Science.gov

Sample records for experimental chaos conference

  1. Proceedings of the 2nd Experimental Chaos Conference

    NASA Astrophysics Data System (ADS)

    Ditto, William; Pecora, Lou; Shlesinger, Michael; Spano, Mark; Vohra, Sandeep

    1995-02-01

    The Table of Contents for the full book PDF is as follows: * Introduction * Spatiotemporal Phenomena * Experimental Studies of Chaotic Mixing * Using Random Maps in the Analysis of Experimental Fluid Flows * Transition to Spatiotemporal Chaos in a Reaction-Diffusion System * Ion-Dynamical Chaos in Plasmas * Optics * Chaos in a Synchronously Driven Optical Resonator * Chaos, Patterns and Defects in Stimulated Scattering Phenomena * Test of the Normal Form for a Subcritical Bifurcation * Observation of Bifurcations and Chaos in a Driven Fiber Optic Coil * Applications -- Communications * Robustness and Signal Recovery in a Synchronized Chaotic System * Synchronizing Nonautonomous Chaotic Circuits * Synchronization of Pulse-Coupled Chaotic Oscillators * Ocean Transmission Effects on Chaotic Signals * Controlling Symbolic Dynamics for Communication * Applications -- Control * Analysis of Nonlinear Actuators Using Chaotic Waveforms * Controlling Chaos in a Quasiperiodic Electronic System * Control of Chaos in a CO2 Laser * General Research * Video-Based Analysis of Bifurcation Phenomena in Radio-Frequency-Excited Inert Gas Plasmas * Transition from Soliton to Chaotic Motion During the Impact of a Nonlinear Structure * Sonoluminescence in a Single Bubble: Periodic, Quasiperiodic and Chaotic Light Source * Quantum Chaos Experiments Using Microwave Cavities * Experiments on Quantum Chaos With and Without Time Reversibility * When Small Noise Imposed on Deterministic Dynamics Becomes Important * Biology * Chaos Control for Cardiac Arrhythmias * Irregularities in Spike Trains of Cat Retinal Ganglion Cells * Broad-Band Synchronization in Monkey Neocortex * Applicability of Correlation Dimension Calculations to Blood Pressure Signal in Rats * Tests for Deterministic Chaos in Noisy Time Series * The Crayfish Mechanoreceptor Cell: A Biological Example of Stochastic Resonance * Chemistry * Chaos During Heterogeneous Chemical Reactions * Stabilizing and Tracking Unstable Periodic

  2. Experimental realization of chaos control by thresholding.

    PubMed

    Murali, K; Sinha, Sudeshna

    2003-07-01

    We report the experimental verification of thresholding as a versatile tool for efficient and flexible chaos control. The strategy here simply involves monitoring a single state variable and resetting it when it exceeds a threshold. We demonstrate the success of the technique in rapidly controlling different chaotic electrical circuits, including a hyperchaotic circuit, onto stable fixed points and limit cycles of different periods, by thresholding just one variable. The simplicity of this controller entailing no run-time computation, and the ease and rapidity of switching between different targets it offers, suggests a potent tool for chaos based applications.

  3. Numerical and experimental exploration of phase control of chaos.

    PubMed

    Zambrano, Samuel; Allaria, Enrico; Brugioni, Stefano; Leyva, Immaculada; Meucci, Riccardo; Sanjuán, Miguel A F; Arecchi, Fortunato T

    2006-03-01

    A well-known method to suppress chaos in a periodically forced chaotic system is to add a harmonic perturbation. The phase control of chaos scheme uses the phase difference between a small added harmonic perturbation and the main driving to suppress chaos, leading the system to different periodic orbits. Using the Duffing oscillator as a paradigm, we present here an in-depth study of this technique. A thorough numerical exploration has been made focused in the important role played by the phase, from which new interesting patterns in parameter space have appeared. On the other hand, our novel experimental implementation of phase control in an electronic circuit confirms both the well-known features of this method and the new ones detected numerically. All this may help in future implementations of phase control of chaos, which is globally confirmed here to be robust and easy to implement experimentally.

  4. Experimental validation of wireless communication with chaos

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  5. Experimental validation of wireless communication with chaos.

    PubMed

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  6. Experimental Control of Instabilities and Chaos in Fast Dynamical Systems

    DTIC Science & Technology

    1997-06-01

    is short (- 10 cm) [153]-[155]; these studies have more recently been considered from the chaos control viewpoint [42]. The apparatus required to...13] Christini, David J., and James A. Collins. Controlling Nonchaotic Neuronal Noise Using Chaos Control Techniques. Phys. Rev. Lett. 75:2782-2785

  7. Comparison of the Nature of Chaos in Experimental [EEG] Data and Theoretical [ANN] Data

    NASA Astrophysics Data System (ADS)

    Das, Atin; Das, Pritha

    2003-08-01

    In this paper, nonlinear dynamical tools like largest Lyapunov exponents (LE), fractal dimension, correlation dimension, pointwise correlation dimension will be employed to analyze electroencephalogram [EEG] data and determine the nature of chaos. Results of similar calculations from some earlier works will be produced for comparison with present results. Also, a brief report on difference of opinion among coworkers regarding tools to characterize chaos will be reported; particularly applicability of LE will be reviewed. The issue of nonlinearity present in experimental time series will be addressed by using surrogate data technique. We have extracted another data set which represented chaotic state of the system considered in our earlier work of mathematical modeling of artificial neural network. By comparing the values of measures employed to the two datasets, it can be concluded that EEG represents high dimensional chaos, whereas the experimental data due to its deterministic nature, is of low dimension. Also results give the evidence that LE exponent is applicable for low dimensional chaotic system while for experimental data, due to their stochasticity and presence of noise- LE is not a reliable tool to characterize chaos.

  8. Experimental verification of rank 1 chaos in switch-controlled Chua circuit.

    PubMed

    Oksasoglu, Ali; Ozoguz, Serdar; Demirkol, Ahmet S; Akgul, Tayfun; Wang, Qiudong

    2009-03-01

    In this paper, we provide the first experimental proof for the existence of rank 1 chaos in the switch-controlled Chua circuit by following a step-by-step procedure given by the theory of rank 1 maps. At the center of this procedure is a periodically kicked limit cycle obtained from the unforced system. Then, this limit cycle is subjected to periodic kicks by adding externally controlled switches to the original circuit. Both the smooth nonlinearity and the piecewise linear cases are considered in this experimental investigation. Experimental results are found to be in concordance with the conclusions of the theory.

  9. Inverting chaos: Extracting system parameters from experimental data

    NASA Astrophysics Data System (ADS)

    Baker, G. L.; Gollub, J. P.; Blackburn, J. A.

    1996-12-01

    Given a set of experimental or numerical chaotic data and a set of model differential equations with several parameters, is it possible to determine the numerical values for these parameters using a least-squares approach, and thereby to test the model against the data? We explore this question (a) with simulated data from model equations for the Rossler, Lorenz, and pendulum attractors, and (b) with experimental data produced by a physical chaotic pendulum. For the systems considered in this paper, the least-squares approach provides values of model parameters that agree well with values obtained in other ways, even in the presence of modest amounts of added noise. For experimental data, the ``fitted'' and experimental attractors are found to have the same correlation dimension and the same positive Lyapunov exponent.

  10. Theoretical and experimental aspects of chaos control by time-delayed feedback.

    PubMed

    Just, Wolfram; Benner, Hartmut; Reibold, Ekkehard

    2003-03-01

    We review recent developments for the control of chaos by time-delayed feedback methods. While such methods are easily applied even in quite complex experimental context the theoretical analysis yields infinite-dimensional differential-difference systems which are hard to tackle. The essential ideas for a general theoretical approach are sketched and the results are compared to electronic circuits and to high power ferromagnetic resonance experiments. Our results show that the control performance can be understood on the basis of experimentally accessible quantities without resort to any model for the internal dynamics.

  11. Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory

    NASA Astrophysics Data System (ADS)

    Kaart, Sander; Schouten, Jaap C.; van den Bleek, Cor M.

    1999-05-01

    Linear feedback control, specifically model predictive control (MPC), was used successfully to synchronize an experimental chaotic pendulum both on unstable periodic and aperiodic orbits. MPC enables tuning of the controller to give an optimal controller performance. That is, both the fluctuations around the target trajectory and the necessary control actions are minimized using a least-squares solution of the linearized problem. It is thus shown that linear control methods can be applied to experimental chaotic systems, as long as an adequate model is available that can be linearized along the desired trajectory. This model is used as an observer, i.e., it is synchronized with the experimental pendulum to estimate the state of the experimental pendulum. In contrast with other chaos control procedures like the map-based Ott, Grebogi, and York method [Phys. Rev. Lett. 64, 1196 (1990)], the continuous type feedback control proposed by Pyragas [Phys. Lett. A 170, 421 (1992)], or the feedback control method recently proposed by Brown and Rulkov [Chaos 7 (3), 395 (1997)], the procedure outlined in this paper automatically results in a choice for the feedback gains that gives optimum performance, i.e., minimum fluctuations around the desired trajectory using minimum control actions.

  12. Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory.

    PubMed

    Kaart, S; Schouten, J C; van den Bleek, C M

    1999-05-01

    Linear feedback control, specifically model predictive control (MPC), was used successfully to synchronize an experimental chaotic pendulum both on unstable periodic and aperiodic orbits. MPC enables tuning of the controller to give an optimal controller performance. That is, both the fluctuations around the target trajectory and the necessary control actions are minimized using a least-squares solution of the linearized problem. It is thus shown that linear control methods can be applied to experimental chaotic systems, as long as an adequate model is available that can be linearized along the desired trajectory. This model is used as an observer, i.e., it is synchronized with the experimental pendulum to estimate the state of the experimental pendulum. In contrast with other chaos control procedures like the map-based Ott, Grebogi, and York method [Phys. Rev. Lett. 64, 1196 (1990)], the continuous type feedback control proposed by Pyragas [Phys. Lett. A 170, 421 (1992)], or the feedback control method recently proposed by Brown and Rulkov [Chaos 7 (3), 395 (1997)], the procedure outlined in this paper automatically results in a choice for the feedback gains that gives optimum performance, i.e., minimum fluctuations around the desired trajectory using minimum control actions.

  13. Topology and Chaos

    NASA Astrophysics Data System (ADS)

    Garity, Dennis J.; Repovš, Dušan

    2008-11-01

    We discuss some basic topological techniques used in the study of chaotic dynamical systems. This paper is partially motivated by a talk given by the second author at the 7th international summer school and conference Chaos 2008: Let's Face Chaos Through Nonlinear Dynamics (CAMTP, University of Maribor, Slovenia, 29 June-13 July 2008).

  14. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    SciTech Connect

    Watts, C.A.

    1993-09-01

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  15. Optical chaos

    SciTech Connect

    Milonni, P.W.

    1989-01-01

    The theoretical and experimental status of chaos in nonlinear optics and laser physics will be reviewed. Attention will then be focused on the possibility of chaotic behavior in individual atoms and molecules driven by intense radiation fields. 46 refs., 7 figs.

  16. Polynomial chaos representation of spatio-temporal random fields from experimental measurements

    SciTech Connect

    Das, Sonjoy Ghanem, Roger Finette, Steven

    2009-12-10

    Two numerical techniques are proposed to construct a polynomial chaos (PC) representation of an arbitrary second-order random vector. In the first approach, a PC representation is constructed by matching a target joint probability density function (pdf) based on sequential conditioning (a sequence of conditional probability relations) in conjunction with the Rosenblatt transformation. In the second approach, the PC representation is obtained by having recourse to the Rosenblatt transformation and simultaneously matching a set of target marginal pdfs and target Spearman's rank correlation coefficient (SRCC) matrix. Both techniques are applied to model an experimental spatio-temporal data set, exhibiting strong non-stationary and non-Gaussian features. The data consists of a set of oceanographic temperature records obtained from a shallow-water acoustics transmission experiment. The measurement data, observed over a finite denumerable subset of the indexing set of the random process, is treated as a collection of observed samples of a second-order random vector that can be treated as a finite-dimensional approximation of the original random field. A set of properly ordered conditional pdfs, that uniquely characterizes the target joint pdf, in the first approach and a set of target marginal pdfs and a target SRCC matrix, in the second approach, are estimated from available experimental data. Digital realizations sampled from the constructed PC representations based on both schemes capture the observed statistical characteristics of the experimental data with sufficient accuracy. The relative advantages and disadvantages of the two proposed techniques are also highlighted.

  17. Examination of experimental evidence of chaos in the bound states of 208Pb

    NASA Astrophysics Data System (ADS)

    Muñoz, L.; Molina, R. A.; Gómez, J. M. G.; Heusler, A.

    2017-01-01

    We study the spectral fluctuations of the 208Pb nucleus using the complete experimental spectrum of 151 states up to excitation energies of 6.20 MeV recently identified at the Maier-Leibnitz Laboratorium at Garching, Germany. For natural parity states the results are very close to the predictions of random matrix theory (RMT) for the nearest-neighbor spacing distribution. A quantitative estimate of the agreement is given by the Brody parameter ω , which takes the value ω =0 for regular systems and ω ≃1 for chaotic systems. We obtain ω =0.85 which is, to our knowledge, the closest value to chaos ever observed in experimental bound states of nuclei. By contrast, the results for unnatural parity states are far from RMT behavior. We interpret these results as a consequence of the strength of the residual interaction in 208Pb, which, according to experimental data, is much stronger for natural than for unnatural parity states. In addition, our results show that chaotic and nonchaotic nuclear states coexist in the same energy region of the spectrum.

  18. Experimentally observed route to spatiotemporal chaos in an extended one-dimensional array of convective oscillators.

    PubMed

    Miranda, M A; Burguete, J

    2009-04-01

    We report experimental evidence of the route to spatiotemporal chaos in a large one-dimensional array of hotspots in a thermoconvective system. As the driving force is increased, a stationary cellular pattern becomes unstable toward a mixed pattern of irregular clusters which consist of time-dependent localized patterns of variable spatiotemporal coherence. These irregular clusters coexist with the basic cellular pattern. The Fourier spectra corresponding to this synchronization transition reveal the weak coupling of a resonant triad. This pattern saturates with the formation of a unique domain of high spatiotemporal coherence. As we further increase the driving force, a supercritical bifurcation to a spatiotemporal beating regime takes place. The new pattern is characterized by the presence of two stationary clusters with a characteristic zig-zag geometry. The Fourier analysis reveals a stronger coupling than the previous mixed pattern and enables us to find out that this beating phenomenon is produced by the splitting of the fundamental spatiotemporal frequencies in a narrow band. Both secondary instabilities are phaselike synchronization transitions with global and absolute character. Far beyond this threshold, a new instability takes place when the system is not able to sustain the spatial frequency splitting, although the temporal beating remains inside these domains. These experimental results may support the understanding of other systems in nature undergoing similar clustering processes.

  19. Experimentally observed route to spatiotemporal chaos in an extended one-dimensional array of convective oscillators

    NASA Astrophysics Data System (ADS)

    Miranda, M. A.; Burguete, J.

    2009-04-01

    We report experimental evidence of the route to spatiotemporal chaos in a large one-dimensional array of hotspots in a thermoconvective system. As the driving force is increased, a stationary cellular pattern becomes unstable toward a mixed pattern of irregular clusters which consist of time-dependent localized patterns of variable spatiotemporal coherence. These irregular clusters coexist with the basic cellular pattern. The Fourier spectra corresponding to this synchronization transition reveal the weak coupling of a resonant triad. This pattern saturates with the formation of a unique domain of high spatiotemporal coherence. As we further increase the driving force, a supercritical bifurcation to a spatiotemporal beating regime takes place. The new pattern is characterized by the presence of two stationary clusters with a characteristic zig-zag geometry. The Fourier analysis reveals a stronger coupling than the previous mixed pattern and enables us to find out that this beating phenomenon is produced by the splitting of the fundamental spatiotemporal frequencies in a narrow band. Both secondary instabilities are phaselike synchronization transitions with global and absolute character. Far beyond this threshold, a new instability takes place when the system is not able to sustain the spatial frequency splitting, although the temporal beating remains inside these domains. These experimental results may support the understanding of other systems in nature undergoing similar clustering processes.

  20. An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers

    PubMed Central

    Zapateiro De la Hoz, Mauricio; Acho, Leonardo; Vidal, Yolanda

    2015-01-01

    Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes. PMID:26413563

  1. An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers.

    PubMed

    Zapateiro De la Hoz, Mauricio; Acho, Leonardo; Vidal, Yolanda

    2015-01-01

    Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes.

  2. Routes towards the experimental observation of the large fluctuations due to chaos-assisted tunneling effects with cold atoms

    NASA Astrophysics Data System (ADS)

    Dubertrand, R.; Billy, J.; Guéry-Odelin, D.; Georgeot, B.; Lemarié, G.

    2016-10-01

    In the presence of a complex classical dynamics associated with a mixed phase space, a quantum wave function can tunnel between two stable islands through the chaotic sea, an effect that has no classical counterpart. This phenomenon, referred to as chaos-assisted tunneling, is characterized by large fluctuations of the tunneling rate when a parameter is varied. To date, the full extent of this effect as well as the associated statistical distribution have never been observed in a quantum system. Here, we analyze the possibility of characterizing these effects accurately in a cold-atom experiment. Using realistic values of the parameters of an experimental setup, we examine through analytical estimates and extensive numerical simulations a specific system that can be implemented with cold atoms, the atomic modulated pendulum. We assess the efficiency of three possible routes to observe in detail chaos-assisted tunneling properties. Our main conclusion is that due to the fragility of the symmetry between positive and negative momenta as a function of quasimomentum, it is very challenging to use tunneling between classical islands centered on fixed points with opposite momentum. We show that it is more promising to use islands symmetric in position space, and characterize the regime where it could be done. The proposed experiment could be realized with current state-of-the-art technology.

  3. Colored chaos

    SciTech Connect

    Mueller, B.

    1997-09-22

    The report contains viewgraphs on the following: ergodicity and chaos; Hamiltonian dynamics; metric properties; Lyapunov exponents; KS entropy; dynamical realization; lattice formulation; and numerical results.

  4. Experimental evidence of intermittent chaos in a glow discharge plasma without external forcing and its numerical modelling

    SciTech Connect

    Ghosh, S. Kumar Shaw, Pankaj; Sekar Iyengar, A. N.; Janaki, M. S.; Saha, Debajyoti; Michael Wharton, Alpha

    2014-03-15

    Intermittent chaos was observed in a glow discharge plasma as the system evolved from regular type of relaxation oscillations (of larger amplitude) to an irregular type of oscillations (of smaller amplitude) as the discharge voltage was increased. Floating potential fluctuations were analyzed by different statistical and spectral methods. Features like a gradual change in the normal variance of the interpeak time intervals, a dip in the skewness, and a hump in the kurtosis with variation in the control parameter have been seen, which are strongly indicative of intermittent behavior in the system. Detailed analysis also suggests that the intrinsic noise level in the experiment increases with the increasing discharge voltage. An attempt has been made to model the experimental observations by a second order nonlinear ordinary differential equation derived from the fluid equations for an unmagnetized plasma. Though the experiment had no external forcing, it was conjectured that the intrinsic noise in the experiment could be playing a vital role in the dynamics of the system. Hence, a constant bias and noise as forcing terms were included in the model. Results from the theoretical model are in close qualitative agreement with the experimental results.

  5. Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks

    NASA Astrophysics Data System (ADS)

    Dou, Xinyu; Yin, Hongxi; Yue, Hehe; Jin, Yu; Shen, Jing; Li, Lin

    2015-09-01

    In this paper, a real-time online fault monitoring technique for chaos-based passive optical networks (PONs) is proposed and experimentally demonstrated. The fault monitoring is performed by the chaotic communication signal. The proof-of-concept experiments are demonstrated for two PON structures, i.e., wavelength-division-multiplexing (WDM) PON and Ethernet PON (EPON), respectively. For WDM PON, two monitoring approaches are investigated, one deploying a chaotic optical time domain reflectometry (OTDR) for each transmitter, and the other using only one tunable chaotic OTDR. The experimental results show that the faults at beyond 20 km from the OLT can be detected and located. The spatial resolution of the tunable chaotic OTDR is an order of magnitude of centimeter. Meanwhile, the monitoring process can operate in parallel with the chaotic optical secure communications. The proposed technique has benefits of real-time, online, precise fault location, and simple realization, which will significantly reduce the cost of operation, administration and maintenance (OAM) of PON.

  6. Synthesizing Chaos

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan; Corron, Ned; Hayes, Scott; Pethel, Shawn

    2007-03-01

    Chaos is usually attributed only to nonlinear systems. Yet it was recently shown that chaotic waveforms can be synthesized by linear superposition of randomly polarized basis functions. The basis function contains a growing oscillation that terminates in a large pulse. We show that this function is easily realized when viewed backward in time as a pulse followed by ringing decay. Consequently, a linear filter driven by random pulses outputs a waveform that, when viewed backward in time, exhibits essential qualities of chaos, i.e. determinism and a positive Lyapunov exponent. This phenomenon suggests that chaos may be connected to physical theories whose framework is not that of a deterministic dynamical system. We demonstrate that synthesizing chaos requires a balance between the topological entropy of the random source and the dissipation in the filter. Surprisingly, using different encodings of the random source, the same filter can produce both Lorenz-like and R"ossler-like waveforms. The different encodings can be viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing the Lorenz and R"ossler paradigms of nonlinear dynamics. Thus, the language of deterministic chaos provides a useful description for a class of signals not generated by a deterministic system.

  7. 14 CFR 437.17 - Rights not conferred by an experimental permit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Rights not conferred by an experimental permit. 437.17 Section 437.17 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.17...

  8. 14 CFR 437.17 - Rights not conferred by an experimental permit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Rights not conferred by an experimental permit. 437.17 Section 437.17 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.17...

  9. 14 CFR 437.17 - Rights not conferred by an experimental permit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Rights not conferred by an experimental permit. 437.17 Section 437.17 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.17...

  10. 14 CFR 437.17 - Rights not conferred by an experimental permit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Rights not conferred by an experimental permit. 437.17 Section 437.17 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.17...

  11. 14 CFR 437.17 - Rights not conferred by an experimental permit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Rights not conferred by an experimental permit. 437.17 Section 437.17 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.17...

  12. Defining chaos

    SciTech Connect

    Hunt, Brian R.; Ott, Edward

    2015-09-15

    In this paper, we propose, discuss, and illustrate a computationally feasible definition of chaos which can be applied very generally to situations that are commonly encountered, including attractors, repellers, and non-periodically forced systems. This definition is based on an entropy-like quantity, which we call “expansion entropy,” and we define chaos as occurring when this quantity is positive. We relate and compare expansion entropy to the well-known concept of topological entropy to which it is equivalent under appropriate conditions. We also present example illustrations, discuss computational implementations, and point out issues arising from attempts at giving definitions of chaos that are not entropy-based.

  13. Perfect chaos

    NASA Astrophysics Data System (ADS)

    2008-12-01

    Laser noise and chaos are unwanted elements in most circumstances. However, scientists have now learnt how to put them to good use to generate high-quality random bit sequences. Atsushi Uchida from Saitama University in Japan tells Nature Photonics how.

  14. Extension of a chaos control method to unstable trajectories on infinite- or finite-time intervals: Experimental verification

    NASA Astrophysics Data System (ADS)

    Yagasaki, Kazuyuki

    2007-08-01

    In experiments for single and coupled pendula, we demonstrate the effectiveness of a new control method based on dynamical systems theory for stabilizing unstable aperiodic trajectories defined on infinite- or finite-time intervals. The basic idea of the method is similar to that of the OGY method, which is a well-known, chaos control method. Extended concepts of the stable and unstable manifolds of hyperbolic trajectories are used here.

  15. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    1995-04-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  16. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    2006-11-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  17. Does chaos assist localization or delocalization?

    SciTech Connect

    Tan, Jintao; Luo, Yunrong; Hai, Wenhua; Lu, Gengbiao

    2014-12-01

    We aim at a long-standing contradiction between chaos-assisted tunneling and chaos-related localization study quantum transport of a single particle held in an amplitude-modulated and tilted optical lattice. We find some near-resonant regions crossing chaotic and regular regions in the parameter space, and demonstrate that chaos can heighten velocity of delocalization in the chaos-resonance overlapping regions, while chaos may aid localization in the other chaotic regions. The degree of localization enhances with increasing the distance between parameter points and near-resonant regions. The results could be useful for experimentally manipulating chaos-assisted transport of single particles in optical or solid-state lattices.

  18. Failure of chaos control

    PubMed

    van De Water W; de Weger J

    2000-11-01

    We study the control of chaos in an experiment on a parametrically excited pendulum whose excitation mechanism is not perfect. This imperfection leads to a weakly excited degree of freedom with an associated small eigenvalue. Although the state of the pendulum could be characterized well and although the perturbation is weak, we fail to control chaos. From a numerical model we learn that the small eigenvalue cannot be ignored when attempting control. However, the estimate of this eigenvalue from an (experimental) time series is elusive. The reason is that points in an experimental time series are distributed according to the natural measure. It is this extremely uneven distribution of points that thwarts attempts to measure eigenvalues that are very different. Another consequence of the phase-space distribution of points for control is the occurrence of logarithmic-oscillations in the waiting time before control can be attempted. We come to the conclusion that chaos needs to be destroyed before the information needed for its control can be obtained.

  19. Chronic exercise confers neuroprotection in experimental autoimmune encephalomyelitis.

    PubMed

    Pryor, William M; Freeman, Kimberly G; Larson, Rebecca D; Edwards, Gaylen L; White, Lesley J

    2015-05-01

    Multiple sclerosis (MS) is an autoimmune disease that affects the CNS, resulting in accumulated loss of cognitive, sensory, and motor function. This study evaluates the neuropathological effects of voluntary exercise in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Two groups of C57BL/6J mice were injected with an emulsion containing myelin oligodendrocyte glycoprotein and then randomized to housing with a running wheel or a locked wheel. Exercising EAE mice exhibited a less severe neurological disease score and later onset of disease compared with sedentary EAE animals. Immune cell infiltration and demyelination in the ventral white matter tracts of the lumbar spinal cord were significantly reduced in the EAE exercise group compared with sedentary EAE animals. Neurofilament immunolabeling in the ventral pyramidal and extrapyramidal motor tracts displayed a more random distribution of axons and an apparent loss of smaller diameter axons, with a greater loss of fluorescence immunolabeling in the sedentary EAE animals. In lamina IX gray matter regions of the lumbar spinal cord, sedentary animals with EAE displayed a greater loss of α-motor neurons compared with EAE animals exposed to exercise. These findings provide evidence that voluntary exercise results in reduced and attenuated disability, reductions in autoimmune cell infiltration, and preservation of axons and motor neurons in the lumbar spinal cord of mice with EAE.

  20. Network inference from functional experimental data (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Desrosiers, Patrick; Labrecque, Simon; Tremblay, Maxime; Bélanger, Mathieu; De Dorlodot, Bertrand; Côté, Daniel C.

    2016-03-01

    Functional connectivity maps of neuronal networks are critical tools to understand how neurons form circuits, how information is encoded and processed by neurons, how memory is shaped, and how these basic processes are altered under pathological conditions. Current light microscopy allows to observe calcium or electrical activity of thousands of neurons simultaneously, yet assessing comprehensive connectivity maps directly from such data remains a non-trivial analytical task. There exist simple statistical methods, such as cross-correlation and Granger causality, but they only detect linear interactions between neurons. Other more involved inference methods inspired by information theory, such as mutual information and transfer entropy, identify more accurately connections between neurons but also require more computational resources. We carried out a comparative study of common connectivity inference methods. The relative accuracy and computational cost of each method was determined via simulated fluorescence traces generated with realistic computational models of interacting neurons in networks of different topologies (clustered or non-clustered) and sizes (10-1000 neurons). To bridge the computational and experimental works, we observed the intracellular calcium activity of live hippocampal neuronal cultures infected with the fluorescent calcium marker GCaMP6f. The spontaneous activity of the networks, consisting of 50-100 neurons per field of view, was recorded from 20 to 50 Hz on a microscope controlled by a homemade software. We implemented all connectivity inference methods in the software, which rapidly loads calcium fluorescence movies, segments the images, extracts the fluorescence traces, and assesses the functional connections (with strengths and directions) between each pair of neurons. We used this software to assess, in real time, the functional connectivity from real calcium imaging data in basal conditions, under plasticity protocols, and epileptic

  1. Controlling chaos with simple limiters

    PubMed

    Corron; Pethel; Hopper

    2000-04-24

    New experimental results demonstrate that chaos control can be accomplished using controllers that are very simple relative to the system being controlled. Chaotic dynamics in a driven pendulum and a double scroll circuit are controlled using an adjustable, passive limiter-a weight for the pendulum and a diode for the circuit. For both experiments, multiple unstable periodic orbits are selectively controlled using minimal perturbations. These physical examples suggest that chaos control can be practically applied to a much wider array of important problems than initially thought possible.

  2. Quantum signatures of chaos or quantum chaos?

    NASA Astrophysics Data System (ADS)

    Bunakov, V. E.

    2016-11-01

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a "quantum signature" of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville-Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.

  3. Chaos and Fractals.

    ERIC Educational Resources Information Center

    Barton, Ray

    1990-01-01

    Presented is an educational game called "The Chaos Game" which produces complicated fractal images. Two basic computer programs are included. The production of fractal images by the Sierpinski gasket and the Chaos Game programs is discussed. (CW)

  4. Embrace the Chaos

    ERIC Educational Resources Information Center

    Huwe, Terence K.

    2009-01-01

    "Embracing the chaos" is an ongoing challenge for librarians. Embracing the chaos means librarians must have a plan for responding to the flood of new products, widgets, web tools, and gizmos that students use daily. In this article, the author argues that library instruction and access services have been grappling with that chaos with…

  5. The Case for Chaos.

    ERIC Educational Resources Information Center

    Bedford, Crayton W.

    1998-01-01

    Outlines a course on fractal geometry and chaos theory. Discusses how chaos theory and fractal geometry have begun to appear as separate units in the mathematics curriculum and offers an eight unit course by pulling together units related to chaos theory and fractal geometry. Contains 25 references. (ASK)

  6. Using the sensitive dependence of chaos (the butterfly effect'') to direct trajectories in an experimental chaotic system

    SciTech Connect

    Shinbrot, T.; Ditto, W.; Grebogi, C.; Ott, E.; Spano, M.; Yorke, J.A. Department of Physics, The College of Wooster, Wooster, Ohio 44691 Naval Surface Warfare Center, Silver Spring, Maryland 20902 )

    1992-05-11

    In this paper we present the first experimental verification that the sensitivity of a chaotic system to small perturbations (the butterfly effect'') can be used to rapidly direct orbits from an arbitrary initial state to an arbitrary accessible desired state.

  7. Titration of chaos with added noise

    PubMed Central

    Poon, Chi-Sang; Barahona, Mauricio

    2001-01-01

    Deterministic chaos has been implicated in numerous natural and man-made complex phenomena ranging from quantum to astronomical scales and in disciplines as diverse as meteorology, physiology, ecology, and economics. However, the lack of a definitive test of chaos vs. random noise in experimental time series has led to considerable controversy in many fields. Here we propose a numerical titration procedure as a simple “litmus test” for highly sensitive, specific, and robust detection of chaos in short noisy data without the need for intensive surrogate data testing. We show that the controlled addition of white or colored noise to a signal with a preexisting noise floor results in a titration index that: (i) faithfully tracks the onset of deterministic chaos in all standard bifurcation routes to chaos; and (ii) gives a relative measure of chaos intensity. Such reliable detection and quantification of chaos under severe conditions of relatively low signal-to-noise ratio is of great interest, as it may open potential practical ways of identifying, forecasting, and controlling complex behaviors in a wide variety of physical, biomedical, and socioeconomic systems. PMID:11416195

  8. Chaos in a complex plasma

    SciTech Connect

    Sheridan, T.E.

    2005-08-15

    Chaotic dynamics is observed experimentally in a complex (dusty) plasma of three particles. A low-frequency sinusoidal modulation of the plasma density excites both the center-of-mass and breathing modes. Low-dimensional chaos is seen for a 1:2 resonance between these modes. A strange attractor with a dimension of 2.48{+-}0.05 is observed. The largest Lyapunov exponent is positive.

  9. Galveston Brain Injury Conference 2010: clinical and experimental aspects of blast injury.

    PubMed

    Masel, Brent E; Bell, Randy S; Brossart, Shawn; Grill, Raymond J; Hayes, Ronald L; Levin, Harvey S; Rasband, Matthew N; Ritzel, David V; Wade, Charles E; DeWitt, Douglas S

    2012-08-10

    Blast injury is the most prevalent source of mortality and morbidity among combatants in Operations Iraqi and Enduring Freedom. Blast-induced neurotrauma (BINT) is a common cause of mortality, and even mild BINT may be associated with chronic cognitive and emotional deficits. In addition to military personnel, the increasing use of explosives by terrorists has resulted in growing numbers of blast injuries in civilian populations. Since the medical and rehabilitative communities are likely to be faced with increasing numbers of patients suffering from blast injury, the 2010 Galveston Brain Injury Conference focused on topics related to the diagnosis, treatment, and mechanisms of BINT. Although past military actions have resulted in large numbers of blast casualties, BINT is considered the signature injury of the conflicts in Iraq and Afghanistan. The attention focused on BINT has led to increased financial support for research on blast effects, contributing to the development of better experimental models of blast injury and a clearer understanding of the mechanisms of BINT. This more thorough understanding of blast injury mechanisms will result in novel and more effective therapeutic and rehabilitative strategies designed to reduce injury and facilitate recovery, thereby improving long-term outcomes in patients suffering from the devastating and often lasting effects of BINT. The following is a summary of the 2010 Galveston Brain Injury Conference, that included presentations related to the diagnosis and treatment of acute BINT, the evaluation of the long-term neuropsychological effects of BINT, summaries of current experimental models of BINT, and a debate about the relative importance of primary blast effects on the acute and long-term consequences of blast exposure.

  10. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects.

    PubMed

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  11. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  12. Unpredictable points and chaos

    NASA Astrophysics Data System (ADS)

    Akhmet, Marat; Fen, Mehmet Onur

    2016-11-01

    It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. The existing definitions of chaos are formulated in sets of motions. This is the first time in the literature that description of chaos is initiated from a single motion. The theoretical results are exemplified by means of the symbolic dynamics.

  13. "Chaos Rules" Revisited

    ERIC Educational Resources Information Center

    Murphy, David

    2011-01-01

    About 20 years ago, while lost in the midst of his PhD research, the author mused over proposed titles for his thesis. He was pretty pleased with himself when he came up with "Chaos Rules" (the implied double meaning was deliberate), or more completely, "Chaos Rules: An Exploration of the Work of Instructional Designers in Distance Education." He…

  14. Understanding chaos via nuclei

    SciTech Connect

    Cejnar, Pavel; Stránský, Pavel

    2014-01-08

    We use two models of nuclear collective dynamics-the geometric collective model and the interacting boson model-to illustrate principles of classical and quantum chaos. We propose these models as a suitable testing ground for further elaborations of the general theory of chaos in both classical and quantum domains.

  15. Chaos and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Kandrup, H. E.

    2002-09-01

    This talk summarises a combined theoretical and numerical investigation of the role of chaos and transient chaos in time-dependent Hamiltonian systems which aim to model elliptical galaxies. The existence of large amounts of chaos in near-equilibrium configurations is of potential importance because configurations incorporating large numbers of chaotic orbits appear to be substantially more susceptible than nearly integrable systems to various irregularities associated with, e.g., internal substructures, satellite galaxies, and/or the effects of a high density environment. Alternatively, transient chaos, reflecting exponential sensitivity over comparatively short time intervals, can prove important by significantly increasing the overall efficiency of violent relaxation so as to facilitate a more rapid evolution towards a `well-mixed' equilibrium. Completely conclusive `smoking gun' evidence for chaos and chaotic mixing has not yet been obtained, although evidence for the presence of chaos can in principle be extracted from such data sets as provided by the Sloan Digital Sky Survey. Interestingly, however, arguments completely analogous to those applied to self-gravitating systems also suggest the presence of chaos in charged particle beams, a setting which is amenable to controlled experiments.

  16. Genome chaos: survival strategy during crisis.

    PubMed

    Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H

    2014-01-01

    Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.

  17. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    PubMed

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  18. Chaos, Fractals, and Polynomials.

    ERIC Educational Resources Information Center

    Tylee, J. Louis; Tylee, Thomas B.

    1996-01-01

    Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)

  19. Chaos and microbial systems

    SciTech Connect

    Kot, M.

    1990-07-01

    A recurrent theme of much recent research is that seemingly random fluctuations often occur as the result of simple deterministic mechanisms. Hence, much of the recent work in nonlinear dynamics has centered on new techniques for identifying order in seemingly chaotic systems. To determine the robustness of these techniques, chaos must, to some extent, be brought into the laboratory. Preliminary investigations of the forced double-Monod equations, a model for a predator and a prey in a chemostat with periodic variation in inflowing substrate concentration, suggest that simple microbial systems may provide the perfect framework for determining the efficacy and relevance of the new nonlinear dynamics in dealing with complex population dynamics. This research has two main goals, that is the mathematical analysis and computer simulation of the periodically forced double-Monod equations and of related models; and experimental (chemostat) population studies that evaluate the accuracy and generality of the models, and that judge the usefulness of various new techniques of nonlinear dynamics to the study of populations.

  20. Exploiting chaos for applications

    SciTech Connect

    Ditto, William L.; Sinha, Sudeshna

    2015-09-15

    We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.

  1. How to Generate Chaos at Home.

    ERIC Educational Resources Information Center

    Smith, Douglas

    1992-01-01

    Describes an electronic circuit that can function as a prototype for chaotic systems. Specific applied voltages produce chaotic signals that can be viewed with an oscilloscope or be made audible with a home stereo system. Provides directions for assembly with typical costs, mathematical basis of chaos theory, and experimental extensions. (JJK)

  2. Fractal Patterns and Chaos Games

    ERIC Educational Resources Information Center

    Devaney, Robert L.

    2004-01-01

    Teachers incorporate the chaos game and the concept of a fractal into various areas of the algebra and geometry curriculum. The chaos game approach to fractals provides teachers with an opportunity to help students comprehend the geometry of affine transformations.

  3. Order, Chaos and All That!

    ERIC Educational Resources Information Center

    Glasser, L.

    1989-01-01

    The evolution of ideas about the concept of chaos is surveyed. Discussed are chaos in deterministic, dynamic systems; order in dissipative systems; and thermodynamics and irreversibility. Included are logistic and bifurcation maps to illustrate points made in the discussion. (CW)

  4. Experimental Investigation of 60 GHz Transmission Characteristics Between Computers on a Conference Table for WPAN Applications

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Amadjikpe, Arnaud L.; Choudhury, Debabani; Papapolymerou, John

    2011-01-01

    In this paper, the first measurements of the received radiated power between antennas located on a conference table to simulate the environment of antennas embedded in laptop computers for 60 GHz Wireless Personal Area Network (WPAN) applications is presented. A high gain horn antenna and a medium gain microstrip patch antenna for two linear polarizations are compared. It is shown that for a typical conference table arrangement with five computers, books, pens, and coffee cups, the antennas should be placed a minimum of 5 cm above the table, but that a height of greater than 20 cm may be required to maximize the received power in all cases.

  5. Harnessing quantum transport by transient chaos.

    PubMed

    Yang, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso; Pecora, Louis M

    2013-03-01

    Chaos has long been recognized to be generally advantageous from the perspective of control. In particular, the infinite number of unstable periodic orbits embedded in a chaotic set and the intrinsically sensitive dependence on initial conditions imply that a chaotic system can be controlled to a desirable state by using small perturbations. Investigation of chaos control, however, was largely limited to nonlinear dynamical systems in the classical realm. In this paper, we show that chaos may be used to modulate or harness quantum mechanical systems. To be concrete, we focus on quantum transport through nanostructures, a problem of considerable interest in nanoscience, where a key feature is conductance fluctuations. We articulate and demonstrate that chaos, more specifically transient chaos, can be effective in modulating the conductance-fluctuation patterns. Experimentally, this can be achieved by applying an external gate voltage in a device of suitable geometry to generate classically inaccessible potential barriers. Adjusting the gate voltage allows the characteristics of the dynamical invariant set responsible for transient chaos to be varied in a desirable manner which, in turn, can induce continuous changes in the statistical characteristics of the quantum conductance-fluctuation pattern. To understand the physical mechanism of our scheme, we develop a theory based on analyzing the spectrum of the generalized non-Hermitian Hamiltonian that includes the effect of leads, or electronic waveguides, as self-energy terms. As the escape rate of the underlying non-attracting chaotic set is increased, the imaginary part of the complex eigenenergy becomes increasingly large so that pointer states are more difficult to form, making smoother the conductance-fluctuation pattern.

  6. Transient chaos in two coupled, dissipatively perturbed Hamiltonian Duffing oscillators

    NASA Astrophysics Data System (ADS)

    Sabarathinam, S.; Thamilmaran, K.; Borkowski, L.; Perlikowski, P.; Brzeski, P.; Stefanski, A.; Kapitaniak, T.

    2013-11-01

    The dynamics of two coupled, dissipatively perturbed, near-integrable Hamiltonian, double-well Duffing oscillators has been studied. We give numerical and experimental (circuit implementation) evidence that in the case of small positive or negative damping there exist two different types of transient chaos. After the decay of the transient chaos in the neighborhood of chaotic saddle we observe the transient chaos in the neighborhood of unstable tori. We argue that our results are robust and they exist in the wide range of system parameters.

  7. Quantifying chaos for ecological stoichiometry.

    PubMed

    Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2010-09-01

    The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincaré return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing δ1. However, for higher values of δ1 the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter ζ) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.

  8. Chaos in the Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Field, Richard J.

    The dynamics of reacting chemical systems is governed by typically polynomial differential equations that may contain nonlinear terms and/or embedded feedback loops. Thus the dynamics of such systems may exhibit features associated with nonlinear dynamical systems, including (among others): temporal oscillations, excitability, multistability, reaction-diffusion-driven formation of spatial patterns, and deterministic chaos. These behaviors are exhibited in the concentrations of intermediate chemical species. Bifurcations occur between particular dynamic behaviors as system parameters are varied. The governing differential equations of reacting chemical systems have as variables the concentrations of all chemical species involved, as well as controllable parameters, including temperature, the initial concentrations of all chemical species, and fixed reaction-rate constants. A discussion is presented of the kinetics of chemical reactions as well as some thermodynamic considerations important to the appearance of temporal oscillations and other nonlinear dynamic behaviors, e.g., deterministic chaos. The behavior, chemical details, and mechanism of the oscillatory Belousov-Zhabotinsky Reaction (BZR) are described. Furthermore, experimental and mathematical evidence is presented that the BZR does indeed exhibit deterministic chaos when run in a flow reactor. The origin of this chaos seems to be in toroidal dynamics in which flow-driven oscillations in the control species bromomalonic acid couple with the BZR limit cycle...

  9. Chaos in the Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Field, Richard J.

    2015-12-01

    The dynamics of reacting chemical systems is governed by typically polynomial differential equations that may contain nonlinear terms and/or embedded feedback loops. Thus the dynamics of such systems may exhibit features associated with nonlinear dynamical systems, including (among others): temporal oscillations, excitability, multistability, reaction-diffusion-driven formation of spatial patterns, and deterministic chaos. These behaviors are exhibited in the concentrations of intermediate chemical species. Bifurcations occur between particular dynamic behaviors as system parameters are varied. The governing differential equations of reacting chemical systems have as variables the concentrations of all chemical species involved, as well as controllable parameters, including temperature, the initial concentrations of all chemical species, and fixed reaction-rate constants. A discussion is presented of the kinetics of chemical reactions as well as some thermodynamic considerations important to the appearance of temporal oscillations and other nonlinear dynamic behaviors, e.g., deterministic chaos. The behavior, chemical details, and mechanism of the oscillatory Belousov-Zhabotinsky Reaction (BZR) are described. Furthermore, experimental and mathematical evidence is presented that the BZR does indeed exhibit deterministic chaos when run in a flow reactor. The origin of this chaos seems to be in toroidal dynamics in which flow-driven oscillations in the control species bromomalonic acid couple with the BZR limit cycle.

  10. Review of the experimental papers at the IAEA conference on noninductive current drive, Culham, 1983

    SciTech Connect

    Motley, R.W.

    1983-10-01

    Three types of noninductive current drive experiments have been reported at this conference: (1) neutral beam (2) rf current drive, and (3) relativistic electron beams (REB). If we compare the effort to develop current drive to a horse race, the neutral beam horse was first out of the gates, but it quickly found greener pastures (heating) and has dropped temporarily out of the race. The lower hybrid horse now has a big lead at the first furlong (200 m), but the bulk of the race remains to be run. The fast wave and REB horses have yet to get up speed.

  11. Rank one chaos in a class of planar systems with heteroclinic cycle.

    PubMed

    Chen, Fengjuan; Han, Maoan

    2009-12-01

    In this paper, we study rank one chaos in a class of planar systems with heteroclinic cycle. We first find a stable limit cycle inside the heteroclinic cycle. We then add an external periodic forcing to create rank one chaos. We follow a step-by-step procedure guided by the theory of rank one chaos to find experimental evidence of strange attractors with Sinai, Ruelle, and Bowen measures.

  12. Chaos on the conveyor belt.

    PubMed

    Sándor, Bulcsú; Járai-Szabó, Ferenc; Tél, Tamás; Néda, Zoltán

    2013-04-01

    The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by a spring to an external static point and, due to the dragging effect of the belt, the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can be achieved only by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic, dynamics and phase transition-like behavior. Noise-induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks (around five).

  13. EXPERIMENTAL CURRICULA IN CHEMISTRY, A REPORT OF THE A.C.C.C. CONFERENCE ON CURRICULUM EXPERIMENTATION (CHICAGO, OCTOBER 1963).

    ERIC Educational Resources Information Center

    HUME, DAVID N.

    FOUR PROGRAMS ARE IDENTIFIED AND DESCRIBED AS REPRESENTATIVE OF THE EXPERIMENTATION BEING CONDUCTED IN THE UNDERGRADUATE CHEMISTRY CURRICULUM IN AMERICAN HIGHER EDUCATION. (1) THE UNIVERSITY OF ILLINOIS AND THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY REQUIRE THAT A STUDENT TAKE A GROUP OF "CORE" COURSES WHICH PROVIDE, RELATIVELY EARLY IN HIS…

  14. The joy of transient chaos

    SciTech Connect

    Tél, Tamás

    2015-09-15

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

  15. Chaos control of cardiac arrhythmias.

    PubMed

    Garfinkel, A; Weiss, J N; Ditto, W L; Spano, M L

    1995-01-01

    Chaos theory has shown that many disordered and erratic phenomena are in fact deterministic, and can be understood causally and controlled. The prospect that cardiac arrhythmias might be instances of deterministic chaos is therefore intriguing. We used a recently developed method of chaos control to stabilize a ouabain-induced arrhythmia in rabbit ventricular tissue in vitro. Extension of these results to clinically significant arrhythmias such as fibrillation will require overcoming the additional obstacles of spatiotemporal complexity.

  16. Quantum chaos meets coherent control.

    PubMed

    Gong, Jiangbin; Brumer, Paul

    2005-01-01

    Coherent control of atomic and molecular processes has been a rapidly developing field. Applications of coherent control to large and complex molecular systems are expected to encounter the effects of chaos in the underlying classical dynamics, i.e., quantum chaos. Hence, recent work has focused on examining control in model chaotic systems. This work is reviewed, with an emphasis on a variety of new quantum phenomena that are of interest to both areas of quantum chaos and coherent control.

  17. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; ...

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  18. Chaos in quantum channels

    SciTech Connect

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  19. Wireless communication with chaos.

    PubMed

    Ren, Hai-Peng; Baptista, Murilo S; Grebogi, Celso

    2013-05-03

    The modern world fully relies on wireless communication. Because of intrinsic physical constraints of the wireless physical media (multipath, damping, and filtering), signals carrying information are strongly modified, preventing information from being transmitted with a high bit rate. We show that, though a chaotic signal is strongly modified by the wireless physical media, its Lyapunov exponents remain unaltered, suggesting that the information transmitted is not modified by the channel. For some particular chaotic signals, we have indeed proved that the dynamic description of both the transmitted and the received signals is identical and shown that the capacity of the chaos-based wireless channel is unaffected by the multipath propagation of the physical media. These physical properties of chaotic signals warrant an effective chaos-based wireless communication system.

  20. Controlling chaos faster

    SciTech Connect

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  1. Gullies of Gorgonus Chaos

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 11 June 2002) The Science This fractured surface belongs to a portion of a region called Gorgonum Chaos located in the southern hemisphere of Mars. Gorgonum Chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars and lolling tongues who lived in caves. As it turns out this is indeed a fitting name for this region of Mars because it contains a high density of gullies that 'snake' their way down the walls of the troughs located in this region of chaos. Upon closer examination one finds that these gullies and alluvial deposits, initially discovered by Mars Global Surveyor, are visible on the trough walls (best seen near the bottom of the image). These gullies appear to emanate from a specific layer in the walls. The gullies have been proposed to have formed by the subsurface release of water. The Story This fractured, almost spooky-looking surface belongs to a region called Gorgonum Chaos in the southern hemisphere of Mars. Chaos is a term used for regions of Mars with distinctive areas of broken terrain like the one seen above. This area of Martian chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars, and lolling tongues, who lived in caves. The Gorgons, including famous sister Medusa, could turn a person to stone, and their writhing, snakelike locks cause revulsion to this day. Given the afflicted nature of this contorted terrain, with all of its twisted, branching channels and hard, stony-looking hills in the top half of the image, this is indeed a fitting name for this region of Mars. The name also has great appeal, because the area contains a high density of gullies that 'snake' their way down the walls of the troughs located in this region of Martian chaos. Gullies are trenches cut into the land as accelerated streams of water (or another liquid) erode the surface. To see these, click on the

  2. Controlling chaos faster.

    PubMed

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  3. Noise tolerant spatiotemporal chaos computing

    SciTech Connect

    Kia, Behnam; Kia, Sarvenaz; Ditto, William L.; Lindner, John F.; Sinha, Sudeshna

    2014-12-01

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  4. Tailoring wavelets for chaos control.

    PubMed

    Wei, G W; Zhan, Meng; Lai, C-H

    2002-12-31

    Chaos is a class of ubiquitous phenomena and controlling chaos is of great interest and importance. In this Letter, we introduce wavelet controlled dynamics as a new paradigm of dynamical control. We find that by modifying a tiny fraction of the wavelet subspaces of a coupling matrix, we could dramatically enhance the transverse stability of the synchronous manifold of a chaotic system. Wavelet controlled Hopf bifurcation from chaos is observed. Our approach provides a robust strategy for controlling chaos and other dynamical systems in nature.

  5. Noise tolerant spatiotemporal chaos computing.

    PubMed

    Kia, Behnam; Kia, Sarvenaz; Lindner, John F; Sinha, Sudeshna; Ditto, William L

    2014-12-01

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  6. Invisible grazings and dangerous bifurcations in impacting systems: the problem of narrow-band chaos.

    PubMed

    Banerjee, Soumitro; Ing, James; Pavlovskaia, Ekaterina; Wiercigroch, Marian; Reddy, Ramesh K

    2009-03-01

    We discovered a narrow band of chaos close to the grazing condition for a simple soft impact oscillator. The phenomenon was observed experimentally for a range of system parameters. Through numerical stability analysis, we argue that this abrupt onset to chaos is caused by a dangerous bifurcation in which two unstable period-3 orbits, created at "invisible" grazings, take part.

  7. [Experimental Course in Elementary Number Theory, Cambridge Conference on School Mathematics Feasibility Study No. 35.

    ERIC Educational Resources Information Center

    Hatch, Mary Jacqueline

    In the winter of 1965, an experimental course in Elementary Number Theory was presented to a 6th grade class in the Hosmer School, Watertown, Massachusetts. Prior to the introduction of the present material, students had been exposed in class to such topics from the University of Illinois Arithmetic Project as lattices, number lines, frame…

  8. Chaos Theory and Post Modernism

    ERIC Educational Resources Information Center

    Snell, Joel

    2009-01-01

    Chaos theory is often associated with post modernism. However, one may make the point that both terms are misunderstood. The point of this article is to define both terms and indicate their relationship. Description: Chaos theory is associated with a definition of a theory dealing with variables (butterflies) that are not directly related to a…

  9. Death and revival of chaos

    NASA Astrophysics Data System (ADS)

    Kaszás, Bálint; Feudel, Ulrike; Tél, Tamás

    2016-12-01

    We investigate the death and revival of chaos under the impact of a monotonous time-dependent forcing that changes its strength with a non-negligible rate. Starting on a chaotic attractor it is found that the complexity of the dynamics remains very pronounced even when the driving amplitude has decayed to rather small values. When after the death of chaos the strength of the forcing is increased again with the same rate of change, chaos is found to revive but with a different history. This leads to the appearance of a hysteresis in the complexity of the dynamics. To characterize these dynamics, the concept of snapshot attractors is used, and the corresponding ensemble approach proves to be superior to a single trajectory description, that turns out to be nonrepresentative. The death (revival) of chaos is manifested in a drop (jump) of the standard deviation of one of the phase-space coordinates of the ensemble; the details of this chaos-nonchaos transition depend on the ratio of the characteristic times of the amplitude change and of the internal dynamics. It is demonstrated that chaos cannot die out as long as underlying transient chaos is present in the parameter space. As a condition for a "quasistatically slow" switch-off, we derive an inequality which cannot be fulfilled in practice over extended parameter ranges where transient chaos is present. These observations need to be taken into account when discussing the implications of "climate change scenarios" in any nonlinear dynamical system.

  10. Experimental optical phase measurement at the exact Heisenberg limit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Daryanoosh, Shakib; Slussarenko, Sergei; Wiseman, Howard M.; Pryde, Geoff J.

    2016-10-01

    Optical phase measurement through its application in quantum metrology has pushed the precision limit with which some physical quantities can be measured accurately. At the very fundamental level, the laws of quantum mechanics dictate that the uncertainty in phase estimations scales as 1/N, where N is the number of quantum resources employed in the protocol [1]. This is the well known Heisenberg limit (HL) which is quadratically better than the traditional precision limit known as the standard quantum limit (SQL) with uncertainty asymptotically scaling as 1/&sqrt{N} [1]. Several experiments have demonstrated that the SQL can be beaten by using an entangled state as the probe and a specific measurement scheme for ab initio estimation of unknown phases [2,3]. It has also been shown experimentally that even in the absence of the entanglement one can measure an unknown phase with imprecision scaling at the HL [4]. In this work we first present a new protocol able to estimate an optical phase at the Heisenberg limit, and then experimentally explore fundamental and practical issues in generating high-quality novel entangled states, for use in this protocol and beyond. Our aim in this study is to measure an unknown phase in the interval [0,2π) with uncertainty attaining the exact HL. There is a condition that should be met to address this objective: preparation of an optimal state [5]. This would cover part of the presentation through which we explain how to experimentally realise such an optimal state with the current technological limitations and the feasibility of the scheme. In particular, we generate an entangled 3-photon (2-photon) state of specific superposition of GHZ (Bell) states. Our numerical simulation of the phase measurement gate together with the experimental outcomes show that the created state should have a high fidelity and purity to be able to have the phase uncertainty achieving the exact HL. Therefore, we briefly explain the modelling for

  11. Chaos Criminology: A critical analysis

    NASA Astrophysics Data System (ADS)

    McCarthy, Adrienne L.

    There has been a push since the early 1980's for a paradigm shift in criminology from a Newtonian-based ontology to one of quantum physics. Primarily this effort has taken the form of integrating Chaos Theory into Criminology into what this thesis calls 'Chaos Criminology'. However, with the melding of any two fields, terms and concepts need to be translated properly, which has yet to be done. In addition to proving a translation between fields, this thesis also uses a set of criteria to evaluate the effectiveness of the current use of Chaos Theory in Criminology. While the results of the theory evaluation reveal that the current Chaos Criminology work is severely lacking and in need of development, there is some promise in the development of Marx's dialectical materialism with Chaos Theory.

  12. [Shedding light on chaos theory].

    PubMed

    Chou, Shieu-Ming

    2004-06-01

    Gleick (1987) said that only three twentieth century scientific theories would be important enough to continue be of use in the twenty-first century: The Theory of Relativity, Quantum Theory, and Chaos Theory. Chaos Theory has become a craze which is being used to forge a new scientific system. It has also been extensively applied in a variety of professions. The purpose of this article is to introduce chaos theory and its nursing applications. Chaos is a sign of regular order. This is to say that chaos theory emphasizes the intrinsic potential for regular order within disordered phenomena. It is to be hoped that this article will inspire more nursing scientists to apply this concept to clinical, research, or administrative fields in our profession.

  13. Landslide in Aureum Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    15 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of a small landslide off of a hillslope in the Aureum Chaos region of Mars. Mass movement occurred from right (the slope) to left (the lobate feature pointed left). Small dark dots in the landslide area are large boulders. This feature is located near 2.6oS, 24.5oW. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/upper left.

  14. Experimental demonstration of the microscopic origin of circular dichroism (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady B.

    2016-09-01

    Fully two-dimensional metamaterials, also known as metasurfaces comprised of planar-chiral plasmonic metamolecules that are just nanometers thick, have been shown to exhibit chiral dichroism in transmission. The origin of the resulting circular dichroism is rather subtle. Theoretical calculations indicate that this surprising effect relies on finite non-radiative (Ohmic) losses of the metasurface. In the absence of such losses on the nanoscale, the chiral dichroism in transmission (CDT) defined as the difference between the transmission coefficients of the RCP and LCP waves, must identically vanish. This surprising theoretical prediction has never been experimentally verified because of the challenge of measuring non-radiative loss on the nanoscale. We use a combination of nanoscale characterization techniques to demonstrate that the RCP and LCP states of the incident light produce drastically different distributions of optical energy and Ohmic heat dissipation in the two-dimensional chiral nanoantennas, thereby producing a strong chiral dichroism in absorption (CDA). A planar-chiral metasurface, along with its chiral enantiomer, was designed to maximize the CDA in mid-IR range. The CDA gives rise to the CDT observed experimentally in the far-field measurements. We then use scattering-type near-field scanning optical microscopy to map the optical energy distribution on the nanoantennas and their enantiomers in response to the RCP and LCP light. Photo-expansion microscopy, also known as AFM-IR, was then utilized to experimentally demonstrate drastically different Ohmic heating of the nanoantennas under RCP and LCP light illumination. In collaboration with: A.B.Khanikaev, N.Arju, Z.Fan, D.Purtseladze, F.Lu, J.Lee, P.Sarriugarte, M.Schnell, R.Hillenbrand, M.A.Belkin

  15. Controlling Chaos Caused by the Current-Driven Ion Acoustic Instability in a Laboratory Plasma Using Delayed Feedback

    DTIC Science & Technology

    2003-07-20

    for the Circuit experimental systems working in real time. k[x(t) - x(t - r)] We have attempted chaos control using the TDAS method based on the...Pyragas technique in order to attain stable chaos control . System 2. Experimental set up I 1 The experiments are performed using a Double G2 G1 x(t) Plasma

  16. 1991 SEM Spring Conference on Experimental Mechanics, Milwaukee, WI, June 10-13, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    The present volume on experimental mechanics discusses current trends in elastoplastic fracture, photoelastic applications in structural testing, fiber optics and video holography, and strain gages. Attention is given to video holography and speckle interferometry, smart structures applications to composites, thermographic stress analysis, and industrial applications of photoelasticity. Topics addressed include moire interferometry, residual stress, smart structures and structural testing, dynamic fracture, optical methods for transient events, and force sensor design and applications. Also discussed are moire and grid techniques, photoelasticity and its industrial applications, composites, transducers, optical methods in biomechanics, rock fracture related to waste isolation, and noncontacting techniques for dynamic measurements. (For individual items see A93-16602 to A93-16650)

  17. Hypomanic Experience in Young Adults Confers Vulnerability to Intrusive Imagery After Experimental Trauma

    PubMed Central

    Malik, Aiysha; Goodwin, Guy M.; Hoppitt, Laura

    2014-01-01

    Emotional mental imagery occurs across anxiety disorders, yet is neglected in bipolar disorder despite high anxiety comorbidity. Furthermore, a heightened susceptibility to developing intrusive mental images of stressful events in bipolar disorder and people vulnerable to it (with hypomanic experience) has been suggested. The current study assessed, prospectively, whether significant hypomanic experience (contrasting groups scoring high vs. low on the Mood Disorder Questionnaire, MDQ) places individuals at increased risk of visual reexperiencing after experimental stress. A total of 110 young adults watched a trauma film and recorded film-related intrusive images for 6 days. Compared to the low MDQ group, the high MDQ group experienced approximately twice as many intrusive images, substantiated by convergent measures. Findings suggest hypomanic experience is associated with developing more frequent intrusive imagery of a stressor. Because mental imagery powerfully affects emotion, such imagery may contribute to bipolar mood instability and offer a cognitive treatment target. PMID:25419498

  18. De-magnifying hyperlens: experimental demonstration and potential applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Litchinitser, Natalia M.; Sun, Jingbo; Xu, Tianboyu

    2016-09-01

    Hyperlens was already shown to facilitate the sub-diffraction imaging in the far-field by converting the sub-wavelength information carried by evanescent wave components into the propagating waves and magnifying those sub-wavelength details to the scales that can be resolved by conventional optical components. In this talk, we will discuss the case when the hyperlens is used in a reverse way, such that the incident light enters on the outer surface of the hyperlens and collected on the inner surface, the device may function as a de-magnifier. In particular, if a pattern of a large size (above the diffraction limit) is recorded on the outer surface serving as a mask, the sub-wavelength image can be achieved on the inner side of the hyperlens. While this idea was validated using numerical simulations, no experimental demonstration was reported to date. In this talk, we demonstrate de-magnifying hyperlens in laboratory experiments and discuss its potential applications. For example, one of such potential applications is sub-wavelength photolithography. Photolithography is the most widely used fabrication technique in integrated circuit industry. However, further decreasing the feature size becomes challenging, in particular, due to the diffraction limit. We experimentally show de-magnifying property of a spherical hyperlens composed of metal-dielectric multilayer structure with a Cr mask on its outer surface. A photoresist was spin-coated on the inner surface of the hyperlens to record the image. After exposure with 405nm light, the pattern on the mask was recorded in the photoresist on the inner surface of the hyperlens, demonstrating 1.6x de-magnification.

  19. Ariadnes Colles Chaos

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 18 June 2002) Among the many varied landscapes on Mars the term chaos is applied to those places that have a jumbled, blocky appearance. Most of the better known chaotic terrain occurs in the northern hemisphere but there are other occurrences in the southern hemisphere, three of which are centered on 180 degrees west longitude. Ariadnes Colles, Atlantis, and Gorgonum Chaos all share similar features: relatively bright, irregularly shaped knobs and mesas that rise above a dark, sand-covered, hummocky floor. Close inspection of this THEMIS image shows that the darker material tends to lap up to the base of the knobs and stops where the slopes are steep. On some of the lowest knobs, the dark material appears to overtop them. The knobs themselves are highly eroded, many having a pitted appearance. Images from the camera on Mars Global Surveyor clearly show that the dark material is sand, based on its mantling appearance and the presence of dunes. It looks as though the material that composes the knobs was probably a continuous layer that was subsequently heavily eroded. While it is likely that the dark sand is responsible for some of the erosion it is also possible that the this landscape was eroded by some other process and the sand was emplaced at a later time.

  20. Stalling chaos control accelerates convergence

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2013-06-01

    Since chaos control has found its way into many applications, the development of fast, easy-to-implement and universally applicable chaos control methods is of crucial importance. Predictive feedback control has been widely applied but suffers from a speed limit imposed by highly unstable periodic orbits. We show that this limit can be overcome by stalling the control, thereby taking advantage of the stable directions of the uncontrolled chaotic map. This analytical finding is confirmed by numerical simulations, giving a chaos-control method that is capable of successfully stabilizing periodic orbits of high period.

  1. Experimental observations of soliton explosions in ultrafast fibre lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Broderick, Neil; Runge, Antoine; Erkintalo, Miro

    2016-04-01

    A soliton explosion is a dramatic effect, whereby a pulse circulating in a mode-locked laser dissipates and then remarkably reforms within a few roundtrips. Our group recently reported the first observation of such explosions in an all-fibre laser. Here, we expand on our initial work, reporting a detailed numerical and experimental study of the dynamics and characteristics of soliton explosions. Our experiment is based on a passively mode-locked Yb-doped fiber laser, where explosions occur close to the boundary between stable and noise-like operation. To capture the events, we use the dispersive Fourier transformation to record, in real time, the pulse-to-pulse spectra emitted by the laser. We explore a variety of operating conditions by systematically adjusting the laser pump power and its cavity length. We also use a realistic model based on a set of generalized nonlinear Schrodinger equations to simulate the explosion dynamics. We find that the explosion dynamics can be influenced by adjusting the operating conditions. As a general trend, the frequency of the events increases as the conditions move closer to the boundary of unstable operation. In fact, when sufficiently close to the boundary, the "explosions" can even become more frequent than ordinary pulses. Moreover, our simulations reveal that complex features in the spectral and temporal profiles of the explosion events can be explained in terms of a multi-pulsing instability. Finally we have examined how the statistics of the events depend on the laser geometry and also whether such explosions indicate the existence of a "strange attractor".

  2. Chaos-Dchroot Version 2

    SciTech Connect

    Grondona, M.

    2007-08-22

    The CHAOS dchroot utilities is a set of software used to prepare and manage "alternate root" filesystems on Linux systems. These alternate roots can be used to provide an alternate set of system software for testing and compatibility purposes.

  3. The Chaos Within Sudoku

    PubMed Central

    Ercsey-Ravasz, Mária; Toroczkai, Zoltán

    2012-01-01

    The mathematical structure of Sudoku puzzles is akin to hard constraint satisfaction problems lying at the basis of many applications, including protein folding and the ground-state problem of glassy spin systems. Via an exact mapping of Sudoku into a deterministic, continuous-time dynamical system, here we show that the difficulty of Sudoku translates into transient chaotic behavior exhibited by this system. We also show that the escape rate κ, an invariant of transient chaos, provides a scalar measure of the puzzle's hardness that correlates well with human difficulty ratings. Accordingly, η = −log10 κ can be used to define a “Richter”-type scale for puzzle hardness, with easy puzzles having 0 < η ≤ 1, medium ones 1 < η ≤ 2, hard with 2 < η ≤ 3 and ultra-hard with η > 3. To our best knowledge, there are no known puzzles with η > 4. PMID:23061008

  4. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  5. Elucidating Mechanisms of Extensive Chaos

    NASA Astrophysics Data System (ADS)

    Egolf, David A.; Melnikov, Ilarion V.; Pesch, Werner; Ecke, Robert E.

    2001-06-01

    We report studies of the mechanism for the generation of chaotic disorder in a phenomenon found in nature, Rayleigh-Bénard convection (RBC), in a regime exhaustively studied experimentally. Through large-scale, parallel-computational studies of the detailed space-time evolution of the dynamical degrees of freedom, we find that the Spiral Defect Chaos (SDC) state of RBC is spatially- and temporally- localized to defect creation/annihilation events (D.A. Egolf, I.V. Melnikov, W. Pesch, and R.E. Ecke, Nature, 404:733--736, 2000), and we elucidate how these divergent, but very brief, events lead to eventual macroscopic differences between initially similar flow patterns. We also demonstrate that SDC is extensively chaotic, in that the number of dynamical degrees of freedom (the fractal dimension) is proportional to the system size, suggesting the possibility for a hydrodynamic-like description of the long-wavelength properties of SDC. The computational technique employed shows promise for analyzing a wide variety of extended dynamical systems.

  6. Routes to spatiotemporal chaos in Kerr optical frequency combs

    SciTech Connect

    Coillet, Aurélien; Chembo, Yanne K.

    2014-03-15

    We investigate the various routes to spatiotemporal chaos in Kerr optical frequency combs, obtained through pumping an ultra-high Q-factor whispering-gallery mode resonator with a continuous-wave laser. The Lugiato–Lefever model is used to build bifurcation diagrams with regards to the parameters that are externally controllable, namely, the frequency and the power of the pumping laser. We show that the spatiotemporal chaos emerging from Turing patterns and solitons display distinctive dynamical features. Experimental spectra of chaotic Kerr combs are also presented for both cases, in excellent agreement with theoretical spectra.

  7. Transition to Chaos by Type I Intermittency in Plasma

    SciTech Connect

    Dimitriu, D. G.; Chiriac, S. A.

    2008-03-19

    We report on experimental results that emphasize the development of a scenario of transition to chaos in plasma by type I intermittency, in connection with the nonlinear dynamics of a complex space charge structure. The transition to chaos evolves by increasing the potential applied on the excitation electrode. Regular oscillations interrupted by random bursts were observed in the time series of the current collected by the electrode. At high values of the potential applied on the electrode, the random bursts appear more frequently, the final state of the plasma system dynamics being a chaotic one.

  8. An improved key agreement protocol based on chaos

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhao, Jianfeng

    2010-12-01

    Cryptography based on chaos theory has developed fast in the past few years, but most of the researches focus on secret key cryptography. There are few public key encryption algorithms and cryptographic protocols based on chaos, which are also of great importance for network security. We introduce an enhanced key agreement protocol based on Chebyshev chaotic map. Utilizing the semi-group property of Chebyshev polynomials, the proposed key exchange algorithm works like Diffie-Hellman algorithm. The improved protocol overcomes the drawbacks of several previously proposed chaotic key agreement protocols. Both analytical and experimental results show that it is effective and secure.

  9. Stochastic Estimation via Polynomial Chaos

    DTIC Science & Technology

    2015-10-01

    Program Manager Lethality, Vulnerability and Survivability Branch This report is published in the interest of scientific and technical...initial conditions for partial differential equations. Here, the elementary theory of the polynomial chaos is presented followed by the details of a...the elementary theory of the polynomial chaos is presented followed by the details of a number of example calculations where the statistical mean and

  10. Quantum Chaos in SU(3) Models with Trapped Ions

    NASA Astrophysics Data System (ADS)

    Graß, Tobias; Juliá-Díaz, Bruno; Kuś, Marek; Lewenstein, Maciej

    2013-08-01

    A scheme to generate long-range spin-spin interactions between three-level ions in a chain is presented, providing a feasible experimental route to the rich physics of well-known SU(3) models. In particular, we demonstrate different signatures of quantum chaos which can be controlled and observed in experiments with trapped ions.

  11. Evolution of periodic states and chaos in two types of neuronal models

    NASA Astrophysics Data System (ADS)

    Chay, Teresa R.; Fan, Yinshui

    1993-11-01

    Studies on how chaos theory may be applied to neural disorders is a very challenging theoretical problem. But, to determine the applications of chaos theory cellular functions, it is best to study the genesis of chaos and its characteristics using a minimal model of cellular excitability. In this paper we present two neuronal models which gives rise to interesting types of bursting and chaos. The first model is based on the model of Chay, in which the bursting of neuronal cells is caused by voltage- and time-dependent inactivation of calcium channels. The second model is based on Chay's work in which the bursting is caused by the conformational transformation of the calcium channels that is induced by binding of Ca2+ ion to the receptor site. With these two models, we elucidate how the periodic states and chaos can be evolved when the properties of two types of inward current change. Our bifurcation diagram reveals new types of bifurcations and chaos which were not seen in the other non-linear dynamic models. The predicted chaos from the models closely resembles that observed experimentally in neuronal cells. An implication of our finding is that chaos theory may be used to understand and improve the treatment of certain irregular activities in the brain.

  12. Emulating “Chaos + Chaos = Order” in Chen’s Circuit of Fractional Order by Parameter Switching

    NASA Astrophysics Data System (ADS)

    Tang, Wallace K. S.; Danca, Marius-F.

    2016-06-01

    In this paper, the effect of the parameter switching (PS) algorithm in a fractional order chaotic circuit is investigated both in simulation and experiment. The Chen system of fractional order is focused and realized in an electronic circuit. By designing a switching circuit, the PS algorithm is implemented and it is the first time, the paradoxical “Chaos + Chaos = Order” is presented in an electronic circuit. Both the simulation and experimental results confirm that the obtained attractor under switching approximates the attractor of the time-averaged model. Some important design issues for the circuitry realization of the PS scheme are pointed out. Finally, our work confirms the practical usage of PS algorithm in potential applications such as attractor synthesis and chaos control.

  13. Perspectives on Advertising Education: Curricula, Research--Descriptive, Research--Experimental, Industry/Educators' Cooperation, Special Interest Areas, and Instruction; Proceedings of the 1974 National Conference for University Professors of Advertising at the Univ. of Rhode Island.

    ERIC Educational Resources Information Center

    Zeigler, Sherilyn K., Ed.

    This document contains all of the presentations given at the 1974 National American Academy of Advertising Conference in Newport, Rhode Island. The theme of the conference was "Perspectives on Advertising" and the areas of focus were curricula and instruction, descriptive and experimental research, cooperation between educators and the advertising…

  14. Cognitive aspects of chaos in random networks.

    PubMed

    Aiello, Gaetano L

    2012-01-01

    A special case of deterministic chaos that is independent of the architecture of the connections has been observed in a computer model of a purely excitatory neuronal network. Chaos onsets when the level of connectivity is critically low. The results indicate a typical period-doubling route to chaos as the connectivity decreases. A cognitive interpretation of such type of chaos, based on information theory and phase-transitions, is proposed.

  15. Decoherence, determinism and chaos

    NASA Astrophysics Data System (ADS)

    Noyes, H. P.

    1994-01-01

    The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is 'deterministic'. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of 'test-particle' is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as 'particles' or to get them out of the nonlinearities in a grand unified theory, in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a 'scale invariance bounded from below' by measurement accuracy, then Tanimura's generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action at a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of particles has to be replaced by no-yes particulate events, and particle-antiparticle pair creation and annihilation properly formulated.

  16. Decoherence, determinism and chaos

    SciTech Connect

    Noyes, H.P.

    1994-01-01

    The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is `deterministic`. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of `test-particle` is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as `particles` or to get them out of the non-linearities in a grand unified theory -- in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a `scale invariance bounded from below` by measurement accuracy, then Tanimura`s generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action-at-a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of `particles has to be replaced by NO-YES particulate events, and particle-antiparticle pair creation and annihilation properly formulated.

  17. Relations between distributional and Devaney chaos.

    PubMed

    Oprocha, Piotr

    2006-09-01

    Recently, it was proven that chaos in the sense of Devaney and weak mixing both imply chaos in the sense of Li and Yorke. In this article we give explicit examples that any of these two implications do not hold for distributional chaos.

  18. Chaos in Periodic Discrete Systems

    NASA Astrophysics Data System (ADS)

    Shi, Yuming; Zhang, Lijuan; Yu, Panpan; Huang, Qiuling

    This paper focuses on chaos in periodic discrete systems, whose state space may vary with time. Some close relationships between some chaotic dynamical behaviors of a periodic discrete system and its autonomous induced system are given. Based on these relationships, several criteria of chaos are established and some sufficient conditions for no chaos are given for periodic discrete systems. Further, it is shown that a finite-dimensional linear periodic discrete system is not chaotic in the sense of Li-Yorke or Wiggins. In particular, an interesting problem of whether nonchaotic rules may generate a chaotic system is studied, with some examples provided, one of which surprisingly shows that a composition of globally asymptotically stable maps can be chaotic. In addition, some properties of sign pattern matrices of non-negative square matrices are given for convenience of the study.

  19. !CHAOS: A cloud of controls

    NASA Astrophysics Data System (ADS)

    Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.

    2016-01-01

    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.

  20. On CFT and quantum chaos

    NASA Astrophysics Data System (ADS)

    Turiaci, Gustavo J.; Verlinde, Herman

    2016-12-01

    We make three observations that help clarify the relation between CFT and quantum chaos. We show that any 1+1-D system in which conformal symmetry is non-linearly realized exhibits two main characteristics of chaos: maximal Lyapunov behavior and a spectrum of Ruelle resonances. We use this insight to identify a lattice model for quantum chaos, built from parafermionic spin variables with an equation of motion given by a Y-system. Finally we point to a relation between the spectrum of Ruelle resonances of a CFT and the analytic properties of OPE coefficients between light and heavy operators. In our model, this spectrum agrees with the quasi-normal modes of the BTZ black hole.

  1. Enhancing chaoticity of spatiotemporal chaos.

    PubMed

    Li, Xiaowen; Zhang, Heqiao; Xue, Yu; Hu, Gang

    2005-01-01

    In some practical situations strong chaos is needed. This introduces the task of chaos control with enhancing chaoticity rather than suppressing chaoticity. In this paper a simple method of linear amplifications incorporating modulo operations is suggested to make spatiotemporal systems, which may be originally chaotic or nonchaotic, strongly chaotic. Specifically, this control can eliminate periodic windows, increase the values and the number of positive Lyapunov exponents, make the probability distributions of the output chaotic sequences more homogeneous, and reduce the correlations of chaotic outputs for different times and different space units. The applicability of the method to practical tasks, in particular to random number generators and secure communications, is briefly discussed.

  2. Some new surprises in chaos.

    PubMed

    Bunimovich, Leonid A; Vela-Arevalo, Luz V

    2015-09-01

    "Chaos is found in greatest abundance wherever order is being sought.It always defeats order, because it is better organized"Terry PratchettA brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.

  3. Chaos and chaotic dynamics in economics.

    PubMed

    Faggini, Marisa

    2009-07-01

    Proponents of chaos theory attempted to articulate a new, more realistic, scientific world-view contradictory to the fundamental notions of the Newtonian view of science. Nonlinearity and chaos give the opportunity of a reconciliation of economics with a more realistic representation of its phenomena. Chaos theory represents a means for enhancing both the methodological and theoretical foundations for exploring the complexity of economic phenomena. This paper offers an overview of the applications of chaos theory in economics highlighting that recognizing the existence of deterministic chaos in economics is important from both a theoretical and practical point of view.

  4. Chaos, brain and divided consciousness.

    PubMed

    Bob, Petr

    2007-01-01

    Modern trends in psychology and cognitive neuroscience suggest that applications of nonlinear dynamics, chaos and self-organization seem to be particularly important for research of some fundamental problems regarding mind-brain relationship. Relevant problems among others are formations of memories during alterations of mental states and nature of a barrier that divides mental states, and leads to the process called dissociation. This process is related to a formation of groups of neurons which often synchronize their firing patterns in a unique spatial maner. Central theme of this study is the relationship between level of moving and oscilating mental processes and their neurophysiological substrate. This opens a question about principles of organization of conscious experiences and how these experiences arise in the brain. Chaotic self-organization provides a unique theoretical and experimental tool for deeper understanding of dissociative phenomena and enables to study how dissociative phenomena can be linked to epileptiform discharges which are related to various forms of psychological and somatic manifestations. Organizing principles that constitute human consciousness and other mental phenomena from this point of view may be described by analysis and reconstruction of underlying dynamics of psychological or psychophysiological measures. These nonlinear methods in this study were used for analysis of characteristic changes in EEG and bilateral electrodermal activity (EDA) during reliving of dissociated traumatic and stressful memories and during psychopathological states. Analysis confirms a possible role of chaotic transitions in the processing of dissociated memory. Supportive finding for a possible chaotic process related to dissociation found in this study represent also significant relationship of dissociation, epileptiform discharges measured by typical psychopathological manifestations and characteristic laterality changes in bilateral EDA in patients

  5. The Chaos Theory of Careers.

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.; Bright, Jim

    2003-01-01

    Four theoretical streams--contexualism/ecology, systems theory, realism/constructivism, and chaos theory--contributed to a theory of individuals as complex, unique, nonlinear, adaptive chaotic and open systems. Individuals use purposive action to construct careers but can make maladaptive and inappropriate choices. (Contains 42 references.) (SK)

  6. Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.

    PubMed

    Ecke, Robert E

    2015-09-01

    The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.

  7. Continuing Through Iani Chaos

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image continues the northward trend through the Iani Chaos region. Compare this image to Monday's and Tuesday's. This image was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -0.1 Longitude 342.6 East (17.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001

  8. Passive immunization with a polyclonal antiserum to the hemoglobin receptor of Haemophilus ducreyi confers protection against a homologous challenge in the experimental swine model of chancroid.

    PubMed

    Leduc, Isabelle; Fusco, William G; Choudhary, Neelima; Routh, Patty A; Cholon, Deborah M; Hobbs, Marcia M; Almond, Glen W; Orndorff, Paul E; Elkins, Christopher

    2011-08-01

    Haemophilus ducreyi, the etiologic agent of chancroid, has an obligate requirement for heme. Heme is acquired by H. ducreyi from its human host via TonB-dependent transporters expressed at its bacterial surface. Of 3 TonB-dependent transporters encoded in the genome of H. ducreyi, only the hemoglobin receptor, HgbA, is required to establish infection during the early stages of the experimental human model of chancroid. Active immunization with a native preparation of HgbA (nHgbA) confers complete protection in the experimental swine model of chancroid, using either Freund's or monophosphoryl lipid A as adjuvants. To determine if transfer of anti-nHgbA serum is sufficient to confer protection, a passive immunization experiment using pooled nHgbA antiserum was conducted in the experimental swine model of chancroid. Pigs receiving this pooled nHgbA antiserum were protected from a homologous, but not a heterologous, challenge. Passively transferred polyclonal antibodies elicited to nHgbA bound the surface of H. ducreyi and partially blocked hemoglobin binding by nHgbA, but were not bactericidal. Taken together, these data suggest that the humoral immune response to the HgbA vaccine is protective against an H. ducreyi infection, possibly by preventing acquisition of the essential nutrient heme.

  9. Wavenumber and Defect Distributions in Undulation Chaos

    NASA Astrophysics Data System (ADS)

    Daniels, Karen E.; Bodenschatz, Eberhard

    2000-11-01

    We report experimental results on thermally driven convection in a large aspect ratio inclined layer with a fluid of Prandtl number σ ≈ 1. Very close to the onset of convection for inclination angles between 20 and 70 degrees, we find the defect turbulent state of undulation chaos (Daniels, Plapp, and Bodenschatz. Phys. Rev. Lett. 84:5320). We characterize this state by determining the defect locations and the wavenumber distribution. A snapshot of the pattern, as well as its wavenumber distribution, can be well-reconstructed from a perfect underlying undulation pattern and the phase field given by the point defects. The defect density distribution shows a crossover from a Poisson to a squared Poisson distribution. By measuring the creation, annihilation, inflow, and outflow rates of defects we can quantitatively explain this behavior. This work is supported by the National Science Foundation DMR-0072077.

  10. Stability analysis of fixed points via chaos control.

    PubMed

    Locher, M.; Johnson, G. A.; Hunt, E. R.

    1997-12-01

    This paper reviews recent advances in the application of chaos control techniques to the stability analysis of two-dimensional dynamical systems. We demonstrate how the system's response to one or multiple feedback controllers can be utilized to calculate the characteristic multipliers associated with an unstable periodic orbit. The experimental results, obtained for a single and two coupled diode resonators, agree well with the presented theory. (c) 1997 American Institute of Physics.

  11. Low-dimensional chaos in a hydrodynamic system

    SciTech Connect

    Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, J.D.; Jen, E.; Crutchfield, J.P.

    1983-10-17

    Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experimental data shows that motion is restricted to an attractor of dimension less than 5 for Reynolds numbers up to 30% above the onset of chaos. The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds number.

  12. Optoelectronic Chaos in a Simple Light Activated Feedback Circuit

    NASA Astrophysics Data System (ADS)

    Joiner, K. L.; Palmero, F.; Carretero-González, R.

    The nonlinear dynamics of an optoelectronic negative feedback switching circuit is studied. The circuit, composed of a bulb, a photoresistor, a thyristor and a linear resistor, corresponds to a nightlight device whose light is looped back into its light sensor. Periodic bifurcations and deterministic chaos are obtained by the feedback loop created when the thyristor switches on the bulb in the absence of light being detected by the photoresistor and the bulb light is then looped back into the nightlight to switch it off. The experimental signal is analyzed using tools of delay-embedding reconstruction that yield a reconstructed attractor with fractional dimension and positive Lyapunov exponent suggesting chaotic behavior for some parameter values. We construct a simple circuit model reproducing experimental results that qualitatively matches the different dynamical regimes of the experimental apparatus. In particular, we observe an order-chaos-order transition as the strength of the feedback is varied corresponding to varying the distance between the nightlight bulb and its photo-detector. A two-dimensional parameter diagram of the model reveals that the order-chaos-order transition is generic for this system.

  13. Spatiotemporal chaos from bursting dynamics

    SciTech Connect

    Berenstein, Igal; De Decker, Yannick

    2015-08-14

    In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation and takes the form of a spatiotemporal intermittency where the system locally alternates between the fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos to be generic for models in which one or several slow variables are coupled to activator-inhibitor type of oscillators.

  14. A history of chaos theory

    PubMed Central

    Oestreicher, Christian

    2007-01-01

    Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely although they can be predicted to some extent in line with the chaos theory Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory, A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms. PMID:17969865

  15. A history of chaos theory.

    PubMed

    Oestreicher, Christian

    2007-01-01

    Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century, when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely, although they can be predicted to some extent, in line with the chaos theory. Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory. This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms.

  16. A quantum correction to chaos

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. Liam; Kaplan, Jared

    2016-05-01

    We use results on Virasoro conformal blocks to study chaotic dynamics in CFT2 at large central charge c. The Lyapunov exponent λ L , which is a diagnostic for the early onset of chaos, receives 1 /c corrections that may be interpreted as {λ}_L=2π /β(1+12/c) . However, out of time order correlators receive other equally important 1 /c suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on λ L that emerges at large c, focusing on CFT2 and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.

  17. Controlling fast chaos in delay dynamical systems.

    PubMed

    Blakely, Jonathan N; Illing, Lucas; Gauthier, Daniel J

    2004-05-14

    We introduce a novel approach for controlling fast chaos in time-delay dynamical systems and use it to control a chaotic photonic device with a characteristic time scale of approximately 12 ns. Our approach is a prescription for how to implement existing chaos-control algorithms in a way that exploits the system's inherent time delay and allows control even in the presence of substantial control-loop latency (the finite time it takes signals to propagate through the components in the controller). This research paves the way for applications exploiting fast control of chaos, such as chaos-based communication schemes and stabilizing the behavior of ultrafast lasers.

  18. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of light-toned, layered, sedimentary rock within Aram Chaos, an ancient, partly-filled impact crater located near 3.2oN, 19.9oW. This 1.5 meters (5 feet) per pixel picture is illuminated by sunlight from the left and covers an area about 3 km (1.9 mi) across.

  19. Temperature chaos and quenched heterogeneities

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo; Parisi, Giorgio; Rizzo, Tommaso

    2014-03-01

    We present a treatable generalization of the Sherrington-Kirkpatrick (SK) model which introduces correlations in the elements of the coupling matrix through multiplicative disorder on the single variables and investigate the consequences on the phase diagram. We define a generalized qEA parameter and test the structural stability of the SK results in this correlated case evaluating the de Almeida-Thouless line of the model. As a main result we demonstrate the increase of temperature chaos effects due to heterogeneities.

  20. Analysis of FBC deterministic chaos

    SciTech Connect

    Daw, C.S.

    1996-06-01

    It has recently been discovered that the performance of a number of fossil energy conversion devices such as fluidized beds, pulsed combustors, steady combustors, and internal combustion engines are affected by deterministic chaos. It is now recognized that understanding and controlling the chaotic elements of these devices can lead to significantly improved energy efficiency and reduced emissions. Application of these techniques to key fossil energy processes are expected to provide important competitive advantages for U.S. industry.

  1. Transient spatiotemporal chaos in a diffusively and synaptically coupled Morris-Lecar neuronal network

    NASA Astrophysics Data System (ADS)

    Lafranceschina, Jacopo

    Transient spatiotemporal chaos was reported in models for chemical reactions and in experiments for turbulence in shear flow. This study shows that transient spatiotemporal chaos also exists in a diffusively coupled Morris-Lecar (ML) neuronal network, with a collapse to either a global rest state or to a state of pulse propagation. Adding synaptic coupling to this network reduces the average lifetime of spatiotemporal chaos for small to intermediate coupling strengths and almost all numbers of synapses. For large coupling strengths, close to the threshold of excitation, the average lifetime increases beyond the value for only diffusive coupling, and the collapse to the rest state dominates over the collapse to a traveling pulse state. The regime of spatiotemporal chaos is characterized by a slightly increasing Lyapunov exponent and degree of phase coherence as the number of synaptic links increases. In contrast to the diffusive network, the pulse solution must not be asymptotic in the presence of synapses. The fact that chaos could be transient in higher dimensional systems, such as the one being explored in this study, point to its presence in every day life. Transient spatiotemporal chaos in a network of coupled neurons and the associated chaotic saddle provide a possibility for switching between metastable states observed in information processing and brain function. Such transient dynamics have been observed experimentally by Mazor, when stimulating projection neurons in the locust antennal lobe with different odors.

  2. Classical chaos and its correspondence in superconducting qubits

    NASA Astrophysics Data System (ADS)

    Neill, C.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fang, M.; Hoi, I.; Kelly, J.; Megrant, A.; O'Malley, P.; Quintana, C.; Vainsencher, A.; Wenner, J.; White, T.; Barends, R.; Chen, Yu; Fowler, A.; Jeffrey, E.; Mutus, J.; Roushan, P.; Sank, D.; Martinis, J. M.

    2015-03-01

    Advances in superconducting qubits have made it possible to experimentally investigate quantum-classical correspondence by constructing quantum systems with chaotic classical limits. We study the quantum equivalent of a classical spinning top using three fully coupled qubits that behave as a single spin-3/2 and subject the spin to a sequence of non-linear rotations. The resulting entanglement bears a striking resemblance to the classical phase space, including bifurcation, and suggests that classical chaos manifests itself as quantum entanglement. Studying the orientation of the spin-3/2 reveals that the rotations which generate chaos and entanglement are at the same time the source of disagreement between the quantum and classical trajectories. Our experiment highlights the correspondence between classical non-linear dynamics and interacting quantum systems.

  3. Discretization chaos - Feedback control and transition to chaos

    NASA Technical Reports Server (NTRS)

    Grantham, Walter J.; Athalye, Amit M.

    1990-01-01

    Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.

  4. On the Weakest Version of Distributional Chaos

    NASA Astrophysics Data System (ADS)

    Doleželová-Hantáková, Jana; Roth, Zuzana; Roth, Samuel

    2016-12-01

    The aim of the paper is to correct and improve some results concerning distributional chaos of type 3. We show that in a general compact metric space, distributional chaos of type 3, denoted DC3, even when assuming the existence of an uncountable scrambled set, is a very weak form of chaos. In particular, (i) the chaos can be unstable (it can be destroyed by conjugacy), and (ii) such an unstable system may contain no Li-Yorke pair. However, the definition can be strengthened to get DC21 2 which is a topological invariant and implies Li-Yorke chaos, similarly as types DC1 and DC2; but unlike them, strict DC21 2 systems must have zero topological entropy.

  5. Scaling of chaos in strongly nonlinear lattices

    SciTech Connect

    Mulansky, Mario

    2014-06-15

    Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.

  6. Life Out of Chaos

    NASA Technical Reports Server (NTRS)

    Arrhenius, Gustaf

    2002-01-01

    Doctinary overlays on the definition of life can effectively be avoided by focusing discussion on microorganisms, their vital processes, and their genetic pedigree. To reach beyond these present and highly advanced forms of life and to inquire about its origin it is necessary to consider the requirements imposed by the environment. These requirements include geophysically and geochemically acceptable conjectures for the generation of source compounds, their concentration from dilute solution, and their selective combination into functional biomolecules. For vital function these macromolecules require programming in the form of specific sequence motifs. This critical programming constitutes the scientifically least understood process in the origin of life. Once this stage has been surpassed the laws of Darwinian evolution can operate in ways that are understood and experimentally demonstrated.

  7. Route to chaos for combustion instability in ducted laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Kabiraj, Lipika; Saurabh, Aditya; Wahi, Pankaj; Sujith, R. I.

    2012-06-01

    Complex thermoacoustic oscillations are observed experimentally in a simple laboratory combustor that burns lean premixed fuel-air mixture, as a result of nonlinear interaction between the acoustic field and the combustion processes. The application of nonlinear time series analysis, particularly techniques based on phase space reconstruction from acquired pressure data, reveals rich dynamical behavior and the existence of several complex states. A route to chaos for thermoacoustic instability is established experimentally for the first time. We show that, as the location of the heat source is gradually varied, self-excited periodic thermoacoustic oscillations undergo transition to chaos via the Ruelle-Takens scenario.

  8. Monohydrated Sulfates in Aurorae Chaos

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of sulfate-containing deposits in Aurorae Chaos was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0653 UTC (2:53 a.m. EDT) on June 10, 2007, near 7.5 degrees south latitude, 327.25 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 12 kilometers (7.5 miles) wide at its narrowest point.

    Aurorae Chaos lies east of the Valles Marineris canyon system. Its western edge extends toward Capri and Eos Chasmata, while its eastern edge connects with Aureum Chaos. Some 750 kilometers (466 miles) wide, Aurorae Chaos is most likely the result of collapsed surface material that settled when subsurface ice or water was released.

    The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data covers an area featuring several knobs of erosion-resistant material at one end of what appears to be a large teardrop shaped plateau. Similar plateaus occur throughout the interior of Valles Marineris, and they are formed of younger, typically layered rocks that post-date formation of the canyon system. Many of the deposits contain sulfate-rich layers, hinting at ancient saltwater.

    The center left image, an infrared false color image, reveals a swath of light-colored material draped over the knobs. The center right image unveils the mineralogical composition of the area, with yellow representing monohydrated sulfates (sulfates with one water molecule incorporated into each molecule of the mineral).

    The lower two images are renderings of data draped over topography with 5 times vertical exaggeration. These images provide a view of the topography and reveal how the monohydrated sulfate-containing deposits drape over the knobs and also an outcrop in lower-elevation parts of the

  9. Some new surprises in chaos

    SciTech Connect

    Bunimovich, Leonid A.; Vela-Arevalo, Luz V.

    2015-09-15

    A brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.

  10. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 February 2004 Aram Chaos is a large meteor impact crater that was nearly filled with sediment. Over time, this sediment was hardened to form sedimentary rock. Today, much of the eastern half of the crater has exposures of light-toned sedimentary rock, such as the outcrops shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The picture is located near 2.0oN, 20.3oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  11. Decoherence, determinism and chaos revisited

    SciTech Connect

    Noyes, H.P.

    1994-11-15

    We suggest that the derivation of the free space Maxwell Equations for classical electromagnetism, using a discrete ordered calculus developed by L.H. Kauffman and T. Etter, necessarily pushes the discussion of determinism in natural science down to the level of relativistic quantum mechanics and hence renders the mathematical phenomena studied in deterministic chaos research irrelevant to the question of whether the world investigated by physics is deterministic. We believe that this argument reinforces Suppes` contention that the issue of determinism versus indeterminism should be viewed as a Kantian antinomy incapable of investigation using currently available scientific tools.

  12. Input reconstruction of chaos sensors.

    PubMed

    Yu, Dongchuan; Liu, Fang; Lai, Pik-Yin

    2008-06-01

    Although the sensitivity of sensors can be significantly enhanced using chaotic dynamics due to its extremely sensitive dependence on initial conditions and parameters, how to reconstruct the measured signal from the distorted sensor response becomes challenging. In this paper we suggest an effective method to reconstruct the measured signal from the distorted (chaotic) response of chaos sensors. This measurement signal reconstruction method applies the neural network techniques for system structure identification and therefore does not require the precise information of the sensor's dynamics. We discuss also how to improve the robustness of reconstruction. Some examples are presented to illustrate the measurement signal reconstruction method suggested.

  13. Transition to chaos in a driven dusty plasma

    SciTech Connect

    Sheridan, T. E.; Theisen, W. L.

    2010-01-15

    Dynamical chaos has previously been observed experimentally in a driven dusty plasma with three particles [T. E. Sheridan, Phys. Plasmas 12, 080701 (2005)]. In the present work, the transition to chaos in this system is studied as a function of the amplitude of a periodic driving force for two different driving frequencies f{sub d}. It is found that the system follows a quasiperiodic route to chaos. The dusty plasma's center-of-mass modes are driven by the first harmonic of f{sub d} and lock to the driving force for small driving amplitudes. The breathing mode is driven by the second harmonic of f{sub d} and shows asymmetric spectral features indicating quasiperiodic dynamics for intermediate driving amplitudes. For large driving forces both the center-of-mass and breathing modes are entrained and a region of low-dimensional chaotic dynamics due to a resonance overlap is observed. In the chaotic regime the correlation dimension and Lyapunov exponent are found to increase with the driving force.

  14. Observing chaos for quantum-dot microlasers with external feedback.

    PubMed

    Albert, Ferdinand; Hopfmann, Caspar; Reitzenstein, Stephan; Schneider, Christian; Höfling, Sven; Worschech, Lukas; Kamp, Martin; Kinzel, Wolfgang; Forchel, Alfred; Kanter, Ido

    2011-06-21

    Chaos presents a striking and fascinating phenomenon of nonlinear systems. A common aspect of such systems is the presence of feedback that couples the output signal partially back to the input. Feedback coupling can be well controlled in optoelectronic devices such as conventional semiconductor lasers that provide bench-top platforms for the study of chaotic behaviour and high bit rate random number generation. Here we experimentally demonstrate that chaos can be observed for quantum-dot microlasers operating close to the quantum limit at nW output powers. Applying self-feedback to a quantum-dot microlaser results in a dramatic change in the photon statistics wherein strong, super-thermal photon bunching is indicative of random-intensity fluctuations associated with the spiked emission of light. Our experiments reveal that gain competition of few quantum dots in the active layer enhances the influence of self-feedback and will open up new avenues for the study of chaos in quantum systems.

  15. Recurrence-based detection of the hyperchaos-chaos transition in an electronic circuit

    NASA Astrophysics Data System (ADS)

    Ngamga, E. J.; Buscarino, A.; Frasca, M.; Sciuto, G.; Kurths, J.; Fortuna, L.

    2010-12-01

    Some complex measures based on recurrence plots give evidence about hyperchaos-chaos transitions in coupled nonlinear systems [E. G. Souza et al., "Using recurrences to characterize the hyperchaos-chaos transition," Phys. Rev. E 78, 066206 (2008)]. In this paper, these measures are combined with a significance test based on twin surrogates to identify such a transition in a fourth-order Lorenz-like system, which is able to pass from a hyperchaotic to a chaotic behavior for increasing values of a single parameter. A circuit analog of the mathematical model has been designed and implemented and the robustness of the recurrence-based method on experimental data has been tested. In both the numerical and experimental cases, the combination of the recurrence measures and the significance test allows to clearly identify the hyperchaos-chaos transition.

  16. Invoking the muse: Dada's chaos.

    PubMed

    Rosen, Diane

    2014-07-01

    Dada, a self-proclaimed (anti)art (non)movement, took shape in 1916 among a group of writers and artists who rejected the traditions of a stagnating bourgeoisie. Instead, they adopted means of creative expression that embraced chaos, stoked instability and undermined logic, an outburst that overturned centuries of classical and Romantic aesthetics. Paradoxically, this insistence on disorder foreshadowed a new order in understanding creativity. Nearly one hundred years later, Nonlinear Dynamical Systems theory (NDS) gives renewed currency to Dada's visionary perspective on chance, chaos and creative cognition. This paper explores commonalities between NDS-theory and this early precursor of the nonlinear paradigm, suggesting that their conceptual synergy illuminates what it means to 'be creative' beyond the disciplinary boundaries of either. Key features are discussed within a 5P model of creativity based on Rhodes' 4P framework (Person, Process, Press, Product), to which I add Participant-Viewer for the interactivity of observer-observed. Grounded in my own art practice, several techniques are then put forward as non-methodical methods that invoke creative border zones, those regions where Dada's chance and design are wedded in a dialectical tension of opposites.

  17. Competitive coexistence in stoichiometric chaos.

    PubMed

    Deng, Bo; Loladze, Irakli

    2007-09-01

    Classical predator-prey models, such as Lotka-Volterra, track the abundance of prey, but ignore its quality. Yet, in the past decade, some new and occasionally counterintuitive effects of prey quality on food web dynamics emerged from both experiments and mathematical modeling. The underpinning of this work is the theory of ecological stoichiometry that is centered on the fact that each organism is a mixture of multiple chemical elements such as carbon (C), nitrogen (N), and phosphorus (P). The ratios of these elements can vary within and among species, providing simple ways to represent prey quality as its C:N or C:P ratios. When these ratios modeled to vary, as they frequently do in nature, seemingly paradoxical results can arise such as the extinction of a predator that has an abundant and accessible prey. Here, for the first time, we show analytically that the reduction in prey quality can give rise to chaotic oscillations. In particular, when competing predators differ in their sensitivity to prey quality then all species can coexist via chaotic fluctuations. The chaos generating mechanism is based on the existence of a junction-fold point on the nullcline surfaces of the species. Conditions on parameters are found for such a point, and the singular perturbation method and the kneading sequence analysis are used to demonstrate the existence of a period-doubling cascade to chaos as a result of the point.

  18. The topography of chaos terrain on Europa

    NASA Astrophysics Data System (ADS)

    Patterson, G.; Prockter, L. M.; Schenk, P.

    2010-12-01

    Chaos terrain and lenticulae are commonly observed surface features unique to the Galilean satellite Europa. Chaos terrain occurs as discrete regions of the satellite’s surface 10s to 100s of km in size that are disrupted into isolated plates surrounded by hummocky matrix material. Lenticulae occur as positive- or negative-relief domes km to 10s of km in diameter that can disrupt the original surface in a manner similar to chaos terrain. Evidence suggests that they each form via an endogenic process involving the interaction of a mobile substrate with the brittle surface and it has been proposed that ice shell thinning or surface yielding coupled with brine production represents the most plausible mechanism for the formation of these features. These similarities in morphology and formation mechanism indicate they may represent a continuum process. We explore whether larger chaos terrain represent the coalescence of smaller lenticulae by examining topography within chaos to determine whether it contains domes on length scales similar to lenticulae. Schenk and Pappalardo (2004) alluded to the presence of several prominent domes within Conamara Chaos and we have previously shown that at least 4 and as many as 9 domes with length scales similar to lenticulae are present within and along the margins of the feature. This was accomplished by using Fourier analysis to decompose the topographic signature of Conamara Chaos and the surrounding terrain into discrete wavelength components. A low-pass filter was then used to strip away shorter wavelength components of the topography associated with the region and determine if longer wavelength features were present within the terrain. Here we present new work identifying the presence, size, and distribution of domes within the boundaries of other chaos terrains across the surface of Europa and discuss implications for chaos formation.

  19. ICCK Conference Final Report

    SciTech Connect

    Green, William H.

    2013-05-28

    The 7th International Conference on Chemical Kinetics (ICCK) was held July 10-14, 2011, at Massachusetts Institute of Technology (MIT), in Cambridge, MA, hosted by Prof. William H. Green of MIT's Chemical Engineering department. This cross-disciplinary meeting highlighted the importance of fundamental understanding of elementary reactions to the full range of chemical investigations. The specific conference focus was on elementary-step kinetics in both the gas phase and in condensed phase. The meeting provided a unique opportunity to discuss how the same reactive species and reaction motifs manifest under very different reaction conditions (e.g. atmospheric, aqueous, combustion, plasma, in nonaqueous solvents, on surfaces.). The conference featured special sessions on new/improved experimental techniques, improved models and data analysis for interpreting complicated kinetics, computational kinetics (especially rate estimates for large kinetic models), and a panel discussion on how the community should document/archive kinetic data. In the past, this conference had been limited to homogeneous gas-phase and liquid-phase systems. This conference included studies of heterogeneous kinetics which provide rate constants for, or insight into, elementary reaction steps. This Grant from DOE BES covered about half of the subsidies we provided to students and postdocs who attended the conference, by charging them reduced-rate registration fees. The complete list of subsidies provided are listed in Table 1 below. This DOE funding was essential to making the conference affordable to graduate students, and indeed the attendance at this conference was higher than at previous conferences in this series. Donations made by companies provided additional subsidies, leveraging the DOE funding. The conference was very effective in educating graduate students and important in fostering scientific interactions, particularly between scientists studying gas phase and liquid phase kinetics

  20. Chaos in Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; DeHaas, T.; Van Compernolle, B.

    2013-12-01

    Magnetic Flux Ropes Immersed in a uniform magnetoplasma are observed to twist about themselves, writhe about each other and rotate about a central axis. They are kink unstable and smash into one another as they move. Full three dimensional magnetic field and flows are measured at thousands of time steps. Each collision results in magnetic field line generation and the generation of a quasi-seperatrix layer and induced electric fields. Three dimensional magnetic field lines are computed by conditionally averaging the data using correlation techniques. The permutation entropy1 ,which is related to the Lyapunov exponent, can be calculated from the the time series of the magnetic field data (this is also done with flows) and used to calculate the positions of the data on a Jensen Shannon complexity map2. The location of data on this map indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. The complexity is a function of space and time. The complexity map, and analysis will be explained in the course of the talk. Other types of chaotic dynamical models such as the Lorentz, Gissinger and Henon process also fall on the map and can give a clue to the nature of the flux rope turbulence. The ropes fall in the region of the C-H plane where chaotic systems lie. The entropy and complexity change in space and time which reflects the change and possibly type of chaos associated with the ropes. The maps give insight as to the type of chaos (deterministic chaos, fractional diffusion , Levi flights..) and underlying dynamical process. The power spectra of much of the magnetic and flow data is exponential and Lorentzian structures in the time domain are embedded in them. Other quantities such as the Hurst exponent are evaluated for both magnetic fields and plasma flow. Work Supported by a UC-LANL Lab fund and the Basic Plasma Science Facility which is funded by DOE and NSF. 1) C. Bandt, B. Pompe, Phys. Rev. Lett., 88,174102 (2007) 2

  1. Experimental verification of multilevel spatial pattern generation from binary data page with four-step phase pattern (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barada, Daisuke; Yatagai, Toyohiko

    2016-09-01

    Holographic memory is expected for cold storage because of the features of huge data capacity, high data transfer rate, and long life time. In holographic memory, a signal beam is modulated by a spatial light modulator according to data pages. The recording density is dependent on information amount per pixel in a data page. However, a binary spatial light modulator is used to realize high data transfer rate in general. In our previous study, an optical conversion method from binary data to multilevel data has been proposed. In this paper, the principle of the method is experimentally verified. In the proposed method, a data page consists of symbols with 2x2 pixels and a four-step phase mask is used. Then, the complex amplitudes of four pixels in a symbol become positive real, positive imaginary, negative real, and negative imaginary values, respectively. A square pixel pattern is spread by spatial frequency filtering with a square aperture in a Fourier plane. When the aperture size is too small, the complex amplitude of four pixels in a symbol is superposed and a symbol is regarded as a pixel with a complex number. In this work, a data page pattern with a four-step phase pattern was generated by using a computer-generated circular polarization hologram (CGCPH). The CGCPH was prepared by electron beam lithography. The page data pattern is Fourier transformed by a lens and spatially filtered by a variable rectangular aperture. The complex amplitude of the spatial filtered data page pattern was measured by digital holography and the principle was experimentally verified.

  2. Optimized chaos control with simple limiters.

    PubMed

    Wagner, C; Stoop, R

    2001-01-01

    We present an elementary derivation of chaos control with simple limiters using the logistic map and the Henon map as examples. This derivation provides conditions for optimal stabilization of unstable periodic orbits of a chaotic attractor.

  3. Adapted polynomial chaos expansion for failure detection

    SciTech Connect

    Paffrath, M. Wever, U.

    2007-09-10

    In this paper, we consider two methods of computation of failure probabilities by adapted polynomial chaos expansions. The performance of the two methods is demonstrated by a predator-prey model and a chemical reaction problem.

  4. Adapted polynomial chaos expansion for failure detection

    NASA Astrophysics Data System (ADS)

    Paffrath, M.; Wever, U.

    2007-09-01

    In this paper, we consider two methods of computation of failure probabilities by adapted polynomial chaos expansions. The performance of the two methods is demonstrated by a predator-prey model and a chemical reaction problem.

  5. Homoclinic chaos and energy condition violation

    NASA Astrophysics Data System (ADS)

    Heinzle, J. Mark; Röhr, Niklas; Uggla, Claes

    2006-09-01

    In this letter we discuss the connection between so-called homoclinic chaos and the violation of energy conditions in locally rotationally symmetric Bianchi type IX models, where the matter is assumed to be nontilted dust and a positive cosmological constant. We show that homoclinic chaos in these models is an artifact of unphysical assumptions: it requires that there exist solutions with positive matter energy density ρ>0 that evolve through the singularity and beyond as solutions with negative matter energy density ρ<0. Homoclinic chaos is absent when it is assumed that the dust particles always retain their positive mass. In addition, we discuss more general models: for solutions that are not locally rotationally symmetric we demonstrate that the construction of extensions through the singularity, which is required for homoclinic chaos, is not possible in general.

  6. Chaos automata: iterated function systems with memory

    NASA Astrophysics Data System (ADS)

    Ashlock, Dan; Golden, Jim

    2003-07-01

    Transforming biological sequences into fractals in order to visualize them is a long standing technique, in the form of the traditional four-cornered chaos game. In this paper we give a generalization of the standard chaos game visualization for DNA sequences. It incorporates iterated function systems that are called under the control of a finite state automaton, yielding a DNA to fractal transformation system with memory. We term these fractal visualizers chaos automata. The use of memory enables association of widely separated sequence events in the drawing of the fractal, finessing the “forgetfulness” of other fractal visualization methods. We use a genetic algorithm to train chaos automata to distinguish introns and exons in Zea mays (corn). A substantial issue treated here is the creation of a fitness function that leads to good visual separation of distinct data types.

  7. Menstruation, perimenopause, and chaos theory.

    PubMed

    Derry, Paula S; Derry, Gregory N

    2012-01-01

    This article argues that menstruation, including the transition to menopause, results from a specific kind of complex system, namely, one that is nonlinear, dynamical, and chaotic. A complexity-based perspective changes how we think about and research menstruation-related health problems and positive health. Chaotic systems are deterministic but not predictable, characterized by sensitivity to initial conditions and strange attractors. Chaos theory provides a coherent framework that qualitatively accounts for puzzling results from perimenopause research. It directs attention to variability within and between women, adaptation, lifespan development, and the need for complex explanations of disease. Whether the menstrual cycle is chaotic can be empirically tested, and a summary of our research on 20- to 40-year-old women is provided.

  8. Chaos Theory and Protein Dynamics

    NASA Astrophysics Data System (ADS)

    Bui, James; Clarage, James

    2010-10-01

    Chaos theory, commonly known as the butterfly effect, states that a small change in a complex system may cause large changes in the system as time moves forward. This phenomenon was first discovered by Henri Poincare in the 1880's. The computer programs NAMD, VMD (Visual Molecular Dynamics) and Mathematica were used to calculate the movements and graphically analyze the trajectories of the protein ubiquitin. A small change was applied to a single atom's initial position in the x-coordinate to see how it would affect the future dynamics and trajectory of the protein. Our findings indicate an exponential divergence from the controlled trajectory with a Lyapunov exponent = 10.5 [1/ps]. In other words after less than a picosecond (trillionth of a second) the dynamics of a small biophysical system is no longer predictable, even though the underlying Newtonian physical laws are completely deterministic.

  9. Detecting chaos from time series

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Gong; Lai, C. H.

    2000-02-01

    In this paper, an entirely data-based method to detect chaos from the time series is developed by introducing icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> p -neighbour points (the p -steps icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> -neighbour points). We demonstrate that for deterministic chaotic systems, there exists a linear relationship between the logarithm of the average number of icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> p -neighbour points, lnn p ,icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> , and the time step, p . The coefficient can be related to the KS entropy of the system. The effects of the embedding dimension and noise are also discussed.

  10. Control of collective network chaos.

    PubMed

    Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A F; So, Paul

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  11. Control of collective network chaos

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A. F.; So, Paul

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  12. Compressive Sensing with Optical Chaos

    NASA Astrophysics Data System (ADS)

    Rontani, D.; Choi, D.; Chang, C.-Y.; Locquet, A.; Citrin, D. S.

    2016-12-01

    Compressive sensing (CS) is a technique to sample a sparse signal below the Nyquist-Shannon limit, yet still enabling its reconstruction. As such, CS permits an extremely parsimonious way to store and transmit large and important classes of signals and images that would be far more data intensive should they be sampled following the prescription of the Nyquist-Shannon theorem. CS has found applications as diverse as seismology and biomedical imaging. In this work, we use actual optical signals generated from temporal intensity chaos from external-cavity semiconductor lasers (ECSL) to construct the sensing matrix that is employed to compress a sparse signal. The chaotic time series produced having their relevant dynamics on the 100 ps timescale, our results open the way to ultrahigh-speed compression of sparse signals.

  13. The Minerals of Aureum Chaos

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation of 3-dimensional model with 5x vertical exaggeration

    This image of chaotic terrain in the Aureum Chaos region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0858UTC (3:58 a.m. EST) on January 24, 2008, near 3.66 degrees south latitude, 26.5 degrees west longitude. The image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across. The image is about 10 kilometers (6.2 miles) wide at its narrowest point.

    Aureum Chaos is a 368 kilometer (229 mile) wide area of chaotic terrain in the eastern part of Valles Marineris. The chaotic terrain is thought to have formed by collapse of the surrounding Margaritifer Terra highland region. Aureum Chaos contains heavily eroded, randomly oriented mesas, plateaus, and knobs many revealing distinct layered deposits along their slopes. These deposits may be formed from remnants of the collapsed highlands, sand carried by Martian winds, dust or volcanic ash that settled out of the atmosphere, or sediments laid down on the floor of an ancient lake.

    The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data cover a narrow plateau near the edge of the chaotic terrain, that stretches across from the southwest to the northeast.

    The lower left image, an infrared false color image, reveals the plateau and several eroded knobs of varying sizes. The plateau's layer-cake structure is similar to that of other layered outcrops in Valles Marineris.

    The lower right image reveals the strengths of mineral spectral features overlain on a black-and-white version of the infrared image. Areas shaded in red hold more of the mineral pyroxene, a primary component of basaltic rocks that are prevalent in the highlands. Spots of green

  14. Fundamental concepts of quantum chaos

    NASA Astrophysics Data System (ADS)

    Robnik, M.

    2016-09-01

    We review the fundamental concepts of quantum chaos in Hamiltonian systems. The quantum evolution of bound systems does not possess the sensitive dependence on initial conditions, and thus no chaotic behaviour occurs, whereas the study of the stationary solutions of the Schrödinger equation in the quantum phase space (Wigner functions) reveals precise analogy of the structure of the classical phase portrait. We analyze the regular eigenstates associated with invariant tori in the classical phase space, and the chaotic eigenstates associated with the classically chaotic regions, and the corresponding energy spectra. The effects of quantum localization of the chaotic eigenstates are treated phenomenologically, resulting in Brody-like level statistics, which can be found also at very high-lying levels, while the coupling between the regular and the irregular eigenstates due to tunneling, and of the corresponding levels, manifests itself only in low-lying levels.

  15. Chaos, Fractals and Their Applications

    NASA Astrophysics Data System (ADS)

    Thompson, J. Michael T.

    2016-12-01

    This paper gives an up-to-date account of chaos and fractals, in a popular pictorial style for the general scientific reader. A brief historical account covers the development of the subject from Newton’s laws of motion to the astronomy of Poincaré and the weather forecasting of Lorenz. Emphasis is given to the important underlying concepts, embracing the fractal properties of coastlines and the logistics of population dynamics. A wide variety of applications include: NASA’s discovery and use of zero-fuel chaotic “superhighways” between the planets; erratic chaotic solutions generated by Euler’s method in mathematics; atomic force microscopy; spontaneous pattern formation in chemical and biological systems; impact mechanics in offshore engineering and the chatter of cutting tools; controlling chaotic heartbeats. Reference is made to a number of interactive simulations and movies accessible on the web.

  16. Compressive Sensing with Optical Chaos

    PubMed Central

    Rontani, D.; Choi, D.; Chang, C.-Y.; Locquet, A.; Citrin, D. S.

    2016-01-01

    Compressive sensing (CS) is a technique to sample a sparse signal below the Nyquist-Shannon limit, yet still enabling its reconstruction. As such, CS permits an extremely parsimonious way to store and transmit large and important classes of signals and images that would be far more data intensive should they be sampled following the prescription of the Nyquist-Shannon theorem. CS has found applications as diverse as seismology and biomedical imaging. In this work, we use actual optical signals generated from temporal intensity chaos from external-cavity semiconductor lasers (ECSL) to construct the sensing matrix that is employed to compress a sparse signal. The chaotic time series produced having their relevant dynamics on the 100 ps timescale, our results open the way to ultrahigh-speed compression of sparse signals. PMID:27910863

  17. Chaos in blood pressure control.

    PubMed

    Wagner, C D; Nafz, B; Persson, P B

    1996-03-01

    A number of control mechanisms are comprised within blood pressure regulation, ranging from events on the cellular level up to circulating hormones. Despite their vast number, blood pressure fluctuations occur preferably within a certain range (under physiological conditions). A specific class of dynamic systems has been extensively studied over the past several years: nonlinear coupled systems, which often reveal a characteristic form of motion termed "chaos". The system is restricted to a certain range in phase space, but the motion is never periodic. The attractor the system moves on has a non-integer dimension. What all chaotic systems have in common is their sensitive dependence on initial conditions. The question arises as to whether blood pressure regulation can be explained by such models. Many efforts have been made to characterise heart rate variability and EEG dynamics by parameters of chaos theory (e.g., fractal dimensions and Lyapunov exponents). These method were successfully applied to dynamics observed in single organs, but very few studies have dealt with blood pressure dynamics. This mini-review first gives an overview on the history of blood pressure dynamics and the methods suitable to characterise the dynamics by means of tools derived from the field of nonlinear dynamics. Then applications to systemic blood pressure are discussed. After a short survey on heart rate variability, which is indirectly reflected in blood pressure variability, some dynamic aspects of resistance vessels are given. Intriguingly, systemic blood pressure reveals a change in fractal dimensions and Lyapunov exponents, when the major short-term control mechanism--the arterial baroreflex--is disrupted. Indeed it seems that cardiovascular time series can be described by tools from nonlinear dynamics [66]. These methods allow a novel description of some important aspects of biological systems. Both the linear and the nonlinear tools complement each other and can be useful in

  18. Low-order chaos in sympathetic nerve activity causes 1/f fluctuation of heartbeat intervals

    NASA Astrophysics Data System (ADS)

    Osaka, Motohisa; Kumagai, Hiroo; Sakata, Katsufumi; Onami, Toshiko; Chon, Ki H.; Watanabe, Mari A.; Saruta, Takao

    2004-04-01

    The mechanism of 1/f scaling of heartbeat intervals remains unknown. We recorded heartbeat intervals, sympathetic nerve activity, and blood pressure in conscious rats with normal or high blood pressure. Using nonlinear analyses, we demonstrate that the dynamics of this system of 3 variables is low-order chaos, and that sympathetic nerve activity leads to heartbeat interval and blood pressure changes. It is suggested that 1/f scaling of heartbeat intervals results from the low-order chaos of these variables and that impaired regulation of blood pressure by sympathetic nerve activity is likely to cause experimentally observable steeper scaling of heartbeat intervals in hypertensive (high blood pressure) rats.

  19. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.

    PubMed

    Kuwamura, Masataka; Chiba, Hayato

    2009-12-01

    It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.

  20. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators

    NASA Astrophysics Data System (ADS)

    Kuwamura, Masataka; Chiba, Hayato

    2009-12-01

    It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.

  1. Failure in distinguishing colored noise from chaos using the ``noise titration'' technique

    NASA Astrophysics Data System (ADS)

    Freitas, Ubiratan S.; Letellier, Christophe; Aguirre, Luis A.

    2009-03-01

    Identifying chaos in experimental data—noisy data—remains a challenging problem for which conclusive arguments are still very difficult to provide. In order to avoid problems usually encountered with techniques based on geometrical invariants (dimensions, Lyapunov exponent, etc.), Poon and Barahona introduced a numerical titration procedure which compares one-step-ahead predictions of linear and nonlinear models [Proc. Natl. Acad. Sci. U.S.A. 98, 7107 (2001)]. We investigate the aformentioned technique in the context of colored noise or other types of nonchaotic behaviors. The main conclusion is that in several examples noise titration fails to distinguish such nonchaotic signals from low-dimensional deterministic chaos.

  2. Spatiotemporal Chaos Induces Extreme Events in an Extended Microcavity Laser.

    PubMed

    Selmi, F; Coulibaly, S; Loghmari, Z; Sagnes, I; Beaudoin, G; Clerc, M G; Barbay, S

    2016-01-08

    Extreme events such as rogue waves in optics and fluids are often associated with the merging dynamics of coherent structures. We present experimental and numerical results on the physics of extreme event appearance in a spatially extended semiconductor microcavity laser with an intracavity saturable absorber. This system can display deterministic irregular dynamics only, thanks to spatial coupling through diffraction of light. We have identified parameter regions where extreme events are encountered and established the origin of this dynamics in the emergence of deterministic spatiotemporal chaos, through the correspondence between the proportion of extreme events and the dimension of the strange attractor.

  3. Detecting nonlinearity and chaos in epidemic data

    SciTech Connect

    Ellner, S.; Gallant, A.R.; Theiler, J. |

    1993-08-01

    Historical data on recurrent epidemics have been central to the debate about the prevalence of chaos in biological population dynamics. Schaffer and Kot who first recognized that the abundance and accuracy of disease incidence data opened the door to applying a range of methods for detecting chaos that had been devised in the early 1980`s. Using attractor reconstruction, estimates of dynamical invariants, and comparisons between data and simulation of SEIR models, the ``case for chaos in childhood epidemics`` was made through a series of influential papers beginning in the mid 1980`s. The proposition that the precise timing and magnitude of epidemic outbreaks are deterministic but chaotic is appealing, since it raises the hope of finding determinism and simplicity beneath the apparently stochastic and complicated surface of the data. The initial enthusiasm for methods of detecting chaos in data has been followed by critical re-evaluations of their limitations. Early hopes of a ``one size fits all`` algorithm to diagnose chaos vs. noise in any data set have given way to a recognition that a variety of methods must be used, and interpretation of results must take into account the limitations of each method and the imperfections of the data. Our goals here are to outline some newer methods for detecting nonlinearity and chaos that have a solid statistical basis and are suited to epidemic data, and to begin a re-evaluation of the claims for nonlinear dynamics and chaos in epidemics using these newer methods. We also identify features of epidemic data that create problems for the older, better known methods of detecting chaos. When we ask ``are epidemics nonlinear?``, we are not questioning the existence of global nonlinearities in epidemic dynamics, such as nonlinear transmission rates. Our question is whether the data`s deviations from an annual cyclic trend (which would reflect global nonlinearities) are described by a linear, noise-driven stochastic process.

  4. Terminal chaos for information processing in neurodynamics.

    PubMed

    Zak, M

    1991-01-01

    New nonlinear phenomenon-terminal chaos caused by failure of the Lipschitz condition at equilibrium points of dynamical systems is introduced. It is shown that terminal chaos has a well organized probabilistic structure which can be predicted and controlled. This gives an opportunity to exploit this phenomenon for information processing. It appears that chaotic states of neurons activity are associated with higher level of cognitive processes such as generalization and abstraction.

  5. Effect of Chaos on Relativistic Quantum Tunneling

    DTIC Science & Technology

    2012-06-01

    Effect of chaos on relativistic quantum tunneling This article has been downloaded from IOPscience. Please scroll down to see the full text article...of chaos on relativistic quantum tunneling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...tunneling dynamics even in the relativistic quantum regime. Similar phenomena have been observed in graphene. A physical theory is developed to

  6. Scenarios of transition to chaos competition in low-temperature plasma

    SciTech Connect

    Dimitriu, D. G.

    2013-11-13

    Dynamics of a fireball created in front of a positively biased electrode immersed into low-temperature plasma was experimentally investigated. By analyzing the time series of the oscillations of the current collected by the electrode, several successive scenarios of transitions to chaos were identified: by intermittencies, by cascade of sub-harmonic bifurcations and by quasi-periodicity (Ruelle-Takens scenario)

  7. Chaos in World Politics: A Reflection

    NASA Astrophysics Data System (ADS)

    Ferreira, Manuel Alberto Martins; Filipe, José António Candeias Bonito; Coelho, Manuel F. P.; Pedro, Isabel C.

    Chaos theory results from natural scientists' findings in the area of non-linear dynamics. The importance of related models has increased in the last decades, by studying the temporal evolution of non-linear systems. In consequence, chaos is one of the concepts that most rapidly have been expanded in what research topics respects. Considering that relationships in non-linear systems are unstable, chaos theory aims to understand and to explain this kind of unpredictable aspects of nature, social life, the uncertainties, the nonlinearities, the disorders and confusion, scientifically it represents a disarray connection, but basically it involves much more than that. The existing close relationship between change and time seems essential to understand what happens in the basics of chaos theory. In fact, this theory got a crucial role in the explanation of many phenomena. The relevance of this kind of theories has been well recognized to explain social phenomena and has permitted new advances in the study of social systems. Chaos theory has also been applied, particularly in the context of politics, in this area. The goal of this chapter is to make a reflection on chaos theory - and dynamical systems such as the theories of complexity - in terms of the interpretation of political issues, considering some kind of events in the political context and also considering the macro-strategic ideas of states positioning in the international stage.

  8. Transition to Spatio-Temporal Chaos with Increasing Length in the Reaction-Diffusion System

    NASA Astrophysics Data System (ADS)

    Trail, Collin; Tomlin, Brett; Olsen, Thomas; Wiener, Richard J.

    2003-11-01

    Calculations based up the Reaction-Diffusion model (H. Riecke and H.-G. Paap, Europhys. Lett. 14), 1235 (1991).have proven to be suggestive for a wide variety of pattern forming systems, including Taylor-Couette flow with hourglass geometry(Richard J. Wiener et al), Phys. Rev. E 55, 5489 (1997).. Seeking insight to guide experimental investigations, we extend these calculations. Previous calculations indicated that in smaller systems, only temporal chaos, located in a small region, would be observed, while in longer systems instabilities would form over a wide region. Our simulations explore this transition from purely temporal chaos to spatio-temporal chaos as the length of the system is increased.

  9. Experimental demonstration of hot carrier upconversion using Au, Ag, and GaN/InGaN quantum wells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Naik, Gururaj V.; Welch, Alex J.; Dionne, Jennifer A.

    2016-09-01

    Plasmon resonances in metallic nanoparticles result in enhanced light absorption and hot carrier generation. Although hot carriers are short-lived, their energy can be extracted in optical form resulting in photon upconversion. Two low energy photons absorbed by a plasmonic nanostructure, create a hot electron and a hot hole. These hot carriers get injected into an adjacent semiconductor quantum well where they radiatively recombine to emit a higher energy photon resulting in photon upconversion. This process involves injection of an electron and a hole across the same interface making it charge neutral. The upconversion emission has a linear dependence on the incident light intensity, making it promising for applications requiring low power operation. Theoretical studies show that a silver/semiconductor system can have an ideal efficiency of 25%. Our experimental demonstration of this new scheme utilizes GaN/InGaN quantum wells decorated with both silver and gold. The use of two metals reduces band-bending in the semiconductor. Illuminating the sample with light spanning wavelengths of 500-540 nm produces upconversion photoluminescence centered at 435 nm. Control samples including undecorated quantum wells and metal nanostructures on a glass substrate do not show any upconversion ruling out possibilities of upconversion in individual materials. Further, the linear dependence of the upconverted light intensity with incident intensity rules out any non-linear or Auger mediated mechanisms. We will describe how this hot carrier upconversion process promises to be broadband, tunable, and more efficient than existing solid-state upconversion schemes, and discuss potential applications in solar energy, security, and photodetection applications.

  10. INTRODUCTION: The Physics of Chaos and Related Problems: Proceedings of the 59th Nobel Symposium

    NASA Astrophysics Data System (ADS)

    Lundqvist, Stig

    1985-01-01

    The physics of non-linear phenomena has developed in a remarkable way over the last couple of decades and has accelerated over the last few years, in particular because of the recent progress in the study of chaotic behaviour. In particular the discovery of the universal properties of the transition into chaos for certain classes of systems has stimulated much recent work in different directions both theoretically and experimentally. Chaos theory has become a real challenge to physicists in many different fields and also in many other disciplines such as astronomy, chemistry, medicine, meteorology and economics and social theory. The study of chaos-related phenomena has a truly interdisciplinary character and makes use of important concepts and methods from other disciplines. For the description of chaotic structures one needs a new, recently developed geometry called fractal geometry. For the discussion of the enormous richness of ordered structures which appear, one uses the theory of pattern recognition. In order to study even the simplest theoretical models describing chaos, a computer is essential. It should finally be mentioned that important aspects of computer science are related to the theory of order and chaos. A Nobel Symposium provides an excellent opportunity to bring together a group of prominent scientists for a stimulating exchange of new ideas and results. The Nobel Symposia are very small meetings by invitation only and the number of key participants is typically in the range 20-40. These symposia are organized through a special Nobel Symposium Committee after proposals from individuals. This symposium was sponsored by the Nobel Foundation through its Nobel Symposium Fund with grants from The Tercentenary Fund of the Bank of Sweden and The Knut Alice Wallenberg Foundation. Additional support was obtained from the Royal Academy of Sciences, The Nordic Institute for Theoretical Atomic Physics (NORDITA), Chalmers University of Technology and

  11. Regularly timed events amid chaos

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan N.; Cooper, Roy M.; Corron, Ned J.

    2015-11-01

    We show rigorously that the solutions of a class of chaotic oscillators are characterized by regularly timed events in which the derivative of the solution is instantaneously zero. The perfect regularity of these events is in stark contrast with the well-known unpredictability of chaos. We explore some consequences of these regularly timed events through experiments using chaotic electronic circuits. First, we show that a feedback loop can be implemented to phase lock the regularly timed events to a periodic external signal. In this arrangement the external signal regulates the timing of the chaotic signal but does not strictly lock its phase. That is, phase slips of the chaotic oscillation persist without disturbing timing of the regular events. Second, we couple the regularly timed events of one chaotic oscillator to those of another. A state of synchronization is observed where the oscillators exhibit synchronized regular events while their chaotic amplitudes and phases evolve independently. Finally, we add additional coupling to synchronize the amplitudes, as well, however in the opposite direction illustrating the independence of the amplitudes from the regularly timed events.

  12. Irreversible evolution of quantum chaos

    NASA Astrophysics Data System (ADS)

    Ugulava, A.; Chotorlishvili, L.; Nickoladze, K.

    2005-05-01

    The pendulum is the simplest system having all the basic properties inherent in dynamic stochastic systems. In the present paper we investigate the pendulum with the aim to reveal the properties of a quantum analogue of dynamic stochasticity or, in other words, to obtain the basic properties of quantum chaos. It is shown that a periodic perturbation of the quantum pendulum (similarly to the classical one) in the neighborhood of the separatrix can bring about irreversible phenomena. As a result of recurrent passages between degenerate states, the system gets self-chaotized and passes from the pure state to the mixed one. Chaotization involves the states, the branch points of whose levels participate in a slow “drift” of the system along the Mathieu characteristics this “drift” being caused by a slowly changing variable field. Recurrent relations are obtained for populations of levels participating in the irreversible evolution process. It is shown that the entropy of the system first grows and, after reaching the equilibrium state, acquires a constant value.

  13. Generic superweak chaos induced by Hall effect.

    PubMed

    Ben-Harush, Moti; Dana, Itzhack

    2016-05-01

    We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B) and electric (E) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ^{2} rather than κ. For E=0, SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ. In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.

  14. The Capabilities of Chaos and Complexity

    PubMed Central

    Abel, David L.

    2009-01-01

    To what degree could chaos and complexity have organized a Peptide or RNA World of crude yet necessarily integrated protometabolism? How far could such protolife evolve in the absence of a heritable linear digital symbol system that could mutate, instruct, regulate, optimize and maintain metabolic homeostasis? To address these questions, chaos, complexity, self-ordered states, and organization must all be carefully defined and distinguished. In addition their cause-and-effect relationships and mechanisms of action must be delineated. Are there any formal (non physical, abstract, conceptual, algorithmic) components to chaos, complexity, self-ordering and organization, or are they entirely physicodynamic (physical, mass/energy interaction alone)? Chaos and complexity can produce some fascinating self-ordered phenomena. But can spontaneous chaos and complexity steer events and processes toward pragmatic benefit, select function over non function, optimize algorithms, integrate circuits, produce computational halting, organize processes into formal systems, control and regulate existing systems toward greater efficiency? The question is pursued of whether there might be some yet-to-be discovered new law of biology that will elucidate the derivation of prescriptive information and control. “System” will be rigorously defined. Can a low-informational rapid succession of Prigogine’s dissipative structures self-order into bona fide organization? PMID:19333445

  15. God's Stuff: The Constructive Powers of Chaos for Teaching Religion

    ERIC Educational Resources Information Center

    Willhauck, Susan

    2010-01-01

    Order and organization are valued in the classroom, and there is a prevailing understanding that chaos should be avoided. Yet chaos can also be potent space or a source from which new things spring forth. This article investigates biblical, scientific, and cultural understandings of chaos to discover how these contribute to a revelatory metaphor…

  16. Household Chaos--Links with Parenting and Child Behaviour

    ERIC Educational Resources Information Center

    Coldwell, Joanne; Pike, Alison; Dunn, Judy

    2006-01-01

    Background: The study aimed to confirm previous findings showing links between household chaos and parenting in addition to examining whether household chaos was predictive of children's behaviour over and above parenting. In addition, we investigated whether household chaos acts as a moderator between parenting and children's behaviour. Method:…

  17. The Nature (and Nurture) of Children's Perceptions of Family Chaos

    ERIC Educational Resources Information Center

    Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Jaffee, Sara R.; Plomin, Robert

    2010-01-01

    Chaos in the home is a key environment in cognitive and behavioural development. However, we show that children's experience of home chaos is partly genetically mediated. We assessed children's perceptions of household chaos at ages 9 and 12 in 2337 pairs of twins. Using child-specific reports allowed us to use structural equation modelling to…

  18. The physics of chaos and related problems; Proceedings of the Fifty-ninth Nobel Symposium, Graftavallen, Sweden, June 11-16, 1984

    NASA Astrophysics Data System (ADS)

    Lundqvist, S.

    Reviews and reports of theoretical, numerical, and experimental investigations of chaotic and other nonlinear phenomena in physics are presented. The topics examined are chaos in low-dimensionality systems, pattern formation, turbulence, computational aspects, and quantum systems. Consideration is given to the transition from periodic motion to unbounded chaos in a simple pendulum, the chaotic dynamics of instabilities in solids, neutron scattering from a convecting nematic, patterns and noise in hydrodynamic systems, pattern formation and chaos in synergetic systems, ergodic aspects of turbulence theory, drift and diffusion in reversible computation, and Farey organization of the fractional Hall effect.

  19. Chaos control by using Motor Maps.

    PubMed

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia

    2002-09-01

    In this paper a new method for chaos control is proposed, consisting of an unsupervised neural network, namely a Motor Map. In particular a feedback entrainment scheme is adopted: a chaotic system with a given parameter set generates the reference trajectory for another chaotic system with different parameters to be controlled: the Motor Map is required to provide the appropriate time-varying gain value for the feedback signal. The state of the controlled system is considered as input to the Motor Map. Particular efforts have been paid to the feasibility of the implementation. Indeed, the simulations performed have been oriented to design a Motor Map suitable for an hardware realization, thus some restrictive hypotheses, such as for example a low number of neurons, have been assumed. A huge number of simulations has been carried out by considering as system to be controlled a Double Scroll Chua Attractor as well as other chaotic attractors. Several reference trajectories have also been considered: a limit cycle generated by a Chua's circuit with different parameters values, a double scroll Chua attractor, a chaotic attractor of the family of the Chua's circuit attractors. In all the simulations instead of controlling the whole state space, only two state variables have been fed back. Good results in terms of settling time (namely, the period in which the map learns the control task) and steady state errors have been obtained with a few neurons. The Motor Map based adaptive controller offers high performances, specially in the case when the reference trajectory is switched into another one. In this case, a specialization of the neurons constituting the Motor Map is observed: while a group of neurons learns the appropriate control law for a reference trajectory, another group specializes itself to control the system when the other trajectory is used as a reference. A discrete components electronic realization of the Motor Map is presented and experimental results

  20. Chaos control by using Motor Maps

    NASA Astrophysics Data System (ADS)

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia

    2002-09-01

    In this paper a new method for chaos control is proposed, consisting of an unsupervised neural network, namely a Motor Map. In particular a feedback entrainment scheme is adopted: a chaotic system with a given parameter set generates the reference trajectory for another chaotic system with different parameters to be controlled: the Motor Map is required to provide the appropriate time-varying gain value for the feedback signal. The state of the controlled system is considered as input to the Motor Map. Particular efforts have been paid to the feasibility of the implementation. Indeed, the simulations performed have been oriented to design a Motor Map suitable for an hardware realization, thus some restrictive hypotheses, such as for example a low number of neurons, have been assumed. A huge number of simulations has been carried out by considering as system to be controlled a Double Scroll Chua Attractor as well as other chaotic attractors. Several reference trajectories have also been considered: a limit cycle generated by a Chua's circuit with different parameters values, a double scroll Chua attractor, a chaotic attractor of the family of the Chua's circuit attractors. In all the simulations instead of controlling the whole state space, only two state variables have been fed back. Good results in terms of settling time (namely, the period in which the map learns the control task) and steady state errors have been obtained with a few neurons. The Motor Map based adaptive controller offers high performances, specially in the case when the reference trajectory is switched into another one. In this case, a specialization of the neurons constituting the Motor Map is observed: while a group of neurons learns the appropriate control law for a reference trajectory, another group specializes itself to control the system when the other trajectory is used as a reference. A discrete components electronic realization of the Motor Map is presented and experimental results

  1. Chaos, dynamical structure, and climate variability

    SciTech Connect

    Stewart, H.B.

    1996-06-01

    Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. Techniques for identifying deterministic chaos from observed data, without recourse to mathematical models, are being developed. Powerful methods exist for reconstructing multidimensional phase space from an observed time series of a single scalar variable; these methods are invaluable when only a single scalar record of the dynamics is available. However in some applications multiple concurrent time series may be available for consideration as phase space coordinates. Here we propose some basic analytical tools for such multichannel time series data, and illustrate them by applications to a simple synthetic model of chaos, to a low-order model of atmospheric circulation, and to two high-resolution paleoclimate proxy data series. {copyright} {ital 1996 American Institute of Physics.}

  2. Conference Resolution

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Since the first IUPAP International Conference on Women in Physics (Paris, March 2002) and the Second Conference (Rio de Janeiro, May 2005), progress has continued in most countries and world regions to attract girls to physics and advance women into leadership roles, and many working groups have formed. The Third Conference (Seoul, October 2008), with 283 attendees from 57 countries, was dedicated to celebrating the physics achievements of women throughout the world, networking toward new international collaborations, building each participant's capacity for career success, and aiding the formation of active regional working groups to advance women in physics. Despite the progress, women remain a small minority of the physics community in most countries.

  3. Problems with Chaos in String Cosmology

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Mariusz P.

    I review the main ideas of the pre-big-bang cosmology scenario emphasizing the role of different boundary conditions in comparison to the standard ones which appear in quantum cosmology. My main issue is duality symmetry - a very general feature of string theory - and its role in suppressing chaos in Bianchi type IX "Mixmaster" universes within the framework of the tree-level low-energy-effectiveactions for strings. Finally, I discuss the ways to possibly `generate' chaos in string cosmology by admitting dilaton potential/massive string modes, more spacetime dimensions or nonlinear Yang-Mills-Lorentz-Chern-Simons terms into the action.

  4. Quantum chaos and thermalization in gapped systems

    SciTech Connect

    Rigol, Marcos; Santos, Lea F.

    2010-07-15

    We investigate the onset of thermalization and quantum chaos in finite one-dimensional gapped systems of hard-core bosons. Integrability in these systems is broken by next-nearest-neighbor repulsive interactions, which also generate a superfluid to insulator transition. By employing full exact diagonalization, we study chaos indicators and few-body observables. We show that with increasing system size, chaotic behavior is seen over a broader range of parameters and, in particular, deeper into the insulating phase. Concomitantly, we observe that, as the system size increases, the eigenstate thermalization hypothesis extends its range of validity inside the insulating phase and is accompanied by the thermalization of the system.

  5. The uncertainty principle and quantum chaos

    NASA Technical Reports Server (NTRS)

    Chirikov, Boris V.

    1993-01-01

    The conception of quantum chaos is described in some detail. The most striking feature of this novel phenomenon is that all the properties of classical dynamical chaos persist here but, typically, on the finite and different time scales only. The ultimate origin of such a universal quantum stability is in the fundamental uncertainty principle which makes discrete the phase space and, hence, the spectrum of bounded quantum motion. Reformulation of the ergodic theory, as a part of the general theory of dynamical systems, is briefly discussed.

  6. Quantum chaos on a critical Fermi surface.

    PubMed

    Patel, Aavishkar A; Sachdev, Subir

    2017-02-21

    We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of [Formula: see text] species of fermions at nonzero density coupled to a [Formula: see text] gauge field in two spatial dimensions and determine the Lyapunov rate and the butterfly velocity in an extended random-phase approximation. The thermal diffusivity is found to be universally related to these chaos parameters; i.e., the relationship is independent of [Formula: see text], the gauge-coupling constant, the Fermi velocity, the Fermi surface curvature, and high-energy details.

  7. An introduction to chaos theory in CFD

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    1990-01-01

    The popular subject 'chaos theory' has captured the imagination of a wide variety of scientists and engineers. CFD has always been faced with nonlinear systems and it is natural to assume that nonlinear dynamics will play a role at sometime in such work. This paper will attempt to introduce some of the concepts and analysis procedures associated with nonlinear dynamics theory. In particular, results from computations of an airfoil at high angle of attack which exhibits a sequence of bifurcations for single frequency unsteady shedding through period doublings cascading into low dimensional chaos are used to present and demonstrate various aspects of nonlinear dynamics in CFD.

  8. Low-dimensional chaos in turbulence

    NASA Technical Reports Server (NTRS)

    Vastano, John A.

    1989-01-01

    Direct numerical simulations are being performed on two different fluid flows in an attempt to discover the mechanism underlying the transition to turbulence in each. The first system is Taylor-Couette flow; the second, two-dimensional flow over an airfoil. Both flows exhibit a gradual transition to high-dimensional turbulence through low-dimensional chaos. The hope is that the instabilities leading to chaos will be easier to relate to physical processes in this case, and that the understanding of these mechanisms can then be applied to a wider array of turbulent systems.

  9. Conservative spatial chaos of buckled elastic linkages.

    PubMed

    Kocsis, Attila; Károlyi, György

    2006-09-01

    Buckling of an elastic linkage under general loading is investigated. We show that buckling is related to an initial value problem, which is always a conservative, area-preserving mapping, even if the original static problem is nonconservative. In some special cases, we construct the global bifurcation diagrams, and argue that their complicated structure is a consequence of spatial chaos. We characterize spatial chaos by the associated initial value problem's topological entropy, which turns out to be related to the number of buckled configurations.

  10. Chaos in an imperfectly premixed model combustor

    SciTech Connect

    Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  11. AIDS in India: constructive chaos?

    PubMed

    Chatterjee, A

    1991-08-01

    Until recently, the only sustained AIDS activity in India has been alarmist media attention complemented by occasional messages calling for comfort and dignity. Public perception of the AIDS epidemic in India has been effectively shaped by mass media. Press reports have, however, bolstered awareness of the problem among literate elements of urban populations. In the absence of sustained guidance in the campaign against AIDS, responsibility has fallen to voluntary health activists who have become catalysts for community awareness and participation. This voluntary initiative, in effect, seems to be the only immediate avenue for constructive public action, and signals the gradual development of an AIDS network in India. Proceedings from a seminar in Ahmedabad are discussed, and include plans for an information and education program targeting sex workers, health and communication programs for 150 commercial blood donors and their agents, surveillance and awareness programs for safer blood and blood products, and dialogue with the business community and trade unions. Despite the lack of coordination among volunteers and activists, every major city in India now has an AIDS group. A controversial bill on AIDS has ben circulating through government ministries and committees since mid-1989, a national AIDS committee exists with the Secretary of Health as its director, and a 3-year medium-term national plan exists for the reduction of AIDS and HIV infection and morbidity. UNICEF programs target mothers and children for AIDS awareness, and blood testing facilities are expected to be expanded. The article considers the present chaos effectively productive in forcing the Indian population to face up to previously taboo issued of sexuality, sex education, and sexually transmitted disease.

  12. Chaos based crossover and mutation for securing DICOM image.

    PubMed

    Ravichandran, Dhivya; Praveenkumar, Padmapriya; Balaguru Rayappan, John Bosco; Amirtharajan, Rengarajan

    2016-05-01

    This paper proposes a novel encryption scheme based on combining multiple chaotic maps to ensure the safe transmission of medical images. The proposed scheme uses three chaotic maps namely logistic, tent and sine maps. To achieve an efficient encryption, the proposed chao-cryptic system employs a bio-inspired crossover and mutation units to confuse and diffuse the Digital Imaging and Communications in Medicine (DICOM) image pixels. The crossover unit extensively permutes the image pixels row-wise and column-wise based on the chaotic key streams generated from the Combined Logistic-Tent (CLT) system. Prior to mutation, the pixels of the crossed over image are decomposed into two images with reduced bit depth. The decomposed images are then mutated by XOR operation with quantized chaotic sequences from Combined Logistic-Sine (CLS) system. In order to validate the sternness of the proposed algorithm, the developed chao-cryptic scheme is subjected to various security analyses such as statistical, differential, key space, key sensitivity, intentional cropping attack and chosen plaintext attack analyses. The experimental results prove the proposed DICOM cryptosystem has achieved a desirable amount of protection for real time medical image security applications.

  13. Immune network behavior: Oscillations, chaos and stationary states

    SciTech Connect

    De Boer, R.J.; Perelson, A.S.; Kevrekidis, I.G.

    1994-04-01

    The authors report two types of behavior in models of immune networks. The typical behavior of simple models, which involve B cells only, consists of several coexisting steady states. Finite amplitude perturbations may cause the model to switch between different equilibria. The typical behavior of more realistic models, which involve both B cells and antibody, consists of autonomous oscillations and/or chaos. While steady-state behavior leads to easy interpretations in terms of immune memory, oscillatory behavior seems to be in better agreement with experimental data obtained in unimmunized animals. The stability of the steady states, and the structure and interactions of the stable and unstable manifolds of the saddle-type equilibria turn out to be factors influencing the model`s behavior. Whether or not the model is able to attain any form of sustained oscillatory behavior, i.e., limit cycles or chaos, seems to be determined by (global) bifurcations involving the stable and unstable manifolds of the steady states.

  14. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  15. 2008 Gordon Research Conference on Catalysis [Conference summary report

    SciTech Connect

    Soled, Stuart L.; Gray, Nancy Ryan

    2009-01-01

    The GRC on Catalysis is one of the most prestigious catalysis conferences as it brings together leading researchers from around the world to discuss their latest, most exciting work in catalysis. The 2008 conference will continue this tradition. The conference will cover a variety of themes including new catalytic materials, theoretical and experimental approaches to improve understanding of kinetics and transport phenomena, and state of the art nanoscale characterization probes to monitor active sites. The conference promotes interactions among established researchers and young scientists. It provides a venue for students to meet, talk to and learn from some of the world leading researchers in the area. It also gives them a platform for displaying their own work during the poster sessions. The informal nature of the meeting, excellent quality of the presentations and posters, and ability to meet many outstanding colleagues makes this an excellent conference.

  16. Chaos Theory and the Effort in Afghanistan

    DTIC Science & Technology

    2008-02-29

    since the fall of the Soviet Union. A society’s strategic culture is a result of its history, geography , and political culture. A strategic culture...Xnext = RX(1-X). 8 Gleick, 133-135. 9 James, 29. 10 Chaos & Fractals Home Page, Strange Attractors, available from http://www.pha.jhu.edu/ ~ldb

  17. A Framework for Chaos Theory Career Counselling

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.

    2010-01-01

    Theory in career development counselling provides a map that counsellors can use to understand and structure the career counselling process. It also provides a means to communicate this understanding and structuring to their clients as part of the counselling intervention. The chaos theory of careers draws attention to the complexity,…

  18. Chaos Theory in the Arts and Design.

    ERIC Educational Resources Information Center

    McWhinnie, Harold J.

    This paper explores questions associated with chaos theory as it relates to problems in the arts. It reviews the work of several scholars including Minai, Eckersley, Pickover, the Kirsches, and the Molnars. The document directs special attention toward three basic areas in art and design education, which are: (1) the integration of the computer…

  19. Control and synchronization of spatiotemporal chaos.

    PubMed

    Ahlborn, Alexander; Parlitz, Ulrich

    2008-01-01

    Chaos control methods for the Ginzburg-Landau equation are presented using homogeneously, inhomogeneously, and locally applied multiple delayed feedback signals. In particular, it is shown that a small number of control cells is sufficient for stabilizing plane waves or for trapping spiral waves, and that successful control is closely connected to synchronization of the dynamics in regions close to the control cells.

  20. Criticality and Chaos in Systems of Communities

    NASA Astrophysics Data System (ADS)

    Ostilli, Massimo; Figueiredo, Wagner

    2016-01-01

    We consider a simple model of communities interacting via bilinear terms. After analyzing the thermal equilibrium case, which can be described by an Hamiltonian, we introduce the dynamics that, for Ising-like variables, reduces to a Glauber-like dynamics. We analyze and compare four different versions of the dynamics: flow (differential equations), map (discretetime dynamics), local-time update flow, and local-time update map. The presence of only bilinear interactions prevent the flow cases to develop any dynamical instability, the system converging always to the thermal equilibrium. The situation is different for the map when unfriendly couplings are involved, where period-two oscillations arise. In the case of the map with local-time updates, oscillations of any period and chaos can arise as a consequence of the reciprocal “tension” accumulated among the communities during their sleeping time interval. The resulting chaos can be of two kinds: true chaos characterized by positive Lyapunov exponent and bifurcation cascades, or marginal chaos characterized by zero Lyapunov exponent and critical continuous regions.

  1. Chaos, Collaboration, and Curriculum: A Deliberative Process.

    ERIC Educational Resources Information Center

    Goff, Katherine E.

    1998-01-01

    Presents curriculum as a complex social process. Explores chaos theory as a metaphor for understanding curriculum and a framework for viewing the curriculum-development process. Provides examples of collaborative leadership (described by David Chrislip and Carl Larson) and shows how they might answer Joseph Schwab's call for a deliberative…

  2. Chaos: Connecting Science and the Humanities

    ERIC Educational Resources Information Center

    Lagan, Seamus; Paddy, David

    2005-01-01

    We describe a team-taught course entitled Chaos in Science and Literature. Our course goals were to place science in a nontechnological context, emphasizing its intellectual and cultural aspects, and to provide a forum for the exchange of ideas between "scientists" and "humanists," with the authors serving as role models. (Contains 4 figures.)

  3. Integrability and Chaos: The Classical Uncertainty

    ERIC Educational Resources Information Center

    Masoliver, Jaume; Ros, Ana

    2011-01-01

    In recent years there has been a considerable increase in the publishing of textbooks and monographs covering what was formerly known as random or irregular deterministic motion, now referred to as deterministic chaos. There is still substantial interest in a matter that is included in many graduate and even undergraduate courses on classical…

  4. Deterministic representation of chaos in classical dynamics

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1985-01-01

    Chaos in an Anosov-type mechanical system is eliminated by referring the governing equations to a specially selected rapidly oscillating (non-inertial) frame of reference in which the stabilization effect is caused by inertia forces. The result is generalized to any orbitally unstable mechanical system.

  5. Order, chaos and nuclear dynamics: An introduction

    SciTech Connect

    Swiatecki, W.J.

    1990-08-01

    This is an introductory lecture illustrating by simple examples the anticipated effect on collective nuclear dynamics of a transition from order to chaos in the motions of nucleons inside an idealized nucleus. The destruction of order is paralleled by a transition from a rubber-like to a honey-like behaviour of the independent-particle nuclear model. 10 refs., 6 figs.

  6. Probability Simulations by Non-Lipschitz Chaos

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices. Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  7. Neural control: Chaos control sets the pace

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2010-03-01

    Even simple creatures, such as cockroaches, are capable of complex responses to changes in their environment. But robots usually require complicated dedicated control circuits to perform just a single action. Chaos control theory could allow simpler control strategies to realize more complex behaviour.

  8. [Chaos theory: a fascinating concept for oncologists].

    PubMed

    Denis, F; Letellier, C

    2012-05-01

    The oncologist is confronted daily by questions related to the fact that any patient presents a specific evolution for his cancer: he is challenged by very different, unexpected and often unpredictable outcomes, in some of his patients. The mathematical approach used today to describe this evolution has recourse to statistics and probability laws: such an approach does not ultimately apply to one particular patient, but to a given more or less heterogeneous population. This approach therefore poorly characterizes the dynamics of this disease and does not allow to state whether a patient is cured, to predict if he will relapse and when this could occur, and in what form, nor to predict the response to treatment and, in particular, to radiation therapy. Chaos theory, not well known by oncologists, could allow a better understanding of these issues. Developed to investigate complex systems producing behaviours that cannot be predicted due to a great sensitivity to initial conditions, chaos theory is rich of suitable concepts for a new approach of cancer dynamics. This article is three-fold: to provide a brief introduction to chaos theory, to clarify the main connecting points between chaos and carcinogenesis and to point out few promising research perspectives, especially in radiotherapy.

  9. Classical chaos in atom-field systems.

    PubMed

    Chávez-Carlos, J; Bastarrachea-Magnani, M A; Lerma-Hernández, S; Hirsch, J G

    2016-08-01

    The relation between the onset of chaos and critical phenomena, like quantum phase transitions (QPTs) and excited-state quantum phase transitions (ESQPTs), is analyzed for atom-field systems. While it has been speculated that the onset of hard chaos is associated with ESQPTs based in the resonant case, the off-resonant cases, and a close look at the vicinity of the QPTs in resonance, show clearly that both phenomena, ESQPTs and chaos, respond to different mechanisms. The results are supported in a detailed numerical study of the dynamics of the semiclassical Hamiltonian of the Dicke model. The appearance of chaos is quantified calculating the largest Lyapunov exponent for a wide sample of initial conditions in the whole available phase space for a given energy. The percentage of the available phase space with chaotic trajectories is evaluated as a function of energy and coupling between the qubit and bosonic part, allowing us to obtain maps in the space of coupling and energy, where ergodic properties are observed in the model. Different sets of Hamiltonian parameters are considered, including resonant and off-resonant cases.

  10. Chaos and hyperchaos in simple gene network with negative feedback and time delays.

    PubMed

    Khlebodarova, Tamara M; Kogai, Vladislav V; Fadeev, Stanislav I; Likhoshvai, Vitaly A

    2016-11-29

    Today there are examples that prove the existence of chaotic dynamics at all levels of organization of living systems, except intracellular, although such a possibility has been theoretically predicted. The lack of experimental evidence of chaos generation at the intracellular level in vivo may indicate that during evolution the cell got rid of chaos. This work allows the hypothesis that one of the possible mechanisms for avoiding chaos in gene networks can be a negative evolutionary selection, which prevents fixation or realization of regulatory circuits, creating too mild, from the biological point of view, conditions for the emergence of chaos. It has been shown that one of such circuits may be a combination of negative autoregulation of expression of transcription factors at the level of their synthesis and degradation. The presence of such a circuit results in formation of multiple branches of chaotic solutions as well as formation of hyperchaos with equal and sufficiently low values of the delayed argument that can be implemented not only in eukaryotic, but in prokaryotic cells.

  11. Effect of chaos on plasma filament dynamics and turbulence in the scrape-off layer

    SciTech Connect

    Meyerson, D.; Waelbroeck, F.; Horton, W.; Michoski, C.

    2014-07-15

    Naturally occurring error fields as well as resonant magnetic perturbations applied for stability control are known to cause magnetic field-line chaos in the scrape-off layer (SOL) region of tokamaks. Here, 2D simulations with the BOUT++ simulation framework are used to investigate the effect of the field-line chaos on the SOL and in particular on its width and peak particle flux. The chaos enters the SOL dynamics only through the connection length, which is evaluated using a Poincaré map. The variation of experimentally relevant quantities, such as the SOL gradient length scale and the intermittency of the particle flux in the SOL, is described as a function of the strength of the magnetic perturbation. It is found that the effect of the chaos is to broaden the profile of the sheath-loss coefficient, which is proportional to the inverse connection length. That is, the SOL transport in a chaotic field is equivalent to that in a model where the sheath-loss coefficient is replaced by its average over the unperturbed flux surfaces. The model does not include the effects of chaotic features other than the parallel connection length.

  12. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model

    PubMed Central

    Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus

    2016-01-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics. PMID:26465514

  13. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model

    NASA Astrophysics Data System (ADS)

    Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus

    2015-09-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics.

  14. Effect of correction of aberration dynamics on chaos in human ocular accommodation.

    PubMed

    Hampson, Karen M; Cufflin, Matthew P; Mallen, Edward A H

    2013-11-15

    We used adaptive optics to determine the effect of monochromatic aberration dynamics on the level of chaos in the accommodation control system. Four participants viewed a stationary target while the dynamics of their aberrations were either left uncorrected, defocus was corrected, or all aberrations except defocus were corrected. Chaos theory analysis was used to discern changes in the accommodative microfluctuations. We found a statistically significant reduction in the chaotic nature of the accommodation microfluctuations during correction of defocus, but not when all aberrations except defocus were corrected. The Lyapunov exponent decreased from 0.71 ± 0.07 D/s (baseline) to 0.55 ± 0.03 D/s (correction of defocus fluctuations). As the reduction of chaos in physiological signals is indicative of stress to the system, the results indicate that for the participants included in this study, fluctuations in defocus have a more profound effect than those of the other aberrations. There were no changes in the power spectrum between experimental conditions. Hence chaos theory analysis is a more subtle marker of changes in the accommodation control system and will be of value in the study of myopia onset and progression.

  15. Iani Chaos in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image of a portion of the Iani Chaos region was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -2.6 Longitude 342.4 East (17.6 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The

  16. THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT

    SciTech Connect

    Lithwick, Yoram; Wu Yanqin

    2011-09-20

    We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the 'map of the mean momenta'), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within {approx}25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.

  17. Proceedings of the Third International Conference on Experimental Research in Televised Instruction. Memorial University of Newfoundland (Newfoundland, Canada, August 25-27, 1980).

    ERIC Educational Resources Information Center

    Baggaley, Jon, Ed.

    The 11 papers in this collection focus on research in instructional television, the theme of a conference attended by media producers, researchers, and policy makers from Australia, Britain, Canada, France, West Germany, the Netherlands, South Africa, and the United States. The opening paper by Deane Hutton discusses two parallel but contrasting…

  18. Experimental Research in TV Instruction. Proceedings of an International Conference (4th, St. John's, Newfoundland, Canada, September 28-30, 1981). Volume 4.

    ERIC Educational Resources Information Center

    Baggaley, Jon, Ed.; Janega, Patti, Ed.

    An introduction by Jon Baggaley provides background information on this international conference and its participants, and introduces 10 papers which were presented. The papers are as follows: (1) "Teaching Production Research and Design: The Interface of Theory and Practice" (James M. Linton); (2) "The Impact of Television on…

  19. Experimental Research in TV Instruction. Proceedings of an International Conference (5th, St. John's, Newfoundland, June 28-30, 1982). Volume 5.

    ERIC Educational Resources Information Center

    Baggaley, Jon, Ed.; Janega, Patti, Ed.

    An introduction briefly summarizes the four previous conferences in this series, identifies trends in topics addressed, and introduces the 16 presented papers in this collection. The papers are as follows: (1) "Formative Evaluation and the New Technologies" (Marjorie Cambre); (2) "Formative Evaluation of Sesame Street Using Eye…

  20. Chaos in the pulse spacing of passive Q-switched all-solid-state lasers.

    PubMed

    Kovalsky, Marcelo; Hnilo, Alejandro

    2010-10-15

    We report the experimental and theoretical verification that, in a diode-pumped Nd:YAG+Cr:YAGQ-switched laser, the instabilities in the pulse spacing ("jitter") are ruled by low-dimensional deterministic chaos. From our experimental time series, we determine the embedding and fractal dimensions of the attractor, as well as the values of the Lyapunov exponents. We also present a simplified theoretical description in terms of a map of the same universality class as the logistic map, which explains the bifurcations' cascade and the period-three window of stability observed. The achieved characterization of the dynamics and its main parameters opens a door to effective ways to reduce the jitter, which is of practical interest, through mechanisms of control of chaos. Conversely, the difficulty in the prediction of the interpulse spacing makes this system attractive for high power, robust FM chaotic laser cryptography in free-space propagation.

  1. Chaos control by electric current in an enzymatic reaction.

    PubMed

    Lekebusch, A; Förster, A; Schneider, F W

    1996-09-01

    We apply the continuous delayed feedback method of Pyragas to control chaos in the enzymatic Peroxidase-Oxidase (PO) reaction, using the electric current as the control parameter. At each data point in the time series, a time delayed feedback function applies a small amplitude perturbation to inert platinum electrodes, which causes redox processes on the surface of the electrodes. These perturbations are calculated as the difference between the previous (time delayed) signal and the actual signal. Unstable periodic P1, 1(1), and 1(2) orbits (UPOs) were stabilized in the CSTR (continuous stirred tank reactor) experiments. The stabilization is demonstrated by at least three conditions: A minimum in the experimental dispersion function, the equality of the delay time with the period of the stabilized attractor and the embedment of the stabilized periodic attractor in the chaotic attractor.

  2. Drift waves and chaos in a LAPTAG plasma physics experiment

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam

    2016-02-01

    In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.

  3. Mechanisms of Extensive Chaos in Rayleigh-Bénard Convection

    NASA Astrophysics Data System (ADS)

    Egolf, David A.; Matter, Condensed; Physics, Thermal; Melnikov, Ilarion V.; Pesch, Werner; Ecke, Robert E.

    2000-11-01

    We report studies of the mechanism for the generation of chaotic disorder in a phenomenon found in nature, Rayleigh-Bénard convection (RBC), in a regime exhaustively studied experimentally. By studying the detailed space-time evolution of the dynamical degrees of freedom, we find that the Spiral Defect Chaos (SDC) state of RBC is spatially- and temporally- localized to defect creation/annihilation events (D.A. Egolf, I.V. Melnikov, W. Pesch, and R.E. Ecke, Nature), 404:733--736, 2000., and we elucidate how these divergent, but very brief, events lead to eventual macroscopic differences between initially similar flow patterns. We also demonstrate that SDC is extensively chaotic, in that the number of dynamical degrees of freedom (the fractal dimension) is proportional to the system size, suggesting the possibility for a hydrodynamic-like description of the long-wavelength properties of SDC.

  4. Simulation of chaos-assisted tunneling in a semiclassical regime on existing quantum computers

    SciTech Connect

    Chepelianskii, A.D.; Shepelyansky, D.L.

    2002-11-01

    We present a quantum algorithm that allows one to simulate chaos-assisted tunneling in deep semiclassical regime on existing quantum computers. This opens additional possibilities for investigation of macroscopic quantum tunneling and realization of semiclassical Schroedinger cat oscillations [E. Schroedinger, Naturwissenschaften 32, 807 (1935)]. Our numerical studies determine the decoherence rate induced by noisy gates for these oscillations and propose a suitable parameter regime for their experimental implementation.

  5. Conference Space

    ERIC Educational Resources Information Center

    Tillett, Wade

    2016-01-01

    The following is an exploration of the spatial configurations (and their implications) within a typical panel session at an academic conference. The presenter initially takes up different roles and hyperbolically describes some possible messages that the spatial arrangement sends. Eventually, the presenter engages the audience members in atypical…

  6. [Chaos and fractals and their applications in electrocardial signal research].

    PubMed

    Jiao, Qing; Guo, Yongxin; Zhang, Zhengguo

    2009-06-01

    Chaos and fractals are ubiquitous phenomena of nature. A system with fractal structure usually behaves chaos. As a complicated nonlinear dynamics system, heart has fractals structure and behaves as chaos. The deeper inherent mechanism of heart can be opened out when the chaos and fractals theory is utilized in the research of the electrical activity of heart. Generally a time series of a system was used for describing the status of the strange attractor of the system. The indices include Poincare plot, fractals dimension, Lyapunov exponent, entropy, scaling exponent, Hurst index and so on. In this article, the basic concepts and the methods of chaos and fractals were introduced firstly. Then the applications of chaos and fractals theories in the study of electrocardial signal were expounded with example of how they are used for ventricular fibrillation.

  7. Optomechanically induced stochastic resonance and chaos transfer between optical fields

    NASA Astrophysics Data System (ADS)

    Monifi, Faraz; Zhang, Jing; Özdemir, Şahin Kaya; Peng, Bo; Liu, Yu-Xi; Bo, Fang; Nori, Franco; Yang, Lan

    2016-06-01

    Chaotic dynamics has been reported in many physical systems and has affected almost every field of science. Chaos involves hypersensitivity to the initial conditions of a system and introduces unpredictability into its output. Thus, it is often unwanted. Interestingly, the very same features make chaos a powerful tool to suppress decoherence, achieve secure communication and replace background noise in stochastic resonance—a counterintuitive concept that a system's ability to transfer information can be coherently amplified by adding noise. Here, we report the first demonstration of chaos-induced stochastic resonance in an optomechanical system, as well as the optomechanically mediated chaos transfer between two optical fields such that they follow the same route to chaos. These results will contribute to the understanding of nonlinear phenomena and chaos in optomechanical systems, and may find applications in the chaotic transfer of information and for improving the detection of otherwise undetectable signals in optomechanical systems.

  8. Temperature Chaos in Some Spherical Mixed p-Spin Models

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Kuo; Panchenko, Dmitry

    2017-03-01

    We give two types of examples of the spherical mixed even- p-spin models for which chaos in temperature holds. These complement some known results for the spherical pure p-spin models and for models with Ising spins. For example, in contrast to a recent result of Subag who showed absence of chaos in temperature in the spherical pure p-spin models for p≥3, we show that even a smaller order perturbation induces temperature chaos.

  9. Quasiperiodicity and chaos in cardiac fibrillation.

    PubMed Central

    Garfinkel, A; Chen, P S; Walter, D O; Karagueuzian, H S; Kogan, B; Evans, S J; Karpoukhin, M; Hwang, C; Uchida, T; Gotoh, M; Nwasokwa, O; Sager, P; Weiss, J N

    1997-01-01

    In cardiac fibrillation, disorganized waves of electrical activity meander through the heart, and coherent contractile function is lost. We studied fibrillation in three stationary forms: in human chronic atrial fibrillation, in a stabilized form of canine ventricular fibrillation, and in fibrillation-like activity in thin sheets of canine and human ventricular tissue in vitro. We also created a computer model of fibrillation. In all four studies, evidence indicated that fibrillation arose through a quasiperiodic stage of period and amplitude modulation, thus exemplifying the "quasiperiodic transition to chaos" first suggested by Ruelle and Takens. This suggests that fibrillation is a form of spatio-temporal chaos, a finding that implies new therapeutic approaches. PMID:9005999

  10. Chaos theory perspective for industry clusters development

    NASA Astrophysics Data System (ADS)

    Yu, Haiying; Jiang, Minghui; Li, Chengzhang

    2016-03-01

    Industry clusters have outperformed in economic development in most developing countries. The contributions of industrial clusters have been recognized as promotion of regional business and the alleviation of economic and social costs. It is no doubt globalization is rendering clusters in accelerating the competitiveness of economic activities. In accordance, many ideas and concepts involve in illustrating evolution tendency, stimulating the clusters development, meanwhile, avoiding industrial clusters recession. The term chaos theory is introduced to explain inherent relationship of features within industry clusters. A preferred life cycle approach is proposed for industrial cluster recessive theory analysis. Lyapunov exponents and Wolf model are presented for chaotic identification and examination. A case study of Tianjin, China has verified the model effectiveness. The investigations indicate that the approaches outperform in explaining chaos properties in industrial clusters, which demonstrates industrial clusters evolution, solves empirical issues and generates corresponding strategies.

  11. Chaos in a Hydraulic Control Valve

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Hayase, T.; Kurahashi, T.

    1997-08-01

    In this paper we have studied the instability and chaos occurring in a pilot-type poppet valve circuit. The system consists of a poppet valve, an upstream plenum chamber, a supply pipeline and an orifice inserted between the pelnum and the pipeline. Although the poppet valve rests on the seat stably for a supply pressure lower than the cracking pressure, the circuit becomes unstable for an initial disturbance beyond a critical value and develops a self-excited vibration. In this unstable region, chaotic vibration appears at the period-doubling bifurcation. We have investigated the stability of the circuit and the chaotic phenomenon numerically, and elucidated it by power spectra, a bifurcation diagram and Lyapunov exponent calculations, showing that the phenomenon follows the Feigenbaum route to chaos.Copyright 1997 Academic Press Limited

  12. Polynomial chaos representation of databases on manifolds

    NASA Astrophysics Data System (ADS)

    Soize, C.; Ghanem, R.

    2017-04-01

    Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. The method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.

  13. Stochastic Representation of Chaos Using Terminal Attractors

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    A nonlinear version of the Liouville equation based on terminal attractors is part of a mathematical formalism for describing postinstability motions of dynamical systems characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism can be applied to both conservative systems (e.g., multibody systems in celestial mechanics) and dissipative systems (e.g., viscous fluids). The development of the present formalism was undertaken in an effort to remove positive Lyapunov exponents. The means chosen to accomplish this is coupling of the governing dynamical equations with the corresponding Liouville equation that describes the evolution of the flow of error probability. The underlying idea is to suppress the divergences of different trajectories that correspond to different initial conditions, without affecting a target trajectory, which is one that starts with prescribed initial conditions.

  14. Tuning quantum measurements to control chaos

    NASA Astrophysics Data System (ADS)

    Eastman, Jessica K.; Hope, Joseph J.; Carvalho, André R. R.

    2017-03-01

    Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes.

  15. Tuning quantum measurements to control chaos

    PubMed Central

    Eastman, Jessica K.; Hope, Joseph J.; Carvalho, André R. R.

    2017-01-01

    Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes. PMID:28317933

  16. Chaos synchronization of general complex dynamical networks

    NASA Astrophysics Data System (ADS)

    Lü, Jinhu; Yu, Xinghuo; Chen, Guanrong

    2004-03-01

    Recently, it has been demonstrated that many large-scale complex dynamical networks display a collective synchronization motion. Here, we introduce a time-varying complex dynamical network model and further investigate its synchronization phenomenon. Based on this new complex network model, two network chaos synchronization theorems are proved. We show that the chaos synchronization of a time-varying complex network is determined by means of the inner coupled link matrix, the eigenvalues and the corresponding eigenvectors of the coupled configuration matrix, rather than the conventional eigenvalues of the coupled configuration matrix for a uniform network. Especially, we do not assume that the coupled configuration matrix is symmetric and its off-diagonal elements are nonnegative, which in a way generalizes the related results existing in the literature.

  17. Migraine--new perspectives from chaos theory.

    PubMed

    Kernick, D

    2005-08-01

    Converging from a number of disciplines, non-linear systems theory and in particular chaos theory offer new descriptive and prescriptive insights into physiological systems. This paper briefly reviews an approach to physiological systems from these perspectives and outlines how these concepts can be applied to the study of migraine. It suggests a wide range of potential applications including new approaches to classification, treatment and pathophysiological mechanisms. A hypothesis is developed that suggests that dysfunctional consequences can result from a mismatch between the complexity of the environment and the system that is seeking to regulate it and that the migraine phenomenon is caused by an incongruity between the complexity of mid brain sensory integration and cortical control networks. Chaos theory offers a new approach to the study of migraine that complements existing frameworks but may more accurately reflect underlying physiological mechanisms.

  18. Photo-induced chaos in the Briggs-Rauscher reaction

    NASA Astrophysics Data System (ADS)

    Okazaki, Noriaki; Hanazaki, Ichiro

    1998-07-01

    Discovery of the photo-induced chaos in the Briggs-Rauscher system is reported. The chaotic oscillations were observed between the large- and the small-amplitude simple oscillatory states existent in low and high light intensity regions, respectively. Period-doubling sequence from the large-amplitude oscillations to the chaos was observed. Deterministic nature of the chaos was confirmed by the next-amplitude return map. The stretching and folding mechanism of the trajectories was revealed through the three-dimensional attractor reconstructed via the singular value decomposition method. The chemical origin of the photoinduced chaos is discussed based on the photoautocatalysis of HIO2.

  19. Temperature chaos is a non-local effect

    NASA Astrophysics Data System (ADS)

    Fernandez, L. A.; Marinari, E.; Martin-Mayor, V.; Parisi, G.; Yllanes, D.

    2016-12-01

    Temperature chaos plays a role in important effects, for example memory and rejuvenation, in spin glasses, colloids, polymers. We numerically investigate temperature chaos in spin glasses, exploiting its recent characterization as a rare-event driven phenomenon. The peculiarities of the transformation from periodic to anti-periodic boundary conditions in spin glasses allow us to conclude that temperature chaos is non-local: no bounded region of the system causes it. We precisely show the statistical relationship between temperature chaos and the free-energy changes upon varying boundary conditions.

  20. Chaos control of parametric driven Duffing oscillators

    SciTech Connect

    Jin, Leisheng; Mei, Jie; Li, Lijie

    2014-03-31

    Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.

  1. Chaos control of parametric driven Duffing oscillators

    NASA Astrophysics Data System (ADS)

    Jin, Leisheng; Mei, Jie; Li, Lijie

    2014-03-01

    Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.

  2. Optimal chaos control through reinforcement learning.

    PubMed

    Gadaleta, Sabino; Dangelmayr, Gerhard

    1999-09-01

    A general purpose chaos control algorithm based on reinforcement learning is introduced and applied to the stabilization of unstable periodic orbits in various chaotic systems and to the targeting problem. The algorithm does not require any information about the dynamical system nor about the location of periodic orbits. Numerical tests demonstrate good and fast performance under noisy and nonstationary conditions. (c) 1999 American Institute of Physics.

  3. Chaos: Understanding and Controlling Laser Instability

    NASA Technical Reports Server (NTRS)

    Blass, William E.

    1997-01-01

    In order to characterize the behavior of tunable diode lasers (TDL), the first step in the project involved the redesign of the TDL system here at the University of Tennessee Molecular Systems Laboratory (UTMSL). Having made these changes it was next necessary to optimize the new optical system. This involved the fine adjustments to the optical components, particularly in the monochromator, to minimize the aberrations of coma and astigmatism and to assure that the energy from the beam is focused properly on the detector element. The next step involved the taking of preliminary data. We were then ready for the analysis of the preliminary data. This required the development of computer programs that use mathematical techniques to look for signatures of chaos. Commercial programs were also employed. We discovered some indication of high dimensional chaos, but were hampered by the low sample rate of 200 KSPS (kilosamples/sec) and even more by our sample size of 1024 (1K) data points. These limitations were expected and we added a high speed data acquisition board. We incorporated into the system a computer with a 40 MSPS (million samples/sec) data acquisition board. This board can also capture 64K of data points so that were then able to perform the more accurate tests for chaos. The results were dramatic and compelling, we had demonstrated that the lead salt diode laser had a chaotic frequency output. Having identified the chaotic character in our TDL data, we proceeded to stage two as outlined in our original proposal. This required the use of an Occasional Proportional Feedback (OPF) controller to facilitate the control and stabilization of the TDL system output. The controller was designed and fabricated at GSFC and debugged in our laboratories. After some trial and error efforts, we achieved chaos control of the frequency emissions of the laser. The two publications appended to this introduction detail the entire project and its results.

  4. Coherence and chaos in extended dynamical systems

    SciTech Connect

    Bishop, A.R.

    1994-12-31

    Coherence, chaos, and pattern formation are characteristic elements of the nonequilibrium statistical mechanics controlling mesoscopic order and disorder in many-degree-of-freedom nonlinear dynamical systems. Competing length scales and/or time scales are the underlying microscopic driving forces for many of these aspects of ``complexity.`` We illustrate the basic concepts with some model examples of classical and quantum, ordered and disordered, nonlinear systems.

  5. Solitons in the midst of chaos

    SciTech Connect

    Seghete, Vlad; Menyuk, Curtis R.; Marks, Brian S.

    2007-10-15

    A system of coupled nonlinear Schroedinger equations describes pulse propagation in weakly birefringent optical fibers. Soliton solutions of this system are found numerically through the shooting method. We employ Poincare surface of section plots - a standard dynamical systems approach - to analyze the phase space behavior of these solutions and neighboring trajectories. Chaotic behavior around the solitons is apparent and suggests dynamical instability. A Lyapunov stability analysis confirms this result. Thus, solitons exist in the midst of chaos.

  6. Chaos synchronization based on a continuous chaos control method in semiconductor lasers with optical feedback.

    PubMed

    Murakami, A; Ohtsubo, J

    2001-06-01

    Chaos synchronization using a continuous chaos control method was studied in two identical chaotic laser systems consisting of semiconductor lasers and optical feedback from an external mirror. Numerical calculations for rate equations indicate that the stability of chaos synchronization depends significantly on the external mirror position. We performed a linear stability analysis for the rate equations. Our results show that the stability of the synchronization is much influenced by the mode interaction between the relaxation oscillation frequency of the semiconductor laser and the external cavity frequency. Due to this interaction, an intensive mode competition between the two frequencies destroys the synchronization, but stable synchronization can be achieved when the mode competition is very weak.

  7. Probing temperature chaos through thermal boundary conditions

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut

    2015-03-01

    Using population annealing Monte Carlo, we numerically study temperature chaos in the three-dimensional Edwards-Anderson Ising spin glass using thermal boundary conditions. In thermal boundary conditions all eight combinations of periodic vs antiperiodic boundary conditions in the three spatial directions appear in the ensemble with their respective Boltzmann weights, thus minimizing finite-size corrections due to domain walls. By studying salient features in the specific heat we show evidence of temperature chaos. Our results suggest that these bumps are mainly caused by system-size excitations where the free energy of two boundary conditions cross. Furthermore, we study the scaling of both entropy and energy at boundary condition crossings and find that the scaling of the energy is very different from the scaling obtained by a simple change of boundary conditions. We attribute this difference to the stronger finite-size effects induced via a simple change of boundary conditions. Finally, we show that temperature chaos occurs more frequently at higher temperatures within the spin-glass phase and for larger system sizes, while the normalized distribution function with respect to temperature is about the same for different system sizes. The work is supported from NSF (Grant No. DMR-1208046).

  8. Chaos in Chiral Condensates in Gauge Theories

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Murata, Keiju; Yoshida, Kentaroh

    2016-12-01

    Assigning a chaos index for dynamics of generic quantum field theories is a challenging problem because the notion of a Lyapunov exponent, which is useful for singling out chaotic behavior, works only in classical systems. We address the issue by using the AdS /CFT correspondence, as the large Nc limit provides a classicalization (other than the standard ℏ→0 ) while keeping nontrivial quantum condensation. We demonstrate the chaos in the dynamics of quantum gauge theories: The time evolution of homogeneous quark condensates ⟨q ¯q ⟩ and ⟨q ¯γ5q ⟩ in an N =2 supersymmetric QCD with the S U (Nc) gauge group at large Nc and at a large 't Hooft coupling λ ≡NcgYM2 exhibits a positive Lyapunov exponent. The chaos dominates the phase space for energy density E ≳(6 ×1 02)×mq4(Nc/λ2), where mq is the quark mass. We evaluate the largest Lyapunov exponent as a function of (Nc,λ ,E ) and find that the N =2 supersymmetric QCD is more chaotic for smaller Nc.

  9. Detecting chaos in irregularly sampled time series.

    PubMed

    Kulp, C W

    2013-09-01

    Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.

  10. Exploring Chaos: A Case Study.

    ERIC Educational Resources Information Center

    Nemirovsky, Ricardo; Tinker, Robert

    1993-01-01

    Describes software, hardware, and devices that were designed to provide students with an environment to experiment with basic ideas of mechanics, including nonlinear dynamics. Examines the behavior of a Lorenzian water wheel by comparing experimental data with theoretical results obtained from computer-based sensors. (MDH)

  11. Observation of Temperature Chaos in Mesoscopic Spin Glasses

    NASA Astrophysics Data System (ADS)

    Guchhait, Samaresh

    Temperature Chaos (TC) results from a change in temperature for spin glasses (SG), polymers, and other glassy materials. When the temperature is changed, TC means that the new state has no memory of the preparation of the initial state. TC was predicted long ago [PRL 48, 767 (1982)]. However, ``An experimental measurement of TC is still missing'' [EPL 103, 67003 (2013)]. One reason for this is the question of length scale. In the thermodynamic limit, even an infinitesimal temperature change, ΔT , will create a chaotic condition. However, by working at the mesoscale, one can establish a length scale sufficiently small to exhibit reversible behavior before crossing over to chaotic behavior as the temperature change increases. Observation of TC is possible because, on reasonable laboratory time scales, the SG correlation length can grow to the size of the thickness of the film, L. The lower critical dimension for a SG is ~ 2 . 5 , so that the thin film SG crosses over to a glass temperature Tg = 0 . However, there remains quasi-equilibrium SG states with length scales < L . After crossover, a small ΔT will generate a TC coherence length which, if greater than L, will leave the system in a reversible state. However, when ΔT is sufficiently large, such that the TC coherence length is less than L, and chaos will ensue. I will discuss our recent results of temperature cycling on 15.5 nm SG films of amorphous Ge:Mn. By use of end of aging and temperature cycling, both the reversible region and the chaotic region are observed. Remarkably, the transition from a reversible to chaotic behavior is abrupt, and not smooth as a function of ΔT . This is in contrast to previous work using polycrystalline materials where the distribution of length scales smoothed out the transition to chaos. Using the calculated TC critical exponent, the range of ΔT for reversible behavior is calculated and is in very good agreement with the measured range. This work was supported by the U

  12. Precursors and Transition to Chaos in a Quantum Well

    NASA Astrophysics Data System (ADS)

    Boebinger, Greg

    1996-03-01

    Despite great theoretical interest, there are relatively few experimental studies of simple quantum systems whose classical counterparts exhibit chaotic dynamics. Recently, using resonant tunneling spectroscopy, Fromhold, et al. footnote T. M. Fromhold, L. Eaves, F. W. Sheard, M. L. Leadbeater, T. J. Foster, and P. C. Main, Phys. Rev. Lett. 72, 2608 (1994) have demonstrated that the wide quantum well exhibits chaotic dynamics in a sufficiently intense magnetic field which is tilted away from perpendicular to the quantum well. More recently, we have discovered a distinct transition from integrable to chaotic electron dynamics in this system. footnote G. Müller, G. S. Boebinger, H. Mathur, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 75, 2875 (1995) The evolution of the chaos transition is mapped systematically by varying bias voltage, magnetic field and tilt angle. As the tilt angle is increased, the system becomes increasingly chaotic. For a perpendicular magnetic field (θ = 0 ^circ), peaks in the tunneling current correspond to the quantum well subbands. At small tilt angles, (10 ^circ < θ < 30 ^circ) the resonant tunneling spectra show the quantum well subbands, but distinct peak doubling regions have emerged. At larger tilt angles, the quantum well subbands make a transition to a peak tripling region. Poincare section calculations identify these peak doubling and tripling regions as the precursors of the chaos transition. They result from the bifurcation and trifurcation of the stable periodic orbit which corresponds to the quantum well subbands. At θ = 45 ^circ, there is a sharp transition between the region of ordered, subband-like peaks at low magnetic fields and a region of disordered peak positions at higher magnetic fields. We conclude that quantum wells provide a particularly clear manifestation of the transition from order to chaos which results from the break-up of stable periodic orbits. This work is a collaboration with G. Müller, H. Mathur

  13. Subharmonic generation, chaos, and subharmonic resurrection in an acoustically driven fluid-filled cavity.

    PubMed

    Cantrell, John H; Adler, Laszlo; Yost, William T

    2015-02-01

    Traveling wave solutions of the nonlinear acoustic wave equation are obtained for the fundamental and second harmonic resonances of a fluid-filled cavity. The solutions lead to the development of a non-autonomous toy model for cavity oscillations. Application of the Melnikov method to the model equation predicts homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos. The threshold value of the drive displacement amplitude at tangency is obtained in terms of the acoustic drive frequency and fluid attenuation coefficient. The model prediction of subharmonic generation leading to chaos is validated from acousto-optic diffraction measurements in a water-filled cavity using a 5 MHz acoustic drive frequency and from the measured frequency spectrum in the bifurcation cascade regime. The calculated resonant threshold amplitude of 0.2 nm for tangency is consistent with values estimated for the experimental set-up. Experimental evidence for the appearance of a stable subharmonic beyond chaos is reported.

  14. Subharmonic generation, chaos, and subharmonic resurrection in an acoustically driven fluid-filled cavity

    SciTech Connect

    Cantrell, John H. Yost, William T.; Adler, Laszlo

    2015-02-15

    Traveling wave solutions of the nonlinear acoustic wave equation are obtained for the fundamental and second harmonic resonances of a fluid-filled cavity. The solutions lead to the development of a non-autonomous toy model for cavity oscillations. Application of the Melnikov method to the model equation predicts homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos. The threshold value of the drive displacement amplitude at tangency is obtained in terms of the acoustic drive frequency and fluid attenuation coefficient. The model prediction of subharmonic generation leading to chaos is validated from acousto-optic diffraction measurements in a water-filled cavity using a 5 MHz acoustic drive frequency and from the measured frequency spectrum in the bifurcation cascade regime. The calculated resonant threshold amplitude of 0.2 nm for tangency is consistent with values estimated for the experimental set-up. Experimental evidence for the appearance of a stable subharmonic beyond chaos is reported.

  15. Parameter Space of Fixed Points of the Damped Driven Pendulum Susceptible to Control of Chaos Algorithms

    NASA Astrophysics Data System (ADS)

    Dittmore, Andrew; Trail, Collin; Olsen, Thomas; Wiener, Richard J.

    2003-11-01

    We have previously demonstrated the experimental control of chaos in a Modified Taylor-Couette system with hourglass geometry( Richard J. Wiener et al), Phys. Rev. Lett. 83, 2340 (1999).. Identifying fixed points susceptible to algorithms for the control of chaos is key. We seek to learn about this process in the accessible numerical model of the damped, driven pendulum. Following Baker(Gregory L. Baker, Am. J. Phys. 63), 832 (1995)., we seek points susceptible to the OGY(E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64), 1196 (1990). algorithm. We automate the search for fixed points that are candidates for control. We present comparisons of the space of candidate fixed points with the bifurcation diagrams and Poincare sections of the system. We demonstrate control at fixed points which do not appear on the attractor. We also show that the control algorithm may be employed to shift the system between non-communicating branches of the attractor.

  16. Ultra-high-frequency piecewise-linear chaos using delayed feedback loops

    NASA Astrophysics Data System (ADS)

    Cohen, Seth D.; Rontani, Damien; Gauthier, Daniel J.

    2012-12-01

    We report on an ultra-high-frequency (>1 GHz), piecewise-linear chaotic system designed from low-cost, commercially available electronic components. The system is composed of two electronic time-delayed feedback loops: A primary analog loop with a variable gain that produces multi-mode oscillations centered around 2 GHz and a secondary loop that switches the variable gain between two different values by means of a digital-like signal. We demonstrate experimentally and numerically that such an approach allows for the simultaneous generation of analog and digital chaos, where the digital chaos can be used to partition the system's attractor, forming the foundation for a symbolic dynamics with potential applications in noise-resilient communications and radar.

  17. Chaos and Fractal Analysis of Electroencephalogram Signals during Different Imaginary Motor Movement Tasks

    NASA Astrophysics Data System (ADS)

    Soe, Ni Ni; Nakagawa, Masahiro

    2008-04-01

    This paper presents the novel approach to evaluate the effects of different motor activation tasks of the human electroencephalogram (EEG). The applications of chaos and fractal properties that are the most important tools in nonlinear analysis are been presented for four tasks of EEG during the real and imaginary motor movement. Three subjects, aged 23-30 years, participated in the experiment. Correlation dimension (D2), Lyapunov spectrum (λi), and Lyapunov dimension (DL) are been estimated to characterize the movement related EEG signals. Experimental results show that these nonlinear measures are good discriminators of EEG signals. There are significant differences in all conditions of subjective task. The fractal dimension appeared to be higher in movement conditions compared to the baseline condition. It is concluded that chaos and fractal analysis could be powerful methods in investigating brain activities during motor movements.

  18. Characterization of spatiotemporal chaos in a Kerr optical frequency comb and in all fiber cavities

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Ouali, M.; Coulibaly, S.; Clerc, M. G.; Taki, M.; Tlidi, M.

    2017-03-01

    Complex spatiotemporal dynamics have been a subject of recent experimental investigations in optical frequency comb microresonators and in driven fiber cavities with a Kerr-type media. We show that this complex behavior has a spatiotemporal chaotic nature. We determine numerically the Lyapunov spectra, allowing to characterize different dynamical behavior occurring in these simple devices. The Yorke-Kaplan dimension is used as an order parameter to characterize the bifurcation diagram. We identify a wide regime of parameters where the system exhibits a coexistence between the spatiotemporal chaos, the oscillatory localized structure, and the homogeneous steady state. The destabilization of an oscillatory localized state through radiation of counter propagative fronts between the homogeneous and the spatiotemporal chaotic states is analyzed. To characterize better the spatiotemporal chaos, we estimate the front speed as a function of the pump intensity.

  19. Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser

    NASA Astrophysics Data System (ADS)

    Coulibaly, S.; Clerc, M. G.; Selmi, F.; Barbay, S.

    2017-02-01

    The occurrence of extreme events in a spatially extended microcavity laser has been recently reported [Selmi et al., Phys. Rev. Lett. 116, 013901 (2016), 10.1103/PhysRevLett.116.013901] to be correlated to emergence of spatiotemporal chaos. In this dissipative system, the role of spatial coupling through diffraction is essential to observe the onset of spatiotemporal complexity. We investigate further the formation mechanism of extreme events by comparing the statistical and dynamical analyses. Experimental measurements together with numerical simulations allow us to assign the quasiperiodicity mechanism as the route to spatiotemporal chaos in this system. Moreover, by investigating the fine structure of the maximum Lyapunov exponent, of the Lyapunov spectrum, and of the Kaplan-Yorke dimension of the chaotic attractor, we are able to deduce that intermittency plays a key role in the proportion of extreme events measured. We assign the observed mechanism of generation of extreme events to quasiperiodic extended spatiotemporal intermittency.

  20. Nonlinear resonance and dynamical chaos in a diatomic molecule driven by a resonant ir field

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N.; Holm, D.D. ||||

    1995-10-01

    We consider the transition from regular motion to dynamical chaos in a classical model of a diatomic molecule which is driven by a circularly polarized resonant ir field. Under the conditions of a nearly two-dimensional case, the Hamiltonian reduces to that for the nonintegrable motion of a charged particle in an electromagnetic wave [A. J. Lichtenberg and M. A. Lieberman, {ital Regular} {ital and} {ital Stochastic} {ital Motion} (Springer-Verlag, City, 1983)]. In the general case, the transition to chaos is connected with the overlapping of vibrational-rotational nonlinear resonances and appears even at rather low radiation field intensity, {ital S}{approx_gt}1 GW/cm{sup 2}. We also discuss the possibility of experimentally observing this transition.

  1. Metabolic Engineering VII Conference

    SciTech Connect

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  2. Chaos in a chemical system

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Srivastava, P. K.; Chattopadhyay, J.

    2013-07-01

    Chaotic oscillations have been observed experimentally in dual-frequency oscillator OAP - Ce+4-BrO- 3-H2SO4 in CSTR. The system shows variation of oscillating potential and frequencies when it moves from low frequency to high frequency region and vice-versa. It was observed that system bifurcate from low frequency to chaotic regime through periode-2 and period-3 on the other hand system bifurcate from chaotic regime to high frequency oscillation through period-2. It was established that the observed oscillations are chaotic in nature on the basis of next amplitude map and bifurcation sequences.

  3. Analysis of Discovery of Chaos: Social and Cognitive Aspects.

    ERIC Educational Resources Information Center

    Kim, J. B.

    The purpose of this study was to examine Edward Lorenz's psychological processes and other environmental aspects in the discovery of chaos at that time. The general concept of chaos is discussed based on relations with previous scientific theories such as Newtonian physics and quantum mechanics. The constraints of discovery in terms of available…

  4. Chaos Theory as a Lens for Advancing Quality Schooling.

    ERIC Educational Resources Information Center

    Snyder, Karolyn J.; Acker-Hocevar, Michele; Wolf, Kristen M.

    Chaos theory provides a useful mental model for guiding change as leaders garner the energy from unpredictable events for realizing transformation goals. The paper considers chaos theory as a framework for managing school change toward Total Quality Management work cultures. Change is possible to manage when plans are made and then followed by a…

  5. Specifying the Links between Household Chaos and Preschool Children's Development

    ERIC Educational Resources Information Center

    Martin, Anne; Razza, Rachel A.; Brooks-Gunn, Jeanne

    2012-01-01

    Household chaos has been linked to poorer cognitive, behavioural, and self-regulatory outcomes in young children, but the mechanisms responsible remain largely unknown. Using a diverse sample of families in Chicago, the present study tests for the independent contributions made by five indicators of household chaos: noise, crowding, family…

  6. Chaos: A Topic for Interdisciplinary Education in Physics

    ERIC Educational Resources Information Center

    Bae, Saebyok

    2009-01-01

    Since society and science need interdisciplinary works, the interesting topic of chaos is chosen for interdisciplinary education in physics. The educational programme contains various university-level activities such as computer simulations, chaos experiment and team projects besides ordinary teaching. According to the participants, the programme…

  7. Chaos Theory: Implications for Nonlinear Dynamics in Counseling.

    ERIC Educational Resources Information Center

    Stickel, Sue A.

    The purpose of this paper is to explore the implications of chaos theory for counseling. The scientific notion of chaos refers to the tendency of dynamical, nonlinear systems toward irregular, sometimes unpredictable, yet deterministic behavior. Therapists, especially those working from a brief approach, have noted the importance of the client's…

  8. Chaos/Complexity Science and Second Language Acquisition.

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    1997-01-01

    Discusses the similarities between the science of chaos/complexity and second language acquisition (SLA). Notes that chaos/complexity scientists focus on how disorder yields to order and on how complexity arises in nature. Points out that the study of dynamic, complex nonlinear systems is meaningful in SLA as well. (78 references) (Author/CK)

  9. Master Teachers: Making a Difference on the Edge of Chaos

    ERIC Educational Resources Information Center

    Chapin, Dexter

    2008-01-01

    The No Child Left Behind legislation, by legitimizing a stark, one-size-fits-all, industrial model of education, has denied the inherent complexity and richness of what teachers do. Discussing teaching in terms of Chaos Theory, Chapin explains that while excellent teaching may occur at the edge of chaos, it is not chaotic. There are patterns…

  10. Computational Biology Support: RECOMB Conference Series (Conference Support)

    SciTech Connect

    Michael Waterman

    2006-06-15

    collection of nine keynotes awarded to researchers of highest international esteem who are asked to inform the community about landmark advances in computational and experimental research and inject new directions into the field of computational molecular biology. This includes the following conference events: Next we present a list of the names of the students and postdocs supported. Those supported either presented a paper (10 in 2001, 6 in 2002, 7 in 2003, 14 in 2004, and 20 in 2006) or were they presenter of a poster. This support was vital to the quality and success of the Conference. At the conclusion we give the publication details of the relevant Recomb proceedings.

  11. Amplitude death in coupled robust-chaos oscillators

    NASA Astrophysics Data System (ADS)

    Palazzi, M. J.; Cosenza, M. G.

    2014-12-01

    We investigate the synchronization behavior of a system of globally coupled, continuous-time oscillators possessing robust chaos. The local dynamics corresponds to the Shimizu-Morioka model where the occurrence of robust chaos in a region of its parameter space has been recently discovered. We show that the global coupling can drive the oscillators to synchronization into a fixed point created by the coupling, resulting in amplitude death in the system. The existence of robust chaos allows to introduce heterogeneity in the local parameters, while guaranteeing the functioning of all the oscillators in a chaotic mode. In this case, the system reaches a state of oscillation death, with coexisting clusters of oscillators in different steady states. The phenomena of amplitude death or oscillation death in coupled robust-chaos flows could be employed as mechanisms for stabilization and control in systems that require reliable operation under chaos.

  12. Bond chaos in spin glasses revealed through thermal boundary conditions

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G.

    2016-06-01

    Spin glasses have competing interactions that lead to a rough energy landscape which is highly susceptible to small perturbations. These chaotic effects strongly affect numerical simulations and, as such, gaining a deeper understanding of chaos in spin glasses is of much importance. The use of thermal boundary conditions is an effective approach to study chaotic phenomena. Here we generalize population annealing Monte Carlo, combined with thermal boundary conditions, to study bond chaos due to small perturbations in the spin-spin couplings of the three-dimensional Edwards-Anderson Ising spin glass. We show that bond and temperature-induced chaos share the same scaling exponents and that bond chaos is stronger than temperature chaos.

  13. Chaos and Forecasting - Proceedings of the Royal Society Discussion Meeting

    NASA Astrophysics Data System (ADS)

    Tong, Howell

    1995-04-01

    The Table of Contents for the full book PDF is as follows: * Preface * Orthogonal Projection, Embedding Dimension and Sample Size in Chaotic Time Series from a Statistical Perspective * A Theory of Correlation Dimension for Stationary Time Series * On Prediction and Chaos in Stochastic Systems * Locally Optimized Prediction of Nonlinear Systems: Stochastic and Deterministic * A Poisson Distribution for the BDS Test Statistic for Independence in a Time Series * Chaos and Nonlinear Forecastability in Economics and Finance * Paradigm Change in Prediction * Predicting Nonuniform Chaotic Attractors in an Enzyme Reaction * Chaos in Geophysical Fluids * Chaotic Modulation of the Solar Cycle * Fractal Nature in Earthquake Phenomena and its Simple Models * Singular Vectors and the Predictability of Weather and Climate * Prediction as a Criterion for Classifying Natural Time Series * Measuring and Characterising Spatial Patterns, Dynamics and Chaos in Spatially-Extended Dynamical Systems and Ecologies * Non-Linear Forecasting and Chaos in Ecology and Epidemiology: Measles as a Case Study

  14. Conferences revisited

    NASA Astrophysics Data System (ADS)

    Radcliffe, Jonathan

    2008-08-01

    Way back in the mid-1990s, as a young PhD student, I wrote a Lateral Thoughts article about my first experience of an academic conference (Physics World 1994 October p80). It was a peach of a trip - most of the lab decamped to Grenoble for a week of great weather, beautiful scenery and, of course, the physics. A whole new community was there for me to see in action, and the internationality of it all helped us to forget about England's non-appearance in the 1994 World Cup finals.

  15. Delayed feedback control of chaos.

    PubMed

    Pyragas, Kestutis

    2006-09-15

    Time-delayed feedback control is well known as a practical method for stabilizing unstable periodic orbits embedded in chaotic attractors. The method is based on applying feedback perturbation proportional to the deviation of the current state of the system from its state one period in the past, so that the control signal vanishes when the stabilization of the target orbit is attained. A brief review on experimental implementations, applications for theoretical models and most important modifications of the method is presented. Recent advancements in the theory, as well as an idea of using an unstable degree of freedom in a feedback loop to avoid a well-known topological limitation of the method, are described in detail.

  16. Chaos control in a chaotic system with only one stable equilibrium point

    NASA Astrophysics Data System (ADS)

    Buscarino, Arturo; Fortuna, Luigi; Frasca, Mattia; Gambuzza, Lucia Valentina; Pham, Thanh Viet

    2012-09-01

    The recent finding on the effect of a small bias in Sprott-like systems, i.e., the stabilization of the unstable equilibrium point through the addition of a small bias [1], paves the way to efficient methods for chaos control in such systems. In this work, we investigate the control of one of such systems both in the ideal case of absence of noise and in the presence of noise. We then propose an experimental setup for the experimental verification of the introduced method.

  17. Transition to Chaos in Random Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Kadmon, Jonathan; Sompolinsky, Haim

    2015-10-01

    Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large. In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However, the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work, we investigate rate-based dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections. Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single neuron output is strictly positive with output rates rising as a power law above threshold, in line with known constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on the latter and characterize the properties of systems near this transition. We show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity. In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other, amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos

  18. Outer Solar System on the Edge of Chaos

    NASA Astrophysics Data System (ADS)

    Hayes, Wayne B.

    2006-06-01

    The existence of chaos among the system of Jovian planets (Jupiter, Saturn, Uranus, and Neptune) is not yet firmly established. Although Laskar originally found no chaos in the outer Solar System, his "averaged" integrations did not account for the possibility of mean-motion resonances. Once full n-body integrations were performed, a dichotomy arose. On one hand, many investigators (Sussman, Wisdom, Murray, Holman, among many others) consistently measured a Lyapunov time of between 5 and 12 million years in the outer Solar System; the chaos can even be explained as the overlap of three-body resonances (Murray + Holman, Science 283, 1999). Furthermore, Murray + Holman's theory has been recently corroborated across a wide range of system parameters (Guzzo 2005), and the chaos does not disappear with decreasing timestep. On the other hand, some other investigators (Newman, Grazier, and Varadi, among several others) have compelling evidence against chaos. Namely, they have convincingly demonstrated that a sympletic integration using the famous Wisdom + Holman (1992) symplectic mapping with a 400-day timestep reproduces the chaos seen by others, but that the chaos disappears and the orbit converges to being regular as the timestep decreases. Their integration remains regular, showing beautiful convergence with decreasing timestep, down to a 2 day timestep. The resolution of this apparent paradox is simple. The orbital positions of the Jovian planets is known only to a few parts in 107, and it turns out that within that observational error ball, there exist both chaotic and regular solutions. I will demonstrate this fact using several initial conditions and several accurate integration algorithms. Thus, whether a particular investigator will see chaos or not depends (essentially randomly) upon the details of how that investigator draws their initial conditions. Thus, some investigators legitimately find chaos, while others legitimately find no chaos.

  19. Exploring Information Chaos in Community Pharmacy Handoffs

    PubMed Central

    Chui, Michelle A; Stone, Jamie A

    2013-01-01

    Background A handoff is the process of conveying necessary information in order to transfer primary responsibility for providing safe and effective drug therapy to a patient from one community pharmacist to another, typically during a shift change. The handoff information conveyed in pharmacies has been shown to be unstructured and variable, leading to pharmacist stress and frustration, prescription delays, and medication errors. Objective The purpose of this study was to describe and categorize the information hazards present in handoffs in community pharmacies. Methods A qualitative research approach was used to elicit the subjective experiences of community pharmacists. Community pharmacists who float or work in busy community pharmacies were recruited and participated in a face to face semi-structured interview. Using a systematic content data analysis, the study identified five categories of information hazards that can lead to information chaos, a framework grounded in human factors and ergonomics. Results Information hazards including erroneous information and information overload, underload, scatter, and conflict, are experienced routinely by community pharmacists during handoff communication and can result in information chaos. The consequences of information chaos include increased mental workload, which can precipitate problematic prescriptions “falling between the cracks”. This can ultimately impact patient care and pharmacist quality of working life. Conclusions The results suggest that handoffs in community pharmacies result in information hazards. These information hazards can distract pharmacists from their primary work of assessing prescriptions and educating their patients. Further research on how handoffs are conducted can produce information on how hazards in the system can be eliminated. PMID:23665076

  20. Experimental demonstration of audio secure communication with Rossler chaotic circuits

    NASA Astrophysics Data System (ADS)

    Jaimes-Reátegui, R.; García-López, J. H.; Pisarchik, A. N.; Medina-Gutiérrez, C.; Jimenez-Godinez, J. C.; Valdivia-Hernandez, R.; Murguía-Hernandez, A.; Frausto-Reyes, C.

    2006-02-01

    The possibility of secure communication with chaos is demonstrated experimentally with two simple unidirectionally coupled electronic circuits. A traditional approach has been used to synchronize the two chaotic systems. We also study, both numerically and experimentally, the dynamic of the systems in a wide range of the control parameter. The bifurcation diagrams represent a complex behaviour whish varied from periodic orbits to chaos of the Rossler and Shilnikov types. The results of numerical simulations are in a good agreement with experiments.

  1. Conduction at the onset of chaos

    NASA Astrophysics Data System (ADS)

    Baldovin, Fulvio

    2017-02-01

    After a general discussion of the thermodynamics of conductive processes, we introduce specific observables enabling the connection of the diffusive transport properties with the microscopic dynamics. We solve the case of Brownian particles, both analytically and numerically, and address then whether aspects of the classic Onsager's picture generalize to the non-local non-reversible dynamics described by logistic map iterates. While in the chaotic case numerical evidence of a monotonic relaxation is found, at the onset of chaos complex relaxation patterns emerge.

  2. Semiclassical description of chaos-assisted tunneling.

    PubMed

    Podolskiy, Viktor A; Narimanov, Evgenii E

    2003-12-31

    We study tunneling between regular and chaotic regions in the phase space of Hamiltonian systems. We analytically calculate the transition rate and show that its variation depends only on corresponding phase space area and in this sense is universal. We derive the distribution of level splittings associated with the pairs of quasidegenerate regular eigenstates which in the general case is different from a Cauchy distribution. We show that chaos-assisted tunneling leads to level repulsion between regular eigenstates, solving the longstanding problem of level-spacing distribution in mixed systems.

  3. Quasiperiodic graphs at the onset of chaos.

    PubMed

    Luque, B; Cordero-Gracia, M; Gómez, M; Robledo, A

    2013-12-01

    We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers.

  4. Chaos in the BMN matrix model

    NASA Astrophysics Data System (ADS)

    Asano, Yuhma; Kawai, Daisuke; Yoshida, Kentaroh

    2015-06-01

    We study classical chaotic motions in the Berenstein-Maldacena-Nastase (BMN) matrix model. For this purpose, it is convenient to focus upon a reduced system composed of two-coupled anharmonic oscillators by supposing an ansatz. We examine three ansätze: 1) two pulsating fuzzy spheres, 2) a single Coulomb-type potential, and 3) integrable fuzzy spheres. For the first two cases, we show the existence of chaos by computing Poincaré sections and a Lyapunov spectrum. The third case leads to an integrable system. As a result, the BMN matrix model is not integrable in the sense of Liouville, though there may be some integrable subsectors.

  5. Quantum chaos in Aharonov-Bohm oscillations

    SciTech Connect

    Berman, G.P.; Campbell, D.K.; Bulgakov, E.N.; Krive, I.V.

    1995-10-01

    Aharonov-Bohm oscillations in a mesoscopic ballistic ring are considered under the influence of a resonant magnetic field with one and two frequencies. The authors investigate the oscillations of the time-averaged electron energy at zero temperature in the regime of an isolated quantum nonlinear resonance and at the transition to quantum chaos, when two quantum nonlinear resonances overlap. It is shown that the time-averaged energy exhibits resonant behavior as a function of the magnetic flux, and has a ``staircase`` dependence on the amplitude of the external field. The delocalization of the quasi-energy eigenfunctions is analyzed.

  6. Chaos in a Fractional Order Chua System

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.; Qammar, Helen Killory

    1996-01-01

    This report studies the effects of fractional dynamics in chaotic systems. In particular, Chua's system is modified to include fractional order elements. Varying the total system order incrementally from 2.6 to 3.7 demonstrates that systems of 'order' less than three can exhibit chaos as well as other nonlinear behavior. This effectively forces a clarification of the definition of order which can no longer be considered only by the total number of differentiations or by the highest power of the Laplace variable.

  7. Self-organized chaos through polyhomeostatic optimization.

    PubMed

    Markovic, D; Gros, Claudius

    2010-08-06

    The goal of polyhomeostatic control is to achieve a certain target distribution of behaviors, in contrast to homeostatic regulation, which aims at stabilizing a steady-state dynamical state. We consider polyhomeostasis for individual and networks of firing-rate neurons, adapting to achieve target distributions of firing rates maximizing information entropy. We show that any finite polyhomeostatic adaption rate destroys all attractors in Hopfield-like network setups, leading to intermittently bursting behavior and self-organized chaos. The importance of polyhomeostasis to adapting behavior in general is discussed.

  8. Beyond Benford's Law: Distinguishing Noise from Chaos

    PubMed Central

    Li, Qinglei; Fu, Zuntao; Yuan, Naiming

    2015-01-01

    Determinism and randomness are two inherent aspects of all physical processes. Time series from chaotic systems share several features identical with those generated from stochastic processes, which makes them almost undistinguishable. In this paper, a new method based on Benford's law is designed in order to distinguish noise from chaos by only information from the first digit of considered series. By applying this method to discrete data, we confirm that chaotic data indeed can be distinguished from noise data, quantitatively and clearly. PMID:26030809

  9. Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection.

    PubMed

    Someya, Hiroyuki; Oowada, Isao; Okumura, Haruka; Kida, Takahiko; Uchida, Atsushi

    2009-10-26

    We experimentally investigate the generation and synchronization of bandwidth-enhanced chaos in a semiconductor laser (drive laser) that is subject to optical injection from another chaotic semiconductor laser (injection laser) with optical feedback. Effective bandwidth enhancement is achieved over 12 GHz, under the condition in which the optical wavelength of the drive laser is positively detuned with respect to that of the injection laser, outside the injection locking range. The bandwidth-enhanced chaotic signal of the drive laser is injected into a third semiconductor laser (response laser) for synchronization. Synchronization of chaos with a bandwidth greater than 12 GHz is observed between the drive and response lasers, under the condition in which the optical wavelength of the response laser is negatively detuned with respect to that of the drive laser, satisfying the injection locking condition. High-quality chaos synchronization is observed within the injection locking range between the drive and response lasers and under the condition of a low relaxation oscillation frequency of the response laser.

  10. Deterministic chaos and noise in three in vitro hippocampal models of epilepsy.

    PubMed

    Slutzky, M W; Cvitanović, P; Mogul, D J

    2001-01-01

    Recent reports have suggested that chaos control techniques may be useful for electrically manipulating epileptiform bursting behavior in neuronal ensembles. Because the dynamics of spontaneous in vitro bursting had not been well determined previously, analysis of this behavior in the rat hippocampus was performed. Epileptiform bursting was induced in transverse rat hippocampal slices using three experimental methods. Slices were bathed in artificial cerebrospinal fluid containing: (1) elevated potassium ([K+]o= 10.5 mM), (2) zero magnesium, or (3) the GABAA-receptor antagonists bicuculline (20 microM) and picrotoxin (250 microM). The existence of chaos and determinism was assessed using two different analytical techniques: unstable periodic orbit (UPO) analysis and a new technique for estimating Lyapunov exponents. Significance of these results was assessed by comparing the calculations for each experiment with corresponding randomized surrogate data. UPOs of multiple periods were highly prevalent in experiments from all three epilepsy models: 73% of all experiments contained at least one statistically significant period-1 or period-2 orbit. However, the expansion rate analysis did not provide any evidence of determinism in the data. This suggests that the system may be globally stochastic but contains local pockets of determinism. Thus, manipulation of bursting behavior using chaos control algorithms may yet hold promise for reverting or preventing epileptic seizures.

  11. Chaos and band structure in a three-dimensional optical lattice.

    PubMed

    Boretz, Yingyue; Reichl, L E

    2015-04-01

    Classical chaos is known to affect wave propagation because it signifies the presence of broken symmetries. The effect of chaos has been observed experimentally for matter waves, electromagnetic waves, and acoustic waves. When these three types of waves propagate through a spatially periodic medium, the allowed propagation energies form bands. For energies in the band gaps, no wave propagation is possible. We show that optical lattices provide a well-defined system that allows a study of the effect of chaos on band structure. We have determined the band structure of a body-centered-cubic optical lattice for all theoretically possible couplings, and we find that the band structure for those lattices realizable in the laboratory differs significantly from that expected for the bands in an "empty" body-centered-cubic crystal. However, as coupling is increased, the lattice becomes increasingly chaotic and it becomes possible to produce band structure that has behavior qualitatively similar to the "empty" body-centered-cubic band structure, although with fewer degeneracies.

  12. Mode-locking and the transition to chaos in dissipative systems

    SciTech Connect

    Bak, P.; Bohr, T.; Jensen, M.H.

    1984-01-01

    Dissipative systems with two competing frequencies exhibit transitions to chaos. We have investigated the transition through a study of discrete maps of the circle onto itself, and by constructing and analyzing return maps of differential equations representing some physical systems. The transition is caused by interaction and overlap of mode-locked resonances and takes place at a critical line where the map losses invertibility. At this line the mode-locked intervals trace up a complete Devil's Staircase whose complementary set is a Cantor set with universal fractal dimension D approx. 0.87. Below criticality there is room for quasiperiodic orbits, whose measure is given by an exponent ..beta.. approx. 0.34 which can be related to D through a scaling relation, just as for second order phase transitions. The Lebesgue measure serves as an order parameter for the transition to chaos. The resistively shunted Josephson junction, and charge density waves (CDWs) in rf electric fields are usually described by the differential equation of the damped driven pendulum. The 2d return map for this equation collapses to ld circle map at and below the transition to chaos. The theoretical results on universal behavior, derived here and elsewhere, can thus readily be checked experimentally by studying real physical systems. Recent experiments on Josephson junctions and CDWs indicating the predicted fractal scaling of mode-locking at criticality are reviewed.

  13. Quantum nonlinear resonance and quantum chaos in Aharonov-Bohm oscillations in mesoscopic semiconductor rings

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N.; Campbell, D.K.; Krive, I.V.

    1997-10-01

    We consider Aharonov-Bohm oscillations in a mesoscopic semiconductor ring threaded by both a constant magnetic flux and a time-dependent, resonant magnetic field with one or two frequencies. Working in the ballistic regime, we establish that the theory of {open_quotes}quantum nonlinear resonance{close_quotes} applies, and thus that this system represents a possible solid-state realization of {open_quotes}quantum nonlinear resonance{close_quotes} and {open_quotes}quantum chaos.{close_quotes} In particular, we investigate the behavior of the time-averaged electron energy at zero temperature in the regimes of (i) an isolated quantum nonlinear resonance and (ii) the transition to quantum chaos, when two quantum nonlinear resonances overlap. The time-averaged energy exhibits sharp resonant behavior as a function of the applied constant magnetic flux, and has a staircase dependence on the amplitude of the external time-dependent field. In the chaotic regime, the resonant behavior exhibits complex structure as a function of flux and frequency. We compare and contrast the quantum chaos expected in these mesoscopic {open_quotes}solid-state atoms{close_quotes} with that observed in Rydberg atoms in microwave fields, and discuss the prospects for experimental observation of the effects we predict. {copyright} {ital 1997} {ital The American Physical Society}

  14. PREFACE: The International Conference on Science of Friction

    NASA Astrophysics Data System (ADS)

    Miura, Kouji; Matsukawa, Hiroshi

    2007-07-01

    The first international conference on the science of friction in Japan was held at Irago, Aichi on 9-13 September 2007. The conference focused on the elementary process of friction phenomena from the atomic and molecular scale view. Topics covered in the conference are shown below.:

  15. Superlubricity and friction
  16. Electronic and phononic contributions to friction
  17. Friction on the atomic and molecular scales
  18. van der Waals friction and Casimir force
  19. Molecular motor and friction
  20. Friction and adhesion in soft matter systems
  21. Wear and crack on the nanoscale
  22. Theoretical studies on the atomic scale friction and energy dissipation
  23. Friction and chaos
  24. Mechanical properties of nanoscale contacts
  25. Friction of powder
  26. The number of participants in the conference was approximately 100, registered from 11 countries. 48 oral and 29 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 23 papers devoted to the above topics of friction. The successful organization of the conference was made possible by the contribution of the members of the Organizing Committee and International Advisory Committee. The conference was made possible thanks to the financial support from Aichi University of Education and the Taihokogyo Tribology Research Foundation (TTRF), and moreover thanks to the approval societies of The Physical Society of Japan, The Surface Science Society of Japan, The Japanese Society of Tribologists and Toyota Physical and Chemical Research Institute. The details of the conference are available at http://www.science-of-friction.com . Finally we want to thank the speakers for the high quality of their talks and all participants for coming to Irago, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  27. PREFACE: Quark Matter 2006 Conference

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    scientific program of the conference began with an overview of high energy nuclear physics in China by Professor Wenqing Shen, vice president of the National Natural Science Foundation of China. Professor Shen highlighted many contributions made by the Chinese scientists in both theory and experiment. Dr Nick Samios, former director of Brookhaven National Laboratory (BNL), gave a vivid account of the early years of RHIC and recent accomplishments. Highlights of the conference include new results from RHIC at BNL and SPS (Super Proton Synchrotron) at CERN (European Organization for Nuclear Research). Many experimental results reported at the conference support the notion that the quark-gluon matter at RHIC behaves like a perfect liquid with minimum viscosity to entropy ratio. There were 15 plenary sessions which covered 54 plenary talks, 12 parallel sessions and 1 poster session. A total of 320 abstracts were submitted to the conference out of which 124 were selected for oral presentation and the rest were assigned to the poster session. Talks and posters in the conference covered a broad range of experimental and theoretical progress in ultra-relativistic heavy-ion collisions, which includes new evidence of sQGP, jet quenching and heavy quark energy loss, heavy-ion collision phenomenology, quantum field theory at finite temperature and/or density, and relevant areas of astrophysics and plasma physics. The Quark Matter 2006 conference coincided with the 80th birthday of Professor T D Lee. A special reception was held in the banquet hall of the Shanghai Grand Theatre to celebrate Professor Lee's birthday and to honor his great contributions to physics, in particular, to the development of high energy nuclear physics research in China. We would like to thank the members of the International Advisory Committee for providing valuable advice on a variety of matters, from the general structure of the conference to the selection of the plenary speakers and selection of abstracts for

  28. Quantum chaos and holographic tensor models

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Sanyal, Sambuddha; Subramanian, P. N. Bala

    2017-03-01

    A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large- N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.

  29. The dream's navel between chaos and thought.

    PubMed

    Scalzone, F; Zontini, G

    2001-04-01

    The authors begin by drawing attention to the problem of the transition from the biological to the psychic, noting that Freud himself, with his background in the neurosciences, grappled with it throughout his career. Certain recent paradigms more commonly applied to the natural sciences, such as in particular chaos and complexity theory, can in their view prove fruitful in psychoanalysis too, and it is shown how these notions are inherent in some of Freud's conceptions. The unconscious is stated to operate like a neural network, performing the kind of parallel processing used in the computing of highly complex situations, whereas the conscious mind is sequential. Dreams, in the authors' opinion, are organisers of the mind, imparting order to the turbulence of the underlying wishes and unconscious fantasies and structuring them through the dream work. Through dreams, the structured linearity of conscious thought can emerge out of the non-linear chaos of the drives. The dream's navel can be seen as the chaotic link, or interface, between the unconscious wish, which constitutes an attractor, and the conscious thought. The attractor may be visualised as having an hourglass or clepsydra shape, the narrow section being the dream's navel, and, being the same at any scale of observation, has the property of fractality.

  30. RAPID DYNAMICAL CHAOS IN AN EXOPLANETARY SYSTEM

    SciTech Connect

    Deck, Katherine M.; Winn, Joshua N.; Holman, Matthew J.; Carter, Joshua A.; Ragozzine, Darin; Agol, Eric; Lissauer, Jack J.

    2012-08-10

    We report on the long-term dynamical evolution of the two-planet Kepler-36 system, which consists of a super-Earth and a sub-Neptune in a tightly packed orbital configuration. The orbits of the planets, which we studied through numerical integrations of initial conditions that are consistent with observations of the system, are chaotic with a Lyapunov time of only {approx}10 years. The chaos is a consequence of a particular set of orbital resonances, with the inner planet orbiting 34 times for every 29 orbits of the outer planet. The rapidity of the chaos is due to the interaction of the 29:34 resonance with the nearby first-order 6:7 resonance, in contrast to the usual case in which secular terms in the Hamiltonian play a dominant role. Only one contiguous region of phase space, accounting for {approx}4.5% of the sample of initial conditions studied, corresponds to planetary orbits that do not show large-scale orbital instabilities on the timescale of our integrations ({approx}200 million years). Restricting the orbits to this long-lived region allows a refinement of estimates of the masses and radii of the planets. We find that the long-lived region consists of the initial conditions that satisfy the Hill stability criterion by the largest margin. Any successful theory for the formation of this system will need to account for why its current state is so close to unstable regions of phase space.

  31. Spirals, chaos, and new mechanisms of wave propagation.

    PubMed

    Chen, P S; Garfinkel, A; Weiss, J N; Karagueuzian, H S

    1997-02-01

    The chaos theory is based on the idea that phenomena that appear disordered and random may actually be produced by relatively simple deterministic mechanisms. The disordered (aperiodic) activation that characterizes a chaotic motion is reached through one of a few well-defined paths that are characteristic of nonlinear dynamical systems. Our group has been studying VF using computerized mapping techniques. We found that in electrically induced VF, reentrant wavefronts (spiral waves) are present both in the initial tachysystolic stage (resembling VT) and the later tremulous incoordination stage (true VF). The electrophysiological characteristics associated with the transition from VT to VF is compatible with the quasiperiodic route to chaos as described in the Ruelle-Takens theorem. We propose that specific restitution of action potential duration (APD) and conduction velocity properties can cause a spiral wave (the primary oscillator) to develop additional oscillatory modes that lead to spiral meander and breakup. When spiral waves begin to meander and are modulated by other oscillatory processes, the periodic activity is replaced by unstable quasiperiodic oscillation, which then undergoes transition to chaos, signaling the onset of VF. We conclude that VF is a form of deterministic chaos. The development of VF is compatible with quasiperiodic transition to chaos. These results indicate that both the prediction and the control of fibrillation are possible based on the chaos theory and with the advent of chaos control algorithms.

  32. Decrease of cardiac chaos in congestive heart failure

    NASA Astrophysics Data System (ADS)

    Poon, Chi-Sang; Merrill, Christopher K.

    1997-10-01

    The electrical properties of the mammalian heart undergo many complex transitions in normal and diseased states. It has been proposed that the normal heartbeat may display complex nonlinear dynamics, including deterministic chaos,, and that such cardiac chaos may be a useful physiological marker for the diagnosis and management, of certain heart trouble. However, it is not clear whether the heartbeat series of healthy and diseased hearts are chaotic or stochastic, or whether cardiac chaos represents normal or abnormal behaviour. Here we have used a highly sensitive technique, which is robust to random noise, to detect chaos. We analysed the electrocardiograms from a group of healthy subjects and those with severe congestive heart failure (CHF), a clinical condition associated with a high risk of sudden death. The short-term variations of beat-to-beat interval exhibited strongly and consistently chaotic behaviour in all healthy subjects, but were frequently interrupted by periods of seemingly non-chaotic fluctuations in patients with CHF. Chaotic dynamics in the CHF data, even when discernible, exhibited a high degree of random variability over time, suggesting a weaker form of chaos. These findings suggest that cardiac chaos is prevalent in healthy heart, and a decrease in such chaos may be indicative of CHF.

  1. Examining topographic variability within chaos terrain on Europa

    NASA Astrophysics Data System (ADS)

    Patterson, G. W.; Prockter, L. M.; Schenk, P.

    2008-12-01

    Chaos terrain is a unique and prevalent surface feature on the Galilean satellite Europa that forms as a result of the disruption of subcircular regions of the satellite's surface. Evidence suggests that these features are endogenic and that they form via processes involving the interaction of a mobile substrate with a brittle surface. Based on the morphology and relative topography of prominent and well-imaged examples of chaos terrain, models have been proposed suggesting that the mobile substrate could be either liquid water or ductile ice. Using a digital elevation model (DEM) of Conamara Chaos, Schenk and Pappalardo (2004) alluded to the presence of several prominent domes within the margins of the feature. They concluded that this was best described by a formation mechanism for chaos involving the diapiric upwelling of a ductile ice substrate, with the coalescence of several individual diapirs in the shallow subsurface. To explore this result in more detail, we use Fourier analysis to examine the long-wavelength components of the topography of several regions of chaos utilizing DEMs of Europa's surface produced utilizing stereo-controlled photoclinometry. Through this analysis, we identify the presence, size, and distribution of domes within the boundaries of chaos terrain and, with this information, examine how topographic variability within chaos terrain can be used to constrain proposed formation mechanisms for this unique feature-type.

  2. Comment on: ``Chaos in the Showalter-Noyes-Bar-Eli model of the Belousov-Zhabotinskii reaction''

    NASA Astrophysics Data System (ADS)

    Györgyi, László; Field, Richard J.

    1990-08-01

    The recent numerical work of Lindberg et al. convincingly demonstrates that chemical chaos in a continuous flow, stirred tank reactor (CSTR) can be reproduced by a spatially homogeneous, accurate model of the kinetics of the Belousov-Zhabotinskii(BZ) reaction. However, some problems remain. The chaos in this model and two others, one using an accurate model of the chemical kinetics in conjunction with spatial inhomogeneity resulting from the finite CSTR mixing time and the other using a flawed model of the BZ chemical kinetics, results from coupling of two cycles coexisting within the complex dynamic model. The second cycle in the case of the homogeneous models involves a product of the main chemical limit cycle which is present at a high average concentration. In the Lindberg et al. model this product is assumed to be HOBr. It is clear, however, that a large [HOBr] does not accumulate in the real system because of its rapid reaction with Br-. We suggest that while the Lindberg et al. results are clearly important, this process still needs to be accounted for. Furthermore, the rate parameter values used by Lindberg et al. are not those currently thought to be correct, and the chaos disappears if the accurate rate constant values are used. We discuss why this is so. It is further argued that the Lindberg et al. results do not eliminate the possibility that at least part of the experimentally observed CSTR chaos results from effects related to incomplete mixing.

  3. PREFACE: XXI Fluid Mechanics Conference

    NASA Astrophysics Data System (ADS)

    Szmyd, Janusz S.; Fornalik-Wajs, Elzbieta; Jaszczur, Marek

    2014-08-01

    This Conference Volume contains the papers presented at the 21st Fluid Mechanics Conference (XXI FMC) held at AGH - University of Science and Technology in Krakow, Poland, 15-18 June 2014, and accepted for Proceedings published in the Journal of Physics: Conference Series. The Fluid Mechanics Conferences have been taking place every two years since 1974, a total of forty years. The 21st Fluid Mechanics Conference (XXI FMC) is being organized under the auspices of the Polish Academy of Sciences, Committee of Mechanics. The goal of this conference is to provide a forum for the exposure and exchange of ideas, methods and results in fluid mechanics. Conference topics include, but are not limited to Aerodynamics, Atmospheric Science, Bio-Fluids, Combustion and Reacting Flows, Computational Fluid Dynamics, Experimental Fluid Mechanics, Flow Machinery, General Fluid Dynamics, Hydromechanics, Heat and Fluid Flow, Measurement Techniques, Micro- and Nano- Flow, Multi-Phase Flow, Non-Newtonian Fluids, Rotating and Stratified Flows, Turbulence. Within the general subjects of this conference, the Professor Janusz W. Elsner Competition for the best fluid mechanics paper presented during the Conference is organized. Authors holding a M.Sc. or a Ph.D. degree and who are not older than 35 years of age may enter the Competition. Authors with a Ph.D. degree must present individual papers; authors with a M.Sc. degree may present papers with their supervisor as coauthor, including original results of experimental, numerical or analytic research. Six state-of-the-art keynote papers were delivered by world leading experts. All contributed papers were peer reviewed. Recommendations were received from the International Scientific Committee, reviewers and the advisory board. Accordingly, of the 163 eligible extended abstracts submitted, after a review process by the International Scientific Committee, 137 papers were selected for presentation at the 21st Fluid Mechanics Conference, 68

  4. Quantum chaos in an ultrastrongly coupled bosonic junction.

    PubMed

    Naether, Uta; García-Ripoll, Juan José; Mazo, Juan José; Zueco, David

    2014-02-21

    The semiclassical and quantum dynamics of two ultrastrongly coupled nonlinear resonators cannot be explained using the discrete nonlinear Schrödinger equation or the Bose-Hubbard model, respectively. Instead, a model beyond the rotating wave approximation must be studied. In the semiclassical limit this model is not integrable and becomes chaotic for a finite window of parameters. For the quantum dimer we find corresponding regions of stability and chaos. The more striking consequence for both semiclassical and quantum chaos is that the tunneling time between the sites becomes unpredictable. These results, including the transition to chaos, can be tested in experiments with superconducting microwave resonators.

  5. Controlling spatiotemporal chaos in active dissipative-dispersive nonlinear systems

    NASA Astrophysics Data System (ADS)

    Gomes, S. N.; Pradas, M.; Kalliadasis, S.; Papageorgiou, D. T.; Pavliotis, G. A.

    2015-08-01

    We present an alternative methodology for the stabilization and control of infinite-dimensional dynamical systems exhibiting low-dimensional spatiotemporal chaos. We show that with an appropriate choice of time-dependent controls we are able to stabilize and/or control all stable or unstable solutions, including steady solutions, traveling waves (single and multipulse ones or bound states), and spatiotemporal chaos. We exemplify our methodology with the generalized Kuramoto-Sivashinsky equation, a paradigmatic model of spatiotemporal chaos, which is known to exhibit a rich spectrum of wave forms and wave transitions and a rich variety of spatiotemporal structures.

  6. Multiple period-doubling bifurcation route to chaos in periodically pulsed Murali-Lakshmanan-Chua circuit-controlling and synchronization of chaos.

    PubMed

    Parthasarathy, S; Manikandakumar, K

    2007-12-01

    We consider a simple nonautonomous dissipative nonlinear electronic circuit consisting of Chua's diode as the only nonlinear element, which exhibit a typical period doubling bifurcation route to chaotic oscillations. In this paper, we show that the effect of additional periodic pulses in this Murali-Lakshmanan-Chua (MLC) circuit results in novel multiple-period-doubling bifurcation behavior, prior to the onset of chaos, by using both numerical and some experimental simulations. In the chaotic regime, this circuit exhibits a rich variety of dynamical behavior including enlarged periodic windows, attractor crises, distinctly modified bifurcation structures, and so on. For certain types of periodic pulses, this circuit also admits transcritical bifurcations preceding the onset of multiple-period-doubling bifurcations. We have characterized our numerical simulation results by using Lyapunov exponents, correlation dimension, and power spectrum, which are found to be in good agreement with the experimental observations. Further controlling and synchronization of chaos in this periodically pulsed MLC circuit have been achieved by using suitable methods. We have also shown that the chaotic attractor becomes more complicated and their corresponding return maps are no longer simple for large n-periodic pulses. The above study also indicates that one can generate any desired n-period-doubling bifurcation behavior by applying n-periodic pulses to a chaotic system.

  7. Stilbazulenyl nitrone, a second-generation azulenyl nitrone antioxidant, confers enduring neuroprotection in experimental focal cerebral ischemia in the rat: neurobehavior, histopathology, and pharmacokinetics.

    PubMed

    Ley, James J; Vigdorchik, Alexey; Belayev, Ludmila; Zhao, Weizhao; Busto, Raul; Khoutorova, Larissa; Becker, David A; Ginsberg, Myron D

    2005-06-01

    Stilbazulenyl nitrone (STAZN) is a potent lipophilic second-generation azulenyl nitrone antioxidant, which is highly neuroprotective in rodent models of cerebral ischemia and trauma. This study was conducted to establish whether the neuroprotection induced by STAZN persists with chronic survival and to characterize STAZN's pharmacokinetics. Physiologically regulated rats received a 2-h middle cerebral artery occlusion by intraluminal suture and were treated with either STAZN [four 0.6 mg/kg doses i.p. administered at 2 (i.e., onset of recirculation), 4, 24, and 48 h; n = 16] or dimethyl sulfoxide vehicle (n = 11). They received sequential neurobehavioral examinations followed by quantitative neuropathology at 30 days. STAZN improved neurological deficits compared with vehicle controls, beginning within <2 h of the first dose and persisting throughout a 30-day survival. Large cystic necrotic infarcts were common in vehicle-treated rats but infrequent in STAZN-treated rats, and noninfarcted forebrain tissue was increased on average by 15%. In normal rats administered 5 mg/kg STAZN i.v. in Solutol HS 15/ethanol/saline vehicle, STAZN blood levels exhibited a biexponential decline, with an initial half-life of 28 min and a subsequent slow decay with half-life of approximately 7 h. STAZN tissue levels at 2 to 3 h were, on average, 2.5% of blood levels in forebrain, 56% in myocardium, and 41% in kidney. STAZN was concentrated in liver with initial concentrations averaging 5.2-fold above blood levels and a subsequent linear decline of 40% between 24 and 72 h. These results establish that STAZN confers enduring ischemic neuroprotection, has a long circulating half-life, and penetrates well into brain and other organs-characteristics favoring its potential therapeutic utility.

  8. Low-temperature physics: Chaos in the cold

    NASA Astrophysics Data System (ADS)

    Julienne, Paul S.

    2014-03-01

    A marriage between theory and experiment has shown that ultracold erbium atoms trapped with laser light and subjected to a magnetic field undergo collisions that are characterized by quantum chaos. See Letter p.475

  9. Transient Spatiotemporal Chaos in a Synaptically Coupled Neural Network

    NASA Astrophysics Data System (ADS)

    Lafranceschina, Jacopo; Wackerbauer, Renate

    2014-03-01

    Spatiotemporal chaos is transient in a diffusively coupled Morris-Lecar neural network. This study shows that the addition of synaptic coupling in the ring network reduces the average lifetime of spatiotemporal chaos for small to intermediate coupling strength and almost all numbers of synapses. For large coupling strength, close to the threshold of excitation, the average lifetime increases beyond the value for only diffusive coupling, and the collapse to the rest state dominates over the collapse to a traveling pulse state. The regime of spatiotemporal chaos is characterized by a slightly increasing Lyaponov exponent and degree of phase coherence as the number of synaptic links increases. The presence of transient spatiotemporal chaos in a network of coupled neurons and the associated chaotic saddle provides a possibility for switching between metastable states observed in information processing and brain function. This research is supported by the University of Alaska Fairbanks.

  10. Extension of spatiotemporal chaos in glow discharge-semiconductor systems

    SciTech Connect

    Akhmet, Marat Fen, Mehmet Onur; Rafatov, Ismail

    2014-12-15

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  11. Controlling spatiotemporal chaos in chains of dissipative Kapitza pendula.

    PubMed

    Chacón, R; Marcheggiani, L

    2010-07-01

    The control of chaos (suppression and enhancement) of a damped pendulum subjected to two perpendicular periodic excitations of its pivot (one chaos inducing and the other chaos controlling) is investigated. Analytical (Melnikov analysis) and numerical (Lyapunov exponents) results show that the initial phase difference between the two excitations plays a fundamental role in the control scenario. We demonstrate the effectiveness of the method in suppressing spatiotemporal chaos of chains of identical chaotic coupled pendula where homogeneous regularization is obtained under localized control on a minimal number of pendula. Additionally, we demonstrate the robustness of the control scenario against changes in the coupling function. In particular, synchronization-induced homogeneous regularization of chaotic chains can be highly enhanced by considering time-varying couplings instead of stationary couplings.

  12. Quasiperiodicity route to chaos in cardiac conduction model

    NASA Astrophysics Data System (ADS)

    Quiroz-Juárez, M. A.; Vázquez-Medina, R.; Ryzhii, E.; Ryzhii, M.; Aragón, J. L.

    2017-01-01

    It has been suggested that cardiac arrhythmias are instances of chaos. In particular that the ventricular fibrillation is a form of spatio-temporal chaos that arises from normal rhythm through a quasi-periodicity or Ruelle-Takens-Newhouse route to chaos. In this work, we modify the heterogeneous oscillator model of cardiac conduction system proposed in Ref. [Ryzhii E, Ryzhii M. A heterogeneous coupled oscillator model for simulation of ECG signals. Comput Meth Prog Bio 2014;117(1):40-49. doi:10.1016/j.cmpb.2014.04.009.], by including an ectopic pacemaker that stimulates the ventricular muscle to model arrhythmias. With this modification, the transition from normal rhythm to ventricular fibrillation is controlled by a single parameter. We show that this transition follows the so-called torus of quasi-periodic route to chaos, as verified by using numerical tools such as power spectrum and largest Lyapunov exponent.

  13. Extension of spatiotemporal chaos in glow discharge-semiconductor systems.

    PubMed

    Akhmet, Marat; Rafatov, Ismail; Fen, Mehmet Onur

    2014-12-01

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528-4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  14. Inducing chaos by resonant perturbations: theory and experiment.

    PubMed

    Lai, Ying-Cheng; Kandangath, Anil; Krishnamoorthy, Satish; Gaudet, John A; de Moura, Alessandro P S

    2005-06-03

    We propose a scheme to induce chaos in nonlinear oscillators that either are by themselves incapable of exhibiting chaos or are far away from parameter regions of chaotic behaviors. Our idea is to make use of small, judiciously chosen perturbations in the form of weak periodic signals with time-varying frequency and phase, and to drive the system into a hierarchy of nonlinear resonant states and eventually into chaos. We demonstrate this method by using numerical examples and a laboratory experiment with a Duffing type of electronic circuit driven by a phase-locked loop. The phase-locked loop can track the instantaneous frequency and phase of the Duffing circuit and deliver resonant perturbations to generate robust chaos.

  15. Computational chaos in massively parallel neural networks

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Gulati, Sandeep

    1989-01-01

    A fundamental issue which directly impacts the scalability of current theoretical neural network models to massively parallel embodiments, in both software as well as hardware, is the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the possible emergence of chaotic manifestations. Previous analyses attributed dynamical instability to the topology of the interconnection matrix, to parasitic components or to propagation delays. However, researchers have observed the existence of emergent computational chaos in a concurrently asynchronous framework, independent of the network topology. Researcher present a methodology enabling the effective asynchronous operation of large-scale neural networks. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are computed formally to characterize the underlying nonlinear dynamics. Simulation results are presented to illustrate network convergence to the correct results, even in the presence of large delays.

  16. Control of neural chaos by synaptic noise.

    PubMed

    Cortes, J M; Torres, J J; Marro, J

    2007-02-01

    We study neural automata - or neurobiologically inspired cellular automata - which exhibits chaotic itinerancy among the different stored patterns or memories. This is a consequence of activity-dependent synaptic fluctuations, which continuously destabilize the attractor and induce irregular hopping to other possible attractors. The nature of these irregularities depends on the dynamic details, namely, on the intensity of the synaptic noise and the number of sites of the network, which are synchronously updated at each time step. Varying these factors, different regimes occur, ranging from regular to chaotic dynamics. As a result, and in absence of external agents, the chaotic behavior may turn regular after tuning the noise intensity. It is argued that a similar mechanism might be on the basis of self-controlling chaos in natural systems.

  17. Chaos, fractals, and our concept of disease.

    PubMed

    Varela, Manuel; Ruiz-Esteban, Raul; Mestre de Juan, Maria Jose

    2010-01-01

    The classic anatomo-clinic paradigm based on clinical syndromes is fraught with problems. Nevertheless, for multiple reasons, clinicians are reluctant to embrace a more pathophysiological approach, even though this is the prevalent paradigm under "which basic sciences work. In recent decades, nonlinear dynamics ("chaos theory") and fractal geometry have provided powerful new tools to analyze physiological systems. However, these tools are embedded in the pathophysiological perspective and are not easily translated to our classic syndromes. This article comments on the problems raised by the conventional anatomo-clinic paradigm and reviews three areas in which the influence of nonlinear dynamics and fractal geometry can be especially prominent: disease as a loss of complexity, the idea of homeostasis, and fractals in pathology.

  18. Adaptive functional systems: learning with chaos.

    PubMed

    Komarov, M A; Osipov, G V; Burtsev, M S

    2010-12-01

    We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.

  19. A simple guide to chaos and complexity

    PubMed Central

    Rickles, Dean; Hawe, Penelope; Shiell, Alan

    2007-01-01

    The concepts of complexity and chaos are being invoked with increasing frequency in the health sciences literature. However, the concepts underpinning these concepts are foreign to many health scientists and there is some looseness in how they have been translated from their origins in mathematics and physics, which is leading to confusion and error in their application. Nonetheless, used carefully, “complexity science” has the potential to invigorate many areas of health science and may lead to important practical outcomes; but if it is to do so, we need the discipline that comes from a proper and responsible usage of its concepts. Hopefully, this glossary will go some way towards achieving that objective. PMID:17933949

  20. Secure communication based on spatiotemporal chaos

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao

    2015-08-01

    In this paper, we propose a novel approach to secure communication based on spatiotemporal chaos. At the transmitter end, the state variables of the coupled map lattice system are divided into two groups: one is used as the key to encrypt the plaintext in the N-shift encryption function, and the other is used to mix with the output of the N-shift function to further confuse the information to transmit. At the receiver end, the receiver lattices are driven by the received signal to synchronize with the transmitter lattices and an inverse procedure of the encoding is conducted to decode the information. Numerical simulation and experiment based on the TI TMS320C6713 Digital Signal Processor (DSP) show the feasibility and the validity of the proposed scheme. Project supported by the National Natural Science Foundation of China (Grant No. 61172070) and the Funds from the Science and Technology Innovation Team of Shaanxi Province, China (Grant No. 2013CKT-04).

  1. Chaos computing in terms of periodic orbits.

    PubMed

    Kia, Behnam; Spano, Mark L; Ditto, William L

    2011-09-01

    The complex dynamics of chaotic systems can perform computations. The parameters and/or the initial conditions of a dynamical system are the data inputs and the resulting system state is the output of the computation. By controlling how inputs are mapped to outputs, a specific function can be performed. Previously no clear connection has been drawn between the structure of the dynamics and the computation. In this paper we demonstrate how chaos computation can be explained, modeled, and even predicted in terms of the dynamics of the underlying chaotic system, specifically the periodic orbit structure of the system. Knowing the dynamical equations of the system, we compute the system's periodic orbits as well as its stability in terms of its eigenvalues, thereby demonstrating how, how well, and what the chaotic system can compute.

  2. Master equation analysis of deterministic chemical chaos

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Li, Qianshu

    1998-05-01

    The underlying microscopic dynamics of deterministic chemical chaos was investigated in this paper. We analyzed the master equation for the Williamowski-Rössler model by direct stochastic simulation as well as in the generating function representation. Simulation within an ensemble revealed that in the chaotic regime the deterministic mass action kinetics is related neither to the ensemble mean nor to the most probable value within the ensemble. Cumulant expansion analysis of the master equation also showed that the molecular fluctuations do not admit bounded values but increase linearly in time infinitely, indicating the meaninglessness of the chaotic trajectories predicted by the phenomenological equations. These results proposed that the macroscopic description is no longer useful in the chaotic regime and a more microscopic description is necessary in this circumstance.

  3. Rocks Exposed on Slope in Aram Chaos

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-550, 20 November 2003

    This spectacular vista of sedimentary rocks outcropping on a slope in Aram Chaos was acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) on 14 November 2003. Dark piles of coarse talus have come down the slopes as these materials continue to erode over time. Note that there are no small meteor impact craters in this image, indicating that erosion of these outcrops has been recent, if not on-going. This area is located near 2.8oS, 20.5oW. The 200 meter scale bar is about 656 feet across. Sunlight illuminates the scene from the lower right.

  4. Particle chaos and pitch angle scattering

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Dusenbery, P. B.; Speiser, T. W.

    1995-01-01

    Pitch angle scattering is a factor that helps determine the dawn-to-dusk current, controls particle energization, and it has also been used as a remote probe of the current sheet structure. Previous studies have interpreted their results under the exception that randomization will be greatest when the ratio of the two timescales of motion (gyration parallel to and perpendicular to the current sheet) is closet to one. Recently, the average expotential divergence rate (AEDR) has been calculated for particle motion in a hyperbolic current sheet (Chen, 1992). It is claimed that this AEDR measures the degree of chaos and therefore may be thought to measure the randomization. In contrast to previous expectations, the AEDR is not maximized when Kappa is approximately equal to 1 but instead increases with decreasing Kappa. Also contrary to previous expectations, the AEDR is dependent upon the parameter b(sub z). In response to the challenge to previous expectations that has been raised by this calculation of the AEDR, we have investigated the dependence of a measure of particle pitch angle scattering on both the parameters Kappa and b(sub z). We find that, as was previously expected, particle pitch angle scattering is maximized near Kappa = 1 provided that Kappa/b(sub z) greater than 1. In the opposite regime, Kappa/b(sub z) less than 1, we find that particle pitch angle scattering is still largest when the two timescales are equal, but the ratio of the timescales is proportional to b(sub z). In this second regime, particle pitch angle scattering is not due to randomization, but is instead due to a systematic pitch angle change. This result shows that particle pitch angle scattering need not be due to randomization and indicates how a measure of pitch angle scattering can exhibit a different behavior than a measure of chaos.

  5. Chaos suppression in gas-solid fluidization.

    PubMed

    Pence, Deborah V.; Beasley, Donald E.

    1998-06-01

    Fluidization in granular materials occurs primarily as a result of a dynamic balance between gravitational forces and forces resulting from the flow of a fluid through a bed of discrete particles. For systems where the fluidizing medium and the particles have significantly different densities, density wave instabilities create local pockets of very high void fraction termed bubbles. The fluidization regime is termed the bubbling regime. Such a system is appropriately termed a self-excited nonlinear system. The present study examines chaos suppression resulting from an opposing oscillatory flow in gas-solid fluidization. Time series data representing local, instantaneous pressure were acquired at the surface of a horizontal cylinder submerged in a bubbling fluidized bed. The particles had a weight mean diameter of 345 &mgr;m and a narrow size distribution. The state of fluidization corresponded to the bubbling regime and total air flow rates employed in the present study ranged from 10% to 40% greater than that required for minimum fluidization. The behavior of time-varying local pressure in fluidized beds in the absence of a secondary flow is consistent with deterministic chaos. Kolmogorov entropy estimates from local, instantaneous pressure suggest that the degree of chaotic behavior can be substantially suppressed by the presence of an opposing, oscillatory secondary flow. Pressure signals clearly show a "phase-locking" phenomenon coincident with the imposed frequency. In the present study, the greatest degree of suppression occurred for operating conditions with low primary and secondary flow rates, and a secondary flow oscillation frequency of 15 Hz. (c) 1998 American Institute of Physics.

  6. Chaos Time Series Prediction Based on Membrane Optimization Algorithms

    PubMed Central

    Li, Meng; Yi, Liangzhong; Pei, Zheng; Gao, Zhisheng

    2015-01-01

    This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ, m) and least squares support vector machine (LS-SVM) (γ, σ) by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM) broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). PMID:25874249

  7. Memristor, Hodgkin-Huxley, and Edge of Chaos

    NASA Astrophysics Data System (ADS)

    Chua, Leon

    2013-09-01

    From a pedagogical point of view, the memristor is defined in this tutorial as any 2-terminal device obeying a state-dependent Ohm’s law. This tutorial also shows that from an experimental point of view, the memristor can be defined as any 2-terminal device that exhibits the fingerprints of ‘pinched’ hysteresis loops in the v-i plane. It also shows that memristors endowed with a continuum of equilibrium states can be used as non-volatile analog memories. This tutorial shows that memristors span a much broader vista of complex phenomena and potential applications in many fields, including neurobiology. In particular, this tutorial presents toy memristors that can mimic the classic habituation and LTP learning phenomena. It also shows that sodium and potassium ion-channel memristors are the key to generating the action potential in the Hodgkin-Huxley equations, and that they are the key to resolving several unresolved anomalies associated with the Hodgkin-Huxley equations. This tutorial ends with an amazing new result derived from the new principle of local activity, which uncovers a minuscule life-enabling ‘Goldilocks zone’, dubbed the edge of chaos, where complex phenomena, including creativity and intelligence, may emerge. From an information processing perspective, this tutorial shows that synapses are locally-passive memristors, and that neurons are made of locally-active memristors.

  8. Measurement of many-body chaos using a quantum clock

    NASA Astrophysics Data System (ADS)

    Zhu, Guanyu; Hafezi, Mohammad; Grover, Tarun

    2016-12-01

    There has been recent progress in understanding chaotic features in many-body quantum systems. Motivated by the scrambling of information in black holes, it has been suggested that the time dependence of out-of-time-ordered (OTO) correlation functions such as is a faithful measure of quantum chaos. Experimentally, these correlators are challenging to access since they apparently require access to both forward and backward time evolution with the system Hamiltonian. Here we propose a protocol to measure such OTO correlators using an ancilla that controls the direction of time. Specifically, by coupling the state of the ancilla to the system Hamiltonian of interest, we can emulate the forward and backward time propagation, where the ancilla plays the role of a quantum clock. Within this scheme, the continuous evolution of the entire system (the system of interest and the ancilla) is governed by a time-independent Hamiltonian. We discuss the implementation of our protocol with current circuit-QED technology for a class of interacting Hamiltonians. Our protocol is immune to errors that could occur when the direction of time evolution is externally controlled by a classical switch.

  9. Energy constraints in pulsed phase control of chaos

    NASA Astrophysics Data System (ADS)

    Meucci, R.; Euzzor, S.; Zambrano, S.; Pugliese, E.; Francini, F.; Arecchi, F. T.

    2017-01-01

    Phase control of chaos is a powerful technique but little is known about its physical constraints, relevant for real systems. As a fact, it has not been explored whether this technique can also be applied when the controlling perturbation is not harmonic. Here we apply phase control on a driven double well Duffing oscillator using periodic rectangular pulsed perturbations instead of the classical sinusoidal perturbations. Experimental measurements and numerical simulations show that this kind of perturbation is also able to stabilize the chaotic orbits for an adequate selection of the phase. Furthermore, as the duty cycle of the perturbation (that is, the fraction of the time that the periodically pulsed control is active) is increased, two separate regimes occur. In the first one, the perturbations leading to stabilization of periodic solutions are of constant energy (taken as the product of the duty cycle and the amplitude) and in the second one, a saturation phenomenon occurs, implying that increasing energy values of the perturbations are wasted. Our results unveil the versatility of the pulsed phase control scheme and the importance of energy constraints.

  10. Chaos in the heart: the interaction between body and mind

    NASA Astrophysics Data System (ADS)

    Redington, Dana

    1993-11-01

    A number of factors influence the chaotic dynamics of heart function. Genetics, age, sex, disease, the environment, experience, and of course the mind, play roles in influencing cardiovascular dynamics. The mind is of particular interest because it is an emergent phenomenon of the body admittedly seated and co-occurrent in the brain. The brain serves as the body's controller, and commands the heart through complex multipathway feedback loops. Structures deep within the brain, the hypothalamus and other centers in the brainstem, modulate heart function, partially as a result of afferent input from the body but also a result of higher mental processes. What can chaos in the body, i.e., the nonlinear dynamics of the heart, tell of the mind? This paper presents a brief overview of the spectral structure of heart rate activity followed by a summary of experimental results based on phase space analysis of data from semi-structured interviews. This paper then describes preliminary quantification of cardiovascular dynamics during different stressor conditions in an effort to apply more quantitative methods to clinical data.

  11. Chaos and microbial systems. Progress report, July 1989--July 1990

    SciTech Connect

    Kot, M.

    1990-07-01

    A recurrent theme of much recent research is that seemingly random fluctuations often occur as the result of simple deterministic mechanisms. Hence, much of the recent work in nonlinear dynamics has centered on new techniques for identifying order in seemingly chaotic systems. To determine the robustness of these techniques, chaos must, to some extent, be brought into the laboratory. Preliminary investigations of the forced double-Monod equations, a model for a predator and a prey in a chemostat with periodic variation in inflowing substrate concentration, suggest that simple microbial systems may provide the perfect framework for determining the efficacy and relevance of the new nonlinear dynamics in dealing with complex population dynamics. This research has two main goals, that is the mathematical analysis and computer simulation of the periodically forced double-Monod equations and of related models; and experimental (chemostat) population studies that evaluate the accuracy and generality of the models, and that judge the usefulness of various new techniques of nonlinear dynamics to the study of populations.

  12. Memristor, Hodgkin-Huxley, and edge of chaos.

    PubMed

    Chua, Leon

    2013-09-27

    From a pedagogical point of view, the memristor is defined in this tutorial as any 2-terminal device obeying a state-dependent Ohm's law. This tutorial also shows that from an experimental point of view, the memristor can be defined as any 2-terminal device that exhibits the fingerprints of 'pinched' hysteresis loops in the v-i plane. It also shows that memristors endowed with a continuum of equilibrium states can be used as non-volatile analog memories. This tutorial shows that memristors span a much broader vista of complex phenomena and potential applications in many fields, including neurobiology. In particular, this tutorial presents toy memristors that can mimic the classic habituation and LTP learning phenomena. It also shows that sodium and potassium ion-channel memristors are the key to generating the action potential in the Hodgkin-Huxley equations, and that they are the key to resolving several unresolved anomalies associated with the Hodgkin-Huxley equations. This tutorial ends with an amazing new result derived from the new principle of local activity, which uncovers a minuscule life-enabling 'Goldilocks zone', dubbed the edge of chaos, where complex phenomena, including creativity and intelligence, may emerge. From an information processing perspective, this tutorial shows that synapses are locally-passive memristors, and that neurons are made of locally-active memristors.

  13. Low-order chaos in sympathetic nerve activity and scaling of heartbeat intervals

    NASA Astrophysics Data System (ADS)

    Osaka, Motohisa; Kumagai, Hiroo; Sakata, Katsufumi; Onami, Toshiko; Chon, Ki H.; Watanabe, Mari A.; Saruta, Takao

    2003-04-01

    The mechanism of 1/f scaling of heartbeat intervals remains unknown. We recorded heartbeat intervals, sympathetic nerve activity, and blood pressure in conscious rats with normal or high blood pressure. Using nonlinear analyses, we demonstrate that the dynamics of this system of three variables is low-order chaos, and that sympathetic nerve activity leads to heartbeat interval and blood pressure changes. It is suggested that impaired regulation of blood pressure by sympathetic nerve activity is likely to cause experimentally observable steeper scaling of heartbeat intervals in hypertensive (high blood pressure) rats.

  14. Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser.

    PubMed

    Wu, Jia-Gui; Xia, Guang-Qiong; Tang, Xi; Lin, Xiao-Dong; Deng, Tao; Fan, Li; Wu, Zheng-Mao

    2010-03-29

    The time delay (TD) signature concealment of optical feedback induced chaos in an external cavity semiconductor laser is experimentally demonstrated. Both the evolution curve and the distribution map of TD signature are obtained in the parameter space of external feedback strength and injection current. The optimum parameter scope of the TD signature concealment is also specified. Furthermore, the approximately periodic evolution relation between TD signature and external cavity length is observed and indicates that the intrinsic relaxation oscillation of semiconductor laser may play an important role during the process of TD signature suppression.

  15. Controlling chaos in ecology: from deterministic to individual-based models.

    PubMed

    Solé, R V; Gamarra, J G; Ginovart, M; López, D

    1999-11-01

    The possibility of chaos control in biological systems has been stimulated by recent advances in the study of heart and brain tissue dynamics. More recently, some authors have conjectured that such a method might be applied to population dynamics and even play a nontrivial evolutionary role in ecology. In this paper we explore this idea by means of both mathematical and individual-based simulation models. Because of the intrinsic noise linked to individual behavior, controlling a noisy system becomes more difficult but, as shown here, it is a feasible task allowed to be experimentally tested.

  16. Subterahertz chaos generation by coupling a superlattice to a linear resonator.

    PubMed

    Hramov, A E; Makarov, V V; Koronovskii, A A; Kurkin, S A; Gaifullin, M B; Alexeeva, N V; Alekseev, K N; Greenaway, M T; Fromhold, T M; Patanè, A; Kusmartsev, F V; Maksimenko, V A; Moskalenko, O I; Balanov, A G

    2014-03-21

    We investigate the effects of a linear resonator on the high-frequency dynamics of electrons in devices exhibiting negative differential conductance. We show that the resonator strongly affects both the dc and ac transport characteristics of the device, inducing quasiperiodic and high-frequency chaotic current oscillations. The theoretical findings are confirmed by experimental measurements of a GaAs/AlAs miniband semiconductor superlattice coupled to a linear microstrip resonator. Our results are applicable to other active solid state devices and provide a generic approach for developing modern chaos-based high-frequency technologies including broadband chaotic wireless communication and superfast random-number generation.

  17. Subterahertz Chaos Generation by Coupling a Superlattice to a Linear Resonator

    NASA Astrophysics Data System (ADS)

    Hramov, A. E.; Makarov, V. V.; Koronovskii, A. A.; Kurkin, S. A.; Gaifullin, M. B.; Alexeeva, N. V.; Alekseev, K. N.; Greenaway, M. T.; Fromhold, T. M.; Patanè, A.; Kusmartsev, F. V.; Maksimenko, V. A.; Moskalenko, O. I.; Balanov, A. G.

    2014-03-01

    We investigate the effects of a linear resonator on the high-frequency dynamics of electrons in devices exhibiting negative differential conductance. We show that the resonator strongly affects both the dc and ac transport characteristics of the device, inducing quasiperiodic and high-frequency chaotic current oscillations. The theoretical findings are confirmed by experimental measurements of a GaAs /AlAs miniband semiconductor superlattice coupled to a linear microstrip resonator. Our results are applicable to other active solid state devices and provide a generic approach for developing modern chaos-based high-frequency technologies including broadband chaotic wireless communication and superfast random-number generation.

  18. Bluetooth based chaos synchronization using particle swarm optimization and its applications to image encryption.

    PubMed

    Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun

    2012-01-01

    This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.

  19. Chaos in axially symmetric potentials with octupole deformation

    SciTech Connect

    Heiss, W.D.; Nazmitdinov, R.G.; Radu, S. Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049, Madrid )

    1994-04-11

    Classical and quantum mechanical results are reported for the single particle motion in a harmonic oscillator potential which is characterized by a quadrupole deformation and an additional octupole deformation. The chaotic character of the motion is strongly dependent on the quadrupole deformation in that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows strong chaos when the octupole term is turned on.

  20. Chaotic operation and chaos control of travelling wave ultrasonic motor.

    PubMed

    Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie

    2013-08-01

    The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled.

  1. Chaos synchronization based on quadratic optimum regulation and control

    NASA Astrophysics Data System (ADS)

    Gong, Lihua

    2005-03-01

    Based on the method of the quadratic optimum control, a quadratic optimal regulator used for synchronizing chaotic systems is constructed to realize chaos synchronization. The synchronization method can maintain the least error with less control energy, and then realize the optimization on both sides of energy and error synthetically. In addition, the control cost can also be reduced by using this method intermittently. The simulation results of the chaotic Chua's circuit and the Rossler chaos system prove that the method is effective.

  2. CONTROL OF LASER RADIATION PARAMETERS: Excitation of dynamic chaos in a monolithic ring chip laser upon periodic modulation of mechanical stresses in the active element

    NASA Astrophysics Data System (ADS)

    Kravtsov, Nikolai V.; Sidorov, S. S.; Pashinin, Pavel P.; Firsov, V. V.; Chekina, S. N.

    2004-04-01

    The peculiarities of nonlinear dynamics of solid-state bidirectional ring Nd:YAG chip lasers are studied theoretically and experimentally during periodic modulation of mechanical stresses in the active element. It is shown that modulation of mechanical stresses is an effective method for exciting dynamic chaos in a monolithic chip laser.

  3. Does chaos theory have major implications for philosophy of medicine?

    PubMed

    Holm, S

    2002-12-01

    In the literature it is sometimes claimed that chaos theory, non-linear dynamics, and the theory of fractals have major implications for philosophy of medicine, especially for our analysis of the concept of disease and the concept of causation. This paper gives a brief introduction to the concepts underlying chaos theory and non-linear dynamics. It is then shown that chaos theory has only very minimal implications for the analysis of the concept of disease and the concept of causation, mainly because the mathematics of chaotic processes entail that these processes are fully deterministic. The practical unpredictability of chaotic processes, caused by their extreme sensitivity to initial conditions, may raise practical problems in diagnosis, prognosis, and treatment, but it raises no major theoretical problems. The relation between chaos theory and the problem of free will is discussed, and it is shown that chaos theory may remove the problem of predictability of decisions, but does not solve the problem of free will. Chaos theory may thus be very important for our understanding of physiological processes, and specific disease entities, without having any major implications for philosophy of medicine.

  4. Maintenance and suppression of chaos by weak harmonic perturbations: a unified view.

    PubMed

    Chacón, R

    2001-02-26

    General results concerning maintenance or enhancement of chaos are presented for dissipative systems subjected to two harmonic perturbations (one chaos inducing and the other chaos enhancing). The connection with previous results on chaos suppression is also discussed in a general setting. It is demonstrated that, in general, a second harmonic perturbation can reliably play an enhancer or inhibitor role by solely adjusting its initial phase. Numerical results indicate that general theoretical findings concerning periodic chaos-inducing perturbations also work for aperiodic chaos-inducing perturbations, and in arrays of identical chaotic coupled oscillators.

  5. The Gaseous Electronics Conference radio-frequency reference cell: A defined parallel-plate radio-frequency system for experimental and theoretical studies of plasma-processing discharges

    SciTech Connect

    Hargis, P.J. Jr.; Greenberg, K.E.; Miller, P.A.; Gerardo, J.B.; Torczynski, J.R.; Riley, M.E.; Hebner, G.A. ); Roberts, J.R.; Olthoff, J.K.; Whetstone, J.R.; Van Brunt, R.J.; Sobolewski, M.A. ); Anderson, H.M.; Splichal, M.P.; Mock, J.L. ); Bletzinger, P.; Garscadden, A. ); Gottscho, R.A. ); Selwyn, G.; Dalvie, M.; Heidenreich, J.E. ); Butterbaugh, J.W. ); Brake, M.L.; Passow, M.L.; Pender,

    1994-01-01

    A reference cell'' for generating radio-frequency (rf) glow discharges in gases at a frequency of 13.56 MHz is described. The reference cell provides an experimental platform for comparing plasma measurements carried out in a common reactor geometry by different experimental groups, thereby enhancing the transfer of knowledge and insight gained in rf discharge studies. The results of performing ostensibly identical measurements on six of these cells in five different laboratories are analyzed and discussed. Measurements were made of plasma voltage and current characteristics for discharges in pure argon at specified values of applied voltages, gas pressures, and gas flow rates. Data are presented on relevant electrical quantities derived from Fourier analysis of the voltage and current wave forms. Amplitudes, phase shifts, self-bias voltages, and power dissipation were measured. Each of the cells was characterized in terms of its measured internal reactive components. Comparing results from different cells provides an indication of the degree of precision needed to define the electrical configuration and operating parameters in order to achieve identical performance at various laboratories. The results show, for example, that the external circuit, including the reactive components of the rf power source, can significantly influence the discharge. Results obtained in reference cells with identical rf power sources demonstrate that considerable progress has been made in developing a phenomenological understanding of the conditions needed to obtain reproducible discharge conditions in independent reference cells.

  6. Immune protection conferred by recombinant MRLC (myosin regulatory light chain) antigen in TiterMax Gold® adjuvant against experimental fasciolosis in rats.

    PubMed

    Henker, Luan C; Schwertz, Claiton I; Lucca, Neuber J; Piva, Manoela M; Prior, Keila C; Baska, Piotr; Norbury, Luke; Januszkiewicz, Kamil; Dezen, Diogenes; Duarte, Marta M M F; Moresco, Rafael N; Bertagnolli da Rosa, Liana; Mendes, Ricardo E

    2017-01-23

    Protection against experimental fasciolosis in rats immunized with recombinant myosin regulatory light chain (MRLC) in TiterMax Gold® adjuvant was assessed. The experimental trial consisted of four groups of 15 animals; group 1 was unimmunized and infected, group 2 was immunized with MRLC in adjuvant and infected, group 3 was infected and immunized with adjuvant only and group 4 was unimmunized and uninfected. Immunization with MRLC in TiterMax Gold® adjuvant (group 2) induced a reduction in fluke burdens of 51.0% (p<0.001) when compared with the adjuvant control group, and 61.5% (p<0.001) when compared with the unimmunized infected controls. There was a reduction in fecal egg output in group 2 of 44.8% and 37.3% compared with group 1 and group 3, respectively; although this difference was not statistically significant. Measurement of cytokine levels revealed higher levels of TNF-alpha and IL-2 as well as lower levels of IL-4 in group 2 during the chronic stage of infection (p<0.05), along with higher levels of IFN-gamma during early stages of infection (p<0.05). These results suggest a mixed Th1/Th2 phenotype immune response; however predominance of Th1 cytokines was observed. Levels of anti-MRLC serum IgG in group 2 were significantly higher than controls at the time of euthanasia (p<0.05). This is the first report of immunization with recombinant MRLC in rats, demonstrating that this antigen significantly reduces fluke burdens, increases the Th1 immune response and encourages further studies to improve the vaccine's efficacy.

  7. Sources of Chaos in Planetary Systems Formed Through Numerical Methods

    NASA Astrophysics Data System (ADS)

    Clement, Matthew S.

    2017-01-01

    The formation of the solar system’s terrestrial planets has been numerically modeled in countless works, and many other studies have been devoted to char- acterizing our modern planets’ chaotic dynamical state. However, it is still not known whether our planets fragile chaotic state is an expected outcome of terrestrial planet accretion. We use a large suite of numerical simulations to present a detailed analysis and characterization of the dynamical chaos in 145 different systems produced via terrestrial planet formation in Kaib & Cowan (2015). These systems were created in the presence of a fully formed Jupiter and Saturn, using a variety of different initial conditions. We provide the first analysis of the dynamical states of fully evolved (4.5 Gyr) planetary systems formed using numerical simulations. We find that dynamical chaos is preva- lent in roughly half of the systems, with the largest source of the chaos being perturbations from Jupiter. Chaos is most prevalent in systems that form 4 or 5 terrestrial planets. Additionally, an eccentric Jupiter and Saturn is shown to enhance the prevalence of chaos in systems. Furthermore, systems with a center of mass highly concentrated between 0.8-1.2 AU generally prove to be less chaotic than systems with more exotic mass distributions. Through the process of evolving systems to the current epoch, we show that late instabilities are quite common in our systems. Of greatest interest, many of the sources of chaos observed in our own solar system (such as the secularly driven chaos between Mercury and Jupiter) are shown to be common outcomes of terrestrial planetary formation. Thus, the solar system’s marginally stable, chaotic state may naturally arise from the process of terrestrial planet formation.

  8. Chaos in the Showalter-Noyes-Bar-Eli model of the Belousov-Zhabotinskii reaction

    NASA Astrophysics Data System (ADS)

    Lindberg, David; Turner, Jack S.; Barkley, Dwight

    1990-03-01

    The observation of robust, large-scale chaos in the Showalter-Noyes-Bar-Eli model of the Belousov-Zhabotinskii reaction is reported. The chaos observed is comparable to that found in CSTR experiments at low flow rates.

  9. Comparison Between Terrestrial Explosion Crater Morphology in Floating Ice and Europan Chaos

    NASA Technical Reports Server (NTRS)

    Billings, S. E.; Kattenhorn, S. A.

    2003-01-01

    Craters created by explosives have been found to serve as valuable analogs to impact craters, within limits. Explosion craters have been created in floating terrestrial ice in experiments related to clearing ice from waterways. Features called chaos occur on the surface of Europa s floating ice shell. Chaos is defined as a region in which the background plains have been disrupted. Common features of chaos include rafted blocks of pre-existing terrain suspended in a matrix of smooth or hummocky material; low surface albedo; and structural control on chaos outline shape by pre-existing lineaments. All published models of chaos formation call on endogenic processes whereby chaos forms through thermal processes. Nonetheless, we note morphological similarities between terrestrial explosion craters and Europan chaos at a range of scales and consider whether some chaos may have formed by impact. We explore these similarities through geologic and morphologic mapping.

  10. 13th International Conference on Chlamydomonas

    SciTech Connect

    Silflow, Carolyn D.

    2014-03-11

    The 13th International Conference on Chlamydomonas (EMBO Workshop on the Cell and Molecular Biology of Chlamydomonas) was held May 27 to June 1, 2008 in Hyeres, France. The conference was the biennial meeting for all researchers studying the green algal systems Chlamydomonas and Volvox. The conference brought together approximately 200 investigators from around the world (North America, Asia, Europe and Australia) representing different fields and disciplines (cell biology, genetics, biochemistry, biophysics, plant physiology, genomics). It provided an opportunity for investigators from different countries to share methodologies and to discuss recent results with a focus on the Chlamydomonas experimental system.

  11. Conference Abstracts: AEDS '82.

    ERIC Educational Resources Information Center

    Journal of Computers in Mathematics and Science Teaching, 1982

    1982-01-01

    Abstracts from nine selected papers presented at the 1982 Association for Educational Data Systems (AEDS) conference are provided. Copies of conference proceedings may be obtained for fifteen dollars from the Association. (MP)

  12. Initial-state dependence of the route to chaos of an external-cavity laser

    NASA Astrophysics Data System (ADS)

    Locquet, A.; Kim, Byungchil; Choi, Daeyoung; Li, Nianqiang; Citrin, D. S.

    2017-02-01

    External-cavity semiconductor lasers (ECLs), consisting of a laser diode in front of a mirror to reflect light back into the laser diode, are among the most important dynamical systems because of their ultrafast dynamics, their tunability, and the numerous existing applications. The dynamics of an ECL is greatly influenced by the existence and stability of numerous modes of the external cavity. In such high-dimensional nonlinear systems, numerous attractors, located around various modes of the external cavity, can coexist in phase space for a given set of parameters, a phenomenon called generalized multistability. In this work, we propose a procedure that allows one to select experimentally different modes of the external cavity as different initial states. We use this procedure to reveal experimentally generalized multistability in an ECL through the demonstration that different routes to chaos exist in an ECL, depending on the initial state selected. In particular, we show that the famous quasiperiodic route to chaos is only observed for specific choices of initial conditions.

  13. Linear vs nonlinear and infinite vs finite: An interpretation of chaos

    SciTech Connect

    Protopopescu, V.

    1990-10-01

    An example of a linear infinite-dimensional system is presented that exhibits deterministic chaos and thus challenges the presumably unquestionable connection between chaos and nonlinearity. Via this example, the roles of, and relationships between, linearity, nonlinearity, infinity and finiteness in the occurrence of chaos are investigated. The analysis of these complementary but related aspects leads to: a new interpretation of chaos as the manifestation of incompressible and thus incompressible information and a conjecture about the nonexistence of operationally accessible linear systems.

  14. Tachyons, Lamb shifts and superluminal chaos

    NASA Astrophysics Data System (ADS)

    Tomaschitz, R.

    2000-10-01

    An elementary account on the origins of cosmic chaos in an open and multiply connected universe is given; there is a finite region in the open 3-space in which the world-lines of galaxies are chaotic, and the mixing taking place in this chaotic nucleus of the universe provides a mechanism to create equidistribution. The galaxy background defines a distinguished frame of reference and a unique cosmic time order; in this context superluminal signal transfer is studied. Tachyons are described by a real Proca field with negative mass square, coupled to a current of subluminal matter. Estimates on tachyon mixing in the geometric optics limit are derived. The potential of a static point source in this field theory is a damped periodic function. We treat this tachyon potential as a perturbation of the Coulomb potential, and study its effects on energy levels in hydrogenic systems. By comparing the induced level shifts to high-precision Lamb shift measurements and QED calculations, we suggest a tachyon mass of 2.1 keV/c2 and estimate the tachyonic coupling strength to subluminal matter. The impact of the tachyon field on ground state hyperfine transitions in hydrogen and muonium is investigated. Bounds on atomic transition rates effected by tachyon radiation as well as estimates on the spectral energy density of a possible cosmic tachyon background radiation are derived.

  15. Topological chaos in inviscid and viscous mixers

    NASA Astrophysics Data System (ADS)

    Finn, M. D.; Cox, S. M.; Byrne, H. M.

    2003-10-01

    Topological chaos may be used to generate highly effective laminar mixing in a simple batch stirring device. Boyland, Aref & Stremler (2000) have computed a material stretch rate that holds in a chaotic flow, provided it has appropriate topological properties, irrespective of the details of the flow. Their theoretical approach, while widely applicable, cannot predict the size of the region in which this stretch rate is achieved. Here, we present numerical simulations to support the observation of Boyland et al. that the region of high stretch is comparable with that through which the stirring elements move during operation of the device. We describe a fast technique for computing the velocity field for either inviscid, irrotational or highly viscous flow, which enables accurate numerical simulation of dye advection. We calculate material stretch rates, and find close agreement with those of Boyland et al., irrespective of whether the fluid is modelled as inviscid or viscous, even though there are significant differences between the flow fields generated in the two cases.

  16. Observational Manifestation of Chaos in Astrophysical Objects

    NASA Astrophysics Data System (ADS)

    Fridman, A.; Marov, M.; Miller, R.

    2002-12-01

    This book addresses a broad range of problems related to observed manifestations of chaotic motions in galactic and stellar objects, by invoking basic theory, numerical modeling, and observational evidence. For the first time, methods of stochastic dynamics are applied to actually observed astronomical objects, e.g. the gaseous disc of the spiral galaxy NGC 3631. In the latter case, the existence of chaotic trajectories in the boundary of giant vortices was recently found by the calculation of the Lyapunov characteristic number of these trajectories. The reader will find research results on the peculiarities of chaotic system behaviour; a study of the integrals of motion in self-consistent systems; numerical modeling results of the evolution process of disk systems involving resonance excitation of the density waves in spiral galaxies; a review of specific formations in stars and high-energy sources demonstrating their stochastic nature; a discussion of the peculiarities of the precessional motion of the accretion disk and relativistic jets in the double system SS 433; etc. This book stands out as the first one that deals with the problem of chaos in real astrophysical objects. It is intended for graduate and post-graduate students in the fields of non-linear dynamics, astrophysics, planetary and space physics; specifically for those dealing with computer modeling of the relevant processes. Link: http://www.wkap.nl/prod/b/1-4020-0935-6

  17. Interactive Workshop Discusses Nonlinear Waves and Chaos

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce; Morales, George; Passot, Thierry

    2010-07-01

    Eighth International Nonlinear Wave Workshop; La Jolla, California, 1-5 March 2010; Nonlinear waves and chaos were the focus of a weeklong series of informal and interactive discussions at the Eighth International Nonlinear Wave Workshop (NWW8), held in California. The workshop gathered nonlinear plasma and water wave experts from the United States, France, Czech Republic, Germany, Greece, Holland, India, and Japan. Attendees were from the fields of space, laboratory, and fusion plasma physics, astrophysics, and applied mathematics. Special focus was placed on nonlinear waves and turbulence in the terrestrial environment as well as in the interstellar medium from observational, laboratory, and theoretical perspectives. Discussions covered temperature anisotropies and related instabilities, the properties and origin of the so-called dissipation range, and various coherent structures of electromagnetic as well as electrostatic nature. Reconnection and shocks were also topics of discussion, as were properties of magnetospheric whistler and chorus waves. Examples and analysis techniques for superdiffusion and subdiffusion were identified. On this last topic, a good exchange of ideas and results occurred between a water wave expert and a plasma expert, with the rest of the audience listening intently.

  18. Galileo disposal strategy: stability, chaos and predictability

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron J.; Daquin, Jérôme; Tsiganis, Kleomenis; Alessi, Elisa Maria; Deleflie, Florent; Rossi, Alessandro; Valsecchi, Giovanni B.

    2017-02-01

    Recent studies have shown that the medium-Earth orbit (MEO) region of the global navigation satellite systems is permeated by a devious network of lunisolar secular resonances, which can interact to produce chaotic and diffusive motions. The precarious state of the four navigation constellations, perched on the threshold of instability, makes it understandable why all past efforts to define stable graveyard orbits, especially in the case of Galileo, were bound to fail; the region is far too complex to allow for an adoption of the simple geosynchronous disposal strategy. We retrace one such recent attempt, funded by ESA's General Studies Programme in the frame of the GreenOPS initiative, that uses a systematic parametric approach and the straightforward maximum-eccentricity method to identify long-term-stable regions, suitable for graveyards, as well as large-scale excursions in eccentricity, which can be used for post-mission deorbiting of constellation satellites. We then apply our new results on the stunningly rich dynamical structure of the MEO region towards the analysis of these disposal strategies for Galileo, and discuss the practical implications of resonances and chaos in this regime. We outline how the identification of the hyperbolic and elliptic fixed points of the resonances near Galileo can lead to explicit criteria for defining optimal disposal strategies.

  19. Chaos and Symmetry in String Cosmology

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    2008-09-01

    We review the recently discovered interplay between chaos and symmetry in the general inhomogeneous solution of many string-related Einstein-matter systems in the vicinity of a cosmological singularity. The Belinsky-Khalatnikov-Lifshitz-type chaotic behaviour is found, for many Einstein-matter models (notably those related to the low-energy limit of superstring theory and M-theory), to be connected with certain (infinite-dimensional) hyperbolic Kac-Moody algebras. In particular, the billiard chambers describing the asymptotic cosmological behaviour of pure Einstein gravity in spacetime dimension d+1, or the metric-three-form system of 11-dimensional supergravity, are found to be identical to the Weyl chambers of the Lorentzian Kac-Moody algebras AEd, or E10, respectively. This suggests that these Kac-Moody algebras are hidden symmetries of the corresponding models. There even exists some evidence of a hidden equivalence between the general solution of the Einstein-three-form system and a null geodesic in the infinite dimensional coset space E10/K(E10), where K(E10) is the maximal compact subgroup of E10.

  20. Kinematic dynamo, supersymmetry breaking, and chaos

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Igor V.; Enßlin, Torsten A.

    2016-04-01

    The kinematic dynamo (KD) describes the growth of magnetic fields generated by the flow of a conducting medium in the limit of vanishing backaction of the fields onto the flow. The KD is therefore an important model system for understanding astrophysical magnetism. Here, the mathematical correspondence between the KD and a specific stochastic differential equation (SDE) viewed from the perspective of the supersymmetric theory of stochastics (STS) is discussed. The STS is a novel, approximation-free framework to investigate SDEs. The correspondence reported here permits insights from the STS to be applied to the theory of KD and vice versa. It was previously known that the fast KD in the idealistic limit of no magnetic diffusion requires chaotic flows. The KD-STS correspondence shows that this is also true for the diffusive KD. From the STS perspective, the KD possesses a topological supersymmetry, and the dynamo effect can be viewed as its spontaneous breakdown. This supersymmetry breaking can be regarded as the stochastic generalization of the concept of dynamical chaos. As this supersymmetry breaking happens in both the diffusive and the nondiffusive cases, the necessity of the underlying SDE being chaotic is given in either case. The observed exponentially growing and oscillating KD modes prove physically that dynamical spectra of the STS evolution operator that break the topological supersymmetry exist with both real and complex ground state eigenvalues. Finally, we comment on the nonexistence of dynamos for scalar quantities.

  1. An extended active control for chaos synchronization

    NASA Astrophysics Data System (ADS)

    Tang, Rong-An; Liu, Ya-Li; Xue, Ju-Kui

    2009-04-01

    By introducing a control strength matrix, the active control theory in chaotic synchronization is developed. With this extended method, chaos complete synchronization can be achieved more easily, i.e., a much smaller control signal is enough to reach synchronization in most cases. Numerical simulations on Rossler, Liu's four-scroll, and Chen system confirmed this and show that the synchronization result depends on the control strength significantly. Especially, in the case of Liu and Chen systems, the response systems' largest Lyapunov exponents' variation with the control strength is not monotone and there exist minima. It is novel for Chen system that the synchronization speed with a special small strength is higher than that of the usual active control which, as a special case of the extended method, has a much larger control strength. All these results indicate that the control strength is an important factor in the actual synchronization. So, with this extended active control, one can make a better and more practical synchronization scheme by adjusting the control strength matrix.

  2. Chaos Synchronization in Navier-Stokes Turbulence

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian; Meneveau, Charles; Eyink, Gregory

    2013-03-01

    Chaos synchronization (CS) has been studied for some time now (Pecora & Carroll 1990), for systems with only a few degrees of freedom as well as for systems described by partial differential equations (Boccaletti et al 2002). CS in general is said to be present in coupled dynamical systems when a specific property of each system has the same time evolution for all, even though the evolution itself is chaotic. The Navier-Stokes (NS) equations describe the velocity for a wide range of fluids, and their solutions are usually called turbulent if fluctuation amplitudes decrease as a power of their wavenumber. There have been some studies of CS for continuous systems (Kocarev et al 1997), but CS for NS turbulence seems not to have been investigated so far. We focus on the synchronization of the small scales of a turbulent flow for which the time history of large scales is prescribed. Our DNS results show that high-wavenumbers in turbulence are fully slaved to modes with wavenumbers up to a critical fraction of the Kolmogorov dissipation wavenumber. The motivation for our work is to study deeply sub-Kolmogorov scales in fully developed turbulence (Schumacher 2007), which we found to be recoverable even at very high Reynolds number from simulations with moderate resolutions. This work is supported by the National Science Foundation's CDI-II program, project CMMI-0941530

  3. Chaos Synchronization in Navier-Stokes Turbulence

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian C.; Meneveau, Charles; Eyink, Gregory L.

    2012-11-01

    Chaos synchronization (CS) has been studied for some time now (Pecora & Carroll 1990), for systems with only a few degrees of freedom as well as for systems described by partial differential equations (Boccaletti et al. 2002). CS in general is said to be present in a pair of coupled dynamical systems when a specific property of each system has the same time evolution for both, even though the evolution itself is chaotic. There have been some studies of CS for systems with an infinite number of degrees of freedom (Kocarev et al. 1997), but CS for Navier-Stokes (NS) turbulence seems not to have been investigated so far. We focus on the synchronization of the small scales of a turbulent flow for which the time history of large scales is prescribed. We present DNS results which show that high-wavenumbers in turbulence are fully slaved to modes with wavenumbers up to a critical fraction of the Kolmogorov dissipation wavenumber. We compare our results with related ideas of ``approximate inertial manifolds.'' The motivation for our work is to study deeply sub-Kolmogorov scales in fully developed turbulence (Schumacher 2007), which we show are recoverable even at very high Reynolds number from simulations that only resolve down to about the Kolmogorov scale. This work is supported by the National Science Foundation's CDI-II program, project CMMI-0941530.

  4. Genotoxicity of drinking water from Chao Lake

    SciTech Connect

    Liu, Q.; Jiao, Q.C.; Huang, X.M.; Jiang, J.P.; Cui, S.Q.; Yao, G.H.; Jiang, Z.R.; Zhao, H.K.; Wang, N.Y.

    1999-02-01

    Genotoxic activity appears to originate primarily from reactions of chlorine with humic substances in the source waters. Comparisons of extracts of settled versus chlorinated water have confirmed that chlorinating during water treatment produces mutagenic activity in the mutagenicity tests. Present work on XAD-2 extracts of raw, chlorinated (treated), and settled water from the Chao Lake region of China has involved a battery of mutagenicity assays for various genetic endpoints: the Salmonella test, the sister-chromatid exchange (SCE) induction in Chinese hamster lung (CHL) cells, and the micronucleus (MN) induction in the peripheral blood erythrocytes of silver carp. Extracts of raw and treated water but not the settled water are mutagenic in the Salmonella assay. On the other hand, extracts of three water samples show activity in the SCE and MN assays, especially the raw and treated water. These data show that contamination and chlorinating contribute mutagens to drinking water and suggest that the mammalian assays may be more sensitive for detecting mutagenicity in aquatic environment than the Salmonella test.

  5. Asynchronous Rate Chaos in Spiking Neuronal Circuits

    PubMed Central

    Harish, Omri; Hansel, David

    2015-01-01

    The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results. PMID:26230679

  6. Global interactions, information flow, and chaos synchronization.

    PubMed

    Paredes, G; Alvarez-Llamoza, O; Cosenza, M G

    2013-10-01

    We investigate the relationship between the emergence of chaos synchronization and the information flow in dynamical systems possessing homogeneous or heterogeneous global interactions whose origin can be external (driven systems) or internal (autonomous systems). By employing general models of coupled chaotic maps for such systems, we show that the presence of a homogeneous global field, either external or internal, for all times is not indispensable for achieving complete or generalized synchronization in a system of chaotic elements. Complete synchronization can also appear with heterogeneous global fields; it does not requires the simultaneous sharing of the field by all the elements in a system. We use the normalized mutual information and the information transfer between global and local variables to characterize complete and generalized synchronization. We show that these information measures can characterize both types of synchronized states and also allow us to discern the origin of a global interaction field. A synchronization state emerges when a sufficient amount of information provided by a field is shared by all the elements in the system, on the average over long times. Thus, the maximum value of the top-down information transfer can be used as a predictor of synchronization in a system, as a parameter is varied.

  7. Superfluidity and Chaos in low dimensional circuits

    PubMed Central

    Arwas, Geva; Vardi, Amichay; Cohen, Doron

    2015-01-01

    The hallmark of superfluidity is the appearance of “vortex states” carrying a quantized metastable circulating current. Considering a unidirectional flow of particles in a ring, at first it appears that any amount of scattering will randomize the velocity, as in the Drude model, and eventually the ergodic steady state will be characterized by a vanishingly small fluctuating current. However, Landau and followers have shown that this is not always the case. If elementary excitations (e.g. phonons) have higher velocity than that of the flow, simple kinematic considerations imply metastability of the vortex state: the energy of the motion cannot dissipate into phonons. On the other hand if this Landau criterion is violated the circulating current can decay. Below we show that the standard Landau and Bogoliubov superfluidity criteria fail in low-dimensional circuits. Proper determination of the superfluidity regime-diagram must account for the crucial role of chaos, an ingredient missing from the conventional stability analysis. Accordingly, we find novel types of superfluidity, associated with irregular or chaotic or breathing vortex states. PMID:26315272

  8. The General Conference Mennonites.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    General Conference Mennonites and Old Order Amish are compared and contrasted in the areas of physical appearance, religious beliefs, formal education, methods of farming, and home settings. General Conference Mennonites and Amish differ in physical appearance and especially in dress. The General Conference Mennonite men and women dress the same…

  9. EDITORIAL: Conference program

    NASA Astrophysics Data System (ADS)

    2006-04-01

    Some of the papers and talks given at the conference have not been published in this volume of Journal of Physics: Conference Series. The attached PDF file lists the full conference program and indicates (with an asterisk) those papers or talks which are not present in this volume.

  10. Youth Conference Handbook.

    ERIC Educational Resources Information Center

    Brown, Brenda H.

    This handbook is designed to provide practical aid to those who have charge of the planning and organization of a youth conference, Defined as a conference to provide practical information as well as information about possible responsibilities, risks, and consequences of actions, related to the chosen conference topic. Suggestions are given for…

  11. Parent Conferences. Beginnings Workshop.

    ERIC Educational Resources Information Center

    Duffy, Roslyn; And Others

    1997-01-01

    Presents six workshop sessions on parent conferences: (1) "Parents' Perspectives on Conferencing" (R. Duffy); (2) "Three Way Conferences" (G. Zeller); (3) "Conferencing with Parents of Infants" (K. Albrecht); (4) "Conferencing with Parents of School-Agers" (L. G. Miller); (5) "Cross Cultural Conferences" (J. Gonzalez-Mena); and (6) "Working with…

  12. Chaos based encryption system for encrypting electroencephalogram signals.

    PubMed

    Lin, Chin-Feng; Shih, Shun-Han; Zhu, Jin-De

    2014-05-01

    In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals.

  13. Noise can prevent onset of chaos in spatiotemporal population dynamics

    NASA Astrophysics Data System (ADS)

    Petrovskii, S.; Morozov, A.; Malchow, H.; Sieber, M.

    2010-11-01

    Many theoretical approaches predict the dynamics of interacting populations to be chaotic but that has very rarely been observed in ecological data. It has therefore risen a question about factors that can prevent the onset of chaos by, for instance, making the population fluctuations synchronized over the whole habitat. One such factor is stochasticity. The so-called Moran effect predicts that a spatially correlated noise can synchronize the local population dynamics in a spatially discrete system, thus preventing the onset of spatiotemporal chaos. On the whole, however, the issue of noise has remained controversial and insufficiently understood. In particular, a well-built nonspatial theory infers that noise enhances chaos by making the system more sensitive to the initial conditions. In this paper, we address the problem of the interplay between deterministic dynamics and noise by considering a spatially explicit predator-prey system where some parameters are affected by noise. Our findings are rather counter-intuitive. We show that a small noise (i.e. preserving the deterministic skeleton) can indeed synchronize the population oscillations throughout space and hence keep the dynamics regular, but the dependence of the chaos prevention probability on the noise intensity is of resonance type. Once chaos has developed, it appears to be stable with respect to a small noise but it can be suppressed by a large noise. Finally, we show that our results are in a good qualitative agreement with some available field data.

  14. Topographic variations in chaos on Europa: Implications for diapiric formation

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.; Pappalardo, Robert T.

    2004-08-01

    Disrupted terrain, or chaos, on Europa, might have formed through melting of a floating ice shell from a subsurface ocean [Carr et al., 1998; Greenberg et al., 1999], or breakup by diapirs rising from the warm lower portion of the ice shell [Head and Pappalardo, 1999; Collins et al., 2000]. Each model makes specific and testable predictions for topographic expression within chaos and relative to surrounding terrains on local and regional scales. High-resolution stereo-controlled photoclinometric topography indicates that chaos topography, including the archetypal Conamara Chaos region, is uneven and commonly higher than surrounding plains by up to 250 m. Elevated and undulating topography is more consistent with diapiric uplift of deep material in a relatively thick ice shell, rather than melt-through and refreezing of regionally or globally thin ice by a subsurface ocean. Vertical and horizontal scales of topographic doming in Conamara Chaos are consistent with a total ice shell thickness >15 km. Contact between Europa's ocean and surface may most likely be indirectly via diapirism or convection.

  15. Topographic variations in chaos on Europa: Implications for diapiric formation

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Pappalardo, Robert T.

    2004-01-01

    Disrupted terrain, or chaos, on Europa, might have formed through melting of a floating ice shell from a subsurface ocean [Cam et al., 1998; Greenberg et al., 19991, or breakup by diapirs rising from the warm lower portion of the ice shell [Head and Pappalardo, 1999; Collins et al., 20001. Each model makes specific and testable predictions for topographic expression within chaos and relative to surrounding terrains on local and regional scales. High-resolution stereo-controlled photoclinometric topography indicates that chaos topography, including the archetypal Conamara Chaos region, is uneven and commonly higher than surrounding plains by up to 250 m. Elevated and undulating topography is more consistent with diapiric uplift of deep material in a relatively thick ice shell, rather than melt-through and refreezing of regionally or globally thin ice by a subsurface ocean. Vertical and horizontal scales of topographic doming in Conamara Chaos are consistent with a total ice shell thickness >15 km. Contact between Europa's ocean and surface may most likely be indirectly via diapirism or convection.

  16. Chaos Theory and Its Application to Education: Mehmet Akif Ersoy University Case

    ERIC Educational Resources Information Center

    Akmansoy, Vesile; Kartal, Sadik

    2014-01-01

    Discussions have arisen regarding the application of the new paradigms of chaos theory to social sciences as compared to physical sciences. This study examines what role chaos theory has within the education process and what effect it has by describing the views of university faculty regarding chaos and education. The participants in this study…

  17. Chaos and Christianity: A Response to Butz and a Biblical Alternative.

    ERIC Educational Resources Information Center

    Watts, Richard E.; Trusty, Jerry

    1997-01-01

    M.R. Butz's position regarding chaos theory and Christianity is reviewed. The compatibility of biblical theology and the sciences is discussed. Parallels between chaos theory and the philosophical perspective of Soren Kierkegaard are explored. A biblical model is offered for counselors in assisting Christian clients in embracing chaos. (Author/EMK)

  18. Control and Synchronization of Heteroclinic Chaos: Implications for Neurodynamics

    NASA Astrophysics Data System (ADS)

    Arecchi, F. Tito

    2004-12-01

    Heteroclinic chaos (HC) implies the recurrent return of the dynamical trajectory to a saddle focus (SF) in whose neighborhood the system response to an external perturbation is very high and hence it is very easy to lock to an external stimulus. Thus HC appears as the easiest way to encode information in time by a train of equal spikes occurring at erratic times. Implementing such a dynamics with a single mode CO2 laser with feedback, we have a heteroclinic connection between the SF and a saddle node (SN) whose role it to regularize the phase space orbit away from SF. Due to these two different fixed points, the laser intensity displays identical spikes separated by erratic ISIs (interspike intervals). Such a dynamics is highly prone to spike-synchronization, either by an external signal or by mutual interaction in a network of identical systems. Applications to communication and noise induced synchronization will be reported. In experimental neuroscience a recent finding is that feature binding ,that is, combination of external stimuli with internal memories into new coherent patterns of meaning, implies the mutual synchronization of axonal spike trains in neurons which can be far away and yet share the same sequence. Several dynamical systems have been proposed to model such a behavior. We introduce a measurable parameter, namely, the synchronization "propensity". Propensity is the amount of synchronization achieved in a chaotic system by a small sinusoidal perturbation of a control parameter. It is very low for coupled Lorenz or FitzHugh-Nagumo chains. It displays isolated peaks for the Hindmarsh-Rose model, showing that this is a convenient description of the bursting behavior typical of neurons in the CPG (central pattern generator) system. Instead, HC shows a high propensity over a wide input frequency range, demonstrating that it is the most convenient model for semantic neurons.

  19. Correlation dimension signature of wideband chaos synchronization of semiconductor lasers.

    PubMed

    Kane, D M; Toomey, J P; Lee, M W; Shore, K A

    2006-01-01

    Chaos data analysis has been performed on the chaotic output power time series data from a synchronized transmitter-receiver pair of semiconductor lasers. The system uses an asymmetric, bidirectional coupling configuration between the master (transmitter), which is a laser diode with optical feedback, and a stand-alone slave semiconductor laser. The correlation dimension of the chaotic time series has a minimum value of 4, which was obtained from high-bandwidth measurements. The correlation dimensions for both the master and the synchronized slave are identical when the cross-correlation coefficient of the synchronized chaos is above 0.9. These results establish correlation dimension analysis as an effective tool for the determination of the quality of wideband chaos synchronization.

  20. Chaos in spin glasses revealed through thermal boundary conditions

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G.

    2015-09-01

    We study the fragility of spin glasses to small temperature perturbations numerically using population annealing Monte Carlo. We apply thermal boundary conditions to a three-dimensional Edwards-Anderson Ising spin glass. In thermal boundary conditions all eight combinations of periodic versus antiperiodic boundary conditions in the three spatial directions are present, each appearing in the ensemble with its respective statistical weight determined by its free energy. We show that temperature chaos is revealed in the statistics of crossings in the free energy for different boundary conditions. By studying the energy difference between boundary conditions at free-energy crossings, we determine the domain-wall fractal dimension. Similarly, by studying the number of crossings, we determine the chaos exponent. Our results also show that computational hardness in spin glasses and the presence of chaos are closely related.

  1. Simultaneous time-frequency control of bifurcation and chaos

    NASA Astrophysics Data System (ADS)

    Liu, Meng-Kun; Suh, C. Steve

    2012-06-01

    Control scheme facilitated either in the time- or frequency-domain alone is insufficient in controlling route-to-chaos, where the corresponding response deteriorates in the time and frequency domains simultaneously. A novel chaos control scheme is formulated by addressing the fundamental characteristics inherent of chaotic response. The proposed control scheme has its philosophical basis established in simultaneous time-frequency control, on-line system identification, and adaptive control. Physical features that embody the concept include multiresolution analysis, adaptive Finite Impulse Response (FIR) filter, and Filtered-x Least Mean Square (FXLMS) algorithm. A non-stationary Duffing oscillator is investigated to demonstrate the effectiveness of the control methodology. Results presented herein indicate that for the control of dynamic instability including chaos to be deemed viable, mitigation has to be adaptive and engaged in the time and frequency domains at the same time.

  2. Controlling chaos in a satellite power supply subsystem

    NASA Astrophysics Data System (ADS)

    Macau, E. E. N.; Ramos Turci, L. F.; Yoneyama, T.

    2008-12-01

    In this work, we show that chaos control techniques can be used to increase the region that can be efficiently used to supply the power requests for an artificial satellite. The core of a satellite power subsystem relies on its DC/DC converter. This is a very nonlinear system that presents a multitude of phenomena ranging from bifurcations, quasi-periodicity, chaos, coexistence of attractors, among others. The traditional power subsystem design techniques try to avoid these nonlinear phenomena so that it is possible to use linear system theory in small regions about the equilibrium points. Here, we show that chaos control can be used to efficiently extend the applicability region of the satellite power subsystem when it operates in regions of high nonlinearity.

  3. The onset of chaos in orbital pilot-wave dynamics

    NASA Astrophysics Data System (ADS)

    Tambasco, Lucas D.; Harris, Daniel M.; Oza, Anand U.; Rosales, Rodolfo R.; Bush, John W. M.

    2016-10-01

    We present the results of a numerical investigation of the emergence of chaos in the orbital dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the external force. When acted upon by Coriolis or Coulomb forces, the droplet's orbital motion becomes chaotic through a period-doubling cascade. In the presence of a central harmonic potential, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.

  4. Multistability, chaos, and random signal generation in semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Ying, Lei; Huang, Danhong; Lai, Ying-Cheng

    2016-06-01

    Historically, semiconductor superlattices, artificial periodic structures of different semiconductor materials, were invented with the purpose of engineering or manipulating the electronic properties of semiconductor devices. A key application lies in generating radiation sources, amplifiers, and detectors in the "unusual" spectral range of subterahertz and terahertz (0.1-10 THz), which cannot be readily realized using conventional radiation sources, the so-called THz gap. Efforts in the past three decades have demonstrated various nonlinear dynamical behaviors including chaos, suggesting the potential to exploit chaos in semiconductor superlattices as random signal sources (e.g., random number generators) in the THz frequency range. We consider a realistic model of hot electrons in semiconductor superlattice, taking into account the induced space charge field. Through a systematic exploration of the phase space we find that, when the system is subject to an external electrical driving of a single frequency, chaos is typically associated with the occurrence of multistability. That is, for a given parameter setting, while there are initial conditions that lead to chaotic trajectories, simultaneously there are other initial conditions that lead to regular motions. Transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt. Multistability thus presents an obstacle to utilizing the superlattice system as a reliable and robust random signal source. However, we demonstrate that, when an additional driving field of incommensurate frequency is applied, multistability can be eliminated, with chaos representing the only possible asymptotic behavior of the system. In such a case, a random initial condition will lead to a trajectory landing in a chaotic attractor with probability 1, making quasiperiodically driven semiconductor superlattices potentially as a reliable

  5. Multistability, chaos, and random signal generation in semiconductor superlattices.

    PubMed

    Ying, Lei; Huang, Danhong; Lai, Ying-Cheng

    2016-06-01

    Historically, semiconductor superlattices, artificial periodic structures of different semiconductor materials, were invented with the purpose of engineering or manipulating the electronic properties of semiconductor devices. A key application lies in generating radiation sources, amplifiers, and detectors in the "unusual" spectral range of subterahertz and terahertz (0.1-10 THz), which cannot be readily realized using conventional radiation sources, the so-called THz gap. Efforts in the past three decades have demonstrated various nonlinear dynamical behaviors including chaos, suggesting the potential to exploit chaos in semiconductor superlattices as random signal sources (e.g., random number generators) in the THz frequency range. We consider a realistic model of hot electrons in semiconductor superlattice, taking into account the induced space charge field. Through a systematic exploration of the phase space we find that, when the system is subject to an external electrical driving of a single frequency, chaos is typically associated with the occurrence of multistability. That is, for a given parameter setting, while there are initial conditions that lead to chaotic trajectories, simultaneously there are other initial conditions that lead to regular motions. Transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt. Multistability thus presents an obstacle to utilizing the superlattice system as a reliable and robust random signal source. However, we demonstrate that, when an additional driving field of incommensurate frequency is applied, multistability can be eliminated, with chaos representing the only possible asymptotic behavior of the system. In such a case, a random initial condition will lead to a trajectory landing in a chaotic attractor with probability 1, making quasiperiodically driven semiconductor superlattices potentially as a reliable

  6. Aram Chaos: a Long Lived Subsurface Aqueous Environment with Strong Water Resources Potential for Human Missions on Mars

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Mueller, R.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-01-01

    Aram Chaos, Mars is a crater 280 kilometers in diameter with elevations circa. minus 2 to minus 3 kilometers below datum that provides a compelling landing site for future human explorers as it features multiple scientific regions of interest (ROI) paired with a rich extensible Resource ROI that features poly-hydrated sulfates [1]. The geologic history of Aram Chaos suggests several past episodes of groundwater recharge and infilling by liquid water, ice, and other materials [1-3]. The creation of the fractured region with no known terrestrial equivalent may have been caused by melting of deep ice reservoirs that triggered the collapse of terrain followed by catastrophic water outflows over the region. Aram Chaos is of particular scientific interest because it is hypothesized that the chaotic terrain may be the source of water that contributed to the creation of nearby valleys such as Ares Vallis flowing toward Chryse Planitia. The liquid water was likely sourced as groundwater and therefore represents water derived from a protected subsurface environment making it a compelling astrobiological site [2]. The past history of water is also represented by high concentrations of hematite, Fe-oxyhydroxides, mono-hydrated and poly-hydrated sulfates [1, 2]. Poly-hydrated sulfates are likely to contain abundant water that evolves at temperatures below 500 degrees Centigrade thus conferring Aram Chaos a potentially high value for early in-situ resource utilization (ISRU) [4]. The geologic history also calls for future prospecting of deep ice deposits and possibly liquid water via deep drilling. The most recent stratigraphic units in the central part of Aram Chaos are not fractured, and are part of a dome-shaped formation that features bright, poorly-consolidated material that contains both hydrated sulfates and ferric oxides according to OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) data [5]. These surface material characteristics are

  7. The Iconography of Chaos in a Renaissance Painting

    NASA Astrophysics Data System (ADS)

    Zausner, Tobi

    Titian's Presentation of the Virgin to the Temple (1534-38) is a large oil painting on canvas (11' x 25'4"), hanging in the Gallerie dell' Accademiain Venice. Underneath its overt Christian imagery, the painting appears to have a hidden humanist symbolism encoding self-transformation through initiation. Humanist disciplines such as Neoplatonism, the ancient mystery religions, Graeco-Roman paganism, and the Jewish Kaballah are suggested in Titian's painting. Certain figures and groups of figures appear to symbolize the underworld and the period of chaos necessary for transformation. Additional evidence for the chaos in self-transformation is found in the painting's geometry and in its astronomical references.

  8. Topological chaos and periodic braiding of almost-cyclic sets.

    PubMed

    Stremler, Mark A; Ross, Shane D; Grover, Piyush; Kumar, Pankaj

    2011-03-18

    In certain (2+1)-dimensional dynamical systems, the braiding of periodic orbits provides a framework for analyzing chaos in the system through application of the Thurston-Nielsen classification theorem. Periodic orbits generated by the dynamics can behave as physical obstructions that "stir" the surrounding domain and serve as the basis for this topological analysis. We provide evidence that, even in the absence of periodic orbits, almost-cyclic regions identified using a transfer operator approach can reveal an underlying structure that enables topological analysis of chaos in the domain.

  9. Chaos and The Changing Nature of Science and Medicine. Proceedings

    SciTech Connect

    Herbert, D.E.; Croft, P.; Silver, D.S.; Williams, S.G.; Woodall, M.

    1996-09-01

    These proceedings represent the lectures given at the workshop on chaos and the changing nature of science and medicine. The workshop was sponsored by the University of South Alabama and the American Association of Physicists in Medicine. The topics discussed covered nonlinear dynamical systems, complexity theory, fractals, chaos in biology and medicine and in fluid dynamics. Applications of chaotic dynamics in climatology were also discussed. There were 8 lectures at the workshop and all 8 have been abstracted for the Energy Science and Technology database.(AIP)

  10. Energy enhancement and chaos control in microelectromechanical systems.

    PubMed

    Park, Kwangho; Chen, Qingfei; Lai, Ying-Cheng

    2008-02-01

    For a resonator in an electrostatic microelectromechanical system (MEMS), nonlinear coupling between applied electrostatic force and the mechanical motion of the resonator can lead to chaotic oscillations. Better performance of the device can be achieved when the oscillations are periodic with large amplitude. We investigate the nonlinear dynamics of a system of deformable doubly clamped beam, which is the core in many MEMS resonators, and propose a control strategy to convert chaos into periodic motions with enhanced output energy. Our study suggests that chaos control can lead to energy enhancement and consequently high performance of MEM devices.

  11. Distributed source coding using chaos-based cryptosystem

    NASA Astrophysics Data System (ADS)

    Zhou, Junwei; Wong, Kwok-Wo; Chen, Jianyong

    2012-12-01

    A distributed source coding scheme is proposed by incorporating a chaos-based cryptosystem in the Slepian-Wolf coding. The punctured codeword generated by the chaos-based cryptosystem results in ambiguity at the decoder side. This ambiguity can be removed by the maximum a posteriori decoding with the help of side information. In this way, encryption and source coding are performed simultaneously. This leads to a simple encoder structure with low implementation complexity. Simulation results show that the encoder complexity is lower than that of existing distributed source coding schemes. Moreover, at small block size, the proposed scheme has a performance comparable to existing distributed source coding schemes.

  12. Predicting vibration signals of automobile engine using chaos theory

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Zhang, Laibin; Wang, Zhaohui

    2004-01-01

    Condition monitoring and life prediction of the vehicle engine is an important and urgent problem during the vehicle development process. The vibration signals that are closely associated with the engine running condition and its development trend are complex and nonlinear. The chaos theory is used to treat the nonlinear dynamical system recently. A novel chaos method in conjunction with SVD (singular value decomposition) denoising skill are used to predict the vibration time series. Two types of time series and their prediction errors are provided to illustrate the practical utility of the method.

  13. Dynamic Ice-Water Interactions Form Europa's Chaos Terrains

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Schmidt, B. E.; Patterson, G. W.; Schenk, P.

    2011-12-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have

  14. Gravitational collapse, chaos in CFT correlators and the information paradox

    NASA Astrophysics Data System (ADS)

    Farahi, Arya; Pando Zayas, Leopoldo A.

    2014-06-01

    We consider gravitational collapse of a massless scalar field in asymptotically anti-de Sitter spacetime. Following the AdS/CFT dictionary we further study correlations in the field theory side by way of the Klein-Gordon equation of a probe scalar field in the collapsing background. We present evidence that in a certain regime the probe scalar field behaves chaotically, thus supporting Hawking's argument in the black hole information paradox proposing that although the information can be retrieved in principle, deterministic chaos impairs, in practice, the process of unitary extraction of information from a black hole. We emphasize that quantum chaos will change this picture. .

  15. Chaos in human behavior: the case of work motivation.

    PubMed

    Navarro, José; Arrieta, Carlos

    2010-05-01

    This study considers the complex dynamics of work motivation. Forty-eight employees completed a work-motivation diary several times per day over a period of four weeks. The obtained time series were analysed using different methodologies derived from chaos theory (i.e. recurrence plots, Lyapunov exponents, correlation dimension and surrogate data). Results showed chaotic dynamics in 75% of cases. The findings confirm the universality of chaotic behavior within human behavior, challenge some of the underlying assumptions on which work motivation theories are based, and suggest that chaos theory may offer useful and relevant information on how this process is managed within organizations.

  16. Preface to the Focus Issue: Chaos Detection Methods and Predictability

    SciTech Connect

    Gottwald, Georg A.; Skokos, Charalampos

    2014-06-01

    This Focus Issue presents a collection of papers originating from the workshop Methods of Chaos Detection and Predictability: Theory and Applications held at the Max Planck Institute for the Physics of Complex Systems in Dresden, June 17–21, 2013. The main aim of this interdisciplinary workshop was to review comprehensively the theory and numerical implementation of the existing methods of chaos detection and predictability, as well as to report recent applications of these techniques to different scientific fields. The collection of twelve papers in this Focus Issue represents the wide range of applications, spanning mathematics, physics, astronomy, particle accelerator physics, meteorology and medical research. This Preface surveys the papers of this Issue.

  17. Preface to the Focus Issue: chaos detection methods and predictability.

    PubMed

    Gottwald, Georg A; Skokos, Charalampos

    2014-06-01

    This Focus Issue presents a collection of papers originating from the workshop Methods of Chaos Detection and Predictability: Theory and Applications held at the Max Planck Institute for the Physics of Complex Systems in Dresden, June 17-21, 2013. The main aim of this interdisciplinary workshop was to review comprehensively the theory and numerical implementation of the existing methods of chaos detection and predictability, as well as to report recent applications of these techniques to different scientific fields. The collection of twelve papers in this Focus Issue represents the wide range of applications, spanning mathematics, physics, astronomy, particle accelerator physics, meteorology and medical research. This Preface surveys the papers of this Issue.

  18. The edge of chaos: A nonlinear view of psychoanalytic technique.

    PubMed

    Galatzer-Levy, Robert M

    2016-04-01

    The field of nonlinear dynamics (or chaos theory) provides ways to expand concepts of psychoanalytic process that have implications for the technique of psychoanalysis. This paper describes how concepts of "the edge of chaos," emergence, attractors, and coupled oscillators can help shape analytic technique resulting in an approach to doing analysis which is at the same time freer and more firmly based in an enlarged understanding of the ways in which psychoanalysis works than some current recommendation about technique. Illustrations from a lengthy analysis of an analysand with obsessive-compulsive disorder show this approach in action.

  19. Quantum chaos in the nuclear collective model. II. Peres lattices.

    PubMed

    Stránský, Pavel; Hruska, Petr; Cejnar, Pavel

    2009-06-01

    This is a continuation of our paper [Phys. Rev. E 79, 046202 (2009)] devoted to signatures of quantum chaos in the geometric collective model of atomic nuclei. We apply the method by Peres to study ordered and disordered patterns in quantum spectra drawn as lattices in the plane of energy vs average of a chosen observable. Good qualitative agreement with standard measures of chaos is manifested. The method provides an efficient tool for studying structural changes in eigenstates across quantum spectra of general systems.

  20. Surrogate accelerated sampling of reservoir models with complex structures using sparse polynomial chaos expansion

    NASA Astrophysics Data System (ADS)

    Bazargan, Hamid; Christie, Mike; Elsheikh, Ahmed H.; Ahmadi, Mohammad

    2015-12-01

    Markov Chain Monte Carlo (MCMC) methods are often used to probe the posterior probability distribution in inverse problems. This allows for computation of estimates of uncertain system responses conditioned on given observational data by means of approximate integration. However, MCMC methods suffer from the computational complexities in the case of expensive models as in the case of subsurface flow models. Hence, it is of great interest to develop alterative efficient methods utilizing emulators, that are cheap to evaluate, in order to replace the full physics simulator. In the current work, we develop a technique based on sparse response surfaces to represent the flow response within a subsurface reservoir and thus enable efficient exploration of the posterior probability density function and the conditional expectations given the data. Polynomial Chaos Expansion (PCE) is a powerful tool to quantify uncertainty in dynamical systems when there is probabilistic uncertainty in the system parameters. In the context of subsurface flow model, it has been shown to be more accurate and efficient compared with traditional experimental design (ED). PCEs have a significant advantage over other response surfaces as the convergence to the true probability distribution when the order of the PCE is increased can be proved for the random variables with finite variances. However, the major drawback of PCE is related to the curse of dimensionality as the number of terms to be estimated grows drastically with the number of the input random variables. This renders the computational cost of classical PCE schemes unaffordable for reservoir simulation purposes when the deterministic finite element model is expensive to evaluate. To address this issue, we propose the reduced-terms polynomial chaos representation which uses an impact factor to only retain the most relevant terms of the PCE decomposition. Accordingly, the reduced-terms polynomial chaos proxy can be used as the pseudo

  1. Saturn's F Ring Core: Calm Amidst Chaos

    NASA Astrophysics Data System (ADS)

    Whizin, A.; Cuzzi, J.; Hogan, R.; Dobrovolskis, A.; Colwell, J. E.; Scargle, J.; Dones, L.; Showalter, M.

    2012-12-01

    Near the edge of Saturn's Roche Zone the F ring is straddled on either side by two small satellites Prometheus and Pandora and as such undergoes perturbations that result in orbital chaos (Scargle et al 1993 DPS 25, #26.04, Winter et al 2007 MNRAS 380, L54; 2010 A&A 523, A67). Even in such an unstable environment the F ring appears to be relatively stable. Thus we postulate there are quiescent stable zones arising from mutual resonant interactions from the two ring moons. It is in one of these zones we believe the F ring has found a stable foothold despite the chaotic orbits in the region. At locations we call "anti-resonances" ring particles have much smaller changes over time in their semi-major axes and eccentricities than particles outside of these anti-resonance zones. We devise an impulse-based perturbation model that explains the orbital outcomes from successive perturbations from two satellites. In addition we compute the orbital evolution of thousands of mass-less test particles with a Bulirsch-Stoer N-body integrator over a narrow radial range covering the F ring core region at high spatial resolution. We find that the variance of the semi-major axes of particles in anti-resonances can be less than ~1km over a period of 32 years, while just a few kilometers away in either radial direction the variance can be tens of kilometers. More importantly, particles outside of these stable zones can migrate into a stable zone due to chaotic orbits, but once they enter an anti-resonance zone they remain there. The anti-resonances act as long-lived sinks for ring particles and explain the location of the F ring core despite its location not being in overall torque balance with ring moons.

  2. The Small Saturnian Satellites -- Chaos and Conundrum

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert A.

    2014-05-01

    From an analysis of Hubble Space Telescope data French et al. (2003 Icarus, 162, 143) found that the orbits of Prometheus and Pandora, which flank Saturn's ring, exhibited unexpected variations in their semimajor axes and mean motions. Goldreich and Rappaport (2003 Icarus, 162, 391) showed that those variations were caused by a chaotic interaction between the satellites. We report on the practical consequences that the chaos has on the production of ephemerides needed to support the Cassini mission and on the post Cassini ephemerides.Recently El Moutamid et al. (2014 Celest. Mech., 118, 235) proposed that the motions of three other satellites, Anthe, Methone, and Aegaeon could also be chaotic as a result of their mean motion resonances with Mimas. Coincidentally, the current orbits of the three satellites are a poor fit to the Cassini imaging data even though the direct perturbation of Mimas is included in the orbit computations. We discuss the status of our attempts to improve the orbit modelling for these satellites and the implications of their possibly chaotic behavior. Daphnis is a small satellite orbiting in the narrow (40 km) Keeler Gap in Saturn's rings. It was discovered in 2004 and found to have a near circular orbit in the ring gap. That orbit fits Cassini imaging data from 2004 to 2010 quite well, but it cannot fit the imaging acquired subsequent to late 2012. To fit the later data requires a circular orbit with a semimajor axis some 3 km larger. Moreover, no observations were made between 2010 and late 2012. We speculate on possible causes for the orbit change.

  3. A closer look at Chaos on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This mosaic of the Conamara Chaos region on Jupiter's moon, Europa, clearly indicates relatively recent resurfacing of Europa's surface. Irregularly shaped blocks of water ice were formed by the break up and movement of the existing crust. The blocks were shifted, rotated, and even tipped and partially submerged within a mobile material that was either liquid water, warm mobile ice, or an ice and water slush. The presence of young fractures cutting through this region indicates that the surface froze again into solid, brittle ice.

    The background image in this picture was taken during Galileo's sixth orbit of Jupiter in February, 1997. Five very high resolution images which were taken during the spacecraft's twelfth orbit in December, 1997 provide an even closer look at some of the details. This mosaic shows some of the high resolution data inset into the context of this tumultuous region.

    North is to the top of the picture, and the sun illuminates the scene from the east (right). The picture, centered at 9 degrees north latitude and 274 degrees west longitude, covers an area approximately 35 by 50 kilometers (20 by 30 miles). The finest details visible in the very high resolution insets are about 20 meters (22 yards) across, and in the background image, 100 meters (110 yards) across. The insets were taken on December 16, 1997, at ranges as close as 880 kilometers (550 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  4. A "chaos" of Phanerozoic eustatic curves

    NASA Astrophysics Data System (ADS)

    Ruban, Dmitry A.

    2016-04-01

    The knowledge of eustasy has changed during the past two decades. Although there is not any single global sea-level curve for the entire Phanerozoic, new curves have been proposed for all periods. For some geological time intervals, there are two and more alternative reconstructions, from which it is difficult to choose. A significant problem is the available eustatic curves are justified along different geological time scales (sometimes without proper explanations), which permits to correlate eustatic events with the possible error of 1-3 Ma. This degree of error permits to judge about only substage- or stage-order global sea-level changes. Close attention to two geological time slices, namely the late Cambrian (Epoch 3‒Furongian) and the Late Cretaceous, implies that only a few eustatic events (6 events in the case of the late Cambrian and 9 events in the case of the Late Cretaceous) appear on all available alternative curves for these periods, and different (even opposite) trends of eustatic fluctuations are shown on these curves. This reveals significant uncertainty in our knowledge of eustasy that restricts our ability to decipher factors responsible for regional transgressions and regressions and relative sea-level changes. A big problem is also inadequate awareness of the geological research community of the new eustatic developments. Generally, the situation with the development and the use of the Phanerozoic eustatic reconstructions seems to be "chaotic". The example of the shoreline shifts in Northern Africa during the Late Cretaceous demonstrates the far-going consequences of this situation. The practical recommendations to avoid this "chaos" are proposed. Particularly, these claim for good awareness of all eustatic developments, their critical discussion, and clear explanation of the employed geological time scale.

  5. Ikeda-like chaos on a dynamically filtered supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.; Jacquot, Maxime; Dudley, John M.; Larger, Laurent

    2016-08-01

    We demonstrate temporal chaos in a color-selection mechanism from the visible spectrum of a supercontinuum light source. The color-selection mechanism is governed by an acousto-optoelectronic nonlinear delayed-feedback scheme modeled by an Ikeda-like equation. Initially motivated by the design of a broad audience live demonstrator in the framework of the International Year of Light 2015, the setup also provides a different experimental tool to investigate the dynamical complexity of delayed-feedback dynamics. Deterministic hyperchaos is analyzed here from the experimental time series. A projection method identifies the delay parameter, for which the chaotic strange attractor originally evolving in an infinite-dimensional phase space can be revealed in a two-dimensional subspace.

  6. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point

    NASA Astrophysics Data System (ADS)

    Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong

    2015-07-01

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  7. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point.

    PubMed

    Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong

    2015-07-01

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  8. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption

    SciTech Connect

    Yang, Xiuping Min, Lequan Wang, Xue

    2015-05-15

    This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2{sup 1345}. As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.

  9. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point

    SciTech Connect

    Shao, Chenxi Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong

    2015-07-15

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  10. Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection.

    PubMed

    Oprea, Iuliana; Triandaf, Ioana; Dangelmayr, Gerhard; Schwartz, Ira B

    2007-06-01

    It has been suggested by experimentalists that a weakly nonlinear analysis of the recently introduced equations of motion for the nematic electroconvection by M. Treiber and L. Kramer [Phys. Rev. E 58, 1973 (1998)] has the potential to reproduce the dynamics of the zigzag-type extended spatiotemporal chaos and localized solutions observed near onset in experiments [M. Dennin, D. S. Cannell, and G. Ahlers, Phys. Rev. E 57, 638 (1998); J. T. Gleeson (private communication)]. In this paper, we study a complex spatiotemporal pattern, identified as spatiotemporal chaos, that bifurcates at the onset from a spatially uniform solution of a system of globally coupled complex Ginzburg-Landau equations governing the weakly nonlinear evolution of four traveling wave envelopes. The Ginzburg-Landau system can be derived directly from the weak electrolyte model for electroconvection in nematic liquid crystals when the primary instability is a Hopf bifurcation to oblique traveling rolls. The chaotic nature of the pattern and the resemblance to the observed experimental spatiotemporal chaos in the electroconvection of nematic liquid crystals are confirmed through a combination of techniques including the Karhunen-Loeve decomposition, time-series analysis of the amplitudes of the dominant modes, statistical descriptions, and normal form theory, showing good agreement between theory and experiments.

  11. Chaos and microbial systems. Final project report, July 1989--July 1992

    SciTech Connect

    Kot, M.

    1992-10-01

    The field of nonlinear dynamics has generated a variety of new techniques for identifying order in seemingly chaotic systems. These techniques have led to new insights for several ecological and epidemiological systems, most notably childhood disease epidemics. To better test the efficacy and relevance of these new techniques to population biology research with two components namely a mathematical analysis of some simple microbial models with chaotic dynamics; and experimental (chemostat) population studies to evaluate the accuracy of these models. I have completed a thorough analysis of the forced double-Monod model and of the phase-locking route to chaos that it exhibits. I have also analyzed a simpler pulsed system with mass action kinetics and a period-doubling route to chaos. This research also motivated detailed analyses of discrete-time predator-prey and dispersal models, and a fast new method for computing fractal dimension. My colleagues and I have assembled a complete laboratory system to determine the appropriateness of the forced double-Monod model. We have tested assays for concentration and density and have performed a variety of diagnostic tests on this system. We have measured growth parameters for bacteria and for protozoa in chemostat.

  12. Deterministic temporal chaos from a mid-infrared external cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Grillot, Frédéric; Jumpertz, Louise; Schires, Kevin; Carras, Mathieu; Sciamanna, Marc

    2016-02-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers offering access to wavelengths from the mid-infrared (IR) to the terahertz domain and promising impact on various applications such as free-space communications, high-resolution spectroscopy, LIDAR remote sensing or optical countermeasures. Unlike bipolar semiconductor lasers, stimulated emission in QCLs is obtained via electronic transitions between discrete energy states inside the conduction band. Recent technological progress has led to QCLs operating in pulsed or continuous wave mode, at room temperature in single- or multi-mode operation, with high powers up to a few watts for mid-IR devices. This spectacular development raises multiple interrogations on the stability of QCLs as little is known on their dynamical properties. Very recently, experiments based on optical spectrum measurements have unveiled the existence of five distinct feedback regimes without, however, identifying the complex dynamics dwelling within the QCL. In this article we provide the first experimental evidence of a route to chaos in a QCL emitting at mid-IR wavelength. When applying optical feedback with an increasing strength, the QCL dynamics bifurcate to periodic dynamics at the external cavity frequency and later to chaos without an undamping of relaxation oscillations, hence contrasting with the well-known scenarios occurring in interband laser diodes.

  13. Sleep Quality Estimation based on Chaos Analysis for Heart Rate Variability

    NASA Astrophysics Data System (ADS)

    Fukuda, Toshio; Wakuda, Yuki; Hasegawa, Yasuhisa; Arai, Fumihito; Kawaguchi, Mitsuo; Noda, Akiko

    In this paper, we propose an algorithm to estimate sleep quality based on a heart rate variability using chaos analysis. Polysomnography(PSG) is a conventional and reliable system to diagnose sleep disorder and to evaluate its severity and therapeatic effect, by estimating sleep quality based on multiple channels. However, a recording process requires a lot of time and a controlled environment for measurement and then an analyzing process of PSG data is hard work because the huge sensed data should be manually evaluated. On the other hand, it is focused that some people make a mistake or cause an accident due to lost of regular sleep and of homeostasis these days. Therefore a simple home system for checking own sleep is required and then the estimation algorithm for the system should be developed. Therefore we propose an algorithm to estimate sleep quality based only on a heart rate variability which can be measured by a simple sensor such as a pressure sensor and an infrared sensor in an uncontrolled environment, by experimentally finding the relationship between chaos indices and sleep quality. The system including the estimation algorithm can inform patterns and quality of own daily sleep to a user, and then the user can previously arranges his life schedule, pays more attention based on sleep results and consult with a doctor.

  14. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization.

    PubMed

    Lavrov, Roman; Peil, Michael; Jacquot, Maxime; Larger, Laurent; Udaltsov, Vladimir; Dudley, John

    2009-08-01

    We demonstrate experimentally how nonlinear optical phase dynamics can be generated with an electro-optic delay oscillator. The presented architecture consists of a linear phase modulator, followed by a delay line, and a differential phase-shift keying demodulator (DPSK-d). The latter represents the nonlinear element of the oscillator effecting a nonlinear transformation. This nonlinearity is considered as nonlocal in time since it is ruled by an intrinsic differential delay, which is significantly greater than the typical phase variations. To study the effect of this specific nonlinearity, we characterize the dynamics in terms of the dependence of the relevant feedback gain parameter. Our results reveal the occurrence of regular GHz oscillations (approximately half of the DPSK-d free spectral range), as well as a pronounced broadband phase-chaotic dynamics. Beyond this, the observed dynamical phenomena offer potential for applications in the field of microwave photonics and, in particular, for the realization of novel chaos communication systems. High quality and broadband phase-chaos synchronization is also reported with an emitter-receiver pair of the setup.

  15. Chaos in the classroom: Exposing gifted elementary school children to chaos and fractals

    NASA Astrophysics Data System (ADS)

    Adams, Helen M.; Russ, John C.

    1992-09-01

    A unit of study for gifted 4th and 5th graders is described on the subject of mathematical periodicity and chaos and the underlying physical processes which produce these phenomena. A variety of hands-on experiments and the use of various data analysis tools and computer aids provide students with powerful raw material for their analysis, interpretation, and understanding. The concepts of simple periodic motion (e.g., a pendulum), complex superposition of motions (e.g., the vibrations in musical instruments), and chaotic sequences (e.g., stock prices) are covered, with numerous practical examples. Opportunities to involve related activities emphasizing language arts, history, and graphic art are included. The student response to the material is documented.

  16. PREFACE: 10th Joint Conference on Chemistry

    NASA Astrophysics Data System (ADS)

    2016-02-01

    The 10th Joint Conference on Chemistry is an international conference organized by 4 chemistry departments of 4 universities in central Java, Indonesia. The universities are Sebelas Maret University, Diponegoro University, Semarang State University and Soedirman University. The venue was at Solo, Indonesia, at September 8-9, 2015. The total conference participants are 133 including the invited speakers. The conference emphasized the multidisciplinary chemical issue and impact of today's sustainable chemistry which covering the following topics: • Material innovation for sustainable goals • Development of renewable and sustainable energy based on chemistry • New drug design, experimental and theoretical methods • Green synthesis and characterization of material (from molecule to functionalized materials) • Catalysis as core technology in industry • Natural product isolation and optimization

  17. Staying Innovative and Change-Focused in the New Economy. A Collection of Special Papers Generated for the 2001 International Career Development Conference (Seattle, Washington, November 7-11, 2001).

    ERIC Educational Resources Information Center

    Walz, Garry R., Ed.; Knowdell, Richard, Ed.; Kirkman, Chris, Ed.

    This publication is designed to broaden exposure to the ideas presented at the 2001 International Career Development Conference. It provides authors with an international forum for communicating their current research, proposals, and projects to the international career development community. The articles in this symposium include: (1) "Chaos,…

  18. 10 CFR 501.32 - Conferences (other than prepetition conferences).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Conferences (other than prepetition conferences). 501.32... SANCTIONS Written Comments, Public Hearings and Conferences During Administrative Proceedings § 501.32 Conferences (other than prepetition conferences). (a) At any time following commencement of a...

  19. 47 CFR 1.248 - Prehearing conferences; hearing conferences.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Prehearing conferences; hearing conferences. 1... Hearing Proceedings Prehearing Procedures § 1.248 Prehearing conferences; hearing conferences. (a) The... to appear at a specified time and place for a conference prior to a hearing, or to submit...

  20. Chaos and Cryptography: A new dimension in secure communications

    NASA Astrophysics Data System (ADS)

    Banerjee, Santo; Kurths, J.

    2014-06-01

    This issue is a collection of contributions on recent developments and achievements of cryptography and communications using chaos. The various contributions report important and promising results such as synchronization of networks and data transmissions; image cipher; optical and TDMA communications, quantum keys etc. Various experiments and applications such as FPGA, smartphone cipher, semiconductor lasers etc, are also included.

  1. Poincaré's contributions to chance and chaos.

    NASA Astrophysics Data System (ADS)

    Szebehely, V.

    In this paper a short and condensed biography of Henri Poincaré is presented with detailed information concerning several biographical references. This is followed by a review of his publications emphasizing his work in celestial mechanics and on the problem of three bodies. His article "Le Hasard" is reviewed in detail discussing his contributions to chaos.

  2. Group Chaos Theory: A Metaphor and Model for Group Work

    ERIC Educational Resources Information Center

    Rivera, Edil Torres; Wilbur, Michael; Frank-Saraceni, James; Roberts-Wilbur, Janice; Phan, Loan T.; Garrett, Michael T.

    2005-01-01

    Group phenomena and interactions are described through the use of the chaos theory constructs and characteristics of sensitive dependence on initial conditions, phase space, turbulence, emergence, self-organization, dissipation, iteration, bifurcation, and attractors and fractals. These constructs and theoretical tenets are presented as applicable…

  3. The Living Career: Complexity, Chaos, Connections and Career.

    ERIC Educational Resources Information Center

    Bloch, Deborah P.

    The purpose of this paper is to present a theory of career development drawn from current work in the physical and biological sciences, specifically work that is associated with chaos and complexity theories. The paper includes specific suggestions for practice based upon the theory and reflections of career professionals on its use. The theory…

  4. Nonlinear Perspectives on Family Process: Chaos and Catastrophe Theories.

    ERIC Educational Resources Information Center

    Ward, Margaret; Koopmans, Matthijs

    This paper explores the principal features of nonlinear dynamical systems and applies the theory to parents' acceptance of a child adopted at an older age. Although family systems theories tend to be weak in addressing family change, chaos theory and catastrophe theory allow consideration of sudden, discontinuous change. If stable, the family may…

  5. Computation with chaos: a paradigm for cortical activity.

    PubMed Central

    Babloyantz, A; Lourenço, C

    1994-01-01

    A device comprising two interconnected networks of oscillators exhibiting spatiotemporal chaos is considered. An external cue stabilizes input specific unstable periodic orbits of the first network, thus creating an "attentive" state. Only in this state is the device able to perform pattern discrimination and motion detection. We discuss the relevance of the procedure to the information processing of the brain. Images PMID:8090763

  6. Organisational Leadership and Chaos Theory: Let's Be Careful

    ERIC Educational Resources Information Center

    Galbraith, Peter

    2004-01-01

    This article addresses issues associated with applications of ideas from "chaos theory" to educational administration and leadership as found in the literature. Implications are considered in relation to claims concerning the behaviour of non-linear dynamic systems, and to the nature of the interpretations and recommendations that are made. To aid…

  7. Parametric resonance induced chaos in magnetic damped driven pendulum

    NASA Astrophysics Data System (ADS)

    Khomeriki, Giorgi

    2016-07-01

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.

  8. A note on the three versions of distributional chaos

    NASA Astrophysics Data System (ADS)

    Li, Risong

    2011-04-01

    The concept of distributional chaos was introduced by Schweizer et al. [Schweizer B, Sklar A, Smítal J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Tran Amer Math Soc 1994;344:737-854.] for a continuous selfmap on an interval. However, it turns out that, for a continuous selfmap on a compact metric space, three mutually nonequivalent versions of distributional chaos, DC1- DC3, can be discussed. In this paper, we consider a continuous map f : X → X, where X is a compact metric space, and show that DC1 (resp. DC2) is an iteration invariant, that is, for any integer N > 0, f is DC1 (resp. DC2) if and only if fN is also DC1(resp. DC2). As applications, we show that the following statements hold: Let G be a graph and f : G → G a continuous map. Then f is DC1 if and only if f is DC2. For a continuous selfmap f on a tree T, these three versions of distributional chaos, DC1 - DC3 are mutually equivalent. Furthermore, we present two examples which show that DC3 may be an iteration invariant. We will also discuss and partly solve the problem.

  9. Constrained Quantum Mechanics: Chaos in Non-Planar Billiards

    ERIC Educational Resources Information Center

    Salazar, R.; Tellez, G.

    2012-01-01

    We illustrate some of the techniques to identify chaos signatures at the quantum level using as guiding examples some systems where a particle is constrained to move on a radial symmetric, but non-planar, surface. In particular, two systems are studied: the case of a cone with an arbitrary contour or "dunce hat billiard" and the rectangular…

  10. Planning in Higher Education: A Model from Chaos Theory.

    ERIC Educational Resources Information Center

    Cutright, Marc

    This paper proposes a metaphoric perspective based on chaos theory for strategic planning by institutions of higher education. It offers 10 propositions for planning: (1) the ideal outcome of planning is planning, not a plan; (2) planning begins with a distillation of the institution's key values and purposes; (3) the widest possible universe of…

  11. Adaptive chaos: mild disorder may help contain major disease.

    PubMed

    Golbin, Alexander; Umantsev, Alexander

    2006-01-01

    We have qualitatively analyzed different cases of human disorders and displacement activities of animals and hypothesize that some of them are examples of low-dimensional dynamical chaos in biological organisms. We also considered a biological organism in the framework of the control system theory and found that chaotic regime in one subsystem may be compensating for the loss of chaos in another subsystem for the sake of stability of the whole system. According to the hypothesis chaotic behavior of different organs sets in a human body as an alternative to serious diseases or even death. The principle of compensation was applied to different physiological systems with chaotic regimes to explain the adaptive nature of chaos there. Implications of the mechanism of adaptive chaos for sleep diseases, e.g., enuresis, and other potentially life threatening disorders of humans, e.g., RLS, are discussed in connection with the possibility to use these ideas for improved treatment strategies. The main conclusion is that adaptive disorders with chaotic symptoms should not be aggressively treated; if adaptive disorders are over treated, the whole organism may be thrown into a more regular state, which eventually will lead to a chronic disease or even death.

  12. Learning Dialogically: The Art of Chaos-Informed Transformation

    ERIC Educational Resources Information Center

    van Eijnatten, Frans M.; van Galen, Maarten C.; Fitzgerald, Laurie A.

    2003-01-01

    A decision to don the chaos lens, adopt dialogue as its primary mode of communication, and to recognize the power of the organizational mind has fundamentally and irreversibly changed the way a Dutch capital-equipment manufacturer operates in its rapidly complexifying global marketplace. Beginning in September 1999, the focus of an ever widening…

  13. Regularization of chaos by noise in electrically driven nanowire systems

    NASA Astrophysics Data System (ADS)

    Hessari, Peyman; Do, Younghae; Lai, Ying-Cheng; Chae, Junseok; Park, Cheol Woo; Lee, GyuWon

    2014-04-01

    The electrically driven nanowire systems are of great importance to nanoscience and engineering. Due to strong nonlinearity, chaos can arise, but in many applications it is desirable to suppress chaos. The intrinsically high-dimensional nature of the system prevents application of the conventional method of controlling chaos. Remarkably, we find that the phenomenon of coherence resonance, which has been well documented but for low-dimensional chaotic systems, can occur in the nanowire system that mathematically is described by two coupled nonlinear partial differential equations, subject to periodic driving and noise. Especially, we find that, when the nanowire is in either the weakly chaotic or the extensively chaotic regime, an optimal level of noise can significantly enhance the regularity of the oscillations. This result is robust because it holds regardless of whether noise is white or colored, and of whether the stochastic drivings in the two independent directions transverse to the nanowire are correlated or independent of each other. Noise can thus regularize chaotic oscillations through the mechanism of coherence resonance in the nanowire system. More generally, we posit that noise can provide a practical way to harness chaos in nanoscale systems.

  14. Decades of Chaos and Revolution: Showdowns for College Presidents

    ERIC Educational Resources Information Center

    Nelson, Stephen J.

    2012-01-01

    "Decades of Chaos and Revolution: Showdowns for College Presidents" is the story and comparison of two eras in the history of higher education. The first era covers the period of the 1960s through the mid-1970s, and the second is the first decade of the twenty-first century. Both decades were marked by events that shook the foundations of colleges…

  15. Ecosystem Simulations and Chaos on the Graphing Calculator

    ERIC Educational Resources Information Center

    Sinn, Robb

    2007-01-01

    An eighth grade algebra class used graphing calculators to simulate ecosystems. One simulation introduced mathematical chaos. The activities exposed the students to nonlinear patterns and modeling. The rate-of-change investigations related the ideas of intercept and slope to the changing equilibrium. The chaotic model intrigued them and was useful…

  16. Applying Chaos Theory to Careers: Attraction and Attractors

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.; Bright, Jim E. H.

    2007-01-01

    This article presents the Chaos Theory of Careers with particular reference to the concepts of "attraction" and "attractors". Attractors are defined in terms of characteristic trajectories, feedback mechanisms, end states, ordered boundedness, reality visions and equilibrium and fluctuation. The identified types of attractors (point, pendulum,…

  17. Change in Chaos: Seven Lessons Learned from Katrina

    ERIC Educational Resources Information Center

    Carr-Chellman, Alison A.; Beabout, Brian; Alkandari, Khaled A.; Almeida, Luis C.; Gursoy, Husra T.; Ma, Ziyan; Modak, Rucha S.; Pastore, Raymond S.

    2008-01-01

    This article discusses seven lessons learned from Katrina, suggesting that after chaos: (1) there is hope; (2) there is a strong atmosphere of indeterminacy; (3) things tend to break apart and reform in somewhat similar ways but with different values; (4) there is a desire for organization, leadership, and familiarity; (5) there is a sense of…

  18. Constrained quantum mechanics: chaos in non-planar billiards

    NASA Astrophysics Data System (ADS)

    Salazar, R.; Téllez, G.

    2012-07-01

    We illustrate some of the techniques to identify chaos signatures at the quantum level using as guiding examples some systems where a particle is constrained to move on a radial symmetric, but non-planar, surface. In particular, two systems are studied: the case of a cone with an arbitrary contour or dunce hat billiard and the rectangular billiard with an inner Gaussian surface.

  19. Chaos Modeling: Increasing Educational Researchers' Awareness of a New Tool.

    ERIC Educational Resources Information Center

    Bobner, Ronald F.; And Others

    Chaos theory is being used as a tool to study a wide variety of phenomena. It is a philosophical and empirical approach that attempts to explain relationships previously thought to be totally random. Although some relationships are truly random, many data appear to be random but reveal repeatable patterns of behavior under further investigation.…

  20. BOOK REVIEW: Chaos: A Very Short Introduction

    NASA Astrophysics Data System (ADS)

    Klages, R.

    2007-07-01

    This book is a new volume of a series designed to introduce the curious reader to anything from ancient Egypt and Indian philosophy to conceptual art and cosmology. Very handy in pocket size, Chaos promises an introduction to fundamental concepts of nonlinear science by using mathematics that is `no more complicated than X=2. Anyone who ever tried to give a popular science account of research knows that this is a more challenging task than writing an ordinary research article. Lenny Smith brilliantly succeeds to explain in words, in pictures and by using intuitive models the essence of mathematical dynamical systems theory and time series analysis as it applies to the modern world. In a more technical part he introduces the basic terms of nonlinear theory by means of simple mappings. He masterly embeds this analysis into the social, historical and cultural context by using numerous examples, from poems and paintings over chess and rabbits to Olbers' paradox, card games and `phynance'. Fundamental problems of the modelling of nonlinear systems like the weather, sun spots or golf balls falling through an array of nails are discussed from the point of view of mathematics, physics and statistics by touching upon philosophical issues. At variance with Laplace's demon, Smith's 21st century demon makes `real world' observations only with limited precision. This poses a severe problem to predictions derived from complex chaotic models, where small variations of initial conditions typically yield totally different outcomes. As Smith argues, this difficulty has direct implications on decision-making in everyday modern life. However, it also asks for an inherently probabilistic theory, which somewhat reminds us of what we are used to in the microworld. There is little to criticise in this nice little book except that some figures are of poor quality thus not really reflecting the beauty of fractals and other wonderful objects in this field. I feel that occasionally the book

  1. Chaos at the Heart of Orion

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Spitzer and Hubble Space Telescopes have teamed up to expose the chaos that baby stars are creating 1,500 light-years away in a cosmic cloud called the Orion nebula.

    This striking infrared and visible-light composite indicates that four monstrously massive stars at the center of the cloud may be the main culprits in the familiar Orion constellation. The stars are collectively called the 'Trapezium.' Their community can be identified as the yellow smudge near the center of the image.

    Swirls of green in Hubble's ultraviolet and visible-light view reveal hydrogen and sulfur gas that have been heated and ionized by intense ultraviolet radiation from the Trapezium's stars. Meanwhile, Spitzer's infrared view exposes carbon-rich molecules called polycyclic aromatic hydrocarbons in the cloud. These organic molecules have been illuminated by the Trapezium's stars, and are shown in the composite as wisps of red and orange. On Earth, polycyclic aromatic hydrocarbons are found on burnt toast and in automobile exhaust.

    Together, the telescopes expose the stars in Orion as a rainbow of dots sprinkled throughout the image. Orange-yellow dots revealed by Spitzer are actually infant stars deeply embedded in a cocoon of dust and gas. Hubble showed less embedded stars as specks of green, and foreground stars as blue spots.

    Stellar winds from clusters of newborn stars scattered throughout the cloud etched all of the well-defined ridges and cavities in Orion. The large cavity near the right of the image was most likely carved by winds from the Trapezium's stars.

    Located 1,500 light-years away from Earth, the Orion nebula is the brightest spot in the sword of the Orion, or the 'Hunter' constellation. The cosmic cloud is also our closest massive star-formation factory, and astronomers believe it contains more than 1,000 young stars.

    The Orion constellation is a familiar sight in the fall and winter night sky in the northern hemisphere. The nebula

  2. Order Amidst Chaos of Star's Explosion

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Order Amidst Chaos of Star's Explosion

    This artist's animation shows the explosion of a massive star, the remains of which are named Cassiopeia A. NASA's Spitzer Space Telescope found evidence that the star exploded with some degree of order, preserving chunks of its onion-like layers as it blasted apart.

    Cassiopeia A is what is known as a supernova remnant. The original star, about 15 to 20 times more massive than our sun, died in a cataclysmic 'supernova' explosion viewable from Earth about 340 years ago. The remnant is located 10,000 light-years away in the constellation Cassiopeia.

    The movie begins by showing the star before it died, when its layers of elements (shown in different colors) were stacked neatly, with the heaviest at the core and the lightest at the top. The star is then shown blasting to smithereens. Spitzer found evidence that the star's original layers were preserved, flinging outward in all directions, but not at the same speeds. In other words, some chunks of the star sped outward faster than others, as illustrated by the animation.

    The movie ends with an actual picture of Cassiopeia A taken by Spitzer. The colored layers containing different elements are seen next to each other because they traveled at different speeds.

    The infrared observatory was able to see the tossed-out layers because they light up upon ramming into a 'reverse' shock wave created in the aftermath of the explosion. When a massive star explodes, it creates two types of shock waves. The forward shock wave darts out quickest, and, in the case of Cassiopeia A, is now traveling at supersonic speeds up to 7,500 kilometers per second (4,600 miles/second). The reverse shock wave is produced when the forward shock wave slams into a shell of surrounding material expelled before the star died. It tags along behind the forward shock wave at slightly slower speeds.

    Chunks

  3. Chaos in the Outer Solar System may be indeterminate

    NASA Astrophysics Data System (ADS)

    Hayes, W. B.

    2005-12-01

    Consider a multi-hundred-million-year integration of the 5-body system consisting of the Sun, Jupiter, Saturn, Uranus, and Neptune. We term such an integration a long-term integration of the Outer Solar System. Such integrations have been performed repeatedly since the late 1980s and early 1990s, and many researchers performing such integrations have found that the isolated Outer Solar System is chaotic, with a Lyapunov timescale of about 10 million years. Using the Wisdom-Holman sympletic mapping, a typical timescale in early integrations was 400 days. Recently, some researchers have found that the 10-million year Lyapunov time can be reproduced when integrating the Outer Solar System with a 400 day timestep, but that the Lyapunov time becomes infinite (ie., the chaos disappears) when the integration timestep is reduced to 50 days or less. Since it is well-known that symplectic integrators with too-large a timestep can introduce chaos into integrable systems, this throws into question the conclusion that the isolated Outer Solar System is chaotic. However, researchers today often use timesteps much smaller than 400 days, and many researchers today still find chaos, even when using a timestep of 50 days or less. Thus we are left with the disturbing story that some researchers see chaos in the Outer Solar System, while others do not. Murray and Holman (Science 1999) demonstrated that among the sets of initial conditions very close to our Solar System, there exist both initial conditions that do, and do not, display chaotic behaviour over a 200-million-year timescale. However, they were confident that their integration errors were small enough to conclude that the chaos they observed was robust aginst integration error over the 200-million-year timescale. In this talk, we demonstrate that Murray and Holman's integrations are indeed reliable. We also demonstrate that the effect of the inner planets is large enough so that initial conditions taken from ephemerides at

  4. 76 FR 64083 - Reliability Technical Conference; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliability Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, November...

  5. Secular Chaos and the Production of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Wu, Yanqin; Lithwick, Yoram

    2011-07-01

    In a planetary system with two or more well-spaced, eccentric, inclined planets, secular interactions may lead to chaos. The innermost planet may gradually become very eccentric and/or inclined as a result of the secular degrees of freedom drifting toward equipartition of angular momentum deficit. Secular chaos is known to be responsible for the eventual destabilization of Mercury in our own solar system. Here we focus on systems with three giant planets. We characterize the secular chaos and demonstrate the criterion for it to occur, but leave a detailed understanding of secular chaos to a companion paper. After an extended period of eccentricity diffusion, the inner planet's pericenter can approach the star to within a few stellar radii. Strong tidal interactions and ensuing tidal dissipation extract orbital energy from the planet and pull it inward, creating a hot Jupiter. In contrast to other proposed channels for the production of hot Jupiters, such a scenario (which we term "secular migration") explains a range of observations: the pile-up of hot Jupiters at 3 day orbital periods, the fact that hot Jupiters are in general less massive than other radial velocity planets, that they may have misaligned inclinations with respect to stellar spin, and that they have few easily detectable companions (but may have giant companions in distant orbits). Secular migration can also explain close-in planets as low in mass as Neptune; and an aborted secular migration can explain the "warm Jupiters" at intermediate distances. In addition, the frequency of hot Jupiters formed via secular migration increases with stellar age. We further suggest that secular chaos may be responsible for the observed eccentricities of giant planets at larger distances and that these planets could exhibit significant spin-orbit misalignment.

  6. SECULAR CHAOS AND THE PRODUCTION OF HOT JUPITERS

    SciTech Connect

    Wu Yanqin; Lithwick, Yoram

    2011-07-10

    In a planetary system with two or more well-spaced, eccentric, inclined planets, secular interactions may lead to chaos. The innermost planet may gradually become very eccentric and/or inclined as a result of the secular degrees of freedom drifting toward equipartition of angular momentum deficit. Secular chaos is known to be responsible for the eventual destabilization of Mercury in our own solar system. Here we focus on systems with three giant planets. We characterize the secular chaos and demonstrate the criterion for it to occur, but leave a detailed understanding of secular chaos to a companion paper. After an extended period of eccentricity diffusion, the inner planet's pericenter can approach the star to within a few stellar radii. Strong tidal interactions and ensuing tidal dissipation extract orbital energy from the planet and pull it inward, creating a hot Jupiter. In contrast to other proposed channels for the production of hot Jupiters, such a scenario (which we term 'secular migration') explains a range of observations: the pile-up of hot Jupiters at 3 day orbital periods, the fact that hot Jupiters are in general less massive than other radial velocity planets, that they may have misaligned inclinations with respect to stellar spin, and that they have few easily detectable companions (but may have giant companions in distant orbits). Secular migration can also explain close-in planets as low in mass as Neptune; and an aborted secular migration can explain the 'warm Jupiters' at intermediate distances. In addition, the frequency of hot Jupiters formed via secular migration increases with stellar age. We further suggest that secular chaos may be responsible for the observed eccentricities of giant planets at larger distances and that these planets could exhibit significant spin-orbit misalignment.

  7. Household chaos, sociodemographic risk, coparenting, and parent-infant relations during infants' first year.

    PubMed

    Whitesell, Corey J; Teti, Douglas M; Crosby, Brian; Kim, Bo-Ram

    2015-04-01

    Household chaos is a construct often overlooked in studies of human development, despite its theoretical links with the integrity of individual well-being, family processes, and child development. The present longitudinal study examined relations between household chaos and well-established correlates of chaos (sociodemographic risk, major life events, and personal distress) and several constructs that, to date, are theoretically linked with chaos but never before assessed as correlates (quality of coparenting and emotional availability with infants at bedtime). In addressing this aim, we introduce a new measure of household chaos (the Descriptive In-home Survey of Chaos--Observer ReporteD, or DISCORD), wholly reliant on independent observer report, which draws from household chaos theory and prior empirical work but extends the measurement of chaos to include information about families' compliance with a home visiting protocol. Household chaos was significantly associated with socioeconomic risk, negative life events, less favorable coparenting, and less emotionally available bedtime parenting, but not with personal distress. These findings emphasize the need to examine household chaos as a direct and indirect influence on child and family outcomes, as a moderator of intervention attempts to improving parenting and child development, and as a target of intervention in its own right.

  8. The Learning Conference

    ERIC Educational Resources Information Center

    Ravn, Ib

    2007-01-01

    Purpose: The purpose of this paper is to call attention to the fact that conferences for professionals rely on massive one-way communication and hence produce little learning for delegates--and to introduce an alternative, the "learning conference", that involves delegates in fun and productive learning processes.…

  9. ASE Annual Conference 2010

    ERIC Educational Resources Information Center

    McCune, Roger

    2010-01-01

    In this article, the author describes the ASE Annual Conference 2010 which was held at Nottingham after a gap of 22 years. As always, the main conference was preceded by International Day, an important event for science educators from across the world. There were two strands to the programme: (1) "What works for me?"--sharing new ideas…

  10. Lyndon Johnson's Press Conferences.

    ERIC Educational Resources Information Center

    Cooper, Stephen

    Because President Lyndon Johnson understood well the publicity value of the American news media, he sought to exploit them. He saw reporters as "torch bearers" for his programs and policies and used the presidential press conference chiefly for promotional purposes. Although he met with reporters often, his press conferences were usually…

  11. From Conference to Journal

    ERIC Educational Resources Information Center

    McCartney, Robert; Tenenberg, Josh

    2008-01-01

    Revising and extending conference articles for journal publication benefits both authors and readers. The new articles are more complete, and benefit from peer review, feedback from conference presentation, and greater editorial consistency. For those articles that are appropriate, we encourage authors to do this, and present two examples of such…

  12. "I Had Seen Order and Chaos, but Had Thought They Were Different." The Challenges of the Chaos Theory for Career Development

    ERIC Educational Resources Information Center

    Pryor, Robert; Bright, Jim

    2004-01-01

    This paper highlights five challenges to the accepted wisdom in career development theory and practice. It presents the chaos theory of careers and argues that the chaos theory provides a more complete and authentic account of human behaviour. The paper argues that positivism, reductionism and assumptions of linearity are inappropriate for…

  13. Verification of chaotic behavior in an experimental loudspeaker.

    PubMed

    Reiss, Joshua D; Djurek, Ivan; Petosic, Antonio; Djurek, Danijel

    2008-10-01

    The dynamics of an experimental electrodynamic loudspeaker is studied by using the tools of chaos theory and time series analysis. Delay time, embedding dimension, fractal dimension, and other empirical quantities are determined from experimental data. Particular attention is paid to issues of stationarity in a system in order to identify sources of uncertainty. Lyapunov exponents and fractal dimension are measured using several independent techniques. Results are compared in order to establish independent confirmation of low dimensional dynamics and a positive dominant Lyapunov exponent. We thus show that the loudspeaker may function as a chaotic system suitable for low dimensional modeling and the application of chaos control techniques.

  14. Sulfates and phyllosilicates in Aureum Chaos, Mars

    NASA Astrophysics Data System (ADS)

    Sowe, M.; Wendt, L.; McGuire, P. C.; Neukum, G.

    2012-12-01

    Many Martian regions show a hydrated mineralogy indicating that aqueous processes played a major role in the planet's past. This study combines short wave infrared data, imagery and elevation data to identify these minerals in an equatorial chaotic terrain region and to find out their stratigraphy and geological context. Local Interior Layered Deposits (ILD) display three stratigraphic units: The lowest unit shows massive and also layered, monohydrated sulfate (MHS, best matching kieserite; 20-650 m thick), intercalated hydroxylated ferric sulfates (HFS, best matching jarosite) and ferric oxides. The overlying polyhydrated sulfate (PHS) is commonly layered (20-40 m thick), smooth to heavily fractured, partially with ferric oxides. Spectrally neutral, distinctly layered, bumpy cap rock (40-300 m thick) forms the top. Units are spectrally and morphologically similar to deposits of Aram Chaos (PHS, MHS, ferric oxides; texture of ILD and cap rock) and Juventae Chasma (HFS). Here, the phyllosilicate nontronite is found attributed to chaotic terrain as a light-toned fractured exposure but also within dark, smooth mantling. Coexisting sulfates and phyllosilicates demonstrate geochemical variations in the aqueous environment. Conversions between sulfates and iron oxides are considered, since we might be looking at alteration products instead of the parent rock material. Here, PHS occurs along mantling edges and flat surfaces of MHS without showing textural differences; making it a potential alteration product of MHS (e.g. due to surface exposure). Since the facies and timing of sulfate formation remain undefined, two different formation models are considered: contemporaneous ILD and PHS deposition with diagenetic sulfate conversion due to overburden (into MHS, iron oxides) later on; and groundwater evaporation. The first is less likely since a (sharp) PHS-MHS boundary is required that would indicate a diagenetic formation. The second is more consistent with our

  15. PREFACE The International Conference on Science of Friction 2010 (ICSF2010)

    NASA Astrophysics Data System (ADS)

    Miura, Kouji; Matsukawa, Hiroshi

    2010-11-01

    The second international conference on science of friction in Japan was held at Ise-Shima, Mie on 13-18 September 2010. The conference focused on the elementary process of friction phenomena from atomic and molecular scale view. Topics covered at the conference were: Superlubricity and friction Electronic and phononic contributions to friction Friction on the atomic and molecular scales van der Waals friction and Casimir force Molecular motor and friction Friction and adhesion in soft matter system Wear and crack on the nanocsale Theoretical studies on the atomic scale friction and energy dissipatin Friction and Chaos Mechanical properties of nanoscale contacts Friction of powder The number of participants in the conference was approximately 85, registered from 8 countries. 40 oral and 16 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 19 papers devoted to the topics of friction. The successful organization of the conference was made possible by the contribution of the members of the organizing Committee. The conference was made possible thanks to the financial support from Aichi University of Education, and moreover thanks to the approval societies of The Physical Society of Japan, The surface Science Society of Japan and The Japanese Society of Tribologists. The details of the conference are available on http://www.science-of-friction.com/2010/. Finally we would like to thank the speakers for the high quality of their talks and all participants for coming to Ise-Shima, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  16. Ninth Annual V. M. Goldschmidt Conference

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This volume contains abstracts that have been accepted for presentation at the Ninth Annual V. M. Goldschmidt Conference, August 22-27, 1999, hosted by the Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts. The meeting is a forum for presenting and discussing new chemical and isotopic measurements, experimental and theoretical results, and discoveries in geochemistry and cosmochemistry.

  17. Dynamic video encryption algorithm for H.264/AVC based on a spatiotemporal chaos system.

    PubMed

    Xu, Hui; Tong, Xiao-Jun; Zhang, Miao; Wang, Zhu; Li, Ling-Hao

    2016-06-01

    Video encryption schemes mostly employ the selective encryption method to encrypt parts of important and sensitive video information, aiming to ensure the real-time performance and encryption efficiency. The classic block cipher is not applicable to video encryption due to the high computational overhead. In this paper, we propose the encryption selection control module to encrypt video syntax elements dynamically which is controlled by the chaotic pseudorandom sequence. A novel spatiotemporal chaos system and binarization method is used to generate a key stream for encrypting the chosen syntax elements. The proposed scheme enhances the resistance against attacks through the dynamic encryption process and high-security stream cipher. Experimental results show that the proposed method exhibits high security and high efficiency with little effect on the compression ratio and time cost.

  18. Deterministic chaos in the Belousov-Zhabotinsky reaction: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Dongmei; Györgyi, László; Peltier, William R.

    1993-10-01

    An account of the experimental discovery of complex dynamical behavior in the continuous-flow, stirred tank reactor (CSTR) Belousov-Zhabotinsky (BZ) reaction, as well as numerical simulations based on the BZ chemistry are given. The most recent four- and three-variable models that are deduced from the well-accepted, updated chemical mechanism of the BZ reaction and which exhibit robust chaotic states are summarized. Chaos has been observed in experiments and simulations embedded in the regions of complexities at both low and high flow rates. The deterministic nature of the observed aperiodicities at low flow rates is unequivocally established. However, controversy still remains in the interpretation of certain aperiodicities observed at high flow rates.

  19. A novel image encryption algorithm using chaos and reversible cellular automata

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Luan, Dapeng

    2013-11-01

    In this paper, a novel image encryption scheme is proposed based on reversible cellular automata (RCA) combining chaos. In this algorithm, an intertwining logistic map with complex behavior and periodic boundary reversible cellular automata are used. We split each pixel of image into units of 4 bits, then adopt pseudorandom key stream generated by the intertwining logistic map to permute these units in confusion stage. And in diffusion stage, two-dimensional reversible cellular automata which are discrete dynamical systems are applied to iterate many rounds to achieve diffusion on bit-level, in which we only consider the higher 4 bits in a pixel because the higher 4 bits carry almost the information of an image. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack. This algorithm belongs to the class of symmetric systems.

  20. THE NEW MEDIA IN EDUCATION. A REPORT OF THE WESTERN REGIONAL CONFERENCE ON EDUCATIONAL MEDIA RESEARCH.

    ERIC Educational Resources Information Center

    EDLING, JACK V.

    A REPORT OF THE WESTERN REGIONAL CONFERENCE ON EDUCATIONAL MEDIA RESEARCH HELD AT SACRAMENTO, CALIFORNIA, APRIL 20-22, 1960, WAS PRESENTED. THE CONFERENCE WAS HELD TO REVIEW AND HELP CHART FUTURE DIRECTIONS IN RESEARCH, EXPERIMENTATION, AND THE DISSEMINATION OF INFORMATION RELATIVE TO NEW INSTRUCTIONAL MEDIA. THE CONFERENCE HAD FOUR PURPOSES--TO…

  1. Outflow channel sources, reactivation, and chaos formation, Xanthe Terra, Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Sasaki, S.; Kuzmin, R.O.; Dohm, J.M.; Tanaka, K.L.; Miyamoto, H.; Kurita, K.; Komatsu, G.; Fairen, A.G.; Ferris, J.C.

    2005-01-01

    The undulating, warped, and densely fractured surfaces of highland regions east of Valles Marineris (located north of the eastern Aureum Chaos, east of the Hydraotes Chaos, and south of the Hydaspis Chaos) resulted from extensional surface warping related to ground subsidence, caused when pressurized water confined in subterranean caverns was released to the surface. Water emanations formed crater lakes and resulted in channeling episodes involved in the excavation of Ares, Tiu, and Simud Valles of the eastern part of the circum-Chryse outflow channel system. Progressive surface subsidence and associated reduction of the subsurface cavernous volume, and/or episodes of magmatic-driven activity, led to increases of the hydrostatic pressure, resulting in reactivation of both catastrophic and non-catastrophic outflow activity. Ancient cratered highland and basin materials that underwent large-scale subsidence grade into densely fractured terrains. Collapse of rock materials in these regions resulted in the formation of chaotic terrains, which occur in and near the headwaters of the eastern circum-Chryse outflow channels. The deepest chaotic terrain in the Hydaspis Chaos region resulted from the collapse of pre-existing outflow channel floors. The release of volatiles and related collapse may have included water emanations not necessarily linked to catastrophic outflow. Basal warming related to dike intrusions, thermokarst activity involving wet sediments and/or dissected ice-enriched country rock, permafrost exposed to the atmosphere by extensional tectonism and channel incision, and/or the injection of water into porous floor material, may have enhanced outflow channel floor instability and subsequent collapse. In addition to the possible genetic linkage to outflow channel development dating back to at least the Late Noachian, clear disruption of impact craters with pristine ejecta blankets and rims, as well as preservation of fine tectonic fabrics, suggest that

  2. Doubly transient chaos: generic form of chaos in autonomous dissipative systems.

    PubMed

    Motter, Adilson E; Gruiz, Márton; Károlyi, György; Tél, Tamás

    2013-11-08

    Chaos is an inherently dynamical phenomenon traditionally studied for trajectories that are either permanently erratic or transiently influenced by permanently erratic ones lying on a set of measure zero. The latter gives rise to the final state sensitivity observed in connection with fractal basin boundaries in conservative scattering systems and driven dissipative systems. Here we focus on the most prevalent case of undriven dissipative systems, whose transient dynamics fall outside the scope of previous studies since no time-dependent solutions can exist for asymptotically long times. We show that such systems can exhibit positive finite-time Lyapunov exponents and fractal-like basin boundaries which nevertheless have codimension one. In sharp contrast to its driven and conservative counterparts, the settling rate to the (fixed-point) attractors grows exponentially in time, meaning that the fraction of trajectories away from the attractors decays superexponentially. While no invariant chaotic sets exist in such cases, the irregular behavior is governed by transient interactions with transient chaotic saddles, which act as effective, time-varying chaotic sets.

  3. Doubly Transient Chaos: Generic Form of Chaos in Autonomous Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Motter, Adilson E.; Gruiz, Márton; Károlyi, György; Tél, Tamás

    2013-11-01

    Chaos is an inherently dynamical phenomenon traditionally studied for trajectories that are either permanently erratic or transiently influenced by permanently erratic ones lying on a set of measure zero. The latter gives rise to the final state sensitivity observed in connection with fractal basin boundaries in conservative scattering systems and driven dissipative systems. Here we focus on the most prevalent case of undriven dissipative systems, whose transient dynamics fall outside the scope of previous studies since no time-dependent solutions can exist for asymptotically long times. We show that such systems can exhibit positive finite-time Lyapunov exponents and fractal-like basin boundaries which nevertheless have codimension one. In sharp contrast to its driven and conservative counterparts, the settling rate to the (fixed-point) attractors grows exponentially in time, meaning that the fraction of trajectories away from the attractors decays superexponentially. While no invariant chaotic sets exist in such cases, the irregular behavior is governed by transient interactions with transient chaotic saddles, which act as effective, time-varying chaotic sets.

  4. Controlling chaos in some laser systems via variable coupling and feedback time delays

    NASA Astrophysics Data System (ADS)

    Shahverdiev, E. M.

    2016-09-01

    We study numerically a system of two lasers cross-coupled optoelectronically with a time delay where the output intensity of each laser modulates the pump current of the other laser. We demonstrate control of chaos via variable coupling time delay by converting the laser intensity chaos to the steady-state. We also show that wavelength chaos in an electrically tunable distributed Bragg reflector (DBR) laser diode with a feedback loop that can be controlled via variable feedback time delay.

  5. Coherent Structures and Chaos Control in High-Power Microwave Devices

    DTIC Science & Technology

    2006-06-29

    06/29/2006 Final 1 April 2003- 30 March 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Coherent Structures and Chaos Control in High-Power Microwave...Final Report Coherent Structures and Chaos Control in High-Power Microwave Devices AFOSR Grant No. F49620-03-1-0230 Submitted to: Dr. Arje Nachman...for HPM Device Applications 22 6. References 23 2 Final Report Coherent Structures and Chaos Control in High-Power Microwave Devices AFOSR Grant No

  6. 48 CFR 6101.11 - Conferences; conference memorandum [Rule 11].

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Conferences; conference memorandum . 6101.11 Section 6101.11 Federal Acquisition Regulations System CIVILIAN BOARD OF CONTRACT APPEALS, GENERAL SERVICES ADMINISTRATION CONTRACT DISPUTE CASES 6101.11 Conferences; conference...

  7. 2008 Gordon Research Conference on Molecular and Ionic Clusters [Conference summary report

    SciTech Connect

    Hutson, Jeremy M.

    2009-09-21

    The Gordon Research Conference on Molecular and Ionic Clusters was held at Centre Paul Langevin, Aussois, France, September 7-12, 2008. The Conference was well-attended with 129 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The conference covered the spectroscopy, dynamics, and reactivity of a wide range of cluster types and sizes, including helium nanodroplets, metal clusters, ionic clusters, hydrogen-bonded networks, and clusters involving biological molecules. Special sessions on cold-molecule collisions and aerosols are also planned. Both experimental and theoretical aspects of cluster science will be well-represented at the conference.

  8. Secure passive optical network based on chaos synchronization.

    PubMed

    Jiang, Ning; Zhang, Chongfu; Qiu, Kun

    2012-11-01

    A physical-enhanced secure passive optical network (PON) based on chaos synchronization is proposed and numerically demonstrated. In this scheme, the chaotic output of an external-cavity semiconductor laser is used as the transmission carrier in both downstream and upstream directions, the chaos modulation technology is used to encrypt the downstream data, and the multiplexed subcarrier-modulation technology is adopted for the upstream transmission. Simulation results demonstrate that both the downstream data and the upstream data encrypted into the chaotic carriers can be successfully decrypted; moreover, the security of downstream can be enhanced by properly increasing the bit rate, and the upstream security can be maintained at a high level. The proposed PON affords secure all-optical access at the physical layer.

  9. Numerical proof for chemostat chaos of Shilnikov's type

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Han, Maoan; Hsu, Sze-Bi

    2017-03-01

    A classical chemostat model is considered that models the cycling of one essential abiotic element or nutrient through a food chain of three trophic levels. The long-time behavior of the model was known to exhibit complex dynamics more than 20 years ago. It is still an open problem to prove the existence of chaos analytically. In this paper, we aim to solve the problem numerically. In our approach, we introduce an artificial singular parameter to the model and construct singular homoclinic orbits of the saddle-focus type which is known for chaos generation. From the configuration of the nullclines of the equations that generates the singular homoclinic orbits, a shooting algorithm is devised to find such Shilnikov saddle-focus homoclinic orbits numerically which in turn imply the existence of chaotic dynamics for the original chemostat model.

  10. Controlling chaos in unidimensional maps using macroevolutionary algorithms.

    PubMed

    Marín, Jesús; Solé, Ricard V

    2002-02-01

    We introduce a simple search algorithm that explores the parameter of periodically perturbed discrete maps in order to find desired orbits through chaos control. The method has been applied to one-dimensional maps but is easily extendable to higher-dimensional systems. Here, we consider two types of chaos control involving proportional pulses in the system variables [Phys. Rev. Lett. 72, 1455 (1994)] and constant feedback [Phys. Rev. E 51, 6239 (1995)], the first case being presented in detail. It is shown that our method allows a rapid exploration of parameter space and the finding of high-fitness (i.e., controlled) solutions close to the target orbits, even when high periodicities are required.

  11. Impulse-induced localized control of chaos in starlike networks

    NASA Astrophysics Data System (ADS)

    Chacón, Ricardo; Palmero, Faustino; Cuevas-Maraver, Jesús

    2016-06-01

    Locally decreasing the impulse transmitted by periodic pulses is shown to be a reliable method of taming chaos in starlike networks of dissipative nonlinear oscillators, leading to both synchronous periodic states and equilibria (oscillation death). Specifically, the paradigmatic model of damped kicked rotators is studied in which it is assumed that when the rotators are driven synchronously, i.e., all driving pulses transmit the same impulse, the networks display chaotic dynamics. It is found that the taming effect of decreasing the impulse transmitted by the pulses acting on particular nodes strongly depends on their number and degree of connectivity. A theoretical analysis is given explaining the basic physical mechanism as well as the main features of the chaos-control scenario.

  12. Transition to chaos in an open unforced 2D flow

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.; Vastano, John A.

    1993-01-01

    The present numerical study of unsteady, low Reynolds number flow past a 2D airfoil attempts to ascertain the bifurcation sequence leading from simple periodic to complex aperiodic flow with rising Reynolds number, as well as to characterize the degree of chaos present in the aperiodic flow and assess the role of numerics in the modification and control of the observed bifurcation scenario. The ARC2D Navier-Stokes code is used in an unsteady time-accurate mode for most of these computations. The system undergoes a period-doubling bifurcation to chaos as the Reynolds number is increased from 800 to 1600; its chaotic attractors are characterized by estimates of the fractal dimension and partial Liapunov exponent spectra.

  13. Control of complex dynamics and chaos in distributed parameter systems

    SciTech Connect

    Chakravarti, S.; Marek, M.; Ray, W.H.

    1995-12-31

    This paper discusses a methodology for controlling complex dynamics and chaos in distributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to chaos exists in a defined range of parameter values, is used as an example. Poincare maps are used for characterization of quasi-periodic and chaotic attractors. The dominant modes or topos, which are inherent properties of the system, are identified by means of the Singular Value Decomposition. Tested modal feedback control schemas based on identified dominant spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in the complex quasi-periodic or chaotic spatiotemporal patterns.

  14. Organized and Disorganized Chaos a New Dynamics in Peace Intelligence

    NASA Astrophysics Data System (ADS)

    Erçetin, Şefika Şule; Tekin, Ali; Açıkalın, Şuay Nilhan

    "How to prevent wars" can be considered as reason behind the foundation of field international relations. In other words, after two devastating war humanity realized that we should learn peaceful coexistence. That's why last 50 years were dedicated to peace which have been the most controversial and gripping notion in all disciplines. Within this context, the notion of sustainable peace becomes more important in last years. On the other hand, chaos and its application in social life- actually our real universe gave insight people to understand social facts with dynamic systems and chaos theory. So, this chapter will be a new and fresh to have sustainable peace with peace intelligence. Peace intelligence is completely new phenomena which coined by Şefika Şule Erçetin.

  15. Genomes: At the edge of Chaos with maximum information capacity

    NASA Astrophysics Data System (ADS)

    Kong, Sing-Guan; Chen, Hong-Da; Torda, Andrew; Lee, H. C.

    We propose an order index, ϕ, which quantifies the notion of "life at the edge of chaos" when applied to genome sequences. It maps genomes to a number from 0 (random and of infinite length) to 1 (fully ordered) and applies regardless of sequence length and base composition. The 786 complete genomic sequences in GenBank were found to have ϕ values in a very narrow range, 0.037 ± 0.027. We show this implies that genomes are halfway towards being completely random, namely, at the edge of chaos. We argue that this narrow range represents the neighborhood of a fixed-point in the space of sequences, and genomes are driven there by the dynamics of a robust, predominantly neutral evolution process...

  16. Using recurrences to characterize the hyperchaos-chaos transition

    NASA Astrophysics Data System (ADS)

    Souza, Everton G.; Viana, Ricardo L.; Lopes, Sérgio R.

    2008-12-01

    Hyperchaos occurs in a dynamical system with more than one positive Lyapunov exponent. When the equations governing the time evolution of the dynamical system are known, the transition from chaos to hyperchaos can be readily obtained when the second largest Lyapunov exponent crosses zero. If the only information available on the system is a time series, however, such method is difficult to apply. We propose the use of recurrence quantification analysis of a time series to characterize the chaos-hyperchaos transition. We present results obtained from recurrence plots of coupled chaotic piecewise-linear maps and Chua-Matsumoto circuits, but the method can be applied as well to other systems, even when one does not know their dynamical equations.

  17. Randomness versus deterministic chaos: Effect on invasion percolation clusters

    NASA Astrophysics Data System (ADS)

    Peng, Chung-Kang; Prakash, Sona; Herrmann, Hans J.; Stanley, H. Eugene

    1990-10-01

    What is the difference between randomness and chaos \\? Although one can define randomness and one can define chaos, one cannot easily assess the difference in a practical situation. Here we compare the results of these two antipodal approaches on a specific example. Specifically, we study how well the logistic map in its chaotic regime can be used as quasirandom number generator by calculating pertinent properties of a well-known random process: invasion percolation. Only if λ>λ*1 (the first reverse bifurcation point) is a smooth extrapolation in system size possible, and percolation exponents are retrieved. If λ≠1, a sequential filling of the lattice with the random numbers generates a measurable anisotropy in the growth sequence of the clusters, due to short-range correlations.

  18. Universality in chaos of particle motion near black hole horizon

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Tanahashi, Norihiro

    2017-01-01

    The motion of a particle near a horizon of a spherically symmetric static black hole is shown to possess a universal Lyapunov exponent of chaos bounded by its surface gravity. To probe the horizon, we introduce an electromagnetic or scalar force to the particle so that it does not fall into the horizon. There appears an unstable maximum of the total potential where the evaluated maximal Lyapunov exponent is found to be to the surface gravity of the black hole. This value is independent of the external forces, the particle mass and background geometry, and in this sense this Lyapunov exponent is universal. Unless there are other sources of chaos, the Lyapunov exponent is subject to an inequality λ ≤2 π TBH/ℏ, which is identical to the bound recently discovered by Maldacena, Shenker, and Stanford.

  19. Granular chaos and mixing: Whirled in a grain of sand

    SciTech Connect

    Shinbrot, Troy

    2015-09-15

    In this paper, we overview examples of chaos in granular flows. We begin by reviewing several remarkable behaviors that have intrigued researchers over the past few decades, and we then focus on three areas in which chaos plays an intrinsic role in granular behavior. First, we discuss pattern formation in vibrated beds, which we show is a direct result of chaotic scattering combined with dynamical dissipation. Next, we consider stick-slip motion, which involves chaotic scattering on the micro-scale, and which results in complex and as yet unexplained peculiarities on the macro-scale. Finally, we examine granular mixing, which we show combines micro-scale chaotic scattering and macro-scale stick-slip motion into behaviors that are well described by dynamical systems tools, such as iterative mappings.

  20. Riemannian geometry of Hamiltonian chaos: hints for a general theory.

    PubMed

    Cerruti-Sola, Monica; Ciraolo, Guido; Franzosi, Roberto; Pettini, Marco

    2008-10-01

    We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam beta model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.