema from various causes will often help narrow the differential diagnosis.

  3. Experimental induction of corpora amylacea in adult rat brain.

    PubMed

    Schipper, H M

    1998-10-01

    Corpora amylacea (CA) are glycoproteinaceous inclusions that accumulate in astroglia and other brain cells as a function of advancing age and, to an even greater extent, in several human neurodegenerative conditions. The mechanisms responsible for their biogenesis and their subcellular origin(s) remain unclear. We previously demonstrated that the sulfhydryl agent, cysteamine (CSH), promotes the accumulation of CA-like inclusions in cultured rat astroglia. In the present study, we show that subcutaneous administration of CSH to adult rats (150 mg/kg for 6 weeks followed by a 5-week drug-washout period) elicits the accumulation of CA in many cortical and subcortical brain regions. As in the aging human brain and in CSH-treated rat astrocyte cultures, the inclusions are periodic acid-Schiff -positive and are consistently immunostained with antibodies directed against mitochondrial epitopes and ubiquitin. Our findings support our contention that mitochondria are important structural precursors of CA, and that CSH accelerates aging-like processes in rat astroglia both in vitro and in the intact brain.

  4. Diabetic Macular Edema

    NASA Astrophysics Data System (ADS)

    Lobo, Conceição; Pires, Isabel; Cunha-Vaz, José

    The optical coherence tomography (OCT), a noninvasive and noncontact diagnostic method, was introduced in 1995 for imaging macular diseases. In diabetic macular edema (DME), OCT scans show hyporeflectivity, due to intraretinal and/or subretinal fluid accumulation, related to inner and/or outer blood-retinal barrier breakdown. OCT tomograms may also reveal the presence of hard exudates, as hyperreflective spots with a shadow, in the outer retinal layers, among others. In conclusion, OCT is a particularly valuable diagnostic tool in DME, helpful both in the diagnosis and follow-up procedure.

  5. Negative-Pressure Pulmonary Edema.

    PubMed

    Bhattacharya, Mallar; Kallet, Richard H; Ware, Lorraine B; Matthay, Michael A

    2016-10-01

    Negative-pressure pulmonary edema (NPPE) or postobstructive pulmonary edema is a well-described cause of acute respiratory failure that occurs after intense inspiratory effort against an obstructed airway, usually from upper airway infection, tumor, or laryngospasm. Patients with NPPE generate very negative airway pressures, which augment transvascular fluid filtration and precipitate interstitial and alveolar edema. Pulmonary edema fluid collected from most patients with NPPE has a low protein concentration, suggesting hydrostatic forces as the primary mechanism for the pathogenesis of NPPE. Supportive care should be directed at relieving the upper airway obstruction by endotracheal intubation or cricothyroidotomy, institution of lung-protective positive-pressure ventilation, and diuresis unless the patient is in shock. Resolution of the pulmonary edema is usually rapid, in part because alveolar fluid clearance mechanisms are intact. In this review, we discuss the clinical presentation, pathophysiology, and management of negative-pressure or postobstructive pulmonary edema.

  6. [Pathopshysiological mechanisms in macular edema].

    PubMed

    Turlea, Cristian; Zolog, Ileana; Blăjan, Codruta; Roşca, C; Turlea, Magdalena; Munteanu, Mihnea; Boruga, Ovidiu

    2014-01-01

    The treatment of diabetic macular edema has known a fast development in the last 5 years where the transition from laser monotherapy to intravitreal pharmacotherapy is becoming standard practice. Intravitreal injections therapy is in a continuous development with promising positive results. The use of intratvitreal devices in the treatment of macular edema of vascular cause has become a viable alternative also in treating diabetic macular edema. Several clinical studies have revealed the superiority of intravitreal treatment versus laser monotherapy. This article is evaluating and reviewing present and future treatments used to combat diabetic macular edema. [corrected].

  7. Heterogeneous Blood-Tumor Barrier Permeability Determines Drug Efficacy in Experimental Brain Metastases of Breast Cancer

    PubMed Central

    Lockman, Paul R.; Mittapalli, Rajendar K.; Taskar, Kunal S.; Rudraraju, Vinay; Gril, Brunilde; Bohn, Kaci A.; Adkins, Chris E.; Roberts, Amanda; Thorsheim, Helen R.; Gaasch, Julie A.; Huang, Suyun; Palmieri, Diane; Steeg, Patricia S.; Smith, Quentin R.

    2010-01-01

    Purpose Brain metastases of breast cancer appear to be increasing in incidence, confer significant morbidity, and threaten to compromise gains made in systemic chemotherapy. The blood-tumor barrier (BTB) is compromised in many brain metastases, however, the extent to which this influences chemotherapeutic delivery and efficacy is unknown. Herein, we answer this question by measuring BTB passive integrity, chemotherapeutic drug uptake, and anticancer efficacy in vivo in two breast cancer models that metastasize preferentially to brain. Experimental Design Experimental brain metastasis drug uptake and BTB permeability were simultaneously measured using novel fluorescent and phosphorescent imaging techniques in immune compromised mice. Drug-induced apoptosis and vascular characteristics were assessed using immunofluorescent microscopy. Results Analysis of >2000 brain metastases from two models (human 231-BR-Her2 and murine 4T1-BR5) demonstrated partial BTB permeability compromise in >89% lesions, varying in magnitude within and between metastases. Brain metastasis uptake of 14C- paclitaxel and 14C- doxorubicin was generally greater than normal brain but <15% of that of other tissues or peripheral metastases, and only reached cytotoxic concentrations in a small subset (~10%) of the most permeable metastases. Neither drug significantly decreased the experimental brain metastatic ability of 231-BR-Her2 tumor cells. BTB permeability was associated with vascular remodeling and correlated with over expression of the pericyte protein, desmin. Conclusions This work demonstrates that the BTB remains a significant impediment to standard chemotherapeutic delivery and efficacy in experimental brain metastases of breast cancer. New brain permeable drugs will be needed. Evidence is presented for vascular remodeling in BTB permeability alterations. PMID:20829328

  8. The role of the sonic hedgehog signaling pathway in early brain injury after experimental subarachnoid hemorrhage in rats.

    PubMed

    Li, Tao; Zhang, Jie; Liu, Rong-Yao; Lian, Zhi-Gang; Chen, Xiao-Lin; Ma, Li; Sun, Hao-Min; Zhao, Yuan-Li

    2013-09-27

    Previous studies have demonstrated that the sonic hedgehog (Shh) pathway plays a neuro-protective role. However, whether the Shh pathway is induced by subarachnoid hemorrhage (SAH) has not been investigated. We sought to investigate Shh activation in the cortex in the early stage of SAH, and assessed the effect of cyclopamine (a specific inhibitor of the Shh pathway) on Shh pathway regulation and evaluated the impact of cyclopamine on SAH. We found that the Shh pathway was up-regulated in the cortex after SAH, and that blocking the Shh pathway increased cell apoptosis. Early brain damages, including brain edema, blood-brain barrier impairment, and cortical apoptosis were significantly aggravated following with cyclopamine treatment compared with vehicle treatment. Our results suggest that the Shh pathway should be activated in the brain after SAH, and plays a beneficial role in SAH development, possibly by inhibiting cerebral oxidative stress through induction of antioxidant and detoxifying enzymes.

  9. Experimental Injury Biomechanics of the Pediatric Head and Brain

    NASA Astrophysics Data System (ADS)

    Margulies, Susan; Coats, Brittany

    Traumatic brain injury (TBI) is a leading cause of death and disability among children and young adults in the United States and results in over 2,500 childhood deaths, 37,000 hospitalizations, and 435,000 emergency department visits each year (Langlois et al. 2004). Computational models of the head have proven to be powerful tools to help us understand mechanisms of adult TBI and to determine load thresholds for injuries specific to adult TBI. Similar models need to be developed for children and young adults to identify age-specific mechanisms and injury tolerances appropriate for children and young adults. The reliability of these tools, however, depends heavily on the availability of pediatric tissue material property data. To date the majority of material and structural properties used in pediatric computer models have been scaled from adult human data. Studies have shown significant age-related differences in brain and skull properties (Prange and Margulies 2002; Coats and Margulies 2006a, b), indicating that the pediatric head cannot be modeled as a miniature adult head, and pediatric computer models incorporating age-specific data are necessary to accurately mimic the pediatric head response to impact or rotation. This chapter details the developmental changes of the pediatric head and summarizes human pediatric properties currently available in the literature. Because there is a paucity of human pediatric data, material properties derived from animal tissue are also presented to demonstrate possible age-related differences in the heterogeneity and rate dependence of tissue properties. The chapter is divided into three main sections: (1) brain, meninges, and cerebral spinal fluid (CSF); (2) skull; and (3) scalp.

  10. Experimental observation of phase-flip transitions in the brain

    NASA Astrophysics Data System (ADS)

    Dotson, Nicholas M.; Gray, Charles M.

    2016-10-01

    The phase-flip transition has been demonstrated in a host of coupled nonlinear oscillator models, many pertaining directly to understanding neural dynamics. However, there is little evidence that this phenomenon occurs in the brain. Using simultaneous microelectrode recordings in the nonhuman primate cerebral cortex, we demonstrate the presence of phase-flip transitions between oscillatory narrow-band local field potential signals separated by several centimeters. Specifically, we show that sharp transitions between in-phase and antiphase synchronization are accompanied by a jump in synchronization frequency. These findings are significant for two reasons. First, they validate predictions made by model systems. Second, they have potentially far reaching implications for our understanding of the mechanisms underlying corticocortical communication, which are thought to rely on narrow-band oscillatory synchronization with specific relative phase relationships.

  11. Activation of Alpha 7 Cholinergic Nicotinic Receptors Reduce Blood–Brain Barrier Permeability following Experimental Traumatic Brain Injury

    PubMed Central

    Zhao, Jing; Kobori, Nobuhide; Redell, John B.; Hylin, Michael J.; Hood, Kimberly N.; Moore, Anthony N.

    2016-01-01

    ) allows for the accumulation of circulating fluids and proinflammatory cells in the injured brain. These processes can exacerbate TBI pathology and outcome. While the role of inflammation in the injured tissue has been examined in some detail, the contribution of peripheral inflammation in BBB breakdown and ensuing pathology has not been well defined. We present experimental evidence to indicate that the stimulation of nicotinic acetylcholine α7 receptors (nAChRa7s) can reduce peripheral inflammation and BBB breakdown after TBI. These results suggest that activators of nAChRa7 may have therapeutic utility for the treatment of TBI. PMID:26937017

  12. A brief report on MRI investigation of experimental traumatic brain injury

    PubMed Central

    Duong, Timothy Q.; Watts, Lora T.

    2016-01-01

    Traumatic brain injury is a major cause of death and disability. This is a brief report based on a symposium presentation to the 2014 Chinese Neurotrauma Association Meeting in San Francisco, USA. It covers the work from our laboratory in applying multimodal MRI to study experimental traumatic brain injury in rats with comparisons made to behavioral tests and histology. MRI protocols include structural, perfusion, manganese-enhanced, diffusion-tensor MRI, and MRI of blood-brain barrier integrity and cerebrovascular reactivity. PMID:26981069

  13. Dynamics of the brain: Mathematical models and non-invasive experimental studies

    NASA Astrophysics Data System (ADS)

    Toronov, V.; Myllylä, T.; Kiviniemi, V.; Tuchin, V. V.

    2013-10-01

    Dynamics is an essential aspect of the brain function. In this article we review theoretical models of neural and haemodynamic processes in the human brain and experimental non-invasive techniques developed to study brain functions and to measure dynamic characteristics, such as neurodynamics, neurovascular coupling, haemodynamic changes due to brain activity and autoregulation, and cerebral metabolic rate of oxygen. We focus on emerging theoretical biophysical models and experimental functional neuroimaging results, obtained mostly by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). We also included our current results on the effects of blood pressure variations on cerebral haemodynamics and simultaneous measurements of fast processes in the brain by near-infrared spectroscopy and a very novel functional MRI technique called magnetic resonance encephalography. Based on a rapid progress in theoretical and experimental techniques and due to the growing computational capacities and combined use of rapidly improving and emerging neuroimaging techniques we anticipate during next decade great achievements in the overall knowledge of the human brain.

  14. Experimental traumatic brain injury alters ethanol consumption and sensitivity.

    PubMed

    Lowing, Jennifer L; Susick, Laura L; Caruso, James P; Provenzano, Anthony M; Raghupathi, Ramesh; Conti, Alana C

    2014-10-15

    Altered alcohol consumption patterns after traumatic brain injury (TBI) can lead to significant impairments in TBI recovery. Few preclinical models have been used to examine alcohol use across distinct phases of the post-injury period, leaving mechanistic questions unanswered. To address this, the aim of this study was to describe the histological and behavioral outcomes of a noncontusive closed-head TBI in the mouse, after which sensitivity to and consumption of alcohol were quantified, in addition to dopaminergic signaling markers. We hypothesized that TBI would alter alcohol consumption patterns and related signal transduction pathways that were congruent to clinical observations. After midline impact to the skull, latency to right after injury, motor deficits, traumatic axonal injury, and reactive astrogliosis were evaluated in C57BL/6J mice. Amyloid precursor protein (APP) accumulation was observed in white matter tracts at 6, 24, and 72 h post-TBI. Increased intensity of glial fibrillary acidic protein (GFAP) immunoreactivity was observed by 24 h, primarily under the impact site and in the nucleus accumbens, a striatal subregion, as early as 72 h, persisting to 7 days, after TBI. At 14 days post-TBI, when mice were tested for ethanol sensitivity after acute high-dose ethanol (4 g/kg, intraperitoneally), brain-injured mice exhibited increased sedation time compared with uninjured mice, which was accompanied by deficits in striatal dopamine- and cAMP-regulated neuronal phosphoprotein, 32 kDa (DARPP-32) phosphorylation. At 17 days post-TBI, ethanol intake was assessed using the Drinking-in-the-Dark paradigm. Intake across 7 days of consumption was significantly reduced in TBI mice compared with sham controls, paralleling the reduction in alcohol consumption observed clinically in the initial post-injury period. These data demonstrate that TBI increases sensitivity to ethanol-induced sedation and affects downstream signaling mediators of striatal

  15. Experimental research of mechanical behavior of porcine brain tissue under rotational shear stress.

    PubMed

    Li, Gang; Zhang, Jianhua; Wang, Kan; Wang, Mingyu; Gao, Changqing; Ma, Chao

    2016-04-01

    The objective of this paper is to investigate mechanical behavior of porcine brain tissue with a series of rotational shear stress control experiments. To this end, several experiments including stress sweep tests, frequency sweep tests and quasi-static creep tests were designed and conducted with a standard rheometer (HAAKE RheoStress6000). The effects of the loading stress rates to mechanical properties of brain tissue were also studied in stress sweep tests. The results of stress sweep tests performed on the same brain showed that brain tissue had an obvious regional inhomogeneity and the mechanical damage occurred at the rotational shear stress of 10-15Pa. The experimental data from three different loading stress rates demonstrated that the mechanical behavior of porcine brain tissue was loading stress rate dependent. With the decrease of loading stress rate, a stiffer mechanical characteristic of brain tissue was observed and the occurrence of mechanical damage can be delayed to a higher stress. From the results of frequency sweep tests we found that brain tissue had almost completely elastic properties at high frequency area. The nonlinear creep response under the rotational shear stress of 1, 3, 5, 7 and 9Pa was shown in results of creep tests. A new nonlinear viscoelastic solid model was proposed for creep tests and matched well with the test data. Considering the regional differences, loading stress rates and test conditions effects, loss tangent tan δ in porcine brain tissue showed a high uniformity of 0.25-0.45.

  16. Experimental infections of different carp strains with the carp edema virus (CEV) give insights into the infection biology of the virus and indicate possible solutions to problems caused by koi sleepy disease (KSD) in carp aquaculture.

    PubMed

    Adamek, Mikolaj; Oschilewski, Anna; Wohlsein, Peter; Jung-Schroers, Verena; Teitge, Felix; Dawson, Andy; Gela, David; Piackova, Veronika; Kocour, Martin; Adamek, Jerzy; Bergmann, Sven M; Steinhagen, Dieter

    2017-02-21

    Outbreaks of koi sleepy disease (KSD) caused by carp edema virus (CEV) may seriously affect populations of farmed common carp, one of the most important fish species for global food production. The present study shows further evidence for the involvement of CEV in outbreaks of KSD among carp and koi populations: in a series of infection experiments, CEV from two different genogroups could be transmitted to several strains of naïve common carp via cohabitation with fish infected with CEV. In recipient fish, clinical signs of KSD were induced. The virus load and viral gene expression results confirm gills as the target organ for CEV replication. Gill explants also allowed for a limited virus replication in vitro. The in vivo infection experiments revealed differences in the virulence of the two CEV genogroups which were associated with infections in koi or in common carp, with higher virulence towards the same fish variety as the donor fish. When the susceptibility of different carp strains to a CEV infection and the development of KSD were experimentally investigated, Amur wild carp showed to be relatively more resistant to the infection and did not develop clinical signs for KSD. However, the resistance could not be related to a higher magnitude of type I IFN responses of affected tissues. Despite not having a mechanistic explanation for the resistance of Amur wild carp to KSD, we recommend using this carp strain in breeding programs to limit potential losses caused by CEV in aquaculture.

  17. Pathologic electrographic changes after experimental traumatic brain injury

    PubMed Central

    Bragin, Anatol; Li, Lin; Almajano, Joyel; Alvarado-Rojas, Catalina; Reid, Aylin Y.; Staba, Richard J.; Engel, Jerome

    2016-01-01

    Summary Objective To investigate possible electroencephalography (EEG) correlates of epileptogenesis after traumatic brain injury (TBI) using the fluid percussion model. Methods Experiments were conducted on adult 2- to 4-month-old male Sprague-Dawley rats. Two groups of animals were studied: (1) the TBI group with depth and screw electrodes implanted immediately after the fluid percussion injury (FPI) procedure, and (2) a naive age-matched control group with the same electrode implantation montage. Pairs of tungsten microelectrodes (50 µm outer diameter) and screw electrodes were implanted in neocortex inside the TBI core, areas adjacent to TBI, and remote areas. EEG activity, recorded on the day of FPI, and continuously for 2 weeks, was analyzed for possible electrographic biomarkers of epileptogenesis. Video-EEG monitoring was also performed continuously in the TBI group to capture electrographic and behavioral seizures until the caps came off (28–189 days), and for 1 week, at 2, 3, and 6 months of age, in the control group. Results Pathologic high-frequency oscillations (pHFOs) with a central frequency between 100 and 600 Hz, were recorded from microelectrodes, beginning during the first two post-FPI weeks, in 7 of 12 animals in the TBI group (58%) and never in the controls. pHFOs only occurred in cortical areas within or adjacent to the TBI core. These were associated with synchronous multiunit discharges and popSpikes, duration 15–40 msec. Repetitive pHFOs and EEG spikes (rHFOSs) formed paroxysmal activity, with a unique arcuate pattern, in the frequency band 10–16 Hz in the same areas as isolated pHFOs, and these events were also recorded by screw electrodes. Although loss of caps prevented long-term recordings from all rats, pHFOs and rHFOSs occurred during the first 2 weeks in all four animals that later developed seizures, and none of the rats without these events developed late seizures. Significance pHFOs, similar to those associated with

  18. Successful delivery of docetaxel to rat brain using experimentally developed nanoliposome: a treatment strategy for brain tumor.

    PubMed

    Shaw, Tapan Kumar; Mandal, Dipika; Dey, Goutam; Pal, Murari Mohan; Paul, Paramita; Chakraborty, Samrat; Ali, Kazi Asraf; Mukherjee, Biswajit; Bandyopadhyay, Amal Kumar; Mandal, Mahitosh

    2017-11-01

    Docetaxel (DTX) is found to be very effective against glioma cell in vitro. However, in vivo passage of DTX through BBB is extremely difficult due to the physicochemical and pharmacological characteristics of the drug. No existing formulation is successful in this aspect. Hence, in this study, effort was made to send DTX through blood-brain barrier (BBB) to brain to treat diseases such as solid tumor of brain (glioma) by developing DTX-loaded nanoliposomes. Primarily drug-excipients interaction was evaluated by FTIR spectroscopy. The DTX-loaded nanoliposomes (L-DTX) were prepared by lipid layer hydration technique and characterized physicochemically. In vitro cellular uptake in C6 glioma cells was investigated. FTIR data show that the selected drug and excipients were chemically compatible. The unilamellar vesicle size was less than 50 nm with smooth surface. Drug released slowly from L-DTX in vitro in a sustained manner. The pharmacokinetic data shows more extended action of DTX from L-DTX in experimental rats than the free-drug and Taxotere®. DTX from L-DTX enhanced 100% drug concentration in brain as compared with Taxotere® in 4 h. Thus, nanoliposomes as vehicle may be an encouraging strategy to treat glioma with DTX.

  19. Diuretics in cardiac edema--1969.

    PubMed

    Shanoff, H M

    1969-10-04

    New and powerful diuretics have made it possible for the physician to control cardiac edema in most patients. At the same time their potentially dangerous side effects make it mandatory for the physician to be knowledgeable and judicious in their use. The appreciation of a few simplified facts about cardiac edema and renal reabsorption of sodium makes the clinical pharmacology of the diuretics much easier to understand, remember and apply.

  20. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    PubMed

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2016-12-26

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ((13)C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by (13)C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for (13)C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of (13)C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen.

  1. A comprehensive experimental study on material properties of human brain tissue.

    PubMed

    Jin, Xin; Zhu, Feng; Mao, Haojie; Shen, Ming; Yang, King H

    2013-11-15

    A comprehensive study on the biomechanical response of human brain tissue is necessary to investigate traumatic brain injury mechanisms. Published brain material property studies have been mostly performed under a specific type of loading, which is insufficient to develop accurate brain tissue constitutive equations. In addition, inconsistent or contradictory data in the literature made it impossible for computational model developers to create a single brain material model that can fit most, if not all, experimental results. In the current study, a total of 240 brain tissue specimens were tested under tension (n=72), compression (n=72), and shear (n=96) loading modes at varying strain rates. Gray-white matter difference, regional difference, and directional difference within white matter were also investigated. Stress-strain relationships of human brain tissue were obtained up to 50% of engineering strain. Strain rate dependency was observed under all three loading modes. White matter was stiffer than gray matter in compression and shear. Corona radiata was found to be stiffer than cortex, thalamus, and corpus callosum in tension and compression. Directional dependency of white matter was observed under shear loading.

  2. Experimental Methods and Transport Models for Drug Delivery across the Blood-Brain Barrier

    PubMed Central

    Fu, Bingmei M

    2017-01-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed. PMID:22201587

  3. Neuronal and glial changes in the brain resulting from explosive blast in an experimental model.

    PubMed

    Goodrich, James A; Kim, Jung H; Situ, Robert; Taylor, Wesley; Westmoreland, Ted; Du, Fu; Parks, Steven; Ling, Geoffrey; Hwang, Jung Y; Rapuano, Amedeo; Bandak, Faris A; de Lanerolle, Nihal C

    2016-11-24

    Mild traumatic brain injury (mTBI) is the signature injury in warfighters exposed to explosive blasts. The pathology underlying mTBI is poorly understood, as this condition is rarely fatal and thus postmortem brains are difficult to obtain for neuropathological studies. Here we report on studies of an experimental model with a gyrencephalic brain that is exposed to single and multiple explosive blast pressure waves. To determine injuries to the brain resulting from the primary blast, experimental conditions were controlled to eliminate any secondary or tertiary injury from blasts. We found small but significant levels of neuronal loss in the hippocampus, a brain area that is important for cognitive functions. Furthermore, neuronal loss increased with multiple blasts and the degree of neuronal injury worsened with time post-blast. This is consistent with our findings in the blast-exposed human brain based on magnetic resonance spectroscopic imaging. The studies on this experimental model thus confirm what has been presumed to be the case with the warfighter, namely that exposure to multiple blasts causes increased brain injury. Additionally, as in other studies of both explosive blast as well as closed head mTBI, we found astrocyte activation. Activated microglia were also prominent in white matter tracts, particularly in animals exposed to multiple blasts and at long post-blast intervals, even though injured axons (i.e. β-APP positive) were not found in these areas. Microglial activation appears to be a delayed response, though whether they may contribute to inflammation related injury mechanism at even longer post-blast times than we tested here, remains to be explored. Petechial hemorrhages or other gross signs of vascular injury were not observed in our study. These findings confirm the development of neuropathological changes due to blast exposure. The activation of astrocytes and microglia, cell types potentially involved in inflammatory processes, suggest an

  4. Dosimetric Predictors of Laryngeal Edema

    SciTech Connect

    Sanguineti, Giuseppe . E-mail: gisangui@utmb.edu; Adapala, Prashanth; Endres, Eugene J. C; Brack, Collin; Fiorino, Claudio; Sormani, Maria Pia; Parker, Brent

    2007-07-01

    Purpose: To investigate dosimetric predictors of laryngeal edema after radiotherapy (RT). Methods and Materials: A total of 66 patients were selected who had squamous cell carcinoma of the head and neck with grossly uninvolved larynx at the time of RT, no prior major surgical operation except for neck dissection and tonsillectomy, treatment planning data available for analysis, and at least one fiberoptic examination of the larynx within 2 years from RT performed by a single observer. Both the biologically equivalent mean dose at 2 Gy per fraction and the cumulative biologic dose-volume histogram of the larynx were extracted for each patient. Laryngeal edema was prospectively scored after treatment. Time to endpoint, moderate or worse laryngeal edema (Radiation Therapy Oncology Group Grade 2+), was calculated with log rank test from the date of treatment end. Results: At a median follow-up of 17.1 months (range, 0.4- 50.0 months), the risk of Grade 2+ edema was 58.9% {+-} 7%. Mean dose to the larynx, V30, V40, V50, V60, and V70 were significantly correlated with Grade 2+ edema at univariate analysis. At multivariate analysis, mean laryngeal dose (continuum, hazard ratio, 1.11; 95% confidence interval, 1.06-1.15; p < 0.001), and positive neck stage at RT (N0-x vs. N +, hazard ratio, 3.66; 95% confidence interval, 1.40-9.58; p = 0.008) were the only independent predictors. Further stratification showed that, to minimize the risk of Grade 2+ edema, the mean dose to the larynx has to be kept {<=}43.5 Gy at 2 Gy per fraction. Conclusion: Laryngeal edema is strictly correlated with various dosimetric parameters; mean dose to the larynx should be kept {<=}43.5 Gy.

  5. Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke.

    PubMed

    Dijkhuizen, Rick M; van der Marel, Kajo; Otte, Willem M; Hoff, Erik I; van der Zijden, Jet P; van der Toorn, Annette; van Meer, Maurits P A

    2012-03-01

    The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models.

  6. Effects of experimentally-induced maternal hypothyroidism on crucial offspring rat brain enzyme activities.

    PubMed

    Koromilas, Christos; Liapi, Charis; Zarros, Apostolos; Stolakis, Vasileios; Tsagianni, Anastasia; Skandali, Nikolina; Al-Humadi, Hussam; Tsakiris, Stylianos

    2014-06-01

    Hypothyroidism is known to exert significant structural and functional changes to the developing central nervous system, and can lead to the establishment of serious mental retardation and neurological problems. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil-induced experimental hypothyroidism on crucial brain enzyme activities of Wistar rat offspring, at two time-points of their lives: at birth (day-1) and at 21 days of age (end of lactation). Under all studied experimental conditions, offspring brain acetylcholinesterase (AChE) activity was found to be significantly decreased due to maternal hypothyroidism, in contrast to the two studied adenosinetriphosphatase (Na(+),K(+)-ATPase and Mg(2+)-ATPase) activities that were only found to be significantly altered right after birth (increased and decreased, respectively, following an exposure to gestational maternal hypothyroidism) and were restored to control levels by the end of lactation. As our findings regarding the pattern of effects that maternal hypothyroidism has on the above-mentioned crucial offspring brain enzyme activities are compared to those reported in the literature, several differences are revealed that could be attributed to both the mode of the experimental simulation approach followed as well as to the time-frames examined. These findings could provide the basis for a debate on the need of a more consistent experimental approach to hypothyroidism during neurodevelopment as well as for a further evaluation of the herein presented and discussed neurochemical (and, ultimately, neurodevelopmental) effects of experimentally-induced maternal hypothyroidism, in a brain region-specific manner.

  7. Acute Hemorrhagic Edema of Infancy.

    PubMed

    Serra E Moura Garcia, C; Sokolova, A; Torre, M L; Amaro, C

    2016-01-01

    Acute Hemorrhagic Edema of Infancy is a small vessel leucocytoclastic vasculitis affecting young infants. It is characterized by large, target-like, macular to purpuric plaques predominantly affecting the face, ear lobes and extremities. Non-pitting edema of the distal extremities and low-grade fever may also be present. Extra-cutaneous involvement is very rare. Although the lesions have a dramatic onset in a twenty-four to forty-eight hour period, usually the child has a non-toxic appearance. In most cases there are no changes in laboratory parameters. The cutaneous biopsy reveals an inflammatory perivascular infiltrate. It is a benign and auto-limited disease, with complete resolution within two to three weeks leaving no sequelae in the majority of cases. No recurrences are described. We report a case of a 42-day old girl admitted at our hospital with Acute Hemorrhagic Edema of Infancy.

  8. Sympathetic crashing acute pulmonary edema

    PubMed Central

    Agrawal, Naman; Kumar, Akshay; Aggarwal, Praveen; Jamshed, Nayer

    2016-01-01

    Sympathetic crashing acute pulmonary edema (SCAPE) is the extreme end of the spectrum of acute pulmonary edema. It is important to understand this disease as it is relatively common in the emergency department (ED) and has better outcomes when managed appropriately. The patients have an abrupt redistribution of fluid in the lungs, and when treated promptly and effectively, these patients will rapidly recover. Noninvasive ventilation and intravenous nitrates are the mainstay of treatment which should be started within minutes of the patient's arrival to the ED. Use of morphine and intravenous loop diuretics, although popular, has poor scientific evidence. PMID:28149030

  9. Sympathetic crashing acute pulmonary edema.

    PubMed

    Agrawal, Naman; Kumar, Akshay; Aggarwal, Praveen; Jamshed, Nayer

    2016-12-01

    Sympathetic crashing acute pulmonary edema (SCAPE) is the extreme end of the spectrum of acute pulmonary edema. It is important to understand this disease as it is relatively common in the emergency department (ED) and has better outcomes when managed appropriately. The patients have an abrupt redistribution of fluid in the lungs, and when treated promptly and effectively, these patients will rapidly recover. Noninvasive ventilation and intravenous nitrates are the mainstay of treatment which should be started within minutes of the patient's arrival to the ED. Use of morphine and intravenous loop diuretics, although popular, has poor scientific evidence.

  10. Prehospital Tranexamic Acid Use for Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    development of cerebral edema ...... 15 3.2 Overview of Hemostasis...and development of cerebral edema The development of cerebral edema is another important type of secondary brain injury. It is clear that the...formation of cerebral edema is a major factor leading to the high morbidity and mortality in patients with TBI.25 No new treatments have been developed in

  11. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria

    PubMed Central

    Howland, Shanshan W; Poh, Chek Meng; Gun, Sin Yee; Claser, Carla; Malleret, Benoit; Shastri, Nilabh; Ginhoux, Florent; Grotenbreg, Gijsbert M; Rénia, Laurent

    2013-01-01

    Cerebral malaria is a devastating complication of Plasmodium falciparum infection. Its pathogenesis is complex, involving both parasite- and immune-mediated events. CD8+ T cells play an effector role in murine experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA (PbA) infection. We have identified a highly immunogenic CD8 epitope in glideosome-associated protein 50 that is conserved across rodent malaria species. Epitope-specific CD8+ T cells are induced during PbA infection, migrating to the brain just before neurological signs manifest. They are functional, cytotoxic and can damage the blood–brain barrier in vivo. Such CD8+ T cells are also found in the brain during infection with parasite strains/species that do not induce neuropathology. We demonstrate here that PbA infection causes brain microvessels to cross-present parasite antigen, while non-ECM-causing parasites do not. Further, treatment with fast-acting anti-malarial drugs before the onset of ECM reduces parasite load and thus antigen presentation in the brain, preventing ECM death. Thus our data suggest that combined therapies targeting both the parasite and host antigen-presenting cells may improve the outcome of CM patients. PMID:23681698

  12. Blood flow in an experimental rat brain tumor by tissue equilibration and indicator fractionation.

    PubMed

    Graham, M M; Spence, A M; Abbott, G L; O'Gorman, L; Muzi, M

    1987-01-01

    The tissue equilibration technique (Kety) was compared with the indicator fractionation technique for the measurement of blood flow to normal brain and an experimental brain tumor in the rat. The tumor was a cloned astrocytic glioma implanted in the cerebral hemisphere of F-344 rats. I-125 Iodoantipyrine, using a rising infusion for one minute, was used for the tissue equilibration technique. C-14 butanol, injected as a bolus 8 seconds before sacrifice, was used for the indicator fractionation technique. Samples were assayed using liquid scintillation counting and the iodoantipyrine results were regressed against the butanol results. For normal tissue R = 0.832, SEE = 0.115 ml/g/min, and Slope = 0.626. For tumor R = 0.796, SEE = 0.070 ml/g/min, and Slope = 0.441. The iodoantipyrine tissue/blood partition coefficient for normal hemisphere (gray and white matter) was 0.861 +/-0.037 (SD) and for tumor was 0.876 +/-0.042. The indicator fractionation technique with C-14 butanol underestimated blood flow in a consistent manner, probably because of incomplete extraction, early washout of activity from tissue and from evaporation of butanol during processing. Our experiments revealed no differences between tumor and normal brain tissue that might invalidate the comparison of iodoantipyrine blood flow results in brain tumors and surrounding normal brain.

  13. Edema: a silent but important factor.

    PubMed

    Villeco, June P

    2012-01-01

    Edema is a normal response to injury. Even the smallest injury is associated with some inflammation, and initial edema is part of the normal inflammatory process. However, edema becomes a concern when it persists beyond the inflammatory phase. Once we have progressed into the rebuilding, or fibroplastic phase of healing, edema will delay healing and contribute to complications such as pain and stiffness. Early prevention and management to prevent this progression are therefore critical. This article discusses edema in relation to stages of healing and presents the research behind techniques available to the clinician to manage localized extracellular upper extremity edema in the patient with an intact lymphatic system.

  14. Effect of arginine vasopressin on the cortex edema in the ischemic stroke of Mongolian gerbils.

    PubMed

    Zhao, Xue-Yan; Wu, Chun-Fang; Yang, Jun; Gao, Yang; Sun, Fang-Jie; Wang, Da-Xin; Wang, Chang-Hong; Lin, Bao-Cheng

    2015-06-01

    Brain edema formation is one of the most important mechanisms of ischemia-evoked cerebral edema. It has been demonstrated that arginine vasopressin (AVP) receptors are involved in the pathophysiology of secondary brain damage after focal cerebral ischemia. In a well-characterized animal model of ischemic stroke of Mongolian gerbils, the present study was undertaken to clear the effect of AVP on cortex edema in cerebral ischemia. The results showed that (1) occluding the left carotid artery of Mongolian gerbils not only decreased the cortex specific gravity (cortex edema) but also increased AVP levels in the ipsilateral cortex (ischemic area) including left prefrontal lobe, left parietal lobe, left temporal lobe, left occipital lobe and left hippocampus for the first 6 hours, and did not change of the cortex specific gravity and AVP concentration in the right cortex (non-ischemic area); (2) there were many negative relationships between the specific gravity and AVP levels in the ischemic cortex; (3) intranasal AVP (50 ng or 200 ng), which could pass through the blood-brain barrier to the brain, aggravated the focal cortex edema, whereas intranasal AVP receptor antagonist-D(CH2)5Tyr(ET)DAVP (2 µg) mitigated the cortex edema in the ischemic area after occluding the left carotid artery of Mongolian gerbils; and (4) either intranasal AVP or AVP receptor antagonist did not evoke that edema in the non-ischemic cortex. The data indicated that AVP participated in the process of ischemia-evoked cortex edema, and the cerebral AVP receptor might serve as an important therapeutic target for the ischemia-evoked cortex edema.

  15. Uveitic Macular Edema: Treatment Update

    PubMed Central

    Goldhardt, Raquel; Rosen, Bradley Simon

    2016-01-01

    The aim of this review is to summarize recent developments in the treatment of uveitic macular edema (ME). ME represent a major cause of visual loss in uveitis and adequate management is crucial for the maintenance of useful vision in patients with chronic uveitis. PMID:27347446

  16. The pathophysiology of repetitive concussive traumatic brain injury in experimental models; new developments and open questions.

    PubMed

    Brody, David L; Benetatos, Joseph; Bennett, Rachel E; Klemenhagen, Kristen C; Mac Donald, Christine L

    2015-05-01

    In recent years, there has been an increasing interest in the pathophysiology of repetitive concussive traumatic brain injury (rcTBI) in large part due to the association with dramatic cases of progressive neurological deterioration in professional athletes, military personnel, and others. However, our understanding of the pathophysiology of rcTBI is less advanced than for more severe brain injuries. Most prominently, the mechanisms underlying traumatic axonal injury, microglial activation, amyloid-beta accumulation, and progressive tau pathology are not yet known. In addition, the role of injury to dendritic spine cytoskeletal structures, vascular reactivity impairments, and microthrombi are intriguing and subjects of ongoing inquiry. Methods for quantitative analysis of axonal injury, dendritic injury, and synaptic loss need to be refined for the field to move forward in a rigorous fashion. We and others are attempting to develop translational approaches to assess these specific pathophysiological events in both animals and humans to facilitate clinically relevant pharmacodynamic assessments of candidate therapeutics. In this article, we review and discuss several of the recent experimental results from our lab and others. We include new initial data describing the difficulty in modeling progressive tau pathology in experimental rcTBI, and results demonstrating that sertraline can alleviate social interaction deficits and depressive-like behaviors following experimental rcTBI plus foot shock stress. Furthermore, we propose a discrete set of open, experimentally tractable questions that may serve as a framework for future investigations. In addition, we also raise several important questions that are less experimentally tractable at this time, in hopes that they may stimulate future methodological developments to address them. This article is part of a Special Issue entitled "Traumatic Brain Injury".

  17. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury

    PubMed Central

    ZHANG, CHENGCHENG; CHEN, JIANQIANG; LU, HONG

    2015-01-01

    Aquaporin 4 (AQP4) is a widely distributed membrane protein, which is found in glial cells, ependymocytes and capillary endothelial cells in the brain, and particularly in the choroid plexus. AQP4 is a key regulator of water metabolism, and changes in its expression following brain injury are associated with pathological changes in the damaged side of the brain; however, the effects of brain injury on AQP4 and injury-induced pathological changes in the contralateral non-damaged side of the brain remain to be fully elucidated. In the present study, male Sprague-Dawley rats were subjected to traumatic brain injury (TBI) and changes in brain water content, the expression of AQP4 expression and pathological characteristics in the damaged and contralateral non-damaged sides of the brain were examined. In the damaged side of the brain, vasogenic edema appeared first, followed by cellular edema. The aggravated cellular edema in the damaged side of the brain resulted in two periods of peak edema severity. Pathological changes in the contralateral non-damaged side of the brain occurred later than those in the damaged side; cellular edema appeared first, followed by vasogenic edema, which was alleviated earlier than the cellular edema. AQP4 was downregulated during vasogenic edema, and upregulated during cellular edema. Taken together, these results suggested that the downregulation of AQP4 was a result of vasogenic edema and that the upregulation of AQP4 may have induced cellular edema. PMID:26459070

  18. GM-CSF is not essential for experimental autoimmune encephalomyelitis but promotes brain-targeted disease

    PubMed Central

    Pierson, Emily R.; Goverman, Joan M.

    2017-01-01

    Experimental autoimmune encephalomyelitis (EAE) has been used as an animal model of multiple sclerosis to identify pathogenic cytokines that could be therapeutic targets. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is the only cytokine reported to be essential for EAE. We investigated the role of GM-CSF in EAE in C3HeB/FeJ mice that uniquely exhibit extensive brain and spinal cord inflammation. Unexpectedly, GM-CSF–deficient C3HeB/FeJ mice were fully susceptible to EAE because IL-17 activity compensated for the loss of GM-CSF during induction of spinal cord–targeted disease. In contrast, both GM-CSF and IL-17 were needed to fully overcome the inhibitory influence of IFN-γ on the induction of inflammation in the brain. Both GM-CSF and IL-17 independently promoted neutrophil accumulation in the brain, which was essential for brain-targeted disease. These results identify a GM-CSF/IL-17/IFN-γ axis that regulates inflammation in the central nervous system and suggest that a combination of cytokine-neutralizing therapies may be needed to dampen central nervous system autoimmunity.

  19. Found in translation: understanding the biology and behavior of experimental traumatic brain injury

    PubMed Central

    Bondi, Corina O.; Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Osier, Nicole D.; Carlson, Shaun W.; Dixon, C. Edward; Giza, Christopher C.; Kline, Anthony E.

    2014-01-01

    BONDI, C.O., B.D. Semple, L.J. Noble-Haeusslein, N.D. Osier, S.W. Carlson, C.E. Dixon, C.C. Giza and A.E. Kline. Found in translation: understanding the biology and behavior of experimental traumatic brain injury. NEUROSCI BIOBEHAV REV. The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled “Traumatic brain injury: laboratory and clinical perspectives,” presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided. PMID:25496906

  20. Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study

    PubMed Central

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F.

    2015-01-01

    Background Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. Objectives This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. Methods High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Results Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Conclusions Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature. PMID:26601082

  1. Distribution of anionic sites on the capillary endothelium in an experimental brain tumor model.

    PubMed

    Vincent, S; DePace, D; Finkelstein, S

    1988-02-01

    The distribution of anionic domains on the capillary endothelium of experimental brain tumors was determined using cationic ferritin (CF) in order to ascertain whether the pattern of these domains is different from that on normal cerebral capillaries. Tumors were induced by stereotaxic injection of cultured neoplastic glial cells, A15A5, into the caudate nucleus of Sprague-Dawley rats. Following a 14-21 day growth period tumors appeared as vascularized, sharply circumscribed masses which caused compression of the surrounding brain tissue. Anionic domains were distributed in a patchy and irregular pattern on the luminal plasma membrane of the endothelia of blood vessels in the tumors. Some variability in this pattern was observed infrequently in limited regions of the tumor where there was either a continuous layer of CF or an absence of CF binding. Plasmalemmal vesicles, coated vesicles, coated pits, multivesicular bodies, and some junctional complexes showed varying degrees of labeling with the probe. Capillaries in the tumor periphery and normal cerebral vessels showed a uniform distribution of anionic groups. These results indicate that there is an altered surface charge on the endothelial luminal plasma membrane of blood vessels in brain tumors. A correlation may exist between the altered surface charge and the degree to which the blood-brain barrier is impaired in these vessels.

  2. Connecting clinical and experimental investigations of awareness in traumatic brain injury.

    PubMed

    Dockree, Paul M; O'Connell, Redmond G; Robertson, Ian H

    2015-01-01

    Questionnaire-based demonstrations of impaired self-awareness (SA) after traumatic brain injury (TBI) are not always supported by experimental studies of in-the-moment or online awareness. This chapter begins by describing the clinical phenomenon of impaired SA, how it is measured, and why its interdependency with mechanisms of online awareness may provide the scaffolding from which appraisals of cognitive functioning can be accurately revised following a brain injury. We review research that has measured unawareness of errors in routine action in TBI patients and propose more rigorous methodological approaches to studying the emergent properties of awareness with greater clarity in the laboratory. We discuss how neuropsychological and electrophysiologic studies are beginning to inform our understanding of impaired error processing in TBI patients and we highlight recent theory proposing that online metacognitive processes accumulate evidence of erroneous responses in a graded fashion. Neural signals with amplitudes that scale with the strength of accruing evidence and peak latencies that mark the threshold at which awareness emerges represent important neural mechanisms to examine the breakdown of error awareness after brain injury. We also discuss how errors can be investigated in relation to different sources of evidence that contribute to aware experiences after brain injury. Finally, we explore conditions beyond error signaling, and how different "objects of insight" that require retrospective and prospective judgments of confidence need to be examined in relation to the clinical phenomenon of impaired SA.

  3. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    SciTech Connect

    Chang, Eric L. . E-mail: echang@mdanderson.org; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-05-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r {sup 2} 0.0007; p = 0.3). For patients with edema >75 cm{sup 3}, the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm{sup 3}, using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema.

  4. Surgical brain injury: prevention is better than cure.

    PubMed

    Jadhav, Vikram; Zhang, John H

    2008-05-01

    Neurosurgical procedures can cause inevitable brain damage resulting from the procedure itself. Unavoidable cortical and parenchymal incisions, intraoperative hemorrhage, brain lobe retraction and thermal injuries from electrocautery can cause brain injuries attributable exclusively to the neurosurgical operations and collectively referred to as surgical brain injury (SBI). This particular brain damage cannot be demarcated from the underlying brain pathology and has not been studied previously. Recently, we developed rat and mouse models to study SBI and the underlying cellular mechanisms. The animal modeling mimics a neurosurgical operation and causes commonly encountered postoperative complications such as brain edema following blood brain barrier (BBB) disruption, and neuronal cell death. Furthermore, the SBI animal model allows screening of known experimental neuroprotective agents and therapeutic agents being tried in clinical trials as possible pretreatments before neurosurgical procedures. In the present review, we elaborate on SBI and its clinical impact, the SBI animal models and their clinical relevance, and the importance of blanket neuroprotection before neurosurgical procedures.

  5. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains.

    PubMed

    Beilin, Orit; Karussis, Dimitrios M; Korczyn, Amos D; Gurwitz, David; Aronovich, Ramona; Mizrachi-Kol, Rachel; Chapman, Joab

    2007-04-16

    Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.

  6. Cell-based delivery of brain-derived neurotrophic factor in experimental allergic encephalomyelitis.

    PubMed

    Makar, Tapas K; Nimmagadda, Vamshi K C; Trisler, David; Bever, Christopher T

    2014-08-01

    Brain-derived neurotrophic factor (BDNF) is a pleiotropic cytokine with neuroprotective properties that has been identified as a potential therapeutic agent for diseases of the central nervous system (CNS). The use of BDNF has been limited by a short serum half-life and poor penetration of the blood-brain barrier. To address this limitation we have explored cell-based approaches to delivery. We have used experimental allergic encephalomyelitis (EAE), an inflammatory disease of the CNS, as a model system. We engineered hematopoietic stem cells to produce BDNF to determine the feasibility and effectiveness of cell-based delivery of BDNF into the CNS in EAE. We review those studies here.

  7. Experimental carbon dioxide laser brain lesions and intracranial dynamics. Part 2. Effect on brain water content and its response to acute therapy

    SciTech Connect

    Tiznado, E.G.; James, H.E.; Moore, S.

    1985-04-01

    Experimental brain lesions were created over the left parietooccipital cortex of the albino rabbit through the intact dura mater with high radiating carbon dioxide laser energy. The brain water content was studied 2, 6, and 24 hours after the insult. Another two groups of animals received acute therapy with either dexamethasone (1 mg/kg) or furosemide (1 mg/kg). In all groups, Evans blue extravasation uniformly extended from the impact crater into the surrounding white matter. The brain water content in the gray matter was elevated from the control value by 2 hours after impact and remained elevated at 6 and 24 hours. The white matter brain water content did not increase until 6 hours after impact and remained elevated in the 24-hour group. After dexamethasone treatment, there was a significant decrease of water in the gray matter, but not in the white matter. With furosemide therapy, there was no reduction of gray or white matter brain water.

  8. Protective effects of melatonin and vitamin E in brain damage due to gamma radiation: an experimental study.

    PubMed

    Erol, Fatih S; Topsakal, Cahide; Ozveren, M Faik; Kaplan, Metin; Ilhan, Nevin; Ozercan, I Hanifi; Yildiz, Oguz G

    2004-01-01

    Gamma radiation is known to cause serious damage in the brain, and many agents have been used for neuroprotection. In this study, lipid peroxidation levels and histopathological changes in brain tissues of whole-body irradiated rats with likely radiation injury were compared to those with melatonin and vitamin E protection. Forty rats in four equal groups were used. The control group received neither radiation nor medication. The remaining groups received doses of 720 cGy in two equal fractions 12 h apart. The second group received radiation but no medication, the third received radiation plus 100 mg/kg per day of vitamin E i.p., and the fourth received radiation plus 100 mg/kg per day of melatonin i.p. over 5 days. On the 10th postoperative day, all the rats were decapitated and specimens from parietal cortices were analyzed for tissue malondialdehyde (MDA) levels and histopathological changes. Increases in MDA were relatively well prevented by melatonin treatment but less so with vitamin E therapy. On histopathological examination, melatonin significantly reduced the rates of edema, necrosis, and neuronal degeneration, whereas vitamin E reduced only necrosis. Neither substance was capable of preventing vasodilatation. In conclusion, melatonin may be useful in preventing the pathological changes of secondary brain damage as a result of free oxygen radicals generated by irradiation.

  9. Progressive decrease in N-acetylaspartate/Creatine ratio in a teenager with type 1 diabetes and repeated episodes of ketoacidosis without clinically apparent cerebral edema: Evidence for permanent brain injury.

    PubMed

    Wootton-Gorges, S L; Buonocore, M H; Caltagirone, R A; Kuppermann, N; Glaser, N S

    2010-04-01

    Recent data suggest that DKA may contribute to cognitive impairment in children with type 1 DM. We measured the NAA/Cr ratio in a teenager during and following 2 separate episodes of DKA without clinically apparent cerebral edema. The NAA/Cr ratio decreased during DKA and improved following recovery. However, the NAA/Cr value was lower after the second episode of DKA (1.76) than after the first (1.97). These findings provide support for the hypothesis that neuronal injury may result from DKA.

  10. Cerebral Edema in Chronic Mountain Sickness: a New Finding

    PubMed Central

    Bao, Haihua; Wang, Duoyao; Zhao, Xipeng; Wu, Youshen; Yin, Guixiu; Meng, Li; Wang, Fangfang; Ma, Lan; Hackett, Peter; Ge, Ri-Li

    2017-01-01

    We observed patients with chronic mountain sickness (CMS) in our clinic who developed progressive neurological deterioration (encephalopathy) and we wished to investigate this. We studied nine such CMS patients, and compared them to 21 CMS patients without encephalopathy, and to 15 healthy control subjects without CMS. All 45 subjects lived permanently at 3200–4000 m. Measurements at 2260 m included CMS symptom score, multi-slice CT, perfusion CT, pulse oximetry (SpO2%), and hemoglobin concentration (Hb). One patient had MRI imaging but not CT; 5 had CSF pressure measurements. CMS subjects had lower SpO2, higher Hb, higher brain blood density, lower mean cerebral blood flow (CBF), and significant cerebral circulatory delay compared to controls. The nine CMS subjects with neurological deterioration showed diffuse cerebral edema on imaging and more deranged cerebral hemodynamics. CSF pressure was elevated in those with edema. We conclude that cerebral edema, a previously unrecognized complication, may develop in CMS patients and cause encephalopathy. Contributing factors appear to be exaggerated polycythemia and hypoxemia, and lower and sluggish CBF compared to CMS patients without cerebral edema; but what triggers this complication is unknown. Recognition and treatment of this serious complication will help reduce morbidity and mortality from CMS. PMID:28233815

  11. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals

    PubMed Central

    Osier, Nicole D.; Carlson, Shaun W.; DeSana, Anthony

    2015-01-01

    Abstract The purpose of this review is to survey the use of experimental animal models for studying the chronic histopathological and behavioral consequences of traumatic brain injury (TBI). The strategies employed to study the long-term consequences of TBI are described, along with a summary of the evidence available to date from common experimental TBI models: fluid percussion injury; controlled cortical impact; blast TBI; and closed-head injury. For each model, evidence is organized according to outcome. Histopathological outcomes included are gross changes in morphology/histology, ventricular enlargement, gray/white matter shrinkage, axonal injury, cerebrovascular histopathology, inflammation, and neurogenesis. Behavioral outcomes included are overall neurological function, motor function, cognitive function, frontal lobe function, and stress-related outcomes. A brief discussion is provided comparing the most common experimental models of TBI and highlighting the utility of each model in understanding specific aspects of TBI pathology. The majority of experimental TBI studies collect data in the acute postinjury period, but few continue into the chronic period. Available evidence from long-term studies suggests that many of the experimental TBI models can lead to progressive changes in histopathology and behavior. The studies described in this review contribute to our understanding of chronic TBI pathology. PMID:25490251

  12. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria.

    PubMed

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K; Rangarajan, Pundi N; Padmanaban, Govindarajan

    2015-07-31

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15-20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8(+) T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM.

  13. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury

    PubMed Central

    Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I.

    2015-01-01

    Abstract Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3–only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI. PMID:25419789

  14. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria

    PubMed Central

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K.; Rangarajan, Pundi N.; Padmanaban, Govindarajan

    2015-01-01

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15–20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8+ T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM. PMID:26227888

  15. Waterjet dissection of the brain: experimental and first clinical results. Technical note.

    PubMed

    Piek, J; Wille, C; Warzok, R; Gaab, M R

    1998-11-01

    Control of bleeding during dissection is a problem that is still not completely resolved in neurosurgical procedures. To overcome this problem in some settings, the authors, in close collaboration with their institution, developed a new device for blunt dissection of brain tumors that is based on a waterjet technique. This report describes their first experimental and clinical experience with this new method. Numerous cutting experiments were performed in porcine cadaver brains. The best results were obtained using pressures from 4 to 6 bars with a 100-microm tip, which produced very small, precise cuts. Histological evaluation showed no disruption or vacuolization of the surrounding tissue. The authors have used the new device in nine patients (seven with gliomas and two undergoing temporal lobe resections for epilepsy), and no complications have been observed. The waterjet device allowed dissection of the brain tissue while even small exposed vessels were spared injury. The instrument was found to be easy to use. Future investigations will concentrate on adapting this new method to endoscopic surgery and evaluating fluids with low surface tension to avoid foaming and bubbling during open surgery.

  16. Granulocyte-Macrophage Colony-Stimulating Factor Is Neuroprotective in Experimental Traumatic Brain Injury

    PubMed Central

    Tan, Xin L.; Wright, David K.; Liu, Shijie J.; Semple, Bridgette D.; Johnston, Leigh; Jones, Nigel C.; Cook, Andrew D.; Hamilton, John A.; O'Brien, Terence J.

    2014-01-01

    Abstract Traumatic brain injury (TBI) is an international health concern with a complex pathogenesis resulting in major long-term neurological, neurocognitive, and neuropsychiatric outcomes. Although neuroinflammation has been identified as an important pathophysiological process resulting from TBI, the function of specific inflammatory mediators in the aftermath of TBI remains poorly understood. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an inflammatory cytokine that has been reported to have neuroprotective effects in various animal models of neurodegenerative disease that share pathological similarities with TBI. The importance of GM-CSF in TBI has yet to be studied, however. We examined the role of GM-CSF in TBI by comparing the effects of a lateral fluid percussion (LFP) injury or sham injury in GM-CSF gene deficient (GM-CSF-/-) versus wild-type (WT) mice. After a 3-month recovery interval, mice were assessed using neuroimaging and behavioral outcomes. All mice given a LFP injury displayed significant brain atrophy and behavioral impairments compared with those given sham-injuries; however, this was significantly worse in the GM-CSF-/- mice compared with the WT mice. GM-CSF-/- mice given LFP injury also had reduced astrogliosis compared with their WT counterparts. These novel findings indicate that the inflammatory mediator, GM-CSF, may have significant protective properties in the chronic sequelae of experimental TBI and suggest that further research investigating GM-CSF and its potential benefits in the injured brain is warranted. PMID:24392832

  17. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury.

    PubMed

    Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I; Stoica, Bogdan A

    2015-09-01

    Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3-only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI.

  18. Integrating mind and brain: Warren S. McCulloch, cerebral localization, and experimental epistemology.

    PubMed

    Abraham, Tara H

    2003-03-01

    Recently, historians have focused on Warren S. McCulloch's role in the cybernetics movement during the 1940s and 1950s, and his contributions to the development of computer science and communication theory. What has received less attention is McCulloch's early work in neurophysiology, and its relationship to his philosophical quest for an 'experimental epistemology' - a physiological theory of knowledge. McCulloch's early laboratory work during the 1930s addressed the problem of cerebral localization: localizing aspects of behaviour in the cerebral cortex of the brain. Most of this research was done with the Dutch neurophysiologist J.G. Dusser de Barenne at Yale University. The connection between McCulloch's philosophical interests and his experimental work can be expressed as a search for a physiological a priori, an integrated mechanism of sensation.

  19. Experimental study of blast-induced traumatic brain injury using a physical head model.

    PubMed

    Zhang, Jiangyue; Pintar, Frank A; Yoganandan, Narayan; Gennarelli, Thomas A; Son, Steven F

    2009-11-01

    This study was conducted to quantify intracranial biomechanical responses and external blast overpressures using physical head model to understand the biomechanics of blast traumatic brain injury and to provide experimental data for computer simulation of blast-induced brain trauma. Ellipsoidal-shaped physical head models, made from 3-mm polycarbonate shell filled with Sylgard 527 silicon gel, were used. Six blast tests were conducted in frontal, side, and 45 degrees oblique orientations. External blast overpressures and internal pressures were quantified with ballistic pressure sensors. Blast overpressures, ranging from 129.5 kPa to 769.3 kPa, were generated using a rigid cannon and 1.3 to 3.0 grams of pentaerythritol tetranitrate (PETN) plastic sheet explosive (explosive yield of 13.24 kJ and TNT equivalent mass of 2.87 grams for 3 grams of material). The PETN plastic sheet explosive consisted of 63% PETN powder, 29% plasticizer, and 8% nitrocellulose with a density of 1.48 g/cm3 and detonation velocity of 6.8 km/s. Propagation and reflection of the shockwave was captured using a shadowgraph technique. Shockwave speeds ranging from 423.3 m/s to 680.3 m/s were recorded. The model demonstrated a two-stage response: a pressure dominant (overpressure) stage followed by kinematic dominant (blast wind) stage. Positive pressures in the brain simulant ranged from 75.1 kPa to 1095 kPa, and negative pressures ranged from -43.6 kPa to -646.0 kPa. High- and normal-speed videos did not reveal observable deformations in the brain simulant from the neutral density markers embedded in the midsagittal plane of the head model. Amplitudes of the internal positive and negative pressures were found to linearly correlate with external overpressure. Results from the current study suggested a pressure-dominant brain injury mechanism instead of strain injury mechanism under the blast severity of the current study. These quantitative results also served as the validation and calibration

  20. Neuroprotective effects of erythropoietin against oxidant injury following brain irradiation: an experimental study

    PubMed Central

    Cebi, Aysegul; Mert, Handan; Mert, Nihat; Serin, Meltem; Erkal, Haldun Sukru

    2016-01-01

    Introduction Radiation therapy (RT) is a major treatment modality, and the central nervous system is a dose-limiting organ in clinical RT. This experimental study aims to present the evaluation of the neuroprotective effects of erythropoietin (EPO) against oxidant injury following brain irradiation in rats. Material and methods Forty Wistar rats were randomly assigned to four groups (n = 10 each). In group 1 the rats received no EPO and underwent sham RT. The rats in groups 2 and 3 received EPO. In group 2 rats underwent sham RT, while in group 3 rats received RT. The rats in group 4 received no EPO and underwent RT. Rats were irradiated using a Cobalt-60 teletherapy machine using a single fraction of 20 Gy covering the whole brain. Cervical dislocation euthanasia was performed. The nitrite and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) and glutathione peroxidase (GSHPX) activities were evaluated in dissected brain tissues. Results The nitrite and MDA levels were higher in the RT group (2.10 ±0.62 ppm, 26.02 ±2.16 nmol/ml; p < 0.05) and lower in the EPO + RT group (1.45 ±0.12 ppm, 25.49 ±1.90 nmol/ml; p < 0.05). The SOD and GSHPX activity was higher in the EPO + RT group (2.62 ±0.49 U/mg, 1.75 ±0.25 U/mg, p < 0.05). Conclusions This study supports the probable neuroprotective effects of EPO against oxidant injury following brain irradiation in a rat model, presumably through decreasing free radical production and increasing expression of antioxidant enzymes. PMID:27904528

  1. High-resolution ultrasound evaluation of experimental brain abscess evolution: comparison with computed tomography and neuropathology

    SciTech Connect

    Enzmann, D.R.; Britt, R.H.; Lyons, B.; Carroll, B.; Wilson, D.A.; Buxton, J.

    1982-01-01

    Computed tomographic (CT) and high-resolution ultrasound (HRUS) imaging of experimental brain abscess were correlated with neuropathologic findings in nine mongrel dogs. The HRUS scan was more sensitive to different histologic features than the CT scan but both accurately delineated the evolution of the experimental brain abscess. All stages of abscess evolution were characterized by an appearance of an echogenic rim with a hypoechoic center. In the early stages the echogenicity of the abscess was related primarily to marked cellular infiltration while in the late stages extensive collagen deposition correlated closely with the echo pattern. The size of the abscess in the cerebritis stages appeared smaller on the HRUS scan than on the CT scan because the latter modality detected the extensive cerebritis around the developing necrotic center whereas the HRUS scan did not. This discrepancy disappeared in the capsule stages. The HRUS scan provided a more accurate depiction of the neuropathologic characteristics of the necrotic center than did the CT scan. Healing of the abscess, indicated by a decrease in size of the hypoechoic center, was accurately detected by the HRUS scan.

  2. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury.

    PubMed

    Chen, X; Li, Y; Kline, A E; Dixon, C E; Zafonte, R D; Wagner, A K

    2005-01-01

    Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values

  3. Environmental Enrichment as a Viable Neurorehabilitation Strategy for Experimental Traumatic Brain Injury

    PubMed Central

    Bondi, Corina O.; Klitsch, Kyle C.; Leary, Jacob B.

    2014-01-01

    Abstract Environmental enrichment (EE) emerged as a robust independent variable capable of influencing behavioral outcome in experimental studies after the fortuitous observation by renowned neuropsychologist Donald O. Hebb that rats raised as pets in his home performed markedly better on problem-solving tasks than those kept in the laboratory. In the subsequent years, numerous studies ensued demonstrating that EE was also capable of inducing neuroplasticity in normal (i.e., noninjured) rats. These behavioral and neural alterations provided the impetus for investigating EE as a potential therapy for traumatic brain injury (TBI), which, over the past two decades, has resulted in several reports. Hence, the aim of this review is to integrate the findings and present the current state of EE as a viable neurorehabilitation strategy for TBI. Using the specific key term searches “traumatic brain injury” and “environmental enrichment” or “enriched environment,” 30 and 30 experimental TBI articles were identified by PubMed and Scopus, respectively. Of these, 27 articles were common to both search engines. An additional article was found on PubMed using the key terms “enriched environment” and “fluid percussion.” A review of the bibliographies in the 34 articles did not yield additional citations. The overwhelming consensus of the 34 publications is that EE benefits behavioral and histological outcome after brain injury produced by various models. Further, the enhancements are observed in male and female as well as adult and pediatric rats and mice. Taken together, these cumulative findings provide strong support for EE as a generalized and robust preclinical model of neurorehabilitation. However, to further enhance the model and to more accurately mimic the clinic, future studies should continue to evaluate EE during more rehabilitation-relevant conditions, such as delayed and shorter time periods, as well as in combination with other therapeutic

  4. An Experimental Study: Does the Neuroprotective Effect Increase When Hypothermia Deepens After Traumatic Brain Injury?

    PubMed Central

    Girisgin, Abdullah Sadik; Kalkan, Erdal; Ergin, Mehmet; Keskin, Fatih; Dundar, Zerrin Defne; Kebapcioglu, Sedat; Kocak, Sedat; Cander, Basar

    2015-01-01

    Background: Experimental approaches have been promising with the use of therapeutic hypothermia after Traumatic Brain Injury (TBI) whereas clinical data have not supported its efficacy. Objectives: This study aimed to investigate whether using selective deeper brain cooling correlates with a more neuroprotective effect on Intracranial Pressure (ICP) increments following TBI in rats. Materials and Methods: Adult male Sprague-Dawley rats (mean weight = 300 g; n = 25) were subjected to brain injury using a modified Marmarou method. Immediately after the onset of TBI, rats were randomized into three groups. Selective brain cooling was applied around the head using ice packages. Intracranial Temperature (ICT) and ICP were continuously measured at 0, 30, 60, 120, and 180 minutes and recorded for all groups. Group 1 (n = 5) was normothermia and was assigned as the control group. Group 2 (n = 10) received moderate hypothermia with a target ICT of between 32°C - 33°C and Group 3 (n = 10) was given a deeper hypothermia with a target ICT of below 32°C. Results: All subjects reached the target ICT by the 30th minute of hypothermia induction. The ICT was significantly different in Group 2 compared to Group 1 only at the 120th minute (P = 0.017), while ICP was significantly lower starting from the 30th minute (P = 0.015). The ICT was significantly lower in Group 3 compared to Groups 1 and 2 starting from the 30th minute (P = 0.001 and P = 0.003, respectively). The ICP was significantly lower in Group 3 compared to Group 1 starting from 30th minute (P = 0.001); however, a significant difference in ICP between Group 3 and Group 2 was observed only at the 180th minute (P = 0.047). Conclusions: Results of this study indicate that selective brain cooling is an effective method of decreasing ICP in rats; however, the deeper hypothermia caused a greater decrease in ICP three hours after hypothermia induction. PMID:26023335

  5. [Therapeutic approach in persistent diabetic macular edema].

    PubMed

    Brănişteanu, Daniel; Moraru, Andreea

    2014-01-01

    Terminology of persistent diabetic macular edema has been initially reserved to cases unresponsive to conventional laser photocoagulation according to ETDRS criteria. While knowledge about pathophysiology of macular edema evolved and new drugs became available, the terminology of persistent diabetic macular edema expanded to include resistance to most current therapies. The purpose of this paper is to review medical and surgical options in the treatment of such difficult cases according to literature data and personal experience.

  6. In vivo magnetic resonance imaging investigating the development of experimental brain metastases due to triple negative breast cancer.

    PubMed

    Hamilton, Amanda M; Foster, Paula J

    2017-02-01

    Triple negative breast cancer (TNBC), when associated with poor outcome, is aggressive in nature with a high incidence of brain metastasis and the shortest median overall patient survival after brain metastasis development compared to all other breast cancer subtypes. As therapies that control primary cancer and extracranial metastatic sites improve, the incidence of brain metastases is increasing and the management of patients with breast cancer brain metastases continues to be a significant clinical challenge. Mouse models have been developed to permit in depth evaluation of breast cancer metastasis to the brain. In this study, we compare the efficiency and metastatic potential of two experimental mouse models of TNBC. Longitudinal MRI analysis and end point histology were used to quantify initial cell arrest as well as the number and volume of metastases that developed in mouse brain over time. We showed significant differences in MRI appearance, tumor progression and model efficiency between the syngeneic 4T1-BR5 model and the xenogeneic 231-BR model. Since TNBC does not respond to many standard breast cancer treatments and TNBC brain metastases lack effective targeted therapies, these preclinical TNBC models represent invaluable tools for the assessment of novel systemic therapeutic approaches. Further pursuits of therapeutics designed to bypass the blood tumor barrier and permit access to the brain parenchyma and metastatic cells within the brain will be paramount in the fight to control and treat lethal metastatic cancer.

  7. The effect of ASK1 on vascular permeability and edema formation in cerebral ischemia.

    PubMed

    Song, Juhyun; Cheon, So Yeong; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-01-21

    Apoptosis signal-regulating kinase-1 (ASK1) is the mitogen-activated protein kinase kinase kinase (MAPKKK) and participates in the various central nervous system (CNS) signaling pathways. In cerebral ischemia, vascular permeability in the brain is an important issue because regulation failure of it results in edema formation and blood-brain barrier (BBB) disruption. To determine the role of ASK1 on vascular permeability and edema formation following cerebral ischemia, we first investigated ASK1-related gene expression using microarray analyses of ischemic brain tissue. We then measured protein levels of ASK1 and vascular endothelial growth factor (VEGF) in brain endothelial cells after hypoxia injury. We also examined protein expression of ASK1 and VEGF, edema formation, and morphological alteration through cresyl violet staining in ischemic brain tissue using ASK1-small interference RNA (ASK1-siRNA). Finally, immunohistochemistry was performed to examine VEGF and aquaporin-1 (AQP-1) expression in ischemic brain injury. Based on our findings, we propose that ASK1 is a regulating factor of vascular permeability and edema formation in cerebral ischemia.

  8. LUNG EDEMA FOLLOWING BILATERAL VAGOTOMY

    PubMed Central

    Lorber, Victor

    1939-01-01

    1. Small animals (rat and guinea pig) vagotomized in the neck die within a period of hours, the lungs showing extensive congestion and edema. 2. Tracheotomy permits appreciably longer survival with minimal lung changes approximating those seen in the control animals. 3. Intrathoracic vagotomy (sparing the recurrent laryngeal nerve) on one side, and cervical vagotomy on the other, permits almost indefinite survival (guinea pig and rabbit), unless laryngeal paralysis from the unilateral denervation produces respiratory obstruction (rat, guinea pig, and rabbit). 4. Pulmonary edema following bilateral vagotomy probably results primarily from respiratory obstruction. It is suggested that circulatory failure may also be a factor of some importance. The rôle of vagotomy itself is considered in relationship to these two phenomena. 5. The reaction of smaller animals to bilateral vagotomy, with regard to lung changes, apparently differs in no way from that of the larger animals, but is less readily demonstrated because of the smaller diameters of the air passages. PMID:19870894

  9. Reexpansion pulmonary edema in children

    PubMed Central

    Rodrigues, Antonio Lucas L.; Lopes, Carlos Eduardo; Romaneli, Mariana Tresoldi das N.; Fraga, Andrea de Melo A.; Pereira, Ricardo Mendes; Tresoldi, Antonia Teresinha

    2013-01-01

    OBJECTIVE To present a case of a patient with clinical and radiological features of reexpansion pulmonary edema, a rare and potentially fatal disease. CASE DESCRIPTION An 11-year-old boy presenting fever, clinical signs and radiological features of large pleural effusion initially treated as a parapneumonic process. Due to clinical deterioration he underwent tube thoracostomy, with evacuation of 3,000 mL of fluid; he shortly presented acute respiratory insufficiency and needed mechanical ventilation. He had an atypical evolution (extubated twice with no satisfactory response). Computerized tomography findings matched those of reexpansion edema. He recovered satisfactorily after intensive care, and pleural tuberculosis was diagnosed afterwards. COMMENTS Despite its rareness in the pediatric population (only five case reports gathered), the knowledge of this pathology and its prevention is very important, due to high mortality rates. It is recommended, among other measures, slow evacuation of the pleural effusion, not removing more than 1,500 mL of fluid at once. PMID:24142327

  10. Idazoxan reduces blood-brain barrier damage during experimental autoimmune encephalomyelitis in mouse.

    PubMed

    Wang, Xin-Shi; Fang, Hui-Lin; Chen, Yu; Liang, Shan-Shan; Zhu, Zhen-Guo; Zeng, Qing-Yi; Li, Jia; Xu, Hui-Qin; Shao, Bei; He, Jin-Cai; Hou, Sheng-Tao; Zheng, Rong-Yuan

    2014-08-05

    We have previously shown that Idazoxan (IDA), an imidazoline 2 receptor ligand, is neuroprotective against spinal cord injury caused by experimental autoimmune encephalomyelitis (EAE) in mouse, an animal modal of multiple sclerosis (MS). However, the protective mechanism remains unclear. Here, we provided evidence to show that IDA confers neuroprotection through reduction in blood-brain barrier (BBB) damage. EAE was induced by immunizing C57 BL/6 mice with myelin oligodendrocyte glycoprotein35-55 amino acid peptide (MOG35-55). IDA was administrated for 14 days after MOG immunization at 2 mg/kg (i.p., bid). Significant reduction in BBB damage occurred in the IDA-treated group of mice compared with the saline-treated group, as evidenced by the reduction in Evan׳s blue content in the brain tissue and the reduced BBB tight junction damage viewed under a transmission electron microscope. Moreover, EAE-induced reductions in tight junction proteins (JAM-1, Occludin, Claudin-5 and ZO-1) were also significantly ameliorated in IDA-treated mice, all of which supported the notion that IDA reduced BBB damage. Interestingly, the expression levels of extracellular matrix metalloproteinase-9 (MMP-9) and the ratio of MMP-9 against tissue inhibitor of metalloproteinase-1 (TIMP-1), which is known to be associated with MS-induced BBB damage, were significantly reduced in IDA-treated group, lending further support to the hypothesis that IDA confers brain protection through reducing BBB damage. This study raised a possibility that IDA is a promising pro-drug for development against MS.

  11. Efficacy of moclobemide in a rat model of neurotoxicant-induced edema.

    PubMed

    Girard, Philippe; Verniers, Danielle; Pansart, Yannick; Gillardin, Jean-Marie

    2007-05-01

    The potent antidepressant effect of moclobemide, a selective and reversible type A monoamine oxidase (MAO) inhibitor, is clinically established. In view of the ongoing debate on the neuroprotective properties of MAO inhibitors, the present study was undertaken to further define the protective effect of moclobemide in a rat model of neurotoxicant-induced edema. In this model, daily oral triethyltin (TET) administration for 5 consecutive days strongly perturbed the rat behaviour and induced a cerebral edema at the 5th day. Oral coadministration of moclobemide (2 x 100 mg.kg-1.day-1) with TET blocked the development of brain edema and the increase in the cerebral chloride content induced by TET. Moreover, moclobemide reduced the increase in the cerebral sodium content and attenuated the neurological deficit. In conclusion, moclobemide possesses potent protective properties in this rat model of cerebral edema, suggesting potential clinical utility as a neuroprotectant.

  12. Numerical modeling of an experimental shock tube for traumatic brain injury studies

    NASA Astrophysics Data System (ADS)

    Phillips, Michael; Regele, Jonathan D.

    2015-11-01

    Unfortunately, Improvised Explosive Devices (IEDs) are encountered commonly by both civilians and military soldiers throughout the world. Over a decade of medical history suggests that traumatic brain injury (TBI) may result from exposure to the blast waves created by these explosions, even if the person does not experience any immediate injury or lose consciousness. Medical researchers study the exposure of mice and rats to blast waves created in specially designed shock tubes to understand the effect on brain tissue. A newly developed table-top shock tube with a short driver section has been developed for mice experiments to reduce the time necessary to administer the blast radiation and increase the amount of statistical information available. In this study, numerical simulations of this shock tube are performed to assess how the blast wave takes its shape. The pressure profiles obtained from the numerical results are compared with the pressure histories from the experimental pressure transducers. The results show differences in behavior from what was expected, but the blast wave may still be an effective means of studying TBI.

  13. Metabolically dependent blood-brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis.

    PubMed

    Hawkins, C P; Munro, P M; Landon, D N; McDonald, W I

    1992-01-01

    We have studied chronic relapsing experimental allergic encephalomyelitis (CREAE), a model of immune-mediated demyelination, using gadolinium (Gd)-enhanced magnetic resonance imaging in vivo and the blood-brain barrier (BBB) markers, lanthanum nitrate and Gd nitrate, histologically. In regions of the spinal cord showing Gd enhancement, there was evidence for vesicular transport as a mechanism of BBB breakdown in CREAE, shown by an increased number of endothelial vesicles containing lanthanide (lanthanum or Gd, whichever had been perfused) and deposition of tracer in the perivascular space; tight interendothelial junctions remained intact. Prior perfusion with 2,4-dinitrophenol, a metabolic inhibitor, suppressed the appearance of endothelial vesicles containing lanthanide and tracer in the perivascular space. We conclude that an important contribution to BBB breakdown in CREAE is mediated by a metabolic change in the endothelial cells associated with increased vesicular transport.

  14. Experimental analyses of gene-brain-behavior relations: some notes on their application.

    PubMed Central

    Kennedy, C H; Caruso, M; Thompson, T

    2001-01-01

    The fields of genetics and neuroscience are yielding findings useful in understanding complex behavior-environment relations. We believe that these developments in interdisciplinary basic research are of interest to applied behavior analysts because of the long history of basic findings being used by the readership of the Journal of Applied Behavior Analysis to improve everyday human activities. An awareness of contemporary developments in a range of basic research disciplines may facilitate the systematic replication of those functional relations in applied settings. In this context, we selectively review papers published in the Journal of the Experimental Analysis of Behavior and other basic research journals that relate to gene-brain-behavior relations. PMID:11800198

  15. Galveston Brain Injury Conference 2010: clinical and experimental aspects of blast injury.

    PubMed

    Masel, Brent E; Bell, Randy S; Brossart, Shawn; Grill, Raymond J; Hayes, Ronald L; Levin, Harvey S; Rasband, Matthew N; Ritzel, David V; Wade, Charles E; DeWitt, Douglas S

    2012-08-10

    Blast injury is the most prevalent source of mortality and morbidity among combatants in Operations Iraqi and Enduring Freedom. Blast-induced neurotrauma (BINT) is a common cause of mortality, and even mild BINT may be associated with chronic cognitive and emotional deficits. In addition to military personnel, the increasing use of explosives by terrorists has resulted in growing numbers of blast injuries in civilian populations. Since the medical and rehabilitative communities are likely to be faced with increasing numbers of patients suffering from blast injury, the 2010 Galveston Brain Injury Conference focused on topics related to the diagnosis, treatment, and mechanisms of BINT. Although past military actions have resulted in large numbers of blast casualties, BINT is considered the signature injury of the conflicts in Iraq and Afghanistan. The attention focused on BINT has led to increased financial support for research on blast effects, contributing to the development of better experimental models of blast injury and a clearer understanding of the mechanisms of BINT. This more thorough understanding of blast injury mechanisms will result in novel and more effective therapeutic and rehabilitative strategies designed to reduce injury and facilitate recovery, thereby improving long-term outcomes in patients suffering from the devastating and often lasting effects of BINT. The following is a summary of the 2010 Galveston Brain Injury Conference, that included presentations related to the diagnosis and treatment of acute BINT, the evaluation of the long-term neuropsychological effects of BINT, summaries of current experimental models of BINT, and a debate about the relative importance of primary blast effects on the acute and long-term consequences of blast exposure.

  16. Neuroprotective Effects of a Smoothened Receptor Agonist against Early Brain Injury after Experimental Subarachnoid Hemorrhage in Rats

    PubMed Central

    Hu, Quan; Li, Tong; Wang, Lingxiao; Xie, Yunkai; Liu, Song; Bai, Xuemei; Zhang, Tiantian; Bo, Shishi; Xin, Danqing; Xue, Hao; Li, Gang; Wang, Zhen

    2017-01-01

    The sonic hedgehog (Shh) signaling pathway plays a fundamental role in the central nervous system (CNS) development, but its effects on neural cell survival and brain repair after subarachnoid hemorrhage (SAH) has not been well-investigated. The present study was undertaken to evaluate the influence of an agonist of the Shh co-receptor Smoothened (Smo), purmorphamine (PUR), on early brain injury (EBI) as well as the underlying mechanisms after SAH. PUR was administered via an intraperitoneal injection with a dose of 0.5, 1, and 5 mg/kg at 2, 6, 24, and 46 h after SAH in rat model. The results showed that PUR treatment significantly ameliorated brain edema, improved neurobehavioral function, and attenuated neuronal cell death in the prefrontal cortex (PFC), associated with a decrease in Bax/Bcl-2 ratio and suppression of caspase-3 activation at 48 h after SAH. PUR also promoted phospho-ERK levels. Additionally, PUR treatment markedly decreased MDA concentration accompanied with the elevation in the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 in PFC. Notably, PUR treatment significantly reversed the changes of Shh pathway mediators containing Patched, Gli1, and Shh by SAH insult, and the neuroprotection of PUR on SAH was blocked by Smo antagonist cyclopamine. These results indicated that PUR exerts neuroprotection against SAH-evoked injury in rats, mediated in part by anti-apoptotic and anti-oxidant mechanism, up-regulating phospho-ERK levels, mediating Shh signaling molecules in the PFC. PMID:28149272

  17. The kallikrein-kinin system in experimental Chagas disease: a paradigm to investigate the impact of inflammatory edema on GPCR-mediated pathways of host cell invasion by Trypanosoma cruzi

    PubMed Central

    Scharfstein, Julio; Andrade, Daniele; Svensjö, Erik; Oliveira, Ana Carolina; Nascimento, Clarissa R.

    2013-01-01

    Chronic chagasic myocarditis (CCM) depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs) elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the kallikrein-kinin system. Molecular studies linked the proinflammatory phenotype of Dm28c TCTs to the synergistic activities of tGPI, a lipid anchor that functions as a Toll-like receptor 2 (TLR2) ligand, and cruzipain, a kinin-releasing cysteine protease. Analysis of the dynamics of inflammation revealed that TCTs activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen (HK), in parasite-laden tissues. Further downstream, TCTs process surface bound HK, liberating lysyl-BK (LBK), which then propagates inflammatory edema via signaling of endothelial G-protein-coupled bradykinin B2 receptors (BK2R). Dm28 TCTs take advantage of the transient availability of infection-promoting peptides (e.g., bradykinin and endothelins) in inflamed tissues to invade cardiovascular cells via interdependent signaling of BKRs and endothelin receptors (ETRs). Herein we present a space-filling model whereby ceramide-enriched endocytic vesicles generated by the sphingomyelinase pathway might incorporate BK2R and ETRs, which then trigger Ca2+-driven responses that optimize the housekeeping mechanism of plasma membrane repair from cell wounding. The hypothesis predicts that the NF-κB-inducible BKR (BK1R) may integrate the multimolecular signaling platforms forged by ceramide rafts, as the chronic myocarditis progresses. Exploited as gateways for parasite invasion, BK2R, BK1R, ETAR, ETBR, and other G protein-coupled receptor partners may enable persistent myocardial parasitism in the edematous tissues at

  18. Neuroprotective effects of N-acetylcysteine amide on experimental focal penetrating brain injury in rats.

    PubMed

    Günther, Mattias; Davidsson, Johan; Plantman, Stefan; Norgren, Svante; Mathiesen, Tiit; Risling, Mårten

    2015-09-01

    We examined the effects of N-acetylcysteine amide (NACA) in the secondary inflammatory response following a novel method of focal penetrating traumatic brain injury (TBI) in rats. N-acetylcysteine (NAC) has limited but well-documented neuroprotective effects after experimental central nervous system ischemia and TBI, but its bioavailability is very low. We tested NACA, a modified form of NAC with higher membrane and blood-brain barrier permeability. Focal penetrating TBI was produced in male Sprague-Dawley rats randomly selected for NACA treatment (n=5) and no treatment (n=5). In addition, four animals were submitted to sham surgery. After 2 hours or 24 hours the brains were removed, fresh frozen, cut in 14 μm coronal sections and subjected to immunohistochemistry, immunofluorescence, Fluoro-Jade and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses. All treated animals were given 300 mg/kg NACA intraperitoneally (IP) 2 minutes post trauma. The 24 hour survival group was given an additional bolus of 300 mg/kg IP after 4 hours. NACA treatment decreased neuronal degeneration by Fluoro-Jade at 24 hours with a mean change of 35.0% (p<0.05) and decreased TUNEL staining indicative of apoptosis at 2 hours with a mean change of 38.7% (p<0.05). Manganese superoxide dismutase (MnSOD) increased in the NACA treatment group at 24 hours with a mean change of 35.9% (p<0.05). Levels of migrating macrophages and activated microglia (Ox-42/CD11b), nitric oxide-producing inflammatory enzyme iNOS, peroxynitrite marker 3-nitrotyrosine, NFκB translocated to the nuclei, cytochrome C and Bcl-2 were not affected. NACA treatment decreased neuronal degeneration and apoptosis and increased levels of antioxidative enzyme MnSOD. The antiapoptotic effect was likely regulated by pathways other than cytochrome C. Therefore, NACA prevents brain tissue damage after focal penetrating TBI, warranting further studies towards a clinical application.

  19. Cerebrospinal fluid enzymes in acute brain injury. 1. Dynamics of changes in CSF enzyme activity after acute experimental brain injury.

    PubMed Central

    Maas, A I

    1977-01-01

    Changes in CSF enzyme activity were studied after brain trauma for their prognostic value. Raised values of CPK and HBDH were demonstrated in the CSF of patients with severe brain injuries. Standardised cold lesions of the brain were induced in cats. The activities of the enzymes CPK, HBDH, LDH, GOT, GPT, and pseudocholinesterase were studied at half hour intervals in the cerebrospinal fluid and at hourly intervals in the serum. A statistically highly significant increase of all enzymes studied developed in the CSF. The greatest changes occurred within four hours of freezing. Large increases could occur in half an hour. Isoenzyme studies demonstrated that CPK and LDH were of cerebral origin. No consistently significant changes could be shown in the serum enzyme activity. It is concluded that after brain injuries, enzymes are released into the extracellular fluid of the brain and transported to the CSF. The limited value of a single enzyme estimation is emphasised. The results described seem to provide indirect evidence for transependymal flow of extracellular fluid in brain oedema. Images PMID:915509

  20. Overview of diabetic macular edema.

    PubMed

    Holekamp, Nancy M

    2016-07-01

    Diabetes mellitus (DM) is a rapidly growing epidemic in the United States, and it is expected to affect 592 million individuals within the next 20 years. Diabetic retinopathy (DR) and diabetic macular edema (DME) are the 2 most common ophthalmic complications of DM. DR is the leading cause of blindness among working-age adults around the world, and development of DR is tied to DM disease duration. With the only identifier of early markers of DR being a complete ophthalmic exam, early signs of the disease are asymptomatic. Yearly, or at least every other year, ophthalmic exams are recommended for all patients with DM; but often, individuals with DM have not undergone screening exams and do not have regular eye exams until vision loss has occurred. With spending estimates of $490 million to treat the vision complications of DM, it is clear that DR and DME impose a substantial burden for patients, caregivers, and healthcare systems.

  1. Macular edema: definition and basic concepts.

    PubMed

    Coscas, Gabriel; Cunha-Vaz, José; Soubrane, Gisèle

    2010-01-01

    Macular edema is the result of an accumulation of fluid in the retinal layers around the fovea. It contributes to vision loss by altering the functional cell relationship in the retina and promoting an inflammatory reparative response. Macular edema may be intracellular or extracellular. Intracellular accumulation of fluid, also called cytotoxic edema, is an alteration of the cellular ionic distribution. Extracellular accumulation of fluid, which is more frequent and clinically more relevant, is directly associated with an alteration of the blood-retinal barrier (BRB). The following parameters are relevant for clinical evaluation of macular edema: extent of the macular edema (i.e., the area that shows increased retinal thickness); distribution of the edema in the macular area (i.e., focal versus diffuse macular edema); central foveal involvement (central area 500 microm); fluorescein leakage (evidence of alteration of the BRB or 'open barrier') and intraretinal cysts; signs of ischemia (broken perifoveolar capillary arcade and/or areas of capillary closure); presence or absence of vitreous traction; increase in retinal thickness and cysts in the retina (inner or outer), and chronicity of the edema (i.e., time elapsed since initial diagnosis and response to therapy). It is essential to establish associations and correlations of all the different images obtained, regardless of whether the same or different modalities are used.

  2. Conservative management of acute scrotal edema.

    PubMed

    Benjamin, Karen D

    2014-01-01

    Scrotal edema is a prevalent issue. It is difficult to treat and has a myriad of causes. Historical treatments for scrotal edema have lacked efficacy. If treated before fibrosis occurs, surgery can be avoided. A method for conservative management is outlined.

  3. Functional Magnetic Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals Brain Cortex Remodeling

    PubMed Central

    Tambalo, Stefano; Peruzzotti-Jametti, Luca; Rigolio, Roberta; Fiorini, Silvia; Bontempi, Pietro; Mallucci, Giulia; Balzarotti, Beatrice; Marmiroli, Paola; Sbarbati, Andrea; Cavaletti, Guido

    2015-01-01

    Cortical reorganization occurring in multiple sclerosis (MS) patients is thought to play a key role in limiting the effect of structural tissue damage. Conversely, its exhaustion may contribute to the irreversible disability that accumulates with disease progression. Several aspects of MS-related cortical reorganization, including the overall functional effect and likely modulation by therapies, still remain to be elucidated. The aim of this work was to assess the extent of functional cortical reorganization and its brain structural/pathological correlates in Dark Agouti rats with experimental autoimmune encephalomyelitis (EAE), a widely accepted preclinical model of chronic MS. Morphological and functional MRI (fMRI) were performed before disease induction and during the relapsing and chronic phases of EAE. During somatosensory stimulation of the right forepaw, fMRI demonstrated that cortical reorganization occurs in both relapsing and chronic phases of EAE with increased activated volume and decreased laterality index versus baseline values. Voxel-based morphometry demonstrated gray matter (GM) atrophy in the cerebral cortex, and both GM and white matter atrophy were assessed by ex vivo pathology of the sensorimotor cortex and corpus callosum. Neuroinflammation persisted in the relapsing and chronic phases, with dendritic spine density in the layer IV sensory neurons inversely correlating with the number of cluster of differentiation 45-positive inflammatory lesions. Our work provides an innovative experimental platform that may be pivotal for the comprehension of key mechanisms responsible for the accumulation of irreversible brain damage and for the development of innovative therapies to reduce disability in EAE/MS. SIGNIFICANCE STATEMENT Since the early 2000s, functional MRI (fMRI) has demonstrated profound modifications in the recruitment of cortical areas during motor, cognitive, and sensory tasks in multiple sclerosis (MS) patients. Experimental autoimmune

  4. Aqueous Date Fruit Efficiency as Preventing Traumatic Brain Deterioration and Improving Pathological Parameters after Traumatic Brain Injury in Male Rats

    PubMed Central

    Badeli, Hamze; Shahrokhi, Nader; KhoshNazar, Mahdieosadat; Asadi-Shekaari, Majid; Shabani, Mohammad; Eftekhar Vaghefi, Hassan; Khaksari, Mohammad; Basiri, Mohsen

    2016-01-01

    Objective Following traumatic brain injury, disruption of blood-brain-barrier and consequent brain edema are critical events which might lead to increasing intracranial pressure (ICP), and nerve damage. The current study assessed the effects of aqueous date fruit extract (ADFE) on the aforementioned parameters. Materials and Methods In this experimental study, diffused traumatic brain injury (TBI) was generated in adult male rats using Marmarou’s method. Experimental groups include two pre-treatment (oral ADFE, 4 and 8 mL/kg for 14 days), vehicle (distilled water, for 14 days) and sham groups. Brain edema and neuronal injury were measured 72 hours after TBI. Veterinary coma scale (VCS) and ICP were determined at -1, 4, 24, 48 and 72 hours after TBI. Differences among multiple groups were assessed using ANOVA. Turkey’s test was employed for the ANOVA post-hoc analysis. The criterion of statistical significance was sign at P<0.05. Results Brain water content in ADFE-treated groups was decreased in comparison with the TBI+vehicle group. VCS at 24, 48 and 72 hours after TBI showed a significant increase in ADFE groups in comparison with the TBI+vehicle group. ICP at 24, 48 and 72 hours after TBI, was decreased in ADFE groups, compared to the TBI+vehicle. Brain edema, ICP and neuronal injury were also decreased in ADFE group, but VCS was increased following on TBI. Conclusion ADFE pre-treatment demonstrated an efficient method for preventing traumatic brain deterioration and improving pathological parameters after TBI. PMID:27602324

  5. Matrix Metalloproteinase Inhibition Lowers Mortality and Brain Injury in Experimental Pneumococcal Meningitis

    PubMed Central

    Liechti, Fabian D.; Grandgirard, Denis; Leppert, David

    2014-01-01

    Pneumococcal meningitis (PM) results in high mortality rates and long-lasting neurological deficits. Hippocampal apoptosis and cortical necrosis are histopathological correlates of neurofunctional sequelae in rodent models and are frequently observed in autopsy studies of patients who die of PM. In experimental PM, inhibition of matrix metalloproteinases (MMPs) and/or tumor necrosis factor (TNF)-converting enzyme (TACE) has been shown to reduce brain injury and the associated impairment of neurocognitive function. However, none of the compounds evaluated in these studies entered clinical development. Here, we evaluated two second-generation MMP and TACE inhibitors with higher selectivity and improved oral availability. Ro 32-3555 (Trocade, cipemastat) preferentially inhibits collagenases (MMP-1, -8, and -13) and gelatinase B (MMP-9), while Ro 32-7315 is an efficient inhibitor of TACE. PM was induced in infant rats by the intracisternal injection of live Streptococcus pneumoniae. Ro 32-3555 and Ro 32-7315 were injected intraperitoneally, starting at 3 h postinfection. Antibiotic (ceftriaxone) therapy was initiated at 18 h postinfection, and clinical parameters (weight, clinical score, mortality rate) were recorded. Myeloperoxidase activities, concentrations of cytokines and chemokines, concentrations of MMP-2 and MMP-9, and collagen concentrations were measured in the cerebrospinal fluid. Animals were sacrificed at 42 h postinfection, and their brains were assessed by histomorphometry for hippocampal apoptosis and cortical necrosis. Both compounds, while exhibiting disparate MMP and TACE inhibitory profiles, decreased hippocampal apoptosis and cortical injury. Ro 32-3555 reduced mortality rates and cerebrospinal fluid TNF, interleukin-1β (IL-1β) and collagen levels, while Ro 32-7315 reduced weight loss and cerebrospinal fluid TNF and IL-6 levels. PMID:24491581

  6. Comparison of I-123 IMP uptake and NMR spectroscopy in the brain following experimental carotid occlusion

    SciTech Connect

    Holman, B.L.; Jolesz, F.; Polak, J.F.; Kronauge, J.; Adams, D.F.

    1984-01-01

    Both I-123 IMP scintigraphy and NMR have been suggested as sensitive detectors of changes shortly after acute cerebral infarction. The authors compared the uptake of N-isopropul I-123 p-iodoamphetamine (IMP) and NMR spectroscopy of the brain after internal carotid artery ligation. Thirteen gerbils were lightly anesthetized with ether. After neck dissection, an internal carotid artery was occluded. After 2.8 hours, 100 ..mu..Ci I-123 IMP was injected intravenously into the 13 experimental animals plus 3 controls. Seven gerbils remained asymptomatic while 6 developed hemiparesis. At 3 hours after ligation, the animals were killed. The brains were bisected and T/sub 1/ and T/sub 2/ relaxation times were determined for the right and left hemispheres by NMR spectroscopy immediately after dissection. I-123 IMP uptake was then determined in the samples. Interhemispheric differences in uptake for I-123 IMP uptake was 2.2% +- 0.5% in the control, 33.5% +- 9.6% in the asymptomatic and 54.6% +- 9.7% in the symptomatic animals. Significant differences were seen with I-123 IMP in 6/7 asymptomatic and 6/6 symptomatic animals. Significant differences in T/sub 1/ and T/sub 2/ were seen in 2/7 of the asymptomatic and 5/6 of the symptomatic animals. The authors conclude that I-123 is more sensitive than T/sub 1/ or T/sub 2/ for the detection of cerebral perfusion abnormalities while T/sub 1/ and T/sub 2/ more accurately separate symptomatic from asymptomatic animals.

  7. The long-term microvascular and behavioral consequences of experimental traumatic brain injury after hypothermic intervention.

    PubMed

    Wei, Enoch P; Hamm, Robert J; Baranova, Anna I; Povlishock, John T

    2009-04-01

    Traumatic brain injury (TBI) has been demonstrated to induce cerebral vascular dysfunction that is reflected in altered responses to various vasodilators. While previous reports have focused primarily on the short-term vascular alterations, few have examined these vascular changes for more than 7 days, or have attempted to correlate these alterations with any persisting behavioral changes or potential therapeutic modulation. Accordingly, we evaluated the long-term microvascular and behavioral consequences of experimental TBI and their therapeutic modulation via hypothermia. In this study, one group was injured with no treatment, another group was injured and 1 h later was treated with 120 min of hypothermia followed by slow rewarming, and a third group was non-injured. Animals equipped with cranial windows for visualization of the pial microvasculature were challenged with various vasodilators, including acetylcholine, hypercapnia, adenosine, pinacidil, and sodium nitroprusside, at either 1 or 3 weeks post-TBI. In addition, all animals were tested for vestibulomotor tasks at 1 week post-TBI, and animals surviving for 3 weeks post-TBI were tested in a Morris water maze (MWM). The results of this investigation demonstrated that TBI resulted in long-term vascular dysfunction in terms of altered vascular reactivity to various vasodilators, which was significantly improved with the use of a delayed 120-min hypothermic treatment. In contrast, data from the MWM task indicated that injured animals revealed persistent deficits in the spatial memory test performance, with hypothermia exerting no protective effects. Collectively, these data illustrate that TBI can evoke long-standing brain vascular and spatial memory dysfunction that manifest different responses to hypothermic intervention. These findings further illustrate the complexity of TBI and highlight the fact that the chosen hypothermic intervention may not necessarily exert a global protective response.

  8. Relationship between plasma and brain tryptophan in pigs during experimental hepatic coma before and after hemodialysis with selective membranes.

    PubMed

    Delorme, M L; Denis, J; Nordlinger, B; Boschat, M; Opolon, P

    1981-03-01

    Experimental acute liver ischemia in pigs induces an increment in plasma free tryptophan with decreased total tryptophan. Brain tryptophan is elevated in all brain areas. A slight, but significant increase of brain serotonin is demonstrated in the striatum only, while 5-HIAA (5-hydroxyindoleacetic acid) is significantly lower in the hypothalamus. Other brain areas do not show significant changes in serotonin and 5-HIAA levels. Neither the high plasma free tryptophan levels, nor the decreased sum of neutral competitive amino acids are consistent with such an elevation of brain tryptophan. Hemodialysis was carried out with two different kinds of membranes: cuprophan (with an efficient removal of molecules up to molecular weight 1300) and AN 69 polyacrylonitrile (efficient removal up to 15,000). Ammonia and aminoacid clearance are similar for both membranes. After AN 69, plasmatic free tryptophan and brain tryptophan are lower than after liver devascularization, but still higher than normal. Serotonin significantly increases in the cortex, midbrain and hypothalamus without concomitant rise of 5-HIAA levels. After cuprophan hemodialysis, plasma total tryptophan is lower than in normal and even comatose animals, whereas free tryptophan is normal. Intracerebral tryptophan is similar to AN 69 dialysed animals, but in the hypothalamus it is similar to nondialysed animals. Brain serotonin levels are not modified. 5-HIAA decreases in the hypothalamus. This finding suggests that middle molecules (which are not cleared out with cuprophan hemodialysis) are involved in the intracerebral transfer of tryptophan and the metabolism of serotonin, mainly in the hypothalamus.

  9. P2X7 Receptor Suppression Preserves Blood-Brain Barrier through Inhibiting RhoA Activation after Experimental Intracerebral Hemorrhage in Rats.

    PubMed

    Zhao, Hengli; Zhang, Xuan; Dai, Zhiqiang; Feng, Yang; Li, Qiang; Zhang, John H; Liu, Xin; Chen, Yujie; Feng, Hua

    2016-03-16

    Blockading P2X7 receptor(P2X7R) provides neuroprotection toward various neurological disorders, including stroke, traumatic brain injury, and subarachnoid hemorrhage. However, whether and how P2X7 receptor suppression protects blood-brain barrier(BBB) after intracerebral hemorrhage(ICH) remains unexplored. In present study, intrastriatal autologous-blood injection was used to mimic ICH in rats. Selective P2X7R inhibitor A438079, P2X7R agonist BzATP, and P2X7R siRNA were administrated to evaluate the effects of P2X7R suppression. Selective RhoA inhibitor C3 transferase was administered to clarify the involvement of RhoA. Post-assessments, including neurological deficits, Fluoro-Jade C staining, brain edema, Evans blue extravasation and fluorescence, western blot, RhoA activity assay and immunohistochemistry were performed. Then the key results were verified in collagenase induced ICH model. We found that endogenous P2X7R increased at 3 hrs after ICH with peak at 24 hrs, then returned to normal at 72 hrs after ICH. Enhanced immunoreactivity was observed on the neurovascular structure around hematoma at 24 hrs after ICH, along with perivascular astrocytes and endothelial cells. Both A438079 and P2X7R siRNA alleviated neurological deficits, brain edema, and BBB disruption after ICH, in association with RhoA activation and down-regulated endothelial junction proteins. However, BzATP abolished those effects. In addition, C3 transferase reduced brain injury and increased endothelial junction proteins' expression after ICH. These data indicated P2X7R suppression could preserve BBB integrity after ICH through inhibiting RhoA activation.

  10. Biologic and plastic effects of experimental traumatic brain injury treatment paradigms and their relevance to clinical rehabilitation

    PubMed Central

    Garcia, Alexandra N.; Shah, Mansi A.; Dixon, C. Edward; Wagner, Amy K.; Kline, Anthony E.

    2011-01-01

    Neuroplastic changes, whether induced by traumatic brain injury (TBI) or therapeutic interventions, alter neurobehavioral outcome. Here we present several treatment strategies that have been evaluated using experimental TBI models and discuss potential mechanisms of action (i.e., plasticity) and how such changes affect function. PMID:21703575

  11. Isosmotic media prevent edema in amphibian larvae without cardiac function.

    PubMed

    Smith, S C

    2000-03-01

    The absence of cardiac and circulatory function causes severe edema in amphibian embryos. Analyzing the roles of embryonic and larval circulation in respiration may thus be confounded by the increased diffusion distance and decreased surface area/volume ratio caused by edema. Similarly, detailed morphological analyses of embryos/larvae with defective circulatory or renal function is difficult or impossible due to the gross morphological anomalies engendered by edematous swelling. To circumvent these problems, two media have been developed which are isosmotic with the plasma of a common experimental amphibian species (Ambystoma mexicanun). These media are remarkably effective in preventing fluid accumulation in embryos and larvae lacking heart function and, when used in slightly lower concentrations, cause no apparent harm to embryos and larvae with normal circulation for periods up to 3 weeks. These media should prove useful for a variety of studies on the developmental physiology of the circulatory system and possibly also when examining the development of renal function and ionoregulation.

  12. Unexpected Severe Cerebral Edema after Cranioplasty : Case Report and Literature Review

    PubMed Central

    Lee, Gwang Soo; Kim, Rasun; Cho, Sung Jin

    2015-01-01

    This report details a case of unexpected, severe post-operative cerebral edema following cranioplasty. We discuss the possible pathological mechanisms of this complication. A 50-year-old female was admitted to our department with sudden onset of stuporous consciousness. A brain computed tomography (CT) revealed a subarachnoid hemorrhage with intracranial hemorrhage and subdural hematoma. Emergency decompressive craniectomy and aneurysmal neck clipping were performed. Following recovery, the decision was made to proceed with an autologous cranioplasty. The cranioplasty procedure was free of complications. An epidural drain was placed and connected to a suction system during skin closure to avoid epidural blood accumulation. However, following the procedure, the patient had a seizure in the recovery room. An emergency brain CT scan revealed widespread cerebral edema, and the catheter drain was clamped. The increased intracranial pressure and cerebral edema were controlled with osmotic diuretics, corticosteroids, and antiepileptic drugs. The edema slowly subsided, but new low-density areas were noted in the brain on follow-up CT 1 week later. We speculated that placing the epidural drain on active suction may have caused an acute decrease in intracranial pressure and subsequent rapid expansion of the brain, which impaired autoregulation and led to reperfusion injury. PMID:26279818

  13. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema.

    PubMed

    Igarashi, Hironaka; Huber, Vincent J; Tsujita, Mika; Nakada, Tsutomu

    2011-02-01

    We investigated the in vivo effects of a novel aquaporin 4 (AQP4) inhibitor 2-(nicotinamide)-1,3,4-thiadiazole, TGN-020, in a mouse model of focal cerebral ischemia using 7.0-T magnetic resonance imaging (MRI). Pretreatment with TGN-020 significantly reduced brain edema associated with brain ischemia, as reflected by percentage of brain swelling volume (%BSV), 12.1 ± 6.3% in the treated group, compared to (20.8 ± 5.9%) in the control group (p < 0.05), and in the size of cortical infarction as reflected by the percentage of hemispheric lesion volume (%HLV), 20.0 ± 7.6% in the treated group, compared to 30.0 ± 9.1% in the control group (p < 0.05). The study indicated the potential pharmacological use of AQP4 inhibition in reducing brain edema associated with focal ischemia.

  14. Experimental studies with selected light sources for NIRS of brain tissue: quantifying tissue chromophore concentration

    NASA Astrophysics Data System (ADS)

    Myllylä, Teemu; Korhonen, Vesa; Kiviniemi, Vesa; Tuchin, Valery

    2015-03-01

    Near-infrared spectroscopy (NIRS) based techniques are utilised in quantifying changes of chromophore concentrations in tissue. Particularly, non-invasive in vivo measurements of tissue oxygenation in the cerebral cortex are of interest. The measurement method is based on illuminating tissue and measuring the back-scattered light at wavelengths of interest. Tissue illumination can be realised using different techniques and various light sources. Commonly, lasers and laser diodes (LD) are utilised, but also high-power light emitting diodes (HPLED) are becoming more common. At the moment, a wide range of available narrow-band light sources exists, covering basically the entire spectrum of interest in brain tissue NIRS measurements. In this paper, in the centre of our interest are LDs and HPLEDs, because of their affordability, efficiency in terms of radiant flux versus size and easiness to adopt in in vivo medical applications. We compare characteristics of LDs and HPLEDs at specific wavelengths and their suitability for in vivo quantifying of different tissue chromophore concentration, particularly in cerebral blood flow (CBF). A special focus is on shape and width of the wavelength bands of interest, generated by the LDs and HPLEDs. Moreover, we experimentally study such effects as, spectroscopy cross talk, separability and signal-to-noise ratio (SNR) when quantifying tissue chromophore concentration. Chromophores of our interest are cytochrome, haemoglobin and water. Various LDs and HPLEDs, producing narrow-band wavelengths in the range from 500 nm to 1000 nm are tested.

  15. THE PERIVASCULAR POOL OF AQUAPORIN-4 MEDIATES THE EFFECT OF OSMOTHERAPY IN POST-ISCHEMIC CEREBRAL EDEMA

    PubMed Central

    Zeynalov, Emil; Chen, Chih-Hung; Froehner, Stanley C.; Adams, Marvin E.; Ottersen, Ole Petter; Amiry-Moghaddam, Mahmood; Bhardwaj, Anish

    2009-01-01

    Objective Osmotherapy with hypertonic saline (HS) ameliorates cerebral edema associated with experimental ischemic stroke. We tested the hypothesis that HS exerts its anti-edema effect by promoting an efflux of water from brain via the perivascular aquaporin-4 (AQP4) pool. We utilized mice with targeted disruption of the gene encoding α-syntrophin (α-Syn−/−) that lack the perivascular AQP4 pool but retain the endothelial pool of this protein. Design Prospective laboratory animal study. Setting Research laboratory in a university teaching hospital. Measurements and Main Results Halothane-anesthetized adult male wildtype (WT) C57B/6 and α-Syn−/− mice were subjected to 90 min of transient middle cerebral artery occlusion (MCAO) and treated with either a continuous intravenous infusion of 0.9% saline (NS) or 3% HS (1.5 mL/Kg/hr) for 48 hr. In the first series of experiments (n = 59), brain water content analyzed by wet-to-dry ratios in the ischemic hemisphere of WT mice was attenuated after HS (79.9 ± 0.5%mean ± SEM) but not after NS (82.3 ± 1.0%) treatment. In contrast in α-Syn−/− mice, HS had no effect on the postischemic edema (HS: 80.3 ± 0.7% NS: 80.3 ± 0.4%). In the second series of experiments (n = 31), treatment with HS attenuated post-ischemic BBB disruption at 48 hr in WT mice but not in α-Syn−/− mice; α-Syn deletion alone had no effect on BBB integrity. In the third series of experiments (n=34), α-Syn−/− mice treated with either HS or NS had smaller infarct volume as compared with their WT counterparts. Conclusions These data demonstrate that: 1) osmotherapy with HS exerts anti-edema effects via the perivascular pool of AQP4 2) HS attenuates BBB disruption depending on the presence of perivascular AQP4, and 3) deletion of the perivascular pool of AQP4 alleviates tissue damage following stroke, in mice subjected to osmotherapy as well as in non-treated mice. PMID:18679106

  16. Effect of amantadine sulphate on intracerebral hemorrhage-induced brain injury in rats.

    PubMed

    Titova, E; Ostrowski, R P; Zhang, J H; Tang, J

    2008-01-01

    Recent studies have shown that amantadine, an uncompetitive N-methyl-d-aspartate receptor antagonist and dopamine agonist, is effective for the treatment of various cerebral disorders and causes relatively mild side effects. In this study, we investigated whether administration of amantadine will provide a neuroprotective effect in the intracerebral hemorrhage (ICH) rat model. A total of 15 male Sprague Dawley rats (300-380 g) were divided into sham, ICH-untreated, and ICH-treated with amantadine sulphate groups. ICH was induced by collagenase injection. Total dose 6 mg/kg of amantadine sulphate was divided into 3 injections and administered intraperitoneally at 1, 8, and 16 h after ICH. Brain injury was evaluated by investigating neurological function and brain edema at 24 h after ICH. Our data demonstrates that ICH caused significant neurological deficit associated with marked brain edema. Amantadine did not reduce brain injury after ICH; neurological function and brain edema in the treated group were not different from those of the untreated group. We conclude that amantadine sulphate does not offer neuroprotection in acute stage of experimental ICH-induced brain injury.

  17. Fisetin alleviates early brain injury following experimental subarachnoid hemorrhage in rats possibly by suppressing TLR 4/NF-κB signaling pathway.

    PubMed

    Zhou, Chen-hui; Wang, Chun-xi; Xie, Guang-bin; Wu, Ling-yun; Wei, Yong-xiang; Wang, Qiang; Zhang, Hua-sheng; Hang, Chun-hua; Zhou, Meng-liang; Shi, Ji-xin

    2015-12-10

    Early brain injury (EBI) determines the unfavorable outcomes after subarachnoid hemorrhage (SAH). Fisetin, a natural flavonoid, has anti-inflammatory and neuroprotection properties in several brain injury models, but the role of fisetin on EBI following SAH remains unknown. Our study aimed to explore the effects of fisetin on EBI after SAH in rats. Adult male Sprague-Dawley rats were randomly divided into the sham and SAH groups, fisetin (25mg/kg or 50mg/kg) or equal volume of vehicle was given at 30min after SAH. Neurological scores and brain edema were assayed. The protein expression of toll-like receptor 4 (TLR 4), p65, ZO-1 and bcl-2 was examined by Western blot. TLR 4 and p65 were also assessed by immunohistochemistry (IHC). Enzyme-linked immunosorbent assay (ELISA) was performed to detect the production of pro-inflammatory cytokines. Terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL) was perform to assess neural cell apoptosis. High-dose (50mg/kg) fisetin significantly improved neurological function and reduced brain edema at both 24h and 72h after SAH. Remarkable reductions of TLR 4 expression and nuclear factor κB (NF-κB) translocation to nucleus were detected after fisetin treatment. In addition, fisetin significantly reduced the productions of pro-inflammatory cytokines, decreased neural cell apoptosis and increased the protein expression of ZO-1 and bcl-2. Our data provides the evidence for the first time that fisetin plays a protective role in EBI following SAH possibly by suppressing TLR 4/NF-κB mediated inflammatory pathway.

  18. Serum cleaved Tau protein and neurobehavioral battery of tests as markers of brain injury in experimental bacterial meningitis.

    PubMed

    Irazuzta, J E; de Courten-Myers, G; Zemlan, F P; Bekkedal, M Y; Rossi, J

    2001-09-14

    Brain injury due to bacterial meningitis affects multiple areas of the brain with a heterogeneous distribution generating a challenge to assess severity. Tau proteins are microtubular binding proteins localized in the axonal compartment of neurons. Brain injury releases cleaved Tau proteins (C-tau) into the extracellular space where they are transported to the cerebral spinal fluid. We hypothesized that C-tau crosses the blood-brain barrier during inflammation and that it can be detected in serum. The correlation between serum C-tau levels and the extent of the meningitic insult was examined. Furthermore, we studied whether the use of a subset of neurobehavioral tasks can assess the extent of brain injury after meningitis. The tests were chosen primarily for their ability to detect deficits in the acoustic system, low brain, reflexive responding, as well as for impaired motor coordination and the higher brain functions of learning and memory. A rat model of group B streptococcal meningitis with variable severity was utilized. At five days after bacterial inoculation followed by antibiotic therapy neurobehavioral tests were performed and serum C-tau and histologic samples of the brain were obtained. Our study shows that during meningitis C-tau appears in serum and reflects the extent of neurologic damage. Neurobehavioral performance was altered after bacterial meningitis and could be correlated with histologic and biochemical markers of neurologic sequelae. We conclude that serum C-tau and a composite of neurobehavioral tests could become useful markers for assessing the severity of neurological damage in experimental bacterial meningitis.

  19. Effects of Internet use on the adolescent brain: despite popular claims, experimental evidence remains scarce.

    PubMed

    Mills, Kathryn L

    2014-08-01

    Twenty-five years have passed since the invention of the World Wide Web changed society by allowing unfettered access to the Internet. How this technological revolution has affected brain development continues to be an open question. There is particular concern about how Internet use is affecting the brains of adolescents. This Forum article discusses the possible effects of the Internet, as well as the behaviors and capabilities associated with its use, on the adolescent brain.

  20. [Lipid peroxidation processes and activity of brain succinate dehydrogenase in experimental craniocerebral trauma].

    PubMed

    Demchuk, M L; Medvedev, A E; Promyslov, M Sh; Gorkin, V Z

    1993-01-01

    A statistically significant decrease in the activity of succinate dehydrogenase (SDH) was found in the rabbit brain after craniocerebral injury. The decrease in the activity of brain SDH was not shown to result from "competitive inhibition" by malonate accumulated after activation of lipid peroxidation. The activity of brain SDH was normalized by directed modification of the function of the central nervous system via administration of phenamine (amphetamine) into the injured animals.

  1. Edema - Multiple Languages: MedlinePlus

    MedlinePlus

    ... gov/languages/edema.html Other topics A-Z A B C D E F G H I J K L M N O P Q R S T U V W XYZ List of All Topics All Edema - Multiple Languages To use the sharing features on this page, please enable JavaScript. French (français) Russian (Русский) Somali (af Soomaali) Spanish (español) ...

  2. The Brain Proteome of the Ubiquitin Ligase Peli1 Knock-Out Mouse during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Lereim, Ragnhild Reehorst; Oveland, Eystein; Xiao, Yichuan; Torkildsen, Øivind; Wergeland, Stig; Myhr, Kjell-Morten; Sun, Shao-Cong; Berven, Frode S

    2016-01-01

    The ubiquitin ligase Peli1 has previously been suggested as a potential treatment target in multiple sclerosis. In the multiple sclerosis disease model, experimental autoimmune encephalomyelitis, Peli1 knock-out led to less activated microglia and less inflammation in the central nervous system. Despite being important in microglia, Peli1 expression has also been detected in glial and neuronal cells. In the present study the overall brain proteomes of Peli1 knock-out mice and wild-type mice were compared prior to experimental autoimmune encephalomyelitis induction, at onset of the disease and at disease peak. Brain samples from the frontal hemisphere, peripheral from the extensive inflammatory foci, were analyzed using TMT-labeling of sample pools, and the discovered proteins were verified in individual mice using label-free proteomics. The greatest proteomic differences between Peli1 knock-out and wild-type mice were observed at the disease peak. In Peli1 knock-out a higher degree of antigen presentation, increased activity of adaptive and innate immune cells and alterations to proteins involved in iron metabolism were observed during experimental autoimmune encephalomyelitis. These results unravel global effects to the brain proteome when abrogating Peli1 expression, underlining the importance of Peli1 as a regulator of the immune response also peripheral to inflammatory foci during experimental autoimmune encephalomyelitis. The proteomics data is available in PRIDE with accession PXD003710. PMID:27746629

  3. Neovascularization and tumor growth in the rabbit brain. A model for experimental studies of angiogenesis and the blood-brain barrier.

    PubMed Central

    Zagzag, D.; Brem, S.; Robert, F.

    1988-01-01

    A model for the study of tumor angiogenesis within the rabbit brain is presented. Implantation of the VX2 carcinoma provides a reproducible tumor accompanied by angiogenesis. The authors report the sequential growth, histology, tumor neovascularization, and vascular permeability of this tumor following its intracerebral implantation. Tumor angiogenesis correlates with the rapid and logarithmic intracerebral tumor growth. The proliferation of blood vessels in the tumor and the organization of tumor cells around tumor vessels are described. Breakdown of the blood-brain barrier (detected by Evans blue leakage) starts in the early stages of tumor development and becomes prominent as the tumor vasculature and size increase. This model is useful for experimental studies of angiogenesis. Images Figure 2 Figure 3 Figure 6 Figure 4 Figure 5 Figure 7 Figure 8 Figure 10 Figure 12 Figure 13 Figure 15 PMID:2451889

  4. [Hyponatremic encephalopathy with non-cardiogenic pulmonary edema. Development following marathon run].

    PubMed

    Wellershoff, G

    2013-04-01

    This article presents the case of a 52-year-old woman who developed exercise-associated hyponatremia (EAH) complicated by non-cardiogenic pulmonary edema after a marathon run. The condition of EAH is a potentially life-threatening complication of endurance exercise. The main cause seems to be inadequate intake of free water during or following exercise with enduring antidiuresis due to nonosmotic stimulation of ADH secretion. Known risk factors are female gender, slow running pace and lack of weight loss. Emergency therapy is fluid restriction and bolus infusion of 3% NaCl solution to rapidly reduce brain edema.

  5. Brain methanethiol and ammonia concentrations in experimental hepatic coma and coma induced by injections of various combinations of these substances.

    PubMed

    Zieve, L; Doizaki, W M; Lyftogt, C

    1984-11-01

    In normal rats in a coma induced by NH+4 alone or by methanethiol alone, the brain and blood levels of ammonia or methanethiol are much higher than those observed in rats in experimental hepatic coma. When various smaller dosage combinations of NH+4, methanethiol, and octanoic acid were injected simultaneously, coma occurred at lower brain and blood concentrations of ammonia and methanethiol. Brain ammonia and methanethiol concentrations in normal rats receiving 0.75 mmol NH+4 plus 0.15 mmol octanoic acid plus 18 mumol methanethiol were comparable with those observed in 24 rats in hepatic coma after fulminant hepatic failure caused by acute massive ischemic liver necrosis. The normal rats became comatose. In these rats and in the rats in hepatic coma, the ammonia level in the brain was increased threefold and the methanethiol level in the brain was increased fivefold. Because these levels of ammonia and methanethiol were sufficient to induce coma in normal rats, they should also have been sufficient to induce coma in rats with damaged livers. Therefore, the accumulation of ammonia and methanethiol in the central nervous system after the acute massive ischemic necrosis may have been sufficient to account for the coma that ensued, without the involvement of other factors.

  6. TiO2-Nanowired Delivery of Mesenchymal Stem Cells Thwarts Diabetes- Induced Exacerbation of Brain Pathology in Heat Stroke: An Experimental Study in the Rat Using Morphological and Biochemical Approaches.

    PubMed

    Sharma, Hari S; Feng, Lianyuan; Lafuente, José V; Muresanu, Dafin F; Tian, Zhenrong R; Patnaik, Ranjana; Sharma, Aruna

    2015-01-01

    We have shown previously that heat stroke produced by whole body hyperthermia (WBH) for 4 h at 38°C in diabetic rats exacerbates blood-brain barrier breakdown, brain edema formation and neuronal cell injury as compared to healthy animals after identical heat exposure. In this combination of diabetes and WBH, normal therapeutic measures do not induce sufficient neuroprotection. Thus, we investigated whether nanowired mesenchymal cells (MSCs) when delivered systemically may have better therapeutic effects on brain damage in diabetic rats after WBH. Diabetes induced by streptozotocin administration (75 mg/kg, i.p, daily for 3 days) in rats resulted in clinical symptoms of the disease within 4 to 6 weeks (blood glucose level 20 to 30 mmoles/l as compared to saline control groups (4 to 6 mmoles/l). When subjected to WBH, these diabetic rats showed a 4-to 6-fold exacerbation of blood-brain barrier breakdown to Evans blue and radioiodine, along with brain edema formation and neuronal cell injury. Intravenous administration of rat MSCs (1x10(6)) to diabetic rats one week before WBH slightly reduced brain pathology, whereas TiO2 nanowired MSCs administered in an identical manner resulted in almost complete neuroprotection. On the other hand, MSCs alone significantly reduced brain pathology in saline-treated rats after WBH. These observations indicate that nanowired delivery of stem cells has superior therapeutic potential in heat stroke with diabetes, pointing to novel clinical perspectives in the future.

  7. Spatiotemporal correlation of optical coherence tomography in-vivo images of rabbit airway for the diagnosis of edema

    NASA Astrophysics Data System (ADS)

    Kang, DongYel; Wang, Alex; Volgger, Veronika; Chen, Zhongping; Wong, Brian J. F.

    2015-07-01

    Detection of an early stage of subglottic edema is vital for airway management and prevention of stenosis, a life-threatening condition in critically ill neonates. As an observer for the task of diagnosing edema in vivo, we investigated spatiotemporal correlation (STC) of full-range optical coherence tomography (OCT) images acquired in the rabbit airway with experimentally simulated edema. Operating the STC observer on OCT images generates STC coefficients as test statistics for the statistical decision task. Resulting from this, the receiver operating characteristic (ROC) curves for the diagnosis of airway edema with full-range OCT in-vivo images were extracted and areas under ROC curves were calculated. These statistically quantified results demonstrated the potential clinical feasibility of the STC method as a means to identify early airway edema.

  8. A New Method of Selective, Rapid Cooling of the Brain: An Experimental Study

    SciTech Connect

    Allers, Mats; Boris-Moeller, Fredrik; Lunderquist, Anders; Wieloch, Tadeusz

    2006-04-15

    Purpose. To determine whether retrograde perfusion of cooled blood into one internal jugular vein (IJV) in the pig can selectively reduce the brain temperature without affecting the core body temperature (CBT). Methods. In 7 domestic pigs, the left IJV was catheterized on one side and a catheter placed with the tip immediately below the rete mirabile. Thermistors were placed in both brain hemispheres and the brain temperature continuously registered. Thermistors placed in the rectum registered the CBT. From a catheter in the right femoral vein blood was aspirated with the aid of a roller pump, passed through a cooling device, and infused into the catheter in the left IJV at an initial rate of 200 ml/min. Results. Immediately after the start of the infusion of cooled blood (13.8 deg. C) into the IJV, the right brain temperature started to drop from its initial 37.9 deg. C and reached 32 deg. C within 5 min. By increasing the temperature of the perfusate a further drop in the brain temperature was avoided and the brain temperature could be kept around 32 deg. C during the experiment. In 4 of the animals a heating blanket was sufficient to compensate for the slight drop in CBT during the cooling period. Conclusions. We conclude that brain temperature can be reduced in the pig by retrograde perfusion of the internal jugular vein with cooled blood and that the core body temperature can be maintained with the aid of a heating blanket.

  9. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury.

    PubMed

    De Blasio, Daiana; Fumagalli, Stefano; Longhi, Luca; Orsini, Franca; Palmioli, Alessandro; Stravalaci, Matteo; Vegliante, Gloria; Zanier, Elisa R; Bernardi, Anna; Gobbi, Marco; De Simoni, Maria-Grazia

    2017-03-01

    Mannose-binding lectin is present in the contusion area of traumatic brain-injured patients and in that of traumatic brain-injured mice, where mannose-binding lectin-C exceeds mannose-binding lectin-A. The reduced susceptibility to traumatic brain injury of mannose-binding lectin double knock-out mice (mannose-binding lectin(-/-)) when compared to wild type mice suggests that mannose-binding lectin may be a therapeutic target following traumatic brain injury. Here, we evaluated the effects of a multivalent glycomimetic mannose-binding lectin ligand, Polyman9, following traumatic brain injury in mice. In vitro surface plasmon resonance assay indicated that Polyman9 dose-dependently inhibits the binding to immobilized mannose residues of plasma mannose-binding lectin-C selectively over that of mannose-binding lectin-A. Male C57Bl/6 mice underwent sham/controlled cortical impact traumatic brain injury and intravenous treatment with Polyman9/saline. Ex-vivo surface plasmon resonance studies confirmed that Polyman9 effectively reduces the binding of plasma mannose-binding lectin-C to immobilized mannose residues. In vivo studies up to four weeks post injury, showed that Polyman9 induces significant improvement in sensorimotor deficits (by neuroscore and beam walk), promotes neurogenesis (73% increase in doublecortin immunoreactivity), and astrogliosis (28% increase in glial fibrillary acid protein). Polyman9 administration in brain-injured mannose-binding lectin(-/-) mice had no effect on post-traumatic brain-injured functional deficits, suggestive of the specificity of its neuroprotective effects. The neurobehavioral efficacy of Polyman9 implicates mannose-binding lectin-C as a novel therapeutic target for traumatic brain injury.

  10. Cerebral edema in children with diabetic ketoacidosis: vasogenic rather than cellular?

    PubMed

    Tasker, Robert C; Acerini, Carlo L

    2014-06-01

    Cerebral edema (CE) is accumulation of water in the intracellular or extracellular spaces of the brain. Vasogenic edema occurs when there is breakdown of the tight endothelial junctions of the blood-brain barrier (BBB), leading to extravasation of intravascular protein and fluid into the interstitial space of the brain. In cellular edema the BBB remains intact and there is swelling of astrocytes with corresponding reduction in extracellular space. In this review we bring together clinical evidence from neuropathology and cerebral magnetic resonance (MR) studies in pediatric patients presenting in diabetic ketoacidosis (DKA), and use applied physiology to understand whether CE complicating DKA is vasogenic, rather than cellular in origin. Because the first-line of defense against CE is the interface between the intravascular compartment and the extracellular space in the brain much of the focus in this review is the BBB. The principal pathologic finding in fatal cases is perivascular with BBB disruption and albumin extravasation, suggesting increased vascular permeability. DKA induces an inflammatory response and the mechanism of BBB transcellular permeability may be an immunologic cascade that disrupts tight junctions. The principal MR finding in subclinical cases of CE is vasogenic rather than cellular edema. We propose that the following physiology be considered when treating cases: bolus dose of intravenous mannitol may result in fall in serum sodium concentration, and therefore clinical worsening. Failure to respond to mannitol should prompt the use of 3% hypertonic saline (HS). Bolus dose of intravenous 3% HS is expected to effect vasogenic edema provided that the reflection coefficient is close to 1. Failure to respond to 3% HS should prompt the use of mannitol.

  11. Mdivi-1 Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats, Possibly via Inhibition of Drp1-Activated Mitochondrial Fission and Oxidative Stress.

    PubMed

    Wu, Pei; Li, Yuchen; Zhu, Shiyi; Wang, Chunlei; Dai, Jiaxing; Zhang, Guang; Zheng, Bingjie; Xu, Shancai; Wang, Ligang; Zhang, Tongyu; Zhou, PeiQuan; Zhang, John H; Shi, Huaizhang

    2017-02-16

    Mdivi-1 is a selective inhibitor of mitochondrial fission protein, Drp1, and can penetrate the blood-brain barrier. Previous studies have shown that Mdivi-1 improves neurological outcomes after ischemia, seizures and trauma but it remains unclear whether Mdivi-1 can attenuate early brain injury after subarachnoid hemorrhage (SAH). We thus investigated the therapeutic effect of Mdivi-1 on early brain injury following SAH. Rats were randomly divided into four groups: sham; SAH; SAH + vehicle; and SAH + Mdivi-1. The SAH model was induced by standard intravascular perforation and all of the rats were subsequently sacrificed 24 h after SAH. Mdivi-1 (1.2 mg/kg) was administered to rats 30 min after SAH. We found that Mdivi-1 markedly improved neurologic deficits, alleviated brain edema and BBB permeability, and attenuated apoptotic cell death. Mdivi-1 also significantly reduced the expression of cleaved caspase-3, Drp1 and p-Drp1((Ser616)), attenuated the release of Cytochrome C from mitochondria, inhibited excessive mitochondrial fission, and restored the ultra-structure of mitochondria. Furthermore, Mdivi-1 reduced levels of MDA, 3-NT, and 8-OHdG, and improved SOD activity. Taken together, our data suggest that Mdivi-1 exerts neuroprotective effects against cell death induced by SAH and the underlying mechanism may be inhibition of Drp1-activated mitochondrial fission and oxidative stress.

  12. Experimental study on the toxicity of povidone-iodine solution in brain tissues of rabbits

    PubMed Central

    Li, Shu-Hua; Wang, Yu; Gao, Hai-Bin; Zhao, Kun; Hou, Yu-Chen; Sun, Wei

    2015-01-01

    Objective: To determine whether Povidone-iodine was toxic to brain tissues by rinsing the cerebral cortex of New Zealand rabbits with Povidone-iodine Solution of different concentrations. Methods: 12 New Zealand rabbits were randomly divided into 4 groups (Group A, B, C and D, 3 rabbits each group). In each group, the left cerebral cortex of rabbits was rinsed with physiological saline after the craniotomy; in Group A and B, the right cerebral cortex of rabbits was also locally rinsed with Povidone-iodine Solution (0.01%), in Group C and D, the right cerebral cortex of rabbits was also locally rinsed with Povidone-iodine Solution (0.05%). In Group A and C, the rabbits were sacrificed at D3 after the operation, and the brain was taken out; and in Group B and D, the rabbits were sacrificed at D7 after the operation, and the brain was taken out. Under the optical and electron microscope, the change in micro-structure of brain tissues was observed in each group. Results: In each group, there was no epilepsy or paralysis during and after the operation. At the treatment side of physiological saline, there was no significant cell damage in the local brain tissues. At the treatment side of Povidone-iodine Solution, there was no cell apoptosis or degeneration in the local brain tissues. Conclusion: The Povidone-iodine Solution (0.05% and 0.01%) was toxic to brain tissues, with a more obvious damage of brain tissues for the former concentration. The histological sign was more serious at D7 than that at D3. PMID:26628968

  13. Leg edema from intrathecal opiate infusions.

    PubMed

    Aldrete, J A; Couto da Silva JM

    2000-01-01

    Despite the increasing popularity of intrathecal infusions to treat patients with long-term non-cancer-related pain, this therapy is not without serious side-effects. Five out of 23 patients who had intrathecal infusions of opiates for longer than 24 months developed leg and feet edema. As predisposing factors, cardiovascular disease, deep venous thrombosis, peripheral vascular disease, and venous stasis of the lower extremities were considered. Every patient who developed pedal and leg edema after the implantation of an infusion pump was also found to have leg edema and venous stasis prior to the time when the pump was inserted. This complication was severe enough to limit their physical activity, and to produce lymphedema, ulcerations and hyperpigmentation of the skin. Reduction of the edema occurred when the dose of the opiate was decreased, and in two cases in which the infusion was discontinued, there was almost complete resolution of the syndrome. It appears that the pre-existence of pedal edema and of venous stasis is a relative contraindication to the long-term intrathecal infusion of opiates in patients with chronic non-cancer pain.

  14. The pathology of peracute experimental Clostridium perfringens type D enterotoxemia in sheep.

    PubMed

    Uzal, F A; Kelly, W R; Morris, W E; Bermudez, J; Baisón, M

    2004-09-01

    The pathological findings in sheep with peracute experimental Clostridium perfringens type D enterotoxemia are described. Of 16 animals inoculated intraduodenally with a whole culture of this microorganism and a starch solution in the abomasum, 12 developed clinical signs including increased respiratory efforts, recumbency, paddling, bleating, convulsions, blindness, and opisthotonus. Diarrhea was not observed in any of the animals. The time lapse between the beginning of intraduodenal infusion and onset of clinical signs varied between 30 minutes and 26 hours, and the clinical course varied between 1 and 9 hours. Gross postmortem changes were observed in these 12 animals and included pulmonary edema; excess pericardial, peritoneal, or pleural fluid with or without strands of fibrin; liquid small intestinal contents; leptomeningeal edema; cerebellar coning; and subcapsular petechiae on kidneys. Histological changes consisted of severe edema of pleura and interlobular septa and around blood vessels and airways and acidophilic, homogeneous, proteinaceous perivascular edema in the brain. Five of 12 animals (42%) with clinical signs consistent with enterotoxemia lacked specific histological lesions in the brain. None of the intoxicated or control animals developed nephrosis. Glucose was detected in the urine of 3 of 6 animals that were tested for this analyte. These results stress the importance of the use of histological examination of the brain, coupled with epsilon toxin detection, for a definitive diagnosis of C. perfringens type D enterotoxemia in sheep.

  15. Gray Matter Hypoxia in the Brain of the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis

    PubMed Central

    Johnson, Thomas W.; Wu, Ying; Nathoo, Nabeela; Rogers, James A.; Wee Yong, V.; Dunn, Jeff F.

    2016-01-01

    Background Multiple sclerosis (MS) has a significant inflammatory component and may have significant gray matter (GM) pathophysiology. Brain oxygenation is a sensitive measurement of the balance between metabolic need and oxygen delivery. There is evidence that inflammation and hypoxia are interdependent. In this paper, we applied novel, implanted PO2 sensors to measure hypoxia in cortical and cerebellar GM, in an inflammation-induced mouse model of MS. Objective Quantify oxygenation in cortical and cerebellar GM in the awake, unrestrained experimental autoimmune encephalomyelitis (EAE) mouse model and to relate the results to symptom level and disease time-course. Methods C57BL/6 mice were implanted with a fiber-optic sensor in the cerebellum (n = 13) and cortex (n = 24). Animals were induced with stimulation of the immune response and sensitization to myelin oligodendrocyte glycoprotein (MOG). Controls did not have MOG. We measured PO2 in awake, unrestrained animals from pre-induction (baseline) up to 36 days post-induction for EAE and controls. Results There were more days with hypoxia than hyperoxia (cerebellum: 34/67 vs. 18/67 days; cortex: 85/112 vs. 22/112) compared to time-matched controls. The average decline in PO2 on days that were significantly lower than time-matched controls was -8.8±6.0 mmHg (mean ± SD) for the cerebellum and -8.0±4.6 for the cortex. Conversely, the average increase in PO2 on days that were significantly hyperoxic was +3.2±2.8 mmHg (mean ± SD) for the cerebellum and +0.8±2.1 for the cortex. Cortical hypoxia related to increased behavioral deficits. Evidence for hypoxia occurred before measurable behavioral deficits. Conclusions A highly inflammatory condition primed to a white matter (WM) autoimmune response correlates with significant hypoxia and increased variation in oxygenation in GM of both cerebellum and cortex in the mouse EAE model of MS. PMID:27907119

  16. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  17. Temporal and regional changes after focal traumatic brain injury.

    PubMed

    Lescot, Thomas; Fulla-Oller, Laurence; Fulla-Oller, Lawrence; Po, Chrystelle; Chen, Xiao Ru; Puybasset, Louis; Gillet, Brigitte; Plotkine, Michel; Meric, Philippe; Marchand-Leroux, Catherine

    2010-01-01

    Magnetic resonance imaging (MRI) is widely used to evaluate the consequences of traumatic brain injury (TBI) in both experimental and clinical studies. Improved assessment of experimental TBI using the same methods as those used in clinical investigations would help to translate laboratory research into clinical advances. Here our goal was to characterize lateral fluid percussion-induced TBI, with special emphasis on differentiating the contused cortex from the pericontusional subcortical tissue. We used both in vivo MRI and proton magnetic resonance spectroscopy ((1)H-MRS) to evaluate adult male Sprague-Dawley rats 24 h and 48 h and 7 days after TBI. T2 and apparent diffusion coefficient (ADC) maps were derived from T2-weighted and diffusion-weighted images, respectively. Ratios of N-acetylaspartate (NAA), choline compounds (Cho), and lactate (Lac) over creatine (Cr) were estimated by (1)H-MRS. T2 values were high in the contused cortex 24 h after TBI, suggesting edema development; ADC was low, consistent with cytotoxic edema. At the same site, NAA/Cr was decreased and Lac/Cr elevated during the first week after TBI. In the ipsilateral subcortical area, NAA/Cr was markedly decreased and Lac/Cr was elevated during the first week, although MRI showed no evidence of edema, suggesting that (1)H-MRS detected "invisible" damage. (1)H-MRS combined with MRI may improve the detection of brain injury. Extensive assessments of animal models may increase the chances of developing successful neuroprotective strategies.

  18. [Negative pressure pulmonary edema: 3 case reports].

    PubMed

    Ortíz-Gómez, J R; Paja Martí, I; Sos-Ortigosa, F; Pérez-Cajaraville, J J; Arteche-Andrés, M A; Bengoechea, C; Lobo-Palanco, J; Ahmad-Al-Ghool, M

    2006-01-01

    Negative pressure pulmonary edema is a complication, described since 1977, caused by upper airway obstruction in both children and adults. Although its aetiopathogeny is multifactorial, especially outstanding is excessive negative intrathoracic pressure caused by the forced spontaneous inspiration of a patient against a closed glottis, that causes high arteriole and capillary fluid pressures that favor transudation into the alveolar space The resulting pulmonary edema can appear a few minutes after the obstruction of the airway or in a deferred way after several hours. The clinical manifestations are potentially serious, but normally respond well to treatment with supplemental oxygen, positive pressure mechanical ventilation and diuretics. Diagnostic suspicion is important for acting promptly. We report three clinical cases with acute negative pressure pulmonary edema.

  19. Massive ovarian edema, due to adjacent appendicitis.

    PubMed

    Callen, Andrew L; Illangasekare, Tushani; Poder, Liina

    2017-04-01

    Massive ovarian edema is a benign clinical entity, the imaging findings of which can mimic an adnexal mass or ovarian torsion. In the setting of acute abdominal pain, identifying massive ovarian edema is a key in avoiding potential fertility-threatening surgery in young women. In addition, it is important to consider other contributing pathology when ovarian edema is secondary to another process. We present a case of a young woman presenting with subacute abdominal pain, whose initial workup revealed marked enlarged right ovary. Further imaging, diagnostic tests, and eventually diagnostic laparoscopy revealed that the ovarian enlargement was secondary to subacute appendicitis, rather than a primary adnexal process. We review the classic ultrasound and MRI imaging findings and pitfalls that relate to this diagnosis.

  20. Bilateral ankle edema with bilateral iritis.

    PubMed

    Kumar, Sunil

    2007-07-01

    I report two patient presented to me with bilateral symmetrical ankle edema and bilateral acute iritis. A 42-year-old female of Indian origin and 30-year-old female from Somalia both presented with bilateral acute iritis. In the first patient, bilateral ankle edema preceded the onset of bilateral acute iritis. Bilateral ankle edema developed during the course of disease after onset of ocular symptoms in the second patient. Both patients did not suffer any significant ocular problem in the past, and on systemic examination, all clinical parameters were within normal limit. Lacrimal gland and conjunctival nodule biopsy established the final diagnosis of sarcoidosis in both cases, although the chest x-rays were normal.

  1. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus

    PubMed Central

    Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both), an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM) and rearrangement of the cortical gray matter microstructure (P < 0.001, for both), while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both). During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001), while a decrease in space was observed for the ventral internal capsule (P < 0.001). For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001). To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions studied

  2. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus.

    PubMed

    Jugé, Lauriane; Pong, Alice C; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both), an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM) and rearrangement of the cortical gray matter microstructure (P < 0.001, for both), while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both). During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001), while a decrease in space was observed for the ventral internal capsule (P < 0.001). For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001). To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions studied

  3. Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: a protocol and experimental validation

    PubMed Central

    Oswal, Ashwini; Jha, Ashwani; Neal, Spencer; Reid, Alphonso; Bradbury, David; Aston, Peter; Limousin, Patricia; Foltynie, Tom; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir

    2016-01-01

    Background Deep Brain Stimulation (DBS) is an effective treatment for several neurological and psychiatric disorders. In order to gain insights into the therapeutic mechanisms of DBS and to advance future therapies a better understanding of the effects of DBS on large-scale brain networks is required. New method In this paper, we describe an experimental protocol and analysis pipeline for simultaneously performing DBS and intracranial local field potential (LFP) recordings at a target brain region during concurrent magnetoencephalography (MEG) measurement. Firstly we describe a phantom setup that allowed us to precisely characterise the MEG artefacts that occurred during DBS at clinical settings. Results Using the phantom recordings we demonstrate that with MEG beamforming it is possible to recover oscillatory activity synchronised to a reference channel, despite the presence of high amplitude artefacts evoked by DBS. Finally, we highlight the applicability of these methods by illustrating in a single patient with Parkinson's disease (PD), that changes in cortical-subthalamic nucleus coupling can be induced by DBS. Comparison with existing approaches To our knowledge this paper provides the first technical description of a recording and analysis pipeline for combining simultaneous cortical recordings using MEG, with intracranial LFP recordings of a target brain nucleus during DBS. PMID:26698227

  4. ALTERATIONS IN BRAIN CREATINE CONCENTRATIONS UNDER LONG-TERM SOCIAL ISOLATION (EXPERIMENTAL STUDY).

    PubMed

    Koshoridze, N; Kuchukashvili, Z; Menabde, K; Lekiashvili, Sh; Koshoridze, M

    2016-02-01

    Stress represents one of the main problems of modern humanity. This study was done for understanding more clearly alterations in creatine content of the brain under psycho-emotional stress induced by long-term social isolation. It was shown that under 30 days social isolation creatine amount in the brain was arisen, while decreasing concentrations of synthesizing enzymes (AGAT, GAMT) and creatine transporter protein (CrT). Another important point was that such changes were accompanied by down-regulation of creatine kinase (CK), therefore the enzyme's concentration was lowered. In addition, it was observed that content of phosphocreatine (PCr) and ATP were also reduced, thus indicating down-regulation of energy metabolism of brain that is really a crucial point for its normal functioning. To sum up the results it can be underlined that long-term social isolation has negative influence on energy metabolism of brain; and as a result reduce ATP content, while increase of free creatine concentration, supposedly maintaining maximal balance for ATP amount, but here must be also noted that up-regulated oxidative pathways might have impact on blood brain barrier, resulting on its permeability.

  5. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders.

    PubMed

    Meyer, Urs; Feldon, Joram; Fatemi, S Hossein

    2009-07-01

    Based on the epidemiological association between maternal infection during pregnancy and enhanced risk of neurodevelopmental brain disorders in the offspring, a number of in-vivo models have been established in rats and mice in order to study this link on an experimental basis. These models provide indispensable experimental tools to test the hypothesis of causality in human epidemiological associations, and to explore the critical neuroimmunological and developmental factors involved in shaping the vulnerability to infection-induced neurodevelopmental disturbances in humans. Here, we summarize the findings derived from numerous in-vivo models of prenatal infection and/or immune activation in rats and mice, including models of exposure to influenza virus, bacterial endotoxin, viral-like acute phase responses and specific pro-inflammatory cytokines. Furthermore, we discuss the methodological aspects of these models in relation to their practical implementation and their translatability to the human condition. We highlight that these models can successfully examine the influence of the precise timing of maternal immune activation, the role of pro- and anti-inflammatory cytokines, and the contribution of gene-environment interactions in the association between prenatal immune challenge and postnatal brain dysfunctions. Finally, we discuss that in-vivo models of prenatal immune activation offer a unique opportunity to establish and evaluate early preventive interventions aiming to reduce the risk of long-lasting brain dysfunctions following prenatal exposure to infection.

  6. [Acute pulmonary edema as a nursing emergency].

    PubMed

    Navarro Aldana, M C

    2001-01-01

    The presence of Acute Pulmonary Edema represents a severe emergency condition that requires immediate and efficient treatment; otherwise, imminent death of the patient occurs. Therefore it is of utter importance to perform frequent reviews of the literature to keep up with the newest procedures to warrant the best quality nursing care of our patients. This article reviews the physiopathology, clinical manifestations, and medical treatment of the Acute Pulmonary Edema, emphasizing on the nursing aspects of the treatment and pointing out the need to treat the predisposing cardiac alteration as soon as possible.

  7. Pulmonary edema induced by intravenous ethchlorvynol.

    PubMed

    Conces, D J; Kreipke, D L; Tarver, R D

    1986-11-01

    The intravenous injection of ethchlorvynol is an uncommon cause of noncardiac pulmonary edema. Two cases of intravenous ethchlorvynol-induced pulmonary edema are presented. The patients fell asleep after injecting the liquid contents of Placydil capsules (ethchlorvynol) and awoke several hours later with severe dyspnea. Arterial blood gases demonstrated marked hypoxia. Chest radiographs revealed bilateral diffuse alveolar densities. The patients' symptoms and radiographic findings resolved after several days of supportive care. Changes in the lung caused by ethchlorvynol may be the result of direct effect of the drug on the lung.

  8. Rhein and rhubarb similarly protect the blood-brain barrier after experimental traumatic brain injury via gp91phox subunit of NADPH oxidase/ROS/ERK/MMP-9 signaling pathway

    PubMed Central

    Wang, Yang; Fan, Xuegong; Tang, Tao; Fan, Rong; Zhang, Chunhu; Huang, Zebing; Peng, Weijun; Gan, Pingping; Xiong, Xingui; Huang, Wei; Huang, Xi

    2016-01-01

    Oxidative stress chiefly contributes to the disruption of the BBB following traumatic brain injury (TBI). The Chinese herbal medicine rhubarb is a promising antioxidant in treating TBI. Here we performed in vivo and in vitro experiments to determine whether rhubarb and its absorbed bioactive compound protected the BBB after TBI by increasing ZO-1 expression through inhibition of gp91phox subunit of NADPH oxidase/ROS/ERK/MMP-9 pathway. Rats were subjected to the controlled cortical impact (CCI) model, and primary rat cortical astrocytes were exposed to scratch-wound model. The liquid chromatography with tandem mass spectrometry method showed that rhein was the compound absorbed in the brains of CCI rats after rhubarb administration. The wet-dry weights and Evans blue measurements revealed that rhubarb and rhein ameliorated BBB damage and brain edema in CCI rats. Western blots showed that rhubarb and rhein downregulated GFAP in vitro. RT-PCR, immunohistochemistry, Western blot and dichlorodihydrofluorescein diacetate analysis indicated that rhubarb prevented activation of gp91phox subunit of NADPH oxidase induced ROS production, subsequently inhibited ERK/MMP-9 pathway in vivo and in vitro. Interestingly, rhein and rhubarb similarly protected the BBB by inhibiting this signaling cascade. The results provide a novel herbal medicine to protect BBB following TBI via an antioxidative molecular mechanism. PMID:27901023

  9. The self-regulating brain and neurofeedback: Experimental science and clinical promise.

    PubMed

    Thibault, Robert T; Lifshitz, Michael; Raz, Amir

    2016-01-01

    Neurofeedback, one of the primary examples of self-regulation, designates a collection of techniques that train the brain and help to improve its function. Since coming on the scene in the 1960s, electroencephalography-neurofeedback has become a treatment vehicle for a host of mental disorders; however, its clinical effectiveness remains controversial. Modern imaging technologies of the living human brain (e.g., real-time functional magnetic resonance imaging) and increasingly rigorous research protocols that utilize such methodologies begin to shed light on the underlying mechanisms that may facilitate more effective clinical applications. In this paper we focus on recent technological advances in the field of human brain imaging and discuss how these modern methods may influence the field of neurofeedback. Toward this end, we outline the state of the evidence and sketch out future directions to further explore the potential merits of this contentious therapeutic prospect.

  10. Agents Which Mediate Pulmonary Edema

    DTIC Science & Technology

    1990-12-01

    varying fractions of the LD50 and the plate was incubated at 370C for 4 hours. Control wells of endothelial cells plhs medium/ diluent were established. All...measured by incubation of the targets in culture medium/ diluent without challenge. Specific cytolysis was calculated by: Experimental Counts - Spontaneous...and is an important bactericidal mechanism employed by the AM. In Figures 3 and 4, production of SOA (as measured by ferricytochrome C reduction) by

  11. In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses

    PubMed Central

    Bonifazi, Paolo; Difato, Francesco; Massobrio, Paolo; Breschi, Gian L.; Pasquale, Valentina; Levi, Timothée; Goldin, Miri; Bornat, Yannick; Tedesco, Mariateresa; Bisio, Marta; Kanner, Sivan; Galron, Ronit; Tessadori, Jacopo; Taverna, Stefano; Chiappalone, Michela

    2013-01-01

    Brain-machine interfaces (BMI) were born to control “actions from thoughts” in order to recover motor capability of patients with impaired functional connectivity between the central and peripheral nervous system. The final goal of our studies is the development of a new proof-of-concept BMI—a neuromorphic chip for brain repair—to reproduce the functional organization of a damaged part of the central nervous system. To reach this ambitious goal, we implemented a multidisciplinary “bottom-up” approach in which in vitro networks are the paradigm for the development of an in silico model to be incorporated into a neuromorphic device. In this paper we present the overall strategy and focus on the different building blocks of our studies: (i) the experimental characterization and modeling of “finite size networks” which represent the smallest and most general self-organized circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions in neuronal networks and the whole brain preparation with special attention on the impact on the functional organization of the circuits; (iii) the first production of a neuromorphic chip able to implement a real-time model of neuronal networks. A dynamical characterization of the finite size circuits with single cell resolution is provided. A neural network model based on Izhikevich neurons was able to replicate the experimental observations. Changes in the dynamics of the neuronal circuits induced by optical and ischemic lesions are presented respectively for in vitro neuronal networks and for a whole brain preparation. Finally the implementation of a neuromorphic chip reproducing the network dynamics in quasi-real time (10 ns precision) is presented. PMID:23503997

  12. Experimental Modelling of the Consequences of Brief Late Gestation Asphyxia on Newborn Lamb Behaviour and Brain Structure

    PubMed Central

    Yawno, Tamara; Witjaksono, Anissa; Miller, Suzie L.; Walker, David W.

    2013-01-01

    Brief but severe asphyxia in late gestation or at the time of birth may lead to neonatal hypoxic ischemic encephalopathy and is associated with long-term neurodevelopmental impairment. We undertook this study to examine the consequences of transient in utero asphyxia in late gestation fetal sheep, on the newborn lamb after birth. Surgery was undertaken at 125 days gestation for implantation of fetal catheters and placement of a silastic cuff around the umbilical cord. At 132 days gestation (0.89 term), the cuff was inflated to induce umbilical cord occlusion (UCO), or sham (control). Fetal arterial blood samples were collected for assessment of fetal wellbeing and the pregnancy continued until birth. At birth, behavioral milestones for newborn lambs were recorded over 24 h, after which the lambs were euthanased for brain collection and histopathology assessments. After birth, UCO lambs displayed significant latencies to (i) use all four legs, (ii) attain a standing position, (iii) find the udder, and (iv) successfully suckle - compared to control lambs. Brains of UCO lambs showed widespread pathologies including cell death, white matter disruption, intra-parenchymal hemorrhage and inflammation, which were not observed in full term control brains. UCO resulted in some preterm births, but comparison with age-matched preterm non-UCO control lambs showed that prematurity per se was not responsible for the behavioral delays and brain structural abnormalities resulting from the in utero asphyxia. These results demonstrate that a single, brief fetal asphyxic episode in late gestation results in significant grey and white matter disruption in the developing brain, and causes significant behavioral delay in newborn lambs. These data are consistent with clinical observations that antenatal asphyxia is causal in the development of neonatal encephalopathy and provide an experimental model to advance our understanding of neuroprotective therapies. PMID:24223120

  13. Experimental assessment of the safety and potential efficacy of high irradiance photostimulation of brain tissues

    PubMed Central

    Suhan, Senova; Ilona, Scisniak; Chih-Chieh, Chiang; Isabelle, Doignon; Stéphane, Palfi; Antoine, Chaillet; Claire, Martin; Frédéric, Pain

    2017-01-01

    Optogenetics is widely used in fundamental neuroscience. Its potential clinical translation for brain neuromodulation requires a careful assessment of the safety and efficacy of repeated, sustained optical stimulation of large volumes of brain tissues. This study was performed in rats and not in non-human primates for ethical reasons. We studied the spatial distribution of light, potential damage, and non-physiological effects in vivo, in anesthetized rat brains, on large brain volumes, following repeated high irradiance photo-stimulation. We generated 2D irradiance and temperature increase surface maps based on recordings taken during optical stimulation using irradiance and temporal parameters representative of common optogenetics experiments. Irradiances of 100 to 600 mW/mm2 with 5 ms pulses at 20, 40, and 60 Hz were applied during 90 s. In vivo electrophysiological recordings and post-mortem histological analyses showed that high power light stimulation had no obvious phototoxic effects and did not trigger non-physiological functional activation. This study demonstrates the ability to illuminate cortical layers to a depth of several millimeters using pulsed red light without detrimental thermal damages. PMID:28276522

  14. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis.

    PubMed

    Makar, Tapas K; Trisler, David; Sura, Karna T; Sultana, Shireen; Patel, Niraj; Bever, Christopher T

    2008-07-15

    Multiple sclerosis is an inflammatory disease of the central nervous system (CNS) which includes a neurodegenerative component. Brain derived neurotrophic factor (BDNF) is a neuroprotective agent which might be useful in preventing neurodegeneration but its application has been limited because the blood brain barrier restricts its access to the CNS. We have developed a novel delivery system for BDNF using transformed bone marrow stem cells (BMSC) and undertook studies of EAE to determine whether the delivery of BDNF could reduce inflammation and apoptosis. Mice receiving BDNF producing BMSC had reduced clinical impairment compared to control mice receiving BMSC that did not produce BDNF. Pathological examination of brain and spinal cord showed a reduction in inflammatory infiltrating cells in treated compared to control mice. Apoptosis was reduced in brain and spinal cord based on TUNEL and cleaved Caspase-3 staining. Consistent with the known mechanism of action of BDNF on apoptosis, Bcl-2 and Akt were increased in treated mice. Further studies suggested that these increases could be mediated by inhibition of both caspase dependent and caspase independent pathways. These results suggest that the BDNF delivered by the transformed bone marrow stem cells reduced clinical severity, inflammation and apoptosis in this model.

  15. Effect of meadowsweet (Filipendula vulgaris) extract on bioenergetics of the brain during experimental posthypoxic encephalopathy.

    PubMed

    Vengerovsky, A I; Suslov, N I; Kaygorodsev, A V

    2011-08-01

    We studied the effect of Filipendula vulgaris aqueous extract on mitochondrial energy production system in the brain of rats with posthypoxic encephalopathy developing 19 days after hypoxic injury. Filipendula extract more effectively than valerian extract improved kinetic characteristics of respiratory activity of mitochondria, increased substrate oxidation-phosphorylation coupling, and inhibited LPO.

  16. Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size

    PubMed Central

    Bharadwaj, Vimala N.; Lifshitz, Jonathan; Adelson, P. David; Kodibagkar, Vikram D.; Stabenfeldt, Sarah E.

    2016-01-01

    Nanoparticle (NP) based therapeutic and theranostic agents have been developed for various diseases, yet application to neural disease/injury is restricted by the blood-brain-barrier (BBB). Traumatic brain injury (TBI) results in a host of pathological alterations, including transient breakdown of the BBB, thus opening a window for NP delivery to the injured brain tissue. This study focused on investigating the spatiotemporal accumulation of different sized NPs after TBI. Specifically, animal cohorts sustaining a controlled cortical impact injury received an intravenous injection of PEGylated NP cocktail (20, 40, 100, and 500 nm, each with a unique fluorophore) immediately (0 h), 2 h, 5 h, 12 h, or 23 h after injury. NPs were allowed to circulate for 1 h before perfusion and brain harvest. Confocal microscopy demonstrated peak NP accumulation within the injury penumbra 1 h post-injury. An inverse relationship was found between NP size and their continued accumulation within the penumbra. NP accumulation preferentially occurred in the primary motor and somatosensory areas of the injury penumbra as compared to the parietal association and visual area. Thus, we characterized the accumulation of particles up to 500 nm at different times acutely after injury, indicating the potential of NP-based TBI theranostics in the acute period after injury. PMID:27444615

  17. Blood-Brain Barrier Permeability and Monocyte Infiltration in Experimental Allergic Encephalomyelitis

    ERIC Educational Resources Information Center

    Floris, S.; Blezer, E. L. A.; Schreibelt, G.; Dopp, E.; van der Pol, S. M. A.; Schadee-Eestermans, I. L.; Nicolay, K.; Dijkstra, C. D.; de Vries, H. E.

    2004-01-01

    Enhanced cerebrovascular permeability and cellular infiltration mark the onset of early multiple sclerosis lesions. So far, the precise sequence of these events and their role in lesion formation and disease progression remain unknown. Here we provide quantitative evidence that blood-brain barrier leakage is an early event and precedes massive…

  18. An Experimental Brain Missile Wound: Ascertaining Pathophysiology and Evaluating Treatments to Lower Mortality and Morbidity

    DTIC Science & Technology

    1991-06-04

    a soldier might get a brain wound as well as another wound (eg femoral artery) leading to significant blood loss. Multipla fragment wounds are...cerebral circulation in health and disease. Circ Res 34:749-760, 1974 91. Lassen NA, Christensen MS : Physiology of cerebral blood flow. Br J Anesthesiol 48

  19. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage.

    PubMed

    Glushakova, Olena Y; Johnson, Danny; Hayes, Ronald L

    2014-07-01

    Traumatic brain injury (TBI) is a significant risk factor for chronic traumatic encephalopathy (CTE), Alzheimer's disease (AD), and Parkinson's disease (PD). Cerebral microbleeds, focal inflammation, and white matter damage are associated with many neurological and neurodegenerative disorders including CTE, AD, PD, vascular dementia, stroke, and TBI. This study evaluates microvascular abnormalities observed at acute and chronic stages following TBI in rats, and examines pathological processes associated with these abnormalities. TBI in adult rats was induced by controlled cortical impact (CCI) of two magnitudes. Brain pathology was assessed in white matter of the corpus callosum for 24 h to 3 months following injury using immunohistochemistry (IHC). TBI resulted in focal microbleeds that were related to the magnitude of injury. At the lower magnitude of injury, microbleeds gradually increased over the 3 month duration of the study. IHC revealed TBI-induced focal abnormalities including blood-brain barrier (BBB) damage (IgG), endothelial damage (intercellular adhesion molecule 1 [ICAM-1]), activation of reactive microglia (ionized calcium binding adaptor molecule 1 [Iba1]), gliosis (glial fibrillary acidic protein [GFAP]) and macrophage-mediated inflammation (cluster of differentiation 68 [CD68]), all showing different temporal profiles. At chronic stages (up to 3 months), apparent myelin loss (Luxol fast blue) and scattered deposition of microbleeds were observed. Microbleeds were surrounded by glial scars and co-localized with CD68 and IgG puncta stainings, suggesting that localized BBB breakdown and inflammation were associated with vascular damage. Our results indicate that evolving white matter degeneration following experimental TBI is associated with significantly delayed microvascular damage and focal microbleeds that are temporally and regionally associated with development of punctate BBB breakdown and progressive inflammatory responses. Increased

  20. An uncommon cause of acute pulmonary edema.

    PubMed

    Nepal, Santosh; Giri, Smith; Bhusal, Mohan; Siwakoti, Krishmita; Pathak, Ranjan

    2016-09-01

    Acute cardiogenic pulmonary edema secondary to catecholamine-induced cardiomyopathy is a very uncommon and fatal initial presentation of pheochromocytoma. However, with early clinical suspicion and aggressive management, the condition is reversible. This case report describes a patient who presented with hypertension, dyspnea, and cough with bloody streaks, and who recovered within 48 hours after appropriate treatment.

  1. Dysphagia Caused by Chronic Laryngeal Edema.

    PubMed

    Delides, Alexander; Sakagiannis, George; Maragoudakis, Pavlos; Gouloumi, Αlina-Roxani; Katsimbri, Pelagia; Giotakis, Ioannis; Panayiotides, John G

    2015-10-01

    A rare case of a young female with chronic diffuse laryngeal edema causing severe swallowing difficulty is presented. The patient was previously treated with antibiotics and steroids with no improvement. Diagnosis was made with biopsy of the epiglottis under local anesthesia in the office.

  2. Interstitial Pulmonary Edema Following Bromocarbamide Intoxication

    PubMed Central

    Sugihara, H.; Hagedorn, M.; Bōttcher, D.; Neuhof, H.; Mittermayer, Ch.

    1974-01-01

    Bromocarbamides are sleep-inducing drugs which can lead, in man, to intoxication and death due to respiratory failure. To prove whether hemodynamic factors or the changed endothelial permeability induce pulmonary edema, animal experiments were performed. The fine structural changes in pulmonary edema in rabbits were observed at 60, 90 and 120 minutes after oral administration. The major findings were a) large blebs between capillary endothelium and alveolar epithelium and b) interstitial edema of the vessel wall. The bleb contents were much less electron dense than the blood contents in the capillary. Colloidal carbon did not enter the bleb or the edematous interstitial tissue. Exogenous peroxidase uptake in pinocytotie vesicles increased in pathologic cases. The hemodynamic measurements in animal receiving artificial respiration which maintained the blood pO2 at a steady state showed similar blebs in the pulmonary vessels, indicating that anoxia is not the major cause of the vascular lesion. Moreover, pulmonary arterial pressure and pulmonary vascular resistance could be held in the normal range in artificially respirated animals under bromocarbamide intoxication. Thus, hemodynamic factors are not likely to play a pathogenetic role in bringing about pulmonary edema. The chief, early factor is the increased endothelial permeability due to increased cytoplasmic transport. From this a practical suggestion for treating patients with bromocarbamide intoxication is derived: the usual fluid replacement in shock patients should be handled with great care to avoid fluid overload of the lung. ImagesFig 1Fig 2Fig 3Fig 4Fig 5Fig 6 PMID:4835993

  3. INTRAVITREAL CORTICOSTEROIDS IN DIABETIC MACULAR EDEMA

    PubMed Central

    Bailey, Clare; Loewenstein, Anat; Massin, Pascale

    2015-01-01

    Purpose: To review the relationship between kinetics, efficacy, and safety of several corticosteroid formulations for the treatment of diabetic macular edema. Methods: Reports of corticosteroid use for the treatment of diabetic macular edema were identified by a literature search, which focused on the pharmacokinetics, efficacy, and safety of these agents in preclinical animal models and clinical trials. Results: Available corticosteroids for diabetic macular edema treatment include intravitreal triamcinolone acetonide, dexamethasone, and fluocinolone acetonide. Because of differences in solubility and bioavailability, various delivery mechanisms are used. Bioerodible delivery systems achieve higher maximum concentrations than nonbioerodible formulations. There is a relationship between visual gains and drug persistence in the intravitreal compartment. Safety effects were more complex; level of intravitreal triamcinolone acetonide exposure is related to development of elevated intraocular pressure and cataract; this does not seem to be the case for dexamethasone, where two different doses showed similar mean intraocular pressure and incidence of cataract surgery. With fluocinolone acetonide, rates of intraocular pressure elevations requiring surgery seem to be dose related; rates of cataract extraction were similar regardless of dose. Conclusion: Available corticosteroids for diabetic macular edema exhibit different pharmacokinetic profiles that impact efficacy and adverse events and should be taken into account when developing individualized treatment plans. PMID:26352555

  4. C5a alters blood-brain barrier integrity in experimental lupus.

    PubMed

    Jacob, Alexander; Hack, Bradley; Chiang, Eddie; Garcia, Joe G N; Quigg, Richard J; Alexander, Jessy J

    2010-06-01

    The blood-brain barrier (BBB) is a crucial anatomic location in the brain. Its dysfunction complicates many neurodegenerative diseases, from acute conditions, such as sepsis, to chronic diseases, such as systemic lupus erythematosus (SLE). Several studies suggest an altered BBB in lupus, but the underlying mechanism remains unknown. In the current study, we observed a definite loss of BBB integrity in MRL/MpJ-Tnfrsf6(lpr) (MRL/lpr) lupus mice by IgG infiltration into brain parenchyma. In line with this result, we examined the role of complement activation, a key event in this setting, in maintenance of BBB integrity. Complement activation generates C5a, a molecule with multiple functions. Because the expression of the C5a receptor (C5aR) is significantly increased in brain endothelial cells treated with lupus serum, the study focused on the role of C5a signaling through its G-protein-coupled receptor C5aR in brain endothelial cells, in a lupus setting. Reactive oxygen species production increased significantly in endothelial cells, in both primary cells and the bEnd3 cell line treated with lupus serum from MRL/lpr mice, compared with those treated with control serum from MRL(+/+) mice. In addition, increased permeability monitored by changes in transendothelial electrical resistance, cytoskeletal remodeling caused by actin fiber rearrangement, and increased iNOS mRNA expression were observed in bEnd3 cells. These disruptive effects were alleviated by pretreating cells with a C5a receptor antagonist (C5aRant) or a C5a antibody. Furthermore, the structural integrity of the vasculature in MRL/lpr brain was maintained by C5aR inhibition. These results demonstrate the regulation of BBB integrity by the complement system in a neuroinflammatory setting. For the first time, a novel role of C5a in the maintenance of BBB integrity is identified and the potential of C5a/C5aR blockade highlighted as a promising therapeutic strategy in SLE and other neurodegenerative diseases.

  5. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway

    PubMed Central

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Yang, Youqing; Zhuang, Zong; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    Quercetin, a dietary flavonoid used as a food supplement, has been found to have protective effect against mitochondria damage after traumatic brain injury (TBI) in mice. However, the mechanisms underlying these effects are still not well understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism mediating these effects in the weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administration 30 min after TBI. Brain samples were collected 24 h later for analysis. Quercetin treatment upregulated the expression of PGC-1α and restored the level of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD). These results demonstrate that quercetin improves mitochondrial function in mice by improving the level of PGC-1α following TBI. PMID:27648146

  6. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway.

    PubMed

    Li, Xiang; Wang, Handong; Gao, Yongyue; Li, Liwen; Tang, Chao; Wen, Guodao; Yang, Youqing; Zhuang, Zong; Zhou, Mengliang; Mao, Lei; Fan, Youwu

    2016-01-01

    Quercetin, a dietary flavonoid used as a food supplement, has been found to have protective effect against mitochondria damage after traumatic brain injury (TBI) in mice. However, the mechanisms underlying these effects are still not well understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism mediating these effects in the weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administration 30 min after TBI. Brain samples were collected 24 h later for analysis. Quercetin treatment upregulated the expression of PGC-1α and restored the level of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD). These results demonstrate that quercetin improves mitochondrial function in mice by improving the level of PGC-1α following TBI.

  7. An Experimental Brain Missile Wound: Ascertaining Pathophysiology and Evaluating Treatments to Lower Mortality and Morbidity

    DTIC Science & Technology

    1990-10-26

    glutamic acid, GABA, glycine, acetylcholine and clonidine which also affect VLM function will not be considered...dependent on the posterior hypothalamus because lesions of the posterior hypcthalamus cr application of clonidine , a presynaptic alpha-adrenergic...and Bloch, R. Role of the ventral surface of the brain stem in the hypotensive effect of clonidine . Eur. J. Pharmacol. 34: 151-156, 1975. 20 Brown, F.K

  8. Growth inhibition, tumor maturation, and extended survival in experimental brain tumors in rats treated with phenylacetate.

    PubMed

    Ram, Z; Samid, D; Walbridge, S; Oshiro, E M; Viola, J J; Tao-Cheng, J H; Shack, S; Thibault, A; Myers, C E; Oldfield, E H

    1994-06-01

    Phenylacetate is a naturally occurring plasma component that suppresses the growth of tumor cells and induces differentiation in vitro. To evaluate the in vivo potential and preventive and therapeutic antitumor efficacy of sodium phenylacetate against malignant brain tumors, Fischer 344 rats (n = 50) bearing cerebral 9L gliosarcomas received phenylacetate by continuous s.c. release starting on the day of tumor inoculation (n = 10) using s.c. osmotic minipumps (550 mg/kg/day for 28 days). Rats with established brain tumors (n = 12) received continuous s.c. phenylacetate supplemented with additional daily i.p. dose (300 mg/kg). Control rats (n = 25) were treated in a similar way with saline. Rats were sacrificed during treatment for electron microscopic studies of their tumors, in vivo proliferation assays, and measurement of phenylacetate levels in the serum and cerebrospinal fluid. Treatment with phenylacetate extended survival when started on the day of tumor inoculation (P < 0.01) or 7 days after inoculation (P < 0.03) without any associated adverse effects. In the latter group, phenylacetate levels in pooled serum and cerebrospinal fluid samples after 7 days of treatment were in the therapeutic range as determined in vitro (2.45 mM in serum and 3.1 mM in cerebrospinal fluid). Electron microscopy of treated tumors demonstrated marked hypertrophy and organization of the rough endoplasmic reticulum, indicating cell differentiation, in contrast to the scant and randomly distributed endoplasmic reticulum in tumors from untreated animals. In addition, in vitro studies demonstrated dose-dependent inhibition of the rate of tumor proliferation and restoration of anchorage dependency, a marker of phenotypic reversion. Phenylacetate, used at clinically achievable concentrations, prolongs survival of rats with malignant brain tumors through induction of tumor differentiation. Its role in the treatment of brain tumors and other cancers should be explored further.

  9. Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat.

    PubMed

    Jiang, Yongjun; Wei, Ning; Zhu, Juehua; Lu, Tingting; Chen, Zhaoyao; Xu, Gelin; Liu, Xinfeng

    2010-01-01

    This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF) can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO) for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobility shift assay, respectively. Exogenous BDNF significantly improved motor-sensory, sensorimotor function, and vestibulomotor function, while BDNF did not decrease the infarct volume. Exogenous BDNF increased the number of both activated and phagocytotic microglia in brain. BDNF upregulated interleukin10 and its mRNA expression, while downregulated tumor necrosis factor α and its mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B. BDNF antibody, which blocked the activity of endogenous BDNF, showed the opposite effect of exogenous BDNF. Our data indicated that BDNF may modulate local inflammation in ischemic brain tissues on the cellular, cytokine, and transcription factor levels.

  10. Shared Immune and Repair Markers During Experimental Toxoplasma Chronic Brain Infection and Schizophrenia

    PubMed Central

    Tomasik, Jakub; Schultz, Tracey L.; Kluge, Wolfgang; Yolken, Robert H.; Bahn, Sabine; Carruthers, Vern B.

    2016-01-01

    Chronic neurologic infection with Toxoplasma gondii is relatively common in humans and is one of the strongest known risk factors for schizophrenia. Nevertheless, the exact neuropathological mechanisms linking T gondii infection and schizophrenia remain unclear. Here we utilize a mouse model of chronic T gondii infection to identify protein biomarkers that are altered in serum and brain samples at 2 time points during chronic infection. Furthermore, we compare the identified biomarkers to those differing between “postmortem” brain samples from 35 schizophrenia patients and 33 healthy controls. Our findings suggest that T gondii infection causes substantial and widespread immune activation indicative of neural damage and reactive tissue repair in the animal model that partly overlaps with changes observed in the brains of schizophrenia patients. The overlapping changes include increases in C-reactive protein (CRP), interleukin-1 beta (IL-1β), interferon gamma (IFNγ), plasminogen activator inhibitor 1 (PAI-1), tissue inhibitor of metalloproteinases 1 (TIMP-1), and vascular cell adhesion molecule 1 (VCAM-1). Potential roles of these factors in the pathogenesis of schizophrenia and toxoplasmosis are discussed. Identifying a defined set of markers shared within the pathophysiological landscape of these diseases could be a key step towards understanding their specific contributions to pathogenesis. PMID:26392628

  11. S100B inhibition reduces behavioral and pathologic changes in experimental traumatic brain injury

    PubMed Central

    Kabadi, Shruti V; Stoica, Bogdan A; Zimmer, Danna B; Afanador, Lauriaselle; Duffy, Kara B; Loane, David J; Faden, Alan I

    2015-01-01

    Neuroinflammation following traumatic brain injury (TBI) is increasingly recognized to contribute to chronic tissue loss and neurologic dysfunction. Circulating levels of S100B increase after TBI and have been used as a biomarker. S100B is produced by activated astrocytes and can promote microglial activation; signaling by S100B through interaction with the multiligand advanced glycation end product-specific receptor (AGER) has been implicated in brain injury and microglial activation during chronic neurodegeneration. We examined the effects of S100B inhibition in a controlled cortical impact model, using S100B knockout mice or administration of neutralizing S100B antibody. Both interventions significantly reduced TBI-induced lesion volume, improved retention memory function, and attenuated microglial activation. The neutralizing antibody also significantly reduced sensorimotor deficits and improved neuronal survival in the cortex. However, S100B did not alter microglial activation in BV2 cells or primary microglial cultures stimulated by lipopolysaccharide or interferon gamma. Further, proximity ligation assays did not support direct interaction in the brain between S100B and AGER following TBI. Future studies are needed to elucidate specific pathways underlying S100B-mediated neuroinflammatory actions after TBI. Our results strongly implicate S100B in TBI-induced neuroinflammation, cell loss, and neurologic dysfunction, thereby indicating that it is a potential therapeutic target for TBI. PMID:26154869

  12. Effects of DDE on experimentally poisoned free-tailed bats (Tadarida brasiliensis): lethal brain concentrations.

    PubMed

    Clark, D R; Kroll, J C

    1977-12-01

    Adult female free-tailed bats (Tadarida brasiliensis) were collected at Bracken Cave, Texas, and shipped to the Patuxent Wildlife Research Center. Treated mealworms (Tenebrio molitor) containing 107 ppm DDE were fed to 17 bats; five other bats were fed untreated mealworms. After 40 days on dosage, during which one dosed bat was killed accidentally, four dosed bats were frozen and the remaining 17 were starved to death. The objective was to elevate brain levels of DDE to lethality and measure these concentrations. After the feeding period, dosed bats weighed less than controls. After starvation, the body condition of dosed bats was poorer than that of controls even though there was no difference in the amounts of carcass fat. During starvation, dosed bats lost weight faster than controls. Also, four dosed bats exhibited the prolonged tremoring that characterizes DDE poisoning. DDE increased in brains of starving bats as fat was metabolized. The estimated mean brain concentration of DDE diagnostic of death was 519 ppm with a range of 458-564 ppm. These values resemble diagnostic levels known for two species of passerine birds, but they exceed published levels for two free-tailed bats from Carlsbad Caverns, New Mexico.

  13. Effects of DDE on experimentally poisoned free-tailed bats (Tadarida brasiliensis): Lethal brain concentrations

    USGS Publications Warehouse

    Clark, D.R.; Kroll, J.C.

    1977-01-01

    Adult female free-tailed bats (Tadarida brasiliensis) were collected at Bracken Cave, Texas, and shipped to the Patuxent Wildlife Research Center. Treated mealworms (Tenebrio molitor) containing 107 ppm DDE were fed to 17 bats; five other bats were fed untreated mealworms. After 40 days on dosage, during which one dosed bat was killed accidentally, four dosed bats were frozen and the remaining 17 were starved to death. The objective was to elevate brain levels of DDE to lethality and measure these concentrations. After the feeding period, dosed bats weighed less than controls. After starvation, the body condition of dosed bats was poorer than that of controls even though there was no difference in the amounts of carcass fat. During starvation, dosed bats lost weight faster than controls. Also, four dosed bats exhibited the prolonged tremoring that characterizes DDE poisoning. DDE increased in brains of starving bats as fat was metabolized. The estimated mean brain concentration of DDE diagnostic of death was 519 ppm with a range of 458-564 ppm. These values resemble diagnostic levels known for two species of passerine birds, but they exceed published levels for two free-tailed bats from Carlsbad Caverns, New Mexico.

  14. Variability of human brain and muscle optical pathlength in different experimental conditions

    NASA Astrophysics Data System (ADS)

    Ferrari, Marco; Wei, Qingnong; De Blasi, Roberto A.; Quaresima, Valentina; Zaccanti, Giovanni

    1993-09-01

    Pathlength can be evaluated by measuring the time taken from a picosecond (psec) near infrared (IR) laser pulse to cross tissue. Differential pathlength factor (DPF) is calculated by dividing the mean pathlength by the inter-fiber distance. Data on DPF variability on humans are scarce. We investigated the forehead and forearm DPF in resting conditions and dynamically during brain hypoxic hypoxia, muscle ischemia and voluntary isometric exercise. At 3 cm inter optode spacing DPF at 800 nm was 4.3 +/- 0.2 (n equals 14, mean +/- SD) on the forearm, and 6.5 +/- 0.5 (n equals 8) on the forehead. Brain, muscle, and breast DPF values were almost constant over the inter optode spacing 2.5 - 4 cm. DPF was roughly constant in the central region of forehead. DPF drastically decreased under the fronto- temporal junction for the presence of muscle in the optical field. DPF decreased 5 - 10% during forearm ischemia with and without maximal voluntary contraction and during brain hypoxic hypoxia.

  15. Progesterone alleviates acute brain injury via reducing apoptosis and oxidative stress in a rat experimental subarachnoid hemorrhage model.

    PubMed

    Cai, Jing; Cao, Shenglong; Chen, Jingyin; Yan, Feng; Chen, Gao; Dai, Yuying

    2015-07-23

    This study aimed to investigate the therapeutic effect of progesterone on acute brain injury after subarachnoid hemorrhage (SAH). Subarachnoid hemorrhage was induced in male Sprague-Dawley rats (n=72) by endovascular perforation. Progesterone (8 mg/kg or 16 mg/kg) was administered to rats at 1, 6, and 12h after SAH. Mortality, neurologic deficits, cell apoptosis, expression of apoptotic markers, the level of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were assayed at 24h after experimental SAH. Mortality, cell apoptosis and the expression of caspase-3 were decreased, and improved neurological function was observed in the progesterone-treated SAH rats. Further, exploration demonstrated that progesterone significantly reduced the ratio of Bax/Bcl-2 and attenuated the release of cytochrome c from mitochondria. Progesterone also induced anti-oxidative effects by elevating the activity of SOD and decreasing MDA content after SAH. Furthermore, dose-response relationships for progesterone treatment were observed, and high doses of progesterone enhanced the neuroprotective effects. Progesterone treatment could alleviate acute brain injury after SAH by inhibiting cell apoptosis and decreasing damage due to oxidative stress. The mechanism involved in the anti-apoptotic effect was related to the mitochondrial pathway. These results indicate that progesterone possesses the potential to be a novel therapeutic agent for the treatment of acute brain injury after SAH.

  16. Massive edema of the ovary associated with androgenic manifestations.

    PubMed

    Siller, B S; Gelder, M S; Alvarez, R D; Partridge, E E

    1995-11-01

    Massive ovarian edema is a rare tumor-like condition of the ovary characterized by marked enlargement of one or both ovaries due to marked accumulation of edema fluid in the ovarian stroma. This paper reviews the literature on massive ovarian edema and presents a case associated with androgenic manifestations.

  17. Beta-adrenergic agonist therapy accelerates the resolution of hydrostatic pulmonary edema in sheep and rats.

    PubMed

    Frank, J A; Wang, Y; Osorio, O; Matthay, M A

    2000-10-01

    To determine whether beta-adrenergic agonist therapy increases alveolar liquid clearance during the resolution phase of hydrostatic pulmonary edema, we studied alveolar and lung liquid clearance in two animal models of hydrostatic pulmonary edema. Hydrostatic pulmonary edema was induced in sheep by acutely elevating left atrial pressure to 25 cmH(2)O and instilling 6 ml/kg body wt isotonic 5% albumin (prepared from bovine albumin) in normal saline into the distal air spaces of each lung. After 1 h, sheep were treated with a nebulized beta-agonist (salmeterol) or nebulized saline (controls), and left atrial pressure was then returned to normal. beta-Agonist therapy resulted in a 60% increase in alveolar liquid clearance over 3 h (P < 0.001). Because the rate of alveolar fluid clearance in rats is closer to human rates, we studied beta-agonist therapy in rats, with hydrostatic pulmonary edema induced by volume overload (40% body wt infusion of Ringer lactate). beta-Agonist therapy resulted in a significant decrease in excess lung water (P < 0.01) and significant improvement in arterial blood gases by 2 h (P < 0.03). These preclinical experimental studies support the need for controlled clinical trials to determine whether beta-adrenergic agonist therapy would be of value in accelerating the resolution of hydrostatic pulmonary edema in patients.

  18. Role of hepcidin and its downstream proteins in early brain injury after experimental subarachnoid hemorrhage in rats.

    PubMed

    Tan, Guanping; Liu, Liu; He, Zhaohui; Sun, Jiujun; Xing, Wenli; Sun, Xiaochuan

    2016-07-01

    Early brain injury (EBI) is a major cause of mortality from subarachnoid hemorrhage (SAH). We aimed to study the pathophysiology of EBI and explore the role of hepcidin, a protein involved in iron homeostatic regulation, and its downstream proteins. One hundred and thirty-two male Sprague-Dawley rats were assigned into groups (n = 24/group): sham, SAH, SAH + hepcidin, SAH + hepcidin-targeting small interfering ribonucleic acid (siRNA), and SAH + scramble siRNA. Three hepcidin-targeting siRNAs and one scramble siRNA for hepcidin were injected 24 h before hemorrhage induction, and hepcidin protein was injected 30 min before induction. The rats were neurologically evaluated at 24 h and euthanized at 72 h. Hepcidin, ferroportin-1, and ceruloplasmin protein expression were measured by immunohistochemistry and Western blotting. Brain water content, blood-brain barrier (BBB) leakage, non-heme tissue iron and Garcia scale were evaluated. Hepcidin expression increased in the cerebral cortex and hippocampus after experimental SAH (P < 0.05 compared to sham), while ferroportin-1 and ceruloplasmin decreased (P < 0.05). Hepcidin injection lowered the expression of ferroportin-1 and ceruloplasmin further but siRNA reduced the levels of hepcidin (P < 0.05 compared to SAH) resulting in recovery of ferroportin-1 and ceruloplasmin levels. Apoptosis was increased in SAH rats compared to sham (P < 0.05) and increased slightly more by hepcidin, but decreased by siRNA (P < 0.05 compared to SAH). SAH rats had lower neurological scores, high brain water content, BBB permeability, and non-heme tissue iron (P < 0.05). In conclusion, downregulation of ferroportin-1 and ceruloplasmin caused by hepcidin enhanced iron-dependent oxidative damage and may be the potential mechanism of SAH.

  19. [Thiamine metabolism disorders in the rat brain in experimental alcoholism and a possibility of their correction by vitamin E].

    PubMed

    Parkhomenko, Iu M; Pilipchuk, S Iu; Sidorova, A A; Stepanenko, S P; Chekhovskaia, L I; Donchenko, G V

    2008-01-01

    The influence of the chronic consumption of alcohol on biochemical reactions of thiamine metabolism in the rat brain is investigated. It is shown that the content of thiamine diphosphate (ThDP) in the brain tissue does not change at these conditions, though there is an essential decrease in the thiamine-kinase activity. The ability of the isolated nerve terminals (synaptosomes) to absorb labelled thiamine also decreases under this condition. The specified disturbances are probably the reason for deceleration of exchange of free (uncombined with proteins) thiamine and its phosphates in nervous cells, that results in the observed reduction in activity of pyruvate dehydrogenase complex (PDC) due to inactivation by phosphorylation. Thiamine-binding and thiaminetriphosphatase activities of thiamine-binding protein (ThBP) in the structure of synaptic plasma membranes (SPM), isolated from the rat brain in various experimental groups, have been investigated. The increase, with respect to control, in the both enzymes activity in SPM, isolated from the brain of rats with chronic alcoholism has been shown. Kinetic researches testify to an increase of affinity of SPM (ThBP) for thiamine and thiaminetriphosphate in these conditions. When vitamin E was given to animals with a model of chronic alcoholism the normalization of PDC activity in nervous cells was observed, that can testify to the transient character of these changes. Inability of vitamin E to normalize biological activities of ThBP in PMS, that has been analyzed, can testify to more deep disturbances in the structure of SPM or thiamine binding protein in their structure.

  20. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury.

    PubMed

    Chang, Ching-Ping; Chio, Chung-Ching; Cheong, Chong-Un; Chao, Chien-Ming; Cheng, Bor-Chieh; Lin, Mao-Tsun

    2013-02-01

    Bone-marrow-derived human MSCs (mesenchymal stem cells) support repair when administered to animals with TBI (traumatic brain injury) in large part through secreted trophic factors. We directly tested the ability of the culture medium (or secretome) collected from human MSCs under normoxic or hypoxic conditions to protect neurons in a rat model of TBI. Concentrated conditioned medium from cultured human MSCs or control medium was infused through the tail vein of rats subjected to TBI. We have demonstrated that MSCs cultured in hypoxia were superior to those cultured in normoxia in inducing expression of both HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor) in the cultured medium. We showed further that rats treated with the secretome from both normoxic- and hypoxic-preconditioned MSCs performed significantly better than the controls in both motor and cognitive functional test. Subsequent post-mortem evaluation of brain damage at the 4-day time point confirmed that both normoxic- and hypoxic-preconditioned MSC secretome-treated rats had significantly greater numbers of newly forming neurons, but significantly less than the controls in brain damaged volume and apoptosis. The TBI rats treated with hypoxic-preconditioned MSC secretome performed significantly better in both motor and cognitive function tests and neurogenesis, and had significantly less brain damage than the TBI rats treated with the normoxic-preconditioned MSC secretome. Collectively, these findings suggest that MSCs secrete bioactive factors, including HGF and VEGF, that stimulate neurogenesis and improve outcomes of TBI in a rat model. Hypoxic preconditioning enhances the secretion of these bioactive factors from the MSCs and the therapeutic potential of the cultured MSC secretome in experimental TBI.

  1. Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats

    PubMed Central

    Zhang, Xiang-Sheng; Wu, Qi; Wu, Ling-Yun; Ye, Zhen-Nan; Jiang, Tian-Wei; Li, Wei; Zhuang, Zong; Zhou, Meng-Liang; Zhang, Xin; Hang, Chun-Hua

    2016-01-01

    Increasing evidence indicates that sirtuin 1 (SIRT1) is implicated in a wide range of cellular functions, such as oxidative stress, inflammation and apoptosis. The aim of this study was to investigate the change of SIRT1 in the brain after subarachnoid hemorrhage (SAH) and its role on SAH-induced early brain injury (EBI). In the first set of experiments, rats were randomly divided into sham group and SAH groups at 2, 6, 12, 24, 48 and 72 h. The expression of SIRT1 was evaluated by western blot analysis, immunohistochemistry and immunofluorescence. In another set of experiments, SIRT1-specific inhibitor (sirtinol) and activator (activator 3) were exploited to study the role of SIRT1 in SAH-induced EBI. It showed that the protein level of SIRT1 was markedly elevated at the early stage of SAH and peaked at 24 h after SAH. The expression of SIRT1 could be observed in neurons and microglia, and the enhanced SIRT1 was mainly located in neurons after SAH. Administration of sirtinol inhibited the expression and activation of SIRT1 pathways after SAH, while activator 3 enhanced the expression and activation of SIRT1 pathways after SAH. In addition, inhibition of SIRT1 could exacerbate forkhead transcription factors of the O class-, nuclear factor-kappa B- and p53-induced oxidative damage, neuroinflammation and neuronal apoptosis, leading to aggravated brain injury after SAH. In contrast, activator 3 treatment could reduce forkhead transcription factors of the O class-, nuclear factor-kappa B-, and p53-induced oxidative damage, neuroinflammation and neuronal apoptosis to protect against EBI. These results suggest that SIRT1 plays an important role in neuroprotection against EBI after SAH by deacetylation and subsequent inhibition of forkhead transcription factors of the O class-, nuclear factor-kappa B-, and p53-induced oxidative, inflammatory and apoptotic pathways. SIRT1 might be a new promising molecular target for SAH. PMID:27735947

  2. Effect of experimental genital mycoplasmosis on gene expression in the fetal brain.

    PubMed

    Burton, Aiyanna; Kizhner, Oskar; Brown, Mary B; Peltier, Morgan R

    2012-01-01

    Neurodevelopmental disorders may have their origins during intrauterine development. We used a well-defined animal model to test whether hematogenous infection with genital mycoplasma would alter the expression of genes associated with autism spectrum disorders (ASD). In a preliminary experiment, rats were exposed at 14 days gestation (GD14) to Mycoplasma pulmonis or sterile broth and sacrificed at GD18. Infection and inflammation status of the pups was ascertained by culture and cytokine ELISA. Intra-cardiac injection of 10(6)CFU M. pulmonis resulted in amniotic infection of 100% of the pups and was accompanied by higher levels of IL-1β in amniotic fluids. In a second experiment, animals were infected in a similar manner but dams and their litters were sacrificed at GD18, GD21 or postpartum day 3 (PPD3). Expression of proinflammatory cytokines and neurodevelopmental genes in the fetal brains was evaluated. M. pulmonis infection significantly increased the expression of IL-1β, TNF-α and COX-2 in fetal and neonatal brains. Expression of GFAP and CD11b, markers for activation on astrocytes and microglial cells, respectively, was also increased for infected animals. M. pulmonis significantly increased SHANK-3 gene expression at GD21 and PPD3 and PCP-2 expression at GD21. No effect of M. pulmonis infection on Reelin, PTEN, BDNF or HGF was detected. These data suggest that M. pulmonis infection at GD14 increases the expression of proinflammatory genes in the perinatal brain. Further studies with earlier time-points of infection and ones that use behavioral outcomes are needed to better understand the potential role of genital mycoplasmosis on pychopathology.

  3. Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids.

    PubMed

    Amorini, Angela Maria; Lazzarino, Giacomo; Di Pietro, Valentina; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2017-03-01

    In this study, concentrations of free amino acids (FAA) and amino group containing compounds (AGCC) following graded diffuse traumatic brain injury (mild TBI, mTBI; severe TBI, sTBI) were evaluated. After 6, 12, 24, 48 and 120 hr aspartate (Asp), glutamate (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), histidine (His), glycine (Gly), threonine (Thr), citrulline (Cit), arginine (Arg), alanine (Ala), taurine (Tau), γ-aminobutyrate (GABA), tyrosine (Tyr), S-adenosylhomocysteine (SAH), l-cystathionine (l-Cystat), valine (Val), methionine (Met), tryptophane (Trp), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), ornithine (Orn), lysine (Lys), plus N-acetylaspartate (NAA) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). Sham-operated animals (n = 6) were used as controls. Results demonstrated that mTBI caused modest, transient changes in NAA, Asp, GABA, Gly, Arg. Following sTBI, animals showed profound, long-lasting modifications of Glu, Gln, NAA, Asp, GABA, Ser, Gly, Ala, Arg, Citr, Tau, Met, SAH, l-Cystat, Tyr and Phe. Increase in Glu and Gln, depletion of NAA and Asp increase, suggested a link between NAA hydrolysis and excitotoxicity after sTBI. Additionally, sTBI rats showed net imbalances of the Glu-Gln/GABA cycle between neurons and astrocytes, and of the methyl-cycle (demonstrated by decrease in Met, and increase in SAH and l-Cystat), throughout the post-injury period. Besides evidencing new potential targets for novel pharmacological treatments, these results suggest that the force acting on the brain tissue at the time of the impact is the main determinant of the reactions ignited and involving amino acid metabolism.

  4. Propagation of Aß pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies.

    PubMed

    Eisele, Yvonne S; Duyckaerts, Charles

    2016-01-01

    In brains of patients with Alzheimer's disease (AD), Aβ peptides accumulate in parenchyma and, almost invariably, also in the vascular walls. Although Aβ aggregation is, by definition, present in AD, its impact is only incompletely understood. It occurs in a stereotypical spatiotemporal distribution within neuronal networks in the course of the disease. This suggests a role for synaptic connections in propagating Aβ pathology, and possibly of axonal transport in an antero- or retrograde way-although, there is also evidence for passive, extracellular diffusion. Striking, in AD, is the conjunction of tau and Aβ pathology. Tau pathology in the cell body of neurons precedes Aβ deposition in their synaptic endings in several circuits such as the entorhino-dentate, cortico-striatal or subiculo-mammillary connections. However, genetic evidence suggests that Aβ accumulation is the first step in AD pathogenesis. To model the complexity and consequences of Aβ aggregation in vivo, various transgenic (tg) rodents have been generated. In rodents tg for the human Aβ precursor protein, focal injections of preformed Aβ aggregates can induce Aβ deposits in the vicinity of the injection site, and over time in more distant regions of the brain. This suggests that Aβ shares with α-synuclein, tau and other proteins the property to misfold and aggregate homotypic molecules. We propose to group those proteins under the term "propagons". Propagons may lack the infectivity of prions. We review findings from neuropathological examinations of human brains in different stages of AD and from studies in rodent models of Aβ aggregation and discuss putative mechanisms underlying the initiation and spread of Aβ pathology.

  5. Alveolar edema fluid clearance and acute lung injury.

    PubMed

    Berthiaume, Yves; Matthay, Michael A

    2007-12-15

    Although lung-protective ventilation strategies have substantially reduced mortality of acute lung injury patients there is still a need for new therapies that can further decrease mortality in patients with acute lung injury. Studies of epithelial ion and fluid transport across the distal pulmonary epithelia have provided important new concepts regarding potential new therapies for acute lung injury. Overall, there is convincing evidence that the alveolar epithelium is not only a tight epithelial barrier that resists the movement of edema fluid into the alveoli, but it is also actively involved in the transport of ions and solutes, a process that is essential for edema fluid clearance and the resolution of acute lung injury. The objective of this article is to consider some areas of recent progress in the field of alveolar fluid transport under normal and pathologic conditions. Vectorial ion transport across the alveolar and distal airway epithelia is the primary determinant of alveolar fluid clearance. The general paradigm is that active Na(+) and Cl(-) transport drives net alveolar fluid clearance, as demonstrated in several different species, including the human lung. Although these transport processes can be impaired in severe lung injury, multiple experimental studies suggest that upregulation of Na(+) and Cl(-) transport might be an effective therapy in acute lung injury. We will review mechanisms involved in pharmacological modulation of ion transport in lung injury with a special focus on the use of beta-adrenergic agonists which has generated considerable interest and is a promising therapy for clinical acute lung injury.

  6. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  7. Acute vasogenic edema induced by thrombosis of a giant intracranial aneurysm: a cause of pseudostroke after therapeutic occlusion of the parent vessel.

    PubMed

    Hammoud, Dima; Gailloud, Philippe; Olivi, Alessandro; Murphy, Kieran J

    2003-01-01

    A 16-year-old male adolescent presenting with acute retro-orbital pain underwent emergent internal carotid occlusion for a giant cavernous aneurysm. Three weeks later, the patient complained of headache and right hemiparesis, which suggested an acute stroke. CT and MR imaging revealed vasogenic brain edema without infarct. The symptoms rapidly resolved with steroid therapy. Follow-up CT showed resolution of the edema. The imaging characteristics, clinical implications, and etiology of vasogenic edema occurring after thrombosis of a giant intracranial aneurysm are discussed.

  8. [Epidemiology and development of macular edema in the diabetic].

    PubMed

    Zghal-Mokni, I; Jeddi, A; Boujemaa, C; Ben Hadj Alouane, W; Gaigi, S; Ayed, S

    2001-12-01

    Macular edema is the first cause of blindness in diabetics. Macular edema is defined by macular thickening or deposits of hard exudates. On 1000 diabetics examined over 2 years, 60 patients had a macular edema of which we retained 38 cases(54 eyes). All the patients had an ophthalmologic examination with a retinal angiography. Laser photocoagulation with green Argon laser was instituted in 50 eyes. 63% had background rethinopathy. Total or partial regression of the edema happened in 84.4%. Laser photocoagulation decrease by the half vision loss risk. Interest of early detection and treatment to decrease blindness incidence of macular edema in diabetics.

  9. The evolution of scuba divers pulmonary edema.

    PubMed

    Edmonds, Carl

    2016-01-01

    The evolution of scuba divers pulmonary edema is described. When discovered in 1981, it was believed to be a cold-induced response in a submerged, otherwise healthy, scuba diver. The clinical features are described and discussed, as are the demographics. An alleged prevalence of 1.1% was complicated by problematic statistics and an apparent increase in reported cases. Recurrences both while diving and swimming or snorkeling were common. More recent case reports and surveys are described, identifying predisposing factors and associations, including cardiac pathology. Stress cardiomyopathies, reversible myocardial disorder or Takotsubo cardiomyopathy, may complicate the presentation, especially in older females. Relevant cardiac investigations and autopsy findings are reviewed. Disease severity and potential lethality of scuba divers pulmonary edema became more apparent early this century, and these influence our current recommendations to survivors. First aid and treatment are also discussed.

  10. Influenza leaves a TRAIL to pulmonary edema.

    PubMed

    Brauer, Rena; Chen, Peter

    2016-04-01

    Influenza infection can cause acute respiratory distress syndrome (ARDS), leading to poor disease outcome with high mortality. One of the driving features in the pathogenesis of ARDS is the accumulation of fluid in the alveoli, which causes severe pulmonary edema and impaired oxygen uptake. In this issue of the JCI, Peteranderl and colleagues define a paracrine communication between macrophages and type II alveolar epithelial cells during influenza infection where IFNα induces macrophage secretion of TRAIL that causes endocytosis of Na,K-ATPase by the alveolar epithelium. This reduction of Na,K-ATPase expression decreases alveolar fluid clearance, which in turn leads to pulmonary edema. Inhibition of the TRAIL signaling pathway has been shown to improve lung injury after influenza infection, and future studies will be needed to determine if blocking this pathway is a viable option in the treatment of ARDS.

  11. Experimental diffuse brain injury results in regional alteration of gross vascular morphology independent of neuropathology

    PubMed Central

    Ziebell, Jenna M.; Rowe, Rachel K.; Harrison, Jordan L.; Eakin, Katharine C.; Colburn, Taylor; Willyerd, F. Anthony; Lifshitz, Jonathan

    2016-01-01

    Primary objective A dynamic relationship exists between diffuse traumatic brain injury and changes to the neurovascular unit. The purpose of this study was to evaluate vascular changes during the first week following diffuse TBI. We hypothesized that pathology is associated with modification of the vasculature. Methods Male Sprague-Dawley rats underwent either midline fluid percussion injury or sham-injury. Brain tissue was collected 1d, 2d, or 7d post-injury or sham-injury (n=3/time point). Tissue was collected and stained by de Olmos amino-cupric silver technique to visualize neuropathology, or animals were perfused with AltaBlue casting resin before high-resolution vascular imaging. The average volume, surface area, radius, branching, and tortuosity of the vessels were evaluated across three regions of interest. Results In M2, average vessel volume (p<0.01) and surface area (p<0.05) were significantly larger at 1d relative to 2d, 7d and sham. In S1BF and VPM, no significant differences in the average vessel volume or surface area at any of the post-injury time points were observed. No significant changes in average radius, branching, or tortuosity were observed. Conclusions Preliminary findings suggest gross morphological changes within the vascular network likely represent an acute response to mechanical forces of injury, rather than delayed or chronic pathological processes. PMID:26646974

  12. Behavioral, blood, and magnetic resonance imaging biomarkers of experimental mild traumatic brain injury

    PubMed Central

    Wright, David K.; Trezise, Jack; Kamnaksh, Alaa; Bekdash, Ramsey; Johnston, Leigh A.; Ordidge, Roger; Semple, Bridgette D.; Gardner, Andrew J.; Stanwell, Peter; O’Brien, Terence J.; Agoston, Denes V.; Shultz, Sandy R.

    2016-01-01

    Repeated mild traumatic brain injuries (mTBI) may lead to serious neurological consequences, especially if re-injury occurs within the period of increased cerebral vulnerability (ICV) triggered by the initial insult. MRI and blood proteomics might provide objective measures of pathophysiological changes in mTBI, and indicate when the brain is no longer in a state of ICV. This study assessed behavioral, MRI, and blood-based markers in a rat model of mTBI. Rats were given a sham or mild fluid percussion injury (mFPI), and behavioral testing, MRI, and blood collections were conducted up to 30 days post-injury. There were cognitive impairments for three days post-mFPI, before normalizing by day 5 post-injury. In contrast, advanced MRI (i.e., tractography) and blood proteomics (i.e., vascular endothelial growth factor) detected a number of abnormalities, some of which were still present 30 days post-mFPI. These findings suggest that MRI and blood proteomics are sensitive measures of the molecular and subtle structural changes following mTBI. Of particular significance, this study identified novel tractography measures that are able to detect mTBI and may be more sensitive than traditional diffusion-tensor measures. Furthermore, the blood and MRI findings may have important implications in understanding ICV and are translatable to the clinical setting. PMID:27349514

  13. The molecular mechanisms affecting N-acetylaspartate homeostasis following experimental graded traumatic brain injury.

    PubMed

    Di Pietro, Valentina; Amorini, Angela Maria; Tavazzi, Barbara; Vagnozzi, Roberto; Logan, Ann; Lazzarino, Giacomo; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio

    2014-03-24

    To characterize the molecular mechanisms of N-acetylaspartate (NAA) metabolism following traumatic brain injury (TBI), we measured the NAA, adenosine triphosphate (ATP) and adenosine diphosphate (ADP) concentrations and calculated the ATP/ADP ratio at different times from impact, concomitantly evaluating the gene and protein expressions controlling NAA homeostasis (the NAA synthesizing and degrading enzymes N-acetyltransferase 8-like and aspartoacylase, respectively) in rats receiving either mild or severe TBI. The reversible changes in NAA induced by mild TBI were due to a combination of transient mitochondrial malfunctioning with energy crisis (decrease in ATP and in the ATP/ADP ratio) and modulation in the gene and protein levels of N-acetyltransferase 8-like and increase of aspartoacylase levels. The irreversible decrease in NAA following severe TBI, was instead characterized by profound mitochondrial malfunctioning (constant 65% decrease of the ATP/ADP indicating permanent impairment of the mitochondrial phosphorylating capacity), dramatic repression of the N-acetyltransferase 8-like gene and concomitant remarkable increase in the aspartoacylase gene and protein levels. The mechanisms underlying changes in NAA homeostasis following graded TBI might be of note for possible new therapeutic approaches and will help in understanding the effects of repeat concussions occurring during particular periods of the complex NAA recovery process, coincident with the so called window of brain vulnerability.

  14. The brain in experimental portal-systemic encephalopathy. I. Morphological changes in three animal models.

    PubMed

    Pilbeam, C M; Anderson, R M; Bhathal, P S

    1983-08-01

    Morphological features of three models of portal-systemic encephalopathy in the rat were studied and compared with plasma ammonia levels and clinical observations. Carbon tetrachloride-induced cirrhosis with terminal coma produced a wide variety of structural changes in the brain whose severity was related to plasma ammonia levels at the time of death. These changes included diffuse gliosis, Alzheimer cells and focal neuronal necrosis but did not include spongiform changes in cerebral or cerebellar cortex. Porta-caval anastomosis (PCA) did not appear to produce any significant neurological symptoms. Rats with PCA of durations 1-30 weeks were studied and over this time the structural changes included astrocytic nuclear swelling, swelling of perivascular astrocytic foot-processes and spongiform change in the molecular layer of the cerebellum. No evidence of Alzheimer cells or gliosis was seen and plasma ammonia levels at no stage exceed twice the normal levels. Porta-caval anastomosis followed by gavage feeding with ammoniated cationic exchange resin produced severe neurological symptoms and marked hyperammonaemia. In these animals not only astrocytes but oligodendrocytes and neurons showed nuclear and cytoplasmic swelling and numerous Alzheimer type II cells were seen, together with a diffuse gliosis, but no evidence of spongiform change in the cerebral or cerebellar cortex was seen. It is concluded that ammonium ions are important in the genesis of morphological changes in the brain in rat models of portal-systemic encephalopathy, but the relevance of these changes to neurological dysfunction is uncertain.

  15. Evidence of oxidative stress in brain and liver of young rats submitted to experimental galactosemia.

    PubMed

    Castro, Márcia B; Ferreira, Bruna K; Cararo, José Henrique; Chipindo, Adália E; Magenis, Marina L; Michels, Monique; Danielski, Lucinéia G; de Oliveira, Marcos R; Ferreira, Gustavo C; Streck, Emilio L; Petronilho, Fabricia; Schuck, Patrícia F

    2016-12-01

    Galactosemia is a disorder of galactose metabolism, leading to the accumulation of this carbohydrate. Galactosemic patients present brain and liver damage. For evaluated oxidative stress, 30-day-old males Wistar rats were divided into two groups: galactose group, that received a single injection of this carbohydrate (5 μmol/g), and control group, that received saline 0.9 % in the same conditions. One, twelve or twenty-four hours after the administration, animals were euthanized and cerebral cortex, cerebellum, and liver were isolated. After one hour, it was found a significant increase in TBA-RS levels, nitrate and nitrite and protein carbonyl contents in cerebral cortex, as well as protein carbonyl content in the cerebellum and in hepatic level of TBA-RS, and a significant decrease in nitrate and nitrite contents in cerebellum. TBA-RS levels were also found increased in all studied tissues, as well as nitrate and nitrite contents in cerebral cortex and cerebellum, that also present increased protein carbonyl content and impairments in the activity of antioxidant enzymes of rats euthanized at twelve hours. Finally, animals euthanized after twenty-four hours present an increase of TBA-RS levels in studied tissues, as well as the protein carbonyl content in cerebellum and liver. These animals also present an increased nitrate and nitrite content and impairment of antioxidant enzymes activities. Taken together, our data suggest that acute galactose administration impairs redox homeostasis in brain and liver of rats.

  16. Brain-derived neurotrophic factor and the course of experimental cerebral malaria.

    PubMed

    Linares, María; Marín-García, Patricia; Pérez-Benavente, Susana; Sánchez-Nogueiro, Jesús; Puyet, Antonio; Bautista, José M; Diez, Amalia

    2013-01-15

    The role of neurotrophic factors on the integrity of the central nervous system (CNS) during cerebral malaria (CM) infection remains obscure, but the long-standing neurocognitive sequelae often observed in rescued children can be attributed in part to the modulation of neuronal survival and synaptic plasticity. To discriminate the contribution of key responses in the time-sequence of the pathogenic events that trigger the development of neurocognitive malaria syndrome we defined four stages (I-IV) of the neurological progression of CM in C57BL/6 mice infected with Plasmodium berghei ANKA. Upregulation of ICAM-1, VCAM-1, e-selectin and p-selectin expression was detected in all cerebral regions before parasitized red blood cells (pRBC) accumulation. As the severity of symptoms increased, BDNF mRNA progressively diminished in several brain regions, earliest in the thalamus-hypothalamus, cerebellum, brainstem and cortex, and correlated with a four-stage disease sequence. Immunohistochemical confocal microscopy revealed changes in the BDNF distribution pattern, suggesting altered axonal transport. During CM progression, molecular markers of neurological infection and inflammation in the parasite and the host, respectively, were accompanied by a switch in the brain constitutive proteasome to the immunoproteasome, which could impede normal protein turnover. In parallel with BDNF downregulation, NCAM expression also diminished with increased CM severity. Together, these data suggest that changes in BDNF availability could be involved in the pathogenesis of CM.

  17. Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia

    PubMed Central

    Brea, David; Agulla, Jesús; Rodríguez-Yáñez, Manuel; Barral, David; Ramos-Cabrer, Pedro; Campos, Francisco; Almeida, Angeles; Dávalos, Antoni; Castillo, José

    2014-01-01

    Brain ischaemia (stroke) triggers an intense inflammatory response predominately mediated by the accumulation of inflammatory cells and mediators in the ischaemic brain. In this context, regulatory T (Treg) cells, a subpopulation of CD4+ T cells with immunosuppressive and anti-inflammatory properties, are activated in the late stages of the disease. To date, the potential therapeutic usefulness of Treg cells has not been tested. In this study, we aimed to investigate whether Treg cells exert protection/repair following stroke. Both the adoptive transfer of Treg cells into ischaemic rats and the stimulation of endogenous T-cell proliferation using a CD28 superagonist reduced the infarct size at 3–28 days following the ischaemic insult. Moreover, T cell-treated animals had higher levels of FoxP3 and lower levels of IL-1β, CD11b+ and CD68+ cells in the infarcted hemisphere when compared with control animals. However, T-cell treatment did not alter the rate of proliferation of NeuN-, NCAM- or CD31-positive cells, thereby ruling out neurogenesis and angiogenesis in protection. These results suggest that adoptive transfer of T cells is a promising therapeutic strategy against the neurological consequences of stroke. PMID:24889329

  18. Acetyl-CoA deficit in brain mitochondria in experimental thiamine deficiency encephalopathy.

    PubMed

    Jankowska-Kulawy, Agnieszka; Bielarczyk, Hanna; Pawełczyk, Tadeusz; Wróblewska, Małgorzata; Szutowicz, Andrzej

    2010-12-01

    Several pathologic conditions are known to cause thiamine deficiency, which induce energy shortages in all tissues, due to impairment of pyruvate decarboxylation. Brain is particularly susceptible to these conditions due to its high rate of glucose to pyruvate-driven energy metabolism. However, cellular compartmentalization of a key energy metabolite, acetyl-CoA, in this pathology remains unknown. Pyrithiamine-evoked thiamine deficiency caused no significant alteration in pyruvate dehydrogenase and 30% inhibition of α-ketoglutarate dehydrogenase activities in rat whole forebrain mitochondria. It also caused 50% reduction of the metabolic flux of pyruvate through pyruvate dehydrogenase, 78% inhibition of its flux through α-ketoglutarate dehydrogenase steps, and nearly 60% decrease of intramitochondrial acetyl-CoA content, irrespective of the metabolic state. State 3 caused a decrease in citrate and an increase in α-ketoglutarate accumulation. These alterations were more evident in thiamine-deficient mitochondria. Simultaneously thiamine deficiency caused no alteration of relative, state 3-induced increases in metabolic fluxes through pyruvate and α-ketoglutarate dehydrogenase steps. These data indicate that a shortage of acetyl-CoA in the mitochondrial compartment may be a primary signal inducing impairment of neuronal and glial cell functions and viability in the thiamine-deficient brain.

  19. Diagnosis and management of cardiogenic pulmonary edema.

    PubMed

    Alwi, Idrus

    2010-07-01

    Acute cardiogenic pulmonary edema (ACPE) is a common cardiogenic emergency with a quite high in-hospital mortality rate. ACPE is defined as pulmonary edema with increased secondary hydrostatic capillary pressure due to elevated pulmonary venous pressure. Increased hydrostatic pressure may result from various causes including excessive administration of intravascular volume, obstruction of pulmonary venous outflow or secondary left ventricular failure due to left ventricular systolic or diastolic dysfunction. ACPE must be distinguished from pulmonary edema associated with injury of alveolar capillary membrane caused by various etiologies, i.e. direct pulmonary injury such as pneumonia and indirect pulmonary injury such as sepsis. Numerous clinical manifestations may differentiate ACPE and Non-ACPE. ACPE usually presents with a history of acute cardiac catastrophe. Physical examination reveals a low-flow state, S3 gallop, jugular venous distention and fine crepitant rales with auscultation. The diagnosis of pulmonary edema is made based on symptoms and clinical signs are found through history taking, physical examination, ECG, chest X-ray, echocardiography and laboratory tests including blood gas analysis and specific biomarkers. Medical treatment of ACPE has 3 main objectives, i.e.: (1) reduced venous return (preload reduction); (2) reduced resistance of systemic vascular (afterload reduction); and (3) inotropic support in some cases. Treatment that can be administered includes: vasodilator when there is normal or high BP, diuretics when there is volume overload or fluid retention, and inotropic drugs when there is hypotension or signs of organ hypoperfusion. Intubation and mechanical ventilation may be necessary to achieve adequate oxygenation.

  20. Cerebral edema induced in mice by a convulsive dose of soman. Evaluation through diffusion-weighted magnetic resonance imaging and histology

    SciTech Connect

    Testylier, Guy . E-mail: guytestylier@crssa.net; Lahrech, Hana; Montigon, Olivier; Foquin, Annie; Delacour, Claire; Bernabe, Denis; Segebarth, Christoph; Dorandeu, Frederic; Carpentier, Pierre

    2007-04-15

    Purpose: In the present study, diffusion-weighted magnetic resonance imaging (DW-MRI) and histology were used to assess cerebral edema and lesions in mice intoxicated by a convulsive dose of soman, an organophosphate compound acting as an irreversible cholinesterase inhibitor. Methods: Three hours and 24 h after the intoxication with soman (172 {mu}g/kg), the mice were anesthetized with an isoflurane/N{sub 2}O mixture and their brain examined with DW-MRI. After the imaging sessions, the mice were sacrificed for histological analysis of their brain. Results: A decrease in the apparent diffusion coefficient (ADC) was detected as soon as 3 h after the intoxication and was found strongly enhanced at 24 h. A correlation was obtained between the ADC change and the severity of the overall brain damage (edema and cellular degeneration): the more severe the damage, the stronger the ADC drop. Anesthesia was shown to interrupt soman-induced seizures and to attenuate edema and cell change in certain sensitive brain areas. Finally, brain water content was assessed using the traditional dry/wet weight method. A significant increase of brain water was observed following the intoxication. Conclusions: The ADC decrease observed in the present study suggests that brain edema in soman poisoning is mainly intracellular and cytotoxic. Since entry of water into Brain was also evidenced, this type of edema is certainly mixed with others (vasogenic, hydrostatic, osmotic). The present study confirms the potential of DW-MRI as a non-invasive tool for monitoring the acute neuropathological consequences (edema and neurodegeneration) of soman-induced seizures.

  1. Laparoscopic Surgery Can Reduce Postoperative Edema Compared with Open Surgery

    PubMed Central

    Guo, Dong; Gong, Jianfeng; Cao, Lei; Wei, Yao; Guo, Zhen

    2016-01-01

    Aim. The study aimed to investigate the impact of laparoscopic surgery and open surgery on postoperative edema in Crohn's disease. Methods. Patients who required enterectomy were divided into open group (Group O) and laparoscopic group (Group L). Edema was measured using bioelectrical impedance analysis preoperatively (PRE) and on postoperative day 3 (POD3) and postoperative day 5 (POD5). The postoperative edema was divided into slight edema and edema by an edema index, defined as the ratio of total extracellular water to total body water. Results. Patients who underwent laparoscopic surgery had better clinical outcomes and lower levels of inflammatory and stress markers. A total of 31 patients (26.05%) developed slight edema and 53 patients (44.54%) developed edema on POD3. More patients developed postoperative edema in Group O than in Group L on POD3 (p = 0.006). The value of the edema index of Group O was higher than that of Group L on POD3 and POD5 (0.402 ± 0.010 versus 0.397 ± 0.008, p = 0.001; 0.401 ± 0.009 versus 0.395 ± 0.007, p = 0.039, resp.). Conclusions. Compared with open surgery, laparoscopic surgery can reduce postoperative edema, which may contribute to the better outcomes of laparoscopic surgery over open surgery. PMID:27777583

  2. High altitude pulmonary edema in mountain climbers.

    PubMed

    Korzeniewski, Krzysztof; Nitsch-Osuch, Aneta; Guzek, Aneta; Juszczak, Dariusz

    2015-04-01

    Every year thousands of ski, trekking or climbing fans travel to the mountains where they stay at the altitude of more than 2500-3000m above sea level or climb mountain peaks, often exceeding 7000-8000m. High mountain climbers are at a serious risk from the effects of adverse environmental conditions prevailing at higher elevations. They may experience health problems resulting from hypotension, hypoxia or exposure to low temperatures; the severity of those conditions is largely dependent on elevation, time of exposure as well as the rate of ascent and descent. A disease which poses a direct threat to the lives of mountain climbers is high altitude pulmonary edema (HAPE). It is a non-cardiogenic pulmonary edema which typically occurs in rapidly climbing unacclimatized lowlanders usually within 2-4 days of ascent above 2500-3000m. It is the most common cause of death resulting from the exposure to high altitude. The risk of HAPE rises with increased altitude and faster ascent. HAPE incidence ranges from an estimated 0.01% to 15.5%. Climbers with a previous history of HAPE, who ascent rapidly above 4500m have a 60% chance of illness recurrence. The aim of this article was to present the relevant details concerning epidemiology, pathophysiology, clinical symptoms, prevention, and treatment of high altitude pulmonary edema among climbers in the mountain environment.

  3. Assessing local tissue edema in postmastectomy lymphedema.

    PubMed

    Mayrovitz, H N

    2007-06-01

    Overall limb lymphedema can be assessed by several methods but none are suitable to determine local edema. Quantifying local edema could provide important information not previously available. Our goal was to determine the suitability of using the tissue dielectric constant (TDC) as and index of local tissue water to detect and quantify edema in postmastectomy patients with unilateral arm lymphedema. Segmental arm volume and TDC were measured in both arms of 18 women with unilateral lymphedema, and in 15 premenopausal and 15 postmenopausal controls. TDC was measured at a frequency of 300 MHz using open-ended coaxial probes with effective measuring depths of 0.5, 1.5, 2.5 and 5.0 mm. For patients and controls, absolute TDC depended on measurement depth but for any depth the TDC of lymphedematous segments was significantly greater than for non-affected contralateral arms (p<0.001). At a depth of 2.5 mm, the TDC ratio between arms for patients was 1.64+/-0.30 vs.1.04+/-0.04 for both control groups (p<0.001). No patient's TDC ratio was as low as 1.2 and no control subject's TDC ratio was as great as 1.2. Results suggest that this method is a good quantitative discriminator of the presence of lymphedema in patients with unilateral limb lymphedema.

  4. Hypothyroidism and non-cardiogenic pulmonary edema: are we missing something here?

    PubMed Central

    Nikolla, Dhimitri; Metta, V V S Ramesh

    2015-01-01

    Summary We report the case of a 42-year-old female with a history of hypothyroidism and asthma presenting with progressive dyspnea and orthopnea after 2 days of an upper respiratory tract infection (URTI). Based on the clinical and radiological findings, the patient was admitted as a case of cardiogenic pulmonary edema secondary to possible viral myocarditis. However, a normal brain natriuretic peptide (BNP) level with a normal ejection fraction (EF) on echocardiogram changed our working diagnosis from cardiogenic to non-cardiogenic pulmonary edema. Further questioning revealed a history of nocturnal snoring, frequent awakening, and daytime fatigue, suggesting a possible sleep apnea syndrome (SAS). In conclusion, we believe that SAS was the missing link between our patient's hypothyroidism and non-cardiogenic pulmonary edema. Learning points Always keep an open mind and look for a pathology that would explain the whole clinical scenario.The involvement of the respiratory system in hypothyroidism can range from SAS, pulmonary hypertension, hypoventilation, and severe respiratory failure.Hypothyroidism and SAS should be considered in the differential diagnosis of non-cardiogenic pulmonary edema.Patients should be instructed to take levothyroxine on an empty stomach 30–60 min before food to avoid erratic absorption of the hormone. PMID:25866647

  5. Propagation of alpha-synuclein pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies.

    PubMed

    Uchihara, Toshiki; Giasson, Benoit I

    2016-01-01

    Progressive aggregation of alpha-synuclein (αS) through formation of amorphous pale bodies to mature Lewy bodies or in neuronal processes as Lewy neurites may be the consequence of conformational protein changes and accumulations, which structurally represents "molecular template". Focal initiation and subsequent spread along anatomically connected structures embody "structural template". To investigate the hypothesis that both processes might be closely associated and involved in the progression of αS pathology, which can be observed in human brains, αS amyloidogenic precursors termed "seeds" were experimentally injected into the brain or peripheral nervous system of animals. Although these studies showed that αS amyloidogenic seeds can induce αS pathology, which can spread in the nervous system, the findings are still not unequivocal in demonstrating predominant transsynaptic or intraneuronal spreads either in anterograde or retrograde directions. Interpretation of some of these studies is further complicated by other concurrent aberrant processes including neuroimmune activation, injury responses and/or general perturbation of proteostasis. In human brain, αS deposition and neuronal degeneration are accentuated in distal axon/synapse. Hyperbranching of axons is an anatomical commonality of Lewy-prone systems, providing a structural basis for abundance in distal axons and synaptic terminals. This neuroanatomical feature also can contribute to such distal accentuation of vulnerability in neuronal demise and the formation of αS inclusion pathology. Although retrograde progression of αS aggregation in hyperbranching axons may be a consistent feature of Lewy pathology, the regional distribution and gradient of Lewy pathology are not necessarily compatible with a predictable pattern such as upward progression from lower brainstem to cerebral cortex. Furthermore, "focal Lewy body disease" with the specific isolated involvement of autonomic, olfactory or cardiac

  6. The Controlled Cortical Impact Model of Experimental Brain Trauma: Overview, Research Applications, and Protocol

    PubMed Central

    Osier, Nicole; Dixon, C. Edward

    2017-01-01

    Controlled cortical impact (CCI) is a commonly used and highly regarded model of brain trauma that uses a pneumatically or electromagnetically controlled piston to induce reproducible and well-controlled injury. The CCI model was originally used in ferrets and it has since been scaled for use in many other species. This chapter will describe the historical development of the CCI model, compare and contrast the pneumatic and electromagnetic models, and summarize key short- and long-term consequences of TBI that have been gleaned using this model. In accordance with the recent efforts to promote high-quality evidence through the reporting of common data elements (CDEs), relevant study details—that should be reported in CCI studies—will be noted. PMID:27604719

  7. Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia.

    PubMed

    Stokowska, Anna; Atkins, Alison L; Morán, Javier; Pekny, Tulen; Bulmer, Linda; Pascoe, Michaela C; Barnum, Scott R; Wetsel, Rick A; Nilsson, Jonas A; Dragunow, Mike; Pekna, Marcela

    2017-02-01

    Ischaemic stroke induces endogenous repair processes that include proliferation and differentiation of neural stem cells and extensive rewiring of the remaining neural connections, yet about 50% of stroke survivors live with severe long-term disability. There is an unmet need for drug therapies to improve recovery by promoting brain plasticity in the subacute to chronic phase after ischaemic stroke. We previously showed that complement-derived peptide C3a regulates neural progenitor cell migration and differentiation in vitro and that C3a receptor signalling stimulates neurogenesis in unchallenged adult mice. To determine the role of C3a-C3a receptor signalling in ischaemia-induced neural plasticity, we subjected C3a receptor-deficient mice, GFAP-C3a transgenic mice expressing biologically active C3a in the central nervous system, and their respective wild-type controls to photothrombotic stroke. We found that C3a overexpression increased, whereas C3a receptor deficiency decreased post-stroke expression of GAP43 (P < 0.01), a marker of axonal sprouting and plasticity, in the peri-infarct cortex. To verify the translational potential of these findings, we used a pharmacological approach. Daily intranasal treatment of wild-type mice with C3a beginning 7 days after stroke induction robustly increased synaptic density (P < 0.01) and expression of GAP43 in peri-infarct cortex (P < 0.05). Importantly, the C3a treatment led to faster and more complete recovery of forepaw motor function (P < 0.05). We conclude that C3a-C3a receptor signalling stimulates post-ischaemic neural plasticity and intranasal treatment with C3a receptor agonists is an attractive approach to improve functional recovery after ischaemic brain injury.

  8. A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson's disease.

    PubMed

    Bahat-Stroomza, Merav; Gilgun-Sherki, Yossi; Offen, Daniel; Panet, Hana; Saada, Ann; Krool-Galron, Nili; Barzilai, Aari; Atlas, Daphne; Melamed, Eldad

    2005-02-01

    It is believed that oxidative stress (OS) plays an important role in the loss of dopaminergic nigrostriatal neurons in Parkinson's disease (PD) and that treatment with antioxidants might be neuroprotective. However, most currently available antioxidants cannot readily penetrate the blood brain barrier after systemic administration. We now report that AD4, the novel low molecular weight thiol antioxidant and the N-acytel cysteine (NAC) related compound, is capable of penetrating the brain and protects neurons in general and especially dopaminergic cells against various OS-generating neurotoxins in tissue cultures. Moreover, we found that treatment with AD4 markedly decreased the damage of dopaminergic neurons in three experimental models of PD. AD4 suppressed amphetamine-induced rotational behaviour in rats with unilateral 6-OHDA-induced nigral lesion. It attenuated the reduction in striatal dopamine levels in mice treated with 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP). It also reduced the dopaminergic neuronal loss following chronic intrajugular administration of rotenone in rats. Our findings suggest that AD4 is a novel potential new neuroprotective drug that might be effective at slowing down nigral neuronal degeneration and illness progression in patients with PD.

  9. Brain Network Response to Acupuncture Stimuli in Experimental Acute Low Back Pain: An fMRI Study.

    PubMed

    Shi, Yu; Liu, Ziping; Zhang, Shanshan; Li, Qiang; Guo, Shigui; Yang, Jiangming; Wu, Wen

    2015-01-01

    Most neuroimaging studies have demonstrated that acupuncture can significantly modulate brain activation patterns in healthy subjects, while only a few studies have examined clinical pain. In the current study, we combined an experimental acute low back pain (ALBP) model and functional magnetic resonance imaging (fMRI) to explore the neural mechanisms of acupuncture analgesia. All ALBP subjects first underwent two resting state fMRI scans at baseline and during a painful episode and then underwent two additional fMRI scans, once during acupuncture stimulation (ACUP) and once during tactile stimulation (SHAM) pseudorandomly, at the BL40 acupoint. Our results showed that, compared with the baseline, the pain state had higher regional homogeneity (ReHo) values in the pain matrix, limbic system, and default mode network (DMN) and lower ReHo values in frontal gyrus and temporal gyrus; compared with the OFF status, ACUP yielded broad deactivation in subjects, including nearly all of the limbic system, pain status, and DMN, and also evoked numerous activations in the attentional and somatosensory systems; compared with SHAM, we found that ACUP induced more deactivations and fewer activations in the subjects. Multiple brain networks play crucial roles in acupuncture analgesia, suggesting that ACUP exceeds a somatosensory-guided mind-body therapy for ALBP.

  10. Brain-derived neurotrophic factor in neuroimmunology: lessons learned from multiple sclerosis patients and experimental autoimmune encephalomyelitis models.

    PubMed

    Lühder, Fred; Gold, Ralf; Flügel, Alexander; Linker, Ralf A

    2013-04-01

    The concept of neuroprotective autoimmunity implies that immune cells, especially autoantigen-specific T cells, infiltrate the central nervous system (CNS) after injury and contribute to neuroregeneration and repair by secreting soluble factors. Amongst others, neurotrophic factors and neurotrophins such as brain-derived neurotropic factor (BDNF) are considered to play an important role in this process. New data raise the possibility that this concept could also be extended to neuroinflammatory diseases such as multiple sclerosis (MS) where autoantigen-specific T cells infiltrate the CNS, causing axonal/neuronal damage on the one hand, but also providing neuroprotective support on the other hand. In this review, we summarize the current knowledge on BDNF levels analyzed in MS patients in different compartments and its correlation with clinical parameters. Furthermore, new approaches in experimental animal models are discussed that attempt to decipher the functional relevance of BDNF in autoimmune demyelination.

  11. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats.

    PubMed

    Kumar Sarwa, Khomendra; Rudrapal, Mithun; Mazumder, Bhaskar

    2015-12-01

    In this study, topical ethosomal formulation of capsaicin was prepared and evaluated for bio-efficacy in arthritic rats. Physical and biological characterizations of prepared capsaicin-loaded nano vesicular systems were also carried out. Ethosomal capsaicin showed significant reduction of rat paw edema along with promising antinociceptive action. The topical antiarthritic efficacy of prepared formulation of capsaicin was found more than that of Thermagel, a marketed gel of capsaicin. From toxicological study, no predictable signs of toxicity such as skin irritation (of experimental rats) were observed. Based on this finding, ethosomal capsaicin could be proposed as an effective as well as a safe topical delivery system for the long-term treatment of arthritis and associated inflammo-musculoskeletal disorders. Such exciting result would eventually enlighten the analgesic and anti-inflammatory potential of capsaicin for topical remedy.

  12. Clinicopathologic features of experimental Clostridium perfringens type D enterotoxemia in cattle.

    PubMed

    Filho, E J F; Carvalho, A U; Assis, R A; Lobato, F F; Rachid, M A; Carvalho, A A; Ferreira, P M; Nascimento, R A; Fernandes, A A; Vidal, J E; Uzal, F A

    2009-11-01

    This study was designed to experimentally reproduce enterotoxemia by Clostridium perfringens type D in cattle and to characterize the clinicopathologic findings of this disease. Fourteen 9-month-old calves were inoculated intraduodenally according to the following schedule: group 1 (n = 4), C. perfringens type D whole culture; group 2 (n = 3), C. perfringens type D washed cells; group 3 (n = 5), C. perfringens type D filtered and concentrated supernatant; group 4 (n = 2), sterile, nontoxic culture medium. In addition, all animals received a 20% starch solution in the abomasum. Ten animals from groups 1 (4/4), 2 (3/3), and 3 (3/5) showed severe respiratory and neurologic signs. Gross findings were observed in these 10 animals and consisted of acute pulmonary edema, excessive protein-rich pericardial fluid, watery contents in the small intestine, and multifocal petechial hemorrhages on the jejunal mucosa. The brain of one animal of group 2 that survived for 8 days showed multifocal, bilateral, and symmetric encephalomalacia in the corpus striatum. The most striking histologic changes consisted of perivascular high protein edema in the brain, and alveolar and interstitial proteinaceous pulmonary edema. The animal that survived for 8 days and that had gross lesions in the corpus striatum showed histologically severe, focal necrosis of this area, cerebellar peduncles, and thalamus. Koch's postulates have been met and these results show that experimental enterotoxemia by C. perfringens type D in cattle has similar clinical and pathologic characteristics to the natural and experimental disease in sheep.

  13. Lipocalin 2 and Blood-Brain Barrier Disruption in White Matter after Experimental Subarachnoid Hemorrhage.

    PubMed

    Egashira, Yusuke; Hua, Ya; Keep, Richard F; Iwama, Toru; Xi, Guohua

    2016-01-01

    We reported previously that subarachnoid hemorrhage (SAH) causes acute white matter injury in mice. In this study, we investigated lipocalin 2 (LCN2) mediated blood-brain barrier (BBB) disruption in white matter, which may lead to subsequent injury. SAH was induced by endovascular perforation in wild-type (WT) and LCN2-knockout (LCN2(-/-)) mice. Sham mice underwent the same procedure without perforation. Mice underwent magnetic resonance imaging (MRI) 24 h after SAH to confirm the development of T2-hyperintensity in white matter. Western blotting and immunohistochemistry were performed to elucidate the mechanisms of LCN2-mediated white matter injury and BBB disruption. It was confirmed that LCN2 expression was significantly increased in white matter of WT mice after SAH by Western blotting (versus sham; p < 0.05). Immunohistochemistry showed that LCN2 receptor 24p3R was expressed in oligodendrocytes, astrocytes, endothelial cells, and pericytes in the white matter. In WT mice with SAH, albumin leakage along the white matter was prominently observed and was consistent with T2-hyperintensity on MRI. As with our previous report, LCN2(-/-) mice scarcely developed T2-hyperintensity on MRI or albumin leakage in white matter. Our results suggest that BBB leakage occurs in white matter after SAH and that LCN2 contributes to SAH-induced BBB disruption.

  14. Resveratrol attenuates neuronal autophagy and inflammatory injury by inhibiting the TLR4/NF-κB signaling pathway in experimental traumatic brain injury

    PubMed Central

    FENG, YAN; CUI, YING; GAO, JUN-LING; LI, MING-HANG; LI, RAN; JIANG, XIAO-HUA; TIAN, YAN-XIA; WANG, KAI-JIE; CUI, CHANG-MENG; CUI, JIAN-ZHONG

    2016-01-01

    Previous research has demonstrated that traumatic brain injury (TBI) activates autophagy and a neuroinflammatory cascade that contributes to substantial neuronal damage and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of this cascade. In the present study, we investigated the hypothesis that resveratrol (RV), a natural polyphenolic compound with potent multifaceted properties, alleviates brain damage mediated by TLR4 following TBI. Adult male Sprague Dawley rats, subjected to controlled cortical impact (CCI) injury, were intraperitoneally injected with RV (100 mg/kg, daily for 3 days) after the onset of TBI. The results demonstrated that RV significantly reduced brain edema, motor deficit, neuronal loss and improved spatial cognitive function. Double immunolabeling demonstrated that RV decreased microtubule-associated protein 1 light chain 3 (LC3), TLR4-positive cells co-labeled with the hippocampal neurons, and RV also significantly reduced the number of TLR4-positive neuron-specific nuclear protein (NeuN) cells following TBI. Western blot analysis revealed that RV significantly reduced the protein expression of the autophagy marker proteins, LC3II and Beclin1, in the hippocampus compared with that in the TBI group. Furthermore, the levels of TLR4 and its known downstream signaling molecules, nuclear factor-κB (NF-κB), and the inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were also decreased after RV treatment. Our results suggest that RV reduces neuronal autophagy and inflammatory reactions in a rat model of TBI. Thus, we suggest that the neuroprotective effect of RV is associated with the TLR4/NF-κB signaling pathway. PMID:26936125

  15. Hemorrhagic shock shifts the serum cytokine profile from pro- to anti-inflammatory after experimental traumatic brain injury in mice.

    PubMed

    Shein, Steven L; Shellington, David K; Exo, Jennifer L; Jackson, Travis C; Wisniewski, Stephen R; Jackson, Edwin K; Vagni, Vincent A; Bayır, Hülya; Clark, Robert S B; Dixon, C Edward; Janesko-Feldman, Keri L; Kochanek, Patrick M

    2014-08-15

    Secondary insults, such as hemorrhagic shock (HS), worsen outcome from traumatic brain injury (TBI). Both TBI and HS modulate levels of inflammatory mediators. We evaluated the addition of HS on the inflammatory response to TBI. Adult male C57BL6J mice were randomized into five groups (n=4 [naïve] or 8/group): naïve; sham; TBI (through mild-to-moderate controlled cortical impact [CCI] at 5 m/sec, 1-mm depth), HS; and CCI+HS. All non-naïve mice underwent identical monitoring and anesthesia. HS and CCI+HS underwent a 35-min period of pressure-controlled hemorrhage (target mean arterial pressure, 25-27 mm Hg) and a 90-min resuscitation with lactated Ringer's injection and autologous blood transfusion. Mice were sacrificed at 2 or 24 h after injury. Levels of 13 cytokines, six chemokines, and three growth factors were measured in serum and in five brain tissue regions. Serum levels of several proinflammatory mediators (eotaxin, interferon-inducible protein 10 [IP-10], keratinocyte chemoattractant [KC], monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein 1alpha [MIP-1α], interleukin [IL]-5, IL-6, tumor necrosis factor alpha, and granulocyte colony-stimulating factor [G-CSF]) were increased after CCI alone. Serum levels of fewer proinflammatory mediators (IL-5, IL-6, regulated upon activation, normal T-cell expressed, and secreted, and G-CSF) were increased after CCI+HS. Serum level of anti-inflammatory IL-10 was significantly increased after CCI+HS versus CCI alone. Brain tissue levels of eotaxin, IP-10, KC, MCP-1, MIP-1α, IL-6, and G-CSF were increased after both CCI and CCI+HS. There were no significant differences between levels after CCI alone and CCI+HS in any mediator. Addition of HS to experimental TBI led to a shift toward an anti-inflammatory serum profile--specifically, a marked increase in IL-10 levels. The brain cytokine and chemokine profile after TBI was minimally affected by the addition of HS.

  16. Characterizing pinprick-evoked brain potentials before and after experimentally induced secondary hyperalgesia

    PubMed Central

    Mouraux, André; Groneberg, Antonia H.; Pfau, Doreen B.; Treede, Rolf-Detlef; Klein, Thomas

    2015-01-01

    Secondary hyperalgesia is believed to be a key feature of “central sensitization” and is characterized by enhanced pain to mechanical nociceptive stimuli. The aim of the present study was to characterize, using EEG, the effects of pinprick stimulation intensity on the magnitude of pinprick-elicited brain potentials [event-related potentials (ERPs)] before and after secondary hyperalgesia induced by intradermal capsaicin in humans. Pinprick-elicited ERPs and pinprick-evoked pain ratings were recorded in 19 healthy volunteers, with mechanical pinprick stimuli of varying intensities (0.25-mm probe applied with a force extending between 16 and 512 mN). The recordings were performed before (T0) and 30 min after (T1) intradermal capsaicin injection. The contralateral noninjected arm served as control. ERPs elicited by stimulation of untreated skin were characterized by 1) an early-latency negative-positive complex peaking between 120 and 250 ms after stimulus onset (N120-P240) and maximal at the vertex and 2) a long-lasting positive wave peaking 400–600 ms after stimulus onset and maximal more posterior (P500), which was correlated to perceived pinprick pain. After capsaicin injection, pinprick stimuli were perceived as more intense in the area of secondary hyperalgesia and this effect was stronger for lower compared with higher stimulus intensities. In addition, there was an enhancement of the P500 elicited by stimuli of intermediate intensity, which was significant for 64 mN. The other components of the ERPs were unaffected by capsaicin. Our results suggest that the increase in P500 magnitude after capsaicin is mediated by facilitated mechanical nociceptive pathways. PMID:26334010

  17. Lightning injury as a blast injury of skull, brain, and visceral lesions: clinical and experimental evidences.

    PubMed

    Ohashi, M; Hosoda, Y; Fujishiro, Y; Tuyuki, A; Kikuchi, K; Obara, H; Kitagawa, N; Ishikawa, T

    2001-12-01

    The present study attempts to better understand the mechanism of injuries associated with direct lightning strikes. We reviewed the records of 256 individuals struck by lightning between 1965 and 1999, including 56 people who were killed. Basal skull fracture, intracranial haemorrhage, pulmonary haemorrhage, or solid organ rupture was suspected in three men who died. Generally these lesions have been attributed to current flow or falling after being struck. However, examination of surface injuries sustained suggested that the true cause was concussion secondary to blast injury resulting from vaporization of water on the body surface by a surface flashover spark. To investigate this hypothesis, an experimental model of a lightning strike was created in the rat. Saline-soaked blotting paper was used to simulate wet clothing or skin, and an artificial lightning impulse was applied. The resultant lesions were consistent with our hypothesis that the blast was reinforced by the concussive effect of water vaporization. The concordance between the clinical and experimental evidence argues strongly for blast injury as an important source of morbidity and mortality in lightning strikes.

  18. Diabetic Retinopathy and Diabetic Macular Edema.

    PubMed

    Cohen, Steven R; Gardner, Thomas W

    2016-01-01

    Diabetic retinopathy and diabetic macular edema result from chronic damage to the neurovascular structures of the retina. The pathophysiology of retinal damage remains uncertain but includes metabolic and neuroinflammatory insults. These mechanisms are addressed by intensive metabolic control of the systemic disease and by the use of ocular anti-inflammatory agents, including vascular endothelial growth factor inhibitors and corticosteroids. Improved understanding of the ocular and systemic mechanisms that underlie diabetic retinopathy will lead to improved means to diagnose and treat retinopathy and better maintain vision.

  19. Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury

    DTIC Science & Technology

    2016-01-01

    to describe the impact of EC degradation inhibition on neutrophil influx, pro-inflammatory cytokine expression, oxidative injury, edema , and blood...degradation in reducing neutrophil influx, pro-inflammatory cytokine expression, oxidative injury, edema , and blood barrier permeability. a...immunohistochemistry. b. Brain edema (4 h, 24 h, 72 h post TBI). Wet/dry ratio determined. c. Blood brain barrier permeability analyzed by dye tracer

  20. Experimental Cerebral Malaria Spreads along the Rostral Migratory Stream

    PubMed Central

    Hoffmann, Angelika; Pfeil, Johannes; Alfonso, Julieta; Kurz, Felix T.; Sahm, Felix; Heiland, Sabine; Monyer, Hannah; Bendszus, Martin; Mueller, Ann-Kristin; Helluy, Xavier; Pham, Mirko

    2016-01-01

    It is poorly understood how progressive brain swelling in experimental cerebral malaria (ECM) evolves in space and over time, and whether mechanisms of inflammation or microvascular sequestration/obstruction dominate the underlying pathophysiology. We therefore monitored in the Plasmodium berghei ANKA-C57BL/6 murine ECM model, disease manifestation and progression clinically, assessed by the Rapid-Murine-Coma-and-Behavioral-Scale (RMCBS), and by high-resolution in vivo MRI, including sensitive assessment of early blood-brain-barrier-disruption (BBBD), brain edema and microvascular pathology. For histological correlation HE and immunohistochemical staining for microglia and neuroblasts were obtained. Our results demonstrate that BBBD and edema initiated in the olfactory bulb (OB) and spread along the rostral-migratory-stream (RMS) to the subventricular zone of the lateral ventricles, the dorsal-migratory-stream (DMS), and finally to the external capsule (EC) and brainstem (BS). Before clinical symptoms (mean RMCBS = 18.5±1) became evident, a slight, non-significant increase of quantitative T2 and ADC values was observed in OB+RMS. With clinical manifestation (mean RMCBS = 14.2±0.4), T2 and ADC values significantly increased along the OB+RMS (p = 0.049/p = 0.01). Severe ECM (mean RMCBS = 5±2.9) was defined by further spread into more posterior and deeper brain structures until reaching the BS (significant T2 elevation in DMS+EC+BS (p = 0.034)). Quantitative automated histological analyses confirmed microglial activation in areas of BBBD and edema. Activated microglia were closely associated with the RMS and neuroblasts within the RMS were severely misaligned with respect to their physiological linear migration pattern. Microvascular pathology and ischemic brain injury occurred only secondarily, after vasogenic edema formation and were both associated less with clinical severity and the temporal course of ECM. Altogether, we identified a distinct spatiotemporal

  1. Fecal Impaction Causing Pelvic Venous Compression and Edema

    PubMed Central

    Naramore, Sara; Aziz, Faisal; Alexander, Chandran Paul; Methratta, Sosamma; Cilley, Robert; Rocourt, Dorothy

    2015-01-01

    Chronic constipation is a common condition which may result in fecal impaction. A 13-year-old male with chronic constipation and encopresis presented with fecal impaction for three weeks. The impaction caused abdominal pain, distension, encopresis, and decreased oral intake. He was found in severe distress with non-pitting edema of his feet and ankles along with perineal edema. The pedal edema worsened after receiving a fluid bolus, so concern arose for venous compression or a thrombus. A Duplex Ultrasound demonstrated changes in the venous waveforms of the bilateral external iliac and common femoral veins without thrombosis. Manual disimpaction and polyethylene glycol 3350 with electrolytes resolved the pedal and perineal edema. Four months later, he had soft bowel movements without recurrence of the edema. A repeat Duplex Ultrasound was normal. We present a child in whom severe fecal impaction caused pelvic venous compression resulting in bilateral pedal and perineal edema. PMID:26500749

  2. Image-based in vivo assessment of targeting accuracy of stereotactic brain surgery in experimental rodent models

    NASA Astrophysics Data System (ADS)

    Rangarajan, Janaki Raman; Vande Velde, Greetje; van Gent, Friso; de Vloo, Philippe; Dresselaers, Tom; Depypere, Maarten; van Kuyck, Kris; Nuttin, Bart; Himmelreich, Uwe; Maes, Frederik

    2016-11-01

    Stereotactic neurosurgery is used in pre-clinical research of neurological and psychiatric disorders in experimental rat and mouse models to engraft a needle or electrode at a pre-defined location in the brain. However, inaccurate targeting may confound the results of such experiments. In contrast to the clinical practice, inaccurate targeting in rodents remains usually unnoticed until assessed by ex vivo end-point histology. We here propose a workflow for in vivo assessment of stereotactic targeting accuracy in small animal studies based on multi-modal post-operative imaging. The surgical trajectory in each individual animal is reconstructed in 3D from the physical implant imaged in post-operative CT and/or its trace as visible in post-operative MRI. By co-registering post-operative images of individual animals to a common stereotaxic template, targeting accuracy is quantified. Two commonly used neuromodulation regions were used as targets. Target localization errors showed not only variability, but also inaccuracy in targeting. Only about 30% of electrodes were within the subnucleus structure that was targeted and a-specific adverse effects were also noted. Shifting from invasive/subjective 2D histology towards objective in vivo 3D imaging-based assessment of targeting accuracy may benefit a more effective use of the experimental data by excluding off-target cases early in the study.

  3. Experimental Models of Brain Ischemia: A Review of Techniques, Magnetic Resonance Imaging, and Investigational Cell-Based Therapies

    PubMed Central

    Canazza, Alessandra; Minati, Ludovico; Boffano, Carlo; Parati, Eugenio; Binks, Sophie

    2013-01-01

    Stroke continues to be a significant cause of death and disability worldwide. Although major advances have been made in the past decades in prevention, treatment, and rehabilitation, enormous challenges remain in the way of translating new therapeutic approaches from bench to bedside. Thrombolysis, while routinely used for ischemic stroke, is only a viable option within a narrow time window. Recently, progress in stem cell biology has opened up avenues to therapeutic strategies aimed at supporting and replacing neural cells in infarcted areas. Realistic experimental animal models are crucial to understand the mechanisms of neuronal survival following ischemic brain injury and to develop therapeutic interventions. Current studies on experimental stroke therapies evaluate the efficiency of neuroprotective agents and cell-based approaches using primarily rodent models of permanent or transient focal cerebral ischemia. In parallel, advancements in imaging techniques permit better mapping of the spatial-temporal evolution of the lesioned cortex and its functional responses. This review provides a condensed conceptual review of the state of the art of this field, from models and magnetic resonance imaging techniques through to stem cell therapies. PMID:24600434

  4. Image-based in vivo assessment of targeting accuracy of stereotactic brain surgery in experimental rodent models

    PubMed Central

    Rangarajan, Janaki Raman; Vande Velde, Greetje; van Gent, Friso; De Vloo, Philippe; Dresselaers, Tom; Depypere, Maarten; van Kuyck, Kris; Nuttin, Bart; Himmelreich, Uwe; Maes, Frederik

    2016-01-01

    Stereotactic neurosurgery is used in pre-clinical research of neurological and psychiatric disorders in experimental rat and mouse models to engraft a needle or electrode at a pre-defined location in the brain. However, inaccurate targeting may confound the results of such experiments. In contrast to the clinical practice, inaccurate targeting in rodents remains usually unnoticed until assessed by ex vivo end-point histology. We here propose a workflow for in vivo assessment of stereotactic targeting accuracy in small animal studies based on multi-modal post-operative imaging. The surgical trajectory in each individual animal is reconstructed in 3D from the physical implant imaged in post-operative CT and/or its trace as visible in post-operative MRI. By co-registering post-operative images of individual animals to a common stereotaxic template, targeting accuracy is quantified. Two commonly used neuromodulation regions were used as targets. Target localization errors showed not only variability, but also inaccuracy in targeting. Only about 30% of electrodes were within the subnucleus structure that was targeted and a-specific adverse effects were also noted. Shifting from invasive/subjective 2D histology towards objective in vivo 3D imaging-based assessment of targeting accuracy may benefit a more effective use of the experimental data by excluding off-target cases early in the study. PMID:27901096

  5. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study

    NASA Astrophysics Data System (ADS)

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    Objective. While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control performance. Approach. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Main results. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. Significance. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced

  6. [Effect of cinnarizine on the brain mitochondrial oxidative system, antioxidant blood activity, and the rat behavior in hypoxia].

    PubMed

    Belostotskaia, L I; Chaĭka, L A; Gomon, O N

    2003-01-01

    The effect of cinnarizine on the functional state of brain mitochondria, the activity of blood antioxidant system, and the behavior of rats was studied under model hypoxic hypoxia conditions. A four-day treatments with cinnarizine (50 mg/kg, twice per day via a gastric tube) prevents the hypoxic brain edema development, restores NAD+ dependent oxidation of a succinate substrate, normalizes emotional-exploratory activity, and causes hyperlocomotion of the experimental animals, while not influencing a high level of activity of the blood antioxidant system.

  7. Intracranial pressure elevation after ischemic stroke in rats: cerebral edema is not the only cause, and short-duration mild hypothermia is a highly effective preventive therapy

    PubMed Central

    Murtha, Lucy A; McLeod, Damian D; Pepperall, Debbie; McCann, Sarah K; Beard, Daniel J; Tomkins, Amelia J; Holmes, William M; McCabe, Christopher; Macrae, I Mhairi; Spratt, Neil J

    2015-01-01

    In both the human and animal literature, it has largely been assumed that edema is the primary cause of intracranial pressure (ICP) elevation after stroke and that more edema equates to higher ICP. We recently demonstrated a dramatic ICP elevation 24 hours after small ischemic strokes in rats, with minimal edema. This ICP elevation was completely prevented by short-duration moderate hypothermia soon after stroke. Here, our aims were to determine the importance of edema in ICP elevation after stroke and whether mild hypothermia could prevent the ICP rise. Experimental stroke was performed in rats. ICP was monitored and short-duration mild (35 °C) or moderate (32.5 °C) hypothermia, or normothermia (37 °C) was induced after stroke onset. Edema was measured in three studies, using wet–dry weight calculations, T2-weighted magnetic resonance imaging, or histology. ICP increased 24 hours after stroke onset in all normothermic animals. Short-duration mild or moderate hypothermia prevented this rise. No correlation was seen between ΔICP and edema or infarct volumes. Calculated rates of edema growth were orders of magnitude less than normal cerebrospinal fluid production rates. These data challenge current concepts and suggest that factors other than cerebral edema are the primary cause of the ICP elevation 24 hours after stroke onset. PMID:25515213

  8. Acute edema blisters in a hereditary angioedema cutaneous attack.

    PubMed

    Fernández Romero, D; Di Marco, P; Malbrán, A

    2008-01-01

    Hereditary angioedema is a rare autosomal dominant disease characterized by recurrent episodes of acute edema affecting the skin and the respiratory and digestive tracts. Acute edema blisters or hydro-static bullae develop after rapid accumulation of interstitial fluid usually associated to cardiac insufficiency. Lesions contain sterile fluid and break up easily resolving without scars. Blisters disappear when fluid accumulation resolves. We describe a patient developing recurrent acute edema blisters as a consequence of cutaneous hereditary angioedema attacks.

  9. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema

    PubMed Central

    Igarashi, Hironaka; Huber, Vincent J.; Tsujita, Mika

    2010-01-01

    We investigated the in vivo effects of a novel aquaporin 4 (AQP4) inhibitor 2-(nicotinamide)-1,3,4-thiadiazole, TGN-020, in a mouse model of focal cerebral ischemia using 7.0-T magnetic resonance imaging (MRI). Pretreatment with TGN-020 significantly reduced brain edema associated with brain ischemia, as reflected by percentage of brain swelling volume (%BSV), 12.1 ± 6.3% in the treated group, compared to (20.8 ± 5.9%) in the control group (p < 0.05), and in the size of cortical infarction as reflected by the percentage of hemispheric lesion volume (%HLV), 20.0 ± 7.6% in the treated group, compared to 30.0 ± 9.1% in the control group (p < 0.05). The study indicated the potential pharmacological use of AQP4 inhibition in reducing brain edema associated with focal ischemia. PMID:20924629

  10. Decreased expression of brain-derived neurotrophic factor in BDNF(+/-) mice is associated with enhanced recovery of motor performance and increased neuroblast number following experimental stroke.

    PubMed

    Nygren, Josefine; Kokaia, Merab; Wieloch, Tadeusz

    2006-08-15

    Brain-derived neurotrophic factor (BDNF) is involved in brain plasticity and neuronal survival. Generally, BDNF enhances synaptic activity and neurite growth, although the effect of BDNF on neuronal survival and brain plasticity following injury is equivocal. Housing rats in an enriched environment after experimental stroke enhances recovery of sensory-motor function, which is associated with a decrease in the BDNF mRNA and protein levels. We used BDNF(+/-) mice and wild-type littermate mice to investigate whether the decrease in the brain levels of BDNF affected motor function or infarct volume following transient occlusion of the middle cerebral artery (tMCAO) for 40 min. We found that the BDNF(+/-) mice had a significantly improved motor function on the rotating pole test 2 weeks after tMCAO compared with wild-type mice. When intermittently exposed to an enriched environment following tMCAO, the wild-type mice improved motor function to the same degree as BDNF(+/-) mice. There was no effect of BDNF reduction on infarct volume. Neurogenesis is induced following experimental stroke, and in the striatum of BDNF(+/-) mice significantly increased numbers of neuroblasts compared with wild-type mice were seen, both in standard and in enriched conditions. We conclude that decreasing brain levels of BDNF enhances the recovery of function following experimental stroke.

  11. Drug-induced pulmonary edema and acute respiratory distress syndrome.

    PubMed

    Lee-Chiong, Teofilo; Matthay, Richard A

    2004-03-01

    Noncardiogenic pulmonary edema, and, to a lesser extent, acute respiratory distress syndrome (ARDS), are common clinical manifestations of drug-induced lung diseases. Clinical features and radiographic appearances are generally indistinguishable from other causes of pulmonary edema and ARDS. Typical manifestations include dyspnea, chest discomfort, tachypnea, and hypoxemia. Chest radiographs commonly reveal interstitial and alveolar filling infiltrates. Unlike pulmonary edema that is due to congestive heart failure, cardiomegaly and pulmonary vascular redistribution are generally absent in cases that are drug-related. Rare cases of drug-induced myocarditis with heart failure and pulmonary edema have been described. Results from laboratory evaluation and respiratory function tests are nonspecific.

  12. Objectification of the severity of Reinke's edema.

    PubMed

    Szkiełkowska, Agata; Miaśkiewicz, Beata; Krasnodębska, Paulina; Skarżyński, Henryk

    2014-01-01

    According to the severity, Reinke's edema (RE) of the vocal folds can be divided into three stages as classified by Yonekawa. We evaluated open and closed quotients of vocal folds vibratory cycles using Videostrobokymography (VSK) in a cohort of patients with RE. Parameters were measured from the anterior, medial and posterior third of the vocal folds. Mean values from RE group were OQ (0.44; 0.46; 0.52); CQ (0.56; 0.54; 0.48). Results from the whole glottis OQ and CQ in RE were: OQ=0.48 and CQ=0.52. Significant differences were found for OQ and CQ mean values as well as values measured from each third of the glottis between the control group and patients with RE. In the first Yonekawa group no statistically significant differences were found compared to the control group, but there were significant differences in the remaining two groups. The correlation between the stage of edema on the Yonekawa classification and the mean values of OQ and CQ was 70%.

  13. [Pulmonary edemas due to acute heroin poisoning].

    PubMed

    Francois, G; Faizende, J; Reboul, J

    1975-01-01

    Their frequency is estimated with difficulty, although on autopsy pulmonary edema is found almost routinely. It is a major complication of overdoses (48 p. 100 of severe intoxications). Their formation can be suspected, when after the first phase of respiratory depressions, with coma, myosis, and a variable latent period, a second attack of respiratory insufficiency occurs with tachypnea, and cyanosis. The chest X-ray shows diffuse alveolar infiltration, sparing the apices. The heart being generally of normal size. Rapid disappearance of this infiltrate (24 to 48 hours) enables the elimination of two diagnoses: pneumonia due to inhalation of gastric fluid, an infectious pneumonia. Their pathogenesis remains very debatable: - in the majority of cases abrupt L.V.F. can be eliminated: -on the other hand it could be an allergic accident of the anaphylactic type, or local liberation of histamine, or a local toxic action on the pulmonary capillaries; - hypoxia, secondary to respiratory depression, could lead to pulmonary edema, by the same mechanism as at altitude; - finally, owing to the central neurological disorders a neurogenic theory can be put forward. Their treatment is essentially a combination of Nalorphine with oxygen therapy (by mask, or if necessary by assisted, controlled ventilation) with prevention of inhalation of gastric fluid (gastric emptying) or curative treatment of possible aspiration by antibiotics, and cortico-steroids. Diuretics can be useful, as well as cardiotonics.

  14. New Compton densitometer for measuring pulmonary edema

    SciTech Connect

    Loo, B.W.; Goulding, F.S.; Simon, D.S.

    1985-10-01

    Pulmonary edema is the pathological increase of extravascular lung water found most often in patients with congestive heart failure and other critically ill patients who suffer from intravenous fluid overload. A non-invasive lung density monitor that is accurate, easily portable, safe and inexpensive is needed for clinical evaluation of pulmonary edema. Other researchers who have employed Compton scattering techniques generally used systems of extended size and detectors with poor energy resolution. This has resulted in significant systematic biases from multiply-scattered photons and larger errors in counting statistics at a given radiation dose to the patient. We are proposing a patented approach in which only backscattered photons are measured with a high-resolution HPGe detector in a compact system geometry. By proper design and a unique data extraction scheme, effects of the variable chest wall on lung density measurements are minimized. Preliminary test results indicate that with a radioactive source of under 30 GBq, it should be possible to make an accurate lung density measurement in one minute, with a risk of radiation exposure to the patient a thousand times smaller than that from a typical chest x-ray. The ability to make safe, frequent lung density measurements could be very helpful for monitoring the course of P.E. at the hospital bedside or outpatient clinics, and for evaluating the efficacy of therapy in clinical research. 6 refs., 5 figs.

  15. Transient protective effect of B-vitamins in experimental epilepsy in the mouse brain.

    PubMed

    Rabie, Tamer; Mühlhofer, Wolfgang; Bruckner, Thomas; Schwab, Anna; Bauer, Alexander T; Zimmermann, Manfred; Bonke, Dieter; Marti, Hugo H; Schenkel, Johannes

    2010-05-01

    The regulation of programmed cell death in the nervous system of vertebrates is a complex mechanism aimed to remove superfluous or damaged cells. Epileptic seizures can lead to an activation of pathways resulting in neuronal cell death. B-vitamins might have a neuroprotective potential reducing cell death following appropriate stimulation. Here, the role of the B-vitamins B(1) (thiamine), B(6) (pyridoxine), and B(12) (cobalamine) was investigated in a mouse model of experimental epilepsy induced by kainate. B-vitamin pre-treated animals showed a significantly reduced epileptic score during the first 15 min after kainate injection. The molecular response to kainate showed a bi-phased time course with early induction of Bcl-2 expression within 12 h and a second induction after 7 days of kainate exposure. B-vitamin pre-treatment resulted in significant higher Bcl-2 expression in control animals (no kainate) and at 12 h within the early phase. Bcl-2 expression was not affected by B-vitamins within the second phase. BAX expression was not significantly influenced during the whole experiment. Three days after kainate stimulation, the number of TdT-mediated dUTP-biotin nick end labeling-positive cells in the hippocampal region was lower in B-vitamin-treated animals. Therefore, B-vitamin pre-treatment may attenuate the response to epileptic stimulation.

  16. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.

    PubMed

    Lai, Hsin-Yi; Liao, Lun-De; Lin, Chin-Teng; Hsu, Jui-Hsiang; He, Xin; Chen, You-Yin; Chang, Jyh-Yeong; Chen, Hui-Fen; Tsang, Siny; Shih, Yen-Yu I

    2012-06-01

    An implantable micromachined neural probe with multichannel electrode arrays for both neural signal recording and electrical stimulation was designed, simulated and experimentally validated for deep brain stimulation (DBS) applications. The developed probe has a rough three-dimensional microstructure on the electrode surface to maximize the electrode-tissue contact area. The flexible, polyimide-based microelectrode arrays were each composed of a long shaft (14.9 mm in length) and 16 electrodes (5 µm thick and with a diameter of 16 µm). The ability of these arrays to record and stimulate specific areas in a rat brain was evaluated. Moreover, we have developed a finite element model (FEM) applied to an electric field to evaluate the volume of tissue activated (VTA) by DBS as a function of the stimulation parameters. The signal-to-noise ratio ranged from 4.4 to 5 over a 50 day recording period, indicating that the laboratory-designed neural probe is reliable and may be used successfully for long-term recordings. The somatosensory evoked potential (SSEP) obtained by thalamic stimulations and in vivo electrode-electrolyte interface impedance measurements was stable for 50 days and demonstrated that the neural probe is feasible for long-term stimulation. A strongly linear (positive correlation) relationship was observed among the simulated VTA, the absolute value of the SSEP during the 200 ms post-stimulus period (ΣSSEP) and c-Fos expression, indicating that the simulated VTA has perfect sensitivity to predict the evoked responses (c-Fos expression). This laboratory-designed neural probe and its FEM simulation represent a simple, functionally effective technique for studying DBS and neural recordings in animal models.

  17. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Yi; Liao, Lun-De; Lin, Chin-Teng; Hsu, Jui-Hsiang; He, Xin; Chen, You-Yin; Chang, Jyh-Yeong; Chen, Hui-Fen; Tsang, Siny; Shih, Yen-Yu I.

    2012-06-01

    An implantable micromachined neural probe with multichannel electrode arrays for both neural signal recording and electrical stimulation was designed, simulated and experimentally validated for deep brain stimulation (DBS) applications. The developed probe has a rough three-dimensional microstructure on the electrode surface to maximize the electrode-tissue contact area. The flexible, polyimide-based microelectrode arrays were each composed of a long shaft (14.9 mm in length) and 16 electrodes (5 µm thick and with a diameter of 16 µm). The ability of these arrays to record and stimulate specific areas in a rat brain was evaluated. Moreover, we have developed a finite element model (FEM) applied to an electric field to evaluate the volume of tissue activated (VTA) by DBS as a function of the stimulation parameters. The signal-to-noise ratio ranged from 4.4 to 5 over a 50 day recording period, indicating that the laboratory-designed neural probe is reliable and may be used successfully for long-term recordings. The somatosensory evoked potential (SSEP) obtained by thalamic stimulations and in vivo electrode-electrolyte interface impedance measurements was stable for 50 days and demonstrated that the neural probe is feasible for long-term stimulation. A strongly linear (positive correlation) relationship was observed among the simulated VTA, the absolute value of the SSEP during the 200 ms post-stimulus period (ΣSSEP) and c-Fos expression, indicating that the simulated VTA has perfect sensitivity to predict the evoked responses (c-Fos expression). This laboratory-designed neural probe and its FEM simulation represent a simple, functionally effective technique for studying DBS and neural recordings in animal models.

  18. Loss of microvascular negative charges accompanied by interstitial edema in septic rats' heart.

    PubMed

    Gotloib, L; Shostak, A; Galdi, P; Jaichenko, J; Fudin, R

    1992-01-01

    We studied the effect of Gram-negative sepsis on negative charges of heart capillaries and myocardial cells. We used a rat model of multiorgan failure, with ruthenium red (RR) and polyethyleneimine (PEI) as cationic binding tracers. Twenty-four hours after induction of sepsis, negative charges had decreased in glycocalyx and basement membrane of myocardial capillary endothelial cells. There were substantial amounts of interstitial edema. Density of anionic charges in the sarcolemmal glycocalyx complex of cardiac cells was markedly reduced. Myocardial cells' mitochondria consistently showed morphologic changes, whose severity ranged between stages II and IV C of Trump. Thirteen days after induction of sepsis, capillary endothelial and myocardial cells had recovered almost completely and showed no intracellular edema. Gram-negative sepsis caused a significant reduction in negative charges normally present in the microvascular wall as well as on myocardial cells. Consequently, several membranes limiting the various compartments of heart tissue lost their structural integrity. This morphometric data could explain the development of protein-rich interstitial edema and defective cell volume regulation observed in cardiac muscle of endotoxin-shocked animals. This myocardial edema may be at the origin of the cardiac dysfunction observed in both experimental and human septic shock.

  19. Brain Cooling With Ventilation of Cold Air Over Respiratory Tract in Newborn Piglets: An Experimental and Numerical Study

    PubMed Central

    Bakhsheshi, Mohammad Fazel; Moradi, Hadi Vafadar; Stewart, Errol E.; Keenliside, Lynn; Lee, Ting-Yim

    2015-01-01

    We investigate thermal effects of pulmonary cooling which was induced by cold air through an endotracheal tube via a ventilator on newborn piglets. A mathematical model was initially employed to compare the thermal impact of two different gas mixtures, O2-medical air (1:2) and O2-Xe (1:2), across the respiratory tract and within the brain. Following mathematical simulations, we examined the theoretical predictions with O2-medical air condition on nine anesthetized piglets which were randomized to two treatment groups: 1) control group (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$n = 4$ \\end{document}) and 2) pulmonary cooling group (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$n = 5$ \\end{document}). Numerical and experimental results using O2-medical air mixture show that brain temperature fell from 38.5 °C and 38.3 °C ± 0.3 °C to 35.7 °C ± 0.9 °C and 36.5 °C ± 0.6 °C during 3 h cooling which corresponded to a mean cooling rate of 0.9 °C/h ± 0.2 °C/h and 0.6 °C/h ± 0.1 °C/h, respectively. According to the numerical results, decreasing the metabolic rate and increasing air velocity are helpful to maximize the cooling effect. We demonstrated that pulmonary cooling by cooling of inhalation gases immediately before they enter the trachea can slowly reduce brain and core body temperature of newborn piglets. Numerical simulations show no significant differences between two different inhaled conditions, i.e., O2-medical air (1:2) and O2-Xe (1:2) with respect to cooling rate. PMID:27170888

  20. BrainCycles: Experimental Setup for the Combined Measurement of Cortical and Subcortical Activity in Parkinson's Disease Patients during Cycling

    PubMed Central

    Gratkowski, Maciej; Storzer, Lena; Butz, Markus; Schnitzler, Alfons; Saupe, Dietmar; Dalal, Sarang S.

    2017-01-01

    Recently, it has been demonstrated that bicycling ability remains surprisingly preserved in Parkinson's disease (PD) patients who suffer from freezing of gait. Cycling has been also proposed as a therapeutic means of treating PD symptoms, with some preliminary success. The neural mechanisms behind these phenomena are however not yet understood. One of the reasons is that the investigations of neuronal activity during pedaling have been up to now limited to PET and fMRI studies, which restrict the temporal resolution of analysis, and to scalp EEG focused on cortical activation. However, deeper brain structures like the basal ganglia are also associated with control of voluntary motor movements like cycling and are affected by PD. Deep brain stimulation (DBS) electrodes implanted for therapy in PD patients provide rare and unique access to directly record basal ganglia activity with a very high temporal resolution. In this paper we present an experimental setup allowing combined investigation of basal ganglia local field potentials (LFPs) and scalp EEG underlying bicycling in PD patients. The main part of the setup is a bike simulator consisting of a classic Dutch-style bicycle frame mounted on a commercially available ergometer. The pedal resistance is controllable in real-time by custom software and the pedal position is continuously tracked by custom Arduino-based electronics using optical and magnetic sensors. A portable bioamplifier records the pedal position signal, the angle of the knee, and the foot pressure together with EEG, EMG, and basal ganglia LFPs. A handlebar-mounted display provides additional information for patients riding the bike simulator, including the current and target pedaling rate. In order to demonstrate the utility of the setup, example data from pilot recordings are shown. The presented experimental setup provides means to directly record basal ganglia activity not only during cycling but also during other movement tasks in patients who

  1. Blockage of the Upregulation of Voltage-Gated Sodium Channel Nav1.3 Improves Outcomes after Experimental Traumatic Brain Injury

    PubMed Central

    Huang, Xian-jian; Li, Wei-ping; Lin, Yong; Feng, Jun-feng; Jia, Feng

    2014-01-01

    Abstract Excessive active voltage-gated sodium channels are responsible for the cellular abnormalities associated with secondary brain injury following traumatic brain injury (TBI). We previously presented evidence that significant upregulation of Nav1.3 expression occurs in the rat cortex at 2 h and 12 h post-TBI and is correlated with TBI severity. In our current study, we tested the hypothesis that blocking upregulation of Nav1.3 expression in vivo in the acute stage post-TBI attenuates the secondary brain injury associated with TBI. We administered either antisense oligodeoxynucleotides (ODN) targeting Nav1.3 or artificial cerebrospinal fluid (aCSF) at 2 h, 4 h, 6 h, and 8 h following TBI. Control sham animals received aCSF administration at the same time points. At 12 h post-TBI, Nav1.3 messenger ribonucleic acid (mRNA) levels in bilateral hippocampi of the aCSF group were significantly elevated, compared with the sham and ODN groups (p<0.01). However, the Nav1.3 mRNA levels in the uninjured contralateral hippocampus of the ODN group were significantly lowered, compared with the sham group (p<0.01). Treatment with antisense ODN significantly decreased the number of degenerating neurons in the ipsilateral hippocampal CA3 and hilar region (p<0.01). A set of left-to-right ratio value analyzed by magnetic resonance imaging T2 image on one day, three days, and seven days post-TBI showed marked edema in the ipsilateral hemisphere of the aCSF group, compared with that of the ODN group (p<0.05). The Morris water maze memory retention test showed that both the aCSF and ODN groups took longer to find a hidden platform, compared with the sham group (p<0.01). However, latency in the aCSF group was significantly higher than in the ODN group (p<0.05). Our in vivo Nav1.3 inhibition studies suggest that therapeutic strategies to block upregulation of Nav1.3 expression in the brain may improve outcomes following TBI. PMID:24313291

  2. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke.

    PubMed

    Neumann, Jens; Riek-Burchardt, Monika; Herz, Josephine; Doeppner, Thorsten R; König, Rebecca; Hütten, Heiko; Etemire, Eloho; Männ, Linda; Klingberg, Anika; Fischer, Thomas; Görtler, Michael W; Heinze, Hans-Jochen; Reichardt, Peter; Schraven, Burkhart; Hermann, Dirk M; Reymann, Klaus G; Gunzer, Matthias

    2015-02-01

    Neuronal injury from ischemic stroke is aggravated by invading peripheral immune cells. Early infiltrates of neutrophil granulocytes and T-cells influence the outcome of stroke. So far, however, neither the timing nor the cellular dynamics of neutrophil entry, its consequences for the invaded brain area, or the relative importance of T-cells has been extensively studied in an intravital setting. Here, we have used intravital two-photon microscopy to document neutrophils and brain-resident microglia in mice after induction of experimental stroke. We demonstrated that neutrophils immediately rolled, firmly adhered, and transmigrated at sites of endothelial activation in stroke-affected brain areas. The ensuing neutrophil invasion was associated with local blood-brain barrier breakdown and infarct formation. Brain-resident microglia recognized both endothelial damage and neutrophil invasion. In a cooperative manner, they formed cytoplasmic processes to physically shield activated endothelia and trap infiltrating neutrophils. Interestingly, the systemic blockade of very-late-antigen-4 immediately and very effectively inhibited the endothelial interaction and brain entry of neutrophils. This treatment thereby strongly reduced the ischemic tissue injury and effectively protected the mice from stroke-associated behavioral impairment. Behavioral preservation was also equally well achieved with the antibody-mediated depletion of myeloid cells or specifically neutrophils. In contrast, T-cell depletion more effectively reduced the infarct volume without improving the behavioral performance. Thus, neutrophil invasion of the ischemic brain is rapid, massive, and a key mediator of functional impairment, while peripheral T-cells promote brain damage. Acutely depleting T-cells and inhibiting brain infiltration of neutrophils might, therefore, be a powerful early stroke treatment.

  3. Acute pulmonary edema and airway hemorrhage in a goat during sevoflurane anesthesia.

    PubMed

    Adami, C; Levionnois, O; Spadavecchia, C

    2011-02-01

    A goat was scheduled for experimental surgery under general anesthesia. The first attempt of performing endotracheal intubation failed and provoked laryngeal spasm. After repeated succesful intubation of inhalation anesthesia was delivered in high concentrations of sevoflurane. Suddenly hypertension and tachycardia were observed, followed by foamy airway secretion and then severe airway hemorrhage. The authors hypothesize that laryngeal spasm provoked respiratory distress and pulmonary edema. The delivered high concentrations of sevoflurane probably enhanced a hyperadrenergic response, predisposing to the development of airway hemorrhage.

  4. Temporal correlation of optical coherence tomography in-vivo images of rabbit airway for the diagnosis of edema

    NASA Astrophysics Data System (ADS)

    Kang, DongYel; Wang, Alex; Tjoa, Tjoson; Volgger, Veronika; Hamamoto, Ashley; Su, Erica; Jing, Joseph; Chen, Zhongping; Wong, Brian J. F.

    2014-03-01

    Recently, full-range optical coherence tomography (OCT) systems have been developed to image the human airway. These novel systems utilize a fiber-based OCT probe which acquires three-dimensional (3-D) images with micrometer resolution. Following an airway injury, mucosal edema is the first step in the body's inflammatory response, which occasionally leads to airway stenosis, a life-threatening condition for critically ill newborns. Therefore, early detection of edema is vital for airway management and prevention of stenosis. In order to examine the potential of the full-range OCT to diagnose edema, we investigated temporal correlation of OCT images obtained from the subglottic airway of live rabbits. Temporally correlated OCT images were acquired at fixed locations in the rabbit subglottis of either artificially induced edema or normal tissues. Edematous tissue was experimentally modeled by injecting saline beneath the epithelial layer of the subglottic mucosa. The calculated cross temporal correlations between OCT images of normal airway regions show periodicity that correlates with the respiratory motion of the airway. However, the temporal correlation functions calculated from OCT images of the edematous regions show randomness without the periodic characteristic. These in-vivo experimental results of temporal correlations between OCT images show the potential of a computer-based or -aided diagnosis of edema in the human respiratory mucosa with a full-range OCT system.

  5. Noncardiac Pulmonary Edema induced by Sitagliptin Treatment

    PubMed Central

    Belice, Tahir; Yuce, Suleyman; Kizilkaya, Bayram; Kurt, Aysel; Cure, Erkan

    2014-01-01

    A 74-year-old male patient with type 2 diabetes mellitus admitted to the emergency department with the complaints of progressive breathlessness, dry cough, and swollen lower extremities. Our patient had type 2 diabetes mellitus and hypertension for 3 years. His HbA1c was not within the target range so sitagliptin was added to on-going therapy. After 1 week of starting sitagliptin therapy, even though the patient had not heart failure he applied to the emergency department with a complaint of dyspnea. The cardiovascular safety and efficacy of many anti-hyperglycemic agents such as sitagliptin, saxagliptin are unclear. Our case has shown that dipeptidyl peptidase 4 inhibitors may cause pulmonary edema. Hence, it should be used with cautious, especially in patients with heart failure. PMID:25657966

  6. Serotonin syndrome presenting as pulmonary edema

    PubMed Central

    Shah, Nilima Deepak; Jain, Ajay B.

    2016-01-01

    Serotonin syndrome (SS) is a potentially life-threatening condition resulting from excessive central and peripheral serotonergic activity. Clinically, it is a triad of mental-status changes, neuromuscular abnormalities, and autonomic disturbances. It can be caused by intentional self-poisoning, overdose, or inadvertent drug interactions. We report the case of a 58-year-old male with type 2 diabetes mellitus and obsessive compulsive disorder who developed pulmonary edema as a possible complication of SS. SS was caused by a combination of three specific serotonin re-uptake inhibitors (fluoxetine, fluvoxamine, and sertraline), linezolid, and fentanyl. The hospital course was further complicated by difficult weaning from the ventilator. SS was identified and successfully treated with cyproheptadine and lorazepam. The case highlights the importance of effective consultation-liaison and prompt recognition of SS as the presentation may be complex in the presence of co-morbid medical illness. PMID:26997733

  7. Update on corticosteroids for diabetic macular edema

    PubMed Central

    Schwartz, Stephen G; Scott, Ingrid U; Stewart, Michael W; Flynn, Harry W

    2016-01-01

    Diabetic macular edema (DME) remains an important cause of visual loss. Although anti-vascular endothelial growth factor (VEGF) agents are generally used as first-line treatments for patients with center-involving DME, there is an important role for corticosteroids as well. Corticosteroids may be especially useful in pseudophakic patients poorly responsive to anti-VEGF therapies, in patients wishing to reduce the number of required injections, and in pregnant patients. Intravitreal triamcinolone acetonide has been used for many years but is not approved for this indication. An extended-release bioerodable dexamethasone delivery system and an extended-release nonbioerodable fluocinolone acetonide insert have both achieved regulatory approval for the treatment of DME. All intravitreal corticosteroids are associated with risks of cataract progression, elevation of intraocular pressure, and endophthalmitis. There is no current consensus regarding the use of corticosteroids, but they are valuable for selected patients with center-involving DME. PMID:27660409

  8. Pseudophakic cystoid macular edema: update 2016

    PubMed Central

    Grzybowski, Andrzej; Sikorski, Bartosz L; Ascaso, Francisco J; Huerva, Valentín

    2016-01-01

    Pseudophakic cystoid macular edema (PCME) is the most common complication of cataract surgery, leading in some cases to a decrease in vision. Although the pathogenesis of PCME is not completely understood, the contribution of postsurgical inflammation is generally accepted. Consequently, anti-inflammatory medicines, including steroids and nonsteroidal anti-inflammatory drugs, have been postulated as having a role in both the prophylaxis and treatment of PCME. However, the lack of a uniformly accepted PCME definition, conflicting data on some risk factors, and the scarcity of studies comparing the role of nonsteroidal anti-inflammatory drugs to steroids in PCME prevention make the problem of PCME one of the puzzles of ophthalmology. This paper presents an updated review on the pathogenesis, risk factors, and use of anti-inflammatory drugs in PCME that reflect current research and practice. PMID:27672316

  9. [Papillary edema in Muckle-Wells syndrome].

    PubMed

    Wirths, G; Grenzebach, U; Eter, N

    2015-09-01

    Papillary edema may occur isolated without functional impairment or secondary related to various syndromes, increased intracerebral pressure or associated with medicinal treatment. The Muckle-Wells syndrome is a rare disease, which among many other symptoms can lead to optic disc swelling and recurrent increase in intracerebral pressure. Besides familial cold-induced autoinflammatory syndrome (FCAS) and neonatal onset multisystem inflammatory disease (NOMID), the Muckle-Wells syndrome also belongs to the cryopyrin-associated periodic syndromes (CAPS). In most cases of CAP syndromes there is an underlying genetic disorder that leads to overproduction of interleukin-1β (IL-1β); therefore, typical symptoms include inflammation reactions, such as repeated skin rash, fatigue, fever, joint pain and conjunctivitis.

  10. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke.

    PubMed

    Frankowski, Jan C; DeMars, Kelly M; Ahmad, Abdullah S; Hawkins, Kimberly E; Yang, Changjun; Leclerc, Jenna L; Doré, Sylvain; Candelario-Jalil, Eduardo

    2015-12-09

    Cyclooxygenase-2 (COX-2) is activated in response to ischemia and significantly contributes to the neuroinflammatory process. Accumulation of COX-2-derived prostaglandin E2 (PGE2) parallels the substantial increase in stroke-mediated blood-brain barrier (BBB) breakdown. Disruption of the BBB is a serious consequence of ischemic stroke, and is mainly mediated by matrix metalloproteinases (MMPs). This study aimed to investigate the role of PGE2 EP1 receptor in neurovascular injury in stroke. We hypothesized that pharmacological blockade or genetic deletion of EP1 protects against BBB damage and hemorrhagic transformation by decreasing the levels and activity of MMP-3 and MMP-9. We found that post-ischemic treatment with the EP1 antagonist, SC-51089, or EP1 genetic deletion results in a significant reduction in BBB disruption and reduced hemorrhagic transformation in an experimental model of transient focal cerebral ischemia. These neurovascular protective effects of EP1 inactivation are associated with a significant reduction in MMP-9/-3, less peripheral neutrophil infiltration, and a preservation of tight junction proteins (ZO-1 and occludin) composing the BBB. Our study identifies the EP1 signaling pathway as an important link between neuroinflammation and MMP-mediated BBB breakdown in ischemic stroke. Targeting the EP1 receptor could represent a novel approach to diminish the devastating consequences of stroke-induced neurovascular damage.

  11. Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke.

    PubMed

    Fouda, Abdelrahman Y; Alhusban, Ahmed; Ishrat, Tauheed; Pillai, Bindu; Eldahshan, Wael; Waller, Jennifer L; Ergul, Adviye; Fagan, Susan C

    2017-01-01

    Angiotensin type 1 receptor blockers (ARBs) have been shown to be neuroprotective and neurorestorative in experimental stroke. The mechanisms proposed include anti-inflammatory, antiapoptotic effects, as well as stimulation of endogenous trophic factors leading to angiogenesis and neuroplasticity. We aimed to investigate the involvement of the neurotrophin, brain-derived neurotrophic factor (BDNF), in ARB-mediated functional recovery after stroke. To achieve this aim, Wistar rats received bilateral intracerebroventricular (ICV) injections of short hairpin RNA (shRNA) lentiviral particles or nontargeting control (NTC) vector, to knock down BDNF in both hemispheres. After 14 days, rats were subjected to 90-min middle cerebral artery occlusion (MCAO) and received the ARB, candesartan, 1 mg/kg, or saline IV at reperfusion (one dose), then followed for another 14 days using a battery of behavioral tests. BDNF protein expression was successfully reduced by about 70 % in both hemispheres at 14 days after bilateral shRNA lentiviral particle injection. The NTC group that received candesartan showed better functional outcome as well as increased vascular density and synaptogenesis as compared to saline treatment. BDNF knockdown abrogated the beneficial effects of candesartan on neurobehavioral outcome, vascular density, and synaptogenesis. In conclusion, BDNF is directly involved in candesartan-mediated functional recovery, angiogenesis, and synaptogenesis.

  12. B7-H3 Augments Inflammatory Responses and Exacerbates Brain Damage via Amplifying NF-κB p65 and MAPK p38 Activation during Experimental Pneumococcal Meningitis

    PubMed Central

    Chen, Xuqin; Li, Yan; Blankson, Siobhan; Liu, Min; Huang, Danping; Redmond, H. Paul; Huang, Jing; Wang, Jiang Huai; Wang, Jian

    2017-01-01

    The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response and subsequent brain damage during experimental pneumococcal meningitis. Administration of B7-H3 did not augment expression of TLR2 and other TLR2 upstream components, but led to an enhanced formation of MyD88-IRAK immunocomplex in the brain of S. pneumoniae-infected mice. Furthermore, B7-H3 substantially augmented S. pneumoniae-induced activation of TLR2 downstream NF-κB p65 and MAPK p38 pathways in the brain of S. pneumoniae-infected mice. Notably, blockage of NF-κB p65 and/or MAPK p38 with their specific inhibitors strongly attenuated B7-H3-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine production, and markedly ameliorated B7-H3-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice. These results indicate that targeting NF-κB p65 and/or MAPK p38 may represent a promising therapeutic option for amelioration of overwhelming inflammatory response-associated brain injury frequently observed during pneumococcal meningitis. PMID:28141831

  13. [A rare form of acute pulmonary edema: case report].

    PubMed

    Ricardo, José; Anaya, Maria José; Barbosa, Mário; André, Nelson; Magno, Pedro; Morais, José; Proença, Gonçalo; Rabaçal, Carlos; Gil, Victor

    2011-10-01

    We report the case of a 21-year-old man who underwent appendectomy under general anesthesia and developed acute pulmonary edema immediately after extubation. We then review the literature, focusing on the pathophysiology and the most important aspects of diagnosis and treatment of post-extubation pulmonary edema.

  14. Anthrax edema toxin impairs clearance in mice.

    PubMed

    Sastalla, Inka; Tang, Shixing; Crown, Devorah; Liu, Shihui; Eckhaus, Michael A; Hewlett, Indira K; Leppla, Stephen H; Moayeri, Mahtab

    2012-02-01

    The anthrax edema toxin (ET) of Bacillus anthracis is composed of the receptor-binding component protective antigen (PA) and of the adenylyl cyclase catalytic moiety, edema factor (EF). Uptake of ET into cells raises intracellular concentrations of the secondary messenger cyclic AMP, thereby impairing or activating host cell functions. We report here on a new consequence of ET action in vivo. We show that in mouse models of toxemia and infection, serum PA concentrations were significantly higher in the presence of enzymatically active EF. These higher concentrations were not caused by ET-induced inhibition of PA endocytosis; on the contrary, ET induced increased PA binding and uptake of the PA oligomer in vitro and in vivo through upregulation of the PA receptors TEM8 and CMG2 in both myeloid and nonmyeloid cells. ET effects on protein clearance from circulation appeared to be global and were not limited to PA. ET also impaired the clearance of ovalbumin, green fluorescent protein, and EF itself, as well as the small molecule biotin when these molecules were coinjected with the toxin. Effects on injected protein levels were not a result of general increase in protein concentrations due to fluid loss. Functional markers for liver and kidney were altered in response to ET. Concomitantly, ET caused phosphorylation and activation of the aquaporin-2 water channel present in the principal cells of the collecting ducts of the kidneys that are responsible for fluid homeostasis. Our data suggest that in vivo, ET alters circulatory protein and small molecule pharmacokinetics by an as-yet-undefined mechanism, thereby potentially allowing a prolonged circulation of anthrax virulence factors such as EF during infection.

  15. Neurogenic Pulmonary Edema in Aneurysmal Subarachnoid Hemorrhage.

    PubMed

    Saracen, A; Kotwica, Z; Woźniak-Kosek, A; Kasprzak, P

    2016-01-01

    Neurogenic pulmonary edema (NPE) is observed in cerebral injuries and has an impact on treatment results, being a predictor of fatal prognosis. In this study we retrospectively reviewed medical records of 250 consecutive patients with aneurysmal subarachnoid hemorrhage (SAH) for the frequency and treatment results of NPE. The following factors were taken under consideration: clinical status, aneurysm location, presence of NPE, intracranial pressure (ICP), and mortality. All patients had plain- and angio-computer tomography performed. NPE developed most frequently in case of the aneurysm located in the anterior communicating artery. The patients with grades I-III of SAH, according to the World Federation of Neurosurgeons staging, were immediately operated on, while those with poor grades IV and V had only an ICP sensor's implantation procedure performed. A hundred and eighty five patients (74.4 %) were admitted with grades I to III and 32 patients (12.8 %) were with grade IV and V each. NPE was not observed in SAH patients with grade I to III, but it developed in nine patients with grade IV and 11 patients with grade V. Of the 20 patients with NPE, 19 died. Of the 44 poor grade patients (grades IV-V) without NPE, 20 died. All poor grade patients had elevated ICP in a range of 24-56 mmHg. The patients with NPE had a greater ICP than those without NPE. Gender and age had no influence on the occurrence of NPE. We conclude that the development of neurogenic pulmonary edema in SAH patients with poor grades is a fatal prognostic as it about doubles the death rate to almost hundred percent.

  16. Oxygen-deficient metabolism and corneal edema.

    PubMed

    Leung, B K; Bonanno, J A; Radke, C J

    2011-11-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem-Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema.

  17. Oxygen-deficient metabolism and corneal edema

    PubMed Central

    Leung, B.K.; Bonanno, J.A.; Radke, C.J.

    2014-01-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem–Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. PMID:21820076

  18. Effects of chronic ethanol administration on expression of BDNF and trkB mRNAs in rat hippocampus after experimental brain injury.

    PubMed

    Zhang, L; Dhillon, H S; Barron, S; Hicks1, R R; Prasad, R M; Seroogy, K B

    2000-06-23

    Previous evidence indicates that both chronic alcohol treatment and traumatic brain injury modulate expression of certain neurotrophins and neurotrophin receptors in cortical tissue. However, the combined effects of chronic alcohol and brain trauma on expression of neurotrophins and their receptors have not been investigated. In the present study, we examined the effects of 6 weeks of chronic ethanol administration on lateral fluid percussion (FP) brain injury-induced alterations in expression of mRNAs for the neurotrophin brain-derived neurotrophic factor (BDNF) and its high affinity receptor, trkB, in rat hippocampus. In both the control- (pair-fed isocaloric sucrose) diet and the chronic ethanol-diet groups, unilateral FP brain injury induced a bilateral increase in levels of both BDNF and trkB mRNAs in the dentate gyrus granule cell layer, and of BDNF mRNA in hippocampal region CA3. However, no significant differences in expression were found between the control-diet and ethanol-diet groups, in either the sham-injured or FP-injured animals. These findings suggest that 6 weeks of chronic ethanol administration does not alter the plasticity of hippocampal BDNF/trkB expression in response to experimental brain injury.

  19. Oral treatment with laquinimod augments regulatory T-cells and brain-derived neurotrophic factor expression and reduces injury in the CNS of mice with experimental autoimmune encephalomyelitis.

    PubMed

    Aharoni, Rina; Saada, Ravit; Eilam, Raya; Hayardeny, Liat; Sela, Michael; Arnon, Ruth

    2012-10-15

    Laquinimod is an orally active molecule that showed efficacy in clinical trials in multiple sclerosis. We studied its effects in the CNS, when administered by therapeutic regimen to mice inflicted with experimental autoimmune encephalomyelitis (EAE). Laquinimod reduced clinical and inflammatory manifestations and elevated the prevalence of T-regulatory cells in the brain. In untreated mice, in the chronic disease stage, brain derived neurotrophic factor (BDNF) expression was impaired. Laquinimod treatment restored BDNF expression to its level in healthy controls. Furthermore, CNS injury, manifested by astrogliosis, demyelination and axonal damages, was significantly reduced following laquinimod treatment, indicating its immunomodulatory and neuroprotective activity.

  20. Carvacrol alleviates cerebral edema by modulating AQP4 expression after intracerebral hemorrhage in mice.

    PubMed

    Zhong, Zhihong; Wang, Baofeng; Dai, Minchao; Sun, Yuhao; Sun, Qingfang; Yang, Guoyuan; Bian, Liuguan

    2013-10-25

    Carvacrol is a natural compound extracted from many plants of the family Lamiaceae. Previous studies have demonstrated that carvacrol has potential neuroprotective effects in central nervous system diseases such as Alzheimer's disease and cerebral ischemia. In this study, we investigated the preclinical effect of carvacrol on cerebral edema after intracerebral hemorrhage (ICH) using a bacterial collagenase-induced ICH mouse model. Mice were randomly divided into sham (n=43), vehicle-treated (n=51), and carvacrol-treated groups (n=101). In carvacrol-treated group, carvacrol was administrated to mice at 0h, 1h, or 3h after ICH induction. Carvacrol was injected intraperitoneally with single doses of 10, 25, 50, or 100mg/kg. Neurologic dysfunctions, brain water content, aquaporins (AQPs) mRNAs level and AQP4 protein expression in the perihematomal area were evaluated post ICH. Our results showed that carvacrol administration improved neurological deficits after day 3 following ICH (p<0.05). Carvacrol reduced cerebral edema and Evans Blue leakage at day 3 (p<0.05). We also found that carvacrol treatment decreased AQP4 mRNA in a dose-dependent manner at 24h. Furthermore, AQP4 protein expression in the perihematomal area was reduced by carvacrol significantly at day 3 after ICH (p<0.05). Our findings suggest that carvacrol may exert its protective effect on ICH injury by ameliorating AQP4-mediated cerebral edema.

  1. Severe cerebral edema following nivolumab treatment for pediatric glioblastoma: case report.

    PubMed

    Zhu, Xiao; McDowell, Michael M; Newman, William C; Mason, Gary E; Greene, Stephanie; Tamber, Mandeep S

    2017-02-01

    Nivolumab is an immune checkpoint inhibitor (ICI) currently undergoing Phase III clinical trials for the treatment of glioblastoma. The authors present the case of a 10-year-old girl with glioblastoma treated with nivolumab under compassionate-use guidelines. After the first dose of nivolumab the patient developed hemiparesis, cerebral edema, and significant midline shift due to severe tumor necrosis. She was managed using intravenous dexamethasone and discharged on a dexamethasone taper. The patient's condition rapidly deteriorated after the second dose of nivolumab, demonstrating hemiplegia, seizures, and eventually unresponsiveness with a fixed and dilated left pupil. Computed tomography of her brain revealed malignant cerebral edema requiring emergency decompressive hemicraniectomy. Repeat imaging demonstrated increased size of the lesion, reflecting immune-mediated inflammation and tumor necrosis. The patient remained densely hemiplegic, but became progressively more interactive and was ultimately extubated. She resumed nivolumab several weeks later, but again her condition deteriorated with headache, vomiting, swelling at the craniectomy site, and limited right-sided facial movement following the sixth dose. MRI demonstrated severe midline shift and uncal herniation despite her craniectomy. Her condition gradually declined, and she died several days later under "do not resuscitate/do not intubate" orders. To the authors' knowledge, this represents the first case of malignant cerebral edema requiring operative intervention following nivolumab treatment for glioblastoma in a pediatric patient.

  2. Pediatric cerebral stroke: susceptibility-weighted imaging may predict post-ischemic malignant edema.

    PubMed

    Bosemani, Thangamadhan; Poretti, Andrea; Orman, Gunes; Meoded, Avner; Huisman, Thierry A G M

    2013-10-01

    Susceptibility-weighted imaging (SWI) is an advanced MRI technique providing information on the blood oxygenation level. Deoxyhemoglobin is increased in hypoperfused tissue characterized by SWI-hypointensity, while high oxyhemoglobin concentration within hyperperfused tissue results in a SWI iso- or hyperintensity compared to healthy brain tissue. We describe a child with a stroke, where SWI in addition to excluding hemorrhage and delineating the thrombus proved invaluable in determining regions of hyperperfusion or luxury perfusion, which contributed further to the prognosis including an increased risk of developing post-ischemic malignant edema.

  3. Pediatric Cerebral Stroke: Susceptibility-Weighted Imaging May Predict Post-Ischemic Malignant Edema

    PubMed Central

    Bosemani, Thangamadhan; Poretti, Andrea; Orman, Gunes; Meoded, Avner; Huisman, Thierry A.G.M.

    2013-01-01

    Summary Susceptibility-weighted imaging (SWI) is an advanced MRI technique providing information on the blood oxygenation level. Deoxyhemoglobin is increased in hypoperfused tissue characterized by SWI-hypointensity, while high oxyhemoglobin concentration within hyperperfused tissue results in a SWI iso- or hyperintensity compared to healthy brain tissue. We describe a child with a stroke, where SWI in addition to excluding hemorrhage and delineating the thrombus proved invaluable in determining regions of hyperperfusion or luxury perfusion, which contributed further to the prognosis including an increased risk of developing post-ischemic malignant edema. PMID:24199819

  4. Intracerebral Hemorrhage: Perihemorrhagic Edema and Secondary Hematoma Expansion: From Bench Work to Ongoing Controversies

    PubMed Central

    Mittal, Manoj K.; LacKamp, Aaron

    2016-01-01

    Intracerebral hemorrhage (ICH) is a medical emergency, which often leads to severe disability and death. ICH-related poor outcomes are due to primary injury causing structural damage and mass effect and secondary injury in the perihemorrhagic region over several days to weeks. Secondary injury after ICH can be due to hematoma expansion (HE) or a consequence of repair pathway along the continuum of neuroinflammation, neuronal death, and perihemorrhagic edema (PHE). This review article is focused on PHE and HE and will cover the animal studies, related human studies, and clinical trials relating to these mechanisms of secondary brain injury in ICH patients. PMID:27917153

  5. Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post Experimental Traumatic Brain Injury in Rats

    PubMed Central

    Kobeissy, Firas H.; Guingab-Cagmat, Joy D.; Zhang, Zhiqun; Moghieb, Ahmed; Glushakova, Olena Y.; Mondello, Stefania; Boutté, Angela M.; Anagli, John; Rubenstein, Richard; Bahmad, Hisham; Wagner, Amy K.; Hayes, Ronald L.; Wang, Kevin K. W.

    2016-01-01

    Traumatic brain injury (TBI) represents a critical health problem of which diagnosis, management, and treatment remain challenging. TBI is a contributing factor in approximately one-third of all injury-related deaths in the United States. The Centers for Disease Control and Prevention estimate that 1.7 million people suffer a TBI in the United States annually. Efforts continue to focus on elucidating the complex molecular mechanisms underlying TBI pathophysiology and defining sensitive and specific biomarkers that can aid in improving patient management and care. Recently, the area of neuroproteomics–systems biology is proving to be a prominent tool in biomarker discovery for central nervous system injury and other neurological diseases. In this work, we employed the controlled cortical impact (CCI) model of experimental TBI in rat model to assess the temporal–global proteome changes after acute (1 day) and for the first time, subacute (7 days), post-injury time frame using the established cation–anion exchange chromatography-1D SDS gel electrophoresis LC–MS/MS platform for protein separation combined with discrete systems biology analyses to identify temporal biomarker changes related to this rat TBI model. Rather than focusing on any one individual molecular entity, we used in silico systems biology approach to understand the global dynamics that govern proteins that are differentially altered post-injury. In addition, gene ontology analysis of the proteomic data was conducted in order to categorize the proteins by molecular function, biological process, and cellular localization. Results show alterations in several proteins related to inflammatory responses and oxidative stress in both acute (1 day) and subacute (7 days) periods post-TBI. Moreover, results suggest a differential upregulation of neuroprotective proteins at 7 days post-CCI involved in cellular functions such as neurite growth, regeneration, and axonal guidance. Our study is among

  6. Effect of Traumatic Brain Injury, Erythropoietin, and Anakinra on Hepatic Metabolizing Enzymes and Transporters in an Experimental Rat Model.

    PubMed

    Anderson, Gail D; Peterson, Todd C; Vonder Haar, Cole; Farin, Fred M; Bammler, Theo K; MacDonald, James W; Kantor, Eric D; Hoane, Michael R

    2015-09-01

    In contrast to considerable data demonstrating a decrease in cytochrome P450 (CYP) activity in inflammation and infection, clinically, traumatic brain injury (TBI) results in an increase in CYP and UDP glucuronosyltransferase (UGT) activity. The objective of this study was to determine the effects of TBI alone and with treatment with erythropoietin (EPO) or anakinra on the gene expression of hepatic inflammatory proteins, drug-metabolizing enzymes, and transporters in a cortical contusion impact (CCI) injury model. Microarray-based transcriptional profiling was used to determine the effect on gene expression at 24 h, 72 h, and 7 days post-CCI. Plasma cytokine and liver protein concentrations of CYP2D4, CYP3A1, EPHX1, and UGT2B7 were determined. There was no effect of TBI, TBI + EPO, or TBI + anakinra on gene expression of the inflammatory factors shown to be associated with decreased expression of hepatic metabolic enzymes in models of infection and inflammation. IL-6 plasma concentrations were increased in TBI animals and decreased with EPO and anakinra treatment. There was no significant effect of TBI and/or anakinra on gene expression of enzymes or transporters known to be involved in drug disposition. TBI + EPO treatment decreased the gene expression of Cyp2d4 at 72 h with a corresponding decrease in CYP2D4 protein at 72 h and 7 days. CYP3A1 protein was decreased at 24 h. In conclusion, EPO treatment may result in a significant decrease in the metabolism of Cyp-metabolized drugs. In contrast to clinical TBI, there was not a significant effect of experimental TBI on CYP or UGT metabolic enzymes.

  7. Neuropsychiatric Symptom Modeling in Male and Female C57BL/6J Mice after Experimental Traumatic Brain Injury

    PubMed Central

    Tucker, Laura B.; Burke, John F.; Fu, Amanda H.

    2017-01-01

    Abstract Psychiatric symptoms such as anxiety and depression are frequent and persistent complaints following traumatic brain injury (TBI). Modeling these symptoms in animal models of TBI affords the opportunity to determine mechanisms underlying behavioral pathologies and to test potential therapeutic agents. However, testing these symptoms in animal models of TBI has yielded inconsistent results. The goal of the current study was to employ a battery of tests to measure multiple anxiety- and depressive-like symptoms following TBI in C57BL/6J mice, and to determine if male and female mice are differentially affected by the injury. Following controlled cortical impact (CCI) at a parietal location, neither male nor female mice showed depressive-like symptoms as measured by the Porsolt forced-swim test and sucrose preference test. Conclusions regarding anxiety-like behaviors were dependent upon the assay employed; CCI-induced thigmotaxis in the open field suggested an anxiogenic effect of the injury; however, results from the elevated zero maze, light-dark box, and marble-burying tests indicated that CCI reduced anxiety-like behaviors. Fewer anxiety-like behaviors were also associated with the female sex. Increased levels of activity were also measured in female mice and injured mice in these tests, and conclusions regarding anxiety should be taken with caution when experimental manipulations induce changes in baseline activity. These results underscore the irreconcilability of results from studies attempting to model TBI-induced neuropsychiatric symptoms. Changes in injury models or better attempts to replicate the clinical syndrome may improve the translational applicability of rodent models of TBI-induced anxiety and depression. PMID:27149139

  8. Exercise-Induced Pulmonary Edema in a Triathlon

    PubMed Central

    Yamanashi, Hirotomo; Koyamatsu, Jun; Nobuyoshi, Masaharu; Murase, Kunihiko; Maeda, Takahiro

    2015-01-01

    Introduction. Family physicians have more opportunities to attend athletic competitions as medical staff at first-aid centers because of the increasing popularity of endurance sports. Case. A 38-year-old man who participated in a triathlon race experienced difficulty in breathing after swimming and was moved to a first-aid center. His initial oxygen saturation was 82% and a thoracic computed tomography scan showed bilateral ground glass opacity in the peripheral lungs. His diagnosis was noncardiogenic pulmonary edema associated with exercise or swimming: exercise-induced pulmonary edema (EIPE) or swimming-induced pulmonary edema (SIPE). Treatment with furosemide and corticosteroid relieved his symptoms of pulmonary edema. Discussion. Noncardiogenic pulmonary edema associated with endurance sports is not common, but knowledge about EIPE/SIPE or neurogenic pulmonary edema associated with hyponatremia, which is called Ayus-Arieff syndrome, is crucial. Knowledge and caution for possible risk factors, such as exposure to cold water or overhydration, are essential for both medical staff and endurance athletes. Conclusion. To determine the presence of pulmonary edema associated with strenuous exercise, oxygen saturation should be used as a screening tool at a first-aid center. To avoid risks for EIPE/SIPE, knowledge about these diseases is essential for medical staff and for athletes who perform extreme exercise. PMID:26229538

  9. Reperfusion edema after thromboendarterectomy: radiographic patterns of disease.

    PubMed

    Miller, W T; Osiason, A W; Langlotz, C P; Palevsky, H I

    1998-07-01

    In patients with chronic pulmonary embolism, pulmonary thromboendarterectomy may result in a unique form of noncardiogenic pulmonary edema termed reperfusion edema. This report reviews the authors' experience after pulmonary thromboendarterectomy with particular emphasis on the radiographic manifestations of reperfusion edema. The clinical and radiographic record of 25 patients who underwent pulmonary thromboendarterectomy at the University of Pennsylvania from 1985 through 1995 were reviewed. The zonal distribution of radiographic opacity, time to maximal opacity, and the time to clearance of reperfusion edema were determined. The relationship of these radiographic manifestations to clinical severity of disease and clinical outcome was examined. Reperfusion edema, characterized by patchy bilateral perihilar alveolar opacities, occurred in all but one patient. There is a lower lung zone predominance of opacities, but in individual cases, striking unilateral or haphazard arrangements of opacities may be seen. In this small sample of patients, no association between preoperative pulmonary arterial pressures and radiographic appearance or clinical outcome was found. However, severity of radiographic opacities, as measured by the extent of involved lung, correlated with disease severity, as measured by time to extubation and time to discharge. Pneumonia, defined as a radiographic opacity that evolves discordantly with the reperfusion edema opacities, occurred in 20% of cases. Reperfusion edema is a common consequence of pulmonary thromboendarterectomy. The severity of radiographic manifestations and clinical severity of disease are related. This characteristically appears as perihilar alveolar opacities.

  10. New Perspectives in Edema Control via Electrical Stimulation

    PubMed Central

    Mendel, Frank C.; Fish, Dale R.

    1993-01-01

    Clinicians commonly use electrical stimulation (ES) to control acute edema. But, except for anecdotal reports, there is little evidence to support that practice. We recently conducted a series of controlled, blinded studies on several nonhuman animal models to determine the efficacy of several forms of ES, but high-voltage pulsed current (HVPC) in particular, in controlling acute posttraumatic edema. We observed that acute posttraumatic edema is curbed by HVPC when certain protocols are used. Results of these studies suggest to us that wave form, polarity, treatment schedule, intensity and frequency of pulses all influence ES, and that clinical protocols need revision. PMID:16558209

  11. [Detection of cystoid macular edema with orally administered fluorescein].

    PubMed

    Hütz, W; Hessemer, V; Jacobi, K W

    1989-10-01

    To detect cystoid macular edema after extracapsular cataract extraction, the authors used indirect ophthalmoscopy after oral application of fluorescein, rather than intravenous fluorescein angiography. The patients drank 10-20 ml 10% fluorescein sodium in 250 ml orange juice. Ophthalmoscopy was performed 30-45 minutes later using an exciter filter. Twenty-five patients with a tentative clinical diagnosis of cystoid macular edema were examined in this way. In six of them a manifest edema was detected. The results were confirmed by intravenous fluorescein angiography.

  12. Mechanics of the brain: perspectives, challenges, and opportunities.

    PubMed

    Goriely, Alain; Geers, Marc G D; Holzapfel, Gerhard A; Jayamohan, Jayaratnam; Jérusalem, Antoine; Sivaloganathan, Sivabal; Squier, Waney; van Dommelen, Johannes A W; Waters, Sarah; Kuhl, Ellen

    2015-10-01

    The human brain is the continuous subject of extensive investigation aimed at understanding its behavior and function. Despite a clear evidence that mechanical factors play an important role in regulating brain activity, current research efforts focus mainly on the biochemical or electrophysiological activity of the brain. Here, we show that classical mechanical concepts including deformations, stretch, strain, strain rate, pressure, and stress play a crucial role in modulating both brain form and brain function. This opinion piece synthesizes expertise in applied mathematics, solid and fluid mechanics, biomechanics, experimentation, material sciences, neuropathology, and neurosurgery to address today's open questions at the forefront of neuromechanics. We critically review the current literature and discuss challenges related to neurodevelopment, cerebral edema, lissencephaly, polymicrogyria, hydrocephaly, craniectomy, spinal cord injury, tumor growth, traumatic brain injury, and shaken baby syndrome. The multi-disciplinary analysis of these various phenomena and pathologies presents new opportunities and suggests that mechanical modeling is a central tool to bridge the scales by synthesizing information from the molecular via the cellular and tissue all the way to the organ level.

  13. Glyphosate Poisoning with Acute Pulmonary Edema

    PubMed Central

    Thakur, Darshana Sudip; Khot, Rajashree; Joshi, P. P.; Pandharipande, Madhuri; Nagpure, Keshav

    2014-01-01

    GlySH-surfactant herbicide (GlySH), one of the most commonly used herbicides worldwide, has been considered as minimally toxic to humans. However, clinical toxicologists occasionally encounter cases of severe systemic toxicity. The US Environmental Protection Agency (EPA) states that ‘GlySH’ is of relatively low oral and acute dermal toxicity. It does not have anticholinesterase effect and no organophosphate-like central nervous system (CNS) effects. The clinical features range from skin and throat irritation to hypotension and death. Severe GlySH-surfactant poisoning is manifested by gastroenteritis, respiratory disturbances, altered mental status, hypotension refractory to the treatment, renal failure, and shock.[1] GlySH intoxication has a case fatality rate 3.2–29.3%. Pulmonary toxicity and renal toxicity seem to be responsible for mortality. Metabolic acidosis, abnormal chest X-ray, arrhythmias, and elevated serum creatinine levels are useful prognostic factors for predicting GlySH mortality.[2] There is no antidote and the mainstay of treatment for systemic toxicity is decontamination and aggressive supportive therapy. We report a case of acute pulmonary edema, which is a rare but severe manifestation of oral GlySH poisoning, where patient survived with aggressive supportive therapy. PMID:25948977

  14. Managed care implications of diabetic macular edema.

    PubMed

    Holekamp, Nancy M

    2016-07-01

    Diabetic retinopathy (DR) is both the leading cause of blindness among adults aged 20 to 74 in the United States, and the leading ocular complication associated with diabetes mellitus (DM). An estimated 4.4% of adults with DM over 40 years of age have the more advanced form of DR: diabetic macular edema (DME), which significantly increases the risk of blindness. Medical costs for Medicare patients with DME are a third higher than for patients without DME. The majority of these costs stem from other DM-related complications, as DME is a marker for poorly controlled DM overall. Commercially insured patients with DME incur direct and indirect costs up to 75% higher than for those with DR without DME. Early detection, treatment, and improved glycemic control can limit the onset or progression of microvascular complications of DR, including DME, resulting in significant savings for payers. However, there are significant gaps in adherence to national guidelines regarding DM control and early identification of DR. In addition, patients face several barriers to screening. Improving screening for and management of early DR could decrease progression to DME, which would provide significant savings for payers, as well as improve the quality of care and outcomes for patients with DM. Managed care organizations and employers should also consider the cost-effectiveness of currently available treatments for DME: focal laser photocoagulation, vascular endothelial growth factor inhibitors, and intravitreal corticosteroid injections and implants, in their formulary design; they should also identify opportunities to improve patient adherence to treatment.

  15. Diabetic Macular Edema Pathophysiology: Vasogenic versus Inflammatory

    PubMed Central

    Baget-Bernaldiz, Marc; Pareja-Rios, Alicia; Lopez-Galvez, Maribel; Navarro-Gil, Raul; Verges, Raquel

    2016-01-01

    Diabetic macular edema (DME) can cause blindness in diabetic patients suffering from diabetic retinopathy (DR). DM parameters controls (glycemia, arterial tension, and lipids) are the gold standard for preventing DR and DME. Although the vascular endothelial growth factor (VEGF) is known to play a role in the development of DME, the pathological processes leading to the onset of this disease are highly complex and the exact sequence in which they occur is still not completely understood. Angiogenesis and inflammation have been shown to be involved in the pathogenesis of this disease. However, it still remains to be clarified whether angiogenesis following VEGF overexpression is a cause or a consequence of inflammation. This paper provides a review of the data currently available, focusing on VEGF, angiogenesis, and inflammation. Our analysis suggests that angiogenesis and inflammation act interdependently during the development of DME. Knowledge of DME etiology seems to be important in treatments with anti-VEGF or anti-inflammatory drugs. Current diagnostic techniques do not permit us to differentiate between both etiologies. In the future, diagnosing the physiopathology of each patient with DME will help us to select the most effective drug. PMID:27761468

  16. Magnetic Resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema

    PubMed Central

    Sagoo, Ravjit S; Hutchinson, Charles E; Wright, Alex; Handford, Charles; Parsons, Helen; Sherwood, Victoria; Wayte, Sarah; Nagaraja, Sanjoy; Ng’Andwe, Eddie; Wilson, Mark H

    2016-01-01

    Rapid ascent to high altitude commonly results in acute mountain sickness, and on occasion potentially fatal high-altitude cerebral edema. The exact pathophysiological mechanisms behind these syndromes remain to be determined. We report a study in which 12 subjects were exposed to a FiO2 = 0.12 for 22 h and underwent serial magnetic resonance imaging sequences to enable measurement of middle cerebral artery velocity, flow and diameter, and brain parenchymal, cerebrospinal fluid and cerebral venous volumes. Ten subjects completed 22 h and most developed symptoms of acute mountain sickness (mean Lake Louise Score 5.4; p < 0.001 vs. baseline). Cerebral oxygen delivery was maintained by an increase in middle cerebral artery velocity and diameter (first 6 h). There appeared to be venocompression at the level of the small, deep cerebral veins (116 cm3 at 2 h to 97 cm3 at 22 h; p < 0.05). Brain white matter volume increased over the 22-h period (574 ml to 587 ml; p < 0.001) and correlated with cumulative Lake Louise scores at 22 h (p < 0.05). We conclude that cerebral oxygen delivery was maintained by increased arterial inflow and this preceded the development of cerebral edema. Venous outflow restriction appeared to play a contributory role in the formation of cerebral edema, a novel feature that has not been observed previously. PMID:26746867

  17. Design and experimental evaluation of a 256-channel dual-frequency ultrasound phased-array system for transcranial blood-brain barrier opening and brain drug delivery.

    PubMed

    Liu, Hao-Li; Jan, Chen-Kai; Chu, Po-Chun; Hong, Jhong-Cing; Lee, Pei-Yun; Hsu, Jyh-Duen; Lin, Chung-Chih; Huang, Chiung-Ying; Chen, Pin-Yuan; Wei, Kuo-Chen

    2014-04-01

    Focused ultrasound (FUS) in the presence of microbubbles can bring about transcranial and local opening of the blood-brain barrier (BBB) for potential noninvasive delivery of drugs to the brain. A phased-array ultrasound system is essential for FUS-BBB opening to enable electronic steering and correction of the focal beam which is distorted by cranial bone. Here, we demonstrate our prototype design of a 256-channel ultrasound phased-array system for large-region transcranial BBB opening in the brains of large animals. One of the unique features of this system is the capability of generating concurrent dual-frequency ultrasound signals from the driving system for potential enhancement of BBB opening. A wide range of signal frequencies can be generated (frequency = 0.2-1.2 MHz) with controllable driving burst patterns. Precise output power can be controlled for individual channels via 8-bit duty-cycle control of transistor-transistor logic signals and the 8-bit microcontroller-controlled buck converter power supply output voltage. The prototype system was found to be in compliance with the electromagnetic compatibility standard. Moreover, large animal experiments confirmed the phase switching effectiveness of this system, and induction of either a precise spot or large region of BBB opening through fast focal-beam switching. We also demonstrated the capability of dual-frequency exposure to potentially enhance the BBB-opening effect. This study contributes to the design of ultrasound phased arrays for future clinical applications, and provides a new direction toward optimizing FUS brain drug delivery.

  18. Unilateral pulmonary edema during laparoscopic resection of adrenal tumor

    PubMed Central

    Prakash, Smita; Nayar, Pavan; Virmani, Pooja; Bansal, Shipra; Pawar, Mridula

    2015-01-01

    Despite technological, therapeutic and diagnostic advancements, surgical intervention in pheochromocytoma may result in a life-threatening situation. We report a patient who developed unilateral pulmonary edema during laparoscopic resection of adrenal tumor. PMID:26330724

  19. Successful treatment of pseudophakic cystoid macular edema with intravitreal bevacizumab.

    PubMed

    Barone, Antonio; Prascina, Francesco; Russo, Vincenzo; Iaculli, Cristiana; Primavera, Vito; Querques, Giuseppe; Stella, Andrea; Delle Noci, Nicola

    2008-07-01

    A 67-year-old woman developed refractory pseudophakic cystoid macular edema (CME) after uneventful phacoemulsification. Three months after an intravitreal injection of bevacizumab (1.25 mg), the CME was completely resolved, with resultant improvement in visual acuity.

  20. Postembolization perianeurysmal edema as a cause of uncinate seizures.

    PubMed

    Cohen, José E; Itshayek, Eyal; Attia, Moshe; Moscovici, Samuel

    2012-03-01

    We report a patient with a giant unruptured supraclinoid aneurysm treated by endovascular embolization by means of bare coils and implantation of a flow diverterstent. Eight weeks after the embolization, she presented with uncinate seizures. Neuroradiological examination revealed de novo postembolization perianeurysmal edema, which has been described only rarely. A brief course of oral steroids successfully controlled the seizures. Perianeurysmal edema must be considered a potential complication after embolization of large aneurysms with coils and other means, and needs to be considered as a differential diagnosis in patients with unusual neurological symptoms at either the acute or delayed stages. To our knowledge, this is the first report of postembolization perianeurysmal edema occurring after successful occlusion by means of bare coils and a flow diverterstent. This report contributes to the growing evidence on adverse post-coiling inflammatory reactions, and specifically on perianeurysmal edema.

  1. Cerebral embolism: local CFBF and edema measured by CT scanning and Xe inhalation. [Baboons

    SciTech Connect

    Meyer, J.S.; Yamamoto, M.; Hayman, L.A.; Sakai, F.; Nakajima, S.; Armstrong, D.

    1980-01-01

    Serial CT scans were made in baboons after cerebral embolization during stable Xe inhalation for measuring local values for CBF and lambda (brain-blood partition or solubility coefficients), followed by iodine infusion for detecting blood-brain barrier (BBB) damage. Persistent zones of zero flow surrounded by reduced flow were measured predominantly in subcortical regions, which showed gross and microscopic evidence of infarction at necropsy. Overlying cortex was relatively spared. Reduced lambda values attributed to edema appeared within 3 to 5 minutes and progressed up to 60 minutes. Damage to BBB with visible transvascular seepage of iodine began to appear 1 to 1 1/2 hours after embolism. In chronic animals, lambda values were persistently reduced in areas showing histologic infarction. Contralateral hemispheric CBF increased for the first 15 minutes after embolism, followed by progressive reduction after 30 minutes (diaschisis).

  2. Angioneurotic edema: a rare case of hypersensitivity to metoclopramide

    PubMed Central

    Zakrzewski, Aleksander; Matuszewski, Tomasz; Kruszewski, Jerzy

    2013-01-01

    The case of a 30-year-old woman who had already experienced two incidents of angioneurotic edema and urticaria caused by drugs during the acute gastroenteritis. The allergological workup revealed hypersensitivity to metoclopramide. This case documents that metoclopramide, a drug commonly used to inhibit the vomiting, may cause not only bronchospastic reaction in an asthmatic patient but also angioneurotic edema of the tongue and larynx as well as urticaria. No similar cases in the literature were found. PMID:24278059

  3. Local fluid shifts and edema in humans during simulated microgravity

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.

    1991-01-01

    Local fluid shifts and edema in humans during simulated microgravity is studied. Recent results and significance and future plans on the following research topics are discussed: mechanisms of headward edema formation during head-down tilt; postural responses of head and foot microcirculations and their sensitivity to bed rest; and transcapillary fluid transport associated with lower body negative pressure (LBNP) with and without saline ingestion.

  4. Late-onset pulmonary edema due to propofol.

    PubMed

    Inal, M T; Memis, D; Vatan, I; Cakir, U; Yildiz, B

    2008-08-01

    Pulmonary edema after the administration of propofol has rarely been reported. In this case report, we describe pulmonary edema due to the administration of propofol during a Cesarean section and while in the intensive care unit. The skin tests demonstrated strong positive weal and flare reactions to propofol. The patient was treated successfully with mechanical ventilatory support. This report emphasizes that this fatal complication may be seen with propofol and underlying mechanisms and therapeutic approach are discussed.

  5. Evaluation of an Acute RNAi-Mediated Therapeutic for Visual Dysfunction Associated with Traumatic Brain Injury

    DTIC Science & Technology

    2013-10-01

    water from the brain to the blood and significantly impacts on brain swelling. We also show cognitive improvement in mice with focal cerebral...brain injury ( TBI ) is the leading cause of death in children and young adults globally. Malignant cerebral edema plays a major role in the...pathophysiology which evolves after severe TBI . Added to this is the significant morbidity and mortality from cerebral edema associated with acute stroke

  6. Mild experimental ketosis increases brain uptake of 11C-acetoacetate and 18F-fluorodeoxyglucose: a dual-tracer PET imaging study in rats.

    PubMed

    Pifferi, Fabien; Tremblay, Sébastien; Croteau, Etienne; Fortier, Mélanie; Tremblay-Mercier, Jennifer; Lecomte, Roger; Cunnane, Stephen C

    2011-03-01

    Brain glucose and ketone uptake was investigated in Fisher rats subjected to mild experimental ketonemia induced by a ketogenic diet (KD) or by 48 hours fasting (F). Two tracers were used, (11)C-acetoacetate ((11)C-AcAc) for ketones and (18)F-fluorodeoxyglucose for glucose, in a dual-tracer format for each animal. Thus, each animal was its own control, starting first on the normal diet, then undergoing 48 hours F, followed by 2 weeks on the KD. In separate rats on the same diet conditions, expression of the transporters of glucose and ketones (glucose transporter 1 (GLUT1) and monocarboxylic acid transporter (MCT1)) was measured in brain microvessel preparations. Compared to controls, uptake of (11)C-AcAc increased more than 2-fold while on the KD or after 48 hours F (P < 0.05). Similar trends were observed for (18)FDG uptake with a 1.9-2.6 times increase on the KD and F, respectively (P < 0.05). Compared to controls, MCT1 expression increased 2-fold on the KD (P < 0.05) but did not change during F. No significant difference was observed across groups for GLUT1 expression. Significant differences across the three groups were observed for plasma beta-hydroxybutyrate (beta-HB), AcAc, glucose, triglycerides, glycerol, and cholesterol (P < 0.05), but no significant differences were observed for free fatty acids, insulin, or lactate. Although the mechanism by which mild ketonemia increases brain glucose uptake remains unclear, the KD clearly increased both the blood-brain barrier expression of MCT1 and stimulated brain (11)C-AcAc uptake. The present dual-tracer positron emission tomography approach may be particularly interesting in neurodegenerative pathologies such as Alzheimer's disease where brain energy supply appears to decline critically.

  7. [Migraine with prolonged eyelid edema: a series of 10 cases].

    PubMed

    Toribio-Díaz, M E; Cuadrado-Pérez, M L; Peláez, A; Aledo-Serrano, Angel; Pedraza, M Isabel; Porta-Etessam, Jesús; Guerrero-Peral, Angel L

    2014-05-01

    Introduccion. La migraña puede cursar con sintomas autonomicos craneales propios de las cefaleas trigeminoautonomicas, lo que plantea dificultades en el diagnostico. Objetivo. Describir una serie de diez pacientes con edema palpebral asociado a la migraña. Pacientes y metodos. Diez pacientes atendidos en la consulta de cefaleas de tres hospitales (nueve mujeres, un varon; edad: 26-53 años), con edema palpebral recurrente asociado a la migraña. Resultados. Segun los criterios diagnosticos de la Clasificacion Internacional de las Cefaleas (ICHD-III, version beta), ocho pacientes presentaban migraña sin aura, una tenia migraña con aura y otra, migraña cronica. El edema palpebral aparecia durante las crisis de migraña mas intensas, y tenia mayor duracion que la cefalea. Se descartaron causas farmacologicas o sistemicas del edema en todos los casos. Otros sintomas autonomicos asociados fueron la inyeccion conjuntival (n = 3), el lagrimeo (n = 2) y la rinorrea (n = 1). Tanto el dolor como el edema asociado respondieron a los tratamientos sintomaticos y preventivos de la migraña. Conclusiones. El edema palpebral es un posible acompañante de la migraña. Aparece en algunos pacientes con los episodios de mayor intensidad, y responde al tratamiento sintomatico y preventivo de la migraña.

  8. Pathophysiology, Evaluation, and Management of Edema in Childhood Nephrotic Syndrome

    PubMed Central

    Ellis, Demetrius

    2016-01-01

    Generalized edema is a major presenting clinical feature of children with nephrotic syndrome (NS) exemplified by such primary conditions as minimal change disease (MCD). In these children with classical NS and marked proteinuria and hypoalbuminemia, the ensuing tendency to hypovolemia triggers compensatory physiological mechanisms, which enhance renal sodium (Na+) and water retention; this is known as the “underfill hypothesis.” Edema can also occur in secondary forms of NS and several other glomerulonephritides, in which the degree of proteinuria and hypoalbuminemia, are variable. In contrast to MCD, in these latter conditions, the predominant mechanism of edema formation is “primary” or “pathophysiological,” Na+ and water retention; this is known as the “overfill hypothesis.” A major clinical challenge in children with these disorders is to distinguish the predominant mechanism of edema formation, identify other potential contributing factors, and prevent the deleterious effects of diuretic regimens in those with unsuspected reduced effective circulatory volume (i.e., underfill). This article reviews the Starling forces that become altered in NS so as to tip the balance of fluid movement in favor of edema formation. An understanding of these pathomechanisms then serves to formulate a more rational approach to prevention, evaluation, and management of such edema. PMID:26793696

  9. Single administration of tripeptide α-MSH(11-13) attenuates brain damage by reduced inflammation and apoptosis after experimental traumatic brain injury in mice.

    PubMed

    Schaible, Eva-Verena; Steinsträßer, Arne; Jahn-Eimermacher, Antje; Luh, Clara; Sebastiani, Anne; Kornes, Frida; Pieter, Dana; Schäfer, Michael K; Engelhard, Kristin; Thal, Serge C

    2013-01-01

    Following traumatic brain injury (TBI) neuroinflammatory processes promote neuronal cell loss. Alpha-melanocyte-stimulating hormone (α-MSH) is a neuropeptide with immunomodulatory properties, which may offer neuroprotection. Due to short half-life and pigmentary side-effects of α-MSH, the C-terminal tripeptide α-MSH(11-13) may be an anti-inflammatory alternative. The present study investigated the mRNA concentrations of the precursor hormone proopiomelanocortin (POMC) and of melanocortin receptors 1 and 4 (MC1R/MC4R) in naive mice and 15 min, 6, 12, 24, and 48 h after controlled cortical impact (CCI). Regulation of POMC and MC4R expression did not change after trauma, while MC1R levels increased over time with a 3-fold maximum at 12 h compared to naive brain tissue. The effect of α-MSH(11-13) on secondary lesion volume determined in cresyl violet stained sections (intraperitoneal injection 30 min after insult of 1 mg/kg α-MSH(11-13) or 0.9% NaCl) showed a considerable smaller trauma in α-MSH(11-13) injected mice. The expression of the inflammatory markers TNF-α and IL-1β as well as the total amount of Iba-1 positive cells were not reduced. However, cell branch counting of Iba-1 positive cells revealed a reduced activation of microglia. Furthermore, tripeptide injection reduced neuronal apoptosis analyzed by cleaved caspase-3 and NeuN staining. Based on the results single α-MSH(11-13) administration offers a promising neuroprotective property by modulation of inflammation and prevention of apoptosis after traumatic brain injury.

  10. Physical Exercise Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Peripheral Immune Response and Blood-Brain Barrier Disruption.

    PubMed

    Souza, Priscila S; Gonçalves, Elaine D; Pedroso, Giulia S; Farias, Hemelin R; Junqueira, Stella C; Marcon, Rodrigo; Tuon, Talita; Cola, Maíra; Silveira, Paulo C L; Santos, Adair R; Calixto, João B; Souza, Cláudio T; de Pinho, Ricardo A; Dutra, Rafael C

    2016-07-22

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) caused by demyelination, immune cell infiltration, and axonal damage. Herein, we sought to investigate the influence of physical exercise on mice experimental autoimmune encephalomyelitis (EAE), a reported MS model. Data show that both strength and endurance training protocols consistently prevented clinical signs of EAE and decreased oxidative stress, an effect which was likely due to improving genomic antioxidant defense-nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response elements (ARE) pathway-in the CNS. In addition, physical exercise inhibited the production of pro-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-17, and IL-1β in the spinal cord of mice with EAE. Of note, spleen cells obtained from strength training group incubated with MOG35-55 showed a significant upregulation of CD25 and IL-10 levels, with a decrease of IL-6, MCP-1, and tumor necrosis factor (TNF)-α production, mainly, during acute and chronic phase of EAE. Moreover, these immunomodulatory effects of exercise were associated with reduced expression of adhesion molecules, especially of platelet and endothelial cell adhesion molecule 1 (PECAM-1). Finally, physical exercise also restored the expression of tight junctions in spinal cord. Together, these results demonstrate that mild/moderate physical exercise, when performed regularly in mice, consistently attenuates the progression and pathological hallmarks of EAE, thereby representing an important non-pharmacological intervention for the improvement of immune-mediated diseases such as MS. Graphical Abstract Schematic diagram illustrating the beneficial effects of physical exercise during experimental model of MS. Physical exercise, especially strength (ST) and endurance (ET) training protocols, inhibits the development and progression of disease, measured by the mean maximal clinical score (1.5 and 1.0, respectively

  11. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    PubMed Central

    Israeli, Ma’ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B