Science.gov

Sample records for experimental chaos conference

  1. Proceedings of the 2nd Experimental Chaos Conference

    NASA Astrophysics Data System (ADS)

    Ditto, William; Pecora, Lou; Shlesinger, Michael; Spano, Mark; Vohra, Sandeep

    1995-02-01

    The Table of Contents for the full book PDF is as follows: * Introduction * Spatiotemporal Phenomena * Experimental Studies of Chaotic Mixing * Using Random Maps in the Analysis of Experimental Fluid Flows * Transition to Spatiotemporal Chaos in a Reaction-Diffusion System * Ion-Dynamical Chaos in Plasmas * Optics * Chaos in a Synchronously Driven Optical Resonator * Chaos, Patterns and Defects in Stimulated Scattering Phenomena * Test of the Normal Form for a Subcritical Bifurcation * Observation of Bifurcations and Chaos in a Driven Fiber Optic Coil * Applications -- Communications * Robustness and Signal Recovery in a Synchronized Chaotic System * Synchronizing Nonautonomous Chaotic Circuits * Synchronization of Pulse-Coupled Chaotic Oscillators * Ocean Transmission Effects on Chaotic Signals * Controlling Symbolic Dynamics for Communication * Applications -- Control * Analysis of Nonlinear Actuators Using Chaotic Waveforms * Controlling Chaos in a Quasiperiodic Electronic System * Control of Chaos in a CO2 Laser * General Research * Video-Based Analysis of Bifurcation Phenomena in Radio-Frequency-Excited Inert Gas Plasmas * Transition from Soliton to Chaotic Motion During the Impact of a Nonlinear Structure * Sonoluminescence in a Single Bubble: Periodic, Quasiperiodic and Chaotic Light Source * Quantum Chaos Experiments Using Microwave Cavities * Experiments on Quantum Chaos With and Without Time Reversibility * When Small Noise Imposed on Deterministic Dynamics Becomes Important * Biology * Chaos Control for Cardiac Arrhythmias * Irregularities in Spike Trains of Cat Retinal Ganglion Cells * Broad-Band Synchronization in Monkey Neocortex * Applicability of Correlation Dimension Calculations to Blood Pressure Signal in Rats * Tests for Deterministic Chaos in Noisy Time Series * The Crayfish Mechanoreceptor Cell: A Biological Example of Stochastic Resonance * Chemistry * Chaos During Heterogeneous Chemical Reactions * Stabilizing and Tracking Unstable Periodic

  2. Experimental Chaos - Proceedings of the 3rd Conference

    NASA Astrophysics Data System (ADS)

    Harrison, Robert G.; Lu, Weiping; Ditto, William; Pecora, Lou; Spano, Mark; Vohra, Sandeep

    1996-10-01

    The Table of Contents for the full book PDF is as follows: * Preface * Spatiotemporal Chaos and Patterns * Scale Segregation via Formation of Domains in a Nonlinear Optical System * Laser Dynamics as Hydrodynamics * Spatiotemporal Dynamics of Human Epileptic Seizures * Experimental Transition to Chaos in a Quasi 1D Chain of Oscillators * Measuring Coupling in Spatiotemporal Dynamical Systems * Chaos in Vortex Breakdown * Dynamical Analysis * Radial Basis Function Modelling and Prediction of Time Series * Nonlinear Phenomena in Polyrhythmic Hand Movements * Using Models to Diagnose, Test and Control Chaotic Systems * New Real-Time Analysis of Time Series Data with Physical Wavelets * Control and Synchronization * Measuring and Controlling Chaotic Dynamics in a Slugging Fluidized Bed * Control of Chaos in a Laser with Feedback * Synchronization and Chaotic Diode Resonators * Control of Chaos by Continuous-time Feedback with Delay * A Framework for Communication using Chaos Sychronization * Control of Chaos in Switching Circuits * Astrophysics, Meteorology and Oceanography * Solar-Wind-Magnetospheric Dynamics via Satellite Data * Nonlinear Dynamics of the Solar Atmosphere * Fractal Dimension of Scalar and Vector Variables from Turbulence Measurements in the Atmospheric Surface Layer * Mechanics * Escape and Overturning: Subtle Transient Behavior in Nonlinear Mechanical Models * Organising Centres in the Dynamics of Parametrically Excited Double Pendulums * Intermittent Behaviour in a Heating System Driven by Phase Transitions * Hydrodynamics * Size Segregation in Couette Flow of Granular Material * Routes to Chaos in Rotational Taylor-Couette Flow * Experimental Study of the Laminar-Turbulent Transition in an Open Flow System * Chemistry * Order and Chaos in Excitable Media under External Forcing * A Chemical Wave Propagation with Accelerating Speed Accompanied by Hydrodynamic Flow * Optics * Instabilities in Semiconductor Lasers with Optical Injection * Spatio

  3. Experimental Evidence of Chaos from Memristors

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Fortuna, Luigi; Frasca, Mattia; Gale, Ella

    Until now, most memristor-based chaotic circuits proposed in the literature are based on mathematical models which assume ideal characteristics such as piecewise-linear or cubic nonlinearities. The idea, illustrated here and originating from the experimental approach for device characterization, is to realize a chaotic system exploiting the nonlinearity of only one memristor with a very simple experimental set-up using feedback. In this way, a simple circuit is obtained and chaos is experimentally observed and is confirmed by the calculation of the largest Lyapunov exponent. Numerical results using the Strukov model support the existence of robust chaos in our circuit. To our knowledge, this is the first experimental demonstration of chaos in a real memristor circuit and suggests that memristors are well placed for hardware encryption.

  4. Experimental realization of chaos control by thresholding.

    PubMed

    Murali, K; Sinha, Sudeshna

    2003-07-01

    We report the experimental verification of thresholding as a versatile tool for efficient and flexible chaos control. The strategy here simply involves monitoring a single state variable and resetting it when it exceeds a threshold. We demonstrate the success of the technique in rapidly controlling different chaotic electrical circuits, including a hyperchaotic circuit, onto stable fixed points and limit cycles of different periods, by thresholding just one variable. The simplicity of this controller entailing no run-time computation, and the ease and rapidity of switching between different targets it offers, suggests a potent tool for chaos based applications.

  5. Experimental chaos detection in the Duffing oscillator

    NASA Astrophysics Data System (ADS)

    Eyebe Fouda, J. S. Armand; Bodo, Bertrand; Djeufa, Guy M. D.; Sabat, Samrat L.

    2016-04-01

    This paper presents a comparative study of four algorithms namely the maximal Lyapunov exponent (MLE), 0-1 test, conditional entropy of ordinal patterns (CPE) and recently developed permutation largest slope entropy (PLSE) algorithm for experimental chaos detection in the Duffing oscillator. We consider an electrical model of the Duffing oscillator and its equivalent electronic circuit for generating the data to validate the effectiveness of the algorithms. The performance of the PLSE is compared with the 0-1 test and the CPE algorithms on the data set obtained from the simulated circuit; and with the MLE for the data collected from the experimental circuit. The experimental data are acquired using a digital oscilloscope with 1 MHz sampling frequency. From the comparison of the experimental spectra of the four methods with the analog phase portraits of the real system, it appears that the PLSE is the more reliable algorithm for chaos detection from experimental data.

  6. Numerical and experimental exploration of phase control of chaos.

    PubMed

    Zambrano, Samuel; Allaria, Enrico; Brugioni, Stefano; Leyva, Immaculada; Meucci, Riccardo; Sanjuán, Miguel A F; Arecchi, Fortunato T

    2006-03-01

    A well-known method to suppress chaos in a periodically forced chaotic system is to add a harmonic perturbation. The phase control of chaos scheme uses the phase difference between a small added harmonic perturbation and the main driving to suppress chaos, leading the system to different periodic orbits. Using the Duffing oscillator as a paradigm, we present here an in-depth study of this technique. A thorough numerical exploration has been made focused in the important role played by the phase, from which new interesting patterns in parameter space have appeared. On the other hand, our novel experimental implementation of phase control in an electronic circuit confirms both the well-known features of this method and the new ones detected numerically. All this may help in future implementations of phase control of chaos, which is globally confirmed here to be robust and easy to implement experimentally.

  7. Experimental evidence for deterministic chaos in thermal pulse combustion

    SciTech Connect

    Daw, C.S.; Thomas, J.F.; Richards, G.A.; Narayanaswami, L.L.

    1994-12-31

    Given the existence of chaotic oscillations in reacting chemical systems, it is reasonable to ask whether or not similar phenomena can occur in combustion. In this paper, the authors present experimental evidence that kinetically driven chaos occurs in a highly simplified thermal pulse combustor. The combustor is a well-stirred reactor with a tailpipe extending from one end. Fuel and air are injected into the combustion chamber through orifices in the end opposite the tailpipe. Propane with the fuel used in all cases. From the experimental data analyses, it is clear that deterministic chaos is an important factor in thermal pulse combustor dynamics. While the authors have only observed such behavior in this particular type combustor to date, they infer from their understanding of the origins of the chaos that it is likely to exist in other pulse combustors and even nonpulsing combustion. They speculate that realization of the importance of chaos in affecting flame stability could lead to significant changes in combustor design and control.

  8. Experimental observation of quantum chaos in a beam of light.

    PubMed

    Lemos, Gabriela B; Gomes, Rafael M; Walborn, Stephen P; Souto Ribeiro, Paulo H; Toscano, Fabricio

    2012-01-01

    The manner in which unpredictable chaotic dynamics manifests itself in quantum mechanics is a key question in the field of quantum chaos. Indeed, very distinct quantum features can appear due to underlying classical nonlinear dynamics. Here we observe signatures of quantum nonlinear dynamics through the direct measurement of the time-evolved Wigner function of the quantum-kicked harmonic oscillator, implemented in the spatial degrees of freedom of light. Our setup is decoherence-free and we can continuously tune the semiclassical and chaos parameters, so as to explore the transition from regular to essentially chaotic dynamics. Owing to its robustness and versatility, our scheme can be used to experimentally investigate a variety of nonlinear quantum phenomena. As an example, we couple this system to a quantum bit and experimentally investigate the decoherence produced by regular or chaotic dynamics.

  9. Order in chaos; Proceedings of the International Conference, Los Alamos, NM, May 24-28, 1982

    NASA Astrophysics Data System (ADS)

    Campbell, D.; Rose, H.

    It has recently been established that, in at least some cases, the chaos observed in very complex systems can be quantitatively understood in terms of simple models that involve very few degrees of freedom. This is of profound significance for the understanding of chaotic behavior in the physical world. Attention is presently given to attempts to identify the essential qualitative and quantitative features of deterministic chaos, and to discussions of the transition from regular motion to chaos in both experimental systems and theoretical models. Among the specific issues treated are oscillations and chaos in chemical systems, persistent properties of bifurcations, periodic doubling in one and several dimensions, the dimension of chaotic attractors, and stochastic behavior in quantum scattering. No individual items are abstracted in this volume

  10. Experimental validation of wireless communication with chaos

    SciTech Connect

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-08-15

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  11. Experimental validation of wireless communication with chaos

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  12. Experimental validation of wireless communication with chaos.

    PubMed

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  13. Experimental control of instabilities and chaos in fast dynamical systems

    NASA Astrophysics Data System (ADS)

    Sukow, David Wayne

    I investigate experimentally and theoretically the application of control techniques in systems that display temporal instabilities, including chaos, on very short timescales. My study includes two distinct systems: a fast chaotic electronic circuit called the diode resonator, and a compound-cavity semiconductor laser system that exhibits an instability called low-frequency fluctuations. Control of fast unstable systems presents several experimental challenges. It is also a topic of broad interest, since it requires the development of new control techniques, and addresses technologically important devices such as the semiconductor laser. The diode resonator is a well-understood system, and when modified for 10 MHz operation serves as a good testbed for the application of novel control techniques. I develop a new high-speed time-delay feedback control technique that is based on the comparison of the present value of a system variable with a series of its past values. The principles of operation of this technique are studied in both time and frequency domains, as well as possible methods for its implementation. I develop a detailed analog electronic implementation that addresses the experimental needs of rapid processing and faithful reproduction of the feedback signal. This control system successfully stabilizes unstable periodic orbits in the diode resonator, the fastest experimental instability controlled to date. This technique also increases significantly the regions of parameter space in which control is effective, in comparison with previous methods. The improvement is gained by incorporating more information from further in the system's past. I study the dynamics of the external cavity semiconductor laser system in the regime where low-frequency fluctuations occur, seeking to improve our understanding of the system before attempting to control its behavior. This system is not completely understood, as it exhibits extremely complex, high-speed, potentially

  14. Support for US participation in Experimental Chaos Conference 2016

    DTIC Science & Technology

    2016-05-16

    chaotic map is brought into to design SCCPM systems to gain the additional coding gains. The rest of the paper is organized as fo llows. Section II...of logic operations using the dynamical patterns of dfacrete and continuous chaotic systems . This forms the basis of the design of dynamical...nume1ical methods designed for the purpose. Complementary to tbe tradjtional geometric methods of dynamical systems transport study, particularly by

  15. Comparison of the Nature of Chaos in Experimental [EEG] Data and Theoretical [ANN] Data

    NASA Astrophysics Data System (ADS)

    Das, Atin; Das, Pritha

    2003-08-01

    In this paper, nonlinear dynamical tools like largest Lyapunov exponents (LE), fractal dimension, correlation dimension, pointwise correlation dimension will be employed to analyze electroencephalogram [EEG] data and determine the nature of chaos. Results of similar calculations from some earlier works will be produced for comparison with present results. Also, a brief report on difference of opinion among coworkers regarding tools to characterize chaos will be reported; particularly applicability of LE will be reviewed. The issue of nonlinearity present in experimental time series will be addressed by using surrogate data technique. We have extracted another data set which represented chaotic state of the system considered in our earlier work of mathematical modeling of artificial neural network. By comparing the values of measures employed to the two datasets, it can be concluded that EEG represents high dimensional chaos, whereas the experimental data due to its deterministic nature, is of low dimension. Also results give the evidence that LE exponent is applicable for low dimensional chaotic system while for experimental data, due to their stochasticity and presence of noise- LE is not a reliable tool to characterize chaos.

  16. Experimental verification of rank 1 chaos in switch-controlled Chua circuit.

    PubMed

    Oksasoglu, Ali; Ozoguz, Serdar; Demirkol, Ahmet S; Akgul, Tayfun; Wang, Qiudong

    2009-03-01

    In this paper, we provide the first experimental proof for the existence of rank 1 chaos in the switch-controlled Chua circuit by following a step-by-step procedure given by the theory of rank 1 maps. At the center of this procedure is a periodically kicked limit cycle obtained from the unforced system. Then, this limit cycle is subjected to periodic kicks by adding externally controlled switches to the original circuit. Both the smooth nonlinearity and the piecewise linear cases are considered in this experimental investigation. Experimental results are found to be in concordance with the conclusions of the theory.

  17. Inverting chaos: Extracting system parameters from experimental data

    NASA Astrophysics Data System (ADS)

    Baker, G. L.; Gollub, J. P.; Blackburn, J. A.

    1996-12-01

    Given a set of experimental or numerical chaotic data and a set of model differential equations with several parameters, is it possible to determine the numerical values for these parameters using a least-squares approach, and thereby to test the model against the data? We explore this question (a) with simulated data from model equations for the Rossler, Lorenz, and pendulum attractors, and (b) with experimental data produced by a physical chaotic pendulum. For the systems considered in this paper, the least-squares approach provides values of model parameters that agree well with values obtained in other ways, even in the presence of modest amounts of added noise. For experimental data, the ``fitted'' and experimental attractors are found to have the same correlation dimension and the same positive Lyapunov exponent.

  18. Theoretical and experimental aspects of chaos control by time-delayed feedback.

    PubMed

    Just, Wolfram; Benner, Hartmut; Reibold, Ekkehard

    2003-03-01

    We review recent developments for the control of chaos by time-delayed feedback methods. While such methods are easily applied even in quite complex experimental context the theoretical analysis yields infinite-dimensional differential-difference systems which are hard to tackle. The essential ideas for a general theoretical approach are sketched and the results are compared to electronic circuits and to high power ferromagnetic resonance experiments. Our results show that the control performance can be understood on the basis of experimentally accessible quantities without resort to any model for the internal dynamics.

  19. Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory.

    PubMed

    Kaart, S; Schouten, J C; van den Bleek, C M

    1999-05-01

    Linear feedback control, specifically model predictive control (MPC), was used successfully to synchronize an experimental chaotic pendulum both on unstable periodic and aperiodic orbits. MPC enables tuning of the controller to give an optimal controller performance. That is, both the fluctuations around the target trajectory and the necessary control actions are minimized using a least-squares solution of the linearized problem. It is thus shown that linear control methods can be applied to experimental chaotic systems, as long as an adequate model is available that can be linearized along the desired trajectory. This model is used as an observer, i.e., it is synchronized with the experimental pendulum to estimate the state of the experimental pendulum. In contrast with other chaos control procedures like the map-based Ott, Grebogi, and York method [Phys. Rev. Lett. 64, 1196 (1990)], the continuous type feedback control proposed by Pyragas [Phys. Lett. A 170, 421 (1992)], or the feedback control method recently proposed by Brown and Rulkov [Chaos 7 (3), 395 (1997)], the procedure outlined in this paper automatically results in a choice for the feedback gains that gives optimum performance, i.e., minimum fluctuations around the desired trajectory using minimum control actions.

  20. Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory

    NASA Astrophysics Data System (ADS)

    Kaart, Sander; Schouten, Jaap C.; van den Bleek, Cor M.

    1999-05-01

    Linear feedback control, specifically model predictive control (MPC), was used successfully to synchronize an experimental chaotic pendulum both on unstable periodic and aperiodic orbits. MPC enables tuning of the controller to give an optimal controller performance. That is, both the fluctuations around the target trajectory and the necessary control actions are minimized using a least-squares solution of the linearized problem. It is thus shown that linear control methods can be applied to experimental chaotic systems, as long as an adequate model is available that can be linearized along the desired trajectory. This model is used as an observer, i.e., it is synchronized with the experimental pendulum to estimate the state of the experimental pendulum. In contrast with other chaos control procedures like the map-based Ott, Grebogi, and York method [Phys. Rev. Lett. 64, 1196 (1990)], the continuous type feedback control proposed by Pyragas [Phys. Lett. A 170, 421 (1992)], or the feedback control method recently proposed by Brown and Rulkov [Chaos 7 (3), 395 (1997)], the procedure outlined in this paper automatically results in a choice for the feedback gains that gives optimum performance, i.e., minimum fluctuations around the desired trajectory using minimum control actions.

  1. Topology and Chaos

    NASA Astrophysics Data System (ADS)

    Garity, Dennis J.; Repovš, Dušan

    2008-11-01

    We discuss some basic topological techniques used in the study of chaotic dynamical systems. This paper is partially motivated by a talk given by the second author at the 7th international summer school and conference Chaos 2008: Let's Face Chaos Through Nonlinear Dynamics (CAMTP, University of Maribor, Slovenia, 29 June-13 July 2008).

  2. Biological Experimental Observations of an Unnoticed Chaos as Simulated by the Hindmarsh-Rose Model

    PubMed Central

    Gu, Huaguang

    2013-01-01

    An unnoticed chaotic firing pattern, lying between period-1 and period-2 firing patterns, has received little attention over the past 20 years since it was first simulated in the Hindmarsh-Rose (HR) model. In the present study, the rat sciatic nerve model of chronic constriction injury (CCI) was used as an experimental neural pacemaker to investigate the transition regularities of spontaneous firing patterns. Chaotic firing lying between period-1 and period-2 firings was observed located in four bifurcation scenarios in different, isolated neural pacemakers. These bifurcation scenarios were induced by decreasing extracellular calcium concentrations. The behaviors after period-2 firing pattern in the four scenarios were period-doubling bifurcation not to chaos, period-doubling bifurcation to chaos, period-adding sequences with chaotic firings, and period-adding sequences with stochastic firings. The deterministic structure of the chaotic firing pattern was identified by the first return map of interspike intervals and a short-term prediction using nonlinear prediction. The experimental observations closely match those simulated in a two-dimensional parameter space using the HR model, providing strong evidences of the existence of chaotic firing lying between period-1 and period-2 firing patterns in the actual nervous system. The results also present relationships in the parameter space between this chaotic firing and other firing patterns, such as the chaotic firings that appear after period-2 firing pattern located within the well-known comb-shaped region, periodic firing patterns and stochastic firing patterns, as predicted by the HR model. We hope that this study can focus attention on and help to further the understanding of the unnoticed chaotic neural firing pattern. PMID:24339962

  3. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    SciTech Connect

    Watts, C.A.

    1993-09-01

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  4. Optical chaos

    SciTech Connect

    Milonni, P.W.

    1989-01-01

    The theoretical and experimental status of chaos in nonlinear optics and laser physics will be reviewed. Attention will then be focused on the possibility of chaotic behavior in individual atoms and molecules driven by intense radiation fields. 46 refs., 7 figs.

  5. Experimental observation of delay-induced radio frequency chaos in a transmission line oscillator

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan N.; Corron, Ned J.

    2004-12-01

    We report an experimental study of fast chaotic dynamics in a delay dynamical system. The system is an electronic device consisting of a length of coaxial cable terminated on one end with a diode and on the other with a negative resistor. When the negative resistance is large, the system evolves to a steady state. As the negative resistance is decreased, a Hopf bifurcation occurs. By varying the length of the transmission line we observe Hopf frequencies from 7-53 MHz. With the transmission line length fixed, we observe a period doubling route to chaos as the negative resistance is further reduced providing the first experimental confirmation of an existing theoretical model for nonlinear dynamics in transmission line oscillators [Corti et al., IEEE Trans. Circ. Syst., I: Fundam. Theory Appl. 41, 730 (1994)]. However, other experimental results indicate limitations to this model including an inability to predict the Hopf frequency or to produce realistic continuous wave forms. We extend the model to include finite bandwidth effects present in a real negative resistor. The resulting model is a neutral delay differential equation that provides better agreement with experimental results.

  6. Examination of experimental evidence of chaos in the bound states of 208Pb

    NASA Astrophysics Data System (ADS)

    Muñoz, L.; Molina, R. A.; Gómez, J. M. G.; Heusler, A.

    2017-01-01

    We study the spectral fluctuations of the 208Pb nucleus using the complete experimental spectrum of 151 states up to excitation energies of 6.20 MeV recently identified at the Maier-Leibnitz Laboratorium at Garching, Germany. For natural parity states the results are very close to the predictions of random matrix theory (RMT) for the nearest-neighbor spacing distribution. A quantitative estimate of the agreement is given by the Brody parameter ω , which takes the value ω =0 for regular systems and ω ≃1 for chaotic systems. We obtain ω =0.85 which is, to our knowledge, the closest value to chaos ever observed in experimental bound states of nuclei. By contrast, the results for unnatural parity states are far from RMT behavior. We interpret these results as a consequence of the strength of the residual interaction in 208Pb, which, according to experimental data, is much stronger for natural than for unnatural parity states. In addition, our results show that chaotic and nonchaotic nuclear states coexist in the same energy region of the spectrum.

  7. Polynomial chaos representation of spatio-temporal random fields from experimental measurements

    SciTech Connect

    Das, Sonjoy Ghanem, Roger Finette, Steven

    2009-12-10

    Two numerical techniques are proposed to construct a polynomial chaos (PC) representation of an arbitrary second-order random vector. In the first approach, a PC representation is constructed by matching a target joint probability density function (pdf) based on sequential conditioning (a sequence of conditional probability relations) in conjunction with the Rosenblatt transformation. In the second approach, the PC representation is obtained by having recourse to the Rosenblatt transformation and simultaneously matching a set of target marginal pdfs and target Spearman's rank correlation coefficient (SRCC) matrix. Both techniques are applied to model an experimental spatio-temporal data set, exhibiting strong non-stationary and non-Gaussian features. The data consists of a set of oceanographic temperature records obtained from a shallow-water acoustics transmission experiment. The measurement data, observed over a finite denumerable subset of the indexing set of the random process, is treated as a collection of observed samples of a second-order random vector that can be treated as a finite-dimensional approximation of the original random field. A set of properly ordered conditional pdfs, that uniquely characterizes the target joint pdf, in the first approach and a set of target marginal pdfs and a target SRCC matrix, in the second approach, are estimated from available experimental data. Digital realizations sampled from the constructed PC representations based on both schemes capture the observed statistical characteristics of the experimental data with sufficient accuracy. The relative advantages and disadvantages of the two proposed techniques are also highlighted.

  8. An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers.

    PubMed

    Zapateiro De la Hoz, Mauricio; Acho, Leonardo; Vidal, Yolanda

    2015-01-01

    Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes.

  9. An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers

    PubMed Central

    Zapateiro De la Hoz, Mauricio; Acho, Leonardo; Vidal, Yolanda

    2015-01-01

    Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes. PMID:26413563

  10. Kerr combs in microresonators: from chaos to solitons and from theory to experiment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gorodetsky, Michael L.; Lobanov, Valery E.; Lihachev, Grigory; Pavlov, Nikolay; Koptyaev, Sergey N.

    2017-02-01

    Kerr frequency combs in optical passive microresonators promise new breakthroughs in photonics. Such combs result from multiple hyper-parametric four-wave mixing processes when reaching a threshold of modulational instability. These combs however have chaotic nature. It was revealed in recent experiments, theoretical and numerical analysis that transition form these chaotic states to highly ordered states associated with dissipative Kerr solitons is possible. In this report we discuss theoretical approaches to analyze these soliton states and reveal methods of reliable transition to single soliton states. Latest experimental results with soliton combs are reported.

  11. Aurorae Chaos

    NASA Image and Video Library

    2010-09-22

    Located at the eastern end of Vallis Marineris is the region of chaos called Aurorae. This image from NASA Mars Odyssey is from the northern part of Aurorae Chaos and contains mesas separated by complex low lying regions.

  12. Routes towards the experimental observation of the large fluctuations due to chaos-assisted tunneling effects with cold atoms

    NASA Astrophysics Data System (ADS)

    Dubertrand, R.; Billy, J.; Guéry-Odelin, D.; Georgeot, B.; Lemarié, G.

    2016-10-01

    In the presence of a complex classical dynamics associated with a mixed phase space, a quantum wave function can tunnel between two stable islands through the chaotic sea, an effect that has no classical counterpart. This phenomenon, referred to as chaos-assisted tunneling, is characterized by large fluctuations of the tunneling rate when a parameter is varied. To date, the full extent of this effect as well as the associated statistical distribution have never been observed in a quantum system. Here, we analyze the possibility of characterizing these effects accurately in a cold-atom experiment. Using realistic values of the parameters of an experimental setup, we examine through analytical estimates and extensive numerical simulations a specific system that can be implemented with cold atoms, the atomic modulated pendulum. We assess the efficiency of three possible routes to observe in detail chaos-assisted tunneling properties. Our main conclusion is that due to the fragility of the symmetry between positive and negative momenta as a function of quasimomentum, it is very challenging to use tunneling between classical islands centered on fixed points with opposite momentum. We show that it is more promising to use islands symmetric in position space, and characterize the regime where it could be done. The proposed experiment could be realized with current state-of-the-art technology.

  13. Hydraotes Chaos

    NASA Image and Video Library

    2016-07-08

    This image captured by NASA 2001 Mars Odyssey spacecraft shows a small portion of Hydraotes Chaos. Chaos is defined as a distinctive area of broken terrain. Topographically, chaos regions have hills/mesas/plateaus surroundied by lower elevation valleys that crisscross in random directions. Orbit Number: 63872 Latitude: 1.633 Longitude: 325.687 Instrument: VIS Captured: 2016-05-08 00:41 http://photojournal.jpl.nasa.gov/catalog/PIA20777

  14. Colored chaos

    SciTech Connect

    Mueller, B.

    1997-09-22

    The report contains viewgraphs on the following: ergodicity and chaos; Hamiltonian dynamics; metric properties; Lyapunov exponents; KS entropy; dynamical realization; lattice formulation; and numerical results.

  15. Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks

    NASA Astrophysics Data System (ADS)

    Dou, Xinyu; Yin, Hongxi; Yue, Hehe; Jin, Yu; Shen, Jing; Li, Lin

    2015-09-01

    In this paper, a real-time online fault monitoring technique for chaos-based passive optical networks (PONs) is proposed and experimentally demonstrated. The fault monitoring is performed by the chaotic communication signal. The proof-of-concept experiments are demonstrated for two PON structures, i.e., wavelength-division-multiplexing (WDM) PON and Ethernet PON (EPON), respectively. For WDM PON, two monitoring approaches are investigated, one deploying a chaotic optical time domain reflectometry (OTDR) for each transmitter, and the other using only one tunable chaotic OTDR. The experimental results show that the faults at beyond 20 km from the OLT can be detected and located. The spatial resolution of the tunable chaotic OTDR is an order of magnitude of centimeter. Meanwhile, the monitoring process can operate in parallel with the chaotic optical secure communications. The proposed technique has benefits of real-time, online, precise fault location, and simple realization, which will significantly reduce the cost of operation, administration and maintenance (OAM) of PON.

  16. Experimental evidence of intermittent chaos in a glow discharge plasma without external forcing and its numerical modelling

    SciTech Connect

    Ghosh, S. Kumar Shaw, Pankaj; Sekar Iyengar, A. N.; Janaki, M. S.; Saha, Debajyoti; Michael Wharton, Alpha

    2014-03-15

    Intermittent chaos was observed in a glow discharge plasma as the system evolved from regular type of relaxation oscillations (of larger amplitude) to an irregular type of oscillations (of smaller amplitude) as the discharge voltage was increased. Floating potential fluctuations were analyzed by different statistical and spectral methods. Features like a gradual change in the normal variance of the interpeak time intervals, a dip in the skewness, and a hump in the kurtosis with variation in the control parameter have been seen, which are strongly indicative of intermittent behavior in the system. Detailed analysis also suggests that the intrinsic noise level in the experiment increases with the increasing discharge voltage. An attempt has been made to model the experimental observations by a second order nonlinear ordinary differential equation derived from the fluid equations for an unmagnetized plasma. Though the experiment had no external forcing, it was conjectured that the intrinsic noise in the experiment could be playing a vital role in the dynamics of the system. Hence, a constant bias and noise as forcing terms were included in the model. Results from the theoretical model are in close qualitative agreement with the experimental results.

  17. Aurorae Chaos

    NASA Image and Video Library

    2011-07-12

    Aurorae Chaos is located at the eastern end of the chasmata forming Vallis Marineris. This image from NASA 2001 Mars Odyssey spacecraft is very close to the chasmata and at a higher elevation than the floor of the chasmata.

  18. Aurorae Chaos

    NASA Image and Video Library

    2010-04-01

    The landslide deposit in this image captured by NASA 2001 Mars Odyssey spacecraft is located in Aurorae Chaos distinctive area of broken terrain. Several regions of chaotic terrain are located on the eastern end of the Valles Marineris system.

  19. Galaxias Chaos

    NASA Image and Video Library

    2006-11-17

    Fracturing and erosion in this region is creating chaos terrain. Image information: VIS instrument. Latitude 33.9N, Longitude 147.2E. 19 meter/pixel resolution. http://photojournal.jpl.nasa.gov/catalog/PIA01792

  20. Arsinoes Chaos

    NASA Image and Video Library

    2003-02-26

    This image from NASA Mars Odyssey spacecraft shows the easternmost end of Valles Marineris, where a rugged, jumbled terrain known as chaos displays a stratigraphy that could be described as precarious.

  1. Ergodic theory and experimental visualization of chaos in 3D flows

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Mezic, Igor

    2000-11-01

    In his motivation for the ergodic hypothesis Gibbs invoked an analogy with fluid mixing: “…Yet no fact is more familiar to us than that stirring tends to bring a liquid to a state of uniform mixture, or uniform densities of its components…”. Although proof of the ergodic hypothesis is possible only for the simplest of systems using methods from ergodic theory, the use of the hypothesis has led to many accurate predictions in statistical mechanics. The problem of fluid mixing, however, turned out to be considerably more complicated than Gibbs envisioned. Chaotic advection can indeed lead to efficient mixing even in non-turbulent flows, but many non-mixed islands are known to persist within well-mixed regions. In numerical studies, Poincaré maps can be used to reveal the structure of such islands but their visualization in the laboratory requires laborious experimental procedures and is possible only for certain types of flows. Here we propose the first non-intrusive, simple to implement, and generally applicable technique for constructing experimental Poincaré maps and apply it to a steady, 3D, vortex breakdown bubble. We employ standard laser-induced fluorescence (LIF) and construct Poincaré maps by time averaging a sufficiently long sequence of instantaneous LIF images. We also show that ergodic theory methods provide a rigorous theoretical justification for this approach whose main objective is to reveal the non-ergodic regions of the flow.

  2. Synthesizing Chaos

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan; Corron, Ned; Hayes, Scott; Pethel, Shawn

    2007-03-01

    Chaos is usually attributed only to nonlinear systems. Yet it was recently shown that chaotic waveforms can be synthesized by linear superposition of randomly polarized basis functions. The basis function contains a growing oscillation that terminates in a large pulse. We show that this function is easily realized when viewed backward in time as a pulse followed by ringing decay. Consequently, a linear filter driven by random pulses outputs a waveform that, when viewed backward in time, exhibits essential qualities of chaos, i.e. determinism and a positive Lyapunov exponent. This phenomenon suggests that chaos may be connected to physical theories whose framework is not that of a deterministic dynamical system. We demonstrate that synthesizing chaos requires a balance between the topological entropy of the random source and the dissipation in the filter. Surprisingly, using different encodings of the random source, the same filter can produce both Lorenz-like and R"ossler-like waveforms. The different encodings can be viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing the Lorenz and R"ossler paradigms of nonlinear dynamics. Thus, the language of deterministic chaos provides a useful description for a class of signals not generated by a deterministic system.

  3. Defining chaos

    SciTech Connect

    Hunt, Brian R.; Ott, Edward

    2015-09-15

    In this paper, we propose, discuss, and illustrate a computationally feasible definition of chaos which can be applied very generally to situations that are commonly encountered, including attractors, repellers, and non-periodically forced systems. This definition is based on an entropy-like quantity, which we call “expansion entropy,” and we define chaos as occurring when this quantity is positive. We relate and compare expansion entropy to the well-known concept of topological entropy to which it is equivalent under appropriate conditions. We also present example illustrations, discuss computational implementations, and point out issues arising from attempts at giving definitions of chaos that are not entropy-based.

  4. Perfect chaos

    NASA Astrophysics Data System (ADS)

    2008-12-01

    Laser noise and chaos are unwanted elements in most circumstances. However, scientists have now learnt how to put them to good use to generate high-quality random bit sequences. Atsushi Uchida from Saitama University in Japan tells Nature Photonics how.

  5. Hydaspis Chaos

    NASA Image and Video Library

    2002-11-21

    This image of Hydaspis Chaos from NASA Mars Odyssey spacecraft shows the source terrain for several outflow channels on Mars. VIS Instrument. Latitude 3.2, Longitude 333.2 East. 19 meter/pixel resolution. http://photojournal.jpl.nasa.gov/catalog/PIA04000

  6. 14 CFR 437.17 - Rights not conferred by an experimental permit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Rights not conferred by an experimental permit. 437.17 Section 437.17 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.17...

  7. 14 CFR 437.17 - Rights not conferred by an experimental permit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Rights not conferred by an experimental permit. 437.17 Section 437.17 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.17...

  8. 14 CFR 437.17 - Rights not conferred by an experimental permit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Rights not conferred by an experimental permit. 437.17 Section 437.17 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.17...

  9. 14 CFR 437.17 - Rights not conferred by an experimental permit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Rights not conferred by an experimental permit. 437.17 Section 437.17 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.17...

  10. 14 CFR 437.17 - Rights not conferred by an experimental permit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Rights not conferred by an experimental permit. 437.17 Section 437.17 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.17...

  11. Extension of a chaos control method to unstable trajectories on infinite- or finite-time intervals: Experimental verification

    NASA Astrophysics Data System (ADS)

    Yagasaki, Kazuyuki

    2007-08-01

    In experiments for single and coupled pendula, we demonstrate the effectiveness of a new control method based on dynamical systems theory for stabilizing unstable aperiodic trajectories defined on infinite- or finite-time intervals. The basic idea of the method is similar to that of the OGY method, which is a well-known, chaos control method. Extended concepts of the stable and unstable manifolds of hyperbolic trajectories are used here.

  12. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    1995-04-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  13. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    2006-11-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  14. Does chaos assist localization or delocalization?

    SciTech Connect

    Tan, Jintao; Luo, Yunrong; Hai, Wenhua; Lu, Gengbiao

    2014-12-01

    We aim at a long-standing contradiction between chaos-assisted tunneling and chaos-related localization study quantum transport of a single particle held in an amplitude-modulated and tilted optical lattice. We find some near-resonant regions crossing chaotic and regular regions in the parameter space, and demonstrate that chaos can heighten velocity of delocalization in the chaos-resonance overlapping regions, while chaos may aid localization in the other chaotic regions. The degree of localization enhances with increasing the distance between parameter points and near-resonant regions. The results could be useful for experimentally manipulating chaos-assisted transport of single particles in optical or solid-state lattices.

  15. Failure of chaos control

    PubMed

    van De Water W; de Weger J

    2000-11-01

    We study the control of chaos in an experiment on a parametrically excited pendulum whose excitation mechanism is not perfect. This imperfection leads to a weakly excited degree of freedom with an associated small eigenvalue. Although the state of the pendulum could be characterized well and although the perturbation is weak, we fail to control chaos. From a numerical model we learn that the small eigenvalue cannot be ignored when attempting control. However, the estimate of this eigenvalue from an (experimental) time series is elusive. The reason is that points in an experimental time series are distributed according to the natural measure. It is this extremely uneven distribution of points that thwarts attempts to measure eigenvalues that are very different. Another consequence of the phase-space distribution of points for control is the occurrence of logarithmic-oscillations in the waiting time before control can be attempted. We come to the conclusion that chaos needs to be destroyed before the information needed for its control can be obtained.

  16. Convergent chaos

    NASA Astrophysics Data System (ADS)

    Pradas, Marc; Pumir, Alain; Huber, Greg; Wilkinson, Michael

    2017-07-01

    Chaos is widely understood as being a consequence of sensitive dependence upon initial conditions. This is the result of an instability in phase space, which separates trajectories exponentially. Here, we demonstrate that this criterion should be refined. Despite their overall intrinsic instability, trajectories may be very strongly convergent in phase space over extremely long periods, as revealed by our investigation of a simple chaotic system (a realistic model for small bodies in a turbulent flow). We establish that this strong convergence is a multi-facetted phenomenon, in which the clustering is intense, widespread and balanced by lacunarity of other regions. Power laws, indicative of scale-free features, characterize the distribution of particles in the system. We use large-deviation and extreme-value statistics to explain the effect. Our results show that the interpretation of the ‘butterfly effect’ needs to be carefully qualified. We argue that the combination of mixing and clustering processes makes our specific model relevant to understanding the evolution of simple organisms. Lastly, this notion of convergent chaos, which implies the existence of conditions for which uncertainties are unexpectedly small, may also be relevant to the valuation of insurance and futures contracts.

  17. Chronic exercise confers neuroprotection in experimental autoimmune encephalomyelitis.

    PubMed

    Pryor, William M; Freeman, Kimberly G; Larson, Rebecca D; Edwards, Gaylen L; White, Lesley J

    2015-05-01

    Multiple sclerosis (MS) is an autoimmune disease that affects the CNS, resulting in accumulated loss of cognitive, sensory, and motor function. This study evaluates the neuropathological effects of voluntary exercise in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Two groups of C57BL/6J mice were injected with an emulsion containing myelin oligodendrocyte glycoprotein and then randomized to housing with a running wheel or a locked wheel. Exercising EAE mice exhibited a less severe neurological disease score and later onset of disease compared with sedentary EAE animals. Immune cell infiltration and demyelination in the ventral white matter tracts of the lumbar spinal cord were significantly reduced in the EAE exercise group compared with sedentary EAE animals. Neurofilament immunolabeling in the ventral pyramidal and extrapyramidal motor tracts displayed a more random distribution of axons and an apparent loss of smaller diameter axons, with a greater loss of fluorescence immunolabeling in the sedentary EAE animals. In lamina IX gray matter regions of the lumbar spinal cord, sedentary animals with EAE displayed a greater loss of α-motor neurons compared with EAE animals exposed to exercise. These findings provide evidence that voluntary exercise results in reduced and attenuated disability, reductions in autoimmune cell infiltration, and preservation of axons and motor neurons in the lumbar spinal cord of mice with EAE.

  18. Network inference from functional experimental data (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Desrosiers, Patrick; Labrecque, Simon; Tremblay, Maxime; Bélanger, Mathieu; De Dorlodot, Bertrand; Côté, Daniel C.

    2016-03-01

    Functional connectivity maps of neuronal networks are critical tools to understand how neurons form circuits, how information is encoded and processed by neurons, how memory is shaped, and how these basic processes are altered under pathological conditions. Current light microscopy allows to observe calcium or electrical activity of thousands of neurons simultaneously, yet assessing comprehensive connectivity maps directly from such data remains a non-trivial analytical task. There exist simple statistical methods, such as cross-correlation and Granger causality, but they only detect linear interactions between neurons. Other more involved inference methods inspired by information theory, such as mutual information and transfer entropy, identify more accurately connections between neurons but also require more computational resources. We carried out a comparative study of common connectivity inference methods. The relative accuracy and computational cost of each method was determined via simulated fluorescence traces generated with realistic computational models of interacting neurons in networks of different topologies (clustered or non-clustered) and sizes (10-1000 neurons). To bridge the computational and experimental works, we observed the intracellular calcium activity of live hippocampal neuronal cultures infected with the fluorescent calcium marker GCaMP6f. The spontaneous activity of the networks, consisting of 50-100 neurons per field of view, was recorded from 20 to 50 Hz on a microscope controlled by a homemade software. We implemented all connectivity inference methods in the software, which rapidly loads calcium fluorescence movies, segments the images, extracts the fluorescence traces, and assesses the functional connections (with strengths and directions) between each pair of neurons. We used this software to assess, in real time, the functional connectivity from real calcium imaging data in basal conditions, under plasticity protocols, and epileptic

  19. Controlling chaos with simple limiters

    PubMed

    Corron; Pethel; Hopper

    2000-04-24

    New experimental results demonstrate that chaos control can be accomplished using controllers that are very simple relative to the system being controlled. Chaotic dynamics in a driven pendulum and a double scroll circuit are controlled using an adjustable, passive limiter-a weight for the pendulum and a diode for the circuit. For both experiments, multiple unstable periodic orbits are selectively controlled using minimal perturbations. These physical examples suggest that chaos control can be practically applied to a much wider array of important problems than initially thought possible.

  20. Quantum signatures of chaos or quantum chaos?

    SciTech Connect

    Bunakov, V. E.

    2016-11-15

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.

  1. Quantum signatures of chaos or quantum chaos?

    NASA Astrophysics Data System (ADS)

    Bunakov, V. E.

    2016-11-01

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a "quantum signature" of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville-Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.

  2. Mesas in Aureum Chaos

    NASA Image and Video Library

    2010-03-31

    This image taken by NASA Mars Reconnaissance Orbiter reveals meter-scale yard-scale surface textures of mesas and knobs in the Aureum Chaos region of Mars. Aureum Chaos is a wide region of plateaus, mesas, and knobs.

  3. Chaos and Fractals.

    ERIC Educational Resources Information Center

    Barton, Ray

    1990-01-01

    Presented is an educational game called "The Chaos Game" which produces complicated fractal images. Two basic computer programs are included. The production of fractal images by the Sierpinski gasket and the Chaos Game programs is discussed. (CW)

  4. Chaos and Fractals.

    ERIC Educational Resources Information Center

    Barton, Ray

    1990-01-01

    Presented is an educational game called "The Chaos Game" which produces complicated fractal images. Two basic computer programs are included. The production of fractal images by the Sierpinski gasket and the Chaos Game programs is discussed. (CW)

  5. The Case for Chaos.

    ERIC Educational Resources Information Center

    Bedford, Crayton W.

    1998-01-01

    Outlines a course on fractal geometry and chaos theory. Discusses how chaos theory and fractal geometry have begun to appear as separate units in the mathematics curriculum and offers an eight unit course by pulling together units related to chaos theory and fractal geometry. Contains 25 references. (ASK)

  6. Embrace the Chaos

    ERIC Educational Resources Information Center

    Huwe, Terence K.

    2009-01-01

    "Embracing the chaos" is an ongoing challenge for librarians. Embracing the chaos means librarians must have a plan for responding to the flood of new products, widgets, web tools, and gizmos that students use daily. In this article, the author argues that library instruction and access services have been grappling with that chaos with…

  7. The Case for Chaos.

    ERIC Educational Resources Information Center

    Bedford, Crayton W.

    1998-01-01

    Outlines a course on fractal geometry and chaos theory. Discusses how chaos theory and fractal geometry have begun to appear as separate units in the mathematics curriculum and offers an eight unit course by pulling together units related to chaos theory and fractal geometry. Contains 25 references. (ASK)

  8. Embrace the Chaos

    ERIC Educational Resources Information Center

    Huwe, Terence K.

    2009-01-01

    "Embracing the chaos" is an ongoing challenge for librarians. Embracing the chaos means librarians must have a plan for responding to the flood of new products, widgets, web tools, and gizmos that students use daily. In this article, the author argues that library instruction and access services have been grappling with that chaos with…

  9. Titration of chaos with added noise

    PubMed Central

    Poon, Chi-Sang; Barahona, Mauricio

    2001-01-01

    Deterministic chaos has been implicated in numerous natural and man-made complex phenomena ranging from quantum to astronomical scales and in disciplines as diverse as meteorology, physiology, ecology, and economics. However, the lack of a definitive test of chaos vs. random noise in experimental time series has led to considerable controversy in many fields. Here we propose a numerical titration procedure as a simple “litmus test” for highly sensitive, specific, and robust detection of chaos in short noisy data without the need for intensive surrogate data testing. We show that the controlled addition of white or colored noise to a signal with a preexisting noise floor results in a titration index that: (i) faithfully tracks the onset of deterministic chaos in all standard bifurcation routes to chaos; and (ii) gives a relative measure of chaos intensity. Such reliable detection and quantification of chaos under severe conditions of relatively low signal-to-noise ratio is of great interest, as it may open potential practical ways of identifying, forecasting, and controlling complex behaviors in a wide variety of physical, biomedical, and socioeconomic systems. PMID:11416195

  10. Titration of chaos with added noise.

    PubMed

    Poon, C S; Barahona, M

    2001-06-19

    Deterministic chaos has been implicated in numerous natural and man-made complex phenomena ranging from quantum to astronomical scales and in disciplines as diverse as meteorology, physiology, ecology, and economics. However, the lack of a definitive test of chaos vs. random noise in experimental time series has led to considerable controversy in many fields. Here we propose a numerical titration procedure as a simple "litmus test" for highly sensitive, specific, and robust detection of chaos in short noisy data without the need for intensive surrogate data testing. We show that the controlled addition of white or colored noise to a signal with a preexisting noise floor results in a titration index that: (i) faithfully tracks the onset of deterministic chaos in all standard bifurcation routes to chaos; and (ii) gives a relative measure of chaos intensity. Such reliable detection and quantification of chaos under severe conditions of relatively low signal-to-noise ratio is of great interest, as it may open potential practical ways of identifying, forecasting, and controlling complex behaviors in a wide variety of physical, biomedical, and socioeconomic systems.

  11. Using the sensitive dependence of chaos (the butterfly effect'') to direct trajectories in an experimental chaotic system

    SciTech Connect

    Shinbrot, T.; Ditto, W.; Grebogi, C.; Ott, E.; Spano, M.; Yorke, J.A. Department of Physics, The College of Wooster, Wooster, Ohio 44691 Naval Surface Warfare Center, Silver Spring, Maryland 20902 )

    1992-05-11

    In this paper we present the first experimental verification that the sensitivity of a chaotic system to small perturbations (the butterfly effect'') can be used to rapidly direct orbits from an arbitrary initial state to an arbitrary accessible desired state.

  12. Chaos and microbial systems

    SciTech Connect

    Kot, M.

    1991-01-01

    Much of the recent work in nonlinear dynamics has centered on new techniques for identifying order in seemingly chaotic systems. To determine the robustness of these techniques, chaos must, to some extent, be brought into the laboratory. Preliminary investigations of the forded double-Monod equations, a model for a predator and a prey in a chemostat with periodic variation of inflowing substrate, suggested that simple microbial systems might provide the perfect framework for determining the efficacy and relevance of the new nonlinear dynamics in dealing with complex population dynamics. Progress in two areas of research, mathematical analysis and computer simulation of the periodically forced double-Monod equations and of related models; and experimental (chemostat) population studies that evaluate the accuracy and generality of the models, (and also judge the usefulness of various new techniques of nonlinear dynamics to the study of populations) is reported.

  13. Chaos in a complex plasma

    SciTech Connect

    Sheridan, T.E.

    2005-08-15

    Chaotic dynamics is observed experimentally in a complex (dusty) plasma of three particles. A low-frequency sinusoidal modulation of the plasma density excites both the center-of-mass and breathing modes. Low-dimensional chaos is seen for a 1:2 resonance between these modes. A strange attractor with a dimension of 2.48{+-}0.05 is observed. The largest Lyapunov exponent is positive.

  14. Unpredictable points and chaos

    NASA Astrophysics Data System (ADS)

    Akhmet, Marat; Fen, Mehmet Onur

    2016-11-01

    It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. The existing definitions of chaos are formulated in sets of motions. This is the first time in the literature that description of chaos is initiated from a single motion. The theoretical results are exemplified by means of the symbolic dynamics.

  15. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  16. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects.

    PubMed

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  17. Galveston Brain Injury Conference 2010: clinical and experimental aspects of blast injury.

    PubMed

    Masel, Brent E; Bell, Randy S; Brossart, Shawn; Grill, Raymond J; Hayes, Ronald L; Levin, Harvey S; Rasband, Matthew N; Ritzel, David V; Wade, Charles E; DeWitt, Douglas S

    2012-08-10

    Blast injury is the most prevalent source of mortality and morbidity among combatants in Operations Iraqi and Enduring Freedom. Blast-induced neurotrauma (BINT) is a common cause of mortality, and even mild BINT may be associated with chronic cognitive and emotional deficits. In addition to military personnel, the increasing use of explosives by terrorists has resulted in growing numbers of blast injuries in civilian populations. Since the medical and rehabilitative communities are likely to be faced with increasing numbers of patients suffering from blast injury, the 2010 Galveston Brain Injury Conference focused on topics related to the diagnosis, treatment, and mechanisms of BINT. Although past military actions have resulted in large numbers of blast casualties, BINT is considered the signature injury of the conflicts in Iraq and Afghanistan. The attention focused on BINT has led to increased financial support for research on blast effects, contributing to the development of better experimental models of blast injury and a clearer understanding of the mechanisms of BINT. This more thorough understanding of blast injury mechanisms will result in novel and more effective therapeutic and rehabilitative strategies designed to reduce injury and facilitate recovery, thereby improving long-term outcomes in patients suffering from the devastating and often lasting effects of BINT. The following is a summary of the 2010 Galveston Brain Injury Conference, that included presentations related to the diagnosis and treatment of acute BINT, the evaluation of the long-term neuropsychological effects of BINT, summaries of current experimental models of BINT, and a debate about the relative importance of primary blast effects on the acute and long-term consequences of blast exposure.

  18. Teaching as Chaos

    ERIC Educational Resources Information Center

    Moseley, Bryan; Dustin, Daniel

    2008-01-01

    In this article, the authors advance a metaphor born of chaos theory that views the college classroom as a complex dynamical system. The authors reason further that "teaching as chaos" provides a more accurate representation of the teaching-learning process than the existing linear scientific metaphors on which traditional learning assessments are…

  19. Understanding chaos via nuclei

    SciTech Connect

    Cejnar, Pavel; Stránský, Pavel

    2014-01-08

    We use two models of nuclear collective dynamics-the geometric collective model and the interacting boson model-to illustrate principles of classical and quantum chaos. We propose these models as a suitable testing ground for further elaborations of the general theory of chaos in both classical and quantum domains.

  20. "Chaos Rules" Revisited

    ERIC Educational Resources Information Center

    Murphy, David

    2011-01-01

    About 20 years ago, while lost in the midst of his PhD research, the author mused over proposed titles for his thesis. He was pretty pleased with himself when he came up with "Chaos Rules" (the implied double meaning was deliberate), or more completely, "Chaos Rules: An Exploration of the Work of Instructional Designers in Distance Education." He…

  1. Chaos in Accelerators

    SciTech Connect

    Chao, Alex

    1999-05-11

    Chaos is a general phenomenon in nonlinear dynamical systems. Accelerators--storage rings in particular--in which particles are stored for 10{sup 10} revolutions constitute a particularly intricate nonlinear dynamical system. (In comparison, the earth has revolved around the sun for only 10{sup 9} turns.) Storage rings therefore provide an ideal testing ground for chaos physics. In fact, it is the chaos phenomenon that imposes one of the key design criteria for these accelerators. One might arguably say that the demise of the Superconducting Super Collider project originated from a misjudgement in its chaos analysis at one point along its design path, leading to its first substantial cost escalation. This talk gives an elementary introduction to the study of chaos in accelerators.

  2. Chaos and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Kandrup, H. E.

    2002-09-01

    This talk summarises a combined theoretical and numerical investigation of the role of chaos and transient chaos in time-dependent Hamiltonian systems which aim to model elliptical galaxies. The existence of large amounts of chaos in near-equilibrium configurations is of potential importance because configurations incorporating large numbers of chaotic orbits appear to be substantially more susceptible than nearly integrable systems to various irregularities associated with, e.g., internal substructures, satellite galaxies, and/or the effects of a high density environment. Alternatively, transient chaos, reflecting exponential sensitivity over comparatively short time intervals, can prove important by significantly increasing the overall efficiency of violent relaxation so as to facilitate a more rapid evolution towards a `well-mixed' equilibrium. Completely conclusive `smoking gun' evidence for chaos and chaotic mixing has not yet been obtained, although evidence for the presence of chaos can in principle be extracted from such data sets as provided by the Sloan Digital Sky Survey. Interestingly, however, arguments completely analogous to those applied to self-gravitating systems also suggest the presence of chaos in charged particle beams, a setting which is amenable to controlled experiments.

  3. Chaos-free oscillations

    NASA Astrophysics Data System (ADS)

    Freire, Joana G.; Gallas, Marcia R.; Gallas, Jason A. C.

    2017-05-01

    Oscillators have widespread applications in micro- and nanomechanical devices, in lasers of various types, in chemical and biochemical models, among others. However, applications are normally marred by the presence of chaos, requiring expensive control techniques to bypass it. Here, we show that the low-frequency limit of driven systems, a poorly explored region, is a wide chaos-free zone. Specifically, for a popular model of micro- and nanomechanical devices and for the Brusselator, we report the discovery of an unexpectedly wide mosaic of phases resulting from stable periodic oscillations of increasing complexity but totally free from chaos.

  4. Genome chaos: survival strategy during crisis.

    PubMed

    Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H

    2014-01-01

    Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.

  5. Chaos, Fractals, and Polynomials.

    ERIC Educational Resources Information Center

    Tylee, J. Louis; Tylee, Thomas B.

    1996-01-01

    Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)

  6. Chaos, Fractals, and Polynomials.

    ERIC Educational Resources Information Center

    Tylee, J. Louis; Tylee, Thomas B.

    1996-01-01

    Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)

  7. Chaos and microbial systems

    SciTech Connect

    Kot, M.

    1990-07-01

    A recurrent theme of much recent research is that seemingly random fluctuations often occur as the result of simple deterministic mechanisms. Hence, much of the recent work in nonlinear dynamics has centered on new techniques for identifying order in seemingly chaotic systems. To determine the robustness of these techniques, chaos must, to some extent, be brought into the laboratory. Preliminary investigations of the forced double-Monod equations, a model for a predator and a prey in a chemostat with periodic variation in inflowing substrate concentration, suggest that simple microbial systems may provide the perfect framework for determining the efficacy and relevance of the new nonlinear dynamics in dealing with complex population dynamics. This research has two main goals, that is the mathematical analysis and computer simulation of the periodically forced double-Monod equations and of related models; and experimental (chemostat) population studies that evaluate the accuracy and generality of the models, and that judge the usefulness of various new techniques of nonlinear dynamics to the study of populations.

  8. Exploiting chaos for applications

    SciTech Connect

    Ditto, William L.; Sinha, Sudeshna

    2015-09-15

    We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.

  9. How to Generate Chaos at Home.

    ERIC Educational Resources Information Center

    Smith, Douglas

    1992-01-01

    Describes an electronic circuit that can function as a prototype for chaotic systems. Specific applied voltages produce chaotic signals that can be viewed with an oscilloscope or be made audible with a home stereo system. Provides directions for assembly with typical costs, mathematical basis of chaos theory, and experimental extensions. (JJK)

  10. Random matrices and chaos in nuclear physics: Nuclear structure

    SciTech Connect

    Weidenmueller, H. A.; Mitchell, G. E.

    2009-04-15

    Evidence for the applicability of random-matrix theory to nuclear spectra is reviewed. In analogy to systems with few degrees of freedom, one speaks of chaos (more accurately, quantum chaos) in nuclei whenever random-matrix predictions are fulfilled. An introduction into the basic concepts of random-matrix theory is followed by a survey over the extant experimental information on spectral fluctuations, including a discussion of the violation of a symmetry or invariance property. Chaos in nuclear models is discussed for the spherical shell model, for the deformed shell model, and for the interacting boson model. Evidence for chaos also comes from random-matrix ensembles patterned after the shell model such as the embedded two-body ensemble, the two-body random ensemble, and the constrained ensembles. All this evidence points to the fact that chaos is a generic property of nuclear spectra, except for the ground-state regions of strongly deformed nuclei.

  11. Applications of chaos in biology and medicine

    SciTech Connect

    Ditto, W.L.

    1996-06-01

    Before its discovery chaos was inevitably confused with randomness and indeterminacy. Because may systems {ital appeared} random, they were actually thought to {ital be} random. This was true despite the fact that many of these systems seemed to display intermittent almost periodic behavior before returning to more {open_quote}{open_quote}random{close_quote}{close_quote} or irregular motion. Indeed this observation leads to one of the defining features of chaos: the superposition of a very large number of unstable periodic motions. Thus the identification in biological systems of unstable periodic or fixed point behavior consistent with chaos makes new therapeutic strategies possible. Recently we were able to exploit such unstable periodic fixed points to achieve control in two experimental systems: in cardiac tissue and brain tissue. {copyright} {ital 1996 American Institute of Physics.}

  12. Chaos in plasma simulation and experiment

    SciTech Connect

    Watts, C.; Newman, D.E.; Sprott, J.C.

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  13. Fractal Patterns and Chaos Games

    ERIC Educational Resources Information Center

    Devaney, Robert L.

    2004-01-01

    Teachers incorporate the chaos game and the concept of a fractal into various areas of the algebra and geometry curriculum. The chaos game approach to fractals provides teachers with an opportunity to help students comprehend the geometry of affine transformations.

  14. Order, Chaos and All That!

    ERIC Educational Resources Information Center

    Glasser, L.

    1989-01-01

    The evolution of ideas about the concept of chaos is surveyed. Discussed are chaos in deterministic, dynamic systems; order in dissipative systems; and thermodynamics and irreversibility. Included are logistic and bifurcation maps to illustrate points made in the discussion. (CW)

  15. Fractal Patterns and Chaos Games

    ERIC Educational Resources Information Center

    Devaney, Robert L.

    2004-01-01

    Teachers incorporate the chaos game and the concept of a fractal into various areas of the algebra and geometry curriculum. The chaos game approach to fractals provides teachers with an opportunity to help students comprehend the geometry of affine transformations.

  16. Order, Chaos and All That!

    ERIC Educational Resources Information Center

    Glasser, L.

    1989-01-01

    The evolution of ideas about the concept of chaos is surveyed. Discussed are chaos in deterministic, dynamic systems; order in dissipative systems; and thermodynamics and irreversibility. Included are logistic and bifurcation maps to illustrate points made in the discussion. (CW)

  17. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    PubMed

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  18. Harnessing quantum transport by transient chaos.

    PubMed

    Yang, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso; Pecora, Louis M

    2013-03-01

    Chaos has long been recognized to be generally advantageous from the perspective of control. In particular, the infinite number of unstable periodic orbits embedded in a chaotic set and the intrinsically sensitive dependence on initial conditions imply that a chaotic system can be controlled to a desirable state by using small perturbations. Investigation of chaos control, however, was largely limited to nonlinear dynamical systems in the classical realm. In this paper, we show that chaos may be used to modulate or harness quantum mechanical systems. To be concrete, we focus on quantum transport through nanostructures, a problem of considerable interest in nanoscience, where a key feature is conductance fluctuations. We articulate and demonstrate that chaos, more specifically transient chaos, can be effective in modulating the conductance-fluctuation patterns. Experimentally, this can be achieved by applying an external gate voltage in a device of suitable geometry to generate classically inaccessible potential barriers. Adjusting the gate voltage allows the characteristics of the dynamical invariant set responsible for transient chaos to be varied in a desirable manner which, in turn, can induce continuous changes in the statistical characteristics of the quantum conductance-fluctuation pattern. To understand the physical mechanism of our scheme, we develop a theory based on analyzing the spectrum of the generalized non-Hermitian Hamiltonian that includes the effect of leads, or electronic waveguides, as self-energy terms. As the escape rate of the underlying non-attracting chaotic set is increased, the imaginary part of the complex eigenenergy becomes increasingly large so that pointer states are more difficult to form, making smoother the conductance-fluctuation pattern.

  19. Santa Rita Experimental Range: 100 years (1903 to 2003) of accomplishments and contributions; conference proceedings; 2003 October 30-November 1; Tucson, AZ

    Treesearch

    Mitchel P. McClaran; Peter F. Ffolliott; Carleton B. Edminster

    2003-01-01

    The purpose of this conference was to celebrate the 100 years of accomplishments and contributions of the Santa Rita Experimental Range, the longest continuously operating research area dedicated to the sustainable management of North American rangelands. The conference consisted of one-and-a-half days of invited synthesis papers and contributed poster presentations...

  20. Transient chaos in two coupled, dissipatively perturbed Hamiltonian Duffing oscillators

    NASA Astrophysics Data System (ADS)

    Sabarathinam, S.; Thamilmaran, K.; Borkowski, L.; Perlikowski, P.; Brzeski, P.; Stefanski, A.; Kapitaniak, T.

    2013-11-01

    The dynamics of two coupled, dissipatively perturbed, near-integrable Hamiltonian, double-well Duffing oscillators has been studied. We give numerical and experimental (circuit implementation) evidence that in the case of small positive or negative damping there exist two different types of transient chaos. After the decay of the transient chaos in the neighborhood of chaotic saddle we observe the transient chaos in the neighborhood of unstable tori. We argue that our results are robust and they exist in the wide range of system parameters.

  1. Experimental Investigation of 60 GHz Transmission Characteristics Between Computers on a Conference Table for WPAN Applications

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Amadjikpe, Arnaud L.; Choudhury, Debabani; Papapolymerou, John

    2011-01-01

    In this paper, the first measurements of the received radiated power between antennas located on a conference table to simulate the environment of antennas embedded in laptop computers for 60 GHz Wireless Personal Area Network (WPAN) applications is presented. A high gain horn antenna and a medium gain microstrip patch antenna for two linear polarizations are compared. It is shown that for a typical conference table arrangement with five computers, books, pens, and coffee cups, the antennas should be placed a minimum of 5 cm above the table, but that a height of greater than 20 cm may be required to maximize the received power in all cases.

  2. Experimental Investigation of 60 GHz Transmission Characteristics Between Computers on a Conference Table for WPAN Applications

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Amadjikpe, Arnaud L.; Choudhury, Debabani; Papapolymerou, John

    2011-01-01

    In this paper, the first measurements of the received radiated power between antennas located on a conference table to simulate the environment of antennas embedded in laptop computers for 60 GHz Wireless Personal Area Network (WPAN) applications is presented. A high gain horn antenna and a medium gain microstrip patch antenna for two linear polarizations are compared. It is shown that for a typical conference table arrangement with five computers, books, pens, and coffee cups, the antennas should be placed a minimum of 5 cm above the table, but that a height of greater than 20 cm may be required to maximize the received power in all cases.

  3. Quantifying chaos for ecological stoichiometry

    NASA Astrophysics Data System (ADS)

    Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2010-09-01

    The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincaré return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing δ1. However, for higher values of δ1 the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter ζ) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.

  4. Quantifying chaos for ecological stoichiometry.

    PubMed

    Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2010-09-01

    The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincaré return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing δ1. However, for higher values of δ1 the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter ζ) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.

  5. Chaos and insect ecology

    Treesearch

    Jesse A. Logan; Fred P. Hain

    1990-01-01

    Recent advances in applied mathematical analysis have uncovered a fascinating and unexpected dynamical richness that underlies behavior of even the simplest non-linear mathematical models. Due to the complexity of solutions to these non-linear equations, a new mathematical term, chaos, has been coined to describe the resulting dynamics. This term captures the notion...

  6. Chaos in the Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Field, Richard J.

    The dynamics of reacting chemical systems is governed by typically polynomial differential equations that may contain nonlinear terms and/or embedded feedback loops. Thus the dynamics of such systems may exhibit features associated with nonlinear dynamical systems, including (among others): temporal oscillations, excitability, multistability, reaction-diffusion-driven formation of spatial patterns, and deterministic chaos. These behaviors are exhibited in the concentrations of intermediate chemical species. Bifurcations occur between particular dynamic behaviors as system parameters are varied. The governing differential equations of reacting chemical systems have as variables the concentrations of all chemical species involved, as well as controllable parameters, including temperature, the initial concentrations of all chemical species, and fixed reaction-rate constants. A discussion is presented of the kinetics of chemical reactions as well as some thermodynamic considerations important to the appearance of temporal oscillations and other nonlinear dynamic behaviors, e.g., deterministic chaos. The behavior, chemical details, and mechanism of the oscillatory Belousov-Zhabotinsky Reaction (BZR) are described. Furthermore, experimental and mathematical evidence is presented that the BZR does indeed exhibit deterministic chaos when run in a flow reactor. The origin of this chaos seems to be in toroidal dynamics in which flow-driven oscillations in the control species bromomalonic acid couple with the BZR limit cycle...

  7. Chaos in the Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Field, Richard J.

    2015-12-01

    The dynamics of reacting chemical systems is governed by typically polynomial differential equations that may contain nonlinear terms and/or embedded feedback loops. Thus the dynamics of such systems may exhibit features associated with nonlinear dynamical systems, including (among others): temporal oscillations, excitability, multistability, reaction-diffusion-driven formation of spatial patterns, and deterministic chaos. These behaviors are exhibited in the concentrations of intermediate chemical species. Bifurcations occur between particular dynamic behaviors as system parameters are varied. The governing differential equations of reacting chemical systems have as variables the concentrations of all chemical species involved, as well as controllable parameters, including temperature, the initial concentrations of all chemical species, and fixed reaction-rate constants. A discussion is presented of the kinetics of chemical reactions as well as some thermodynamic considerations important to the appearance of temporal oscillations and other nonlinear dynamic behaviors, e.g., deterministic chaos. The behavior, chemical details, and mechanism of the oscillatory Belousov-Zhabotinsky Reaction (BZR) are described. Furthermore, experimental and mathematical evidence is presented that the BZR does indeed exhibit deterministic chaos when run in a flow reactor. The origin of this chaos seems to be in toroidal dynamics in which flow-driven oscillations in the control species bromomalonic acid couple with the BZR limit cycle.

  8. Rank one chaos in a class of planar systems with heteroclinic cycle.

    PubMed

    Chen, Fengjuan; Han, Maoan

    2009-12-01

    In this paper, we study rank one chaos in a class of planar systems with heteroclinic cycle. We first find a stable limit cycle inside the heteroclinic cycle. We then add an external periodic forcing to create rank one chaos. We follow a step-by-step procedure guided by the theory of rank one chaos to find experimental evidence of strange attractors with Sinai, Ruelle, and Bowen measures.

  9. Chaos in neurons and its application: Perspective of chaos engineering

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Oku, Makito; Aihara, Kazuyuki

    2012-12-01

    We review our recent work on chaos in neurons and its application to neural networks from perspective of chaos engineering. Especially, we analyze a dataset of a squid giant axon by newly combining our previous work of identifying Devaney's chaos with surrogate data analysis, and show that an axon can behave chaotically. Based on this knowledge, we use a chaotic neuron model to investigate possible information processing in the brain.

  10. Colloquium: Random matrices and chaos in nuclear spectra

    SciTech Connect

    Papenbrock, T.; Weidenmueller, H. A.

    2007-07-15

    Chaos occurs in quantum systems if the statistical properties of the eigenvalue spectrum coincide with predictions of random-matrix theory. Chaos is a typical feature of atomic nuclei and other self-bound Fermi systems. How can the existence of chaos be reconciled with the known dynamical features of spherical nuclei? Such nuclei are described by the shell model (a mean-field theory) plus a residual interaction. The question is answered using a statistical approach (the two-body random ensemble): The matrix elements of the residual interaction are taken to be random variables. Chaos is shown to be a generic feature of the ensemble and some of its properties are displayed, emphasizing those which differ from standard random-matrix theory. In particular, the existence of correlations among spectra carrying different quantum numbers is demonstrated. These are subject to experimental verification.

  11. Chaos on the conveyor belt.

    PubMed

    Sándor, Bulcsú; Járai-Szabó, Ferenc; Tél, Tamás; Néda, Zoltán

    2013-04-01

    The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by a spring to an external static point and, due to the dragging effect of the belt, the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can be achieved only by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic, dynamics and phase transition-like behavior. Noise-induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks (around five).

  12. The joy of transient chaos

    SciTech Connect

    Tél, Tamás

    2015-09-15

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

  13. Chaos control of cardiac arrhythmias.

    PubMed

    Garfinkel, A; Weiss, J N; Ditto, W L; Spano, M L

    1995-01-01

    Chaos theory has shown that many disordered and erratic phenomena are in fact deterministic, and can be understood causally and controlled. The prospect that cardiac arrhythmias might be instances of deterministic chaos is therefore intriguing. We used a recently developed method of chaos control to stabilize a ouabain-induced arrhythmia in rabbit ventricular tissue in vitro. Extension of these results to clinically significant arrhythmias such as fibrillation will require overcoming the additional obstacles of spatiotemporal complexity.

  14. Quantum chaos meets coherent control.

    PubMed

    Gong, Jiangbin; Brumer, Paul

    2005-01-01

    Coherent control of atomic and molecular processes has been a rapidly developing field. Applications of coherent control to large and complex molecular systems are expected to encounter the effects of chaos in the underlying classical dynamics, i.e., quantum chaos. Hence, recent work has focused on examining control in model chaotic systems. This work is reviewed, with an emphasis on a variety of new quantum phenomena that are of interest to both areas of quantum chaos and coherent control.

  15. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; ...

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  16. Chaos in quantum channels

    SciTech Connect

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  17. Gullies of Gorgonus Chaos

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 11 June 2002) The Science This fractured surface belongs to a portion of a region called Gorgonum Chaos located in the southern hemisphere of Mars. Gorgonum Chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars and lolling tongues who lived in caves. As it turns out this is indeed a fitting name for this region of Mars because it contains a high density of gullies that 'snake' their way down the walls of the troughs located in this region of chaos. Upon closer examination one finds that these gullies and alluvial deposits, initially discovered by Mars Global Surveyor, are visible on the trough walls (best seen near the bottom of the image). These gullies appear to emanate from a specific layer in the walls. The gullies have been proposed to have formed by the subsurface release of water. The Story This fractured, almost spooky-looking surface belongs to a region called Gorgonum Chaos in the southern hemisphere of Mars. Chaos is a term used for regions of Mars with distinctive areas of broken terrain like the one seen above. This area of Martian chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars, and lolling tongues, who lived in caves. The Gorgons, including famous sister Medusa, could turn a person to stone, and their writhing, snakelike locks cause revulsion to this day. Given the afflicted nature of this contorted terrain, with all of its twisted, branching channels and hard, stony-looking hills in the top half of the image, this is indeed a fitting name for this region of Mars. The name also has great appeal, because the area contains a high density of gullies that 'snake' their way down the walls of the troughs located in this region of Martian chaos. Gullies are trenches cut into the land as accelerated streams of water (or another liquid) erode the surface. To see these, click on the

  18. Wireless communication with chaos.

    PubMed

    Ren, Hai-Peng; Baptista, Murilo S; Grebogi, Celso

    2013-05-03

    The modern world fully relies on wireless communication. Because of intrinsic physical constraints of the wireless physical media (multipath, damping, and filtering), signals carrying information are strongly modified, preventing information from being transmitted with a high bit rate. We show that, though a chaotic signal is strongly modified by the wireless physical media, its Lyapunov exponents remain unaltered, suggesting that the information transmitted is not modified by the channel. For some particular chaotic signals, we have indeed proved that the dynamic description of both the transmitted and the received signals is identical and shown that the capacity of the chaos-based wireless channel is unaffected by the multipath propagation of the physical media. These physical properties of chaotic signals warrant an effective chaos-based wireless communication system.

  19. Gullies of Gorgonus Chaos

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 11 June 2002) The Science This fractured surface belongs to a portion of a region called Gorgonum Chaos located in the southern hemisphere of Mars. Gorgonum Chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars and lolling tongues who lived in caves. As it turns out this is indeed a fitting name for this region of Mars because it contains a high density of gullies that 'snake' their way down the walls of the troughs located in this region of chaos. Upon closer examination one finds that these gullies and alluvial deposits, initially discovered by Mars Global Surveyor, are visible on the trough walls (best seen near the bottom of the image). These gullies appear to emanate from a specific layer in the walls. The gullies have been proposed to have formed by the subsurface release of water. The Story This fractured, almost spooky-looking surface belongs to a region called Gorgonum Chaos in the southern hemisphere of Mars. Chaos is a term used for regions of Mars with distinctive areas of broken terrain like the one seen above. This area of Martian chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars, and lolling tongues, who lived in caves. The Gorgons, including famous sister Medusa, could turn a person to stone, and their writhing, snakelike locks cause revulsion to this day. Given the afflicted nature of this contorted terrain, with all of its twisted, branching channels and hard, stony-looking hills in the top half of the image, this is indeed a fitting name for this region of Mars. The name also has great appeal, because the area contains a high density of gullies that 'snake' their way down the walls of the troughs located in this region of Martian chaos. Gullies are trenches cut into the land as accelerated streams of water (or another liquid) erode the surface. To see these, click on the

  20. Controlling chaos faster

    SciTech Connect

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  1. Controlling chaos faster.

    PubMed

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  2. Noise tolerant spatiotemporal chaos computing.

    PubMed

    Kia, Behnam; Kia, Sarvenaz; Lindner, John F; Sinha, Sudeshna; Ditto, William L

    2014-12-01

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  3. Noise tolerant spatiotemporal chaos computing

    SciTech Connect

    Kia, Behnam; Kia, Sarvenaz; Ditto, William L.; Lindner, John F.; Sinha, Sudeshna

    2014-12-01

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  4. Tailoring wavelets for chaos control.

    PubMed

    Wei, G W; Zhan, Meng; Lai, C-H

    2002-12-31

    Chaos is a class of ubiquitous phenomena and controlling chaos is of great interest and importance. In this Letter, we introduce wavelet controlled dynamics as a new paradigm of dynamical control. We find that by modifying a tiny fraction of the wavelet subspaces of a coupling matrix, we could dramatically enhance the transverse stability of the synchronous manifold of a chaotic system. Wavelet controlled Hopf bifurcation from chaos is observed. Our approach provides a robust strategy for controlling chaos and other dynamical systems in nature.

  5. Arsinoes Chaos Landforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned rock outcrops, possibly sedimentary rocks, in the Arsinoes Chaos region east of the Valles Marineris trough system. These rocky materials were once below the martian surface. These features are located near 7.2oS, 27.9oW. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  6. Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos.

    PubMed

    Ai, Jianzhou; Wang, Lulu; Wang, Jian

    2017-09-15

    Chaos-based secure communication can provide a high level of privacy in data transmission. Here, we experimentally demonstrate secure signal transmission over two kinds of multimode fiber (MMF) based on electro-optic intensity chaos. High-quality synchronization is achieved in an electro-optic feedback configuration. Both 5  Gbit/s carrier-less amplitude/phase (CAP-4) modulation and 10  Gbit/s on-off key (OOK) signals are recovered efficiently in electro-optic chaos-based communication systems. Degradations of chaos synchronization and communication system due to mismatch of various hardware keys are also discussed.

  7. Review of the experimental papers at the IAEA conference on noninductive current drive, Culham, 1983

    SciTech Connect

    Motley, R.W.

    1983-10-01

    Three types of noninductive current drive experiments have been reported at this conference: (1) neutral beam (2) rf current drive, and (3) relativistic electron beams (REB). If we compare the effort to develop current drive to a horse race, the neutral beam horse was first out of the gates, but it quickly found greener pastures (heating) and has dropped temporarily out of the race. The lower hybrid horse now has a big lead at the first furlong (200 m), but the bulk of the race remains to be run. The fast wave and REB horses have yet to get up speed.

  8. Weak quantum chaos

    NASA Astrophysics Data System (ADS)

    Kukuljan, Ivan; Grozdanov, Sašo; Prosen, Tomaž

    2017-08-01

    Out-of-time-ordered correlation functions (OTOCs) are presently being extensively debated as quantifiers of dynamical chaos in interacting quantum many-body systems. We argue that in quantum spin and fermionic systems, where all local operators are bounded, an OTOC of local observables is bounded as well and thus its exponential growth is merely transient. As a better measure of quantum chaos in such systems, we propose, and study, the density of the OTOC of extensive sums of local observables, which can exhibit indefinite growth in the thermodynamic limit. We demonstrate this for the kicked quantum Ising model by using large-scale numerical results and an analytic solution in the integrable regime. In a generic case, we observe the growth of the OTOC density to be linear in time. We prove that this density in general, locally interacting, nonintegrable quantum spin and fermionic dynamical systems exhibits growth that is at most polynomial in time—a phenomenon, which we term weak quantum chaos. In the special case of the model being integrable and the observables under consideration quadratic, the OTOC density saturates to a plateau.

  9. EXPERIMENTAL CURRICULA IN CHEMISTRY, A REPORT OF THE A.C.C.C. CONFERENCE ON CURRICULUM EXPERIMENTATION (CHICAGO, OCTOBER 1963).

    ERIC Educational Resources Information Center

    HUME, DAVID N.

    FOUR PROGRAMS ARE IDENTIFIED AND DESCRIBED AS REPRESENTATIVE OF THE EXPERIMENTATION BEING CONDUCTED IN THE UNDERGRADUATE CHEMISTRY CURRICULUM IN AMERICAN HIGHER EDUCATION. (1) THE UNIVERSITY OF ILLINOIS AND THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY REQUIRE THAT A STUDENT TAKE A GROUP OF "CORE" COURSES WHICH PROVIDE, RELATIVELY EARLY IN HIS…

  10. Chaos synchronization in networks of semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Li, Wen; Aviad, Yaara; Reidler, Igor; Song, Helun; Huang, Yuyang; Biermann, Klaus; Rosenbluh, Michael; Zhang, Yaohui; Grahn, Holger T.; Kanter, Ido

    2015-11-01

    Chaos synchronization has been demonstrated as a useful building block for various tasks in secure communications, including a source of all-electronic ultrafast physical random number generators based on room temperature spontaneous chaotic oscillations in a DC-biased weakly coupled GaAs/Al0.45Ga0.55As semiconductor superlattice (SSL). Here, we experimentally demonstrate the emergence of several types of chaos synchronization, e.g. leader-laggard, face-to-face and zero-lag synchronization in network motifs of coupled SSLs consisting of unidirectional and mutual coupling as well as self-feedback coupling. Each type of synchronization clearly reflects the symmetry of the topology of its network motif. The emergence of a chaotic SSL without external feedback and synchronization among different structured SSLs open up the possibility for advanced secure multi-user communication methods based on large networks of coupled SSLs.

  11. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape.

    PubMed

    Gilpin, William; Feldman, Marcus W

    2017-07-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the "edge of chaos" while creating a wide distribution of opportunities for speciation during epochs of disruptive selection-a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies.

  12. Chaos Theory and Post Modernism

    ERIC Educational Resources Information Center

    Snell, Joel

    2009-01-01

    Chaos theory is often associated with post modernism. However, one may make the point that both terms are misunderstood. The point of this article is to define both terms and indicate their relationship. Description: Chaos theory is associated with a definition of a theory dealing with variables (butterflies) that are not directly related to a…

  13. Chaos Theory and Post Modernism

    ERIC Educational Resources Information Center

    Snell, Joel

    2009-01-01

    Chaos theory is often associated with post modernism. However, one may make the point that both terms are misunderstood. The point of this article is to define both terms and indicate their relationship. Description: Chaos theory is associated with a definition of a theory dealing with variables (butterflies) that are not directly related to a…

  14. Death and revival of chaos

    NASA Astrophysics Data System (ADS)

    Kaszás, Bálint; Feudel, Ulrike; Tél, Tamás

    2016-12-01

    We investigate the death and revival of chaos under the impact of a monotonous time-dependent forcing that changes its strength with a non-negligible rate. Starting on a chaotic attractor it is found that the complexity of the dynamics remains very pronounced even when the driving amplitude has decayed to rather small values. When after the death of chaos the strength of the forcing is increased again with the same rate of change, chaos is found to revive but with a different history. This leads to the appearance of a hysteresis in the complexity of the dynamics. To characterize these dynamics, the concept of snapshot attractors is used, and the corresponding ensemble approach proves to be superior to a single trajectory description, that turns out to be nonrepresentative. The death (revival) of chaos is manifested in a drop (jump) of the standard deviation of one of the phase-space coordinates of the ensemble; the details of this chaos-nonchaos transition depend on the ratio of the characteristic times of the amplitude change and of the internal dynamics. It is demonstrated that chaos cannot die out as long as underlying transient chaos is present in the parameter space. As a condition for a "quasistatically slow" switch-off, we derive an inequality which cannot be fulfilled in practice over extended parameter ranges where transient chaos is present. These observations need to be taken into account when discussing the implications of "climate change scenarios" in any nonlinear dynamical system.

  15. Chaos Criminology: A critical analysis

    NASA Astrophysics Data System (ADS)

    McCarthy, Adrienne L.

    There has been a push since the early 1980's for a paradigm shift in criminology from a Newtonian-based ontology to one of quantum physics. Primarily this effort has taken the form of integrating Chaos Theory into Criminology into what this thesis calls 'Chaos Criminology'. However, with the melding of any two fields, terms and concepts need to be translated properly, which has yet to be done. In addition to proving a translation between fields, this thesis also uses a set of criteria to evaluate the effectiveness of the current use of Chaos Theory in Criminology. While the results of the theory evaluation reveal that the current Chaos Criminology work is severely lacking and in need of development, there is some promise in the development of Marx's dialectical materialism with Chaos Theory.

  16. [Shedding light on chaos theory].

    PubMed

    Chou, Shieu-Ming

    2004-06-01

    Gleick (1987) said that only three twentieth century scientific theories would be important enough to continue be of use in the twenty-first century: The Theory of Relativity, Quantum Theory, and Chaos Theory. Chaos Theory has become a craze which is being used to forge a new scientific system. It has also been extensively applied in a variety of professions. The purpose of this article is to introduce chaos theory and its nursing applications. Chaos is a sign of regular order. This is to say that chaos theory emphasizes the intrinsic potential for regular order within disordered phenomena. It is to be hoped that this article will inspire more nursing scientists to apply this concept to clinical, research, or administrative fields in our profession.

  17. Synthesizing folded band chaos

    NASA Astrophysics Data System (ADS)

    Corron, Ned J.; Hayes, Scott T.; Pethel, Shawn D.; Blakely, Jonathan N.

    2007-04-01

    A randomly driven linear filter that synthesizes Lorenz-like, reverse-time chaos is shown also to produce Rössler-like folded band wave forms when driven using a different encoding of the random source. The relationship between the topological entropy of the random source, dissipation in the linear filter, and the positive Lyapunov exponent for the reverse-time wave form is exposed. The two drive encodings are viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing both the Lorenz butterfly and Rössler folded band paradigms of nonlinear dynamics.

  18. Iani Chaos - False Color

    NASA Image and Video Library

    2016-01-04

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Iani Chaos. The "dark blue" material is likely basaltic sand. Orbit Number: 18037 Latitude: -1.05225 Longitude: 341.26 Instrument: VIS Captured: 2006-01-07 10:45. http://photojournal.jpl.nasa.gov/catalog/PIA20228

  19. Aram Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of light-toned, sedimentary rock among darker-toned mesas in Aram Chaos. Dark, windblown megaripples -- large ripples -- are also present at this location.

    Location near: 3.0oN, 21.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  20. Landslide in Aureum Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    15 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of a small landslide off of a hillslope in the Aureum Chaos region of Mars. Mass movement occurred from right (the slope) to left (the lobate feature pointed left). Small dark dots in the landslide area are large boulders. This feature is located near 2.6oS, 24.5oW. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/upper left.

  1. Landslide in Aureum Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    15 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of a small landslide off of a hillslope in the Aureum Chaos region of Mars. Mass movement occurred from right (the slope) to left (the lobate feature pointed left). Small dark dots in the landslide area are large boulders. This feature is located near 2.6oS, 24.5oW. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/upper left.

  2. 1985 SEM Spring Conference on Experimental Mechanics, Las Vegas, NV, June 9-14, 1985, Proceedings

    SciTech Connect

    Not Available

    1985-01-01

    Various papers on experimental mechanics are presented. The general topics considered include: fracture, composites, digital techniques in optics, vibration testing for damping analysis, modal analysis methods, photoelasticity, materials testing, strain gages and transducers, fracture of composites, general optics, biomechanics, modal analysis, ultrasonic NDE of composites, transducers, improved TM for structural testing, optical applications, and residual stress. Other subjects addressed include: practical applications using acoustic emission in the aerospace industry, dynamics of fracture, vibration analysis, joints, internal marketing of technology to management, testing for design verification, fiber-optic applications in experimental mechanics, moire and speckle, and SPATE applications.

  3. Controlling Chaos Caused by the Current-Driven Ion Acoustic Instability in a Laboratory Plasma Using Delayed Feedback

    DTIC Science & Technology

    2003-07-20

    for the Circuit experimental systems working in real time. k[x(t) - x(t - r)] We have attempted chaos control using the TDAS method based on the...Pyragas technique in order to attain stable chaos control . System 2. Experimental set up I 1 The experiments are performed using a Double G2 G1 x(t) Plasma

  4. Chaos and turbulence

    NASA Astrophysics Data System (ADS)

    1989-08-01

    The main research effort was an attempt to find low order systems possessing chaotic behavior which could successfully model turbulent flow. The reason for searching for low order systems is the strongly suggestive evidence that chaos disappears in systems with a large number of degrees of freedom. Recent work on symplectic integration of Hamiltonian systems indicates that for Hamiltonian systems chaos may be no more than numerical error growing exponentially, and is absent when the numerical scheme conserves the Poincare invariants and the symplectic structure. A great deal was learned about vortical solutions of the Navier-Stokes equations and new solutions of a weakly nonlinear approximation were found, which suggest the existence of Navier-Stokes solutions which will describe a vortical description of the laminar turbulent interface. An interesting application of dynamical system theory to a problem of kinematic mixing showed that the use of these ideas could reduce the dimension of the system in order to make computations feasible, and predict the qualitative development of the distribution of mixed tracer in an unsteady flow.

  5. Explorations in Chaos Physics

    NASA Astrophysics Data System (ADS)

    Maldonado, Armando; Bixler, David

    2012-03-01

    Chaos Theory is an interesting and important branch of physics. Many physical systems, such as weather or fluid flow, exhibit chaotic behavior. Experiments in simple mechanical or electrical systems, as well as simple simulations can be used as methods of studying chaos. Using a mechanical method, we connected a speaker and to a frequency modulator to bounce a table tennis ball. We recorded the ball's motion at different frequencies using a video camera. Using Tracker software we observed it's position versus it's velocity in order to analyze its chaotic behavior. For a simple simulation, we used the visual-based programming in LabView to examine chaotic behavior produced by some non-linear differential equations. Results from both the mechanical system and the simulations will be discussed. For future work, we plan to continue to explore some chaotic simulations and perform a sequence of experiments with an electrical system. Exploring these nonlinear chaotic systems can help us to better understand and model many phenomena found in nature.

  6. Ariadnes Colles Chaos

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 18 June 2002) Among the many varied landscapes on Mars the term chaos is applied to those places that have a jumbled, blocky appearance. Most of the better known chaotic terrain occurs in the northern hemisphere but there are other occurrences in the southern hemisphere, three of which are centered on 180 degrees west longitude. Ariadnes Colles, Atlantis, and Gorgonum Chaos all share similar features: relatively bright, irregularly shaped knobs and mesas that rise above a dark, sand-covered, hummocky floor. Close inspection of this THEMIS image shows that the darker material tends to lap up to the base of the knobs and stops where the slopes are steep. On some of the lowest knobs, the dark material appears to overtop them. The knobs themselves are highly eroded, many having a pitted appearance. Images from the camera on Mars Global Surveyor clearly show that the dark material is sand, based on its mantling appearance and the presence of dunes. It looks as though the material that composes the knobs was probably a continuous layer that was subsequently heavily eroded. While it is likely that the dark sand is responsible for some of the erosion it is also possible that the this landscape was eroded by some other process and the sand was emplaced at a later time.

  7. [Experimental Course in Elementary Number Theory, Cambridge Conference on School Mathematics Feasibility Study No. 35.

    ERIC Educational Resources Information Center

    Hatch, Mary Jacqueline

    In the winter of 1965, an experimental course in Elementary Number Theory was presented to a 6th grade class in the Hosmer School, Watertown, Massachusetts. Prior to the introduction of the present material, students had been exposed in class to such topics from the University of Illinois Arithmetic Project as lattices, number lines, frame…

  8. Experimental optical phase measurement at the exact Heisenberg limit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Daryanoosh, Shakib; Slussarenko, Sergei; Wiseman, Howard M.; Pryde, Geoff J.

    2016-10-01

    Optical phase measurement through its application in quantum metrology has pushed the precision limit with which some physical quantities can be measured accurately. At the very fundamental level, the laws of quantum mechanics dictate that the uncertainty in phase estimations scales as 1/N, where N is the number of quantum resources employed in the protocol [1]. This is the well known Heisenberg limit (HL) which is quadratically better than the traditional precision limit known as the standard quantum limit (SQL) with uncertainty asymptotically scaling as 1/&sqrt{N} [1]. Several experiments have demonstrated that the SQL can be beaten by using an entangled state as the probe and a specific measurement scheme for ab initio estimation of unknown phases [2,3]. It has also been shown experimentally that even in the absence of the entanglement one can measure an unknown phase with imprecision scaling at the HL [4]. In this work we first present a new protocol able to estimate an optical phase at the Heisenberg limit, and then experimentally explore fundamental and practical issues in generating high-quality novel entangled states, for use in this protocol and beyond. Our aim in this study is to measure an unknown phase in the interval [0,2π) with uncertainty attaining the exact HL. There is a condition that should be met to address this objective: preparation of an optimal state [5]. This would cover part of the presentation through which we explain how to experimentally realise such an optimal state with the current technological limitations and the feasibility of the scheme. In particular, we generate an entangled 3-photon (2-photon) state of specific superposition of GHZ (Bell) states. Our numerical simulation of the phase measurement gate together with the experimental outcomes show that the created state should have a high fidelity and purity to be able to have the phase uncertainty achieving the exact HL. Therefore, we briefly explain the modelling for

  9. Stalling chaos control accelerates convergence

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2013-06-01

    Since chaos control has found its way into many applications, the development of fast, easy-to-implement and universally applicable chaos control methods is of crucial importance. Predictive feedback control has been widely applied but suffers from a speed limit imposed by highly unstable periodic orbits. We show that this limit can be overcome by stalling the control, thereby taking advantage of the stable directions of the uncontrolled chaotic map. This analytical finding is confirmed by numerical simulations, giving a chaos-control method that is capable of successfully stabilizing periodic orbits of high period.

  10. Quantum chaos in nuclear physics

    SciTech Connect

    Bunakov, V. E.

    2016-07-15

    A definition of classical and quantum chaos on the basis of the Liouville–Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.

  11. Experimental demonstration of the microscopic origin of circular dichroism (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady B.

    2016-09-01

    Fully two-dimensional metamaterials, also known as metasurfaces comprised of planar-chiral plasmonic metamolecules that are just nanometers thick, have been shown to exhibit chiral dichroism in transmission. The origin of the resulting circular dichroism is rather subtle. Theoretical calculations indicate that this surprising effect relies on finite non-radiative (Ohmic) losses of the metasurface. In the absence of such losses on the nanoscale, the chiral dichroism in transmission (CDT) defined as the difference between the transmission coefficients of the RCP and LCP waves, must identically vanish. This surprising theoretical prediction has never been experimentally verified because of the challenge of measuring non-radiative loss on the nanoscale. We use a combination of nanoscale characterization techniques to demonstrate that the RCP and LCP states of the incident light produce drastically different distributions of optical energy and Ohmic heat dissipation in the two-dimensional chiral nanoantennas, thereby producing a strong chiral dichroism in absorption (CDA). A planar-chiral metasurface, along with its chiral enantiomer, was designed to maximize the CDA in mid-IR range. The CDA gives rise to the CDT observed experimentally in the far-field measurements. We then use scattering-type near-field scanning optical microscopy to map the optical energy distribution on the nanoantennas and their enantiomers in response to the RCP and LCP light. Photo-expansion microscopy, also known as AFM-IR, was then utilized to experimentally demonstrate drastically different Ohmic heating of the nanoantennas under RCP and LCP light illumination. In collaboration with: A.B.Khanikaev, N.Arju, Z.Fan, D.Purtseladze, F.Lu, J.Lee, P.Sarriugarte, M.Schnell, R.Hillenbrand, M.A.Belkin

  12. 1986 SEM Spring Conference on Experimental Mechanics, New Orleans, LA, June 8-13, 1986, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on experimental mechanics are presented. The general subjects considered include: applications of fracture mechanics to rock and concrete, residual stress, transducers, modal analysis, fracture, composites and testing of composites, strain gages, recent developments in holographic interferometry, structures and measurement methods for structural testing, and whole-field techniques for composites. Also addressed are: fatigue and failure, optical methods, material testing and testing techniques, dynamic behavior of composites, optical methods applied to fracture and fatigue of materials, biomedical applications, digital image processing, photoelasticity, applications of thermoelastic stress analysis, and Moire methods.

  13. Interleukin 8 Receptor Deficiency Confers Susceptibility to Acute Experimental Pyelonephritis and May Have a Human Counterpart

    PubMed Central

    Frendéus, Björn; Godaly, Gabriela; Hang, Long; Karpman, Diana; Lundstedt, Ann-Charlotte; Svanborg, Catharina

    2000-01-01

    Neutrophils migrate to infected mucosal sites that they protect against invading pathogens. Their interaction with the epithelial barrier is controlled by CXC chemokines and by their receptors. This study examined the change in susceptibility to urinary tract infection (UTI) after deletion of the murine interleukin 8 receptor homologue (mIL-8Rh). Experimental UTIs in control mice stimulated an epithelial chemokine response and increased chemokine receptor expression. Neutrophils migrated through the tissues to the epithelial barrier that they crossed into the lumen, and the mice developed pyuria. In mIL-8Rh knockout (KO) mice, the chemokine response was intact, but the epithelial cells failed to express IL-8R, and neutrophils accumulated in the tissues. The KO mice were unable to clear bacteria from kidneys and bladders and developed bacteremia and symptoms of systemic disease, but control mice were fully resistant to infection. The experimental UTI model demonstrated that IL-8R–dependent mechanisms control the urinary tract defense, and that neutrophils are essential host effector cells. Patients prone to acute pyelonephritis also showed low CXC chemokine receptor 1 expression compared with age-matched controls, suggesting that chemokine receptor expression may also influence the susceptibility to UTIs in humans. The results provide a first molecular clue to disease susceptibility of patients prone to acute pyelonephritis. PMID:10993918

  14. Chaos-Dchroot Version 2

    SciTech Connect

    Grondona, M.

    2007-08-22

    The CHAOS dchroot utilities is a set of software used to prepare and manage "alternate root" filesystems on Linux systems. These alternate roots can be used to provide an alternate set of system software for testing and compatibility purposes.

  15. Chaos and complexity by design

    NASA Astrophysics Data System (ADS)

    Roberts, Daniel A.; Yoshida, Beni

    2017-04-01

    We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the "frame poten-tial," which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We show that the norm squared of a generalization of out-of-time-order 2 k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. Additionally, we prove that these 2 k-point correlators for Pauli operators completely determine the k-fold channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.

  16. The Chaos Within Sudoku

    PubMed Central

    Ercsey-Ravasz, Mária; Toroczkai, Zoltán

    2012-01-01

    The mathematical structure of Sudoku puzzles is akin to hard constraint satisfaction problems lying at the basis of many applications, including protein folding and the ground-state problem of glassy spin systems. Via an exact mapping of Sudoku into a deterministic, continuous-time dynamical system, here we show that the difficulty of Sudoku translates into transient chaotic behavior exhibited by this system. We also show that the escape rate κ, an invariant of transient chaos, provides a scalar measure of the puzzle's hardness that correlates well with human difficulty ratings. Accordingly, η = −log10 κ can be used to define a “Richter”-type scale for puzzle hardness, with easy puzzles having 0 < η ≤ 1, medium ones 1 < η ≤ 2, hard with 2 < η ≤ 3 and ultra-hard with η > 3. To our best knowledge, there are no known puzzles with η > 4. PMID:23061008

  17. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  18. Elucidating Mechanisms of Extensive Chaos

    NASA Astrophysics Data System (ADS)

    Egolf, David A.; Melnikov, Ilarion V.; Pesch, Werner; Ecke, Robert E.

    2001-06-01

    We report studies of the mechanism for the generation of chaotic disorder in a phenomenon found in nature, Rayleigh-Bénard convection (RBC), in a regime exhaustively studied experimentally. Through large-scale, parallel-computational studies of the detailed space-time evolution of the dynamical degrees of freedom, we find that the Spiral Defect Chaos (SDC) state of RBC is spatially- and temporally- localized to defect creation/annihilation events (D.A. Egolf, I.V. Melnikov, W. Pesch, and R.E. Ecke, Nature, 404:733--736, 2000), and we elucidate how these divergent, but very brief, events lead to eventual macroscopic differences between initially similar flow patterns. We also demonstrate that SDC is extensively chaotic, in that the number of dynamical degrees of freedom (the fractal dimension) is proportional to the system size, suggesting the possibility for a hydrodynamic-like description of the long-wavelength properties of SDC. The computational technique employed shows promise for analyzing a wide variety of extended dynamical systems.

  19. Chaos Theory and International Relations

    DTIC Science & Technology

    2016-12-01

    benefit decision makers, who can avoid mistakes by testing their decisions with the help of mathematical models . This thesis provides an overview of Chaos...international relations domain, Chaos Theory is modeled in two specific international relations puzzles, bipolarity and democratic peace, to show the...utility of the theory in this social science field. The results of the model are compared with the conventional international theories of Liberalism and

  20. An improved key agreement protocol based on chaos

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhao, Jianfeng

    2010-12-01

    Cryptography based on chaos theory has developed fast in the past few years, but most of the researches focus on secret key cryptography. There are few public key encryption algorithms and cryptographic protocols based on chaos, which are also of great importance for network security. We introduce an enhanced key agreement protocol based on Chebyshev chaotic map. Utilizing the semi-group property of Chebyshev polynomials, the proposed key exchange algorithm works like Diffie-Hellman algorithm. The improved protocol overcomes the drawbacks of several previously proposed chaotic key agreement protocols. Both analytical and experimental results show that it is effective and secure.

  1. Image Segmentation Based on Chaos Immune Clone Selection Algorithm

    NASA Astrophysics Data System (ADS)

    Cheng, Junna; Ji, Guangrong; Feng, Chen

    Image segmentation is a fundamental step in image processing. Otsu's threshold method is a widely used method for image segmentation. In this paper, a novel image segmentation method based on chaos immune clone selection algorithm (CICSA) and Otus's threshold method is presented. By introducing the chaos optimization algorithm into the parallel and distributed search mechanism of immune clone selection algorithm, CICSA takes advantage of global and local search ability. The experimental results demonstrate that the performance of CICSA on application of image segmentation has the characteristic of stability and efficiency.

  2. Routes to spatiotemporal chaos in Kerr optical frequency combs

    SciTech Connect

    Coillet, Aurélien; Chembo, Yanne K.

    2014-03-15

    We investigate the various routes to spatiotemporal chaos in Kerr optical frequency combs, obtained through pumping an ultra-high Q-factor whispering-gallery mode resonator with a continuous-wave laser. The Lugiato–Lefever model is used to build bifurcation diagrams with regards to the parameters that are externally controllable, namely, the frequency and the power of the pumping laser. We show that the spatiotemporal chaos emerging from Turing patterns and solitons display distinctive dynamical features. Experimental spectra of chaotic Kerr combs are also presented for both cases, in excellent agreement with theoretical spectra.

  3. Transition to Chaos by Type I Intermittency in Plasma

    SciTech Connect

    Dimitriu, D. G.; Chiriac, S. A.

    2008-03-19

    We report on experimental results that emphasize the development of a scenario of transition to chaos in plasma by type I intermittency, in connection with the nonlinear dynamics of a complex space charge structure. The transition to chaos evolves by increasing the potential applied on the excitation electrode. Regular oscillations interrupted by random bursts were observed in the time series of the current collected by the electrode. At high values of the potential applied on the electrode, the random bursts appear more frequently, the final state of the plasma system dynamics being a chaotic one.

  4. Controlling chaos-assisted directed transport via quantum resonance

    SciTech Connect

    Tan, Jintao; Zou, Mingliang; Luo, Yunrong; Hai, Wenhua

    2016-06-15

    We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.

  5. Hypomanic Experience in Young Adults Confers Vulnerability to Intrusive Imagery After Experimental Trauma

    PubMed Central

    Malik, Aiysha; Goodwin, Guy M.; Hoppitt, Laura

    2014-01-01

    Emotional mental imagery occurs across anxiety disorders, yet is neglected in bipolar disorder despite high anxiety comorbidity. Furthermore, a heightened susceptibility to developing intrusive mental images of stressful events in bipolar disorder and people vulnerable to it (with hypomanic experience) has been suggested. The current study assessed, prospectively, whether significant hypomanic experience (contrasting groups scoring high vs. low on the Mood Disorder Questionnaire, MDQ) places individuals at increased risk of visual reexperiencing after experimental stress. A total of 110 young adults watched a trauma film and recorded film-related intrusive images for 6 days. Compared to the low MDQ group, the high MDQ group experienced approximately twice as many intrusive images, substantiated by convergent measures. Findings suggest hypomanic experience is associated with developing more frequent intrusive imagery of a stressor. Because mental imagery powerfully affects emotion, such imagery may contribute to bipolar mood instability and offer a cognitive treatment target. PMID:25419498

  6. 1991 SEM Spring Conference on Experimental Mechanics, Milwaukee, WI, June 10-13, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    The present volume on experimental mechanics discusses current trends in elastoplastic fracture, photoelastic applications in structural testing, fiber optics and video holography, and strain gages. Attention is given to video holography and speckle interferometry, smart structures applications to composites, thermographic stress analysis, and industrial applications of photoelasticity. Topics addressed include moire interferometry, residual stress, smart structures and structural testing, dynamic fracture, optical methods for transient events, and force sensor design and applications. Also discussed are moire and grid techniques, photoelasticity and its industrial applications, composites, transducers, optical methods in biomechanics, rock fracture related to waste isolation, and noncontacting techniques for dynamic measurements. (For individual items see A93-16602 to A93-16650)

  7. De-magnifying hyperlens: experimental demonstration and potential applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Litchinitser, Natalia M.; Sun, Jingbo; Xu, Tianboyu

    2016-09-01

    Hyperlens was already shown to facilitate the sub-diffraction imaging in the far-field by converting the sub-wavelength information carried by evanescent wave components into the propagating waves and magnifying those sub-wavelength details to the scales that can be resolved by conventional optical components. In this talk, we will discuss the case when the hyperlens is used in a reverse way, such that the incident light enters on the outer surface of the hyperlens and collected on the inner surface, the device may function as a de-magnifier. In particular, if a pattern of a large size (above the diffraction limit) is recorded on the outer surface serving as a mask, the sub-wavelength image can be achieved on the inner side of the hyperlens. While this idea was validated using numerical simulations, no experimental demonstration was reported to date. In this talk, we demonstrate de-magnifying hyperlens in laboratory experiments and discuss its potential applications. For example, one of such potential applications is sub-wavelength photolithography. Photolithography is the most widely used fabrication technique in integrated circuit industry. However, further decreasing the feature size becomes challenging, in particular, due to the diffraction limit. We experimentally show de-magnifying property of a spherical hyperlens composed of metal-dielectric multilayer structure with a Cr mask on its outer surface. A photoresist was spin-coated on the inner surface of the hyperlens to record the image. After exposure with 405nm light, the pattern on the mask was recorded in the photoresist on the inner surface of the hyperlens, demonstrating 1.6x de-magnification.

  8. Quantum Chaos in SU(3) Models with Trapped Ions

    NASA Astrophysics Data System (ADS)

    Graß, Tobias; Juliá-Díaz, Bruno; Kuś, Marek; Lewenstein, Maciej

    2013-08-01

    A scheme to generate long-range spin-spin interactions between three-level ions in a chain is presented, providing a feasible experimental route to the rich physics of well-known SU(3) models. In particular, we demonstrate different signatures of quantum chaos which can be controlled and observed in experiments with trapped ions.

  9. Stochastic Chaos in a Turbulent Swirling Flow

    NASA Astrophysics Data System (ADS)

    Faranda, D.; Sato, Y.; Saint-Michel, B.; Wiertel, C.; Padilla, V.; Dubrulle, B.; Daviaud, F.

    2017-07-01

    We report the experimental evidence of the existence of a random attractor in a fully developed turbulent swirling flow. By defining a global observable which tracks the asymmetry in the flux of angular momentum imparted to the flow, we can first reconstruct the associated turbulent attractor and then follow its route towards chaos. We further show that the experimental attractor can be modeled by stochastic Duffing equations, that match the quantitative properties of the experimental flow, namely, the number of quasistationary states and transition rates among them, the effective dimensions, and the continuity of the first Lyapunov exponents. Such properties can be recovered neither using deterministic models nor using stochastic differential equations based on effective potentials obtained by inverting the probability distributions of the experimental global observables. Our findings open the way to low-dimensional modeling of systems featuring a large number of degrees of freedom and multiple quasistationary states.

  10. Evolution of periodic states and chaos in two types of neuronal models

    NASA Astrophysics Data System (ADS)

    Chay, Teresa R.; Fan, Yinshui

    1993-11-01

    Studies on how chaos theory may be applied to neural disorders is a very challenging theoretical problem. But, to determine the applications of chaos theory cellular functions, it is best to study the genesis of chaos and its characteristics using a minimal model of cellular excitability. In this paper we present two neuronal models which gives rise to interesting types of bursting and chaos. The first model is based on the model of Chay, in which the bursting of neuronal cells is caused by voltage- and time-dependent inactivation of calcium channels. The second model is based on Chay's work in which the bursting is caused by the conformational transformation of the calcium channels that is induced by binding of Ca2+ ion to the receptor site. With these two models, we elucidate how the periodic states and chaos can be evolved when the properties of two types of inward current change. Our bifurcation diagram reveals new types of bifurcations and chaos which were not seen in the other non-linear dynamic models. The predicted chaos from the models closely resembles that observed experimentally in neuronal cells. An implication of our finding is that chaos theory may be used to understand and improve the treatment of certain irregular activities in the brain.

  11. An Immunomodulatory Peptide Confers Protection in an Experimental Candidemia Murine Model.

    PubMed

    Freitas, Camila G; Lima, Stella M F; Freire, Mirna S; Cantuária, Ana Paula C; Júnior, Nelson G O; Santos, Tatiane S; Folha, Jéssica S; Ribeiro, Suzana M; Dias, Simoni C; Rezende, Taia M B; Albuquerque, Patrícia; Nicola, André M; de la Fuente-Núñez, César; Hancock, Robert E W; Franco, Octávio L; Felipe, Maria Sueli S

    2017-08-01

    Fungal Candida species are commensals present in the mammalian skin and mucous membranes. Candida spp. are capable of breaching the epithelial barrier of immunocompromised patients with neutrophil and cell-mediated immune dysfunctions and can also disseminate to multiple organs through the bloodstream. Here we examined the action of innate defense regulator 1018 (IDR-1018), a 12-amino-acid-residue peptide derived from bovine bactenecin (Bac2A): IDR-1018 showed weak antifungal and antibiofilm activity against a Candida albicans laboratory strain (ATCC 10231) and a clinical isolate (CI) (MICs of 32 and 64 μg · ml(-1), respectively), while 8-fold lower concentrations led to dissolution of the fungal cells from preformed biofilms. IDR-1018 at 128 μg · ml(-1) was not hemolytic when tested against murine red blood cells and also has not shown a cytotoxic effect on murine monocyte RAW 264.7 and primary murine macrophage cells at the tested concentrations. IDR-1018 modulated the cytokine profile during challenge of murine bone marrow-derived macrophages with heat-killed C. albicans (HKCA) antigens by increasing monocyte chemoattractant protein 1 (MCP-1) and interleukin-10 (IL-10) levels, while suppressing tumor necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-12 levels. Mice treated with IDR-1018 at 10 mg · kg(-1) of body weight had an increased survival rate in the candidemia model compared with phosphate-buffered saline (PBS)-treated mice, together with a diminished kidney fungal burden. Thus, IDR-1018 was able to protect against murine experimental candidemia and has the potential as an adjunctive therapy. Copyright © 2017 American Society for Microbiology.

  12. Experimental observations of soliton explosions in ultrafast fibre lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Broderick, Neil; Runge, Antoine; Erkintalo, Miro

    2016-04-01

    A soliton explosion is a dramatic effect, whereby a pulse circulating in a mode-locked laser dissipates and then remarkably reforms within a few roundtrips. Our group recently reported the first observation of such explosions in an all-fibre laser. Here, we expand on our initial work, reporting a detailed numerical and experimental study of the dynamics and characteristics of soliton explosions. Our experiment is based on a passively mode-locked Yb-doped fiber laser, where explosions occur close to the boundary between stable and noise-like operation. To capture the events, we use the dispersive Fourier transformation to record, in real time, the pulse-to-pulse spectra emitted by the laser. We explore a variety of operating conditions by systematically adjusting the laser pump power and its cavity length. We also use a realistic model based on a set of generalized nonlinear Schrodinger equations to simulate the explosion dynamics. We find that the explosion dynamics can be influenced by adjusting the operating conditions. As a general trend, the frequency of the events increases as the conditions move closer to the boundary of unstable operation. In fact, when sufficiently close to the boundary, the "explosions" can even become more frequent than ordinary pulses. Moreover, our simulations reveal that complex features in the spectral and temporal profiles of the explosion events can be explained in terms of a multi-pulsing instability. Finally we have examined how the statistics of the events depend on the laser geometry and also whether such explosions indicate the existence of a "strange attractor".

  13. Emulating “Chaos + Chaos = Order” in Chen’s Circuit of Fractional Order by Parameter Switching

    NASA Astrophysics Data System (ADS)

    Tang, Wallace K. S.; Danca, Marius-F.

    2016-06-01

    In this paper, the effect of the parameter switching (PS) algorithm in a fractional order chaotic circuit is investigated both in simulation and experiment. The Chen system of fractional order is focused and realized in an electronic circuit. By designing a switching circuit, the PS algorithm is implemented and it is the first time, the paradoxical “Chaos + Chaos = Order” is presented in an electronic circuit. Both the simulation and experimental results confirm that the obtained attractor under switching approximates the attractor of the time-averaged model. Some important design issues for the circuitry realization of the PS scheme are pointed out. Finally, our work confirms the practical usage of PS algorithm in potential applications such as attractor synthesis and chaos control.

  14. Chaos as compositional order

    NASA Astrophysics Data System (ADS)

    Angharad Pound, Eleri

    Composition is a combination of determined combinations of notes, durations and timbres usually decided upon in advance by a composer who plans carefully the sounds she desires. There is also always an element of chance present in acoustic music due to the 'human' element of the performance in that the performers will add their own interpretation of the dynamics and errors in terms of precise durations and pitches. Some composers have exploited this chance element more than others, allowing more space within the composition for the performers to make choices during the course of the piece. Composers such as Cage and Bussotti offer varying degrees of freedom within pieces resulting in unpredictability of the resulting sound of the composition. Other composers attempt to control as far as possible every parameter of the music as seen in serialist composers such as Webern and Boulez. This paper is delivered from the point of view of a composer who is intrigued by the relationship between the notation and the resultant sound, specifically, in terms of the relationship between the written elements determined by the composer and the unpredictability that arises due to those elements which cannot or are deliberately not written. These elements are then l to the interpretation and/or choice of the performer during the performance resulting in a composition which differs sonically from performance to performance. Chaos offers this combination of determination and the appearance of disorder: a clear structure within which are a number of elaborate chaotic-appearing options. The paper will focus on a composition-in-progress for voices which will offer the performers some choices based on the idea of sensitivity on initial conditions. Each singer will be provided with a set of headphones through which they will be fed a choice of pitches, the choices made for the first few pitches will determine the choices provided to the singer later on in the composition. The paper will

  15. Center of Gravity Analysis and Chaos Theory

    DTIC Science & Technology

    1993-04-01

    postulates, a social construct based on Chaos Theory, and explores the interactions of the elements of power. Lastly, it shows methods to identify and disrupt COGs based upon the dynamics of Chaos Theory.

  16. Cognitive aspects of chaos in random networks.

    PubMed

    Aiello, Gaetano L

    2012-01-01

    A special case of deterministic chaos that is independent of the architecture of the connections has been observed in a computer model of a purely excitatory neuronal network. Chaos onsets when the level of connectivity is critically low. The results indicate a typical period-doubling route to chaos as the connectivity decreases. A cognitive interpretation of such type of chaos, based on information theory and phase-transitions, is proposed.

  17. Neural chaos and schizophrenia.

    PubMed

    Bob, P; Chladek, J; Susta, M; Glaslova, K; Jagla, F; Kukleta, M

    2007-12-01

    Recent data indicate that random-like processes are related to the defects in the organization of semantic memory in schizophrenia which is more disorganized and less definable than those of controls with more semantic links and more bizarre and atypical associations. These aspects of schizophrenic cognition are similar to characteristics of chaotic nonlinear dynamical systems. In this context, the hypothesis tested in this study is that dynamic changes of electrodermal activity (EDA) as a measure of brain and autonomic activity may serve as a characteristic which can be used as an indicator of possible neural chaotic process in schizophrenia. In the present study, bilateral EDA in rest conditions were measured in 40 schizophrenic patients and 40 healthy subjects. Results of nonlinear and statistical analysis indicate left-side significant differences of positive largest Lyapunov exponents in schizophrenia patients compared to the control group. This might be interpreted that the neural activity during rest in schizophrenic patients is significantly more chaotic than in the control group. The relationship was confirmed by surrogate data testing. These data suggest that increased neural chaos in patients with schizophrenia may influence brain processes that can cause random-like disorganization of mental processes.

  18. Decoherence, determinism and chaos

    NASA Astrophysics Data System (ADS)

    Noyes, H. P.

    1994-01-01

    The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is 'deterministic'. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of 'test-particle' is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as 'particles' or to get them out of the nonlinearities in a grand unified theory, in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a 'scale invariance bounded from below' by measurement accuracy, then Tanimura's generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action at a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of particles has to be replaced by no-yes particulate events, and particle-antiparticle pair creation and annihilation properly formulated.

  19. Decoherence, determinism and chaos

    SciTech Connect

    Noyes, H.P.

    1994-01-01

    The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is `deterministic`. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of `test-particle` is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as `particles` or to get them out of the non-linearities in a grand unified theory -- in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a `scale invariance bounded from below` by measurement accuracy, then Tanimura`s generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action-at-a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of `particles has to be replaced by NO-YES particulate events, and particle-antiparticle pair creation and annihilation properly formulated.

  20. Relations between distributional and Devaney chaos.

    PubMed

    Oprocha, Piotr

    2006-09-01

    Recently, it was proven that chaos in the sense of Devaney and weak mixing both imply chaos in the sense of Li and Yorke. In this article we give explicit examples that any of these two implications do not hold for distributional chaos.

  1. !CHAOS: A cloud of controls

    NASA Astrophysics Data System (ADS)

    Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.

    2016-01-01

    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.

  2. Chaos in Periodic Discrete Systems

    NASA Astrophysics Data System (ADS)

    Shi, Yuming; Zhang, Lijuan; Yu, Panpan; Huang, Qiuling

    This paper focuses on chaos in periodic discrete systems, whose state space may vary with time. Some close relationships between some chaotic dynamical behaviors of a periodic discrete system and its autonomous induced system are given. Based on these relationships, several criteria of chaos are established and some sufficient conditions for no chaos are given for periodic discrete systems. Further, it is shown that a finite-dimensional linear periodic discrete system is not chaotic in the sense of Li-Yorke or Wiggins. In particular, an interesting problem of whether nonchaotic rules may generate a chaotic system is studied, with some examples provided, one of which surprisingly shows that a composition of globally asymptotically stable maps can be chaotic. In addition, some properties of sign pattern matrices of non-negative square matrices are given for convenience of the study.

  3. On CFT and quantum chaos

    NASA Astrophysics Data System (ADS)

    Turiaci, Gustavo J.; Verlinde, Herman

    2016-12-01

    We make three observations that help clarify the relation between CFT and quantum chaos. We show that any 1+1-D system in which conformal symmetry is non-linearly realized exhibits two main characteristics of chaos: maximal Lyapunov behavior and a spectrum of Ruelle resonances. We use this insight to identify a lattice model for quantum chaos, built from parafermionic spin variables with an equation of motion given by a Y-system. Finally we point to a relation between the spectrum of Ruelle resonances of a CFT and the analytic properties of OPE coefficients between light and heavy operators. In our model, this spectrum agrees with the quasi-normal modes of the BTZ black hole.

  4. Enhancing chaoticity of spatiotemporal chaos.

    PubMed

    Li, Xiaowen; Zhang, Heqiao; Xue, Yu; Hu, Gang

    2005-01-01

    In some practical situations strong chaos is needed. This introduces the task of chaos control with enhancing chaoticity rather than suppressing chaoticity. In this paper a simple method of linear amplifications incorporating modulo operations is suggested to make spatiotemporal systems, which may be originally chaotic or nonchaotic, strongly chaotic. Specifically, this control can eliminate periodic windows, increase the values and the number of positive Lyapunov exponents, make the probability distributions of the output chaotic sequences more homogeneous, and reduce the correlations of chaotic outputs for different times and different space units. The applicability of the method to practical tasks, in particular to random number generators and secure communications, is briefly discussed.

  5. ergodicity and chaos in geomorphology

    NASA Astrophysics Data System (ADS)

    Aadel, S.; Gaiumi, M.

    2009-04-01

    The past three dicades can be considered as a period in which the fundamentals of scientific epistemology have been subjected to drastic revision.The dissemination of the general theory of systems in 1972 , one year after the death of ludwing von Berthalanfi , the proposition of fuzzy logic by Zade, and the foemulation of chaos theory in 1986 by Harison and Biswas allserved to explode the myth that scientific thought was invulnerable. This paper , which has resulted from the theoretical investigation of project based on the paraglicial sediment and glacial evidence on the Zagros-pishkoh to explain the elements of chaos theory and their compatibility with ergodic geomorphology

  6. Some new surprises in chaos.

    PubMed

    Bunimovich, Leonid A; Vela-Arevalo, Luz V

    2015-09-01

    "Chaos is found in greatest abundance wherever order is being sought.It always defeats order, because it is better organized"Terry PratchettA brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.

  7. Two career chaos

    NASA Astrophysics Data System (ADS)

    Tauxe, L.

    2002-12-01

    When I finished graduate school I suppose I imagined myself as my dad. He worked hard, loved his job and family, made a good living. But I also saw myself as my mom - making a home, raising kids, cooking dinner, saving the world. I thought: I can handle being my mom and my dad. I can handle being a scientist and a mother. I can DO this.ÿ What I never imagined was the chaotic dynamic of the two career couple. The motions of bodies moving in response to the force of gravity cannot be predicted exactly if there are too many bodies. They dance in a jerky jumble, now faster, then slowly, bouncing, jostling, bumping and flying apart. Just so are the career trajectories of the two career couple. One rises up, the other, slower, pulls it down; overtaking, blocking preventing, now supporting, pulling along, now holding back - not moving, leap frogging, racing in opposite directions and snapping back together with a crack.ÿ The problem is non-linear. The outcome depends on feedback, whether positive or negative. The outcome cannot be predicted. Cannot be determined.ÿ Perhaps it cannot be done. Perhaps both husband and wife cannot be both mother and father. Too many mothers, too many fathers. Chaos.ÿ But I believe it can be done. Not like our mothers and fathers but a different way. And maybe our jerky paths will keep us sharp, make us work harder, and lead us through lives that at least cannot be described as dull.ÿ

  8. Chaos: A historical perspective

    NASA Astrophysics Data System (ADS)

    Lighthill, James

    In this introductory lecture I'd like to offer a broad historical perspective regarding the relatively recent general recognition: (a) that mechanical systems satisfying Newton's laws may be subject to the essentially unpredictable type of behavior which the word CHAOS describes—in other words, the recognition (b) that quantum effects are not required; (c) so that, notwithstanding Heisenberg, uncertainty is there on the basis of the good old classical mechanics based on Newton's Laws. But first of all I'll remind you that there are two kinds of laws in science, which we may exemplify by Kepler's Laws and Newton's Laws. Kepler in 1609 completed some very detailed observations of the motions of Mars; together with a full geometrical description of them, in the Copernican sun-centered flame of reference, as motions in a constant orbit in the shape of an ellipse with the Sun as focus. A decade later Kepler had published the Epitome Astronomiae Copernicanae (a rather more substantial work than the Dialogo which later got Galileo into some difficulties), and had there described in detail his most famous discovery: Kepler's three empirical laws concerning planetary orbits. These laws, of the elliptical shapes of orbits, of the radius covering equal areas in equal times, and of the proportionality of the square of the orbital period to the cube of the major axis, were shown from the observations to be closely satisfied by the Earth and by the five then known planets; and furthermore, by the four satellites of Jupiter which Galileo had recently discovered.

  9. Chaos and chaotic dynamics in economics.

    PubMed

    Faggini, Marisa

    2009-07-01

    Proponents of chaos theory attempted to articulate a new, more realistic, scientific world-view contradictory to the fundamental notions of the Newtonian view of science. Nonlinearity and chaos give the opportunity of a reconciliation of economics with a more realistic representation of its phenomena. Chaos theory represents a means for enhancing both the methodological and theoretical foundations for exploring the complexity of economic phenomena. This paper offers an overview of the applications of chaos theory in economics highlighting that recognizing the existence of deterministic chaos in economics is important from both a theoretical and practical point of view.

  10. Perspectives on Advertising Education: Curricula, Research--Descriptive, Research--Experimental, Industry/Educators' Cooperation, Special Interest Areas, and Instruction; Proceedings of the 1974 National Conference for University Professors of Advertising at the Univ. of Rhode Island.

    ERIC Educational Resources Information Center

    Zeigler, Sherilyn K., Ed.

    This document contains all of the presentations given at the 1974 National American Academy of Advertising Conference in Newport, Rhode Island. The theme of the conference was "Perspectives on Advertising" and the areas of focus were curricula and instruction, descriptive and experimental research, cooperation between educators and the advertising…

  11. Chaos, brain and divided consciousness.

    PubMed

    Bob, Petr

    2007-01-01

    Modern trends in psychology and cognitive neuroscience suggest that applications of nonlinear dynamics, chaos and self-organization seem to be particularly important for research of some fundamental problems regarding mind-brain relationship. Relevant problems among others are formations of memories during alterations of mental states and nature of a barrier that divides mental states, and leads to the process called dissociation. This process is related to a formation of groups of neurons which often synchronize their firing patterns in a unique spatial maner. Central theme of this study is the relationship between level of moving and oscilating mental processes and their neurophysiological substrate. This opens a question about principles of organization of conscious experiences and how these experiences arise in the brain. Chaotic self-organization provides a unique theoretical and experimental tool for deeper understanding of dissociative phenomena and enables to study how dissociative phenomena can be linked to epileptiform discharges which are related to various forms of psychological and somatic manifestations. Organizing principles that constitute human consciousness and other mental phenomena from this point of view may be described by analysis and reconstruction of underlying dynamics of psychological or psychophysiological measures. These nonlinear methods in this study were used for analysis of characteristic changes in EEG and bilateral electrodermal activity (EDA) during reliving of dissociated traumatic and stressful memories and during psychopathological states. Analysis confirms a possible role of chaotic transitions in the processing of dissociated memory. Supportive finding for a possible chaotic process related to dissociation found in this study represent also significant relationship of dissociation, epileptiform discharges measured by typical psychopathological manifestations and characteristic laterality changes in bilateral EDA in patients

  12. The Chaos Theory of Careers

    ERIC Educational Resources Information Center

    Bright, Jim E. H.; Pryor, Robert G. L.

    2011-01-01

    The Chaos Theory of Careers (CTC; Pryor & Bright, 2011) construes both individuals and the contexts in which they develop their careers in terms of complex dynamical systems. Such systems perpetually operate under influences of stability and change both internally and in relation to each other. The CTC introduces new concepts to account for…

  13. Chaos and complexity by design

    DOE PAGES

    Roberts, Daniel A.; Yoshida, Beni

    2017-04-20

    We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame poten-tial,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We also show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. In addition, we prove that these 2k-point correlators for Pauli operators completely determine the k-foldmore » channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.« less

  14. The Chaos Theory of Careers.

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.; Bright, Jim

    2003-01-01

    Four theoretical streams--contexualism/ecology, systems theory, realism/constructivism, and chaos theory--contributed to a theory of individuals as complex, unique, nonlinear, adaptive chaotic and open systems. Individuals use purposive action to construct careers but can make maladaptive and inappropriate choices. (Contains 42 references.) (SK)

  15. Chaos in the Solar System

    NASA Technical Reports Server (NTRS)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  16. Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.

    PubMed

    Ecke, Robert E

    2015-09-01

    The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.

  17. Analytic solutions throughout a period doubling route to chaos

    NASA Astrophysics Data System (ADS)

    Milosavljevic, Marko S.; Blakely, Jonathan N.; Beal, Aubrey N.; Corron, Ned J.

    2017-06-01

    We show examples of dynamical systems that can be solved analytically at any point along a period doubling route to chaos. Each system consists of a linear part oscillating about a set point and a nonlinear rule for regularly updating that set point. Previously it has been shown that such systems can be solved analytically even when the oscillations are chaotic. However, these solvable systems show few bifurcations, transitioning directly from a steady state to chaos. Here we show that a simple change to the rule for updating the set point allows for a greater variety of nonlinear dynamical phenomena, such as period doubling, while maintaining solvability. Two specific examples are given. The first is an oscillator whose set points are determined by a logistic map. We present analytic solutions describing an entire period doubling route to chaos. The second example is an electronic circuit. We show experimental data confirming both solvability and a period doubling route to chaos. These results suggest that analytic solutions may be a more useful tool in studying nonlinear dynamics than was previously recognized.

  18. Continuing Through Iani Chaos

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image continues the northward trend through the Iani Chaos region. Compare this image to Monday's and Tuesday's. This image was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -0.1 Longitude 342.6 East (17.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001

  19. Spatiotemporal Chaos in Distributed Systems: Theory and Practice

    NASA Astrophysics Data System (ADS)

    Pavlos, George P.; Iliopoulos, A. C.; Tsoutsouras, V. G.; Karakatsanis, L. P.; Pavlos, E. G.

    This paper presents theoretical and experimental results concerning the hypothesis of spatiotemporal chaos in distributed physical systems far from equilibrium. Modern tools of nonlinear time series analysis, such as the correlation dimension and the maximum Lyapunov exponent, were applied to various time series, corresponding to different physical systems such as space plasmas (solar flares, magnetic-electric field components) lithosphere-faults system (earthquakes) brain and cardiac dynamics during or without epileptic episodes. Futhermore, the method of surrogate data was used for the exclusion of 'pseudo chaos' caused by the nonlinear distortion of a purely stochastic process. The results of the nonlinear analysis presented in this study constitute experimental evidence for significant phenomena indicated by the theory of nonequilibrium dynamics such as nonequilibrium phase transition, chaotic synchronization, chaotic intermittency, directed percolation, defect turbulence, spinodal nucleation and clustering.

  20. Wavenumber and Defect Distributions in Undulation Chaos

    NASA Astrophysics Data System (ADS)

    Daniels, Karen E.; Bodenschatz, Eberhard

    2000-11-01

    We report experimental results on thermally driven convection in a large aspect ratio inclined layer with a fluid of Prandtl number σ ≈ 1. Very close to the onset of convection for inclination angles between 20 and 70 degrees, we find the defect turbulent state of undulation chaos (Daniels, Plapp, and Bodenschatz. Phys. Rev. Lett. 84:5320). We characterize this state by determining the defect locations and the wavenumber distribution. A snapshot of the pattern, as well as its wavenumber distribution, can be well-reconstructed from a perfect underlying undulation pattern and the phase field given by the point defects. The defect density distribution shows a crossover from a Poisson to a squared Poisson distribution. By measuring the creation, annihilation, inflow, and outflow rates of defects we can quantitatively explain this behavior. This work is supported by the National Science Foundation DMR-0072077.

  1. Stability analysis of fixed points via chaos control.

    PubMed

    Locher, M.; Johnson, G. A.; Hunt, E. R.

    1997-12-01

    This paper reviews recent advances in the application of chaos control techniques to the stability analysis of two-dimensional dynamical systems. We demonstrate how the system's response to one or multiple feedback controllers can be utilized to calculate the characteristic multipliers associated with an unstable periodic orbit. The experimental results, obtained for a single and two coupled diode resonators, agree well with the presented theory. (c) 1997 American Institute of Physics.

  2. Low-dimensional chaos in a hydrodynamic system

    SciTech Connect

    Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, J.D.; Jen, E.; Crutchfield, J.P.

    1983-10-17

    Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experimental data shows that motion is restricted to an attractor of dimension less than 5 for Reynolds numbers up to 30% above the onset of chaos. The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds number.

  3. Meaning Finds a Way: Chaos (Theory) and Composition

    ERIC Educational Resources Information Center

    Kyburz, Bonnie Lenore

    2004-01-01

    The explanatory power provided by the chaos theory is explored. A dynamic and reciprocal relationship between culture and chaos theory indicates that the progressive cultural work may be formed by the cross-disciplinary resonance of chaos theory.

  4. Chaos in the fractional order nonlinear Bloch equation with delay

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Magin, Richard L.; Bhalekar, Sachin; Daftardar-Gejji, Varsha

    2015-08-01

    The Bloch equation describes the dynamics of nuclear magnetization in the presence of static and time-varying magnetic fields. In this paper we extend a nonlinear model of the Bloch equation to include both fractional derivatives and time delays. The Caputo fractional time derivative (α) in the range from 0.85 to 1.00 is introduced on the left side of the Bloch equation in a commensurate manner in increments of 0.01 to provide an adjustable degree of system memory. Time delays for the z component of magnetization are inserted on the right side of the Bloch equation with values of 0, 10 and 100 ms to balance the fractional derivative with delay terms that also express the history of an earlier state. In the absence of delay, τ = 0 , we obtained results consistent with the previously published bifurcation diagram, with two cycles appearing at α = 0.8548 with subsequent period doubling that leads to chaos at α = 0.9436 . A periodic window is observed for the range 0.962 < α < 0.9858 , with chaos arising again as α nears 1.00. The bifurcation diagram for the case with a 10 ms delay is similar: two cycles appear at the value α = 0.8532 , and the transition from two to four cycles at α = 0.9259 . With further increases in the fractional order, period doubling continues until at α = 0.9449 chaos ensues. In the case of a 100 millisecond delay the transitions from one cycle to two cycles and two cycles to four cycles are observed at α = 0.8441 , and α = 0.8635 , respectively. However, the system exhibits chaos at much lower values of α (α = 0.8635). A periodic window is observed in the interval 0.897 < α < 0.9341 , with chaos again appearing for larger values of α . In general, as the value of α decreased the system showed transitions from chaos to transient chaos, and then to stability. Delays naturally appear in many NMR systems, and pulse programming allows the user control over the process. By including both the fractional derivative and time delays in

  5. Length scale of interaction in spatiotemporal chaos.

    PubMed

    Stahlke, Dan; Wackerbauer, Renate

    2011-04-01

    Extensive systems have no long scale correlations and behave as a sum of their parts. Various techniques are introduced to determine a characteristic length scale of interaction beyond which spatiotemporal chaos is extensive in reaction-diffusion networks. Information about network size, boundary condition, or abnormalities in network topology gets scrambled in spatiotemporal chaos, and the attenuation of information provides such characteristic length scales. Space-time information flow associated with the recovery of spatiotemporal chaos from finite perturbations, a concept somewhat opposite to the paradigm of Lyapunov exponents, defines another characteristic length scale. High-precision computational studies of asymptotic spatiotemporal chaos in the complex Ginzburg-Landau system and transient spatiotemporal chaos in the Gray-Scott network show that these different length scales are comparable and thus suitable to define a length scale of interaction. Preliminary studies demonstrate the relevance of these length scales for stable chaos.

  6. Optoelectronic Chaos in a Simple Light Activated Feedback Circuit

    NASA Astrophysics Data System (ADS)

    Joiner, K. L.; Palmero, F.; Carretero-González, R.

    The nonlinear dynamics of an optoelectronic negative feedback switching circuit is studied. The circuit, composed of a bulb, a photoresistor, a thyristor and a linear resistor, corresponds to a nightlight device whose light is looped back into its light sensor. Periodic bifurcations and deterministic chaos are obtained by the feedback loop created when the thyristor switches on the bulb in the absence of light being detected by the photoresistor and the bulb light is then looped back into the nightlight to switch it off. The experimental signal is analyzed using tools of delay-embedding reconstruction that yield a reconstructed attractor with fractional dimension and positive Lyapunov exponent suggesting chaotic behavior for some parameter values. We construct a simple circuit model reproducing experimental results that qualitatively matches the different dynamical regimes of the experimental apparatus. In particular, we observe an order-chaos-order transition as the strength of the feedback is varied corresponding to varying the distance between the nightlight bulb and its photo-detector. A two-dimensional parameter diagram of the model reveals that the order-chaos-order transition is generic for this system.

  7. Finding Order and Direction from Chaos: A Comparison of Chaos Career Counseling and Trait Matching Counseling

    ERIC Educational Resources Information Center

    McKay, Hannah; Bright, Jim E. H.; Pryor, Robert G. L.

    2005-01-01

    Chaos career counseling, based on the Chaos Theory of Careers (R. G. L. Pryor & J. E. H. Bright, 2003a, 2003b), was compared with trait matching career counseling and a wait list control. Sixty university students who attended the Careers Research and Assessment Service seeking career advice were randomly assigned to the chaos intervention, the…

  8. Passive immunization with a polyclonal antiserum to the hemoglobin receptor of Haemophilus ducreyi confers protection against a homologous challenge in the experimental swine model of chancroid.

    PubMed

    Leduc, Isabelle; Fusco, William G; Choudhary, Neelima; Routh, Patty A; Cholon, Deborah M; Hobbs, Marcia M; Almond, Glen W; Orndorff, Paul E; Elkins, Christopher

    2011-08-01

    Haemophilus ducreyi, the etiologic agent of chancroid, has an obligate requirement for heme. Heme is acquired by H. ducreyi from its human host via TonB-dependent transporters expressed at its bacterial surface. Of 3 TonB-dependent transporters encoded in the genome of H. ducreyi, only the hemoglobin receptor, HgbA, is required to establish infection during the early stages of the experimental human model of chancroid. Active immunization with a native preparation of HgbA (nHgbA) confers complete protection in the experimental swine model of chancroid, using either Freund's or monophosphoryl lipid A as adjuvants. To determine if transfer of anti-nHgbA serum is sufficient to confer protection, a passive immunization experiment using pooled nHgbA antiserum was conducted in the experimental swine model of chancroid. Pigs receiving this pooled nHgbA antiserum were protected from a homologous, but not a heterologous, challenge. Passively transferred polyclonal antibodies elicited to nHgbA bound the surface of H. ducreyi and partially blocked hemoglobin binding by nHgbA, but were not bactericidal. Taken together, these data suggest that the humoral immune response to the HgbA vaccine is protective against an H. ducreyi infection, possibly by preventing acquisition of the essential nutrient heme.

  9. Quantum chaos: An entropy approach

    NASA Astrophysics Data System (ADS)

    Sl/omczyński, Wojciech; Życzkowski, Karol

    1994-11-01

    A new definition of the entropy of a given dynamical system and of an instrument describing the measurement process is proposed within the operational approach to quantum mechanics. It generalizes other definitions of entropy, in both the classical and quantum cases. The Kolmogorov-Sinai (KS) entropy is obtained for a classical system and the sharp measurement instrument. For a quantum system and a coherent states instrument, a new quantity, coherent states entropy, is defined. It may be used to measure chaos in quantum mechanics. The following correspondence principle is proved: the upper limit of the coherent states entropy of a quantum map as ℏ→0 is less than or equal to the KS-entropy of the corresponding classical map. ``Chaos umpire sits, And by decision more imbroils the fray By which he reigns: next him high arbiter Chance governs all.'' John Milton, Paradise Lost, Book II

  10. Spatiotemporal chaos from bursting dynamics

    SciTech Connect

    Berenstein, Igal; De Decker, Yannick

    2015-08-14

    In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation and takes the form of a spatiotemporal intermittency where the system locally alternates between the fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos to be generic for models in which one or several slow variables are coupled to activator-inhibitor type of oscillators.

  11. A quantum correction to chaos

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. Liam; Kaplan, Jared

    2016-05-01

    We use results on Virasoro conformal blocks to study chaotic dynamics in CFT2 at large central charge c. The Lyapunov exponent λ L , which is a diagnostic for the early onset of chaos, receives 1 /c corrections that may be interpreted as {λ}_L=2π /β(1+12/c) . However, out of time order correlators receive other equally important 1 /c suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on λ L that emerges at large c, focusing on CFT2 and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.

  12. A history of chaos theory.

    PubMed

    Oestreicher, Christian

    2007-01-01

    Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century, when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely, although they can be predicted to some extent, in line with the chaos theory. Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory. This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms.

  13. A history of chaos theory

    PubMed Central

    Oestreicher, Christian

    2007-01-01

    Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely although they can be predicted to some extent in line with the chaos theory Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory, A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms. PMID:17969865

  14. Convection and chaos in fluids

    SciTech Connect

    Bhattacharjee, J.

    1987-01-01

    This book describes some of the progress made in understanding the phenomena of various hydrodynamic instabilities for the past 30 years. Among them the exact results for the onset of Rayleigh-Benard convection are discussed. Approximate techniques like the amplitude equations and few-mode truncations are treated at length. The reviews of the routes to chaos in dynamical systems and the characteristics of the chaotic state are also discussed here. Finally, certain features of the Taylor Couette instability and the effect of parametric modulation on hydrodynamic instabilities are also included. This book also discusses the results at all stages of experiments. Contents: Onset of Convection: Rayleigh-Benard Geometry for Simple Fluids; Amplitude Equations; Few-Mode Truncation: Lorentz Model; Characteristics of Chaotic Behavior, Routes to Chaos; On Experiments; Thermohaline Systems; Onset of Convection; Binary Liquids; Nonlinear Effects; Taylor-Couette flow; Magnetohydrodynamic Convection; Modulated Systems.

  15. Controlling fast chaos in delay dynamical systems.

    PubMed

    Blakely, Jonathan N; Illing, Lucas; Gauthier, Daniel J

    2004-05-14

    We introduce a novel approach for controlling fast chaos in time-delay dynamical systems and use it to control a chaotic photonic device with a characteristic time scale of approximately 12 ns. Our approach is a prescription for how to implement existing chaos-control algorithms in a way that exploits the system's inherent time delay and allows control even in the presence of substantial control-loop latency (the finite time it takes signals to propagate through the components in the controller). This research paves the way for applications exploiting fast control of chaos, such as chaos-based communication schemes and stabilizing the behavior of ultrafast lasers.

  16. Stochastic Estimation via Polynomial Chaos

    DTIC Science & Technology

    2015-10-01

    homogeneous chaos cast in three dimensions is a measurable function ρ with );,,( 321 βρρ ...0 * )()( ),( )(),(),( xx α xxαα   D j P j j D dw tx dwtxtx (13) In equation (13), the first term is evaluated by...noting that the probability measure is written as  dwdw

  17. Analysis of FBC deterministic chaos

    SciTech Connect

    Daw, C.S.

    1996-06-01

    It has recently been discovered that the performance of a number of fossil energy conversion devices such as fluidized beds, pulsed combustors, steady combustors, and internal combustion engines are affected by deterministic chaos. It is now recognized that understanding and controlling the chaotic elements of these devices can lead to significantly improved energy efficiency and reduced emissions. Application of these techniques to key fossil energy processes are expected to provide important competitive advantages for U.S. industry.

  18. Temperature chaos and quenched heterogeneities

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo; Parisi, Giorgio; Rizzo, Tommaso

    2014-03-01

    We present a treatable generalization of the Sherrington-Kirkpatrick (SK) model which introduces correlations in the elements of the coupling matrix through multiplicative disorder on the single variables and investigate the consequences on the phase diagram. We define a generalized qEA parameter and test the structural stability of the SK results in this correlated case evaluating the de Almeida-Thouless line of the model. As a main result we demonstrate the increase of temperature chaos effects due to heterogeneities.

  19. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of light-toned, layered, sedimentary rock within Aram Chaos, an ancient, partly-filled impact crater located near 3.2oN, 19.9oW. This 1.5 meters (5 feet) per pixel picture is illuminated by sunlight from the left and covers an area about 3 km (1.9 mi) across.

  20. Model for Shock Wave Chaos

    NASA Astrophysics Data System (ADS)

    Kasimov, Aslan R.; Faria, Luiz M.; Rosales, Rodolfo R.

    2013-03-01

    We propose the following model equation, ut+1/2(u2-uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  1. Transient spatiotemporal chaos in a diffusively and synaptically coupled Morris-Lecar neuronal network

    NASA Astrophysics Data System (ADS)

    Lafranceschina, Jacopo

    Transient spatiotemporal chaos was reported in models for chemical reactions and in experiments for turbulence in shear flow. This study shows that transient spatiotemporal chaos also exists in a diffusively coupled Morris-Lecar (ML) neuronal network, with a collapse to either a global rest state or to a state of pulse propagation. Adding synaptic coupling to this network reduces the average lifetime of spatiotemporal chaos for small to intermediate coupling strengths and almost all numbers of synapses. For large coupling strengths, close to the threshold of excitation, the average lifetime increases beyond the value for only diffusive coupling, and the collapse to the rest state dominates over the collapse to a traveling pulse state. The regime of spatiotemporal chaos is characterized by a slightly increasing Lyapunov exponent and degree of phase coherence as the number of synaptic links increases. In contrast to the diffusive network, the pulse solution must not be asymptotic in the presence of synapses. The fact that chaos could be transient in higher dimensional systems, such as the one being explored in this study, point to its presence in every day life. Transient spatiotemporal chaos in a network of coupled neurons and the associated chaotic saddle provide a possibility for switching between metastable states observed in information processing and brain function. Such transient dynamics have been observed experimentally by Mazor, when stimulating projection neurons in the locust antennal lobe with different odors.

  2. Classical chaos and its correspondence in superconducting qubits

    NASA Astrophysics Data System (ADS)

    Neill, C.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fang, M.; Hoi, I.; Kelly, J.; Megrant, A.; O'Malley, P.; Quintana, C.; Vainsencher, A.; Wenner, J.; White, T.; Barends, R.; Chen, Yu; Fowler, A.; Jeffrey, E.; Mutus, J.; Roushan, P.; Sank, D.; Martinis, J. M.

    2015-03-01

    Advances in superconducting qubits have made it possible to experimentally investigate quantum-classical correspondence by constructing quantum systems with chaotic classical limits. We study the quantum equivalent of a classical spinning top using three fully coupled qubits that behave as a single spin-3/2 and subject the spin to a sequence of non-linear rotations. The resulting entanglement bears a striking resemblance to the classical phase space, including bifurcation, and suggests that classical chaos manifests itself as quantum entanglement. Studying the orientation of the spin-3/2 reveals that the rotations which generate chaos and entanglement are at the same time the source of disagreement between the quantum and classical trajectories. Our experiment highlights the correspondence between classical non-linear dynamics and interacting quantum systems.

  3. Improving the chaos bandwidth of a semiconductor laser with phase-conjugate feedback

    NASA Astrophysics Data System (ADS)

    Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc

    2016-04-01

    Common applications using optical chaos in a semiconductor laser include, among others, random number generation and chaos-encrypted communications. They rely on chaos of high dimension with a large bandwidth and a high entropy growth rate to achieve good results. Optical chaos from a semiconductor laser with conventional optical feedback (COF) is typically used as the primary source of chaos. Additional enhancing techniques are used to enlarge the chaos bandwidth. In this contribution, we show experimentally how using phase-conjugate feedback (PCF) can naturally produce a chaos of higher bandwidth than COF. PCF is an alternative to COF which consists of feeding the conjugate of the optical output back into the laser cavity, with a time-delay. Thanks to an oscilloscope with a fast sampling rate, and a large bandwidth, we were able to measure and observe the time-resolved frequency dynamics with a good precision. In the regime of low-frequency fluctuations (LFF), where dropouts of optical power occur randomly, we were able to compare the difference in dynamics before and after a dropout, for PCF and COF. In the range of attainable reflectivities, we measured a bandwidth increase of up to 27 % with PCF when compared to COF. Interestingly, we found that high-frequency dynamics are enabled before dropouts in PCF, where it was theoretically shown that the system jumps between destabilized self-pulsing states at harmonics of the external-cavity frequency, the so-called external-cavity modes (ECMs). This observation tends to confirm that ECMs in PCF are indeed fundamentally different than ECMs in COF, where they are simple steady-states. Finally, we believe that the enhancing techniques used with COF could also be used with PCF to obtain even wider chaotic bandwidths. These results could lead to studies about the dimension and the entropy growth rate of chaos from a laser diode with PCF.

  4. Discretization chaos - Feedback control and transition to chaos

    NASA Technical Reports Server (NTRS)

    Grantham, Walter J.; Athalye, Amit M.

    1990-01-01

    Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.

  5. Discretization chaos - Feedback control and transition to chaos

    NASA Technical Reports Server (NTRS)

    Grantham, Walter J.; Athalye, Amit M.

    1990-01-01

    Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.

  6. Strange Attractors: Chaos Theory and Composition Studies.

    ERIC Educational Resources Information Center

    Hesse, Doug

    Chaos theory provides a powerful lens for re-seeing a number of issues in composition studies ranging in scale from achieving a generative model for text production to articulating the very nature of the discipline. Chaos systems are nonlinear, have complex forms, manifest recursive symmetries between scale levels, have feedback mechanisms, and…

  7. Scaling of chaos in strongly nonlinear lattices

    SciTech Connect

    Mulansky, Mario

    2014-06-15

    Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.

  8. Life Out of Chaos

    NASA Technical Reports Server (NTRS)

    Arrhenius, Gustaf

    2002-01-01

    Doctinary overlays on the definition of life can effectively be avoided by focusing discussion on microorganisms, their vital processes, and their genetic pedigree. To reach beyond these present and highly advanced forms of life and to inquire about its origin it is necessary to consider the requirements imposed by the environment. These requirements include geophysically and geochemically acceptable conjectures for the generation of source compounds, their concentration from dilute solution, and their selective combination into functional biomolecules. For vital function these macromolecules require programming in the form of specific sequence motifs. This critical programming constitutes the scientifically least understood process in the origin of life. Once this stage has been surpassed the laws of Darwinian evolution can operate in ways that are understood and experimentally demonstrated.

  9. Life Out of Chaos

    NASA Technical Reports Server (NTRS)

    Arrhenius, Gustaf

    2002-01-01

    Doctinary overlays on the definition of life can effectively be avoided by focusing discussion on microorganisms, their vital processes, and their genetic pedigree. To reach beyond these present and highly advanced forms of life and to inquire about its origin it is necessary to consider the requirements imposed by the environment. These requirements include geophysically and geochemically acceptable conjectures for the generation of source compounds, their concentration from dilute solution, and their selective combination into functional biomolecules. For vital function these macromolecules require programming in the form of specific sequence motifs. This critical programming constitutes the scientifically least understood process in the origin of life. Once this stage has been surpassed the laws of Darwinian evolution can operate in ways that are understood and experimentally demonstrated.

  10. Route to chaos for combustion instability in ducted laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Kabiraj, Lipika; Saurabh, Aditya; Wahi, Pankaj; Sujith, R. I.

    2012-06-01

    Complex thermoacoustic oscillations are observed experimentally in a simple laboratory combustor that burns lean premixed fuel-air mixture, as a result of nonlinear interaction between the acoustic field and the combustion processes. The application of nonlinear time series analysis, particularly techniques based on phase space reconstruction from acquired pressure data, reveals rich dynamical behavior and the existence of several complex states. A route to chaos for thermoacoustic instability is established experimentally for the first time. We show that, as the location of the heat source is gradually varied, self-excited periodic thermoacoustic oscillations undergo transition to chaos via the Ruelle-Takens scenario.

  11. Deterministic chaos in entangled eigenstates

    NASA Astrophysics Data System (ADS)

    Schlegel, K. G.; Förster, S.

    2008-05-01

    We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.

  12. Monohydrated Sulfates in Aurorae Chaos

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of sulfate-containing deposits in Aurorae Chaos was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0653 UTC (2:53 a.m. EDT) on June 10, 2007, near 7.5 degrees south latitude, 327.25 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 12 kilometers (7.5 miles) wide at its narrowest point.

    Aurorae Chaos lies east of the Valles Marineris canyon system. Its western edge extends toward Capri and Eos Chasmata, while its eastern edge connects with Aureum Chaos. Some 750 kilometers (466 miles) wide, Aurorae Chaos is most likely the result of collapsed surface material that settled when subsurface ice or water was released.

    The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data covers an area featuring several knobs of erosion-resistant material at one end of what appears to be a large teardrop shaped plateau. Similar plateaus occur throughout the interior of Valles Marineris, and they are formed of younger, typically layered rocks that post-date formation of the canyon system. Many of the deposits contain sulfate-rich layers, hinting at ancient saltwater.

    The center left image, an infrared false color image, reveals a swath of light-colored material draped over the knobs. The center right image unveils the mineralogical composition of the area, with yellow representing monohydrated sulfates (sulfates with one water molecule incorporated into each molecule of the mineral).

    The lower two images are renderings of data draped over topography with 5 times vertical exaggeration. These images provide a view of the topography and reveal how the monohydrated sulfate-containing deposits drape over the knobs and also an outcrop in lower-elevation parts of the

  13. Some new surprises in chaos

    SciTech Connect

    Bunimovich, Leonid A.; Vela-Arevalo, Luz V.

    2015-09-15

    A brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.

  14. Decoherence, determinism and chaos revisited

    SciTech Connect

    Noyes, H.P.

    1994-11-15

    We suggest that the derivation of the free space Maxwell Equations for classical electromagnetism, using a discrete ordered calculus developed by L.H. Kauffman and T. Etter, necessarily pushes the discussion of determinism in natural science down to the level of relativistic quantum mechanics and hence renders the mathematical phenomena studied in deterministic chaos research irrelevant to the question of whether the world investigated by physics is deterministic. We believe that this argument reinforces Suppes` contention that the issue of determinism versus indeterminism should be viewed as a Kantian antinomy incapable of investigation using currently available scientific tools.

  15. Slope Monitoring in Aram Chaos

    NASA Image and Video Library

    2015-04-22

    This image from NASA Mars Reconnaissance Orbiter shows some striking dark downslope flows in Aram Chaos. Since this is a dark, low-dust setting, these are probably not slope streaks (which form in bright dusty areas). This image can provide us with another look, particularly in order to detect any changes. Recurring slope lineae (RSL) are another type of dark streak seen on Martian slopes and are thought to form from flow of liquid water. Do these streaks behave like RSL? Additional images such as this one allow us to test whether these streaks grow seasonally and recur annually. http://photojournal.jpl.nasa.gov/catalog/PIA19364

  16. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 February 2004 Aram Chaos is a large meteor impact crater that was nearly filled with sediment. Over time, this sediment was hardened to form sedimentary rock. Today, much of the eastern half of the crater has exposures of light-toned sedimentary rock, such as the outcrops shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The picture is located near 2.0oN, 20.3oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  17. Input reconstruction of chaos sensors.

    PubMed

    Yu, Dongchuan; Liu, Fang; Lai, Pik-Yin

    2008-06-01

    Although the sensitivity of sensors can be significantly enhanced using chaotic dynamics due to its extremely sensitive dependence on initial conditions and parameters, how to reconstruct the measured signal from the distorted sensor response becomes challenging. In this paper we suggest an effective method to reconstruct the measured signal from the distorted (chaotic) response of chaos sensors. This measurement signal reconstruction method applies the neural network techniques for system structure identification and therefore does not require the precise information of the sensor's dynamics. We discuss also how to improve the robustness of reconstruction. Some examples are presented to illustrate the measurement signal reconstruction method suggested.

  18. Heading stabilization and anti-rollover for Chaos

    NASA Astrophysics Data System (ADS)

    Berkemeier, Matthew; Poulson, Eric; King, Sidney L.

    2007-04-01

    Chaos is a 2-man-portable tele-operated vehicle designed for crossing rugged terrain. Chaos is capable of crossing large piles of cinder blocks, picnic tables, and steep hills of loose soil. These feats are accomplished through use of 4 independent track arms, each of which can be articulated at an arbitrary angle and driven at an arbitrary speed. These make the vehicle extremely capable but also demand significant skill on the part of the user. It is therefore desirable to automate the arm angles and track speeds to ease operator burden. This paper reports on preliminary efforts to implement 2 intelligent behaviors along these lines. The first involves heading stabilization: A gyroscope is used to sense yaw and yaw rate, and these are compared with the operators commands. Deviations are then used to automatically correct the heading. This is useful when Chaos is climbing stairs or other bumpy terrain, which can cause the vehicle to veer off in unwanted directions. We call the other behavior anti-rollover. In this case, the output of a gyroscope is monitored to detect if roll or pitch thresholds are exceeded. When they are, the track arms are automatically positioned to stabilize the vehicle and keep it right side up. Experimental results for both algorithms are included.

  19. Transition to chaos in a driven dusty plasma

    SciTech Connect

    Sheridan, T. E.; Theisen, W. L.

    2010-01-15

    Dynamical chaos has previously been observed experimentally in a driven dusty plasma with three particles [T. E. Sheridan, Phys. Plasmas 12, 080701 (2005)]. In the present work, the transition to chaos in this system is studied as a function of the amplitude of a periodic driving force for two different driving frequencies f{sub d}. It is found that the system follows a quasiperiodic route to chaos. The dusty plasma's center-of-mass modes are driven by the first harmonic of f{sub d} and lock to the driving force for small driving amplitudes. The breathing mode is driven by the second harmonic of f{sub d} and shows asymmetric spectral features indicating quasiperiodic dynamics for intermediate driving amplitudes. For large driving forces both the center-of-mass and breathing modes are entrained and a region of low-dimensional chaotic dynamics due to a resonance overlap is observed. In the chaotic regime the correlation dimension and Lyapunov exponent are found to increase with the driving force.

  20. Observing chaos for quantum-dot microlasers with external feedback.

    PubMed

    Albert, Ferdinand; Hopfmann, Caspar; Reitzenstein, Stephan; Schneider, Christian; Höfling, Sven; Worschech, Lukas; Kamp, Martin; Kinzel, Wolfgang; Forchel, Alfred; Kanter, Ido

    2011-06-21

    Chaos presents a striking and fascinating phenomenon of nonlinear systems. A common aspect of such systems is the presence of feedback that couples the output signal partially back to the input. Feedback coupling can be well controlled in optoelectronic devices such as conventional semiconductor lasers that provide bench-top platforms for the study of chaotic behaviour and high bit rate random number generation. Here we experimentally demonstrate that chaos can be observed for quantum-dot microlasers operating close to the quantum limit at nW output powers. Applying self-feedback to a quantum-dot microlaser results in a dramatic change in the photon statistics wherein strong, super-thermal photon bunching is indicative of random-intensity fluctuations associated with the spiked emission of light. Our experiments reveal that gain competition of few quantum dots in the active layer enhances the influence of self-feedback and will open up new avenues for the study of chaos in quantum systems.

  1. Recurrence-based detection of the hyperchaos-chaos transition in an electronic circuit

    NASA Astrophysics Data System (ADS)

    Ngamga, E. J.; Buscarino, A.; Frasca, M.; Sciuto, G.; Kurths, J.; Fortuna, L.

    2010-12-01

    Some complex measures based on recurrence plots give evidence about hyperchaos-chaos transitions in coupled nonlinear systems [E. G. Souza et al., "Using recurrences to characterize the hyperchaos-chaos transition," Phys. Rev. E 78, 066206 (2008)]. In this paper, these measures are combined with a significance test based on twin surrogates to identify such a transition in a fourth-order Lorenz-like system, which is able to pass from a hyperchaotic to a chaotic behavior for increasing values of a single parameter. A circuit analog of the mathematical model has been designed and implemented and the robustness of the recurrence-based method on experimental data has been tested. In both the numerical and experimental cases, the combination of the recurrence measures and the significance test allows to clearly identify the hyperchaos-chaos transition.

  2. Invoking the muse: Dada's chaos.

    PubMed

    Rosen, Diane

    2014-07-01

    Dada, a self-proclaimed (anti)art (non)movement, took shape in 1916 among a group of writers and artists who rejected the traditions of a stagnating bourgeoisie. Instead, they adopted means of creative expression that embraced chaos, stoked instability and undermined logic, an outburst that overturned centuries of classical and Romantic aesthetics. Paradoxically, this insistence on disorder foreshadowed a new order in understanding creativity. Nearly one hundred years later, Nonlinear Dynamical Systems theory (NDS) gives renewed currency to Dada's visionary perspective on chance, chaos and creative cognition. This paper explores commonalities between NDS-theory and this early precursor of the nonlinear paradigm, suggesting that their conceptual synergy illuminates what it means to 'be creative' beyond the disciplinary boundaries of either. Key features are discussed within a 5P model of creativity based on Rhodes' 4P framework (Person, Process, Press, Product), to which I add Participant-Viewer for the interactivity of observer-observed. Grounded in my own art practice, several techniques are then put forward as non-methodical methods that invoke creative border zones, those regions where Dada's chance and design are wedded in a dialectical tension of opposites.

  3. Yardangs in Arsinoes Chaos, Mars

    NASA Image and Video Library

    2015-02-04

    This view of Martian surface features shaped by effects of winds was captured by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter on Jan. 4, 2015. The spacecraft has been orbiting Mars since March 2006. On Feb. 7, 2015, it completed its 40,000th orbit around Mars. Several terrain types converge in this scene from the Arsinoes Chaos region of Mars, which is in the far eastern portion of Mars' Valles Marineris canyon system. The jumbled chaos terrain is likely related to massive water-carved outflow channels that started in this area and flowed north onto Mars' northern plains. The slightly curving bright terrain is composed of yardangs. Yardangs are portions of rock that have been sandblasted into long, skinny ridges by saltating (or bouncing) sand particles blowing in the wind. Transverse sand ridges lie between the yardangs (zoom in). These sand ridges are termed "transverse aeolian ridges" and are not moving in Mars' current climate. They are a mystery -- midway in height between dunes (formed from saltating sand) and ripples (formed by "splashed" sand grains). The location is at 7 degrees south latitude, 332 degrees east latitude. The image is an excerpt from HiRISE observation ESP_039563_1730. http://photojournal.jpl.nasa.gov/catalog/PIA19291

  4. Competitive coexistence in stoichiometric chaos.

    PubMed

    Deng, Bo; Loladze, Irakli

    2007-09-01

    Classical predator-prey models, such as Lotka-Volterra, track the abundance of prey, but ignore its quality. Yet, in the past decade, some new and occasionally counterintuitive effects of prey quality on food web dynamics emerged from both experiments and mathematical modeling. The underpinning of this work is the theory of ecological stoichiometry that is centered on the fact that each organism is a mixture of multiple chemical elements such as carbon (C), nitrogen (N), and phosphorus (P). The ratios of these elements can vary within and among species, providing simple ways to represent prey quality as its C:N or C:P ratios. When these ratios modeled to vary, as they frequently do in nature, seemingly paradoxical results can arise such as the extinction of a predator that has an abundant and accessible prey. Here, for the first time, we show analytically that the reduction in prey quality can give rise to chaotic oscillations. In particular, when competing predators differ in their sensitivity to prey quality then all species can coexist via chaotic fluctuations. The chaos generating mechanism is based on the existence of a junction-fold point on the nullcline surfaces of the species. Conditions on parameters are found for such a point, and the singular perturbation method and the kneading sequence analysis are used to demonstrate the existence of a period-doubling cascade to chaos as a result of the point.

  5. The topography of chaos terrain on Europa

    NASA Astrophysics Data System (ADS)

    Patterson, G.; Prockter, L. M.; Schenk, P.

    2010-12-01

    Chaos terrain and lenticulae are commonly observed surface features unique to the Galilean satellite Europa. Chaos terrain occurs as discrete regions of the satellite’s surface 10s to 100s of km in size that are disrupted into isolated plates surrounded by hummocky matrix material. Lenticulae occur as positive- or negative-relief domes km to 10s of km in diameter that can disrupt the original surface in a manner similar to chaos terrain. Evidence suggests that they each form via an endogenic process involving the interaction of a mobile substrate with the brittle surface and it has been proposed that ice shell thinning or surface yielding coupled with brine production represents the most plausible mechanism for the formation of these features. These similarities in morphology and formation mechanism indicate they may represent a continuum process. We explore whether larger chaos terrain represent the coalescence of smaller lenticulae by examining topography within chaos to determine whether it contains domes on length scales similar to lenticulae. Schenk and Pappalardo (2004) alluded to the presence of several prominent domes within Conamara Chaos and we have previously shown that at least 4 and as many as 9 domes with length scales similar to lenticulae are present within and along the margins of the feature. This was accomplished by using Fourier analysis to decompose the topographic signature of Conamara Chaos and the surrounding terrain into discrete wavelength components. A low-pass filter was then used to strip away shorter wavelength components of the topography associated with the region and determine if longer wavelength features were present within the terrain. Here we present new work identifying the presence, size, and distribution of domes within the boundaries of other chaos terrains across the surface of Europa and discuss implications for chaos formation.

  6. Chaos in Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; DeHaas, T.; Van Compernolle, B.

    2013-12-01

    Magnetic Flux Ropes Immersed in a uniform magnetoplasma are observed to twist about themselves, writhe about each other and rotate about a central axis. They are kink unstable and smash into one another as they move. Full three dimensional magnetic field and flows are measured at thousands of time steps. Each collision results in magnetic field line generation and the generation of a quasi-seperatrix layer and induced electric fields. Three dimensional magnetic field lines are computed by conditionally averaging the data using correlation techniques. The permutation entropy1 ,which is related to the Lyapunov exponent, can be calculated from the the time series of the magnetic field data (this is also done with flows) and used to calculate the positions of the data on a Jensen Shannon complexity map2. The location of data on this map indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. The complexity is a function of space and time. The complexity map, and analysis will be explained in the course of the talk. Other types of chaotic dynamical models such as the Lorentz, Gissinger and Henon process also fall on the map and can give a clue to the nature of the flux rope turbulence. The ropes fall in the region of the C-H plane where chaotic systems lie. The entropy and complexity change in space and time which reflects the change and possibly type of chaos associated with the ropes. The maps give insight as to the type of chaos (deterministic chaos, fractional diffusion , Levi flights..) and underlying dynamical process. The power spectra of much of the magnetic and flow data is exponential and Lorentzian structures in the time domain are embedded in them. Other quantities such as the Hurst exponent are evaluated for both magnetic fields and plasma flow. Work Supported by a UC-LANL Lab fund and the Basic Plasma Science Facility which is funded by DOE and NSF. 1) C. Bandt, B. Pompe, Phys. Rev. Lett., 88,174102 (2007) 2

  7. Weak nanoscale chaos and anomalous relaxation in DNA

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2017-06-01

    Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

  8. Neuroprotection conferred by post-ischemia ethanol therapy in experimental stroke: an inhibitory effect on hyperglycolysis and NADPH oxidase activation.

    PubMed

    Kochanski, Ryan; Peng, Changya; Higashida, Tetsuhiro; Geng, Xiaokun; Hüttemann, Maik; Guthikonda, Murali; Ding, Yuchuan

    2013-07-01

    Ethanol provides neuroprotection following ischemia/reperfusion. This study assessed ethanol's effect on hyperglycolysis and NADPH oxidase (NOX) activation. Adult, male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Three sets of experiments were conducted to determine ethanol's effect on (i) conferring neuroprotection by measuring infarct volume and neurological deficits 24 h post reperfusion; (ii) cerebral glucose metabolism and lactic acidosis by measuring brain and blood glucose concentrations and protein expression of glucose transporter 1 and 3 (GLUT1, GLUT3), phosphofructokinase (PFK), as well as lactic acidosis by measuring lactate dehydrogenase (LDH), and lactate; and (iii) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activation by detecting enzymatic activity and subunit expression at 3 h after reperfusion. When administered upon reperfusion, ethanol (1.5 g/kg) reduced infarct volume by 40% (p < 0.01) and neurological deficits by 48% at 24 h post reperfusion while reducing (p < 0.01) elevations in glycolytic protein expression and lactate levels during early reperfusion (3 h). Ethanol increased the reductions in cerebral glucose concentration at 3 h post reperfusion by 64% (p < 0.01) while enhancing (p < 0.01) post stroke blood glucose concentration, suggesting a reduced cellular glucose uptake and utilization. Ethanol decreased (p < 0.01) stroke-induced NOX activation by reducing enzymatic activity and gp91(phox) expression by 45% and 38%, respectively. Post-ischemia ethanol treatment exerts neuroprotection through attenuation of hyperglycolysis and associated NOX activation. Because of the lack of associated hypoglycemia and selectivity toward decreasing cerebral metabolism, further investigation of ethanol's use as a post-stroke therapy, especially in the context of hyperglycemia, seems warranted. © 2013 International Society for Neurochemistry.

  9. Optimized chaos control with simple limiters.

    PubMed

    Wagner, C; Stoop, R

    2001-01-01

    We present an elementary derivation of chaos control with simple limiters using the logistic map and the Henon map as examples. This derivation provides conditions for optimal stabilization of unstable periodic orbits of a chaotic attractor.

  10. Chaos automata: iterated function systems with memory

    NASA Astrophysics Data System (ADS)

    Ashlock, Dan; Golden, Jim

    2003-07-01

    Transforming biological sequences into fractals in order to visualize them is a long standing technique, in the form of the traditional four-cornered chaos game. In this paper we give a generalization of the standard chaos game visualization for DNA sequences. It incorporates iterated function systems that are called under the control of a finite state automaton, yielding a DNA to fractal transformation system with memory. We term these fractal visualizers chaos automata. The use of memory enables association of widely separated sequence events in the drawing of the fractal, finessing the “forgetfulness” of other fractal visualization methods. We use a genetic algorithm to train chaos automata to distinguish introns and exons in Zea mays (corn). A substantial issue treated here is the creation of a fitness function that leads to good visual separation of distinct data types.

  11. Homoclinic chaos and energy condition violation

    NASA Astrophysics Data System (ADS)

    Heinzle, J. Mark; Röhr, Niklas; Uggla, Claes

    2006-09-01

    In this letter we discuss the connection between so-called homoclinic chaos and the violation of energy conditions in locally rotationally symmetric Bianchi type IX models, where the matter is assumed to be nontilted dust and a positive cosmological constant. We show that homoclinic chaos in these models is an artifact of unphysical assumptions: it requires that there exist solutions with positive matter energy density ρ>0 that evolve through the singularity and beyond as solutions with negative matter energy density ρ<0. Homoclinic chaos is absent when it is assumed that the dust particles always retain their positive mass. In addition, we discuss more general models: for solutions that are not locally rotationally symmetric we demonstrate that the construction of extensions through the singularity, which is required for homoclinic chaos, is not possible in general.

  12. The danger of wishing for chaos.

    PubMed

    McSharry, Patrick

    2005-10-01

    With the discovery of chaos came the hope of finding simple models that would be capable of explaining complex phenomena. Numerous papers claimed to find low-dimensional chaos in a number of areas ranging from the weather to the stock market. Years later, many of these claims have been disproved and the fantastic hopes pinned on chaos have been toned down as research with more realistic objectives follows. The difficulty in calculating reliable estimates of the correlation dimension and the maximal Lyapunov exponent, two of the hallmarks of chaos, are explored. Given that nonlinear dynamics is a relatively new and growing field of science, the need for statistical testing is greater than ever. Surrogate data provides one possible approach but great care is needed in generating relevant surrogates and in interpreting the results. Examples of misleading applications and challenges for the future of research in nonlinear dynamics are discussed.

  13. Adapted polynomial chaos expansion for failure detection

    SciTech Connect

    Paffrath, M. Wever, U.

    2007-09-10

    In this paper, we consider two methods of computation of failure probabilities by adapted polynomial chaos expansions. The performance of the two methods is demonstrated by a predator-prey model and a chemical reaction problem.

  14. Adapted polynomial chaos expansion for failure detection

    NASA Astrophysics Data System (ADS)

    Paffrath, M.; Wever, U.

    2007-09-01

    In this paper, we consider two methods of computation of failure probabilities by adapted polynomial chaos expansions. The performance of the two methods is demonstrated by a predator-prey model and a chemical reaction problem.

  15. Fundamental concepts of quantum chaos

    NASA Astrophysics Data System (ADS)

    Robnik, M.

    2016-09-01

    We review the fundamental concepts of quantum chaos in Hamiltonian systems. The quantum evolution of bound systems does not possess the sensitive dependence on initial conditions, and thus no chaotic behaviour occurs, whereas the study of the stationary solutions of the Schrödinger equation in the quantum phase space (Wigner functions) reveals precise analogy of the structure of the classical phase portrait. We analyze the regular eigenstates associated with invariant tori in the classical phase space, and the chaotic eigenstates associated with the classically chaotic regions, and the corresponding energy spectra. The effects of quantum localization of the chaotic eigenstates are treated phenomenologically, resulting in Brody-like level statistics, which can be found also at very high-lying levels, while the coupling between the regular and the irregular eigenstates due to tunneling, and of the corresponding levels, manifests itself only in low-lying levels.

  16. The Minerals of Aureum Chaos

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation of 3-dimensional model with 5x vertical exaggeration

    This image of chaotic terrain in the Aureum Chaos region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0858UTC (3:58 a.m. EST) on January 24, 2008, near 3.66 degrees south latitude, 26.5 degrees west longitude. The image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across. The image is about 10 kilometers (6.2 miles) wide at its narrowest point.

    Aureum Chaos is a 368 kilometer (229 mile) wide area of chaotic terrain in the eastern part of Valles Marineris. The chaotic terrain is thought to have formed by collapse of the surrounding Margaritifer Terra highland region. Aureum Chaos contains heavily eroded, randomly oriented mesas, plateaus, and knobs many revealing distinct layered deposits along their slopes. These deposits may be formed from remnants of the collapsed highlands, sand carried by Martian winds, dust or volcanic ash that settled out of the atmosphere, or sediments laid down on the floor of an ancient lake.

    The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data cover a narrow plateau near the edge of the chaotic terrain, that stretches across from the southwest to the northeast.

    The lower left image, an infrared false color image, reveals the plateau and several eroded knobs of varying sizes. The plateau's layer-cake structure is similar to that of other layered outcrops in Valles Marineris.

    The lower right image reveals the strengths of mineral spectral features overlain on a black-and-white version of the infrared image. Areas shaded in red hold more of the mineral pyroxene, a primary component of basaltic rocks that are prevalent in the highlands. Spots of green

  17. Chaos, Fractals and Their Applications

    NASA Astrophysics Data System (ADS)

    Thompson, J. Michael T.

    2016-12-01

    This paper gives an up-to-date account of chaos and fractals, in a popular pictorial style for the general scientific reader. A brief historical account covers the development of the subject from Newton’s laws of motion to the astronomy of Poincaré and the weather forecasting of Lorenz. Emphasis is given to the important underlying concepts, embracing the fractal properties of coastlines and the logistics of population dynamics. A wide variety of applications include: NASA’s discovery and use of zero-fuel chaotic “superhighways” between the planets; erratic chaotic solutions generated by Euler’s method in mathematics; atomic force microscopy; spontaneous pattern formation in chemical and biological systems; impact mechanics in offshore engineering and the chatter of cutting tools; controlling chaotic heartbeats. Reference is made to a number of interactive simulations and movies accessible on the web.

  18. Compressive Sensing with Optical Chaos

    PubMed Central

    Rontani, D.; Choi, D.; Chang, C.-Y.; Locquet, A.; Citrin, D. S.

    2016-01-01

    Compressive sensing (CS) is a technique to sample a sparse signal below the Nyquist-Shannon limit, yet still enabling its reconstruction. As such, CS permits an extremely parsimonious way to store and transmit large and important classes of signals and images that would be far more data intensive should they be sampled following the prescription of the Nyquist-Shannon theorem. CS has found applications as diverse as seismology and biomedical imaging. In this work, we use actual optical signals generated from temporal intensity chaos from external-cavity semiconductor lasers (ECSL) to construct the sensing matrix that is employed to compress a sparse signal. The chaotic time series produced having their relevant dynamics on the 100 ps timescale, our results open the way to ultrahigh-speed compression of sparse signals. PMID:27910863

  19. Menstruation, perimenopause, and chaos theory.

    PubMed

    Derry, Paula S; Derry, Gregory N

    2012-01-01

    This article argues that menstruation, including the transition to menopause, results from a specific kind of complex system, namely, one that is nonlinear, dynamical, and chaotic. A complexity-based perspective changes how we think about and research menstruation-related health problems and positive health. Chaotic systems are deterministic but not predictable, characterized by sensitivity to initial conditions and strange attractors. Chaos theory provides a coherent framework that qualitatively accounts for puzzling results from perimenopause research. It directs attention to variability within and between women, adaptation, lifespan development, and the need for complex explanations of disease. Whether the menstrual cycle is chaotic can be empirically tested, and a summary of our research on 20- to 40-year-old women is provided.

  20. Detecting chaos from time series

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Gong; Lai, C. H.

    2000-02-01

    In this paper, an entirely data-based method to detect chaos from the time series is developed by introducing icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> p -neighbour points (the p -steps icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> -neighbour points). We demonstrate that for deterministic chaotic systems, there exists a linear relationship between the logarithm of the average number of icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> p -neighbour points, lnn p ,icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> , and the time step, p . The coefficient can be related to the KS entropy of the system. The effects of the embedding dimension and noise are also discussed.

  1. Control of collective network chaos.

    PubMed

    Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A F; So, Paul

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  2. Control of collective network chaos

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A. F.; So, Paul

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  3. Chaos Theory and Protein Dynamics

    NASA Astrophysics Data System (ADS)

    Bui, James; Clarage, James

    2010-10-01

    Chaos theory, commonly known as the butterfly effect, states that a small change in a complex system may cause large changes in the system as time moves forward. This phenomenon was first discovered by Henri Poincare in the 1880's. The computer programs NAMD, VMD (Visual Molecular Dynamics) and Mathematica were used to calculate the movements and graphically analyze the trajectories of the protein ubiquitin. A small change was applied to a single atom's initial position in the x-coordinate to see how it would affect the future dynamics and trajectory of the protein. Our findings indicate an exponential divergence from the controlled trajectory with a Lyapunov exponent = 10.5 [1/ps]. In other words after less than a picosecond (trillionth of a second) the dynamics of a small biophysical system is no longer predictable, even though the underlying Newtonian physical laws are completely deterministic.

  4. Compressive Sensing with Optical Chaos

    NASA Astrophysics Data System (ADS)

    Rontani, D.; Choi, D.; Chang, C.-Y.; Locquet, A.; Citrin, D. S.

    2016-12-01

    Compressive sensing (CS) is a technique to sample a sparse signal below the Nyquist-Shannon limit, yet still enabling its reconstruction. As such, CS permits an extremely parsimonious way to store and transmit large and important classes of signals and images that would be far more data intensive should they be sampled following the prescription of the Nyquist-Shannon theorem. CS has found applications as diverse as seismology and biomedical imaging. In this work, we use actual optical signals generated from temporal intensity chaos from external-cavity semiconductor lasers (ECSL) to construct the sensing matrix that is employed to compress a sparse signal. The chaotic time series produced having their relevant dynamics on the 100 ps timescale, our results open the way to ultrahigh-speed compression of sparse signals.

  5. Control of collective network chaos

    SciTech Connect

    Wagemakers, Alexandre Sanjuán, Miguel A. F.

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of “reduced” ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  6. Chaos in blood pressure control.

    PubMed

    Wagner, C D; Nafz, B; Persson, P B

    1996-03-01

    A number of control mechanisms are comprised within blood pressure regulation, ranging from events on the cellular level up to circulating hormones. Despite their vast number, blood pressure fluctuations occur preferably within a certain range (under physiological conditions). A specific class of dynamic systems has been extensively studied over the past several years: nonlinear coupled systems, which often reveal a characteristic form of motion termed "chaos". The system is restricted to a certain range in phase space, but the motion is never periodic. The attractor the system moves on has a non-integer dimension. What all chaotic systems have in common is their sensitive dependence on initial conditions. The question arises as to whether blood pressure regulation can be explained by such models. Many efforts have been made to characterise heart rate variability and EEG dynamics by parameters of chaos theory (e.g., fractal dimensions and Lyapunov exponents). These method were successfully applied to dynamics observed in single organs, but very few studies have dealt with blood pressure dynamics. This mini-review first gives an overview on the history of blood pressure dynamics and the methods suitable to characterise the dynamics by means of tools derived from the field of nonlinear dynamics. Then applications to systemic blood pressure are discussed. After a short survey on heart rate variability, which is indirectly reflected in blood pressure variability, some dynamic aspects of resistance vessels are given. Intriguingly, systemic blood pressure reveals a change in fractal dimensions and Lyapunov exponents, when the major short-term control mechanism--the arterial baroreflex--is disrupted. Indeed it seems that cardiovascular time series can be described by tools from nonlinear dynamics [66]. These methods allow a novel description of some important aspects of biological systems. Both the linear and the nonlinear tools complement each other and can be useful in

  7. How Did You Get into Chaos?

    NASA Astrophysics Data System (ADS)

    Thiel, Marco; Kurths, Jürgen; Romano, M. Carmen; Moura, Alessandro; Károlyi, György

    In the celebratory dinner honouring Celso Grebogi's 60th birthday, a number of scientists in the area of chaos were asked by James Yorke to tell the tale about how they got involved in the field. Since all the participants have played crucial roles in the development of the subject, their stories give unique insights into the historical development of dynamical systems and chaos. We have transcribed their tales here.

  8. Terminal chaos for information processing in neurodynamics.

    PubMed

    Zak, M

    1991-01-01

    New nonlinear phenomenon-terminal chaos caused by failure of the Lipschitz condition at equilibrium points of dynamical systems is introduced. It is shown that terminal chaos has a well organized probabilistic structure which can be predicted and controlled. This gives an opportunity to exploit this phenomenon for information processing. It appears that chaotic states of neurons activity are associated with higher level of cognitive processes such as generalization and abstraction.

  9. Effect of Chaos on Relativistic Quantum Tunneling

    DTIC Science & Technology

    2012-06-01

    Effect of chaos on relativistic quantum tunneling This article has been downloaded from IOPscience. Please scroll down to see the full text article...of chaos on relativistic quantum tunneling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...tunneling dynamics even in the relativistic quantum regime. Similar phenomena have been observed in graphene. A physical theory is developed to

  10. Detecting nonlinearity and chaos in epidemic data

    SciTech Connect

    Ellner, S.; Gallant, A.R.; Theiler, J. |

    1993-08-01

    Historical data on recurrent epidemics have been central to the debate about the prevalence of chaos in biological population dynamics. Schaffer and Kot who first recognized that the abundance and accuracy of disease incidence data opened the door to applying a range of methods for detecting chaos that had been devised in the early 1980`s. Using attractor reconstruction, estimates of dynamical invariants, and comparisons between data and simulation of SEIR models, the ``case for chaos in childhood epidemics`` was made through a series of influential papers beginning in the mid 1980`s. The proposition that the precise timing and magnitude of epidemic outbreaks are deterministic but chaotic is appealing, since it raises the hope of finding determinism and simplicity beneath the apparently stochastic and complicated surface of the data. The initial enthusiasm for methods of detecting chaos in data has been followed by critical re-evaluations of their limitations. Early hopes of a ``one size fits all`` algorithm to diagnose chaos vs. noise in any data set have given way to a recognition that a variety of methods must be used, and interpretation of results must take into account the limitations of each method and the imperfections of the data. Our goals here are to outline some newer methods for detecting nonlinearity and chaos that have a solid statistical basis and are suited to epidemic data, and to begin a re-evaluation of the claims for nonlinear dynamics and chaos in epidemics using these newer methods. We also identify features of epidemic data that create problems for the older, better known methods of detecting chaos. When we ask ``are epidemics nonlinear?``, we are not questioning the existence of global nonlinearities in epidemic dynamics, such as nonlinear transmission rates. Our question is whether the data`s deviations from an annual cyclic trend (which would reflect global nonlinearities) are described by a linear, noise-driven stochastic process.

  11. Failure in distinguishing colored noise from chaos using the "noise titration" technique.

    PubMed

    Freitas, Ubiratan S; Letellier, Christophe; Aguirre, Luis A

    2009-03-01

    Identifying chaos in experimental data-noisy data-remains a challenging problem for which conclusive arguments are still very difficult to provide. In order to avoid problems usually encountered with techniques based on geometrical invariants (dimensions, Lyapunov exponent, etc.), Poon and Barahona introduced a numerical titration procedure which compares one-step-ahead predictions of linear and nonlinear models [Proc. Natl. Acad. Sci. U.S.A. 98, 7107 (2001)]. We investigate the aformentioned technique in the context of colored noise or other types of nonchaotic behaviors. The main conclusion is that in several examples noise titration fails to distinguish such nonchaotic signals from low-dimensional deterministic chaos.

  12. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.

    PubMed

    Kuwamura, Masataka; Chiba, Hayato

    2009-12-01

    It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.

  13. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators

    NASA Astrophysics Data System (ADS)

    Kuwamura, Masataka; Chiba, Hayato

    2009-12-01

    It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.

  14. Barrier-induced chaos in a kicked rotor: Classical subdiffusion and quantum localization.

    PubMed

    Paul, Sanku; Pal, Harinder; Santhanam, M S

    2016-06-01

    The relation between classically chaotic dynamics and quantum localization is studied in a system that violates the assumptions of the Kolmogorov-Arnold-Moser (KAM) theorem, namely, the kicked rotor in a discontinuous potential barrier. We show that the discontinuous barrier induces chaos and more than two distinct subdiffusive energy growth regimes, the latter being an unusual feature for Hamiltonian chaos. We show that the dynamical localization in the quantized version of this system carries the imprint of non-KAM classical dynamics through the dependence of quantum break time on subdiffusion exponents. We briefly comment on the experimental feasibility of this system.

  15. Failure in distinguishing colored noise from chaos using the ``noise titration'' technique

    NASA Astrophysics Data System (ADS)

    Freitas, Ubiratan S.; Letellier, Christophe; Aguirre, Luis A.

    2009-03-01

    Identifying chaos in experimental data—noisy data—remains a challenging problem for which conclusive arguments are still very difficult to provide. In order to avoid problems usually encountered with techniques based on geometrical invariants (dimensions, Lyapunov exponent, etc.), Poon and Barahona introduced a numerical titration procedure which compares one-step-ahead predictions of linear and nonlinear models [Proc. Natl. Acad. Sci. U.S.A. 98, 7107 (2001)]. We investigate the aformentioned technique in the context of colored noise or other types of nonchaotic behaviors. The main conclusion is that in several examples noise titration fails to distinguish such nonchaotic signals from low-dimensional deterministic chaos.

  16. Low-order chaos in sympathetic nerve activity causes 1/f fluctuation of heartbeat intervals

    NASA Astrophysics Data System (ADS)

    Osaka, Motohisa; Kumagai, Hiroo; Sakata, Katsufumi; Onami, Toshiko; Chon, Ki H.; Watanabe, Mari A.; Saruta, Takao

    2004-04-01

    The mechanism of 1/f scaling of heartbeat intervals remains unknown. We recorded heartbeat intervals, sympathetic nerve activity, and blood pressure in conscious rats with normal or high blood pressure. Using nonlinear analyses, we demonstrate that the dynamics of this system of 3 variables is low-order chaos, and that sympathetic nerve activity leads to heartbeat interval and blood pressure changes. It is suggested that 1/f scaling of heartbeat intervals results from the low-order chaos of these variables and that impaired regulation of blood pressure by sympathetic nerve activity is likely to cause experimentally observable steeper scaling of heartbeat intervals in hypertensive (high blood pressure) rats.

  17. Spatiotemporal Chaos Induces Extreme Events in an Extended Microcavity Laser.

    PubMed

    Selmi, F; Coulibaly, S; Loghmari, Z; Sagnes, I; Beaudoin, G; Clerc, M G; Barbay, S

    2016-01-08

    Extreme events such as rogue waves in optics and fluids are often associated with the merging dynamics of coherent structures. We present experimental and numerical results on the physics of extreme event appearance in a spatially extended semiconductor microcavity laser with an intracavity saturable absorber. This system can display deterministic irregular dynamics only, thanks to spatial coupling through diffraction of light. We have identified parameter regions where extreme events are encountered and established the origin of this dynamics in the emergence of deterministic spatiotemporal chaos, through the correspondence between the proportion of extreme events and the dimension of the strange attractor.

  18. Scenarios of transition to chaos competition in low-temperature plasma

    SciTech Connect

    Dimitriu, D. G.

    2013-11-13

    Dynamics of a fireball created in front of a positively biased electrode immersed into low-temperature plasma was experimentally investigated. By analyzing the time series of the oscillations of the current collected by the electrode, several successive scenarios of transitions to chaos were identified: by intermittencies, by cascade of sub-harmonic bifurcations and by quasi-periodicity (Ruelle-Takens scenario)

  19. Chaos in World Politics: A Reflection

    NASA Astrophysics Data System (ADS)

    Ferreira, Manuel Alberto Martins; Filipe, José António Candeias Bonito; Coelho, Manuel F. P.; Pedro, Isabel C.

    Chaos theory results from natural scientists' findings in the area of non-linear dynamics. The importance of related models has increased in the last decades, by studying the temporal evolution of non-linear systems. In consequence, chaos is one of the concepts that most rapidly have been expanded in what research topics respects. Considering that relationships in non-linear systems are unstable, chaos theory aims to understand and to explain this kind of unpredictable aspects of nature, social life, the uncertainties, the nonlinearities, the disorders and confusion, scientifically it represents a disarray connection, but basically it involves much more than that. The existing close relationship between change and time seems essential to understand what happens in the basics of chaos theory. In fact, this theory got a crucial role in the explanation of many phenomena. The relevance of this kind of theories has been well recognized to explain social phenomena and has permitted new advances in the study of social systems. Chaos theory has also been applied, particularly in the context of politics, in this area. The goal of this chapter is to make a reflection on chaos theory - and dynamical systems such as the theories of complexity - in terms of the interpretation of political issues, considering some kind of events in the political context and also considering the macro-strategic ideas of states positioning in the international stage.

  20. Transition to Spatio-Temporal Chaos with Increasing Length in the Reaction-Diffusion System

    NASA Astrophysics Data System (ADS)

    Trail, Collin; Tomlin, Brett; Olsen, Thomas; Wiener, Richard J.

    2003-11-01

    Calculations based up the Reaction-Diffusion model (H. Riecke and H.-G. Paap, Europhys. Lett. 14), 1235 (1991).have proven to be suggestive for a wide variety of pattern forming systems, including Taylor-Couette flow with hourglass geometry(Richard J. Wiener et al), Phys. Rev. E 55, 5489 (1997).. Seeking insight to guide experimental investigations, we extend these calculations. Previous calculations indicated that in smaller systems, only temporal chaos, located in a small region, would be observed, while in longer systems instabilities would form over a wide region. Our simulations explore this transition from purely temporal chaos to spatio-temporal chaos as the length of the system is increased.

  1. High Speed Observation of Spatiotemporal Chaos in a Voice Production System

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2006-05-01

    The spatial-temporal chaos has recently become the subject of intensive experimental and theoretical investigations. Studying vibratory dynamics of the vocal folds is important for natural voice productions. Disordered voices are usually observed in laryngeal pathologies, such as laryngeal paralysis and vocal polyps. In this study, we report spatiotemporal chaotic vibratory behavior in a biomedical vocal fold system. Spatiotemporal chaos in excised larynx vibrations is recorded using high-speed digital imaging. Spatiotemporal analyses effectively describe the spatiotemporal dynamics of the vocal fold vibrations and investigate the effects of subglottal pressure. With the increase of subglottal pressures, correlation dimension and glottal entropy are increased. Spatiotemporal chaos plays an important role in understanding irregular dynamics of disordered voice production.

  2. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

    PubMed Central

    2010-01-01

    Background Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum. Results A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina® Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme. Conclusions This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. PMID:20846421

  3. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites.

    PubMed

    Hunt, Paul; Martinelli, Axel; Modrzynska, Katarzyna; Borges, Sofia; Creasey, Alison; Rodrigues, Louise; Beraldi, Dario; Loewe, Laurence; Fawcett, Richard; Kumar, Sujai; Thomson, Marian; Trivedi, Urmi; Otto, Thomas D; Pain, Arnab; Blaxter, Mark; Cravo, Pedro

    2010-09-16

    Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum. A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme. This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations.

  4. Conference Planning.

    ERIC Educational Resources Information Center

    Burke, W. Warner, Ed.; Beckhard, Richard, Ed.

    This book, written to instruct in the use of a conference as a medium of social intercourse, is divided into four sections. Section I, which contains five articles, deals with factors to be considered in planning a conference. Specific techniques one can employ to improve a conference and several different techniques for evaluating the…

  5. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    PubMed

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  6. Experimental verification of multilevel spatial pattern generation from binary data page with four-step phase pattern (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barada, Daisuke; Yatagai, Toyohiko

    2016-09-01

    Holographic memory is expected for cold storage because of the features of huge data capacity, high data transfer rate, and long life time. In holographic memory, a signal beam is modulated by a spatial light modulator according to data pages. The recording density is dependent on information amount per pixel in a data page. However, a binary spatial light modulator is used to realize high data transfer rate in general. In our previous study, an optical conversion method from binary data to multilevel data has been proposed. In this paper, the principle of the method is experimentally verified. In the proposed method, a data page consists of symbols with 2x2 pixels and a four-step phase mask is used. Then, the complex amplitudes of four pixels in a symbol become positive real, positive imaginary, negative real, and negative imaginary values, respectively. A square pixel pattern is spread by spatial frequency filtering with a square aperture in a Fourier plane. When the aperture size is too small, the complex amplitude of four pixels in a symbol is superposed and a symbol is regarded as a pixel with a complex number. In this work, a data page pattern with a four-step phase pattern was generated by using a computer-generated circular polarization hologram (CGCPH). The CGCPH was prepared by electron beam lithography. The page data pattern is Fourier transformed by a lens and spatially filtered by a variable rectangular aperture. The complex amplitude of the spatial filtered data page pattern was measured by digital holography and the principle was experimentally verified.

  7. Inhibiting the Th17/IL-17A-related inflammatory responses with digoxin confers protection against experimental abdominal aortic aneurysm.

    PubMed

    Wei, Zhanjie; Wang, Yu; Zhang, Kailun; Liao, Yaohang; Ye, Ping; Wu, Jie; Wang, Yang; Li, Feifei; Yao, Yufeng; Zhou, Yanzhao; Liu, Jinping

    2014-11-01

    T helper 17 cells and interleukin-17A have been implicated in the progression of abdominal aortic aneurysm (AAA). Retinoic acid-related orphan receptor gamma thymus, the master transcription factor of T helper 17 cell differentiation, is selectively antagonized by digoxin. However, the effect of antagonizing retinoic acid-related orphan receptor gamma thymus on AAA has not been investigated. We used human aortic sample analysis and 2 different experimental AAA models: (a) Angiotensin II (Ang II)-induced ApoE(-/-) male mice (Ang II/APOE model) and (b) porcine pancreatic elastase perfusion C57BL/6 mice (porcine pancreatic elastase/C57 model). In the Ang II/APOE model, all mice (n=80) were divided into 4 groups: sham group (saline+0.5% dimethyl sulfoxide treatment), control group (Ang II+0.5% dimethyl sulfoxide treatment), low-dose group (Ang II+low-dose digoxin, 20 μg/d per mouse), and high-dose group (Ang II+high-dose digoxin, 40 μg/d per mouse). All treatments began on day 0 after surgery. Efficacy was determined via aortic diameter and systolic blood pressure measurements, histopathology and protein expression, and flow cytometry analysis when euthenized. Human aortic tissue analysis showed that both interleukin-17A and retinoic acid-related orphan receptor gamma thymus increased in AAA tissues. The low-dose and high-dose groups had AAA incidences of 60% and 35%, respectively, compared with 70% in the control group. The T helper 17- and interleukin-17A-related inflammatory responses were dose-dependently attenuated by digoxin treatment. Digoxin was also highly effective in the porcine pancreatic elastase/C57 model. Digoxin attenuates experimental AAA progression in a model-independent manner. Antagonizing retinoic acid-related orphan receptor gamma thymus activity by digoxin may become a novel strategy for nonsurgical AAA treatment. © 2014 American Heart Association, Inc.

  8. INTRODUCTION: The Physics of Chaos and Related Problems: Proceedings of the 59th Nobel Symposium

    NASA Astrophysics Data System (ADS)

    Lundqvist, Stig

    1985-01-01

    The physics of non-linear phenomena has developed in a remarkable way over the last couple of decades and has accelerated over the last few years, in particular because of the recent progress in the study of chaotic behaviour. In particular the discovery of the universal properties of the transition into chaos for certain classes of systems has stimulated much recent work in different directions both theoretically and experimentally. Chaos theory has become a real challenge to physicists in many different fields and also in many other disciplines such as astronomy, chemistry, medicine, meteorology and economics and social theory. The study of chaos-related phenomena has a truly interdisciplinary character and makes use of important concepts and methods from other disciplines. For the description of chaotic structures one needs a new, recently developed geometry called fractal geometry. For the discussion of the enormous richness of ordered structures which appear, one uses the theory of pattern recognition. In order to study even the simplest theoretical models describing chaos, a computer is essential. It should finally be mentioned that important aspects of computer science are related to the theory of order and chaos. A Nobel Symposium provides an excellent opportunity to bring together a group of prominent scientists for a stimulating exchange of new ideas and results. The Nobel Symposia are very small meetings by invitation only and the number of key participants is typically in the range 20-40. These symposia are organized through a special Nobel Symposium Committee after proposals from individuals. This symposium was sponsored by the Nobel Foundation through its Nobel Symposium Fund with grants from The Tercentenary Fund of the Bank of Sweden and The Knut Alice Wallenberg Foundation. Additional support was obtained from the Royal Academy of Sciences, The Nordic Institute for Theoretical Atomic Physics (NORDITA), Chalmers University of Technology and

  9. ICCK Conference Final Report

    SciTech Connect

    Green, William H.

    2013-05-28

    The 7th International Conference on Chemical Kinetics (ICCK) was held July 10-14, 2011, at Massachusetts Institute of Technology (MIT), in Cambridge, MA, hosted by Prof. William H. Green of MIT's Chemical Engineering department. This cross-disciplinary meeting highlighted the importance of fundamental understanding of elementary reactions to the full range of chemical investigations. The specific conference focus was on elementary-step kinetics in both the gas phase and in condensed phase. The meeting provided a unique opportunity to discuss how the same reactive species and reaction motifs manifest under very different reaction conditions (e.g. atmospheric, aqueous, combustion, plasma, in nonaqueous solvents, on surfaces.). The conference featured special sessions on new/improved experimental techniques, improved models and data analysis for interpreting complicated kinetics, computational kinetics (especially rate estimates for large kinetic models), and a panel discussion on how the community should document/archive kinetic data. In the past, this conference had been limited to homogeneous gas-phase and liquid-phase systems. This conference included studies of heterogeneous kinetics which provide rate constants for, or insight into, elementary reaction steps. This Grant from DOE BES covered about half of the subsidies we provided to students and postdocs who attended the conference, by charging them reduced-rate registration fees. The complete list of subsidies provided are listed in Table 1 below. This DOE funding was essential to making the conference affordable to graduate students, and indeed the attendance at this conference was higher than at previous conferences in this series. Donations made by companies provided additional subsidies, leveraging the DOE funding. The conference was very effective in educating graduate students and important in fostering scientific interactions, particularly between scientists studying gas phase and liquid phase kinetics

  10. Experimental observation of wave modulation and Dirac cone in acoustic double zero refractive index metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shi, Chengzhi; Dubois, Marc; Zhu, Xuefeng; Wang, Yuan; Zhang, Xiang

    2017-04-01

    Acoustic zero index metamaterials such as density-near-zero metamaterials have received increasing attention due to their potential applications on beam forming, cloaking, wave tunneling, and imaging. High transmission resulted by impedance matching of such zero index metamaterials and surrounding media requires the effective density and inverse bulk modulus to be simultaneously zero. Metamaterials possessing this property are called double zero index metamaterials. The design of double zero index metamaterials needs scatterers with sound speed lower than the background medium, which is extremely challenging for air acoustics because the air sound speed is among the lowest. This challenge can be solved for high order waveguide mode by designing structures with larger thickness. An experimental scan of the pressure field inside our design metamaterial excited by a point source reveals the existence of a Dirac cone at the Brillouin zone center. The measured envelope of the propagating wave inside the metamaterial shows double negative, double positive, and double zero properties below, above, and at the Dirac point,respectively. This result is confirmed by the measured acoustic beam out of the metamaterial. A gapless transition between double negative and double positive acoustic metamaterials is realized. The development of this double zero index metamaterial provides new routes to broaden practical applications of acoustic metamaterials.

  11. Experimental demonstration of hot carrier upconversion using Au, Ag, and GaN/InGaN quantum wells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Naik, Gururaj V.; Welch, Alex J.; Dionne, Jennifer A.

    2016-09-01

    Plasmon resonances in metallic nanoparticles result in enhanced light absorption and hot carrier generation. Although hot carriers are short-lived, their energy can be extracted in optical form resulting in photon upconversion. Two low energy photons absorbed by a plasmonic nanostructure, create a hot electron and a hot hole. These hot carriers get injected into an adjacent semiconductor quantum well where they radiatively recombine to emit a higher energy photon resulting in photon upconversion. This process involves injection of an electron and a hole across the same interface making it charge neutral. The upconversion emission has a linear dependence on the incident light intensity, making it promising for applications requiring low power operation. Theoretical studies show that a silver/semiconductor system can have an ideal efficiency of 25%. Our experimental demonstration of this new scheme utilizes GaN/InGaN quantum wells decorated with both silver and gold. The use of two metals reduces band-bending in the semiconductor. Illuminating the sample with light spanning wavelengths of 500-540 nm produces upconversion photoluminescence centered at 435 nm. Control samples including undecorated quantum wells and metal nanostructures on a glass substrate do not show any upconversion ruling out possibilities of upconversion in individual materials. Further, the linear dependence of the upconverted light intensity with incident intensity rules out any non-linear or Auger mediated mechanisms. We will describe how this hot carrier upconversion process promises to be broadband, tunable, and more efficient than existing solid-state upconversion schemes, and discuss potential applications in solar energy, security, and photodetection applications.

  12. Experimental test of a dynamically tuned wave energy converter based on inflatable dielectric elastomer generators (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Moretti, Giacomo; Vertechy, Rocco; Fontana, Marco

    2017-04-01

    Dielectric Elastomer Generators (DEGs) are very promising systems that are able to directly convert oscillating mechanical energy into direct electricity. Their nature and main attributes make them particularly interesting for harvesting energy form ocean waves. In this context, several efforts have been made in the last years to develop effective Wave Energy Converters based on DEG [1-4]. In this contribution, we present a novel Wave Energy Converter (WEC) based on the Oscillating Water Column principle. The device features an inflatable DEG as Power Take Off (PTO) system and collector - i.e. the part of the device that is directly interacting with waves - that possesses a coaxial-ducted shape as described in [5]. Models of the coupled behavior that consider the electro-hyperelastic response of the DEG and the hydrodynamics are presented. It is shown that the dynamic response and the effectiveness of the system can be largely improved through an appropriate dimensioning of the geometry of the device. Specifically, the dynamic response of the system can be designed to match the corresponding harmonic content of water waves achieving an effective conversion of the incoming mechanical energy. A small/intermediate scale prototype of the system is built and tested in a wave tank facility - i.e. a basin in which artificially controlled waves can be generated - available at Flowave (UK). Mathematical models are validated against experimental results for monochromatic and panchromatic tests. During the experiments, we obtained peak of estimated power output in the range of 1 W to 4 W with an energy density for the dielectric material of approximately 80-120W/kg. The achieved results represent a milestone in the study of WEC based on DEG, paving the path toward scaling up of this technology.

  13. Irreversible evolution of quantum chaos

    NASA Astrophysics Data System (ADS)

    Ugulava, A.; Chotorlishvili, L.; Nickoladze, K.

    2005-05-01

    The pendulum is the simplest system having all the basic properties inherent in dynamic stochastic systems. In the present paper we investigate the pendulum with the aim to reveal the properties of a quantum analogue of dynamic stochasticity or, in other words, to obtain the basic properties of quantum chaos. It is shown that a periodic perturbation of the quantum pendulum (similarly to the classical one) in the neighborhood of the separatrix can bring about irreversible phenomena. As a result of recurrent passages between degenerate states, the system gets self-chaotized and passes from the pure state to the mixed one. Chaotization involves the states, the branch points of whose levels participate in a slow “drift” of the system along the Mathieu characteristics this “drift” being caused by a slowly changing variable field. Recurrent relations are obtained for populations of levels participating in the irreversible evolution process. It is shown that the entropy of the system first grows and, after reaching the equilibrium state, acquires a constant value.

  14. Chaos control with ion propulsion

    NASA Astrophysics Data System (ADS)

    Slíz, J.; Kovács, T.; Süli, Á.

    2017-06-01

    The escape dynamics around the triangular Lagrangian point L5 in the real Sun-Earth-Moon-Spacecraft system is investigated. Appearance of the finite time chaotic behaviour suggests that widely used methods and concepts of dynamical system theory can be useful in constructing a desired mission design. Existing chaos control methods are modified in such a way that we are able to protect a test particle from escape. We introduce initial condition maps in order to have a suitable numerical method to describe the motion in high dimensional phase space. Results show that the structure of initial condition maps can be split into two well-defined domains. One of these two parts has a regular contiguous shape and is responsible for long time escape; it is a long-lived island. The other one shows a filamentary fractal structure in initial condition maps. The short time escape is governed by this object. This study focuses on a low-cost method which successfully transfers a reference trajectory between these two regions using an appropriate continuous control force. A comparison of the Earth-Moon transfer is also presented to show the efficiency of our method.

  15. Regularly timed events amid chaos

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan N.; Cooper, Roy M.; Corron, Ned J.

    2015-11-01

    We show rigorously that the solutions of a class of chaotic oscillators are characterized by regularly timed events in which the derivative of the solution is instantaneously zero. The perfect regularity of these events is in stark contrast with the well-known unpredictability of chaos. We explore some consequences of these regularly timed events through experiments using chaotic electronic circuits. First, we show that a feedback loop can be implemented to phase lock the regularly timed events to a periodic external signal. In this arrangement the external signal regulates the timing of the chaotic signal but does not strictly lock its phase. That is, phase slips of the chaotic oscillation persist without disturbing timing of the regular events. Second, we couple the regularly timed events of one chaotic oscillator to those of another. A state of synchronization is observed where the oscillators exhibit synchronized regular events while their chaotic amplitudes and phases evolve independently. Finally, we add additional coupling to synchronize the amplitudes, as well, however in the opposite direction illustrating the independence of the amplitudes from the regularly timed events.

  16. Passive Transfer of Immunoglobulin Y Antibody to Streptococcus mutans Glucan Binding Protein B Can Confer Protection against Experimental Dental Caries

    PubMed Central

    Smith, Daniel J.; King, William F.; Godiska, Ronald

    2001-01-01

    Active immunization with Streptococcus mutans glucan binding protein B (GBP-B) has been shown to induce protection against experimental dental caries. This protection presumably results from continuous secretion of salivary antibody to GBP-B, which inhibits accumulation of S. mutans within the oral biofilm. The purpose of this study was to explore the influence of short-term (9- or 24-day) passive oral administration of antibody to S. mutans GBP-B on the longer-term accumulation and cariogenicity of S. mutans in a rat model of dental caries. Preimmune chicken egg yolk immunoglobulin Y (IgY) or IgY antibody to S. mutans GBP-B was supplied in lower (experiment 1) and higher (experiment 2) concentrations in the diet and drinking water of rats for 9 (experiment 1) or 24 (experiment 2) days. During the first 3 days of IgY feeding, all animals were challenged with 5 × 106 streptomycin-resistant S. mutans strain SJ-r organisms. Rats remained infected with S. mutans for 78 days, during which rat molars were sampled for the accumulation of S. mutans SJ-r bacteria and total streptococci. Geometric mean levels of S. mutans SJ-r accumulation on molar surfaces were significantly lower in antibody-treated rats on days 16 and 78 of experiment 2 and were lower on all but the initial (day 5) swabbing occasions in both experiments. Relative to controls, the extent of molar dental caries measured on day 78 was also significantly decreased. The decrease in molar caries correlated with the amount and duration of antibody administration. This is the first demonstration that passive antibody to S. mutans GBP-B can have a protective effect against cariogenic S. mutans infection and disease. Furthermore, this decrease in infection and disease did not require continuous antibody administration for the duration of the infection period. This study also indicates that antibody to components putatively involved only in cellular aggregation can have a significant effect on the incorporation of

  17. Generic superweak chaos induced by Hall effect.

    PubMed

    Ben-Harush, Moti; Dana, Itzhack

    2016-05-01

    We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B) and electric (E) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ^{2} rather than κ. For E=0, SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ. In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.

  18. The Capabilities of Chaos and Complexity

    PubMed Central

    Abel, David L.

    2009-01-01

    To what degree could chaos and complexity have organized a Peptide or RNA World of crude yet necessarily integrated protometabolism? How far could such protolife evolve in the absence of a heritable linear digital symbol system that could mutate, instruct, regulate, optimize and maintain metabolic homeostasis? To address these questions, chaos, complexity, self-ordered states, and organization must all be carefully defined and distinguished. In addition their cause-and-effect relationships and mechanisms of action must be delineated. Are there any formal (non physical, abstract, conceptual, algorithmic) components to chaos, complexity, self-ordering and organization, or are they entirely physicodynamic (physical, mass/energy interaction alone)? Chaos and complexity can produce some fascinating self-ordered phenomena. But can spontaneous chaos and complexity steer events and processes toward pragmatic benefit, select function over non function, optimize algorithms, integrate circuits, produce computational halting, organize processes into formal systems, control and regulate existing systems toward greater efficiency? The question is pursued of whether there might be some yet-to-be discovered new law of biology that will elucidate the derivation of prescriptive information and control. “System” will be rigorously defined. Can a low-informational rapid succession of Prigogine’s dissipative structures self-order into bona fide organization? PMID:19333445

  19. God's Stuff: The Constructive Powers of Chaos for Teaching Religion

    ERIC Educational Resources Information Center

    Willhauck, Susan

    2010-01-01

    Order and organization are valued in the classroom, and there is a prevailing understanding that chaos should be avoided. Yet chaos can also be potent space or a source from which new things spring forth. This article investigates biblical, scientific, and cultural understandings of chaos to discover how these contribute to a revelatory metaphor…

  20. The Nature (and Nurture) of Children's Perceptions of Family Chaos

    ERIC Educational Resources Information Center

    Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Jaffee, Sara R.; Plomin, Robert

    2010-01-01

    Chaos in the home is a key environment in cognitive and behavioural development. However, we show that children's experience of home chaos is partly genetically mediated. We assessed children's perceptions of household chaos at ages 9 and 12 in 2337 pairs of twins. Using child-specific reports allowed us to use structural equation modelling to…

  1. God's Stuff: The Constructive Powers of Chaos for Teaching Religion

    ERIC Educational Resources Information Center

    Willhauck, Susan

    2010-01-01

    Order and organization are valued in the classroom, and there is a prevailing understanding that chaos should be avoided. Yet chaos can also be potent space or a source from which new things spring forth. This article investigates biblical, scientific, and cultural understandings of chaos to discover how these contribute to a revelatory metaphor…

  2. Household Chaos--Links with Parenting and Child Behaviour

    ERIC Educational Resources Information Center

    Coldwell, Joanne; Pike, Alison; Dunn, Judy

    2006-01-01

    Background: The study aimed to confirm previous findings showing links between household chaos and parenting in addition to examining whether household chaos was predictive of children's behaviour over and above parenting. In addition, we investigated whether household chaos acts as a moderator between parenting and children's behaviour. Method:…

  3. The Nature (and Nurture) of Children's Perceptions of Family Chaos

    ERIC Educational Resources Information Center

    Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Jaffee, Sara R.; Plomin, Robert

    2010-01-01

    Chaos in the home is a key environment in cognitive and behavioural development. However, we show that children's experience of home chaos is partly genetically mediated. We assessed children's perceptions of household chaos at ages 9 and 12 in 2337 pairs of twins. Using child-specific reports allowed us to use structural equation modelling to…

  4. The physics of chaos and related problems; Proceedings of the Fifty-ninth Nobel Symposium, Graftavallen, Sweden, June 11-16, 1984

    NASA Astrophysics Data System (ADS)

    Lundqvist, S.

    Reviews and reports of theoretical, numerical, and experimental investigations of chaotic and other nonlinear phenomena in physics are presented. The topics examined are chaos in low-dimensionality systems, pattern formation, turbulence, computational aspects, and quantum systems. Consideration is given to the transition from periodic motion to unbounded chaos in a simple pendulum, the chaotic dynamics of instabilities in solids, neutron scattering from a convecting nematic, patterns and noise in hydrodynamic systems, pattern formation and chaos in synergetic systems, ergodic aspects of turbulence theory, drift and diffusion in reversible computation, and Farey organization of the fractional Hall effect.

  5. Chaos control by using Motor Maps

    NASA Astrophysics Data System (ADS)

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia

    2002-09-01

    In this paper a new method for chaos control is proposed, consisting of an unsupervised neural network, namely a Motor Map. In particular a feedback entrainment scheme is adopted: a chaotic system with a given parameter set generates the reference trajectory for another chaotic system with different parameters to be controlled: the Motor Map is required to provide the appropriate time-varying gain value for the feedback signal. The state of the controlled system is considered as input to the Motor Map. Particular efforts have been paid to the feasibility of the implementation. Indeed, the simulations performed have been oriented to design a Motor Map suitable for an hardware realization, thus some restrictive hypotheses, such as for example a low number of neurons, have been assumed. A huge number of simulations has been carried out by considering as system to be controlled a Double Scroll Chua Attractor as well as other chaotic attractors. Several reference trajectories have also been considered: a limit cycle generated by a Chua's circuit with different parameters values, a double scroll Chua attractor, a chaotic attractor of the family of the Chua's circuit attractors. In all the simulations instead of controlling the whole state space, only two state variables have been fed back. Good results in terms of settling time (namely, the period in which the map learns the control task) and steady state errors have been obtained with a few neurons. The Motor Map based adaptive controller offers high performances, specially in the case when the reference trajectory is switched into another one. In this case, a specialization of the neurons constituting the Motor Map is observed: while a group of neurons learns the appropriate control law for a reference trajectory, another group specializes itself to control the system when the other trajectory is used as a reference. A discrete components electronic realization of the Motor Map is presented and experimental results

  6. Chaos control by using Motor Maps.

    PubMed

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia

    2002-09-01

    In this paper a new method for chaos control is proposed, consisting of an unsupervised neural network, namely a Motor Map. In particular a feedback entrainment scheme is adopted: a chaotic system with a given parameter set generates the reference trajectory for another chaotic system with different parameters to be controlled: the Motor Map is required to provide the appropriate time-varying gain value for the feedback signal. The state of the controlled system is considered as input to the Motor Map. Particular efforts have been paid to the feasibility of the implementation. Indeed, the simulations performed have been oriented to design a Motor Map suitable for an hardware realization, thus some restrictive hypotheses, such as for example a low number of neurons, have been assumed. A huge number of simulations has been carried out by considering as system to be controlled a Double Scroll Chua Attractor as well as other chaotic attractors. Several reference trajectories have also been considered: a limit cycle generated by a Chua's circuit with different parameters values, a double scroll Chua attractor, a chaotic attractor of the family of the Chua's circuit attractors. In all the simulations instead of controlling the whole state space, only two state variables have been fed back. Good results in terms of settling time (namely, the period in which the map learns the control task) and steady state errors have been obtained with a few neurons. The Motor Map based adaptive controller offers high performances, specially in the case when the reference trajectory is switched into another one. In this case, a specialization of the neurons constituting the Motor Map is observed: while a group of neurons learns the appropriate control law for a reference trajectory, another group specializes itself to control the system when the other trajectory is used as a reference. A discrete components electronic realization of the Motor Map is presented and experimental results

  7. Chaos, dynamical structure, and climate variability

    SciTech Connect

    Stewart, H.B.

    1996-06-01

    Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. Techniques for identifying deterministic chaos from observed data, without recourse to mathematical models, are being developed. Powerful methods exist for reconstructing multidimensional phase space from an observed time series of a single scalar variable; these methods are invaluable when only a single scalar record of the dynamics is available. However in some applications multiple concurrent time series may be available for consideration as phase space coordinates. Here we propose some basic analytical tools for such multichannel time series data, and illustrate them by applications to a simple synthetic model of chaos, to a low-order model of atmospheric circulation, and to two high-resolution paleoclimate proxy data series. {copyright} {ital 1996 American Institute of Physics.}

  8. Rotation of an oblate satellite: Chaos control

    NASA Astrophysics Data System (ADS)

    Tarnopolski, M.

    2017-10-01

    Aims: This paper investigates the chaotic rotation of an oblate satellite in the context of chaos control. Methods: A model of planar oscillations, described with the Beletskii equation, was investigated. The Hamiltonian formalism was utilized to employ a control method for suppressing chaos. Results: An additive control term, which is an order of magnitude smaller than the potential, is constructed. This allows not only for significantly diminished diffusion of the trajectory in the phase space, but turns the purely chaotic motion into strictly periodic motion.

  9. The uncertainty principle and quantum chaos

    NASA Technical Reports Server (NTRS)

    Chirikov, Boris V.

    1993-01-01

    The conception of quantum chaos is described in some detail. The most striking feature of this novel phenomenon is that all the properties of classical dynamical chaos persist here but, typically, on the finite and different time scales only. The ultimate origin of such a universal quantum stability is in the fundamental uncertainty principle which makes discrete the phase space and, hence, the spectrum of bounded quantum motion. Reformulation of the ergodic theory, as a part of the general theory of dynamical systems, is briefly discussed.

  10. Signatures of chaos in the Brillouin zone

    NASA Astrophysics Data System (ADS)

    Barr, Aaron; Barr, Ariel; Porter, Max D.; Reichl, Linda E.

    2017-10-01

    When the classical dynamics of a particle in a finite two-dimensional billiard undergoes a transition to chaos, the quantum dynamics of the particle also shows manifestations of chaos in the form of scarring of wave functions and changes in energy level spacing distributions. If we "tile" an infinite plane with such billiards, we find that the Bloch states on the lattice undergo avoided crossings, energy level spacing statistics change from Poisson-like to Wigner-like, and energy sheets of the Brillouin zone begin to "mix" as the classical dynamics of the billiard changes from regular to chaotic behavior.

  11. Problems with Chaos in String Cosmology

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Mariusz P.

    I review the main ideas of the pre-big-bang cosmology scenario emphasizing the role of different boundary conditions in comparison to the standard ones which appear in quantum cosmology. My main issue is duality symmetry - a very general feature of string theory - and its role in suppressing chaos in Bianchi type IX "Mixmaster" universes within the framework of the tree-level low-energy-effectiveactions for strings. Finally, I discuss the ways to possibly `generate' chaos in string cosmology by admitting dilaton potential/massive string modes, more spacetime dimensions or nonlinear Yang-Mills-Lorentz-Chern-Simons terms into the action.

  12. Stochastic Representation of Chaos using Terminal Attractors

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2005-01-01

    A nonlinear version of the Liouville equation based upon terminal attractors is proposed for describing post-instability motions of dynamical systems with exponential divergence of trajectories such as those leading to chaos and turbulence. As a result, the post-instability motions are represented by expectations, variances, and higher moments of the state variables as functions of time. The proposed approach can be applied to conservative chaos, and in particular, to n-bodies problem, as well as to dissipative systems, and in particular, to chaotic attractors and turbulence.

  13. Quantum chaos and thermalization in gapped systems

    SciTech Connect

    Rigol, Marcos; Santos, Lea F.

    2010-07-15

    We investigate the onset of thermalization and quantum chaos in finite one-dimensional gapped systems of hard-core bosons. Integrability in these systems is broken by next-nearest-neighbor repulsive interactions, which also generate a superfluid to insulator transition. By employing full exact diagonalization, we study chaos indicators and few-body observables. We show that with increasing system size, chaotic behavior is seen over a broader range of parameters and, in particular, deeper into the insulating phase. Concomitantly, we observe that, as the system size increases, the eigenstate thermalization hypothesis extends its range of validity inside the insulating phase and is accompanied by the thermalization of the system.

  14. Quantum chaos on a critical Fermi surface.

    PubMed

    Patel, Aavishkar A; Sachdev, Subir

    2017-02-21

    We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of [Formula: see text] species of fermions at nonzero density coupled to a [Formula: see text] gauge field in two spatial dimensions and determine the Lyapunov rate and the butterfly velocity in an extended random-phase approximation. The thermal diffusivity is found to be universally related to these chaos parameters; i.e., the relationship is independent of [Formula: see text], the gauge-coupling constant, the Fermi velocity, the Fermi surface curvature, and high-energy details.

  15. An introduction to chaos theory in CFD

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    1990-01-01

    The popular subject 'chaos theory' has captured the imagination of a wide variety of scientists and engineers. CFD has always been faced with nonlinear systems and it is natural to assume that nonlinear dynamics will play a role at sometime in such work. This paper will attempt to introduce some of the concepts and analysis procedures associated with nonlinear dynamics theory. In particular, results from computations of an airfoil at high angle of attack which exhibits a sequence of bifurcations for single frequency unsteady shedding through period doublings cascading into low dimensional chaos are used to present and demonstrate various aspects of nonlinear dynamics in CFD.

  16. Low-dimensional chaos in turbulence

    NASA Technical Reports Server (NTRS)

    Vastano, John A.

    1989-01-01

    Direct numerical simulations are being performed on two different fluid flows in an attempt to discover the mechanism underlying the transition to turbulence in each. The first system is Taylor-Couette flow; the second, two-dimensional flow over an airfoil. Both flows exhibit a gradual transition to high-dimensional turbulence through low-dimensional chaos. The hope is that the instabilities leading to chaos will be easier to relate to physical processes in this case, and that the understanding of these mechanisms can then be applied to a wider array of turbulent systems.

  17. Conservative spatial chaos of buckled elastic linkages.

    PubMed

    Kocsis, Attila; Károlyi, György

    2006-09-01

    Buckling of an elastic linkage under general loading is investigated. We show that buckling is related to an initial value problem, which is always a conservative, area-preserving mapping, even if the original static problem is nonconservative. In some special cases, we construct the global bifurcation diagrams, and argue that their complicated structure is a consequence of spatial chaos. We characterize spatial chaos by the associated initial value problem's topological entropy, which turns out to be related to the number of buckled configurations.

  18. Quantum chaos on a critical Fermi surface

    PubMed Central

    Patel, Aavishkar A.

    2017-01-01

    We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of N species of fermions at nonzero density coupled to a U(1) gauge field in two spatial dimensions and determine the Lyapunov rate and the butterfly velocity in an extended random-phase approximation. The thermal diffusivity is found to be universally related to these chaos parameters; i.e., the relationship is independent of N, the gauge-coupling constant, the Fermi velocity, the Fermi surface curvature, and high-energy details. PMID:28174270

  19. Chaos in an imperfectly premixed model combustor

    SciTech Connect

    Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  20. AIDS in India: constructive chaos?

    PubMed

    Chatterjee, A

    1991-08-01

    Until recently, the only sustained AIDS activity in India has been alarmist media attention complemented by occasional messages calling for comfort and dignity. Public perception of the AIDS epidemic in India has been effectively shaped by mass media. Press reports have, however, bolstered awareness of the problem among literate elements of urban populations. In the absence of sustained guidance in the campaign against AIDS, responsibility has fallen to voluntary health activists who have become catalysts for community awareness and participation. This voluntary initiative, in effect, seems to be the only immediate avenue for constructive public action, and signals the gradual development of an AIDS network in India. Proceedings from a seminar in Ahmedabad are discussed, and include plans for an information and education program targeting sex workers, health and communication programs for 150 commercial blood donors and their agents, surveillance and awareness programs for safer blood and blood products, and dialogue with the business community and trade unions. Despite the lack of coordination among volunteers and activists, every major city in India now has an AIDS group. A controversial bill on AIDS has ben circulating through government ministries and committees since mid-1989, a national AIDS committee exists with the Secretary of Health as its director, and a 3-year medium-term national plan exists for the reduction of AIDS and HIV infection and morbidity. UNICEF programs target mothers and children for AIDS awareness, and blood testing facilities are expected to be expanded. The article considers the present chaos effectively productive in forcing the Indian population to face up to previously taboo issued of sexuality, sex education, and sexually transmitted disease.

  1. Immune network behavior: Oscillations, chaos and stationary states

    SciTech Connect

    De Boer, R.J.; Perelson, A.S.; Kevrekidis, I.G.

    1994-04-01

    The authors report two types of behavior in models of immune networks. The typical behavior of simple models, which involve B cells only, consists of several coexisting steady states. Finite amplitude perturbations may cause the model to switch between different equilibria. The typical behavior of more realistic models, which involve both B cells and antibody, consists of autonomous oscillations and/or chaos. While steady-state behavior leads to easy interpretations in terms of immune memory, oscillatory behavior seems to be in better agreement with experimental data obtained in unimmunized animals. The stability of the steady states, and the structure and interactions of the stable and unstable manifolds of the saddle-type equilibria turn out to be factors influencing the model`s behavior. Whether or not the model is able to attain any form of sustained oscillatory behavior, i.e., limit cycles or chaos, seems to be determined by (global) bifurcations involving the stable and unstable manifolds of the steady states.

  2. Chaos based crossover and mutation for securing DICOM image.

    PubMed

    Ravichandran, Dhivya; Praveenkumar, Padmapriya; Balaguru Rayappan, John Bosco; Amirtharajan, Rengarajan

    2016-05-01

    This paper proposes a novel encryption scheme based on combining multiple chaotic maps to ensure the safe transmission of medical images. The proposed scheme uses three chaotic maps namely logistic, tent and sine maps. To achieve an efficient encryption, the proposed chao-cryptic system employs a bio-inspired crossover and mutation units to confuse and diffuse the Digital Imaging and Communications in Medicine (DICOM) image pixels. The crossover unit extensively permutes the image pixels row-wise and column-wise based on the chaotic key streams generated from the Combined Logistic-Tent (CLT) system. Prior to mutation, the pixels of the crossed over image are decomposed into two images with reduced bit depth. The decomposed images are then mutated by XOR operation with quantized chaotic sequences from Combined Logistic-Sine (CLS) system. In order to validate the sternness of the proposed algorithm, the developed chao-cryptic scheme is subjected to various security analyses such as statistical, differential, key space, key sensitivity, intentional cropping attack and chosen plaintext attack analyses. The experimental results prove the proposed DICOM cryptosystem has achieved a desirable amount of protection for real time medical image security applications.

  3. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  4. Order, chaos and nuclear dynamics: An introduction

    SciTech Connect

    Swiatecki, W.J.

    1990-08-01

    This is an introductory lecture illustrating by simple examples the anticipated effect on collective nuclear dynamics of a transition from order to chaos in the motions of nucleons inside an idealized nucleus. The destruction of order is paralleled by a transition from a rubber-like to a honey-like behaviour of the independent-particle nuclear model. 10 refs., 6 figs.

  5. Neural control: Chaos control sets the pace

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2010-03-01

    Even simple creatures, such as cockroaches, are capable of complex responses to changes in their environment. But robots usually require complicated dedicated control circuits to perform just a single action. Chaos control theory could allow simpler control strategies to realize more complex behaviour.

  6. Probability Simulations by Non-Lipschitz Chaos

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices. Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  7. Chao Formalism and Kondratenko Crossing Tests

    SciTech Connect

    Raymond, R. S.; Chao, A. W.; Krisch, A. D.; Leonova, M. A.; Morozov, V. S.; Sivers, D. W.; Wong, V. K.; Gebel, R.; Lehrach, A.; Lorentz, B.; Maier, R.; Prasuhn, D.; Schnase, A.; Stockhorst, H.; Hinterberger, F.; Ulbrich, K.; Kondratenko, A. M.

    2007-06-13

    We recently started testing Chao's proposed new matrix formalism for describing the spin dynamics due to a single spin resonance; this seems to be the first generalization of the Froissart-Stora equation since it was published in 1960. The Chao matrix formalism allows one to calculate analytically the polarization's behavior inside a resonance, which is not possible using the Froissart-Stora equation. We recently tested some Chao formalism predictions using a 1.85 GeV/c polarized deuteron beam stored in COSY. We swept an rf dipole's frequency through 200 Hz while varying the distance from the sweep's end frequency to an rf-induced spin resonance's central frequency. While the Froissart-Stora formula can make no prediction in this case, the data seem to support the Chao formalism.We also started investigating the new Kondratenko method to preserve beam polarization during a spin resonance crossing; the method uses 3 rapid changes of the crossing rate near the resonance. With a proper choice of crossing parameters, Kondratenko Crossing may better preserve the polarization than simple fast crossing. We tested Kondratenko's idea using 2.1 GeV/c polarized protons stored in COSY; the frequency of a ferrite rf dipole was swept though an rf-induced spin resonance using Kondratenko's crossing shape. We have not yet observed a significant advantage of Kondratenko Crossing over simple fast crossing. We plan to study it further by choosing better crossing parameters and a smaller momentum spread.

  8. Chaos in Practice: Techniques for Career Counsellors

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.; Bright, Jim

    2005-01-01

    The chaos theory of careers emphasises continual change, the centrality and importance of chance events, the potential of minor events to have disproportionately large impacts on subsequent events, and the capacity for dramatic phase shifts in career behaviour. This approach challenges traditional approaches to career counselling, assumptions…

  9. A Framework for Chaos Theory Career Counselling

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.

    2010-01-01

    Theory in career development counselling provides a map that counsellors can use to understand and structure the career counselling process. It also provides a means to communicate this understanding and structuring to their clients as part of the counselling intervention. The chaos theory of careers draws attention to the complexity,…

  10. Chaos in atmospheric-pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Iza, F.; Janson, N. B.; Kong, M. G.

    2012-06-01

    We report detailed characterization of a low-temperature atmospheric-pressure plasma jet that exhibits regimes of periodic, quasi-periodic and chaotic behaviors. Power spectra, phase portraits, stroboscopic section and bifurcation diagram of the discharge current combine to comprehensively demonstrate the existence of chaos, and this evidence is strengthened with a nonlinear dynamics analysis using two control parameters that maps out periodic, period-multiplication, and chaotic regimes over a wide range of the input voltage and gas flow rate. In addition, optical emission signatures of excited plasma species are used as the second and independent observable to demonstrate the presence of chaos and period-doubling in both the concentrations and composition of plasma species, suggesting a similar array of periodic, quasi-periodic and chaotic regimes in plasma chemistry. The presence of quasi-periodic and chaotic regimes in structurally unbounded low-temperature atmospheric plasmas not only is important as a fundamental scientific topic but also has interesting implications for their numerous applications. Chaos may be undesirable for industrial applications where cycle-to-cycle reproducibility is important, yet for treatment of cell-containing materials including living tissues it may offer a novel route to combat some of the major challenges in medicine such as drug resistance. Chaos in low-temperature atmospheric plasmas and its effective control are likely to open up new vistas for medical technologies.

  11. Integrability and Chaos: The Classical Uncertainty

    ERIC Educational Resources Information Center

    Masoliver, Jaume; Ros, Ana

    2011-01-01

    In recent years there has been a considerable increase in the publishing of textbooks and monographs covering what was formerly known as random or irregular deterministic motion, now referred to as deterministic chaos. There is still substantial interest in a matter that is included in many graduate and even undergraduate courses on classical…

  12. Deterministic representation of chaos in classical dynamics

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1985-01-01

    Chaos in an Anosov-type mechanical system is eliminated by referring the governing equations to a specially selected rapidly oscillating (non-inertial) frame of reference in which the stabilization effect is caused by inertia forces. The result is generalized to any orbitally unstable mechanical system.

  13. Chaos, Collaboration, and Curriculum: A Deliberative Process.

    ERIC Educational Resources Information Center

    Goff, Katherine E.

    1998-01-01

    Presents curriculum as a complex social process. Explores chaos theory as a metaphor for understanding curriculum and a framework for viewing the curriculum-development process. Provides examples of collaborative leadership (described by David Chrislip and Carl Larson) and shows how they might answer Joseph Schwab's call for a deliberative…

  14. Criticality and Chaos in Systems of Communities

    NASA Astrophysics Data System (ADS)

    Ostilli, Massimo; Figueiredo, Wagner

    2016-01-01

    We consider a simple model of communities interacting via bilinear terms. After analyzing the thermal equilibrium case, which can be described by an Hamiltonian, we introduce the dynamics that, for Ising-like variables, reduces to a Glauber-like dynamics. We analyze and compare four different versions of the dynamics: flow (differential equations), map (discretetime dynamics), local-time update flow, and local-time update map. The presence of only bilinear interactions prevent the flow cases to develop any dynamical instability, the system converging always to the thermal equilibrium. The situation is different for the map when unfriendly couplings are involved, where period-two oscillations arise. In the case of the map with local-time updates, oscillations of any period and chaos can arise as a consequence of the reciprocal “tension” accumulated among the communities during their sleeping time interval. The resulting chaos can be of two kinds: true chaos characterized by positive Lyapunov exponent and bifurcation cascades, or marginal chaos characterized by zero Lyapunov exponent and critical continuous regions.

  15. Chaos Theory for the Practical Military Mind

    DTIC Science & Technology

    1997-03-01

    01MAR1997 Report Type N/A Dates Covered (from... to) - Title and Subtitle Chaos Theory for the Practical Military Mind Contract Number Grant Number...military professional is a practically- minded individual. This is not, stereotypes aside, the result of an inflexible, unimaginative nature, but comes

  16. Integrability and Chaos: The Classical Uncertainty

    ERIC Educational Resources Information Center

    Masoliver, Jaume; Ros, Ana

    2011-01-01

    In recent years there has been a considerable increase in the publishing of textbooks and monographs covering what was formerly known as random or irregular deterministic motion, now referred to as deterministic chaos. There is still substantial interest in a matter that is included in many graduate and even undergraduate courses on classical…

  17. Control and synchronization of spatiotemporal chaos.

    PubMed

    Ahlborn, Alexander; Parlitz, Ulrich

    2008-01-01

    Chaos control methods for the Ginzburg-Landau equation are presented using homogeneously, inhomogeneously, and locally applied multiple delayed feedback signals. In particular, it is shown that a small number of control cells is sufficient for stabilizing plane waves or for trapping spiral waves, and that successful control is closely connected to synchronization of the dynamics in regions close to the control cells.

  18. Chaos Theory in the Arts and Design.

    ERIC Educational Resources Information Center

    McWhinnie, Harold J.

    This paper explores questions associated with chaos theory as it relates to problems in the arts. It reviews the work of several scholars including Minai, Eckersley, Pickover, the Kirsches, and the Molnars. The document directs special attention toward three basic areas in art and design education, which are: (1) the integration of the computer…

  19. Chaos: Connecting Science and the Humanities

    ERIC Educational Resources Information Center

    Lagan, Seamus; Paddy, David

    2005-01-01

    We describe a team-taught course entitled Chaos in Science and Literature. Our course goals were to place science in a nontechnological context, emphasizing its intellectual and cultural aspects, and to provide a forum for the exchange of ideas between "scientists" and "humanists," with the authors serving as role models. (Contains 4 figures.)

  20. Deterministic representation of chaos in classical dynamics

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1985-01-01

    Chaos in an Anosov-type mechanical system is eliminated by referring the governing equations to a specially selected rapidly oscillating (non-inertial) frame of reference in which the stabilization effect is caused by inertia forces. The result is generalized to any orbitally unstable mechanical system.

  1. Controlling chaos to solutions with complex eigenvalues.

    PubMed

    Kwon, Oh-Jong; Lee, Hoyun

    2003-02-01

    We derive formulas for parameter and variable perturbations to control chaos using linearized dynamics. They are available irrespective of the dimension of the system, the number of perturbed parameters or variables, and the kinds of eigenvalues of the linearized dynamics. We illustrate this using the two coupled Duffing oscillators and the two coupled standard maps.

  2. [Chaos theory: a fascinating concept for oncologists].

    PubMed

    Denis, F; Letellier, C

    2012-05-01

    The oncologist is confronted daily by questions related to the fact that any patient presents a specific evolution for his cancer: he is challenged by very different, unexpected and often unpredictable outcomes, in some of his patients. The mathematical approach used today to describe this evolution has recourse to statistics and probability laws: such an approach does not ultimately apply to one particular patient, but to a given more or less heterogeneous population. This approach therefore poorly characterizes the dynamics of this disease and does not allow to state whether a patient is cured, to predict if he will relapse and when this could occur, and in what form, nor to predict the response to treatment and, in particular, to radiation therapy. Chaos theory, not well known by oncologists, could allow a better understanding of these issues. Developed to investigate complex systems producing behaviours that cannot be predicted due to a great sensitivity to initial conditions, chaos theory is rich of suitable concepts for a new approach of cancer dynamics. This article is three-fold: to provide a brief introduction to chaos theory, to clarify the main connecting points between chaos and carcinogenesis and to point out few promising research perspectives, especially in radiotherapy.

  3. Classical chaos in atom-field systems.

    PubMed

    Chávez-Carlos, J; Bastarrachea-Magnani, M A; Lerma-Hernández, S; Hirsch, J G

    2016-08-01

    The relation between the onset of chaos and critical phenomena, like quantum phase transitions (QPTs) and excited-state quantum phase transitions (ESQPTs), is analyzed for atom-field systems. While it has been speculated that the onset of hard chaos is associated with ESQPTs based in the resonant case, the off-resonant cases, and a close look at the vicinity of the QPTs in resonance, show clearly that both phenomena, ESQPTs and chaos, respond to different mechanisms. The results are supported in a detailed numerical study of the dynamics of the semiclassical Hamiltonian of the Dicke model. The appearance of chaos is quantified calculating the largest Lyapunov exponent for a wide sample of initial conditions in the whole available phase space for a given energy. The percentage of the available phase space with chaotic trajectories is evaluated as a function of energy and coupling between the qubit and bosonic part, allowing us to obtain maps in the space of coupling and energy, where ergodic properties are observed in the model. Different sets of Hamiltonian parameters are considered, including resonant and off-resonant cases.

  4. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model

    PubMed Central

    Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus

    2016-01-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics. PMID:26465514

  5. Chaos and hyperchaos in simple gene network with negative feedback and time delays.

    PubMed

    Khlebodarova, Tamara M; Kogai, Vladislav V; Fadeev, Stanislav I; Likhoshvai, Vitaly A

    2016-11-29

    Today there are examples that prove the existence of chaotic dynamics at all levels of organization of living systems, except intracellular, although such a possibility has been theoretically predicted. The lack of experimental evidence of chaos generation at the intracellular level in vivo may indicate that during evolution the cell got rid of chaos. This work allows the hypothesis that one of the possible mechanisms for avoiding chaos in gene networks can be a negative evolutionary selection, which prevents fixation or realization of regulatory circuits, creating too mild, from the biological point of view, conditions for the emergence of chaos. It has been shown that one of such circuits may be a combination of negative autoregulation of expression of transcription factors at the level of their synthesis and degradation. The presence of such a circuit results in formation of multiple branches of chaotic solutions as well as formation of hyperchaos with equal and sufficiently low values of the delayed argument that can be implemented not only in eukaryotic, but in prokaryotic cells.

  6. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model

    NASA Astrophysics Data System (ADS)

    Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus

    2015-09-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics.

  7. Effect of chaos on plasma filament dynamics and turbulence in the scrape-off layer

    SciTech Connect

    Meyerson, D.; Waelbroeck, F.; Horton, W.; Michoski, C.

    2014-07-15

    Naturally occurring error fields as well as resonant magnetic perturbations applied for stability control are known to cause magnetic field-line chaos in the scrape-off layer (SOL) region of tokamaks. Here, 2D simulations with the BOUT++ simulation framework are used to investigate the effect of the field-line chaos on the SOL and in particular on its width and peak particle flux. The chaos enters the SOL dynamics only through the connection length, which is evaluated using a Poincaré map. The variation of experimentally relevant quantities, such as the SOL gradient length scale and the intermittency of the particle flux in the SOL, is described as a function of the strength of the magnetic perturbation. It is found that the effect of the chaos is to broaden the profile of the sheath-loss coefficient, which is proportional to the inverse connection length. That is, the SOL transport in a chaotic field is equivalent to that in a model where the sheath-loss coefficient is replaced by its average over the unperturbed flux surfaces. The model does not include the effects of chaotic features other than the parallel connection length.

  8. Effect of correction of aberration dynamics on chaos in human ocular accommodation.

    PubMed

    Hampson, Karen M; Cufflin, Matthew P; Mallen, Edward A H

    2013-11-15

    We used adaptive optics to determine the effect of monochromatic aberration dynamics on the level of chaos in the accommodation control system. Four participants viewed a stationary target while the dynamics of their aberrations were either left uncorrected, defocus was corrected, or all aberrations except defocus were corrected. Chaos theory analysis was used to discern changes in the accommodative microfluctuations. We found a statistically significant reduction in the chaotic nature of the accommodation microfluctuations during correction of defocus, but not when all aberrations except defocus were corrected. The Lyapunov exponent decreased from 0.71 ± 0.07 D/s (baseline) to 0.55 ± 0.03 D/s (correction of defocus fluctuations). As the reduction of chaos in physiological signals is indicative of stress to the system, the results indicate that for the participants included in this study, fluctuations in defocus have a more profound effect than those of the other aberrations. There were no changes in the power spectrum between experimental conditions. Hence chaos theory analysis is a more subtle marker of changes in the accommodation control system and will be of value in the study of myopia onset and progression.

  9. Bringing Order to the Chaos

    PubMed Central

    Swanstrom, Lee L.; Park, Adrian; Arregui, Marty; Franklin, Morris; Smith, C Daniel; Blaney, Christina

    2006-01-01

    satisfaction with the process. Conclusion: The MISFC has been successful at realizing its goals of bringing order to the past chaos of the MIS and GI fellowship situation. Its current iteration, the Fellowship Council, is in the process of introducing an accreditation process to further ensure the highest quality of postgraduate training in the fields of GI and endoscopic surgery. PMID:16552191

  10. Iani Chaos in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image of a portion of the Iani Chaos region was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -2.6 Longitude 342.4 East (17.6 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The

  11. THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT

    SciTech Connect

    Lithwick, Yoram; Wu Yanqin

    2011-09-20

    We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the 'map of the mean momenta'), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within {approx}25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.

  12. Conference Resolution

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Since the first IUPAP International Conference on Women in Physics (Paris, March 2002) and the Second Conference (Rio de Janeiro, May 2005), progress has continued in most countries and world regions to attract girls to physics and advance women into leadership roles, and many working groups have formed. The Third Conference (Seoul, October 2008), with 283 attendees from 57 countries, was dedicated to celebrating the physics achievements of women throughout the world, networking toward new international collaborations, building each participant's capacity for career success, and aiding the formation of active regional working groups to advance women in physics. Despite the progress, women remain a small minority of the physics community in most countries.

  13. The 8th International Conference on Highly Frustrated Magnetism (HFM 2016)

    NASA Astrophysics Data System (ADS)

    Gardner, J. S.; Kao, Y. J.

    2017-04-01

    The 8th International Conference on Highly Frustrated Magnetism 2016 (HFM 2016) took place between the 7th and 11th of September 2016 at the GIS Convention Center at National Taiwan University, Taipei, Taiwan. Over 260 participants from all over the world, attended the meeting making it the largest HFM to-date and revealing the impressive growth in the community since the original meeting in Waterloo, Canada where 80 participants attended. Preceding the meeting a school was held at the National Synchrotron Radiation Research Center to help those new to the field understand the material they were likely to see at HFM2016. Our thanks to the international speakers who attended this school John Chalker, Michel Kenzelmann, Philippe Mendels, Luigi Paolasini, Kirrily Rule, Yixi Su, Isao Watanabe and those from Taiwan W. T. Chen, Y-J, Kao, L. J. Chang and C. S. Ku, for their enlightening presentations. The HFM 2016 conference consisted of five plenary talks by H Takagi, B D Gaulin, L Balents, Y Tokura and S T Bramwell, 20 invited and 40 contributed presentations, and about 160 poster presentations from all aspects of theoretical and experimental frustrated magnetism. During the conference period, many stimulating discussions were held both inside and outside the conference room. Excursions to Taipei 101 and the National Palace Museum, as well as several organized dinners and receptions allowed the participants to initiate collaborations and discuss the hottest issues. The subjects covered in the conference included: · Quantum frustrated magnetism and spin liquids · Novel ordering of geometrically frustrated magnets · Frustration effect on the coupling to lattice, orbital and charge degrees of freedom · Exotic phenomena induced by macroscopic degeneracy · Field effect on frustrated magnetism etc. These proceeding represent a very small, but valuable contribution to the community. I hope you enjoy reading them. In view of the rapid growth of the field, it has been

  14. Chaos in the pulse spacing of passive Q-switched all-solid-state lasers.

    PubMed

    Kovalsky, Marcelo; Hnilo, Alejandro

    2010-10-15

    We report the experimental and theoretical verification that, in a diode-pumped Nd:YAG+Cr:YAGQ-switched laser, the instabilities in the pulse spacing ("jitter") are ruled by low-dimensional deterministic chaos. From our experimental time series, we determine the embedding and fractal dimensions of the attractor, as well as the values of the Lyapunov exponents. We also present a simplified theoretical description in terms of a map of the same universality class as the logistic map, which explains the bifurcations' cascade and the period-three window of stability observed. The achieved characterization of the dynamics and its main parameters opens a door to effective ways to reduce the jitter, which is of practical interest, through mechanisms of control of chaos. Conversely, the difficulty in the prediction of the interpulse spacing makes this system attractive for high power, robust FM chaotic laser cryptography in free-space propagation.

  15. Biomedical Conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    As a result of Biomedical Conferences, Vivo Metric Systems Co. has produced cardiac electrodes based on NASA technology. Frequently in science, one highly specialized discipline is unaware of relevant advances made in other areas. In an attempt to familiarize researchers in a variety of disciplines with medical problems and needs, NASA has sponsored conferences that bring together university scientists, practicing physicians and manufacturers of medical instruments.

  16. Public-channel cryptography based on mutual chaos pass filters.

    PubMed

    Klein, Einat; Gross, Noam; Kopelowitz, Evi; Rosenbluh, Michael; Khaykovich, Lev; Kinzel, Wolfgang; Kanter, Ido

    2006-10-01

    We study the mutual coupling of chaotic lasers and observe both experimentally and in numeric simulations that there exists a regime of parameters for which two mutually coupled chaotic lasers establish isochronal synchronization, while a third laser coupled unidirectionally to one of the pair does not synchronize. We then propose a cryptographic scheme, based on the advantage of mutual coupling over unidirectional coupling, where all the parameters of the system are public knowledge. We numerically demonstrate that in such a scheme the two communicating lasers can add a message signal (compressed binary message) to the transmitted coupling signal and recover the message in both directions with high fidelity by using a mutual chaos pass filter procedure. An attacker, however, fails to recover an errorless message even if he amplifies the coupling signal.

  17. Drift waves and chaos in a LAPTAG plasma physics experiment

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam

    2016-02-01

    In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.

  18. Mechanisms of Extensive Chaos in Rayleigh-Bénard Convection

    NASA Astrophysics Data System (ADS)

    Egolf, David A.; Matter, Condensed; Physics, Thermal; Melnikov, Ilarion V.; Pesch, Werner; Ecke, Robert E.

    2000-11-01

    We report studies of the mechanism for the generation of chaotic disorder in a phenomenon found in nature, Rayleigh-Bénard convection (RBC), in a regime exhaustively studied experimentally. By studying the detailed space-time evolution of the dynamical degrees of freedom, we find that the Spiral Defect Chaos (SDC) state of RBC is spatially- and temporally- localized to defect creation/annihilation events (D.A. Egolf, I.V. Melnikov, W. Pesch, and R.E. Ecke, Nature), 404:733--736, 2000., and we elucidate how these divergent, but very brief, events lead to eventual macroscopic differences between initially similar flow patterns. We also demonstrate that SDC is extensively chaotic, in that the number of dynamical degrees of freedom (the fractal dimension) is proportional to the system size, suggesting the possibility for a hydrodynamic-like description of the long-wavelength properties of SDC.

  19. Chaos control by electric current in an enzymatic reaction.

    PubMed

    Lekebusch, A; Förster, A; Schneider, F W

    1996-09-01

    We apply the continuous delayed feedback method of Pyragas to control chaos in the enzymatic Peroxidase-Oxidase (PO) reaction, using the electric current as the control parameter. At each data point in the time series, a time delayed feedback function applies a small amplitude perturbation to inert platinum electrodes, which causes redox processes on the surface of the electrodes. These perturbations are calculated as the difference between the previous (time delayed) signal and the actual signal. Unstable periodic P1, 1(1), and 1(2) orbits (UPOs) were stabilized in the CSTR (continuous stirred tank reactor) experiments. The stabilization is demonstrated by at least three conditions: A minimum in the experimental dispersion function, the equality of the delay time with the period of the stabilized attractor and the embedment of the stabilized periodic attractor in the chaotic attractor.

  20. Different routes to chaos in the Ti:sapphire laser

    SciTech Connect

    Kovalsky, Marcelo G.; Hnilo, Alejandro A.

    2004-10-01

    Kerr-lens mode-locked, femtosecond Ti:sapphire lasers can operate in two coexistent pulsed modes of operation, named P1 (transform limited output pulses) and P2 (chirped output pulses). We study, both theoretically and experimentally, the transition to chaotic behavior for each of these two modes of operation as the net intracavity group velocity dispersion parameter approaches to zero. We find that P1 reaches chaos through a quasiperiodic route, while P2 does it through intermittency. The modulation frequencies involved, the size of the transition regions in the parameter's space, and the embedding and correlation dimensions of the attractors (and also the kurtosis for the intermittent regime) are theoretically predicted and also measured, showing a satisfactory agreement. We consider that this finding of a low-dimensional system of widespread practical use with (at least) two coexistent chaotic scenarios will have a broad impact on the studies on nonlinear dynamics.

  1. Simulation of chaos-assisted tunneling in a semiclassical regime on existing quantum computers

    SciTech Connect

    Chepelianskii, A.D.; Shepelyansky, D.L.

    2002-11-01

    We present a quantum algorithm that allows one to simulate chaos-assisted tunneling in deep semiclassical regime on existing quantum computers. This opens additional possibilities for investigation of macroscopic quantum tunneling and realization of semiclassical Schroedinger cat oscillations [E. Schroedinger, Naturwissenschaften 32, 807 (1935)]. Our numerical studies determine the decoherence rate induced by noisy gates for these oscillations and propose a suitable parameter regime for their experimental implementation.

  2. [Chaos and fractals and their applications in electrocardial signal research].

    PubMed

    Jiao, Qing; Guo, Yongxin; Zhang, Zhengguo

    2009-06-01

    Chaos and fractals are ubiquitous phenomena of nature. A system with fractal structure usually behaves chaos. As a complicated nonlinear dynamics system, heart has fractals structure and behaves as chaos. The deeper inherent mechanism of heart can be opened out when the chaos and fractals theory is utilized in the research of the electrical activity of heart. Generally a time series of a system was used for describing the status of the strange attractor of the system. The indices include Poincare plot, fractals dimension, Lyapunov exponent, entropy, scaling exponent, Hurst index and so on. In this article, the basic concepts and the methods of chaos and fractals were introduced firstly. Then the applications of chaos and fractals theories in the study of electrocardial signal were expounded with example of how they are used for ventricular fibrillation.

  3. Optomechanically induced stochastic resonance and chaos transfer between optical fields

    NASA Astrophysics Data System (ADS)

    Monifi, Faraz; Zhang, Jing; Özdemir, Şahin Kaya; Peng, Bo; Liu, Yu-Xi; Bo, Fang; Nori, Franco; Yang, Lan

    2016-06-01

    Chaotic dynamics has been reported in many physical systems and has affected almost every field of science. Chaos involves hypersensitivity to the initial conditions of a system and introduces unpredictability into its output. Thus, it is often unwanted. Interestingly, the very same features make chaos a powerful tool to suppress decoherence, achieve secure communication and replace background noise in stochastic resonance—a counterintuitive concept that a system's ability to transfer information can be coherently amplified by adding noise. Here, we report the first demonstration of chaos-induced stochastic resonance in an optomechanical system, as well as the optomechanically mediated chaos transfer between two optical fields such that they follow the same route to chaos. These results will contribute to the understanding of nonlinear phenomena and chaos in optomechanical systems, and may find applications in the chaotic transfer of information and for improving the detection of otherwise undetectable signals in optomechanical systems.

  4. 2008 Gordon Research Conference on Catalysis [Conference summary report

    SciTech Connect

    Soled, Stuart L.; Gray, Nancy Ryan

    2009-01-01

    The GRC on Catalysis is one of the most prestigious catalysis conferences as it brings together leading researchers from around the world to discuss their latest, most exciting work in catalysis. The 2008 conference will continue this tradition. The conference will cover a variety of themes including new catalytic materials, theoretical and experimental approaches to improve understanding of kinetics and transport phenomena, and state of the art nanoscale characterization probes to monitor active sites. The conference promotes interactions among established researchers and young scientists. It provides a venue for students to meet, talk to and learn from some of the world leading researchers in the area. It also gives them a platform for displaying their own work during the poster sessions. The informal nature of the meeting, excellent quality of the presentations and posters, and ability to meet many outstanding colleagues makes this an excellent conference.

  5. Temperature Chaos in Some Spherical Mixed p-Spin Models

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Kuo; Panchenko, Dmitry

    2017-03-01

    We give two types of examples of the spherical mixed even- p-spin models for which chaos in temperature holds. These complement some known results for the spherical pure p-spin models and for models with Ising spins. For example, in contrast to a recent result of Subag who showed absence of chaos in temperature in the spherical pure p-spin models for p≥3, we show that even a smaller order perturbation induces temperature chaos.

  6. Proceedings of the Third International Conference on Experimental Research in Televised Instruction. Memorial University of Newfoundland (Newfoundland, Canada, August 25-27, 1980).

    ERIC Educational Resources Information Center

    Baggaley, Jon, Ed.

    The 11 papers in this collection focus on research in instructional television, the theme of a conference attended by media producers, researchers, and policy makers from Australia, Britain, Canada, France, West Germany, the Netherlands, South Africa, and the United States. The opening paper by Deane Hutton discusses two parallel but contrasting…

  7. Experimental Research in TV Instruction. Proceedings of an International Conference (5th, St. John's, Newfoundland, June 28-30, 1982). Volume 5.

    ERIC Educational Resources Information Center

    Baggaley, Jon, Ed.; Janega, Patti, Ed.

    An introduction briefly summarizes the four previous conferences in this series, identifies trends in topics addressed, and introduces the 16 presented papers in this collection. The papers are as follows: (1) "Formative Evaluation and the New Technologies" (Marjorie Cambre); (2) "Formative Evaluation of Sesame Street Using Eye…

  8. Experimental Research in TV Instruction. Proceedings of an International Conference (4th, St. John's, Newfoundland, Canada, September 28-30, 1981). Volume 4.

    ERIC Educational Resources Information Center

    Baggaley, Jon, Ed.; Janega, Patti, Ed.

    An introduction by Jon Baggaley provides background information on this international conference and its participants, and introduces 10 papers which were presented. The papers are as follows: (1) "Teaching Production Research and Design: The Interface of Theory and Practice" (James M. Linton); (2) "The Impact of Television on…

  9. Experimental Research in TV Instruction. Proceedings of an International Conference (5th, St. John's, Newfoundland, June 28-30, 1982). Volume 5.

    ERIC Educational Resources Information Center

    Baggaley, Jon, Ed.; Janega, Patti, Ed.

    An introduction briefly summarizes the four previous conferences in this series, identifies trends in topics addressed, and introduces the 16 presented papers in this collection. The papers are as follows: (1) "Formative Evaluation and the New Technologies" (Marjorie Cambre); (2) "Formative Evaluation of Sesame Street Using Eye…

  10. Experimental Research in TV Instruction. Proceedings of an International Conference (2nd, St. John's, Newfoundland, Canada, June 21-23, 1979). [Volume 2.

    ERIC Educational Resources Information Center

    Baggaley, Jon, Ed.; Sharpe, Joan, Ed.

    A foreword by Arthur M. Sullivan and an introduction by Jon P. Baggaley introduce the 12 conference papers included in this collection. The papers are as follows: (1) "Research on 'Sesame Street': Designing the Educational Context" (Rodney Dennis); (2) "'Sesame Street' in Labrador" (Graham Skanes and Lorne Taylor); (3)…

  11. Experimental Research in TV Instruction. Proceedings of an International Conference (4th, St. John's, Newfoundland, Canada, September 28-30, 1981). Volume 4.

    ERIC Educational Resources Information Center

    Baggaley, Jon, Ed.; Janega, Patti, Ed.

    An introduction by Jon Baggaley provides background information on this international conference and its participants, and introduces 10 papers which were presented. The papers are as follows: (1) "Teaching Production Research and Design: The Interface of Theory and Practice" (James M. Linton); (2) "The Impact of Television on…

  12. Quantum chaos on a critical Fermi surface

    NASA Astrophysics Data System (ADS)

    Patel, Aavishkar A.; Sachdev, Subir

    2017-02-01

    We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of NN species of fermions at nonzero density coupled to a U(1)U(1) gauge field in two spatial dimensions and determine the Lyapunov rate and the butterfly velocity in an extended random-phase approximation. The thermal diffusivity is found to be universally related to these chaos parameters; i.e., the relationship is independent of NN, the gauge-coupling constant, the Fermi velocity, the Fermi surface curvature, and high-energy details.

  13. Polynomial chaos representation of databases on manifolds

    NASA Astrophysics Data System (ADS)

    Soize, C.; Ghanem, R.

    2017-04-01

    Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. The method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.

  14. Stochastic Representation of Chaos Using Terminal Attractors

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    A nonlinear version of the Liouville equation based on terminal attractors is part of a mathematical formalism for describing postinstability motions of dynamical systems characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism can be applied to both conservative systems (e.g., multibody systems in celestial mechanics) and dissipative systems (e.g., viscous fluids). The development of the present formalism was undertaken in an effort to remove positive Lyapunov exponents. The means chosen to accomplish this is coupling of the governing dynamical equations with the corresponding Liouville equation that describes the evolution of the flow of error probability. The underlying idea is to suppress the divergences of different trajectories that correspond to different initial conditions, without affecting a target trajectory, which is one that starts with prescribed initial conditions.

  15. Tuning quantum measurements to control chaos

    NASA Astrophysics Data System (ADS)

    Eastman, Jessica K.; Hope, Joseph J.; Carvalho, André R. R.

    2017-03-01

    Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes.

  16. Chaos in a Hydraulic Control Valve

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Hayase, T.; Kurahashi, T.

    1997-08-01

    In this paper we have studied the instability and chaos occurring in a pilot-type poppet valve circuit. The system consists of a poppet valve, an upstream plenum chamber, a supply pipeline and an orifice inserted between the pelnum and the pipeline. Although the poppet valve rests on the seat stably for a supply pressure lower than the cracking pressure, the circuit becomes unstable for an initial disturbance beyond a critical value and develops a self-excited vibration. In this unstable region, chaotic vibration appears at the period-doubling bifurcation. We have investigated the stability of the circuit and the chaotic phenomenon numerically, and elucidated it by power spectra, a bifurcation diagram and Lyapunov exponent calculations, showing that the phenomenon follows the Feigenbaum route to chaos.Copyright 1997 Academic Press Limited

  17. Chaos theory perspective for industry clusters development

    NASA Astrophysics Data System (ADS)

    Yu, Haiying; Jiang, Minghui; Li, Chengzhang

    2016-03-01

    Industry clusters have outperformed in economic development in most developing countries. The contributions of industrial clusters have been recognized as promotion of regional business and the alleviation of economic and social costs. It is no doubt globalization is rendering clusters in accelerating the competitiveness of economic activities. In accordance, many ideas and concepts involve in illustrating evolution tendency, stimulating the clusters development, meanwhile, avoiding industrial clusters recession. The term chaos theory is introduced to explain inherent relationship of features within industry clusters. A preferred life cycle approach is proposed for industrial cluster recessive theory analysis. Lyapunov exponents and Wolf model are presented for chaotic identification and examination. A case study of Tianjin, China has verified the model effectiveness. The investigations indicate that the approaches outperform in explaining chaos properties in industrial clusters, which demonstrates industrial clusters evolution, solves empirical issues and generates corresponding strategies.

  18. Tuning quantum measurements to control chaos

    PubMed Central

    Eastman, Jessica K.; Hope, Joseph J.; Carvalho, André R. R.

    2017-01-01

    Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes. PMID:28317933

  19. Poincaré chaos and unpredictable functions

    NASA Astrophysics Data System (ADS)

    Akhmet, Marat; Fen, Mehmet Onur

    2017-07-01

    The results of this study are continuation of the research of Poincaré chaos initiated in the papers (M. Akhmet and M.O. Fen, Commun Nonlinear Sci Numer Simulat 40 (2016) 1-5; M. Akhmet and M.O. Fen, Turk J Math, doi:10.3906/mat-1603-51, in press). We focus on the construction of an unpredictable function, continuous on the real axis. As auxiliary results, unpredictable orbits for the symbolic dynamics and the logistic map are obtained. By shaping the unpredictable function as well as Poisson function we have performed the first step in the development of the theory of unpredictable solutions for differential and discrete equations. The results are preliminary ones for deep analysis of chaos existence in differential and hybrid systems. Illustrative examples concerning unpredictable solutions of differential equations are provided.

  20. Quasiperiodicity and chaos in cardiac fibrillation.

    PubMed Central

    Garfinkel, A; Chen, P S; Walter, D O; Karagueuzian, H S; Kogan, B; Evans, S J; Karpoukhin, M; Hwang, C; Uchida, T; Gotoh, M; Nwasokwa, O; Sager, P; Weiss, J N

    1997-01-01

    In cardiac fibrillation, disorganized waves of electrical activity meander through the heart, and coherent contractile function is lost. We studied fibrillation in three stationary forms: in human chronic atrial fibrillation, in a stabilized form of canine ventricular fibrillation, and in fibrillation-like activity in thin sheets of canine and human ventricular tissue in vitro. We also created a computer model of fibrillation. In all four studies, evidence indicated that fibrillation arose through a quasiperiodic stage of period and amplitude modulation, thus exemplifying the "quasiperiodic transition to chaos" first suggested by Ruelle and Takens. This suggests that fibrillation is a form of spatio-temporal chaos, a finding that implies new therapeutic approaches. PMID:9005999

  1. Migraine--new perspectives from chaos theory.

    PubMed

    Kernick, D

    2005-08-01

    Converging from a number of disciplines, non-linear systems theory and in particular chaos theory offer new descriptive and prescriptive insights into physiological systems. This paper briefly reviews an approach to physiological systems from these perspectives and outlines how these concepts can be applied to the study of migraine. It suggests a wide range of potential applications including new approaches to classification, treatment and pathophysiological mechanisms. A hypothesis is developed that suggests that dysfunctional consequences can result from a mismatch between the complexity of the environment and the system that is seeking to regulate it and that the migraine phenomenon is caused by an incongruity between the complexity of mid brain sensory integration and cortical control networks. Chaos theory offers a new approach to the study of migraine that complements existing frameworks but may more accurately reflect underlying physiological mechanisms.

  2. Chaos synchronization of general complex dynamical networks

    NASA Astrophysics Data System (ADS)

    Lü, Jinhu; Yu, Xinghuo; Chen, Guanrong

    2004-03-01

    Recently, it has been demonstrated that many large-scale complex dynamical networks display a collective synchronization motion. Here, we introduce a time-varying complex dynamical network model and further investigate its synchronization phenomenon. Based on this new complex network model, two network chaos synchronization theorems are proved. We show that the chaos synchronization of a time-varying complex network is determined by means of the inner coupled link matrix, the eigenvalues and the corresponding eigenvectors of the coupled configuration matrix, rather than the conventional eigenvalues of the coupled configuration matrix for a uniform network. Especially, we do not assume that the coupled configuration matrix is symmetric and its off-diagonal elements are nonnegative, which in a way generalizes the related results existing in the literature.

  3. Temperature chaos is a non-local effect

    NASA Astrophysics Data System (ADS)

    Fernandez, L. A.; Marinari, E.; Martin-Mayor, V.; Parisi, G.; Yllanes, D.

    2016-12-01

    Temperature chaos plays a role in important effects, for example memory and rejuvenation, in spin glasses, colloids, polymers. We numerically investigate temperature chaos in spin glasses, exploiting its recent characterization as a rare-event driven phenomenon. The peculiarities of the transformation from periodic to anti-periodic boundary conditions in spin glasses allow us to conclude that temperature chaos is non-local: no bounded region of the system causes it. We precisely show the statistical relationship between temperature chaos and the free-energy changes upon varying boundary conditions.

  4. Photo-induced chaos in the Briggs-Rauscher reaction

    NASA Astrophysics Data System (ADS)

    Okazaki, Noriaki; Hanazaki, Ichiro

    1998-07-01

    Discovery of the photo-induced chaos in the Briggs-Rauscher system is reported. The chaotic oscillations were observed between the large- and the small-amplitude simple oscillatory states existent in low and high light intensity regions, respectively. Period-doubling sequence from the large-amplitude oscillations to the chaos was observed. Deterministic nature of the chaos was confirmed by the next-amplitude return map. The stretching and folding mechanism of the trajectories was revealed through the three-dimensional attractor reconstructed via the singular value decomposition method. The chemical origin of the photoinduced chaos is discussed based on the photoautocatalysis of HIO2.

  5. Problems with Lorenz's Modeling and the Algorithm of Chaos Doctrine

    NASA Astrophysics Data System (ADS)

    Ouyang, Shoucheng; Lin, Yi

    In this paper, we first discuss the problems that exist in the modeling used in Lorenz's chaos theory by employing formal mathematical logic and the underlying physical meanings. Then we analyze in detail the problems found in computing Lorenz's model by employing the commonly employed schemes of computational mathematics. Our results indicate that the resultant chaos doctrine is not the chaos that appears in the physical events as Lorenz described; instead it involves the error values of the mathematical differences of quasi-equal quantities, producing the apparent chaos. Therefore, the problem of how to comprehend indeterminacy emerges.

  6. Solitons in the midst of chaos

    SciTech Connect

    Seghete, Vlad; Menyuk, Curtis R.; Marks, Brian S.

    2007-10-15

    A system of coupled nonlinear Schroedinger equations describes pulse propagation in weakly birefringent optical fibers. Soliton solutions of this system are found numerically through the shooting method. We employ Poincare surface of section plots - a standard dynamical systems approach - to analyze the phase space behavior of these solutions and neighboring trajectories. Chaotic behavior around the solitons is apparent and suggests dynamical instability. A Lyapunov stability analysis confirms this result. Thus, solitons exist in the midst of chaos.

  7. Coherence and chaos in extended dynamical systems

    SciTech Connect

    Bishop, A.R.

    1994-12-31

    Coherence, chaos, and pattern formation are characteristic elements of the nonequilibrium statistical mechanics controlling mesoscopic order and disorder in many-degree-of-freedom nonlinear dynamical systems. Competing length scales and/or time scales are the underlying microscopic driving forces for many of these aspects of ``complexity.`` We illustrate the basic concepts with some model examples of classical and quantum, ordered and disordered, nonlinear systems.

  8. Chaos Theory and the Effort in Afghanistan

    DTIC Science & Technology

    2008-02-29

    Maslow , “A Theory of Human Motivation,” Originally published in Psychological Review vol 50 ( 1943 ): 370-396; available from http://psychclassics.yorku.ca...without a detailed model. Social Science and Chaos At the basic level, Herman Maslow defined a hierarchy of needs for human beings. Often depicted as...a pyramid, this hierarchy rests on the basic needs of water, shelter, and food. At the top of the pyramid is self-actualization. Maslow postulated

  9. Chaos control of parametric driven Duffing oscillators

    SciTech Connect

    Jin, Leisheng; Mei, Jie; Li, Lijie

    2014-03-31

    Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.

  10. Chaos control of parametric driven Duffing oscillators

    NASA Astrophysics Data System (ADS)

    Jin, Leisheng; Mei, Jie; Li, Lijie

    2014-03-01

    Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.

  11. Optimal chaos control through reinforcement learning.

    PubMed

    Gadaleta, Sabino; Dangelmayr, Gerhard

    1999-09-01

    A general purpose chaos control algorithm based on reinforcement learning is introduced and applied to the stabilization of unstable periodic orbits in various chaotic systems and to the targeting problem. The algorithm does not require any information about the dynamical system nor about the location of periodic orbits. Numerical tests demonstrate good and fast performance under noisy and nonstationary conditions. (c) 1999 American Institute of Physics.

  12. Manifold reconnection and diffusion in strong chaos

    NASA Astrophysics Data System (ADS)

    Prado, S. D.; Corso, G.

    2000-08-01

    We analyse diffusion across a reconnecting zone in a regime of strong chaos. Numerical estimates from the angular correlation functions averaged over a suitable set of phase-space initial conditions are compared to a local diffusion coefficient obtained using Fick’s law. It emerges that the diffusion coefficient is enhanced from small to larger values as successive reconnection-like processes or more usual bifurcations take place. This feature is illustrated using a quadratic nontwist map.

  13. Chaos: Understanding and Controlling Laser Instability

    NASA Technical Reports Server (NTRS)

    Blass, William E.

    1997-01-01

    In order to characterize the behavior of tunable diode lasers (TDL), the first step in the project involved the redesign of the TDL system here at the University of Tennessee Molecular Systems Laboratory (UTMSL). Having made these changes it was next necessary to optimize the new optical system. This involved the fine adjustments to the optical components, particularly in the monochromator, to minimize the aberrations of coma and astigmatism and to assure that the energy from the beam is focused properly on the detector element. The next step involved the taking of preliminary data. We were then ready for the analysis of the preliminary data. This required the development of computer programs that use mathematical techniques to look for signatures of chaos. Commercial programs were also employed. We discovered some indication of high dimensional chaos, but were hampered by the low sample rate of 200 KSPS (kilosamples/sec) and even more by our sample size of 1024 (1K) data points. These limitations were expected and we added a high speed data acquisition board. We incorporated into the system a computer with a 40 MSPS (million samples/sec) data acquisition board. This board can also capture 64K of data points so that were then able to perform the more accurate tests for chaos. The results were dramatic and compelling, we had demonstrated that the lead salt diode laser had a chaotic frequency output. Having identified the chaotic character in our TDL data, we proceeded to stage two as outlined in our original proposal. This required the use of an Occasional Proportional Feedback (OPF) controller to facilitate the control and stabilization of the TDL system output. The controller was designed and fabricated at GSFC and debugged in our laboratories. After some trial and error efforts, we achieved chaos control of the frequency emissions of the laser. The two publications appended to this introduction detail the entire project and its results.

  14. Chaos synchronization based on a continuous chaos control method in semiconductor lasers with optical feedback.

    PubMed

    Murakami, A; Ohtsubo, J

    2001-06-01

    Chaos synchronization using a continuous chaos control method was studied in two identical chaotic laser systems consisting of semiconductor lasers and optical feedback from an external mirror. Numerical calculations for rate equations indicate that the stability of chaos synchronization depends significantly on the external mirror position. We performed a linear stability analysis for the rate equations. Our results show that the stability of the synchronization is much influenced by the mode interaction between the relaxation oscillation frequency of the semiconductor laser and the external cavity frequency. Due to this interaction, an intensive mode competition between the two frequencies destroys the synchronization, but stable synchronization can be achieved when the mode competition is very weak.

  15. Chaos, dynamical structure and climate variability

    SciTech Connect

    Stewart, H.B.

    1995-09-01

    Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. Techniques for identifying deterministic chaos from observed data, without recourse to mathematical models, are being developed. Powerful methods exist for reconstructing multidimensional phase space from an observed time series of a single scalar variable; these methods are invaluable when only a single scalar record of the dynamics is available. However, in some applications multiple concurrent time series may be available for consideration as phase space coordinates. Here the authors propose some basic analytical tools for such multichannel time series data, and illustrate them by applications to a simple synthetic model of chaos, to a low-order model of atmospheric circulation, and to two high-resolution paleoclimate proxy data series. The atmospheric circulation model, originally proposed by Lorenz, has 27 principal unknowns; they establish that the chaotic attractor can be embedded in a subspace of eight dimensions by exhibiting a specific subset of eight unknowns which pass multichannel tests for false nearest neighbors. They also show that one of the principal unknowns in the 27-variable model--the global mean sea surface temperature--is of no discernible usefulness in making short-term forecasts.

  16. Chaos in Chiral Condensates in Gauge Theories

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Murata, Keiju; Yoshida, Kentaroh

    2016-12-01

    Assigning a chaos index for dynamics of generic quantum field theories is a challenging problem because the notion of a Lyapunov exponent, which is useful for singling out chaotic behavior, works only in classical systems. We address the issue by using the AdS /CFT correspondence, as the large Nc limit provides a classicalization (other than the standard ℏ→0 ) while keeping nontrivial quantum condensation. We demonstrate the chaos in the dynamics of quantum gauge theories: The time evolution of homogeneous quark condensates ⟨q ¯q ⟩ and ⟨q ¯γ5q ⟩ in an N =2 supersymmetric QCD with the S U (Nc) gauge group at large Nc and at a large 't Hooft coupling λ ≡NcgYM2 exhibits a positive Lyapunov exponent. The chaos dominates the phase space for energy density E ≳(6 ×1 02)×mq4(Nc/λ2), where mq is the quark mass. We evaluate the largest Lyapunov exponent as a function of (Nc,λ ,E ) and find that the N =2 supersymmetric QCD is more chaotic for smaller Nc.

  17. Probing temperature chaos through thermal boundary conditions

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut

    2015-03-01

    Using population annealing Monte Carlo, we numerically study temperature chaos in the three-dimensional Edwards-Anderson Ising spin glass using thermal boundary conditions. In thermal boundary conditions all eight combinations of periodic vs antiperiodic boundary conditions in the three spatial directions appear in the ensemble with their respective Boltzmann weights, thus minimizing finite-size corrections due to domain walls. By studying salient features in the specific heat we show evidence of temperature chaos. Our results suggest that these bumps are mainly caused by system-size excitations where the free energy of two boundary conditions cross. Furthermore, we study the scaling of both entropy and energy at boundary condition crossings and find that the scaling of the energy is very different from the scaling obtained by a simple change of boundary conditions. We attribute this difference to the stronger finite-size effects induced via a simple change of boundary conditions. Finally, we show that temperature chaos occurs more frequently at higher temperatures within the spin-glass phase and for larger system sizes, while the normalized distribution function with respect to temperature is about the same for different system sizes. The work is supported from NSF (Grant No. DMR-1208046).

  18. Detecting chaos in irregularly sampled time series.

    PubMed

    Kulp, C W

    2013-09-01

    Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.

  19. Exploring Chaos: A Case Study.

    ERIC Educational Resources Information Center

    Nemirovsky, Ricardo; Tinker, Robert

    1993-01-01

    Describes software, hardware, and devices that were designed to provide students with an environment to experiment with basic ideas of mechanics, including nonlinear dynamics. Examines the behavior of a Lorenzian water wheel by comparing experimental data with theoretical results obtained from computer-based sensors. (MDH)

  20. Precursors and Transition to Chaos in a Quantum Well

    NASA Astrophysics Data System (ADS)

    Boebinger, Greg

    1996-03-01

    Despite great theoretical interest, there are relatively few experimental studies of simple quantum systems whose classical counterparts exhibit chaotic dynamics. Recently, using resonant tunneling spectroscopy, Fromhold, et al. footnote T. M. Fromhold, L. Eaves, F. W. Sheard, M. L. Leadbeater, T. J. Foster, and P. C. Main, Phys. Rev. Lett. 72, 2608 (1994) have demonstrated that the wide quantum well exhibits chaotic dynamics in a sufficiently intense magnetic field which is tilted away from perpendicular to the quantum well. More recently, we have discovered a distinct transition from integrable to chaotic electron dynamics in this system. footnote G. Müller, G. S. Boebinger, H. Mathur, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 75, 2875 (1995) The evolution of the chaos transition is mapped systematically by varying bias voltage, magnetic field and tilt angle. As the tilt angle is increased, the system becomes increasingly chaotic. For a perpendicular magnetic field (θ = 0 ^circ), peaks in the tunneling current correspond to the quantum well subbands. At small tilt angles, (10 ^circ < θ < 30 ^circ) the resonant tunneling spectra show the quantum well subbands, but distinct peak doubling regions have emerged. At larger tilt angles, the quantum well subbands make a transition to a peak tripling region. Poincare section calculations identify these peak doubling and tripling regions as the precursors of the chaos transition. They result from the bifurcation and trifurcation of the stable periodic orbit which corresponds to the quantum well subbands. At θ = 45 ^circ, there is a sharp transition between the region of ordered, subband-like peaks at low magnetic fields and a region of disordered peak positions at higher magnetic fields. We conclude that quantum wells provide a particularly clear manifestation of the transition from order to chaos which results from the break-up of stable periodic orbits. This work is a collaboration with G. Müller, H. Mathur

  1. Observation of Temperature Chaos in Mesoscopic Spin Glasses

    NASA Astrophysics Data System (ADS)

    Guchhait, Samaresh

    Temperature Chaos (TC) results from a change in temperature for spin glasses (SG), polymers, and other glassy materials. When the temperature is changed, TC means that the new state has no memory of the preparation of the initial state. TC was predicted long ago [PRL 48, 767 (1982)]. However, ``An experimental measurement of TC is still missing'' [EPL 103, 67003 (2013)]. One reason for this is the question of length scale. In the thermodynamic limit, even an infinitesimal temperature change, ΔT , will create a chaotic condition. However, by working at the mesoscale, one can establish a length scale sufficiently small to exhibit reversible behavior before crossing over to chaotic behavior as the temperature change increases. Observation of TC is possible because, on reasonable laboratory time scales, the SG correlation length can grow to the size of the thickness of the film, L. The lower critical dimension for a SG is ~ 2 . 5 , so that the thin film SG crosses over to a glass temperature Tg = 0 . However, there remains quasi-equilibrium SG states with length scales < L . After crossover, a small ΔT will generate a TC coherence length which, if greater than L, will leave the system in a reversible state. However, when ΔT is sufficiently large, such that the TC coherence length is less than L, and chaos will ensue. I will discuss our recent results of temperature cycling on 15.5 nm SG films of amorphous Ge:Mn. By use of end of aging and temperature cycling, both the reversible region and the chaotic region are observed. Remarkably, the transition from a reversible to chaotic behavior is abrupt, and not smooth as a function of ΔT . This is in contrast to previous work using polycrystalline materials where the distribution of length scales smoothed out the transition to chaos. Using the calculated TC critical exponent, the range of ΔT for reversible behavior is calculated and is in very good agreement with the measured range. This work was supported by the U

  2. Conference reports

    NASA Astrophysics Data System (ADS)

    Dongpei, Chen; Yulong, Ma

    1994-12-01

    The Ultrasonic Electronics Branch Society of the China Acoustics Society, and the Electronics Countermeasure Branch Society of the China Electronics Society held and All-China Applications Conference of Ultrasonic Electronics Devices in Electronic Countermeasures, Radar and Military Communication Technology. A total of 66 papers was received by the conference with contents relating to surface acoustic wave devices, high-frequency acoustic wave devices, acousto-optical devices, applications of devices in radar, applications of devices in electronic countermeasures, and applications of devices in military communication systems.

  3. Application of Chaos Theory to Psychological Models

    NASA Astrophysics Data System (ADS)

    Blackerby, Rae Fortunato

    This dissertation shows that an alternative theoretical approach from physics--chaos theory--offers a viable basis for improved understanding of human beings and their behavior. Chaos theory provides achievable frameworks for potential identification, assessment, and adjustment of human behavior patterns. Most current psychological models fail to address the metaphysical conditions inherent in the human system, thus bringing deep errors to psychological practice and empirical research. Freudian, Jungian and behavioristic perspectives are inadequate psychological models because they assume, either implicitly or explicitly, that the human psychological system is a closed, linear system. On the other hand, Adlerian models that require open systems are likely to be empirically tenable. Logically, models will hold only if the model's assumptions hold. The innovative application of chaotic dynamics to psychological behavior is a promising theoretical development because the application asserts that human systems are open, nonlinear and self-organizing. Chaotic dynamics use nonlinear mathematical relationships among factors that influence human systems. This dissertation explores these mathematical relationships in the context of a sample model of moral behavior using simulated data. Mathematical equations with nonlinear feedback loops describe chaotic systems. Feedback loops govern the equations' value in subsequent calculation iterations. For example, changes in moral behavior are affected by an individual's own self-centeredness, family and community influences, and previous moral behavior choices that feed back to influence future choices. When applying these factors to the chaos equations, the model behaves like other chaotic systems. For example, changes in moral behavior fluctuate in regular patterns, as determined by the values of the individual, family and community factors. In some cases, these fluctuations converge to one value; in other cases, they diverge in

  4. Subharmonic generation, chaos, and subharmonic resurrection in an acoustically driven fluid-filled cavity

    SciTech Connect

    Cantrell, John H. Yost, William T.; Adler, Laszlo

    2015-02-15

    Traveling wave solutions of the nonlinear acoustic wave equation are obtained for the fundamental and second harmonic resonances of a fluid-filled cavity. The solutions lead to the development of a non-autonomous toy model for cavity oscillations. Application of the Melnikov method to the model equation predicts homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos. The threshold value of the drive displacement amplitude at tangency is obtained in terms of the acoustic drive frequency and fluid attenuation coefficient. The model prediction of subharmonic generation leading to chaos is validated from acousto-optic diffraction measurements in a water-filled cavity using a 5 MHz acoustic drive frequency and from the measured frequency spectrum in the bifurcation cascade regime. The calculated resonant threshold amplitude of 0.2 nm for tangency is consistent with values estimated for the experimental set-up. Experimental evidence for the appearance of a stable subharmonic beyond chaos is reported.

  5. Subharmonic generation, chaos, and subharmonic resurrection in an acoustically driven fluid-filled cavity.

    PubMed

    Cantrell, John H; Adler, Laszlo; Yost, William T

    2015-02-01

    Traveling wave solutions of the nonlinear acoustic wave equation are obtained for the fundamental and second harmonic resonances of a fluid-filled cavity. The solutions lead to the development of a non-autonomous toy model for cavity oscillations. Application of the Melnikov method to the model equation predicts homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos. The threshold value of the drive displacement amplitude at tangency is obtained in terms of the acoustic drive frequency and fluid attenuation coefficient. The model prediction of subharmonic generation leading to chaos is validated from acousto-optic diffraction measurements in a water-filled cavity using a 5 MHz acoustic drive frequency and from the measured frequency spectrum in the bifurcation cascade regime. The calculated resonant threshold amplitude of 0.2 nm for tangency is consistent with values estimated for the experimental set-up. Experimental evidence for the appearance of a stable subharmonic beyond chaos is reported.

  6. Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser

    NASA Astrophysics Data System (ADS)

    Coulibaly, S.; Clerc, M. G.; Selmi, F.; Barbay, S.

    2017-02-01

    The occurrence of extreme events in a spatially extended microcavity laser has been recently reported [Selmi et al., Phys. Rev. Lett. 116, 013901 (2016), 10.1103/PhysRevLett.116.013901] to be correlated to emergence of spatiotemporal chaos. In this dissipative system, the role of spatial coupling through diffraction is essential to observe the onset of spatiotemporal complexity. We investigate further the formation mechanism of extreme events by comparing the statistical and dynamical analyses. Experimental measurements together with numerical simulations allow us to assign the quasiperiodicity mechanism as the route to spatiotemporal chaos in this system. Moreover, by investigating the fine structure of the maximum Lyapunov exponent, of the Lyapunov spectrum, and of the Kaplan-Yorke dimension of the chaotic attractor, we are able to deduce that intermittency plays a key role in the proportion of extreme events measured. We assign the observed mechanism of generation of extreme events to quasiperiodic extended spatiotemporal intermittency.

  7. Nonlinear resonance and dynamical chaos in a diatomic molecule driven by a resonant ir field

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N.; Holm, D.D. ||||

    1995-10-01

    We consider the transition from regular motion to dynamical chaos in a classical model of a diatomic molecule which is driven by a circularly polarized resonant ir field. Under the conditions of a nearly two-dimensional case, the Hamiltonian reduces to that for the nonintegrable motion of a charged particle in an electromagnetic wave [A. J. Lichtenberg and M. A. Lieberman, {ital Regular} {ital and} {ital Stochastic} {ital Motion} (Springer-Verlag, City, 1983)]. In the general case, the transition to chaos is connected with the overlapping of vibrational-rotational nonlinear resonances and appears even at rather low radiation field intensity, {ital S}{approx_gt}1 GW/cm{sup 2}. We also discuss the possibility of experimentally observing this transition.

  8. [A Method of Synthesizing Tinnitus Rehabilitation Sound Based on Pentatonic Scale and Chaos].

    PubMed

    Chen, Jiemei; He, Peiyu; Pan, Fan

    2015-12-01

    Tinnitus is a common clinical symptom and its occurrence rate is high. It seriously affects life quality of the patients. Scientific researches show that listening some similar and none-repetitive music can relieve tinnitus to some extent. The overall music accorded with self-similarity character by the direct mapping method based on chaos. However, there were often the same tones continuous repeating a few times and tone mutations. To solve the problem, this paper proposes a new method for tinnitus rehabilitation sound synthesis based on pentatonic scale, chaos and musical instrument digital interface (MIDI). Experimental results showed that the tinnitus rehabilitation sounds were not only self-similar and incompletely reduplicate, but also no sudden changes. Thus, it has a referential significance for tinnitus treatment.

  9. Parameter Space of Fixed Points of the Damped Driven Pendulum Susceptible to Control of Chaos Algorithms

    NASA Astrophysics Data System (ADS)

    Dittmore, Andrew; Trail, Collin; Olsen, Thomas; Wiener, Richard J.

    2003-11-01

    We have previously demonstrated the experimental control of chaos in a Modified Taylor-Couette system with hourglass geometry( Richard J. Wiener et al), Phys. Rev. Lett. 83, 2340 (1999).. Identifying fixed points susceptible to algorithms for the control of chaos is key. We seek to learn about this process in the accessible numerical model of the damped, driven pendulum. Following Baker(Gregory L. Baker, Am. J. Phys. 63), 832 (1995)., we seek points susceptible to the OGY(E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64), 1196 (1990). algorithm. We automate the search for fixed points that are candidates for control. We present comparisons of the space of candidate fixed points with the bifurcation diagrams and Poincare sections of the system. We demonstrate control at fixed points which do not appear on the attractor. We also show that the control algorithm may be employed to shift the system between non-communicating branches of the attractor.

  10. Asymmetric spatiotemporal chaos induced by a polypoid mass in the excised larynx

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2008-12-01

    In this paper, asymmetric spatiotemporal chaos induced by a polypoid mass simulating the laryngeal pathology of a vocal polyp is experimentally observed using high-speed imaging in an excised larynx. Spatiotemporal analysis reveals that the normal vocal folds show spatiotemporal correlation and symmetry. Normal vocal fold vibrations are dominated mainly by the first vibratory eigenmode. However, pathological vocal folds with a polypoid mass show broken symmetry and spatiotemporal irregularity. The spatial correlation is decreased. The pathological vocal folds spread vibratory energy across a large number of eigenmodes and induce asymmetric spatiotemporal chaos. High-order eigenmodes show complicated dynamics. Spatiotemporal analysis provides a valuable biomedical application for investigating the spatiotemporal chaotic dynamics of pathological vocal fold systems with a polypoid mass and may represent a valuable clinical tool for the detection of laryngeal mass lesion using high-speed imaging.

  11. Chaos and Fractal Analysis of Electroencephalogram Signals during Different Imaginary Motor Movement Tasks

    NASA Astrophysics Data System (ADS)

    Soe, Ni Ni; Nakagawa, Masahiro

    2008-04-01

    This paper presents the novel approach to evaluate the effects of different motor activation tasks of the human electroencephalogram (EEG). The applications of chaos and fractal properties that are the most important tools in nonlinear analysis are been presented for four tasks of EEG during the real and imaginary motor movement. Three subjects, aged 23-30 years, participated in the experiment. Correlation dimension (D2), Lyapunov spectrum (λi), and Lyapunov dimension (DL) are been estimated to characterize the movement related EEG signals. Experimental results show that these nonlinear measures are good discriminators of EEG signals. There are significant differences in all conditions of subjective task. The fractal dimension appeared to be higher in movement conditions compared to the baseline condition. It is concluded that chaos and fractal analysis could be powerful methods in investigating brain activities during motor movements.

  12. Noise-induced order in the chaos of the Belousov-Zhabotinsky reaction.

    PubMed

    Yoshimoto, Minoru; Shirahama, Hiroyuki; Kurosawa, Shigeru

    2008-07-07

    Noise can stabilize a metastable state in such a way that the system remains in this state for a longer time than in the absence of noise. When this phenomenon is observed in chaos, it is called "noise-induced order." We have experimentally detected noise-induced order in the Belousov-Zhabotinsky reaction. That is, when noise is added to the chaos with the flow rate near the period-three oscillation, a decrease of the maximum Lyapunov exponent and a convergence of the Fourier spectrum are observed. Moreover, the analysis on the one-dimensional return map reveals that noise-induced order is caused by the convergence of the chaotic trajectory into the laminar region.

  13. Ultra-high-frequency piecewise-linear chaos using delayed feedback loops

    NASA Astrophysics Data System (ADS)

    Cohen, Seth D.; Rontani, Damien; Gauthier, Daniel J.

    2012-12-01

    We report on an ultra-high-frequency (>1 GHz), piecewise-linear chaotic system designed from low-cost, commercially available electronic components. The system is composed of two electronic time-delayed feedback loops: A primary analog loop with a variable gain that produces multi-mode oscillations centered around 2 GHz and a secondary loop that switches the variable gain between two different values by means of a digital-like signal. We demonstrate experimentally and numerically that such an approach allows for the simultaneous generation of analog and digital chaos, where the digital chaos can be used to partition the system's attractor, forming the foundation for a symbolic dynamics with potential applications in noise-resilient communications and radar.

  14. Characterization of spatiotemporal chaos in a Kerr optical frequency comb and in all fiber cavities

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Ouali, M.; Coulibaly, S.; Clerc, M. G.; Taki, M.; Tlidi, M.

    2017-03-01

    Complex spatiotemporal dynamics have been a subject of recent experimental investigations in optical frequency comb microresonators and in driven fiber cavities with a Kerr-type media. We show that this complex behavior has a spatiotemporal chaotic nature. We determine numerically the Lyapunov spectra, allowing to characterize different dynamical behavior occurring in these simple devices. The Yorke-Kaplan dimension is used as an order parameter to characterize the bifurcation diagram. We identify a wide regime of parameters where the system exhibits a coexistence between the spatiotemporal chaos, the oscillatory localized structure, and the homogeneous steady state. The destabilization of an oscillatory localized state through radiation of counter propagative fronts between the homogeneous and the spatiotemporal chaotic states is analyzed. To characterize better the spatiotemporal chaos, we estimate the front speed as a function of the pump intensity.

  15. Conference Summary

    ERIC Educational Resources Information Center

    Doherty, Cait

    2009-01-01

    This article summarizes an original conference, organised by the Child Care Research Forum (http://www.qub.ac.uk/sites/ccrf/), which brought together experts from all over Northern Ireland to showcase some of the wealth of research with children and young people that is going on in the country today. Developed around the six high-level outcomes of…

  16. The conference

    Treesearch

    Gordon M. Heisler; Lee P. Herrington

    1977-01-01

    This is a report on the Conference on Metropolitan Physical Environment, held in August 1975 at Syracuse, N.Y., where some 160 scientists and planners met to discuss the use of vegetation, space, and structures to improve the amenities for people who live in metropolitan areas.

  17. Conference Space

    ERIC Educational Resources Information Center

    Tillett, Wade

    2016-01-01

    The following is an exploration of the spatial configurations (and their implications) within a typical panel session at an academic conference. The presenter initially takes up different roles and hyperbolically describes some possible messages that the spatial arrangement sends. Eventually, the presenter engages the audience members in atypical…

  18. Conference Space

    ERIC Educational Resources Information Center

    Tillett, Wade

    2016-01-01

    The following is an exploration of the spatial configurations (and their implications) within a typical panel session at an academic conference. The presenter initially takes up different roles and hyperbolically describes some possible messages that the spatial arrangement sends. Eventually, the presenter engages the audience members in atypical…

  19. Chaos in a chemical system

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Srivastava, P. K.; Chattopadhyay, J.

    2013-07-01

    Chaotic oscillations have been observed experimentally in dual-frequency oscillator OAP - Ce+4-BrO- 3-H2SO4 in CSTR. The system shows variation of oscillating potential and frequencies when it moves from low frequency to high frequency region and vice-versa. It was observed that system bifurcate from low frequency to chaotic regime through periode-2 and period-3 on the other hand system bifurcate from chaotic regime to high frequency oscillation through period-2. It was established that the observed oscillations are chaotic in nature on the basis of next amplitude map and bifurcation sequences.

  20. Master Teachers: Making a Difference on the Edge of Chaos

    ERIC Educational Resources Information Center

    Chapin, Dexter

    2008-01-01

    The No Child Left Behind legislation, by legitimizing a stark, one-size-fits-all, industrial model of education, has denied the inherent complexity and richness of what teachers do. Discussing teaching in terms of Chaos Theory, Chapin explains that while excellent teaching may occur at the edge of chaos, it is not chaotic. There are patterns…

  1. Universal properties of dynamically complex systems - The organization of chaos

    NASA Astrophysics Data System (ADS)

    Procaccia, Itamar

    1988-06-01

    The complex dynamic behavior of natural systems far from equilibrium is discussed. Progress that has been made in understanding universal aspects of the paths to such behavior, of the trajectories at the borderline of chaos, and of the nature of the complexity in the chaotic regime, is reviewed. The emerging grammar of chaos is examined.

  2. Analysis of Discovery of Chaos: Social and Cognitive Aspects.

    ERIC Educational Resources Information Center

    Kim, J. B.

    The purpose of this study was to examine Edward Lorenz's psychological processes and other environmental aspects in the discovery of chaos at that time. The general concept of chaos is discussed based on relations with previous scientific theories such as Newtonian physics and quantum mechanics. The constraints of discovery in terms of available…

  3. Chaos/Complexity Science and Second Language Acquisition.

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    1997-01-01

    Discusses the similarities between the science of chaos/complexity and second language acquisition (SLA). Notes that chaos/complexity scientists focus on how disorder yields to order and on how complexity arises in nature. Points out that the study of dynamic, complex nonlinear systems is meaningful in SLA as well. (78 references) (Author/CK)

  4. Specifying the Links between Household Chaos and Preschool Children's Development

    ERIC Educational Resources Information Center

    Martin, Anne; Razza, Rachel A.; Brooks-Gunn, Jeanne

    2012-01-01

    Household chaos has been linked to poorer cognitive, behavioural, and self-regulatory outcomes in young children, but the mechanisms responsible remain largely unknown. Using a diverse sample of families in Chicago, the present study tests for the independent contributions made by five indicators of household chaos: noise, crowding, family…

  5. Chaos Theory: Implications for Nonlinear Dynamics in Counseling.

    ERIC Educational Resources Information Center

    Stickel, Sue A.

    The purpose of this paper is to explore the implications of chaos theory for counseling. The scientific notion of chaos refers to the tendency of dynamical, nonlinear systems toward irregular, sometimes unpredictable, yet deterministic behavior. Therapists, especially those working from a brief approach, have noted the importance of the client's…

  6. Chaos: A Topic for Interdisciplinary Education in Physics

    ERIC Educational Resources Information Center

    Bae, Saebyok

    2009-01-01

    Since society and science need interdisciplinary works, the interesting topic of chaos is chosen for interdisciplinary education in physics. The educational programme contains various university-level activities such as computer simulations, chaos experiment and team projects besides ordinary teaching. According to the participants, the programme…

  7. Chaos Theory as a Lens for Advancing Quality Schooling.

    ERIC Educational Resources Information Center

    Snyder, Karolyn J.; Acker-Hocevar, Michele; Wolf, Kristen M.

    Chaos theory provides a useful mental model for guiding change as leaders garner the energy from unpredictable events for realizing transformation goals. The paper considers chaos theory as a framework for managing school change toward Total Quality Management work cultures. Change is possible to manage when plans are made and then followed by a…

  8. Specifying the Links between Household Chaos and Preschool Children's Development

    ERIC Educational Resources Information Center

    Martin, Anne; Razza, Rachel A.; Brooks-Gunn, Jeanne

    2012-01-01

    Household chaos has been linked to poorer cognitive, behavioural, and self-regulatory outcomes in young children, but the mechanisms responsible remain largely unknown. Using a diverse sample of families in Chicago, the present study tests for the independent contributions made by five indicators of household chaos: noise, crowding, family…

  9. Chaos and the Classical Limit of Quantum Systems

    NASA Astrophysics Data System (ADS)

    Hogg, T.; Huberman, B. A.

    1984-10-01

    We discuss the question of whether experiments can be designed to test the existence of quantum chaos. In particular, we show that high energies are not sufficient to guarantee that an initially localized wave packet will behave classically for long times. We present computer simulations illustrating these ideas, and comment on whether experiments can be designed to observe quantum chaos.

  10. Chaos: A Topic for Interdisciplinary Education in Physics

    ERIC Educational Resources Information Center

    Bae, Saebyok

    2009-01-01

    Since society and science need interdisciplinary works, the interesting topic of chaos is chosen for interdisciplinary education in physics. The educational programme contains various university-level activities such as computer simulations, chaos experiment and team projects besides ordinary teaching. According to the participants, the programme…

  11. Master Teachers: Making a Difference on the Edge of Chaos

    ERIC Educational Resources Information Center

    Chapin, Dexter

    2008-01-01

    The No Child Left Behind legislation, by legitimizing a stark, one-size-fits-all, industrial model of education, has denied the inherent complexity and richness of what teachers do. Discussing teaching in terms of Chaos Theory, Chapin explains that while excellent teaching may occur at the edge of chaos, it is not chaotic. There are patterns…

  12. Chaos in the Classroom: Exposing Gifted Elementary School Children to Chaos and Fractals.

    ERIC Educational Resources Information Center

    Adams, Helen M.; Russ, John C.

    1992-01-01

    A unit of study for gifted fourth and fifth graders is described on the subject of mathematical periodicity and chaos and the underlying physical processes which produce these phenomena. Hands-on activities, data analysis tools and computer aids are used for instruction in simple periodic motion (pendulum), complex superposition of motions…

  13. Amplitude death in coupled robust-chaos oscillators

    NASA Astrophysics Data System (ADS)

    Palazzi, M. J.; Cosenza, M. G.

    2014-12-01

    We investigate the synchronization behavior of a system of globally coupled, continuous-time oscillators possessing robust chaos. The local dynamics corresponds to the Shimizu-Morioka model where the occurrence of robust chaos in a region of its parameter space has been recently discovered. We show that the global coupling can drive the oscillators to synchronization into a fixed point created by the coupling, resulting in amplitude death in the system. The existence of robust chaos allows to introduce heterogeneity in the local parameters, while guaranteeing the functioning of all the oscillators in a chaotic mode. In this case, the system reaches a state of oscillation death, with coexisting clusters of oscillators in different steady states. The phenomena of amplitude death or oscillation death in coupled robust-chaos flows could be employed as mechanisms for stabilization and control in systems that require reliable operation under chaos.

  14. Chaos and Forecasting - Proceedings of the Royal Society Discussion Meeting

    NASA Astrophysics Data System (ADS)

    Tong, Howell

    1995-04-01

    The Table of Contents for the full book PDF is as follows: * Preface * Orthogonal Projection, Embedding Dimension and Sample Size in Chaotic Time Series from a Statistical Perspective * A Theory of Correlation Dimension for Stationary Time Series * On Prediction and Chaos in Stochastic Systems * Locally Optimized Prediction of Nonlinear Systems: Stochastic and Deterministic * A Poisson Distribution for the BDS Test Statistic for Independence in a Time Series * Chaos and Nonlinear Forecastability in Economics and Finance * Paradigm Change in Prediction * Predicting Nonuniform Chaotic Attractors in an Enzyme Reaction * Chaos in Geophysical Fluids * Chaotic Modulation of the Solar Cycle * Fractal Nature in Earthquake Phenomena and its Simple Models * Singular Vectors and the Predictability of Weather and Climate * Prediction as a Criterion for Classifying Natural Time Series * Measuring and Characterising Spatial Patterns, Dynamics and Chaos in Spatially-Extended Dynamical Systems and Ecologies * Non-Linear Forecasting and Chaos in Ecology and Epidemiology: Measles as a Case Study

  15. Bond chaos in spin glasses revealed through thermal boundary conditions

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G.

    2016-06-01

    Spin glasses have competing interactions that lead to a rough energy landscape which is highly susceptible to small perturbations. These chaotic effects strongly affect numerical simulations and, as such, gaining a deeper understanding of chaos in spin glasses is of much importance. The use of thermal boundary conditions is an effective approach to study chaotic phenomena. Here we generalize population annealing Monte Carlo, combined with thermal boundary conditions, to study bond chaos due to small perturbations in the spin-spin couplings of the three-dimensional Edwards-Anderson Ising spin glass. We show that bond and temperature-induced chaos share the same scaling exponents and that bond chaos is stronger than temperature chaos.

  16. Secure optical telecommunications using chaos in wavelength for signal transmission

    NASA Astrophysics Data System (ADS)

    Goedgebuer, Jean-Pierre; Larger, Laurent

    1997-12-01

    Secure communications based on chaos have been investigated for some years, especially in the area of radio frequency transmissions. Signal decoding and decoding is then generally achieved using a RF carrier whose amplitude fluctuates chaotically. Recent advances have also been reported in the field of optical telecommunications. Optical chaos produced by random fluctuations of laser power is the sued to encrypt signals. However most of the system reported so far are plagued by their low flexibility which makes difficult the key to be changed easily. We report experiments in which chaos in wavelength, rather than in power, is advantageously used to encrypt signals. The latter are encrypted as chaotic fluctuations of the wavelength of a tunable semiconductor laser driven by a generator of chaos. Decoding makes use of another generator of chaos operating as a local oscillator synchronized on the first one. The first results are reported in the wavelength range of 1550 nm.

  17. Secure optical telecommunications using chaos in wavelength for signal transmissions

    NASA Astrophysics Data System (ADS)

    Goedgebuer, Jean-Pierre; Larger, Laurent; Rhodes, William T.

    1999-07-01

    Severe communications based on chaos have been investigated for some years, especially in the area of radiofrequency transmissions. Signal decoding and decoding is then generally achieved using a RF carrier whose amplitude fluctuates chaotically. Recent advances have also been reported in the field of optical telecommunications. Optical chaos produced by random fluctuations of laser power is then used to encrypt signals. However most of the systems reported so far are plagued by their low flexibility which makes difficult the key to be changed easily. We report experiments in which chaos in wavelength, rather than in power, is advantageously used to encrypt signals. The latter are encrypted as chaotic fluctuations of the wavelength of a tunable semiconductor laser driven by a generator of chaos. Decoding makes use of another generator of chaos operating as a local oscillator synchronized on the first one. The first results are reported in the wavelength range of 1550 nm.

  18. Experimental Control of Instabilities and Chaos in Fast Dynamical Systems

    DTIC Science & Technology

    1997-06-01

    solitary laser is sandwiched between p-type and n-type cladding layers that provide electron-hole pairs generated by the current J . The solitary laser ...instantaneous state of the solitary laser as well as the state of the propagating field 86 J L p-doped n-.opodoA active layer Figure 5.1: External...pairs generated by the current J . The solitary laser cavity is formed by the mirrors r, and r2, whereas the external cavity is formed by r, and the

  19. Delayed feedback control of chaos.

    PubMed

    Pyragas, Kestutis

    2006-09-15

    Time-delayed feedback control is well known as a practical method for stabilizing unstable periodic orbits embedded in chaotic attractors. The method is based on applying feedback perturbation proportional to the deviation of the current state of the system from its state one period in the past, so that the control signal vanishes when the stabilization of the target orbit is attained. A brief review on experimental implementations, applications for theoretical models and most important modifications of the method is presented. Recent advancements in the theory, as well as an idea of using an unstable degree of freedom in a feedback loop to avoid a well-known topological limitation of the method, are described in detail.

  20. Transition to Chaos in Random Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Kadmon, Jonathan; Sompolinsky, Haim

    2015-10-01

    Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large. In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However, the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work, we investigate rate-based dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections. Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single neuron output is strictly positive with output rates rising as a power law above threshold, in line with known constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on the latter and characterize the properties of systems near this transition. We show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity. In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other, amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos

  1. Chaos control in a chaotic system with only one stable equilibrium point

    NASA Astrophysics Data System (ADS)

    Buscarino, Arturo; Fortuna, Luigi; Frasca, Mattia; Gambuzza, Lucia Valentina; Pham, Thanh Viet

    2012-09-01

    The recent finding on the effect of a small bias in Sprott-like systems, i.e., the stabilization of the unstable equilibrium point through the addition of a small bias [1], paves the way to efficient methods for chaos control in such systems. In this work, we investigate the control of one of such systems both in the ideal case of absence of noise and in the presence of noise. We then propose an experimental setup for the experimental verification of the introduced method.

  2. Outer Solar System on the Edge of Chaos

    NASA Astrophysics Data System (ADS)

    Hayes, Wayne B.

    2006-06-01

    The existence of chaos among the system of Jovian planets (Jupiter, Saturn, Uranus, and Neptune) is not yet firmly established. Although Laskar originally found no chaos in the outer Solar System, his "averaged" integrations did not account for the possibility of mean-motion resonances. Once full n-body integrations were performed, a dichotomy arose. On one hand, many investigators (Sussman, Wisdom, Murray, Holman, among many others) consistently measured a Lyapunov time of between 5 and 12 million years in the outer Solar System; the chaos can even be explained as the overlap of three-body resonances (Murray + Holman, Science 283, 1999). Furthermore, Murray + Holman's theory has been recently corroborated across a wide range of system parameters (Guzzo 2005), and the chaos does not disappear with decreasing timestep. On the other hand, some other investigators (Newman, Grazier, and Varadi, among several others) have compelling evidence against chaos. Namely, they have convincingly demonstrated that a sympletic integration using the famous Wisdom + Holman (1992) symplectic mapping with a 400-day timestep reproduces the chaos seen by others, but that the chaos disappears and the orbit converges to being regular as the timestep decreases. Their integration remains regular, showing beautiful convergence with decreasing timestep, down to a 2 day timestep. The resolution of this apparent paradox is simple. The orbital positions of the Jovian planets is known only to a few parts in 107, and it turns out that within that observational error ball, there exist both chaotic and regular solutions. I will demonstrate this fact using several initial conditions and several accurate integration algorithms. Thus, whether a particular investigator will see chaos or not depends (essentially randomly) upon the details of how that investigator draws their initial conditions. Thus, some investigators legitimately find chaos, while others legitimately find no chaos.

  3. Exploring Information Chaos in Community Pharmacy Handoffs

    PubMed Central

    Chui, Michelle A; Stone, Jamie A

    2013-01-01

    Background A handoff is the process of conveying necessary information in order to transfer primary responsibility for providing safe and effective drug therapy to a patient from one community pharmacist to another, typically during a shift change. The handoff information conveyed in pharmacies has been shown to be unstructured and variable, leading to pharmacist stress and frustration, prescription delays, and medication errors. Objective The purpose of this study was to describe and categorize the information hazards present in handoffs in community pharmacies. Methods A qualitative research approach was used to elicit the subjective experiences of community pharmacists. Community pharmacists who float or work in busy community pharmacies were recruited and participated in a face to face semi-structured interview. Using a systematic content data analysis, the study identified five categories of information hazards that can lead to information chaos, a framework grounded in human factors and ergonomics. Results Information hazards including erroneous information and information overload, underload, scatter, and conflict, are experienced routinely by community pharmacists during handoff communication and can result in information chaos. The consequences of information chaos include increased mental workload, which can precipitate problematic prescriptions “falling between the cracks”. This can ultimately impact patient care and pharmacist quality of working life. Conclusions The results suggest that handoffs in community pharmacies result in information hazards. These information hazards can distract pharmacists from their primary work of assessing prescriptions and educating their patients. Further research on how handoffs are conducted can produce information on how hazards in the system can be eliminated. PMID:23665076

  4. Quasiperiodic graphs at the onset of chaos.

    PubMed

    Luque, B; Cordero-Gracia, M; Gómez, M; Robledo, A

    2013-12-01

    We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers.

  5. Quantum chaos in Aharonov-Bohm oscillations

    SciTech Connect

    Berman, G.P.; Campbell, D.K.; Bulgakov, E.N.; Krive, I.V.

    1995-10-01

    Aharonov-Bohm oscillations in a mesoscopic ballistic ring are considered under the influence of a resonant magnetic field with one and two frequencies. The authors investigate the oscillations of the time-averaged electron energy at zero temperature in the regime of an isolated quantum nonlinear resonance and at the transition to quantum chaos, when two quantum nonlinear resonances overlap. It is shown that the time-averaged energy exhibits resonant behavior as a function of the magnetic flux, and has a ``staircase`` dependence on the amplitude of the external field. The delocalization of the quasi-energy eigenfunctions is analyzed.

  6. Chaos in the BMN matrix model

    NASA Astrophysics Data System (ADS)

    Asano, Yuhma; Kawai, Daisuke; Yoshida, Kentaroh

    2015-06-01

    We study classical chaotic motions in the Berenstein-Maldacena-Nastase (BMN) matrix model. For this purpose, it is convenient to focus upon a reduced system composed of two-coupled anharmonic oscillators by supposing an ansatz. We examine three ansätze: 1) two pulsating fuzzy spheres, 2) a single Coulomb-type potential, and 3) integrable fuzzy spheres. For the first two cases, we show the existence of chaos by computing Poincaré sections and a Lyapunov spectrum. The third case leads to an integrable system. As a result, the BMN matrix model is not integrable in the sense of Liouville, though there may be some integrable subsectors.

  7. Semiclassical description of chaos-assisted tunneling.

    PubMed

    Podolskiy, Viktor A; Narimanov, Evgenii E

    2003-12-31

    We study tunneling between regular and chaotic regions in the phase space of Hamiltonian systems. We analytically calculate the transition rate and show that its variation depends only on corresponding phase space area and in this sense is universal. We derive the distribution of level splittings associated with the pairs of quasidegenerate regular eigenstates which in the general case is different from a Cauchy distribution. We show that chaos-assisted tunneling leads to level repulsion between regular eigenstates, solving the longstanding problem of level-spacing distribution in mixed systems.

  8. Conduction at the onset of chaos

    NASA Astrophysics Data System (ADS)

    Baldovin, Fulvio

    2017-02-01

    After a general discussion of the thermodynamics of conductive processes, we introduce specific observables enabling the connection of the diffusive transport properties with the microscopic dynamics. We solve the case of Brownian particles, both analytically and numerically, and address then whether aspects of the classic Onsager's picture generalize to the non-local non-reversible dynamics described by logistic map iterates. While in the chaotic case numerical evidence of a monotonic relaxation is found, at the onset of chaos complex relaxation patterns emerge.

  9. Quasiperiodic graphs at the onset of chaos

    NASA Astrophysics Data System (ADS)

    Luque, B.; Cordero-Gracia, M.; Gómez, M.; Robledo, A.

    2013-12-01

    We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers.

  10. Beyond Benford's Law: Distinguishing Noise from Chaos

    PubMed Central

    Li, Qinglei; Fu, Zuntao; Yuan, Naiming

    2015-01-01

    Determinism and randomness are two inherent aspects of all physical processes. Time series from chaotic systems share several features identical with those generated from stochastic processes, which makes them almost undistinguishable. In this paper, a new method based on Benford's law is designed in order to distinguish noise from chaos by only information from the first digit of considered series. By applying this method to discrete data, we confirm that chaotic data indeed can be distinguished from noise data, quantitatively and clearly. PMID:26030809

  11. Chaos in a Fractional Order Chua System

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.; Qammar, Helen Killory

    1996-01-01

    This report studies the effects of fractional dynamics in chaotic systems. In particular, Chua's system is modified to include fractional order elements. Varying the total system order incrementally from 2.6 to 3.7 demonstrates that systems of 'order' less than three can exhibit chaos as well as other nonlinear behavior. This effectively forces a clarification of the definition of order which can no longer be considered only by the total number of differentiations or by the highest power of the Laplace variable.

  12. Self-organized chaos through polyhomeostatic optimization.

    PubMed

    Markovic, D; Gros, Claudius

    2010-08-06

    The goal of polyhomeostatic control is to achieve a certain target distribution of behaviors, in contrast to homeostatic regulation, which aims at stabilizing a steady-state dynamical state. We consider polyhomeostasis for individual and networks of firing-rate neurons, adapting to achieve target distributions of firing rates maximizing information entropy. We show that any finite polyhomeostatic adaption rate destroys all attractors in Hopfield-like network setups, leading to intermittently bursting behavior and self-organized chaos. The importance of polyhomeostasis to adapting behavior in general is discussed.

  13. Ray chaos in a photonic crystal

    NASA Astrophysics Data System (ADS)

    Rousseau, Emmanuel; Felbacq, Didier

    2017-01-01

    The ray dynamics in a photonic crystal was investigated. Chaos occurs for perfectly periodic crystals, the rays dynamics being very sensitive to the initial conditions. Depending on the filling factor, the ray dynamics can exhibit stable paths near (fully) chaotic motion. The degree of chaoticity is quantified through the computation of Lyapunov exponents. As a result, the more diluted is the geometry, the more chaotic is the dynamic. Therefore, despite the perfect periodicity of the geometry, light transport is a diffusive process which can be tuned from normal diffusion (Brownian motion) to anomalous diffusion because of the existence of Lévy flights.

  14. Experimental demonstration of audio secure communication with Rossler chaotic circuits

    NASA Astrophysics Data System (ADS)

    Jaimes-Reátegui, R.; García-López, J. H.; Pisarchik, A. N.; Medina-Gutiérrez, C.; Jimenez-Godinez, J. C.; Valdivia-Hernandez, R.; Murguía-Hernandez, A.; Frausto-Reyes, C.

    2006-02-01

    The possibility of secure communication with chaos is demonstrated experimentally with two simple unidirectionally coupled electronic circuits. A traditional approach has been used to synchronize the two chaotic systems. We also study, both numerically and experimentally, the dynamic of the systems in a wide range of the control parameter. The bifurcation diagrams represent a complex behaviour whish varied from periodic orbits to chaos of the Rossler and Shilnikov types. The results of numerical simulations are in a good agreement with experiments.

  15. Quantum nonlinear resonance and quantum chaos in Aharonov-Bohm oscillations in mesoscopic semiconductor rings

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N.; Campbell, D.K.; Krive, I.V.

    1997-10-01

    We consider Aharonov-Bohm oscillations in a mesoscopic semiconductor ring threaded by both a constant magnetic flux and a time-dependent, resonant magnetic field with one or two frequencies. Working in the ballistic regime, we establish that the theory of {open_quotes}quantum nonlinear resonance{close_quotes} applies, and thus that this system represents a possible solid-state realization of {open_quotes}quantum nonlinear resonance{close_quotes} and {open_quotes}quantum chaos.{close_quotes} In particular, we investigate the behavior of the time-averaged electron energy at zero temperature in the regimes of (i) an isolated quantum nonlinear resonance and (ii) the transition to quantum chaos, when two quantum nonlinear resonances overlap. The time-averaged energy exhibits sharp resonant behavior as a function of the applied constant magnetic flux, and has a staircase dependence on the amplitude of the external time-dependent field. In the chaotic regime, the resonant behavior exhibits complex structure as a function of flux and frequency. We compare and contrast the quantum chaos expected in these mesoscopic {open_quotes}solid-state atoms{close_quotes} with that observed in Rydberg atoms in microwave fields, and discuss the prospects for experimental observation of the effects we predict. {copyright} {ital 1997} {ital The American Physical Society}

  16. Static/dynamic strain sensing applications by monitoring the correlation peak from optical wideband chaos.

    PubMed

    Xia, Li; Yu, Can; Ran, Yanli; Xu, Jun; Li, Wei

    2015-10-05

    We present a new sensing demodulation approach by monitoring the amplitude changes of correlation peak through using optical wideband chaos. For the static strain sensing, the reflection intensity of optical wideband chaos can be modulated by the strain induced wavelength spacing between the wavelength division multiplexing (WDM) device and the sensing grating. Thus, the relative amplitude change (RAC) of correlation peak is mainly determined by the change of chaotic reflection intensity. For the dynamic strain sensing, the reflection intensity of optical wideband chaos can be modulated by the fast fluctuant evanescent wave on a section of no-core fiber (NCF). Thus, the response from correlation peak's RAC is mainly according to the dynamic strain frequency. The experimental measurements show that a high strain sensing sensitivity of 7.04*10-3 RAC/με is achieved within the measurement range of 900 με during the static strain test. While in the dynamic test, the demodulation can detect the vibration frequency of 6 kHz located at 6 km long. This demodulation method can simultaneously achieve static/dynamic sensing and precisely locating the fiber break point with the high accuracy of several centimeters, making it very easy for network maintenance.

  17. Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection.

    PubMed

    Someya, Hiroyuki; Oowada, Isao; Okumura, Haruka; Kida, Takahiko; Uchida, Atsushi

    2009-10-26

    We experimentally investigate the generation and synchronization of bandwidth-enhanced chaos in a semiconductor laser (drive laser) that is subject to optical injection from another chaotic semiconductor laser (injection laser) with optical feedback. Effective bandwidth enhancement is achieved over 12 GHz, under the condition in which the optical wavelength of the drive laser is positively detuned with respect to that of the injection laser, outside the injection locking range. The bandwidth-enhanced chaotic signal of the drive laser is injected into a third semiconductor laser (response laser) for synchronization. Synchronization of chaos with a bandwidth greater than 12 GHz is observed between the drive and response lasers, under the condition in which the optical wavelength of the response laser is negatively detuned with respect to that of the drive laser, satisfying the injection locking condition. High-quality chaos synchronization is observed within the injection locking range between the drive and response lasers and under the condition of a low relaxation oscillation frequency of the response laser.

  18. Deterministic chaos and noise in three in vitro hippocampal models of epilepsy.

    PubMed

    Slutzky, M W; Cvitanović, P; Mogul, D J

    2001-01-01

    Recent reports have suggested that chaos control techniques may be useful for electrically manipulating epileptiform bursting behavior in neuronal ensembles. Because the dynamics of spontaneous in vitro bursting had not been well determined previously, analysis of this behavior in the rat hippocampus was performed. Epileptiform bursting was induced in transverse rat hippocampal slices using three experimental methods. Slices were bathed in artificial cerebrospinal fluid containing: (1) elevated potassium ([K+]o= 10.5 mM), (2) zero magnesium, or (3) the GABAA-receptor antagonists bicuculline (20 microM) and picrotoxin (250 microM). The existence of chaos and determinism was assessed using two different analytical techniques: unstable periodic orbit (UPO) analysis and a new technique for estimating Lyapunov exponents. Significance of these results was assessed by comparing the calculations for each experiment with corresponding randomized surrogate data. UPOs of multiple periods were highly prevalent in experiments from all three epilepsy models: 73% of all experiments contained at least one statistically significant period-1 or period-2 orbit. However, the expansion rate analysis did not provide any evidence of determinism in the data. This suggests that the system may be globally stochastic but contains local pockets of determinism. Thus, manipulation of bursting behavior using chaos control algorithms may yet hold promise for reverting or preventing epileptic seizures.

  19. Mode-locking and the transition to chaos in dissipative systems

    SciTech Connect

    Bak, P.; Bohr, T.; Jensen, M.H.

    1984-01-01

    Dissipative systems with two competing frequencies exhibit transitions to chaos. We have investigated the transition through a study of discrete maps of the circle onto itself, and by constructing and analyzing return maps of differential equations representing some physical systems. The transition is caused by interaction and overlap of mode-locked resonances and takes place at a critical line where the map losses invertibility. At this line the mode-locked intervals trace up a complete Devil's Staircase whose complementary set is a Cantor set with universal fractal dimension D approx. 0.87. Below criticality there is room for quasiperiodic orbits, whose measure is given by an exponent ..beta.. approx. 0.34 which can be related to D through a scaling relation, just as for second order phase transitions. The Lebesgue measure serves as an order parameter for the transition to chaos. The resistively shunted Josephson junction, and charge density waves (CDWs) in rf electric fields are usually described by the differential equation of the damped driven pendulum. The 2d return map for this equation collapses to ld circle map at and below the transition to chaos. The theoretical results on universal behavior, derived here and elsewhere, can thus readily be checked experimentally by studying real physical systems. Recent experiments on Josephson junctions and CDWs indicating the predicted fractal scaling of mode-locking at criticality are reviewed.

  20. Chaos and band structure in a three-dimensional optical lattice.

    PubMed

    Boretz, Yingyue; Reichl, L E

    2015-04-01

    Classical chaos is known to affect wave propagation because it signifies the presence of broken symmetries. The effect of chaos has been observed experimentally for matter waves, electromagnetic waves, and acoustic waves. When these three types of waves propagate through a spatially periodic medium, the allowed propagation energies form bands. For energies in the band gaps, no wave propagation is possible. We show that optical lattices provide a well-defined system that allows a study of the effect of chaos on band structure. We have determined the band structure of a body-centered-cubic optical lattice for all theoretically possible couplings, and we find that the band structure for those lattices realizable in the laboratory differs significantly from that expected for the bands in an "empty" body-centered-cubic crystal. However, as coupling is increased, the lattice becomes increasingly chaotic and it becomes possible to produce band structure that has behavior qualitatively similar to the "empty" body-centered-cubic band structure, although with fewer degeneracies.

  1. Metabolic Engineering VII Conference

    SciTech Connect

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  2. RAPID DYNAMICAL CHAOS IN AN EXOPLANETARY SYSTEM

    SciTech Connect

    Deck, Katherine M.; Winn, Joshua N.; Holman, Matthew J.; Carter, Joshua A.; Ragozzine, Darin; Agol, Eric; Lissauer, Jack J.

    2012-08-10

    We report on the long-term dynamical evolution of the two-planet Kepler-36 system, which consists of a super-Earth and a sub-Neptune in a tightly packed orbital configuration. The orbits of the planets, which we studied through numerical integrations of initial conditions that are consistent with observations of the system, are chaotic with a Lyapunov time of only {approx}10 years. The chaos is a consequence of a particular set of orbital resonances, with the inner planet orbiting 34 times for every 29 orbits of the outer planet. The rapidity of the chaos is due to the interaction of the 29:34 resonance with the nearby first-order 6:7 resonance, in contrast to the usual case in which secular terms in the Hamiltonian play a dominant role. Only one contiguous region of phase space, accounting for {approx}4.5% of the sample of initial conditions studied, corresponds to planetary orbits that do not show large-scale orbital instabilities on the timescale of our integrations ({approx}200 million years). Restricting the orbits to this long-lived region allows a refinement of estimates of the masses and radii of the planets. We find that the long-lived region consists of the initial conditions that satisfy the Hill stability criterion by the largest margin. Any successful theory for the formation of this system will need to account for why its current state is so close to unstable regions of phase space.

  3. Quantum chaos and holographic tensor models

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Sanyal, Sambuddha; Subramanian, P. N. Bala

    2017-03-01

    A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large- N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.

  4. The dream's navel between chaos and thought.

    PubMed

    Scalzone, F; Zontini, G

    2001-04-01

    The authors begin by drawing attention to the problem of the transition from the biological to the psychic, noting that Freud himself, with his background in the neurosciences, grappled with it throughout his career. Certain recent paradigms more commonly applied to the natural sciences, such as in particular chaos and complexity theory, can in their view prove fruitful in psychoanalysis too, and it is shown how these notions are inherent in some of Freud's conceptions. The unconscious is stated to operate like a neural network, performing the kind of parallel processing used in the computing of highly complex situations, whereas the conscious mind is sequential. Dreams, in the authors' opinion, are organisers of the mind, imparting order to the turbulence of the underlying wishes and unconscious fantasies and structuring them through the dream work. Through dreams, the structured linearity of conscious thought can emerge out of the non-linear chaos of the drives. The dream's navel can be seen as the chaotic link, or interface, between the unconscious wish, which constitutes an attractor, and the conscious thought. The attractor may be visualised as having an hourglass or clepsydra shape, the narrow section being the dream's navel, and, being the same at any scale of observation, has the property of fractality.

  5. A chaos model of meandering rivers

    SciTech Connect

    Stoelum, H.H.

    1991-03-01

    A meandering river is a nonlinear dynamic system, and fractal geometry describes well the meander bends of such rivers. Based on a qualitative, sedimentological model of the process of meandering, a chaos model is proposed, describing meandering as the outcome of two processes: the feedback interaction between river curvature and a high-velocity thalweg channel within the river; and the interaction between meander bends causing abandonment and straightening of the river course. The system, when initiated from a nearly straight river course, moves toward a dynamic equilibrium in which the meander bends are fractal. This development is a case of self-organized criticality. The equilibrium represents a state of optimal energy dissipation in a situation where two counteracting processes are balancing each other. Sedimentology may be seen as the science that describes how nonlinear dynamic processes interact to create a depositional system. As indicated by the example of meandering rivers, the use of chaos and fractal models may give sedimentology a new turn toward understanding sedimentary processes and the 3-D architecture of sediment bodies.

  6. Spirals, chaos, and new mechanisms of wave propagation.

    PubMed

    Chen, P S; Garfinkel, A; Weiss, J N; Karagueuzian, H S

    1997-02-01

    The chaos theory is based on the idea that phenomena that appear disordered and random may actually be produced by relatively simple deterministic mechanisms. The disordered (aperiodic) activation that characterizes a chaotic motion is reached through one of a few well-defined paths that are characteristic of nonlinear dynamical systems. Our group has been studying VF using computerized mapping techniques. We found that in electrically induced VF, reentrant wavefronts (spiral waves) are present both in the initial tachysystolic stage (resembling VT) and the later tremulous incoordination stage (true VF). The electrophysiological characteristics associated with the transition from VT to VF is compatible with the quasiperiodic route to chaos as described in the Ruelle-Takens theorem. We propose that specific restitution of action potential duration (APD) and conduction velocity properties can cause a spiral wave (the primary oscillator) to develop additional oscillatory modes that lead to spiral meander and breakup. When spiral waves begin to meander and are modulated by other oscillatory processes, the periodic activity is replaced by unstable quasiperiodic oscillation, which then undergoes transition to chaos, signaling the onset of VF. We conclude that VF is a form of deterministic chaos. The development of VF is compatible with quasiperiodic transition to chaos. These results indicate that both the prediction and the control of fibrillation are possible based on the chaos theory and with the advent of chaos control algorithms.

  7. Examining topographic variability within chaos terrain on Europa

    NASA Astrophysics Data System (ADS)

    Patterson, G. W.; Prockter, L. M.; Schenk, P.

    2008-12-01

    Chaos terrain is a unique and prevalent surface feature on the Galilean satellite Europa that forms as a result of the disruption of subcircular regions of the satellite's surface. Evidence suggests that these features are endogenic and that they form via processes involving the interaction of a mobile substrate with a brittle surface. Based on the morphology and relative topography of prominent and well-imaged examples of chaos terrain, models have been proposed suggesting that the mobile substrate could be either liquid water or ductile ice. Using a digital elevation model (DEM) of Conamara Chaos, Schenk and Pappalardo (2004) alluded to the presence of several prominent domes within the margins of the feature. They concluded that this was best described by a formation mechanism for chaos involving the diapiric upwelling of a ductile ice substrate, with the coalescence of several individual diapirs in the shallow subsurface. To explore this result in more detail, we use Fourier analysis to examine the long-wavelength components of the topography of several regions of chaos utilizing DEMs of Europa's surface produced utilizing stereo-controlled photoclinometry. Through this analysis, we identify the presence, size, and distribution of domes within the boundaries of chaos terrain and, with this information, examine how topographic variability within chaos terrain can be used to constrain proposed formation mechanisms for this unique feature-type.

  8. Decrease of cardiac chaos in congestive heart failure

    NASA Astrophysics Data System (ADS)

    Poon, Chi-Sang; Merrill, Christopher K.

    1997-10-01

    The electrical properties of the mammalian heart undergo many complex transitions in normal and diseased states. It has been proposed that the normal heartbeat may display complex nonlinear dynamics, including deterministic chaos,, and that such cardiac chaos may be a useful physiological marker for the diagnosis and management, of certain heart trouble. However, it is not clear whether the heartbeat series of healthy and diseased hearts are chaotic or stochastic, or whether cardiac chaos represents normal or abnormal behaviour. Here we have used a highly sensitive technique, which is robust to random noise, to detect chaos. We analysed the electrocardiograms from a group of healthy subjects and those with severe congestive heart failure (CHF), a clinical condition associated with a high risk of sudden death. The short-term variations of beat-to-beat interval exhibited strongly and consistently chaotic behaviour in all healthy subjects, but were frequently interrupted by periods of seemingly non-chaotic fluctuations in patients with CHF. Chaotic dynamics in the CHF data, even when discernible, exhibited a high degree of random variability over time, suggesting a weaker form of chaos. These findings suggest that cardiac chaos is prevalent in healthy heart, and a decrease in such chaos may be indicative of CHF.

  9. Comment on: ``Chaos in the Showalter-Noyes-Bar-Eli model of the Belousov-Zhabotinskii reaction''

    NASA Astrophysics Data System (ADS)

    Györgyi, László; Field, Richard J.

    1990-08-01

    The recent numerical work of Lindberg et al. convincingly demonstrates that chemical chaos in a continuous flow, stirred tank reactor (CSTR) can be reproduced by a spatially homogeneous, accurate model of the kinetics of the Belousov-Zhabotinskii(BZ) reaction. However, some problems remain. The chaos in this model and two others, one using an accurate model of the chemical kinetics in conjunction with spatial inhomogeneity resulting from the finite CSTR mixing time and the other using a flawed model of the BZ chemical kinetics, results from coupling of two cycles coexisting within the complex dynamic model. The second cycle in the case of the homogeneous models involves a product of the main chemical limit cycle which is present at a high average concentration. In the Lindberg et al. model this product is assumed to be HOBr. It is clear, however, that a large [HOBr] does not accumulate in the real system because of its rapid reaction with Br-. We suggest that while the Lindberg et al. results are clearly important, this process still needs to be accounted for. Furthermore, the rate parameter values used by Lindberg et al. are not those currently thought to be correct, and the chaos disappears if the accurate rate constant values are used. We discuss why this is so. It is further argued that the Lindberg et al. results do not eliminate the possibility that at least part of the experimentally observed CSTR chaos results from effects related to incomplete mixing.

  10. Next conference

    NASA Astrophysics Data System (ADS)

    Hexemer, Alexander; Toney, Michael F.

    2010-11-01

    After the successful conference on Synchrotron Radiation in Polymer Science (SRPS) in Rolduc Abbey (the Netherlands), we are now looking forward to the next meeting in this topical series started in 1995 by H G Zachmann, one of the pioneers of the use of synchrotron radiation techniques in polymer science. Earlier meetings were held in Hamburg (1995), Sheffield (2002), Kyoto (2006), and Rolduc (2009). In September of 2012 the Synchrotron Radiation and Polymer Science V conferences will be organized in a joint effort by the SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory. Stanford Linear Accelerator Laboratory Stanford Linear Accelerator Laboratory Advanced Light Source at LBL Advanced Light Source at LBL The conference will be organised in the heart of beautiful San Francisco. The program will consist of invited and contributed lectures divided in sessions on the use of synchrotron SAXS/WAXD, imaging and tomography, soft x-rays, x-ray spectroscopy, GISAXS and reflectivity, micro-beams and hyphenated techniques in polymer science. Poster contributions are more than welcome and will be highlighted during the poster sessions. Visits to both SLAC as well as LBL will be organised. San Francisco can easily be reached. It is served by two major international airports San Francisco International Airport and Oakland International Airport. Both are being served by most major airlines with easy connections to Europe and Asia as well as national destinations. Both also boast excellent connections to San Francisco city centre. We are looking forward to seeing you in the vibrant city by the Bay in September 2012. Golden gate bridge Alexander Hexemer Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, CA 94720, USA Michael F Toney Stanford Synchrotron Radiation Lightsource, Menlo Pk, CA 94025, USA E-mail: ahexemer@lbl.gov, mftoney@slac.stanford.edu

  11. Conferences revisited

    NASA Astrophysics Data System (ADS)

    Radcliffe, Jonathan

    2008-08-01

    Way back in the mid-1990s, as a young PhD student, I wrote a Lateral Thoughts article about my first experience of an academic conference (Physics World 1994 October p80). It was a peach of a trip - most of the lab decamped to Grenoble for a week of great weather, beautiful scenery and, of course, the physics. A whole new community was there for me to see in action, and the internationality of it all helped us to forget about England's non-appearance in the 1994 World Cup finals.

  12. Error function attack of chaos synchronization based encryption schemes.

    PubMed

    Wang, Xingang; Zhan, Meng; Lai, C-H; Gang, Hu

    2004-03-01

    Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the error function attack is presented systematically and used to evaluate system security. We define a quantitative measure (quality factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from quality factor. Copyright 2004 American Institute of Physics.

  13. Controlling spatiotemporal chaos in active dissipative-dispersive nonlinear systems

    NASA Astrophysics Data System (ADS)

    Gomes, S. N.; Pradas, M.; Kalliadasis, S.; Papageorgiou, D. T.; Pavliotis, G. A.

    2015-08-01

    We present an alternative methodology for the stabilization and control of infinite-dimensional dynamical systems exhibiting low-dimensional spatiotemporal chaos. We show that with an appropriate choice of time-dependent controls we are able to stabilize and/or control all stable or unstable solutions, including steady solutions, traveling waves (single and multipulse ones or bound states), and spatiotemporal chaos. We exemplify our methodology with the generalized Kuramoto-Sivashinsky equation, a paradigmatic model of spatiotemporal chaos, which is known to exhibit a rich spectrum of wave forms and wave transitions and a rich variety of spatiotemporal structures.

  14. Chaos in the band structure of a soft Sinai lattice

    NASA Astrophysics Data System (ADS)

    Porter, Max D.; Barr, Aaron; Barr, Ariel; Reichl, L. E.

    2017-05-01

    We study the effect of broken spatial and dynamical symmetries on the band structure of two lattices with unit cells that are soft versions of the classic Sinai billiard. We find significant signatures of chaos in the band structure of these lattices, in energy regimes where the underlying classical unit cell undergoes a transition to chaos. Broken dynamical symmetries and the presence of chaos can diminish the feasibility of changing and controlling band structure in a wide variety of two-dimensional lattice-based devices, including two-dimensional solids, optical lattices, and photonic crystals.

  15. Quantum chaos in an ultrastrongly coupled bosonic junction.

    PubMed

    Naether, Uta; García-Ripoll, Juan José; Mazo, Juan José; Zueco, David

    2014-02-21

    The semiclassical and quantum dynamics of two ultrastrongly coupled nonlinear resonators cannot be explained using the discrete nonlinear Schrödinger equation or the Bose-Hubbard model, respectively. Instead, a model beyond the rotating wave approximation must be studied. In the semiclassical limit this model is not integrable and becomes chaotic for a finite window of parameters. For the quantum dimer we find corresponding regions of stability and chaos. The more striking consequence for both semiclassical and quantum chaos is that the tunneling time between the sites becomes unpredictable. These results, including the transition to chaos, can be tested in experiments with superconducting microwave resonators.

  16. Theory of the nucleus as applied to quantum chaos

    SciTech Connect

    Bunakov, V. E.

    2014-12-15

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a quantum signature of chaos in classical mechanics is given. It is proposed to specify a regular versus a chaotic behavior on the basis of symmetries of the system being considered and global integrals of motion that are associated with these symmetries in accordance with the Liouville-Arnold theorem rather than on the basis of the concept of Lyapunov’s instability of trajectories. Numerical criteria of quantum chaos that follow from the proposed concept are analyzed.

  17. Computational Biology Support: RECOMB Conference Series (Conference Support)

    SciTech Connect

    Michael Waterman

    2006-06-15

    collection of nine keynotes awarded to researchers of highest international esteem who are asked to inform the community about landmark advances in computational and experimental research and inject new directions into the field of computational molecular biology. This includes the following conference events: Next we present a list of the names of the students and postdocs supported. Those supported either presented a paper (10 in 2001, 6 in 2002, 7 in 2003, 14 in 2004, and 20 in 2006) or were they presenter of a poster. This support was vital to the quality and success of the Conference. At the conclusion we give the publication details of the relevant Recomb proceedings.

  18. Multiple period-doubling bifurcation route to chaos in periodically pulsed Murali-Lakshmanan-Chua circuit-controlling and synchronization of chaos.

    PubMed

    Parthasarathy, S; Manikandakumar, K

    2007-12-01

    We consider a simple nonautonomous dissipative nonlinear electronic circuit consisting of Chua's diode as the only nonlinear element, which exhibit a typical period doubling bifurcation route to chaotic oscillations. In this paper, we show that the effect of additional periodic pulses in this Murali-Lakshmanan-Chua (MLC) circuit results in novel multiple-period-doubling bifurcation behavior, prior to the onset of chaos, by using both numerical and some experimental simulations. In the chaotic regime, this circuit exhibits a rich variety of dynamical behavior including enlarged periodic windows, attractor crises, distinctly modified bifurcation structures, and so on. For certain types of periodic pulses, this circuit also admits transcritical bifurcations preceding the onset of multiple-period-doubling bifurcations. We have characterized our numerical simulation results by using Lyapunov exponents, correlation dimension, and power spectrum, which are found to be in good agreement with the experimental observations. Further controlling and synchronization of chaos in this periodically pulsed MLC circuit have been achieved by using suitable methods. We have also shown that the chaotic attractor becomes more complicated and their corresponding return maps are no longer simple for large n-periodic pulses. The above study also indicates that one can generate any desired n-period-doubling bifurcation behavior by applying n-periodic pulses to a chaotic system.

  19. The Strength of Chaos: Accurate Simulation of Resonant Electron Scattering by Many-Electron Ions and Atoms in the Presence of Quantum Chaos

    DTIC Science & Technology

    2017-01-20

    AFRL-AFOSR-JP-TR-2017-0012 The Strength of Chaos: accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence...SUBTITLE The Strength of Chaos: accurate simulation of resonant electron scattering by many- electron ions and atoms in the presence of quantum chaos...Strength of Chaos: accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence of quantum chaos” Date 13

  20. PREFACE: Quark Matter 2006 Conference Quark Matter 2006 Conference

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    scientific program of the conference began with an overview of high energy nuclear physics in China by Professor Wenqing Shen, vice president of the National Natural Science Foundation of China. Professor Shen highlighted many contributions made by the Chinese scientists in both theory and experiment. Dr Nick Samios, former director of Brookhaven National Laboratory (BNL), gave a vivid account of the early years of RHIC and recent accomplishments. Highlights of the conference include new results from RHIC at BNL and SPS (Super Proton Synchrotron) at CERN (European Organization for Nuclear Research). Many experimental results reported at the conference support the notion that the quark-gluon matter at RHIC behaves like a perfect liquid with minimum viscosity to entropy ratio. There were 15 plenary sessions which covered 54 plenary talks, 12 parallel sessions and 1 poster session. A total of 320 abstracts were submitted to the conference out of which 124 were selected for oral presentation and the rest were assigned to the poster session. Talks and posters in the conference covered a broad range of experimental and theoretical progress in ultra-relativistic heavy-ion collisions, which includes new evidence of sQGP, jet quenching and heavy quark energy loss, heavy-ion collision phenomenology, quantum field theory at finite temperature and/or density, and relevant areas of astrophysics and plasma physics. The Quark Matter 2006 conference coincided with the 80th birthday of Professor T D Lee. A special reception was held in the banquet hall of the Shanghai Grand Theatre to celebrate Professor Lee's birthday and to honor his great contributions to physics, in particular, to the development of high energy nuclear physics research in China. We would like to thank the members of the International Advisory Committee for providing valuable advice on a variety of matters, from the general structure of the conference to the selection of the plenary speakers and selection of abstracts for

  1. PREFACE: The International Conference on Science of Friction

    NASA Astrophysics Data System (ADS)

    Miura, Kouji; Matsukawa, Hiroshi

    2007-07-01

    The first international conference on the science of friction in Japan was held at Irago, Aichi on 9-13 September 2007. The conference focused on the elementary process of friction phenomena from the atomic and molecular scale view. Topics covered in the conference are shown below.:

  2. Superlubricity and friction
  3. Electronic and phononic contributions to friction
  4. Friction on the atomic and molecular scales
  5. van der Waals friction and Casimir force
  6. Molecular motor and friction
  7. Friction and adhesion in soft matter systems
  8. Wear and crack on the nanoscale
  9. Theoretical studies on the atomic scale friction and energy dissipation
  10. Friction and chaos
  11. Mechanical properties of nanoscale contacts
  12. Friction of powder
  13. The number of participants in the conference was approximately 100, registered from 11 countries. 48 oral and 29 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 23 papers devoted to the above topics of friction. The successful organization of the conference was made possible by the contribution of the members of the Organizing Committee and International Advisory Committee. The conference was made possible thanks to the financial support from Aichi University of Education and the Taihokogyo Tribology Research Foundation (TTRF), and moreover thanks to the approval societies of The Physical Society of Japan, The Surface Science Society of Japan, The Japanese Society of Tribologists and Toyota Physical and Chemical Research Institute. The details of the conference are available at http://www.science-of-friction.com . Finally we want to thank the speakers for the high quality of their talks and all participants for coming to Irago, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  14. Low-temperature physics: Chaos in the cold

    NASA Astrophysics Data System (ADS)

    Julienne, Paul S.

    2014-03-01

    A marriage between theory and experiment has shown that ultracold erbium atoms trapped with laser light and subjected to a magnetic field undergo collisions that are characterized by quantum chaos. See Letter p.475

  15. Transient Spatiotemporal Chaos in a Synaptically Coupled Neural Network

    NASA Astrophysics Data System (ADS)

    Lafranceschina, Jacopo; Wackerbauer, Renate

    2014-03-01

    Spatiotemporal chaos is transient in a diffusively coupled Morris-Lecar neural network. This study shows that the addition of synaptic coupling in the ring network reduces the average lifetime of spatiotemporal chaos for small to intermediate coupling strength and almost all numbers of synapses. For large coupling strength, close to the threshold of excitation, the average lifetime increases beyond the value for only diffusive coupling, and the collapse to the rest state dominates over the collapse to a traveling pulse state. The regime of spatiotemporal chaos is characterized by a slightly increasing Lyaponov exponent and degree of phase coherence as the number of synaptic links increases. The presence of transient spatiotemporal chaos in a network of coupled neurons and the associated chaotic saddle provides a possibility for switching between metastable states observed in information processing and brain function. This research is supported by the University of Alaska Fairbanks.

  16. Filtering with Marked Point Process Observations via Poisson Chaos Expansion

    SciTech Connect

    Sun Wei; Zeng Yong; Zhang Shu

    2013-06-15

    We study a general filtering problem with marked point process observations. The motivation comes from modeling financial ultra-high frequency data. First, we rigorously derive the unnormalized filtering equation with marked point process observations under mild assumptions, especially relaxing the bounded condition of stochastic intensity. Then, we derive the Poisson chaos expansion for the unnormalized filter. Based on the chaos expansion, we establish the uniqueness of solutions of the unnormalized filtering equation. Moreover, we derive the Poisson chaos expansion for the unnormalized filter density under additional conditions. To explore the computational advantage, we further construct a new consistent recursive numerical scheme based on the truncation of the chaos density expansion for a simple case. The new algorithm divides the computations into those containing solely system coefficients and those including the observations, and assign the former off-line.

  17. Inducing chaos by resonant perturbations: theory and experiment.

    PubMed

    Lai, Ying-Cheng; Kandangath, Anil; Krishnamoorthy, Satish; Gaudet, John A; de Moura, Alessandro P S

    2005-06-03

    We propose a scheme to induce chaos in nonlinear oscillators that either are by themselves incapable of exhibiting chaos or are far away from parameter regions of chaotic behaviors. Our idea is to make use of small, judiciously chosen perturbations in the form of weak periodic signals with time-varying frequency and phase, and to drive the system into a hierarchy of nonlinear resonant states and eventually into chaos. We demonstrate this method by using numerical examples and a laboratory experiment with a Duffing type of electronic circuit driven by a phase-locked loop. The phase-locked loop can track the instantaneous frequency and phase of the Duffing circuit and deliver resonant perturbations to generate robust chaos.

  18. Controlling spatiotemporal chaos in chains of dissipative Kapitza pendula.

    PubMed

    Chacón, R; Marcheggiani, L

    2010-07-01

    The control of chaos (suppression and enhancement) of a damped pendulum subjected to two perpendicular periodic excitations of its pivot (one chaos inducing and the other chaos controlling) is investigated. Analytical (Melnikov analysis) and numerical (Lyapunov exponents) results show that the initial phase difference between the two excitations plays a fundamental role in the control scenario. We demonstrate the effectiveness of the method in suppressing spatiotemporal chaos of chains of identical chaotic coupled pendula where homogeneous regularization is obtained under localized control on a minimal number of pendula. Additionally, we demonstrate the robustness of the control scenario against changes in the coupling function. In particular, synchronization-induced homogeneous regularization of chaotic chains can be highly enhanced by considering time-varying couplings instead of stationary couplings.

  19. Extension of spatiotemporal chaos in glow discharge-semiconductor systems

    SciTech Connect

    Akhmet, Marat Fen, Mehmet Onur; Rafatov, Ismail

    2014-12-15

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  20. Chaos and the Marketing of Computing Services on Campus.

    ERIC Educational Resources Information Center

    May, James H.

    1989-01-01

    In an age of chaos and uncertainty in computing services delivery, the best marketing strategy that can be adopted is concern for user constituencies and the long range solutions to their problems. (MLW)

  21. Extension of spatiotemporal chaos in glow discharge-semiconductor systems.

    PubMed

    Akhmet, Marat; Rafatov, Ismail; Fen, Mehmet Onur

    2014-12-01

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528-4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  22. Quasiperiodicity route to chaos in cardiac conduction model

    NASA Astrophysics Data System (ADS)

    Quiroz-Juárez, M. A.; Vázquez-Medina, R.; Ryzhii, E.; Ryzhii, M.; Aragón, J. L.

    2017-01-01

    It has been suggested that cardiac arrhythmias are instances of chaos. In particular that the ventricular fibrillation is a form of spatio-temporal chaos that arises from normal rhythm through a quasi-periodicity or Ruelle-Takens-Newhouse route to chaos. In this work, we modify the heterogeneous oscillator model of cardiac conduction system proposed in Ref. [Ryzhii E, Ryzhii M. A heterogeneous coupled oscillator model for simulation of ECG signals. Comput Meth Prog Bio 2014;117(1):40-49. doi:10.1016/j.cmpb.2014.04.009.], by including an ectopic pacemaker that stimulates the ventricular muscle to model arrhythmias. With this modification, the transition from normal rhythm to ventricular fibrillation is controlled by a single parameter. We show that this transition follows the so-called torus of quasi-periodic route to chaos, as verified by using numerical tools such as power spectrum and largest Lyapunov exponent.

  23. Chaos computing in terms of periodic orbits.

    PubMed

    Kia, Behnam; Spano, Mark L; Ditto, William L

    2011-09-01

    The complex dynamics of chaotic systems can perform computations. The parameters and/or the initial conditions of a dynamical system are the data inputs and the resulting system state is the output of the computation. By controlling how inputs are mapped to outputs, a specific function can be performed. Previously no clear connection has been drawn between the structure of the dynamics and the computation. In this paper we demonstrate how chaos computation can be explained, modeled, and even predicted in terms of the dynamics of the underlying chaotic system, specifically the periodic orbit structure of the system. Knowing the dynamical equations of the system, we compute the system's periodic orbits as well as its stability in terms of its eigenvalues, thereby demonstrating how, how well, and what the chaotic system can compute.

  24. Chaos, fractals, and our concept of disease.

    PubMed

    Varela, Manuel; Ruiz-Esteban, Raul; Mestre de Juan, Maria Jose

    2010-01-01

    The classic anatomo-clinic paradigm based on clinical syndromes is fraught with problems. Nevertheless, for multiple reasons, clinicians are reluctant to embrace a more pathophysiological approach, even though this is the prevalent paradigm under "which basic sciences work. In recent decades, nonlinear dynamics ("chaos theory") and fractal geometry have provided powerful new tools to analyze physiological systems. However, these tools are embedded in the pathophysiological perspective and are not easily translated to our classic syndromes. This article comments on the problems raised by the conventional anatomo-clinic paradigm and reviews three areas in which the influence of nonlinear dynamics and fractal geometry can be especially prominent: disease as a loss of complexity, the idea of homeostasis, and fractals in pathology.

  25. Secure communication based on spatiotemporal chaos

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao

    2015-08-01

    In this paper, we propose a novel approach to secure communication based on spatiotemporal chaos. At the transmitter end, the state variables of the coupled map lattice system are divided into two groups: one is used as the key to encrypt the plaintext in the N-shift encryption function, and the other is used to mix with the output of the N-shift function to further confuse the information to transmit. At the receiver end, the receiver lattices are driven by the received signal to synchronize with the transmitter lattices and an inverse procedure of the encoding is conducted to decode the information. Numerical simulation and experiment based on the TI TMS320C6713 Digital Signal Processor (DSP) show the feasibility and the validity of the proposed scheme. Project supported by the National Natural Science Foundation of China (Grant No. 61172070) and the Funds from the Science and Technology Innovation Team of Shaanxi Province, China (Grant No. 2013CKT-04).

  26. Adaptive functional systems: learning with chaos.

    PubMed

    Komarov, M A; Osipov, G V; Burtsev, M S

    2010-12-01

    We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.

  27. A simple guide to chaos and complexity

    PubMed Central

    Rickles, Dean; Hawe, Penelope; Shiell, Alan

    2007-01-01

    The concepts of complexity and chaos are being invoked with increasing frequency in the health sciences literature. However, the concepts underpinning these concepts are foreign to many health scientists and there is some looseness in how they have been translated from their origins in mathematics and physics, which is leading to confusion and error in their application. Nonetheless, used carefully, “complexity science” has the potential to invigorate many areas of health science and may lead to important practical outcomes; but if it is to do so, we need the discipline that comes from a proper and responsible usage of its concepts. Hopefully, this glossary will go some way towards achieving that objective. PMID:17933949

  28. Control of neural chaos by synaptic noise.

    PubMed

    Cortes, J M; Torres, J J; Marro, J

    2007-02-01

    We study neural automata - or neurobiologically inspired cellular automata - which exhibits chaotic itinerancy among the different stored patterns or memories. This is a consequence of activity-dependent synaptic fluctuations, which continuously destabilize the attractor and induce irregular hopping to other possible attractors. The nature of these irregularities depends on the dynamic details, namely, on the intensity of the synaptic noise and the number of sites of the network, which are synchronously updated at each time step. Varying these factors, different regimes occur, ranging from regular to chaotic dynamics. As a result, and in absence of external agents, the chaotic behavior may turn regular after tuning the noise intensity. It is argued that a similar mechanism might be on the basis of self-controlling chaos in natural systems.

  29. Master equation analysis of deterministic chemical chaos

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Li, Qianshu

    1998-05-01

    The underlying microscopic dynamics of deterministic chemical chaos was investigated in this paper. We analyzed the master equation for the Williamowski-Rössler model by direct stochastic simulation as well as in the generating function representation. Simulation within an ensemble revealed that in the chaotic regime the deterministic mass action kinetics is related neither to the ensemble mean nor to the most probable value within the ensemble. Cumulant expansion analysis of the master equation also showed that the molecular fluctuations do not admit bounded values but increase linearly in time infinitely, indicating the meaninglessness of the chaotic trajectories predicted by the phenomenological equations. These results proposed that the macroscopic description is no longer useful in the chaotic regime and a more microscopic description is necessary in this circumstance.

  30. Rocks Exposed on Slope in Aram Chaos

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-550, 20 November 2003

    This spectacular vista of sedimentary rocks outcropping on a slope in Aram Chaos was acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) on 14 November 2003. Dark piles of coarse talus have come down the slopes as these materials continue to erode over time. Note that there are no small meteor impact craters in this image, indicating that erosion of these outcrops has been recent, if not on-going. This area is located near 2.8oS, 20.5oW. The 200 meter scale bar is about 656 feet across. Sunlight illuminates the scene from the lower right.

  31. Rocks Exposed on Slope in Aram Chaos

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-550, 20 November 2003

    This spectacular vista of sedimentary rocks outcropping on a slope in Aram Chaos was acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) on 14 November 2003. Dark piles of coarse talus have come down the slopes as these materials continue to erode over time. Note that there are no small meteor impact craters in this image, indicating that erosion of these outcrops has been recent, if not on-going. This area is located near 2.8oS, 20.5oW. The 200 meter scale bar is about 656 feet across. Sunlight illuminates the scene from the lower right.

  32. Computational chaos in massively parallel neural networks

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Gulati, Sandeep

    1989-01-01

    A fundamental issue which directly impacts the scalability of current theoretical neural network models to massively parallel embodiments, in both software as well as hardware, is the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the possible emergence of chaotic manifestations. Previous analyses attributed dynamical instability to the topology of the interconnection matrix, to parasitic components or to propagation delays. However, researchers have observed the existence of emergent computational chaos in a concurrently asynchronous framework, independent of the network topology. Researcher present a methodology enabling the effective asynchronous operation of large-scale neural networks. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are computed formally to characterize the underlying nonlinear dynamics. Simulation results are presented to illustrate network convergence to the correct results, even in the presence of large delays.