Science.gov

Sample records for experimental characterization modeling

  1. Modeling and experimental characterization of electromigration in interconnect trees

    NASA Astrophysics Data System (ADS)

    Thompson, C. V.; Hau-Riege, S. P.; Andleigh, V. K.

    1999-11-01

    Most modeling and experimental characterization of interconnect reliability is focussed on simple straight lines terminating at pads or vias. However, laid-out integrated circuits often have interconnects with junctions and wide-to-narrow transitions. In carrying out circuit-level reliability assessments it is important to be able to assess the reliability of these more complex shapes, generally referred to as `trees.' An interconnect tree consists of continuously connected high-conductivity metal within one layer of metallization. Trees terminate at diffusion barriers at vias and contacts, and, in the general case, can have more than one terminating branch when they include junctions. We have extended the understanding of `immortality' demonstrated and analyzed for straight stud-to-stud lines, to trees of arbitrary complexity. This leads to a hierarchical approach for identifying immortal trees for specific circuit layouts and models for operation. To complete a circuit-level-reliability analysis, it is also necessary to estimate the lifetimes of the mortal trees. We have developed simulation tools that allow modeling of stress evolution and failure in arbitrarily complex trees. We are testing our models and simulations through comparisons with experiments on simple trees, such as lines broken into two segments with different currents in each segment. Models, simulations and early experimental results on the reliability of interconnect trees are shown to be consistent.

  2. Experimental dynamic characterizations and modelling of disk vibrations for HDDs.

    PubMed

    Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua

    2008-01-01

    Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.

  3. Experimental Characterization and Micromechanical Modelling of Anisotropic Slates

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Feng; Wei, Kai; Liu, Wu; Hu, Shao-Hua; Hu, Ran; Zhou, Chuang-Bing

    2016-09-01

    Laboratory tests were performed in this study to examine the anisotropic physical and mechanical properties of the well-foliated Jiujiang slate. The P-wave velocity and the apparent Young's modulus were found to increase remarkably with the foliation angle θ, and the compressive strength at any confining pressure varies in a typical U-shaped trend, with the maximum strength consistently attained at θ = 90° and the minimum strength at θ = 45°. The slate samples failed in three typical patterns relevant to the foliation angle, i.e. shear failure across foliation planes for θ ≤ 15°, sliding along foliation planes for 30° ≤ θ ≤ 60° and axial splitting along foliation planes for θ = 90°. The stress-strain curves at any given foliation angle and confining pressure display an initial nonlinear phase, a linear elastic phase, a crack initiation and growth phase, as well as a rapid stress drop phase and a residual stress phase. Based on the experimental evidences, a micromechanical damage-friction model was proposed for the foliated slate by simply modelling the foliation planes as a family of elastic interfaces and by characterizing the interaction between the foliation planes and the rock matrix with a nonlinear damage evolution law associated with the inclination angle. The proposed model was applied to predict the deformational and strength behaviours of the foliated slate under triaxial compressive conditions using the material parameters calibrated with the uniaxial and/or triaxial test data, with good agreement between the model predictions and the laboratory measurements.

  4. Experimental platynosomosis: Characterization of parasite development in the mouse model.

    PubMed

    Pinto, Hudson A; Mati, Vitor L T; Melo, Alan L

    2015-06-30

    Despite the veterinary importance of species of Platynosomum, biliary trematode parasites of birds and mammals with worldwide distribution and a growing role in feline practice, the basic parasitological aspects of platynosomosis is still not completely understood due to the scarcity of studies in experimental models. In the present study, metacercariae of Platynosomum illiciens obtained from naturally infected tropical house geckos (Hemidactylus mabouia) in an urban area of Brazil were force-fed to mice of the AKR/J strain (100 metacercariae/animal). Groups of mice were euthanized at 60, 120, 160 and 240 days post-infection (DPI), and the biliary tree of the animals (intrahepatic biliary ducts, common hepatic and bile ducts, cystic duct and gallbladder) were examined for the presence of adult parasites. Recovered flukes were counted, classified by their site of origin (i.e., intrahepatic or extrahepatic biliary ducts) and morphologically analyzed under light microscope. The number of adult parasites obtained at 60, 120, 160 and 240 DPI was 22 ± 6 (16-32), 41 ± 14 (18-48), 27 ± 11 (18-40) and 20 ± 6 (13-30), respectively, and no significant differences in total worm burden at the different experimental times were observed. However, 41%, 51%, 75% and 95% of the parasites were found in the common hepatic and bile ducts at 60, 120, 160 and 240 DPI, respectively, suggesting the occurrence of parasitic migration to the extrahepatic biliary tree during infection; however, no parasites were observed in the gallbladder or cystic duct. Regarding the morphometric analysis, progressive growth of P. illiciens during the experimental time was observed, and the parasites collected from the extrahepatic bile ducts were larger than those obtained from the intrahepatic ducts at the same time of infection. Parasites obtained from the extrahepatic biliary tree of the mice at 160 DPI had similar measurements to those of parasites obtained at 240 DPI, and those measurements were

  5. Experimental characterization and modeling of a three-variant magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Feigenbaum, Heidi P.; Ciocanel, Constantin; Eberle, J. Lance; Dikes, Jason L.

    2016-10-01

    Researchers have attempted to characterize and predict the magneto-mechanical behavior of magnetic shape memory alloys (MSMAs) for over a decade. However, all prior experimental investigations on MSMA have been performed on samples accommodating two martensite variants and generally the MSMA is only exposed to two-dimensional magneto-mechanical loading. As efforts have been underway to develop models able to predict the most general (i.e. 3D) loading conditions for MSMAs with three-varints, there is also a need for experimental data to support the calibration and validation of these models. This paper presents magneto-mechanical data from experiments where MSMA specimens, whose microstructure accommodates three martensite variants, is subjected to three-dimensional magneto-mechanical loading, along with model predictions of these experimental results. The 3D magneto-mechanical model deployed here is a modified version of the model developed by our group (LaMaster et al 2015 J. Intell. Mater. Syst. Struct. 26 663-79), and assumes that three martensite variants coexist in the material. The LaMaster et al model captures some of the general trends seen in the experimental data, but does not predict the data with a high degree of accuracy. Possible reasons for the mismatch between experimental data and model predictions are discussed.

  6. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    PubMed Central

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  7. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    PubMed

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  8. Experimental Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pauly, Christopher C.; Pindera, Marek-Jerzy

    1997-01-01

    The results of an extensive experimental characterization and a preliminary analytical modeling effort for the elastoplastic mechanical behavior of 8-harness satin weave carbon/copper (C/Cu) composites are presented. Previous experimental and modeling investigations of woven composites are discussed, as is the evolution of, and motivation for, the continuing research on C/Cu composites. Experimental results of monotonic and cyclic tension, compression, and Iosipescu shear tests, and combined tension-compression tests, are presented. With regard to the test results, emphasis is placed on the effect of strain gauge size and placement, the effect of alloying the copper matrix to improve fiber-matrix bonding, yield surface characterization, and failure mechanisms. The analytical methodology used in this investigation consists of an extension of the three-dimensional generalized method of cells (GMC-3D) micromechanics model, developed by Aboudi (1994), to include inhomogeneity and plasticity effects on the subcell level. The extension of the model allows prediction of the elastoplastic mechanical response of woven composites, as represented by a true repeating unit cell for the woven composite. The model is used to examine the effects of refining the representative geometry of the composite, altering the composite overall fiber volume fraction, changing the size and placement of the strain gauge with respect to the composite's reinforcement weave, and including porosity within the infiltrated fiber yarns on the in-plane elastoplastic tensile, compressive, and shear response of 8-harness satin C/Cu. The model predictions are also compared with the appropriate monotonic experimental results.

  9. Review of the synergies between computational modeling and experimental characterization of materials across length scales

    DOE PAGES

    Dingreville, Rémi; Karnesky, Richard A.; Puel, Guillaume; ...

    2015-11-16

    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanicsmore » community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. In conclusion this manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.« less

  10. Review of the synergies between computational modeling and experimental characterization of materials across length scales

    SciTech Connect

    Dingreville, Rémi; Karnesky, Richard A.; Puel, Guillaume; Schmitt, Jean -Hubert

    2015-11-16

    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. In conclusion this manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.

  11. Modeling and experimental study on characterization of micromachined thermal gas inertial sensors.

    PubMed

    Zhu, Rong; Ding, Henggao; Su, Yan; Yang, Yongjun

    2010-01-01

    Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.

  12. Experimental and Mathematical-Modeling Characterization of Trypanosoma cruzi Epimastigote Motility

    PubMed Central

    Arias-del-Angel, Jorge A.; Dévora-Canales, Diego; Manning-Cela, Rebeca G.; Santana-Solano, Jesús; Santillán, Moisés

    2015-01-01

    The present work is aimed at characterizing the motility of parasite T. cruzi in its epimastigote form. To that end, we recorded the trajectories of two strains of this parasite (a wild-type strain and a stable transfected strain, which contains an ectopic copy of LYT1 gene and whose motility is known to be affected). We further extracted parasite trajectories from the recorded videos, and statistically analysed the following trajectory-step features: step length, angular change of direction, longitudinal and transverse displacements with respect to the previous step, and mean square displacement. Based on the resulting observations, we developed a mathematical model to simulate parasite trajectories. The fact that the model predictions closely match most of the experimentally observed parasite-trajectory characteristics, allows us to conclude that the model is an accurate description of T. cruzi motility. PMID:26544863

  13. Experimental characterization and numerical modelling of polymeric film damage, constituting the stratospheric super pressurized balloons

    NASA Astrophysics Data System (ADS)

    Chaabane, Makram; Chaabane, Makram; Dalverny, Olivier; Deramecourt, Arnaud; Mistou, Sébastien

    The super-pressure balloons developed by CNES are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding to the flight level and the lifespan of the balloon. It appears during the working stages of the super pressure balloons that these last can exploded prematurely in the course of the first hours of flight. For this reason CNES and LGP are carrying out research programs about experimentations and modelling in order to predict a good stability of the balloons flight and guarantee a life time in adequacy with the technical requirement. This study deals with multilayered polymeric film damage which induce balloons failure. These experimental and numerical study aims, are a better understanding and predicting of the damage mechanisms bringing the premature explosion of balloons. The following damages phenomena have different origins. The firsts are simple and triple wrinkles owed during the process and the stocking stages of the balloons. The second damage phenomenon is associated to the creep of the polymeric film during the flight of the balloon. The first experimental results we present in this paper, concern the mechanical characterization of three different damage phenomena. The severe damage induced by the wrinkles of the film involves a significant loss of mechanical properties. In a second part the theoretical study, concerns the choice and the development of a non linear viscoelastic coupled damage behavior model in a finite element code.

  14. Experimental characterization and modelling of UO2 behavior at high temperatures and high strain rates

    NASA Astrophysics Data System (ADS)

    Salvo, Maxime; Sercombe, Jérôme; Ménard, Jean-Claude; Julien, Jérôme; Helfer, Thomas; Désoyer, Thierry

    2015-01-01

    This work presents an experimental characterization of uranium dioxide (UO2) in compression under Reactivity Initiated Accident (RIA) conditions. Pellet samples were tested at four temperatures (1100, 1350, 1550 and 1700 °C) and at a strain rate varying over 4 decades (10-4-10-3-10-2-10-1 /s). The experimental results show that the stress-strain curves cannot be fitted with a unique power law as it is the case at smaller strain rates (10-9-10-5 /s). A strain-hardening also appears in most of the tests. The microstructural observations show a pronounced evolution of the porosity at the pellet center during the tests. A hyperbolic sine model which accounts for volume variations (pore compressibility) was therefore proposed to describe the behavior of UO2 on a large range of temperatures (1100 - 1700 °C) and strain rates (10-9-10-1 /s). The Finite Element simulations of the compression tests lead to results (maximum stress, axial and hoop strain distribution, porosity distribution) in good agreement with the measurements. The model was then assessed on a database of more than two hundred creep tests.

  15. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation.

    PubMed

    Hong, Ming; Su, Zhongqing; Wang, Qiang; Cheng, Li; Qing, Xinlin

    2014-03-01

    A dedicated modeling technique for comprehending nonlinear characteristics of ultrasonic waves traversing in a fatigued medium was developed, based on a retrofitted constitutive relation of the medium by considering the nonlinearities originated from material, fatigue damage, as well as the "breathing" motion of fatigue cracks. Piezoelectric wafers, for exciting and acquiring ultrasonic waves, were integrated in the model. The extracted nonlinearities were calibrated by virtue of an acoustic nonlinearity parameter. The modeling technique was validated experimentally, and the results showed satisfactory consistency in between, both revealing: the developed modeling approach is able to faithfully simulate fatigue crack-incurred nonlinearities manifested in ultrasonic waves; a cumulative growth of the acoustic nonlinearity parameter with increasing wave propagation distance exists; such a parameter acquired via a sensing path is nonlinearly related to the offset distance from the fatigue crack to that sensing path; and neither the incidence angle of the probing wave nor the length of the sensing path impacts on the parameter significantly. This study has yielded a quantitative characterization strategy for fatigue cracks using embeddable piezoelectric sensor networks, facilitating deployment of structural health monitoring which is capable of identifying small-scale damage at an embryo stage and surveilling its growth continuously.

  16. Experimental Hydromechanical Characterization and Numerical Modelling of a Fractured and Porous Sandstone

    NASA Astrophysics Data System (ADS)

    Souley, Mountaka; Lopez, Philippe; Boulon, Marc; Thoraval, Alain

    2015-05-01

    The experimental device previously used to study the hydromechanical behaviour of individual fractures on a laboratory scale, was adapted to make it possible to measure flow through porous rock mass samples in addition to fracture flows. A first series of tests was performed to characterize the hydromechanical behaviour of the fracture individually as well as the porous matrix (sandstone) comprising the fracture walls. A third test in this series was used to validate the experimental approach. These tests showed non-linear evolution of the contact area on the fracture walls with respect to effective normal stress. Consequently, a non-linear relationship was noted between the hydraulic aperture on the one hand, and the effective normal stress and mechanical opening on the other hand. The results of the three tests were then analysed by numerical modelling. The VIPLEF/HYDREF numerical codes used take into account the dual-porosity of the sample (fracture + rock matrix) and can be used to reproduce hydromechanical loading accurately. The analyses show that the relationship between the hydraulic aperture of the fracture and the mechanical closure has a significant effect on fracture flow rate predictions. By taking simultaneous measurements of flow in both fracture and rock matrix, we were able to carry out a global evaluation of the conceptual approach used.

  17. Computational modeling and experimental characterization of bacterial microcolonies for rapid detection using light scattering

    NASA Astrophysics Data System (ADS)

    Bai, Nan

    A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have

  18. Experimental Characterization and Modeling of the Fracturing Behavior of Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Jin, C.; Li, W.; Sageman, B. B.; Cusatis, G.

    2014-12-01

    Adequate knowledge and prediction of mechanical properties of shale are pivotal to the design of hydraulic fractures. The urgent technical challenge of such an endeavor is how to translate the highly heterogeneous nature of shale into a predictive model of the mechanical properties. Our group addressed this challenge by adopting a combined experimental and numerical approach to investigate fracture processes and failure mechanisms of shale.Lattice Discrete Particle Model (LDPM), having shown superior capabilities in predicting qualitative and quantitative behavior of concrete and concrete-like materials, as shown in Fig. 1, has been adopted to simulate mesoscale behavior of shale. The polyhedral cell system defining the geometric attributes of the rock microstructure is built via a 3D tessellation procedure based on X-ray microtomography results of microstructure and grain size distribution of shale specimens. The adopted tessellation procedure makes use of well-established packing algorithms for no-contact spherical particle placement and non-overlapping volume tessellation. The polyhedral particles interact through triangular facets where appropriate measure of stresses and strains are defined. Especially, LDPM is extended to simulate transversely isotropic materials by using orientation-dependent and strain-dependent strength limits coupled with orientation-dependent normal and shear stiffnesses on each facet. Appropriate interface constitutive equations are formulated to simulate all phenomena occurring at a scale that is smaller than the resolution of LDPM system, including microscopic fracture, frictional contact, particle breakage, pore collapse, and distributed damage. Bedding planes and natural joints are characterized by greatly decreased strength limits for facets within that region. To calibrate/validate the LDPM model, microscopic and mesoscopic experiments, including Brazilian tests, uniaxial compression tests, and three point-bending tests, are

  19. Characterization and Modeling of a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL

    NASA Astrophysics Data System (ADS)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Conrad, M. E.; Jones, T. L.; Olsen, N. J.

    2010-12-01

    A design is being formulated for a large-scale subsurface experimental facility at the 4850 foot level of the Homestake Mine in South Dakota. The purpose of the experiment is to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock under stress and would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL). Key questions we propose to answer are: 1) What are the effective reaction rates for mineral-fluid interaction in fractured rock under stress?; 2) How does mineral and fluid chemistry affect fracture mechanical behavior and permeability changes under stress at elevated temperatures?; and 3) How do microbial communities evolve in fractured rock under a thermal gradient and under changing stress conditions? In addition to the experiment as an in-situ laboratory for studying crustal processes, it has significant benefits for evaluating stimulation and production in Enhanced Geothermal Systems. Design and planning of the experiment included characterization of the geological, chemical, and isotopic characteristics of the rock and seeping fluids, thermal-hydrological and reactive transport modeling. During a reconnaissance study, strong heterogeneity in fracture fluxes and permeability were observed at the block site with some open boreholes continuously flowing at up to 1 liter/minute, and locally elevated fluid temperatures. A two-dimensional thermal-hydrological model was developed to evaluate fluid fluxes and temperatures as a function of heat input and borehole heater configuration. The dual permeability model considers fluid flow and heat transfer between an array of fractures and rock matrix, both having permeability anisotropy. A horizontal rock matrix permeability of 10-18 m2 was based on recent lab measurements, with a vertical matrix permeability estimated to be one order-of-magnitude higher to account for the strong nearly vertical foliation in the Homestake and Poorman

  20. Modeling and experimental characterization of stepped and v-shaped (311) defects in silicon

    SciTech Connect

    Marqués, Luis A. Aboy, María; Dudeck, Karleen J.; Botton, Gianluigi A.; Knights, Andrew P.; Gwilliam, Russell M.

    2014-04-14

    We propose an atomistic model to describe extended (311) defects in silicon. It is based on the combination of interstitial and bond defect chains. The model is able to accurately reproduce not only planar (311) defects but also defect structures that show steps, bends, or both. We use molecular dynamics techniques to show that these interstitial and bond defect chains spontaneously transform into extended (311) defects. Simulations are validated by comparing with precise experimental measurements on actual (311) defects. The excellent agreement between the simulated and experimentally derived structures, regarding individual atomic positions and shape of the distinct structural (311) defect units, provides strong evidence for the robustness of the proposed model.

  1. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    SciTech Connect

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; Xu, Donghua

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly, this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.

  2. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    DOE PAGES

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less

  3. Experimental Characterization and Material-Model Development for Microphase-Segregated Polyurea: An Overview

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; He, T.; Pandurangan, B.; Svingala, F. R.; Settles, G. S.; Hargather, M. J.

    2012-01-01

    Numerous experimental investigations reported in the open literature over the past decade have clearly demonstrated that the use of polyurea external coatings and/or inner layers can substantially enhance both the blast resistance (the ability to withstand shock loading) and the ballistic performance (the ability to defeat various high-velocity projectiles such as bullets, fragments, shrapnel, etc. without penetration, excessive deflection or spalling) of buildings, vehicles, combat-helmets, etc. It is also well established that the observed high-performance of polyurea is closely related to its highly complex submicron scale phase-segregated microstructure and the associated microscale phenomena and processes (e.g., viscous energy dissipation at the internal phase boundaries). As higher and higher demands are placed on blast/ballistic survivability of the foregoing structures, a need for the use of the appropriate transient nonlinear dynamics computational analyses and the corresponding design-optimization methods has become ever apparent. A critical aspect of the tools used in these analyses and methods is the availability of an appropriate physically based, high-fidelity material model for polyurea. There are presently several public domain and highly diverse material models for polyurea. In the present work, an attempt is made to critically assess these models as well as the experimental methods and results used in the process of their formulation. Since these models are developed for use in the high-rate loading regime, they are employed in the present work, to generate the appropriate shock-Hugoniot relations. These relations are subsequently compared with their experimental counterparts in order to assess the fidelity of these models.

  4. Novel Experimental-Modeling Approach for Characterizing Perfluorinated Surfactants in Soils.

    PubMed

    Courtier-Murias, Denis; Michel, Eric; Rodts, Stéphane; Lafolie, François

    2017-02-16

    Soil contamination is still poorly understood and modeled in part because of the difficulties of looking inside the "black box" constituted by soils. Here, we investigated the application of a recently developed (1)H NMR technique to (19)F NMR relaxometry experiments and utilized the results as inputs for an existing model. This novel approach yields (19)F T2 NMR relaxation values of any fluorinated contaminant, which are among the most dangerous contaminants, allowing us to noninvasively and directly monitor their fate in soils. Using this protocol, we quantified the amount of a fluorinated xenobiotic (heptafluorobutyric acid, HFBA) in three different environments in soil aggregate packings and monitored contaminant exchange dynamics between these compartments. A model computing HFBA partition dynamics between different soil compartments showed that these three environments corresponded to HFBA in solution (i) between and (ii) inside the soil aggregates and (iii) to HFBA adsorbed to (or strongly interacting with) the soil constituents. In addition to providing a straightforward way of determining the sorption kinetics of any fluorinated contaminant, this work also highlights the strengths of a combined experimental-modeling approach to unambiguously understand experimental data and more generally to study contaminant fate in soils.

  5. Experimental characterization of glass-ceramic seal properties and their constitutive implementation in solid oxide fuel cell stack models

    SciTech Connect

    Stephens, Elizabeth V.; Vetrano, John S.; Koeppel, Brian J.; Chou, Y. S.; Sun, Xin; Khaleel, Mohammad A.

    2009-09-05

    This paper discusses experimental determination of solid oxide fuel cell (SOFC) glass-ceramic seal material properties and seal/interconnect interfacial properties to support development and optimization of SOFC designs through modeling. Material property experiments such as dynamic resonance, dilatometry, flexure, creep, tensile, and shear tests were performed on PNNL’s glass-ceramic sealant material, designated as G18, to obtain property data essential to constitutive and numerical model development. Characterization methods for the physical, mechanical, and interfacial properties of the sealing material, results, and their application to the constitutive implementation in SOFC stack modeling are described.

  6. Modeling and experimental characterization on fatigue behaviour of 1-3 piezocomposites

    NASA Astrophysics Data System (ADS)

    Mohan, Y.; Jayendiran, R.; Arockiarajan, A.

    2015-04-01

    1-3 piezocomposites are very attractive materials in underwater and biomedical applications. These materials may be subjected to high electric field (2kV/mm) under continuous operation leading to deterioration in the output parameters such as remnant, saturation polarization and strain. Hence in this work, an experimental study is carried out to understand the fatigue behavior of 1-3 piezocomposites for various fiber volume fraction subjected to cyclic electric field (2kV/mm, 50Hz) up to 106 cycles. A uni-axial micro-mechanical model is developed to predict the fatigue behaviour of 1-3 piezocomposite. The novelty of this model is, the remnant polarization and strain are chosen as internal variables which is also dependent on the damage.The simulated results are compared with the experimental observations, it is observed that the proposed micro-mechanical model is able to predict the material degradation with increase in number of cycles of operation. A parametric study is also conducted for various fiber volume fraction of 1-3 piezocomposite as function of fatigue cycle it shows that the amplitude of dielectric hysteresis and butterfly loop decreases with increase in the number of cycles. The fatigue behavior has a substantial effect in the performance parameters such as coercive field, remnant polarization and the asymmetric strain behavior of 1-3 piezocomposite. This fatigue study explores the utilities of 1-3 piezocomposites in transducer applications by providing insight into the device design.

  7. Experimental characterization and modeling of commercial polybenzimidazole-based MEA performance

    NASA Astrophysics Data System (ADS)

    Korsgaard, Anders R.; Refshauge, Rasmus; Nielsen, Mads P.; Bang, Mads; Kær, Søren K.

    High temperature polymer fuel cells based on polybenzimidazole membranes (PBI) operated at 100-200 °C are currently receiving much attention in relation to fuel cell reforming systems due to two main reasons. At first they have proven to have excellent resistance to high CO concentrations, which decreases the number of system components in the fuel processing system. The preferential oxidation reactors can be left out and in addition a water condenser is not required. These system simplifications additionally decrease the parasitic losses associated with the components. However, insufficient data are currently published to enable good system design and modeling. In this paper the influence of operation on synthesis gas and the variation of the cathode stoichiometry are investigated based on a generic commercial membrane electrode assembly (MEA). The CO content in the anode gas was varied from 0 to 5%, with CO 2 contents ranging from 25 to 20% at temperatures ranging from 160 to 200 °C. The influence of the cathode stoichiometry was investigated in the interval of 2-5 at temperatures from 120 to 180 °C with pure hydrogen on the anode. A novel semi empirical model of the fuel cell voltage versus current density, cathode stoichiometry and temperature was derived. It shows excellent agreement with the experimental data. The simplicity and accuracy of the model makes it ideal for system modeling, control design and real-time applications.

  8. Characterization of estrogenicity of phytoestrogens in an endometrial-derived experimental model.

    PubMed Central

    Hopert, A C; Beyer, A; Frank, K; Strunck, E; Wünsche, W; Vollmer, G

    1998-01-01

    Severe developmental and reproductive disorders in wild animals have been linked to high exposure to persistent environmental chemicals with hormonal activity. These adverse effects of environmental estrogens have raised considerable concern and have received increasing attention. Although numerous chemicals with the capacity to interfere with the estrogen receptor (ER) have been identified, information on their molecular mechanism of action and their relative potency is rather limited. For the endometrium, the lack of information is due to the lack of a suitable experimental model. We investigated the functions of phytoestrogens in an endometrial-derived model, RUCA-I rat endometrial adenocarcinoma cells. The cells were cultured on a reconstituted basement membrane to preserve their functional differentiation and estrogen responsiveness. We assessed the relative binding affinity to the estrogen receptor of the selected phytoestrogens coumestrol, genistein, daidzein, and the putative phytoestrogen mangostin compared to estradiol by a competitive Scatchard analysis. The following affinity ranking was measured: 17beta-estradiol >>> coumestrol > genistein > daidzein >>> mangostin. In addition, we investigated the capacity of these compounds to promote the increased production of complement C3, a well-known estradiol-regulated protein of the rat endometrium. All substances tested increased the production of complement C3, although different concentrations were necessary to achieve equivalent levels of induction compared to estradiol. Mechanistically we were able to demonstrate that the increase of complement C3 production was mediated by primarily increasing its steady-state mRNA level. These findings indicate that RUCA-I cells represent a sensitive model system to elucidate relative potencies and functions of environmental estrogens in an endometrium-derived model. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9721258

  9. Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline -Ti

    SciTech Connect

    Wang, Leyun; Barabash, Rozaliya; Yang, Y; Bieler, Prof T R; Crimp, Prof M A; Eisenlohr, P; Liu, W.; Ice, Gene E

    2011-01-01

    Grain-level heterogeneous deformation was studied in a polycrystalline {alpha}-Ti specimen deformed by four-point bending. Dislocation slip activity in the microstructure was investigated by surface slip trace analysis. Three-dimensional-X-ray diffraction (3D-XRD) was used to investigate subsurface lattice rotations and to identify geometrically necessary dislocations (GNDs). The slip systems of local GNDs were analyzed by studying the streaking directions of reflections in corresponding Laue patterns. The analysis performed in one grain indicated that the subsurface GNDs were from the same slip system identified using slip trace analysis in backscattered electron images. A crystal plasticity finite element (CPFE) model was used to simulate deformation of the same microstructural region. The predictions of dislocation slip activity match the general aspects of the experimental observations, including the ability to simulate the activation of different slip systems in grains where multiple slip systems were activated. Prediction of local crystal rotations, however, was the least accurate aspect of the CPFE model.

  10. Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline {alpha}-Ti.

    SciTech Connect

    Wang, L.; Barabash, R. I.; Yang, Y.; Bieler, T. R.; Crimp, M. A.; Eisenlohr, P.; Liu, W.; Ice, G. E.

    2011-03-01

    Grain-level heterogeneous deformation was studied in a polycrystalline {alpha}-Ti specimen deformed by four-point bending. Dislocation slip activity in the microstructure was investigated by surface slip trace analysis. Three-dimensional-X-ray diffraction (3D-XRD) was used to investigate subsurface lattice rotations and to identify geometrically necessary dislocations (GNDs). The slip systems of local GNDs were analyzed by studying the streaking directions of reflections in corresponding Laue patterns. The analysis performed in one grain indicated that the subsurface GNDs were from the same slip system identified using slip trace analysis in backscattered electron images. A crystal plasticity finite element (CPFE) model was used to simulate deformation of the same microstructural region. The predictions of dislocation slip activity match the general aspects of the experimental observations, including the ability to simulate the activation of different slip systems in grains where multiple slip systems were activated. Prediction of local crystal rotations, however, was the least accurate aspect of the CPFE model.

  11. Radio-frequency sheaths physics: Experimental characterization on Tore Supra and related self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Jacquot, Jonathan; Milanesio, Daniele; Colas, Laurent; Corre, Yann; Goniche, Marc; Gunn, Jamie; Heuraux, Stéphane; Kubic, Martin

    2014-02-01

    During the 2011 experimental campaign, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra (TS) tokamak was equipped with a new type of Faraday screen (FS). The new design aimed at minimizing RF sheaths as well as increasing the heat exhaust capability of the actively cooled screen. It proved to be inefficient for attenuating the RF-sheaths on the screen itself on the contrary to the heat exhaust concept that allowed operation despite higher heat fluxes on the antenna. In parallel, a new approach has been proposed to model self-consistently RF sheaths: the SSWICH (Self-consistent Sheaths and Waves for IC Heating) code. Simulations results from SSWICH coupled with the TOPICA antenna code were able to reproduce the difference between the two FS designs and part of the spatial pattern of heat loads and floating potential. The poloidal pattern is a reliable result that mainly depends on the electrical design of the antenna while the radial pattern is on the contrary highly sensitive to loosely constrained parameters such as perpendicular conductivity that generates a DC current circulation from the the private region inside the antenna limiters to the free SOL outside these limiters. Moreover the cantilevered bars seem to be the element in the design of the new screen that enhanced RF sheaths.

  12. Radio-frequency sheaths physics: Experimental characterization on Tore Supra and related self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Jacquot, Jonathan; Milanesio, Daniele; Colas, Laurent; Corre, Yann; Goniche, Marc; Gunn, Jamie; Heuraux, Stéphane; Kubič, Martin

    2014-06-01

    During the 2011 experimental campaign, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra tokamak was equipped with a new type of Faraday screen (FS). The new design aimed at minimizing the integrated parallel electric field over long field lines as well as increasing the heat exhaust capability of the actively cooled screen. It proved to be inefficient for attenuating the radio-frequency (RF)-sheaths on the screen itself on the contrary to the heat exhaust concept that allowed operation despite higher heat fluxes on the antenna. In parallel, a new approach has been proposed to model self-consistently RF sheaths: the SSWICH (Self-consistent Sheaths and Waves for IC Heating) code. Simulations results from SSWICH coupled with the TOPICA antenna code were able to reproduce the difference between the two FS designs and part of the spatial pattern of heat loads and Langmuir probe floating potential. The poloidal pattern is a reliable result that mainly depends on the electrical design of the antenna while the radial pattern is on the contrary highly sensitive to loosely constrained parameters such as perpendicular conductivity that generates a DC current circulation from the private region inside the antenna limiters to the free scrape off layer outside these limiters. Moreover, the cantilevered bars seem to be the element in the screen design that enhanced the plasma potential.

  13. Characterization of ICP Behavior in an Experimental Model of Hemorrhagic Stroke in Rats.

    PubMed

    Cardim, Danilo Augusto; do Val da Silva, Raquel Araújo; Cardim, Ana Carolina; Cabella, Brenno Caetano Troca; Frigieri, Gustavo Henrique; de Sousa Torres, Cecília Vidal; Wang, Charles Chenwei; de Pacheco Andrade, Rodrigo Albuquerque; Scandiuzzi, Renata Caldo; Rizzatti, Ana Carolina Segato; Mascarenhas, Yvonne Maria; Leite, João Pereira; Mascarenhas, Sérgio

    2016-01-01

    Intracranial pressure (ICP) monitoring is sometimes required in clinical pictures of stroke, as extensive intraparenchymal hematomas and intracranial bleeding may severely increase ICP, which can lead to irreversible conditions, such as dementia and cognitive derangement. ICP monitoring has been accepted as a procedure for the safe diagnosis of increased ICP, and for the treatment of intracranial hypertension in some diseases. In this work, we evaluated ICP behavior during the induction of an experimental model of autologous blood injection in rats, simulating a hemorrhagic stroke. Rats were subjected to stereotactic surgery for the implantation of a unilateral cannula into the left striatal region of the brain. Autologous blood was infused into the left striatal region with an automatic microinfusion pump. ICP monitoring was performed throughout the procedure of hemorrhagic stroke induction. Analyses consisted of short-time Fourier transform for ICP before and after stroke induction and the histological processing of the animals' brains. Short-time Fourier transform analysis demonstrated oscillations in the ICP frequency components throughout time after the microinjections compared with data before them. Histological analysis revealed neuropathological changes in the striatum in all microinjected animals.

  14. Experimental characterization of powered Fontan hemodynamics in an idealized total cavopulmonary connection model

    NASA Astrophysics Data System (ADS)

    Kerlo, Anna-Elodie M.; Delorme, Yann T.; Xu, Duo; Frankel, Steven H.; Giridharan, Guruprasad A.; Rodefeld, Mark D.; Chen, Jun

    2013-08-01

    A viscous impeller pump (VIP) based on the Von Karman viscous pump is specifically designed to provide cavopulmonary assist in a univentricular Fontan circulation. The technology will make it possible to biventricularize the univentricular Fontan circulation. Ideally, it will reduce the number of surgeries required for Fontan conversion from three to one early in life, while simultaneously improving physiological conditions. Later in life, it will provide a currently unavailable means of chronic support for adolescent and adult patients with failing Fontan circulations. Computational fluid dynamics simulations demonstrate that the VIP can satisfactorily augment cavopulmonary blood flow in an idealized total cavopulmonary connection (TCPC). When the VIP is deployed at the TCPC intersection as a static device, it stabilizes the four-way flow pattern and is not obstructive to the flow. Experimental studies are carried out to assess performance, hemodynamic characteristics, and flow structures of the VIP in an idealized TCPC model. Stereoscopic particle image velocimetry is applied using index-matched blood analog. Results show excellent performance of the VIP without cavitation and with reduction of the energy losses. The non-rotating VIP smoothes and accelerates flow, and decreases stresses and turbulence in the TCPC. The rotating VIP generates the desired low-pressure Fontan flow augmentation (0-10 mmHg) while maintaining acceptable stress thresholds.

  15. Radio-frequency sheaths physics: Experimental characterization on Tore Supra and related self-consistent modeling

    SciTech Connect

    Jacquot, Jonathan; Colas, Laurent Corre, Yann; Goniche, Marc; Gunn, Jamie; Kubič, Martin; Milanesio, Daniele; Heuraux, Stéphane

    2014-06-15

    During the 2011 experimental campaign, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra tokamak was equipped with a new type of Faraday screen (FS). The new design aimed at minimizing the integrated parallel electric field over long field lines as well as increasing the heat exhaust capability of the actively cooled screen. It proved to be inefficient for attenuating the radio-frequency (RF)-sheaths on the screen itself on the contrary to the heat exhaust concept that allowed operation despite higher heat fluxes on the antenna. In parallel, a new approach has been proposed to model self-consistently RF sheaths: the SSWICH (Self-consistent Sheaths and Waves for IC Heating) code. Simulations results from SSWICH coupled with the TOPICA antenna code were able to reproduce the difference between the two FS designs and part of the spatial pattern of heat loads and Langmuir probe floating potential. The poloidal pattern is a reliable result that mainly depends on the electrical design of the antenna while the radial pattern is on the contrary highly sensitive to loosely constrained parameters such as perpendicular conductivity that generates a DC current circulation from the private region inside the antenna limiters to the free scrape off layer outside these limiters. Moreover, the cantilevered bars seem to be the element in the screen design that enhanced the plasma potential.

  16. Optimized method for TAG protein homology modeling: In silico and experimental structural characterization.

    PubMed

    Tomar, Jyoti Singh; Peddinti, Rama Krishna

    2016-07-01

    The DNA glycosylases cleave CN glycosyl bond to release a free base and generate abasic sites concurrently. Function and structure of these enzymes in the pathogenic bacterium Acinetobacter baumannii and its closely related species are not well characterized. Inhibition of TAG enzyme is a promising drug design strategy against A. baumannii. Here optimized molecular modeling approaches were used to provide a structural scaffold of TAG. The recombinant TAG protein was expressed and purified to determine oligomeric state using size exclusion chromatography, which showed the existence of TAG protein as monomer (mwt ∼21kDa). Secondary structure and substrate binding were analyzed using CD are in good agreement with the in silico predictions. Near UV-CD spectrum shows the involvement of Tyr residues in substrate recognition. Molecular docking studies were performed to understand the molecular recognition interactions and this knowledge was used to identify the potent inhibitors using virtual screening. Residues crucial for DNA holding and enzyme catalysis are reconfirmed by the in silico mutational studies.

  17. Experimental characterization and constitutive modeling of the mechanical behavior of molybdenum under electromagnetically applied compression-shear ramp loading

    DOE PAGES

    Alexander, C. Scott; Ding, Jow -Lian; Asay, James Russell

    2016-03-09

    Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPSmore » experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. Additionally, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material

  18. Experimental characterization and constitutive modeling of the mechanical behavior of molybdenum under electromagnetically applied compression-shear ramp loading

    SciTech Connect

    Alexander, C. Scott; Ding, Jow -Lian; Asay, James Russell

    2016-03-09

    Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPS experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. Additionally, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material model for

  19. Experimental characterization and constitutive modeling of the mechanical behavior of molybdenum under electromagnetically applied compression-shear ramp loading

    NASA Astrophysics Data System (ADS)

    Alexander, C. S.; Ding, J. L.; Asay, J. R.

    2016-03-01

    Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPS experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. In addition, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material model for

  20. Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra

    SciTech Connect

    Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.

    2014-02-12

    To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m{sup 2}). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive

  1. Experimental Models of Pancreatitis

    PubMed Central

    Hyun, Jong Jin

    2014-01-01

    Acute pancreatitis is an inflammatory disease characterized by interstitial edema, inflammatory cell infiltration, and acinar cell necrosis, depending on its severity. Regardless of the extent of tissue injury, acute pancreatitis is a completely reversible process with evident normal tissue architecture after recovery. Its pathogenic mechanism has been known to be closely related to intracellular digestive enzyme activation. In contrast to acute pancreatitis, chronic pancreatitis is characterized by irreversible tissue damage such as acinar cell atrophy and pancreatic fibrosis that results in exocrine and endocrine insufficiency. Recently, many studies of chronic pancreatitis have been prompted by the discovery of the pancreatic stellate cell, which has been identified and distinguished as the key effector cell of pancreatic fibrosis. However, investigations into the pathogenesis and treatment of pancreatitis face many obstacles because of its anatomical location and disparate clinical course. Due to these difficulties, most of our knowledge on pancreatitis is based on research conducted using experimental models of pancreatitis. In this review, several experimental models of pancreatitis will be discussed in terms of technique, advantages, and limitations. PMID:24944983

  2. Statistical Modelling and Characterization of Experimental mm-Wave Indoor Channels for Future 5G Wireless Communication Networks.

    PubMed

    Al-Samman, A M; Rahman, T A; Azmi, M H; Hindia, M N; Khan, I; Hanafi, E

    This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios.

  3. Statistical Modelling and Characterization of Experimental mm-Wave Indoor Channels for Future 5G Wireless Communication Networks

    PubMed Central

    Al-Samman, A. M.; Rahman, T. A.; Azmi, M. H.; Hindia, M. N.; Khan, I.; Hanafi, E.

    2016-01-01

    This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios. PMID:27654703

  4. A numerical model characterizing the experimental performance of the Howard University Raman Lidar system

    NASA Astrophysics Data System (ADS)

    Connell, Rasheen M.

    At the Howard University Atmospheric Observatory in Beltsville, MD, a Raman Lidar System was developed to provide both daytime and nighttime measurements of water vapor, aerosols, and cirrus clouds with 60 s temporal and 7.5 m spatial resolution in the lower and upper troposphere. This system analyzes signals at three wavelengths associated with Rayleigh/Mie scattering for aerosols and cirrus clouds at 354.7 nm, Raman scattering for nitrogen at 386.7 nm, and water vapor at 407.5 nm. The transmitter is a triple harmonic Nd: YAG solid state laser. The receiver is a 40 cm Cassegrain telescope. The detector system consists of a multi-channel wavelength separator unit and data acquisition system. This thesis develops a numerical model to provide a realistic representation of the system behavior. The variants of the lidar equation in the model use system parameters to solve and determine the return signals for the lidar system. This dissertation describes four case studies being investigated: clear sky, polluted, wet, and cirrus cloud atmospheric conditions. The first simulations are based on a standard atmosphere, which assumes an unpolluted (aerosol-free) dry-air atmosphere. The second and third sets of simulations are based on polluted and cirrus cloud atmospheric conditions, where aerosols and cirrus clouds are added to Case Study I. The last set of simulations is based on a wet atmosphere, where the troposphere is comprised of the same mixture of gases in Case Study II, with the addition of atmospheric water vapor. Lidar signals are simulated over the altitude range covered by our measurements (up to 14 km). Results of our simulations show that the measured and modeled signals agree within 10% over an extended period of time when the system (i.e., such as alignment, filter tuning, etc.) has not changed.

  5. Computational Modeling and Experimental Characterization of Martensitic Transformations in Nicoal for Self-Sensing Materials

    NASA Technical Reports Server (NTRS)

    Wallace, T. A.; Yamakov, V. I.; Hochhalter, J. D.; Leser, W. P.; Warner, J. E.; Newman, J. A.; Purja Pun, G. P.; Mishin, Y.

    2015-01-01

    Fundamental changes to aero-vehicle management require the utilization of automated health monitoring of vehicle structural components. A novel method is the use of self-sensing materials, which contain embedded sensory particles (SP). SPs are micron-sized pieces of shape-memory alloy that undergo transformation when the local strain reaches a prescribed threshold. The transformation is a result of a spontaneous rearrangement of the atoms in the crystal lattice under intensified stress near damaged locations, generating acoustic waves of a specific spectrum that can be detected by a suitably placed sensor. The sensitivity of the method depends on the strength of the emitted signal and its propagation through the material. To study the transition behavior of the sensory particle inside a metal matrix under load, a simulation approach based on a coupled atomistic-continuum model is used. The simulation results indicate a strong dependence of the particle's pseudoelastic response on its crystallographic orientation with respect to the loading direction and suggest possible ways of optimizing particle sensitivity. The technology of embedded sensory particles will serve as the key element in an autonomous structural health monitoring system that will constantly monitor for damage initiation in service, which will enable quick detection of unforeseen damage initiation in real-time and during onground inspections.

  6. Computational and Experimental Characterization of dVHL Establish a Drosophila Model of VHL Syndrome

    PubMed Central

    Shmueli, Merav D.; Schnaider, Lee; Herzog, Gal; Gazit, Ehud; Segal, Daniel

    2014-01-01

    The von Hippel-Lindau (VHL) cancer syndrome is associated with mutations in the VHL gene. The pVHL protein is involved in response to changes in oxygen availability as part of an E3-ligase that targets the Hypoxia-Inducible Factor for degradation. pVHL has a molten globule configuration with marginal thermodynamic stability. The cancer-associated mutations further destabilize it. The Drosophila homolog, dVHL, has relatively low sequence similarity to pVHL, and is also involved in regulating HIF1-α. Using in silico, in vitro and in vivo approaches we demonstrate high similarity between the structure and function of dVHL and pVHL. These proteins have a similar fold, secondary and tertiary structures, as well as thermodynamic stability. Key functional residues in dVHL are evolutionary conserved. This structural homology underlies functional similarity of both proteins, evident by their ability to bind their reciprocal partner proteins, and by the observation that transgenic pVHL can fully maintain normal dVHL-HIF1-α downstream pathways in flies. This novel transgenic Drosophila model is thus useful for studying the VHL syndrome, and for testing drug candidates to treat it. PMID:25310726

  7. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.

    PubMed

    Scully, John R

    2015-01-01

    Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.

  8. Characterization of dendritic cells in testicular draining lymph nodes in a rat model of experimental autoimmune orchitis.

    PubMed

    Guazzone, V A; Hollwegs, S; Mardirosian, M; Jacobo, P; Hackstein, H; Wygrecka, M; Schneider, E; Meinhardt, A; Lustig, L; Fijak, M

    2011-06-01

    The maturation state of dendritic cells (DC) is regarded as a control point for the induction of peripheral tolerance or autoimmunity. Experimental autoimmune orchitis (EAO) serves as a model to investigate inflammatory-based testicular impairment, which ranks as a significant cause of male infertility. This work aimed to determine whether DC enrichment occurs organotypically in testicular draining lymph nodes (TLN) compared with LN draining the site of immunization (ILN) and thus contributes to the pathogenesis of autoimmune orchitis. In this regard, we quantified and characterized the DC from TLN and ILN in rats with EAO. Flow cytometric analysis showed a significant increase in the percentage of DC (OX62+) only in TLN from EAO rats compared with normal (N) and adjuvant control (C) groups. The number of DC from ILN and TLN expressing CD80, CD86 and major histocompatibility complex (MHC) II was comparable among N, C and experimental (E) groups at 30 and 50 days after the first immunization. However, TLN DC from EAO rats (50 days) showed an increase in mean fluorescence intensity for MHC II compared with N, C and E groups (30 days). The mRNA expression level of IL-10 and IL-12p35 was significantly upregulated in enriched DC fraction from TLN in EAO rats with no significant changes observed in ILN DC. The expression of IL-23p19 mRNA remained unchanged. Functional data, using proliferation assays showed that EAO-DC from TLN, but not from ILN, significantly enhanced the proliferation of naïve T cells compared with C-DC. In summary, our data suggest that the DC in TLN from orchitis rats are mature, present antigens to T cells and stimulate an autoimmune response against testicular antigens, thus causing immunological infertility.

  9. Anti-inflammatory activity of Pistacia khinjuk in different experimental models: isolation and characterization of its flavonoids and galloylated sugars.

    PubMed

    Esmat, Ahmed; Al-Abbasi, Fahad A; Algandaby, Mardi M; Moussa, Ashaimaa Y; Labib, Rola M; Ayoub, Nahla A; Abdel-Naim, Ashraf B

    2012-03-01

    The present study aimed at isolating and elucidating the structure of the main components of Pistacia khinjuk L. and exploring its potential anti-inflammatory effect in different experimental models. The extract was evaluated for anti-inflammatory activity by measuring paw volume in three experimental models. Then, prostaglandin E₂ (PGE₂) level, ear edema, tissue myeloperoxidase (MPO) activity, histopathology, nitric oxide (NO) level, and tumor necrosis factor-α (TNF-α) level were assessed. Seven phenolic compounds, mainly flavonoids and galloylated compounds, were isolated from the aqueous methanol extract: gallic acid (1), methyl gallate (2), quercetin-3-O-β-D-⁴C₁-galactopyranoside (hyperin) (3), myricetin-3-O-α-L-¹C₄-rhamnopyranoside (myricitrin) (4), 1,6-digalloyl-β-D-glucose (5), 1,4-digalloyl-β-D-glucopyranoside (6), and 2,3-di-O-galloyl-(α/β)-⁴C₁-glucopyranose (nilocitin) (7). The anti-inflammatory activity was evidenced by decreased carrageenan-induced rat paw edema and PGE₂ elevation. In the croton oil-induced ear edema model, MPO activity was significantly inhibited, and inflammatory histopathological changes were ameliorated. In the rat air pouch model, NO generation and TNF-α release were significantly inhibited. The isolation and nuclear magnetic resonance spectral data of compound 6 from the genus Pistacia are revealed for the first time. Also, P. khinjuk L. aqueous methanol extract possesses anti-inflammatory activity in several experimental models.

  10. Mars Radiator Characterization Experimental Program

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.; Hollingsworth, D. Keith

    2004-01-01

    Radiators are an enabling technology for the human exploration and development of the moon and Mars. As standard components of the heat rejection subsystem of space vehicles, radiators are used to reject waste heat to space and/or a planetary environment. They are typically large components of the thermal control system for a space vehicle or human habitation facility, and in some cases safety factors are used to oversize them when the operating environment cannot be fully characterized. Over-sizing can impose significant weight and size penalties that might be prohibitive for future missions. Radiator performance depends on the size of the radiator surface, its emittance and absorptance, the radiator temperature, the effective sky temperature surrounding the radiator, solar radiation and atmospheric irradiation levels, convection to or from the atmosphere (on Mars), and other conditions that could affect the nature of the radiator surface, such as dust accumulation. Most particularly, dust is expected to be a major contributor to the local environmental conditions on either the lunar or Martian surface. This conclusion regarding Mars is supported by measurements of dust accumulation on the Mars Sojourner Rover solar array during the Pathfinder mission. This Final Report describes a study of the effect of Martian dust accumulation on radiator performance. It is comprised of quantitative measurements of effective emittance for a range of dust accumulation levels on surfaces of known emittance under clean conditions. The test radiator coatings were Z-93P, NS-43G, and Silver Teflon (10 mil) film. The Martian dust simulant was Carbondale Red Clay. Results were obtained under vacuum conditions sufficient to reduce convection effects virtually to zero. The experiments required the development of a calorimetric apparatus that allows simultaneous measurements of the effective emittance for all the coatings at each set of experimental conditions. A method of adding dust to

  11. Experimental Design For Photoresist Characterization

    NASA Astrophysics Data System (ADS)

    Luckock, Larry

    1987-04-01

    experiment. An optimum solution is then determined via response surface analysis and a series of 3-D and contour plots are shown. The offset between the mask dimensions and poly CD at the optimum operating conditions is discussed with respect to yield, profits and return-on-investment. The expert system used for process optimization covers all types of process steps, producing the best custom designed experiment based on the actual equipment used. The knowledge base contains parameter lists, by machine make and model, ranked by sensitivity and controllability. One option allows 3-D spatial characterization of equipment. For the purpose of this presentation, we will assume that we want to optimize a photo-lithographic process used for polysilicon pattern definition and that we have determined minimum and maximum line widths, based on electrical yield requirements of the product. For this MOS process, the minimum critical dimension (CD) for the poly gate was determined by punchthrough voltage, threshold voltage, etc., while the maximum CD was determined from other performance factors like access time. We will start with the product engineer's analysis.

  12. P2X7 receptor-mediated calcium dynamics in HEK293 cells: experimental characterization and modelling approach

    NASA Astrophysics Data System (ADS)

    Di Garbo, A.; Alloisio, S.; Nobile, M.

    2012-04-01

    The P2X7 receptor (P2X7R) induces ionotropic Ca2 + signalling in different cell types. It plays an important role in the immune response and in the nervous system. Here, the mechanisms underlying intracellular Ca2 + variations evoked by 3‧-O-(4-benzoyl)benzoyl-ATP (BzATP), a potent agonist of the P2X7R, in transfected HEK293 cells, are investigated both experimentally and theoretically. We propose a minimal model of P2X7R that is capable of reproducing, qualitatively and quantitatively, the experimental data. This approach was also adopted for the P2X7R variant, which lacks the entire C-terminus tail (trP2X7R). Then we introduce a biophysical model describing the Ca2 + dynamics in HEK293. Our model gives an account of the ionotropic Ca2 + influx evoked by BzATP on the basis of the kinetics model of P2X7R. To explain the complex Ca2 + responses evoked by BzATP, the model predicted that an impairment in Ca2 + extrusion flux through the plasma membrane is a key factor for Ca2 + homeostasis in HEK293 cells.

  13. New model systems for experimental evolution.

    PubMed

    Collins, Sinéad

    2013-07-01

    Microbial experimental evolution uses a few well-characterized model systems to answer fundamental questions about how evolution works. This special section highlights novel model systems for experimental evolution, with a focus on marine model systems that can be used to understand evolutionary responses to global change in the oceans.

  14. Experimental models of stress

    PubMed Central

    Patchev, Vladimir K.; Patchev, Alexandre V.

    2006-01-01

    Illustrating the complexity of the stress response and its multifaceted manifestations is the leading idea of this overview of experimental paradigms used for stress induction in laboratory animals. The description of key features of models based on naturalistic stressors, pharmacological challenges, and genomic manipulations is complemented by comprehensive analysis of physiological, behavioral, neurochemical, and endocrine changes and their appropriatness as outcome readouts. Particular attention has been paid to the role of sex and age as determinants of the dynamics of the stress response. Possible translational applications of stress-inducing paradigms as models of disease are briefly sketched. PMID:17290800

  15. Use of a SLAM transfected Vero cell line to isolate and characterize marine mammal morbilliviruses using an experimental ferret model.

    PubMed

    Nielsen, Ole; Smith, Greg; Weingartl, Hana; Lair, Stéphane; Measures, Lena

    2008-07-01

    Two ferrets (Mustela putorius furo) were experimentally infected with phocine distemper virus (PDV), from the 1988 seal epizootic in Europe, in order to determine whether the stable transfected Vero cell line (Vero.DogSLAMtag) expressing canine "signaling lymphocyte activation molecules" (SLAM; CD150) receptors, was more suitable for isolating and characterizing PDV when compared with Vero (American Type Culture Collection # C1008) and primary seal kidney (PSK) cells. Both ferrets displayed characteristic clinical signs of distemper, including fever and rash, 10 days postinoculation (dpi) and, due to increased morbidity, they were euthanized 12 dpi. Histologic lesions, suggestive of infection with morbilliviruses, were observed in tissues from both ferrets, and the tissues stained positive using immunohistochemistry. Isolation of PDV from isolated peripheral blood lymphocytes (PBLs), taken at 5 and 10 dpi, was achieved by cocultivation with Vero and PSK cells, following several passages. Cytopathic effects (CPE) were observed in Vero cell cultures at 29 dpi and in PSK cell cultures at 22 dpi. Phocine distemper virus was isolated from frozen infected ferret lung tissue within 48 hr, when isolation was attempted using the Vero.DogSLAMtag cell line. In addition, a reverse transcriptase polymerase chain reaction (RT-PCR) test was developed to detect a 114 base pair (bp) portion of the nucleocapsid gene found only in PDV. This RT-PCR methodology was used to confirm the identity of the virus subsequently isolated from the ferrets. Viral isolates from the infected ferrets, as well as cultures of virus originally isolated from a dolphin and a porpoise and maintained in Vero cells, also replicated faster and produced higher titers of virus when propagated in Vero.DogSLAMtag cells. These results indicate that Vero.DogSLAMtag cells offer a substantial improvement (including faster viral replication resulting in primary viral isolation in a shorter period of time, and higher

  16. Experimental characterization and modeling of UO2 grain boundary cracking at high temperatures and high strain rates

    NASA Astrophysics Data System (ADS)

    Salvo, Maxime; Sercombe, Jérôme; Helfer, Thomas; Sornay, Philippe; Désoyer, Thierry

    2015-05-01

    In this paper, the behavior of a dense UO2 (porosity less than 2%) was studied experimentally on a range of temperatures (1100-1700 °C) and strain rates (10-4-10-1 /s) representative of RIA loading conditions. The yield stress was found to increase with strain rate and to decrease with temperature. Macroscopic cracking of the samples was apparent after the tests at 1100 °C. Scanning Electron Microscopy (SEM) image analyses revealed a pronounced grain boundary cracking in the core of the samples tested at 10-1 /s and at 1550-1700 °C. A hyperbolic sine model for the viscoplastic strain rate with a clear dependency on porosity was first developed. It was completed by a Drucker-Prager yield criterion with associated plastic flow to account for the porosity increase induced by grain boundary cracking. Finite Elements simulations of the compression tests on the dense UO2 were then successfully compared to the stress-strain curves, post-test diameter profiles and porosities at the pellets' center, periphery and top extremity. The response of the grain boundary cracking model was then studied in biaxial compression, this condition being closer to that of the pellet during a RIA power transient.

  17. Experimental characterization and modeling of a nanofiber-based selective emitter for thermophotovoltaic energy conversion: The effect of optical properties

    NASA Astrophysics Data System (ADS)

    Aljarrah, M. T.; Wang, R.; Evans, E. A.; Clemons, C. B.; Young, G. W.

    2011-02-01

    Aluminum oxide nanofibers doped with erbium oxide have been synthesized by calcining polymer fibers made by the electrospinning technique using a mixture of aluminum acetate, erbium acetate and polyvinylpyrrolidone dissolved in ethanol. The resulting ceramic fibers are used to fabricate a free-standing selective emitter. The general equation of radiation transfer coupled with experimentally measured optical properties is used to model the net radiation obtained from these structures. It has been found that the index of refraction and the extinction coefficient are direct functions of the erbia doping level in the fibers. The fibers radiated in a selective manner at ˜1.53 μm with an efficiency of about 90%. For a fiber film on a substrate, the effect of film thickness, extinction coefficient and substrate emissivity on the overall emitter emissivity is also investigated in this study. Results show that the emissivity of the film increases as the thickness of the film increases up to a maximum value, after which increasing the film thickness had no effect on emissivity. Furthermore, it has been found that the substrate emissivity increases the amount of off-band radiation. This effect can be mitigated by controlling the film thickness.

  18. Characterization of Angiotensin-(1-7) effects on the cardiovascular system in an experimental model of type-1 diabetes.

    PubMed

    Yousif, Mariam H M; Dhaunsi, Gursev S; Makki, Batoul M; Qabazard, Bedour A; Akhtar, Saghir; Benter, Ibrahim F

    2012-09-01

    Although exogenous administration of Angiotensin-(1-7) [Ang-(1-7)] can prevent development of diabetes induced end-organ damage, little is known about the role of endogenous Ang-(1-7) in diabetes and requires further characterization. Here, we studied the effects of chronically inhibiting endogenous Ang-(1-7) formation with DX600, a selective angiotensin converting enzyme-2 (ACE2) inhibitor, on renal and cardiac NADPH oxidase (NOX) activity, vascular reactivity and cardiac function in a model of Type-1 diabetes. The contribution of endogenous Ang-(1-7) to the protective effects of Losartan and Captopril and that of prostaglandins to the cardiovascular effects of exogenous Ang-(1-7) were also examined. Cardiac and renal NOX activity, vascular reactivity to endothelin-1 (ET-1) and cardiac recovery from ischemia/reperfusion (I/R) injury were evaluated in streptozotocin-treated rats. Chronic treatment with DX600 exacerbated diabetes-induced increase in cardiac and renal NOX activity. Diabetes-induced abnormal vascular reactivity to ET-1 and cardiac dysfunction were improved by treatment with Ang-(1-7) and worsened by treatment with DX600 or A779, a Mas receptor antagonist. Ang-(1-7)-mediated improvement in cardiac recovery or vascular reactivity was attenuated by Indomethacin. Captopril and Losartan-induced improvement in cardiovascular function was attenuated when these drugs were co-administered with A779. Ang-(1-7)-mediated decrease in renal NOX activity was prevented by indomethacin. Losartan also decreased renal NOX activity that could be attenuated with A779 co-treatment. In conclusion, endogenous Ang-(1-7) inhibits diabetes-induced cardiac/renal NOX activity and end-organ damage, and mediates the actions of Captopril and Losartan. Further, prostaglandins are important intermediaries in the beneficial effects of Ang-(1-7) in diabetes. Combining either Losartan or Captopril with Ang-(1-7) had additional beneficial effects in preventing diabetes-induced cardiac

  19. Experimental characterization of the constitutive materials of MgB2 multi-filamentary wires for the development of 3D numerical models

    NASA Astrophysics Data System (ADS)

    Escamez, Guillaume; Sirois, Frédéric; Tousignant, Maxime; Badel, Arnaud; Granger, Capucine; Tixador, Pascal; Bruzek, Christian-Éric

    2017-03-01

    Today MgB2 superconducting wires can be manufactured in long lengths at low cost, which makes this material a good candidate for large scale applications. However, because of its relatively low critical temperature (less than 40 K), it is necessary to operate MgB2 devices in a liquid or gaseous helium environment. In this context, losses in the cryogenic environment must be rigorously minimized, otherwise the use of a superconductor is not worthy. An accurate estimation of the losses at the design stage is therefore mandatory in order to allow determining the device architecture that minimizes the losses. In this paper, we present a complete a 3D finite element model of a 36-filament MgB2 wire based on the architecture of the Italian manufacturer Colombus. In order for the model to be as accurate as possible, we made a substantial effort to characterize all constitutive materials of the wire, namely the E–J characteristics of the MgB2 filaments and the electric and magnetic properties (B‑H curves) of nickel and monel, which are the two major non-superconducting components of the wire. All properties were characterized as a function of temperature and magnetic field. Limitations of the characterization and of the model are discussed, in particular the difficulty to extract the maximum relative permeability of nickel and monel from the experimental data, as well as the lack of a thin conductive layer model in the 3D finite element method, which prevents us from taking into account the resistive barriers around the MgB2 filaments in the matrix. Two examples of numerical simulations are provided to illustrate the capabilities of the model in its current state.

  20. Pretest characterization of WIPP experimental waste

    SciTech Connect

    Johnson, J.; Davis, H.; Drez, P.E.; Devarakonda, M.

    1991-12-31

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is an underground repository designed for the storage and disposal of transuranic (TRU) wastes from US Department of Energy (DOE) facilities across the country. The Performance Assessment (PA) studies for WIPP address compliance of the repository with applicable regulations, and include full-scale experiments to be performed at the WIPP site. These experiments are the bin-scale and alcove tests to be conducted by Sandia National Laboratories (SNL). Prior to conducting these experiments, the waste to be used in these tests needs to be characterized to provide data on the initial conditions for these experiments. This characterization is referred to as the Pretest Characterization of WIPP Experimental Waste, and is also expected to provide input to other programmatic efforts related to waste characterization. The purpose of this paper is to describe the pretest waste characterization activities currently in progress for the WIPP bin-scale waste, and to discuss the program plan and specific analytical protocols being developed for this characterization. The relationship between different programs and documents related to waste characterization efforts is also highlighted in this paper.

  1. Experimental and Computational Characterization of Combustion Phenomena

    DTIC Science & Technology

    2006-05-01

    Fundamental Combustion Advanced Combustor Concepts Combustor Demonstration and Transition Figure 1. A design philosophy for transitioning basic...PFP UNCLASSIFIED [4] W.-W. Kim, S. Menon, and H. Mongia , “Large-Eddy Simulation of a Gas Turbine Combustor Flow,” Combust . Sci. Technol. 143, 25-62...AFRL-PR-WP-TM-2006-2131 EXPERIMENTAL AND COMPUTATIONAL CHARACTERIZATION OF COMBUSTION PHENOMENA Dr. James R. Gord Combustion Branch (AFRL

  2. Characterization of atomic-level structure in Fe-based amorphous and nanocrystalline alloy by experimental and modeling methods

    SciTech Connect

    Babilas, Rafał

    2015-09-15

    The atomic structure of Fe{sub 70}Nb{sub 10}B{sub 20} alloy in “as-cast” state and after annealing was investigated using high-energy X-ray diffraction (XRD), Mössbauer spectroscopy (MS) and high resolution transmission electron microscopy (HRTEM). The HRTEM observations allowed to indicate some medium-range order (MRO) regions about 2 nm in size and formation of some kinds of short-range order (SRO) structures represented by atomic clusters with diameter ca. 0.5 nm. The Reverse Monte Carlo (RMC) method basing on the results of XRD measurements was used in modeling the atomic structure of Fe-based alloy. The structural model was described by peak values of partial pair correlation functions and coordination numbers determined by Mössbauer spectroscopy investigations. The three-dimensional configuration box of atoms was obtained from the RMC simulation and the representative Fe-centered clusters were taken from the calculated structure. According to the Gonser et al. approach, the measured spectra of alloy studied were decomposed into 5 subspectra representing average Fe–Fe coordination numbers. Basing on the results of disaccommodation of magnetic permeability, which is sensitive to the short order of the random packing of atoms, it was stated that an occurrence of free volume is not detected after nanocrystallization process. - Highlights: • Atomic cluster model of amorphous structure was proposed for studied glassy alloy. • Short range order (ca. 0.5 nm) regions interpreted as clusters were identified by HREM. • Clusters correspond to coordination numbers (N = 4,6,8,9) calculated by using Gonser approach. • Medium-range order (ca. 2 nm) could be referred to few atomic clusters. • SRO regions are able to grow up as nuclei of crystalline bcc Fe and iron borides. • Crystalline particles have spherical morphology with an average diameter of 20 nm.

  3. Experimental characterization of the perceptron laser rangefinder

    NASA Technical Reports Server (NTRS)

    Kweon, I. S.; Hoffman, Regis; Krotkov, Eric

    1991-01-01

    In this report, we characterize experimentally a scanning laser rangefinder that employs active sensing to acquire three-dimensional images. We present experimental techniques applicable to a wide variety of laser scanners, and document the results of applying them to a device manufactured by Perceptron. Nominally, the sensor acquires data over a 60 deg x 60 deg field of view in 256 x 256 pixel images at 2 Hz. It digitizes both range and reflectance pixels to 12 bits, providing a maximum range of 40 m and a depth resolution of 1 cm. We present methods and results from experiments to measure geometric parameters including the field of view, angular scanning increments, and minimum sensing distance. We characterize qualitatively problems caused by implementation flaws, including internal reflections and range drift over time, and problems caused by inherent limitations of the rangefinding technology, including sensitivity to ambient light and surface material. We characterize statistically the precision and accuracy of the range measurements. We conclude that the performance of the Perceptron scanner does not compare favorably with the nominal performance, that scanner modifications are required, and that further experimentation must be conducted.

  4. Experimental measurements and theoretical model of the cryogenic performance of bialkali photocathode and characterization with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Xie, Huamu; Ben-Zvi, Ilan; Rao, Triveni; Xin, Tianmu; Wang, Erdong

    2016-10-01

    High-average-current, high-brightness electron sources have important applications, such as in high-repetition-rate free-electron lasers, or in the electron cooling of hadrons. Bialkali photocathodes are promising high-quantum-efficiency (QE) cathode materials, while superconducting rf (SRF) electron guns offer continuous-mode operation at high acceleration, as is needed for high-brightness electron sources. Thus, we must have a comprehensive understanding of the performance of bialkali photocathode at cryogenic temperatures when they are to be used in SRF guns. To remove the heat produced by the radio-frequency field in these guns, the cathode should be cooled to cryogenic temperatures. We recorded an 80% reduction of the QE upon cooling the K2CsSb cathode from room temperature down to the temperature of liquid nitrogen in Brookhaven National Laboratory (BNL)'s 704 MHz SRF gun. We conducted several experiments to identify the underlying mechanism in this reduction. The change in the spectral response of the bialkali photocathode, when cooled from room temperature (300 K) to 166 K, suggests that a change in the ionization energy (defined as the energy gap from the top of the valence band to vacuum level) is the main reason for this reduction. We developed an analytical model of the process, based on Spicer's three-step model. The change in ionization energy, with falling temperature, gives a simplified description of the QE's temperature dependence. We also developed a 2D Monte Carlo code to simulate photoemission that accounts for the wavelength-dependent photon absorption in the first step, the scattering and diffusion in the second step, and the momentum conservation in the emission step. From this simulation, we established a correlation between ionization energy and reduction in the QE. The simulation yielded results comparable to those from the analytical model. The simulation offers us additional capabilities such as calculation of the intrinsic emittance

  5. Experimental models of uveal melanoma.

    PubMed

    Blanco, Paula L; Caissie, Amanda L; Burnier, Miguel N

    2004-06-01

    Over the past several decades, considerable effort has been directed toward developing suitable experimental models for the study of uveal melanoma. Animal models of uveal melanoma have undergone many improvements, leading to the development of experimental systems that better represent the disease in human beings. A major advance has come from the use of human uveal melanoma cell lines capable of inducing tumour growth and metastatic disease in immunodeficient hosts. Knowledge gained from the use of experimental models will ultimately be translated into better diagnostic and therapeutic strategies for patients with uveal melanoma. In this review the authors describe the current state-of-the-art designs of experimental models of uveal melanoma, highlighting the advantages and disadvantages of the available models. Novel findings from a rabbit model of uveal melanoma are also presented.

  6. Slot film cooling: A comprehensive experimental characterization

    NASA Astrophysics Data System (ADS)

    Raffan, Fernando

    is due to the mixing strength of each case, as well as the location of regions of strong mixing with respect to the wall. Kinematic and thermal data show that strong mixing occurs in the wall-jet away from the wall (y/s>1), while strong mixing in the wall-wake occurs much closer to the wall (y/s<1). Min-shear cases exhibit noticeably weaker mixing confined to about y/s=1. Additionally to these general observations, the experimental data obtained in this work is analyzed to reveal scaling laws for the inlets, near-wall scaling, detecting and characterizing coherent structures in the flow as well as to provide data reduction strategies for comparison to CFD models (RANS and LES).

  7. Mechanical diode: Comparing numerical and experimental characterizations

    SciTech Connect

    Sagartz, M.J.; Segalman, D.; Simmermacher, T.

    1998-02-01

    In this introductory work, joint compliance is studied in both a numerical and experimental setting. A simple bolted interface is used as the test article and compliance is measured for the joint in both compression and in tension. This simple interface is shown to exhibit a strong non-linearity near the transition from compression to tension (or vice-versa). Modeling issues pertaining to numerically solving for the compliance are addressed. It is shown that the model predictions, in spite of convergence being very sensitive to numerical artifacts of the interface model, are in good agreement with experimentally measured strains and joint compliances. The joint behavior is a mechanical analogy to a diode, i.e., in compression, the joint is very stiff, acting almost as a rigid link, while in tension the joint is relatively soft, acting as a spring.

  8. Experimental Models of Membranous Nephropathy

    PubMed Central

    Jefferson, J. Ashley; Pippin, Jeffrey W.; Shankland, Stuart J.

    2011-01-01

    Membranous nephropathy (MN) is one of the commonest glomerular diseases, typically presenting in older males with nephrotic syndrome. The development and characterization of animal models of MN, in particular, the passive Heymann nephritis model (PHN), has greatly advanced our understanding of this disease. In this review we discuss the different animal models of human MN that are available, with an emphasis on the PHN model, including technical issues, the typical disease course and its application to human disease. PMID:21359154

  9. Experimental characterization of aviation-fuel cavitation

    NASA Astrophysics Data System (ADS)

    Dunn, Patrick F.; Thomas, Flint O.; Davis, Michael P.; Dorofeeva, Irina E.

    2010-11-01

    The results of an experimental investigation of the gaseous cavitation of JP-8 aviation fuel in a converging-diverging nozzle are presented. Fuel cavitation is experimentally characterized by high-speed digital imaging, static pressure distributions, and nonintrusive void fraction and bubble velocity measurements. For comparative purposes, experiments were performed using distilled water and dodecane for the same nozzle and nozzle pressure ratios. Dodecane, the largest component of JP-8 by weight, served as its single-component surrogate. For each working fluid, the experiments examined two different flow regimes: an initially single-phase liquid flow in which no cavitation occurred and another that evolved into two-phase cavitating flow. Additional experiments were performed to study the effect of air bubbles injected into either water or JP-8 at the nozzle inlet. For a sufficiently low range of imposed back pressures, gaseous cavitation led to choked flow for each working fluid. The character of the cavitation in the three fluids was different. These differences are highlighted and plausible mechanisms responsible for the observed behavior are discussed.

  10. Phosphor modeling and characterization

    NASA Astrophysics Data System (ADS)

    Wu, Huiying; Jenkins, David R.

    2014-11-01

    The prevalent method to develop a phosphor recipe (based on trial and error) to create white light with a blue light-emitting diode (LED) is time-consuming. We developed a new method for determining parametric values in a simulated phosphor model through systematic testing of phosphor samples and optimizing the parameter values with ray-trace software. The model employs Mie volume scattering together with absorption and down-conversion. A double-integrating sphere spectral measurement system was constructed to perform phosphor characterization. It was used to characterize a YAG phosphor over a wide range of phosphor concentrations and thicknesses. The final phosphor model was proven to accurately predict the phosphor performance.

  11. [Experimental models of acute pancreatitis].

    PubMed

    Ceranowicz, Piotr; Cieszkowski, Jakub; Warzecha, Zygmunt; Dembiński, Artur

    2015-02-21

    Acute pancreatitis is a severe disease with high mortality. Clinical studies can bring some data about etiology, pathogenesis and the course of acute pancreatitis. However, studies concerning early events of this disease and the new concepts of treatment cannot be performed on humans, due to ethical reasons. Animal models of acute pancreatitis have been developed to solve this problem. This review presents currently used experimental models of acute pancreatitis, their properties and clinical relevance. Experimental models of acute pancreatitis can be divided into in vivo (non-invasive and invasive) and ex vivo models. The onset, development, severity and extent of acute pancreatitis, as well as the mortality, vary considerably between these different models. Animal models reproducibly produce mild, moderate or severe acute pancreatitis. One of the most commonly used models of acute pancreatitis is created by administration of supramaximal doses of cerulein, an analog of cholecystokinin. This model produces acute mild edematous pancreatitis in rats, whereas administration of cerulein in mice leads to the development of acute necrotizing pancreatitis. Acute pancreatitis evoked by retrograde administration of sodium taurocholate into the pancreatic duct is the most often used model of acute severe necrotizing pancreatitis in rats. Ex vivo models allow to eliminate the influence of hormonal and nervous factors on the development of acute pancreatitis.

  12. Multiscale experimental characterization of solar cell defects

    NASA Astrophysics Data System (ADS)

    Škarvada, Pavel; Škvarenina, Lubomír.; Tománek, Pavel; Sobola, Dinara; Macků, Robert; Brüstlová, Jitka; Grmela, Lubomír.; Smith, Steve

    2016-12-01

    The search for alternative sources of renewable energy, including novel photovoltaics structures, is one of the principal tasks of 21th century development. In the field of photovoltaics there are three generations of solar cells of different structures going from monocrystalline silicon through thin-films to hybrid and organic cells, moreover using nanostructure details. Due to the diversity of these structures, their complex study requires the multiscale interpretations which common core includes an integrated approach bridging not only the length scales from macroscale to the atomistic, but also multispectral investigation under different working temperatures. The multiscale study is generally applied to theoretical aspects, but is also applied to experimental characterization. We investigate multiscale aspects of electrical, optical and thermal properties of solar cells under illumination and in dark conditions when an external bias is applied. We present the results of a research of the micron and sub-micron defects in a crystalline solar cell structure utilizing scanning probe microscopy and electric noise measurement.

  13. Experimental models of hepatocellular carcinoma☆

    PubMed Central

    Newell, Philippa; Villanueva, Augusto; Friedman, Scott L.; Koike, Kazuhiko; Llovet, Josep M.

    2010-01-01

    Hepatocellular carcinoma (HCC) is a common and deadly cancer whose pathogenesis is incompletely understood. Comparative genomic studies from human HCC samples have classified HCCs into different molecular subgroups; yet, the unifying feature of this tumor is its propensity to arise upon a background of inflammation and fibrosis. This review seeks to analyze the available experimental models in HCC research and to correlate data from human populations with them in order to consolidate our efforts to date, as it is increasingly clear that different models will be required to mimic different subclasses of the neoplasm. These models will be instrumental in the evaluation of compounds targeting specific molecular pathways in future preclinical studies. PMID:18314222

  14. Experimental characterization of spin motor nozzle flow.

    SciTech Connect

    Erven, Rocky J.; Peterson, Carl Williams; Henfling, John Francis

    2006-11-01

    The Mach number in the inviscid core of the flow exiting scarfed supersonic nozzles was measured using pitot probes. Nozzle characterization experiments were conducted in a modified section of an obsolete M = 7.3 test section/nozzle assembly on Sandia's Hypersonic Wind Tunnel. By capitalizing on existing hardware, the cost and time required for tunnel modifications were significantly reduced. Repeatability of pitot pressure measurements was excellent, and instrumentation errors were reduced by optimizing the pressure range of the transducers used for each test run. Bias errors in probe position prevented us from performing a successful in situ calibration of probe angle effects using pitot probes placed at an angle to the nozzle centerline. The abrupt throat geometry used in the Baseline and Configuration A and B nozzles modeled the throat geometry of the flight vehicle's spin motor nozzles. Survey data indicates that small (''unmeasurable'') differences in the nozzle throat geometries produced measurable flow asymmetries and differences in the flow fields generated by supposedly identical nozzles. Therefore, data from the Baseline and Configuration A and B nozzles cannot be used for computational fluid dynamics (CFD) code validation. Configuration C and D nozzles replaced the abrupt throat geometry of Baseline and Configuration A and B nozzles with a 0.500-inch streamwise radius of curvature in the throat region. This throat geometry eliminated the flow asymmetries, flow separation in the nozzle throat, and measurable differences between the flow fields from identical nozzles that were observed in Baseline/A/B nozzles. Data from Configuration C and D nozzles can be used for CFD code validation.

  15. Ultrastructural characterization of craniopharyngioma at the tumor boundary: A structural comparison with an experimental toxic model using "oil machinery" fluid, with emphasis on Rosenthal fibers.

    PubMed

    Tena-Suck, Martha Lilia; Morales-Del Ángel, Andrea Y; Hernández-Campos, María Elena; Fernández-Valverde, Francisca; Ortíz-Plata, Alma; Hernández, Alma Delia; Santamaría, Abel

    2015-10-01

    Craniopharyngiomas (CPs) are cystic, encapsulated, slow-growing epithelial tumors. CPs can be aggressive forms invading and resorting surrounding structures of adjacent brain tissue, where Rosenthal fibers (RFs) are expressed. The aim of this study was to investigate the ultrastructure of these fibers in human biopsies and compare it with an experimental toxic model produced by the cortical infusion of the oil cyst fluid ("Oil machinery" fluid or OMF) from CPs to rats. For this purpose, the CPs from ten patients were examined by light and electron microscopy. OMF was administered to rats intracortically. Immunohistochemical detection of glial fibrillary acidic protein (GFAP) and vimentin was assessed. In both freshly obtained CPs and rat brain tissue, the presence of abundant cellular debris, lipid-laden macrophages, reactive gliosis, inflammation and extracellular matrix destruction were seen. Ultrastructural results suggest focal pathological disturbances and an altered microenvironment surrounding the tumor-brain junction, with an enhanced presence of RFs in human tumors. In contrast, in the rat brain different degrees of cellular disorganization with aberrant filament-filament interactions and protein aggregation were seen, although RFs were absent. Our immunohistochemical findings in CPs also revealed an enhanced expression of GFAP and vimentin in RFs at the peripheral, but not at the central (body) level. Through these findings we hypothesize that the continuous OMF release at the CPs boundary may cause tissue alterations, including damaging of the extracellular matrix, and possibly contributing to RFs formation, a condition that was not possible to reproduce in the experimental model. The presence of RFs at the CPs boundary might be considered as a major criterion for the degree of CPs invasiveness to normal tissue. The lack of RFs reactivity in the experimental model reveals that the invasive component of CPs is not present in the OMF, although the fluid

  16. Photoreceptor organisation and phenotypic characterization in retinas of two diurnal rodent species: potential use as experimental animal models for human vision research.

    PubMed

    Bobu, Corina; Lahmam, Mohamed; Vuillez, Patrick; Ouarour, Ali; Hicks, David

    2008-02-01

    To characterize rod and cone distribution and composition in two diurnal mouse-like rodents, retinas from adult Arvicanthis ansorgei and Lemniscomys barbarus were processed for immunohistochemistry using multiple rod- and cone-specific antibodies. Antibodies tested included rhodopsin, cone opsins, pan-arrestin and cone arrestin, recoverin, and cGMP dependent ion channel. In both species, retinas were composed of approximately 33% cones, and most antibodies gave similar staining patterns. Data show these two diurnal rodents possess large numbers of cones, organised in a strict anatomical array. This suggests that diurnal rodents in general possess elevated cone numbers and could constitute valuable models for investigating cone pathophysiology.

  17. Experimental "evolutional machines": mathematical and experimental modeling of biological evolution

    NASA Astrophysics Data System (ADS)

    Brilkov, A. V.; Loginov, I. A.; Morozova, E. V.; Shuvaev, A. N.; Pechurkin, N. S.

    Experimentalists possess model systems of two major types for study of evolution continuous cultivation in the chemostat and long-term development in closed laboratory microecosystems with several trophic structure If evolutionary changes or transfer from one steady state to another in the result of changing qualitative properties of the system take place in such systems the main characteristics of these evolution steps can be measured By now this has not been realized from the point of view of methodology though a lot of data on the work of both types of evolutionary machines has been collected In our experiments with long-term continuous cultivation we used the bacterial strains containing in plasmids the cloned genes of bioluminescence and green fluorescent protein which expression level can be easily changed and controlled In spite of the apparent kinetic diversity of evolutionary transfers in two types of systems the general mechanisms characterizing the increase of used energy flow by populations of primer producent can be revealed at their study According to the energy approach at spontaneous transfer from one steady state to another e g in the process of microevolution competition or selection heat dissipation characterizing the rate of entropy growth should increase rather then decrease or maintain steady as usually believed The results of our observations of experimental evolution require further development of thermodynamic theory of open and closed biological systems and further study of general mechanisms of biological

  18. Experimental models of developmental hypothyroidism.

    PubMed

    Argumedo, G S; Sanz, C R; Olguín, H J

    2012-02-01

    Hypothyroidism is a systemic disease resulting from either thyroid gland's anatomical and functional absence or lack of hypophyseal stimulation, both of which can lead to deficiency in thyroid hormone (TH) production. TH is essential for human and animal development, growth, and function of multiple organs. Children with deficient TH can develop alterations in central nervous system (CNS), striated muscle, bone tissue, liver, bone marrow, and cardiorespiratory system. Among the clinical outlook are signs like breathing difficulty, cardiac insufficiency, dysphagia, and repeated bronchial aspiration, constipation, muscle weakness, cognitive alterations, cochlear dysfunction, reduced height, defects in temperature regulation, anaemia, jaundice, susceptibility to infection, and others. Experimental and clinical studies have shown that TH is very essential for normal brain development. Other research work based on mice pointed out that a reduced level of TH in pregnant mother leads to congenital hypothyroidism in animal models and it is associated with mental retardation, deep neurologic deficiency that impacts on cognitive, learning, and memory functions. The principal experimental model studies that have focused on hypothyroidism are reviewed in this study. This is important on considering the fact that almost all animal species require thyroid hormones for their metabolism.

  19. Experimental models of liver fibrosis.

    PubMed

    Crespo Yanguas, Sara; Cogliati, Bruno; Willebrords, Joost; Maes, Michaël; Colle, Isabelle; van den Bossche, Bert; de Oliveira, Claudia Pinto Marques Souza; Andraus, Wellington; Alves, Venâncio Avancini; Leclercq, Isabelle; Vinken, Mathieu

    2016-05-01

    Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research.

  20. Experimental characterization of the imaging properties of multifocal intraocular lenses

    NASA Astrophysics Data System (ADS)

    Gobbi, Pier Giorgio; Fasce, Francesco; Bozza, Stefano; Brancato, Rosario

    2003-07-01

    Many different types of intraocular lenses (IOL) are currently available for implantation, both as crystalline lens replacements and as phakic refractive elements. Their optical design is increasingly sophisticated, including aspherical surface profiles and multi-zone multifocal structures, however a quantitative and comparative characterization of their imaging properties is lacking. Also a qualitative visualization of their properties would be very useful for patients in the lens choice process. To this end an experimental eye model has been developed to allow for simulated in-vivo testing of IOLs. The model cornea is made of PMMA with a dioptric power of 43 D, and it has an aspherical profile designed to minimize spherical aberration across the visible spectrum. The eye model has a variable iris and a mechanical support to accomodate IOLs, immersed in physiological solution. The eye length is variable and the retina is replaced by a glass plate. The image formed on this "retina" is optically conjugated to a CCD camera, with a suitable magnification in order to mimic the human fovea resolution, and displayed onto a monitor. With such an opto-mechanical eye model, two types of images have been used to characterize IOLs: letter charts and variable contrast gratings, in order to directly simulate human visual acuity and contrast sensitivity.

  1. Functional characterization of a panel of high-grade serous ovarian cancer cell lines as representative experimental models of the disease.

    PubMed

    Haley, James; Tomar, Sunil; Pulliam, Nicholas; Xiong, Sen; Perkins, Susan M; Karpf, Adam R; Mitra, Sumegha; Nephew, Kenneth P; Mitra, Anirban K

    2016-05-31

    Genomic analysis of ovarian cancer cell lines has revealed a panel that best represents the most common ovarian cancer subtype, high-grade serous ovarian cancer (HGSOC). However, these HGSOC-like cell lines have not been extensively applied by ovarian cancer researchers to date, and the most commonly used cell lines in the ovarian cancer field do not genetically resemble the major clinical type of the disease. For the HGSOC-like lines to serve as suitable models, they need to be characterized for common functional assays. To achieve that objective, we systematically studied a panel of HGSOC cells CAOV3, COV362, Kuramochi, OVCAR4, OVCAR5, OVCAR8, OVSAHO and SNU119 for migration, invasion, proliferation, clonogenicity, EMT phenotype and cisplatin resistance. They exhibited a range of efficacies and OVCAR5, OVCAR8 and Kuramochi were the most aggressive. SNU119 and OVSAHO cells demonstrated the lowest functional activities. Wide differences in expression of EMT markers were observed between cell lines. SNU119 were the most epithelial and OVCAR8 had the most mesenchymal phenotype. COV362 was the most resistant to cisplatin while CAOV3 was the most sensitive. Taken together, our systematic characterization represents a valuable resource to help guide the application of HGSOC cells by the cancer research community.

  2. Functional characterization of a panel of high-grade serous ovarian cancer cell lines as representative experimental models of the disease

    PubMed Central

    Haley, James; Tomar, Sunil; Pulliam, Nicholas; Xiong, Sen; Perkins, Susan M.; Karpf, Adam R.; Mitra, Sumegha; Nephew, Kenneth P.; Mitra, Anirban K.

    2016-01-01

    Genomic analysis of ovarian cancer cell lines has revealed a panel that best represents the most common ovarian cancer subtype, high-grade serous ovarian cancer (HGSOC). However, these HGSOC-like cell lines have not been extensively applied by ovarian cancer researchers to date, and the most commonly used cell lines in the ovarian cancer field do not genetically resemble the major clinical type of the disease. For the HGSOC-like lines to serve as suitable models, they need to be characterized for common functional assays. To achieve that objective, we systematically studied a panel of HGSOC cells CAOV3, COV362, Kuramochi, OVCAR4, OVCAR5, OVCAR8, OVSAHO and SNU119 for migration, invasion, proliferation, clonogenicity, EMT phenotype and cisplatin resistance. They exhibited a range of efficacies and OVCAR5, OVCAR8 and Kuramochi were the most aggressive. SNU119 and OVSAHO cells demonstrated the lowest functional activities. Wide differences in expression of EMT markers were observed between cell lines. SNU119 were the most epithelial and OVCAR8 had the most mesenchymal phenotype. COV362 was the most resistant to cisplatin while CAOV3 was the most sensitive. Taken together, our systematic characterization represents a valuable resource to help guide the application of HGSOC cells by the cancer research community. PMID:27147568

  3. An experimental characterization of human torso motion

    NASA Astrophysics Data System (ADS)

    Cafolla, Daniele; Chen, I.-Ming; Ceccarelli, Marco

    2015-12-01

    The torso plays an important role in the human-like operation of humanoids. In this paper, a method is proposed to analyze the behavior of the human torso by using inertial and magnetic sensing tools. Experiments are conducted to characterize the motion performance of the human torso during daily routine operations. Furthermore, the forces acting on the human body during these operations are evaluated to design and validate the performance of a humanoid robot.

  4. Applying analytical and experimental methods to characterize engineered components

    NASA Astrophysics Data System (ADS)

    Munn, Brian S.

    A variety of analytical and experimental methods were employed to characterize two very different types of engineered components. The engineered components of interest were monolithic silicon carbide tiles and M12 x 1.75 Class 9.8 steel fasteners. A new application applying the hole drilling technique was developed on monolithic silicon-carbide tiles of varying thicknesses. This work was driven by a need to first develop a reliable method to measure residual stresses and, then, to validate the methodology through characterizing residual stresses on the tiles of interest. The residual stresses measured in all tiles were tensile in nature. The highest residual stresses were measured at the surface, and decreased exponentially. There was also a trend for the residual tensile stresses to decrease with increasing specimen thickness. Thermal-mechanical interactions were successfully analyzed via a one-way, coupled FEA modeled approach. The key input for a successful FEA analysis was an appropriate heat transfer rate. By varying the heat transfer rate in the FEA model and, then, comparing stress output to experimental residual stress values, provided a favorable numerical solution in determining a heat transfer rate. Fatigue behavior of a M12 x 1.75 Class 9.8 steel test fastener was extensively studied through the use of a variety of experimental and analytical techniques. Of particular interest, was the underlying interaction between notch plasticity and overall fatigue behavior. A very large data set of fastener fatigue behavior was generated with respect to mean stress. A series of endurance limit curves were established for different mean stress values ranging from minimal to the yield strength of the steel fastener (0 ≤ sigmam ≤ sigmay). This wide range in mean stress values created a change in notch tip plasticity which caused a local diminishing of the mean stress increasing expected fatigue life. The change in notch plasticity was identified by residual stress

  5. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.

    PubMed

    Eshraghi, Shaun; Das, Suman

    2012-08-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite-element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30 vol.% HA. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30, respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical FEA model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any HA loading to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. The results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient- and site-specific composite tissue-engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing.

  6. Experimental and computing strategies in advanced material characterization problems

    SciTech Connect

    Bolzon, G.

    2015-10-28

    The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities.

  7. Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases

    PubMed Central

    Zuluaga, Andres F; Salazar, Beatriz E; Rodriguez, Carlos A; Zapata, Ana X; Agudelo, Maria; Vesga, Omar

    2006-01-01

    Background For its low cost and ease of handling, the mouse remains the preferred experimental animal for preclinical tests. To avoid the interaction of the animal immune system, in vivo antibiotic pharmacodynamic studies often employ cyclophosphamide (CPM) to induce neutropenia. Although high doses (350–450 mg/kg) are still used and their effects on mouse leukocytes have been described, a lower dose (250 mg/kg) is widely preferred today, but the characteristics and applicability of this approach in outbred mice have not been determined. Methods Fifteen female ICR mice were injected intraperitoneally with 150 and 100 mg/kg of CPM on days 1 and 4, respectively. Blood samples (~160 μL) were drawn from the retro-orbital sinus of each mouse on days 1, 4, 5, 6, 7 and 11. Leukocytes were counted manually and the number of granulocytes was based on microscopic examination of Wright-stained smears. The impact of neutropenia induced by this method was then determined with a variety of pathogens in three different murine models of human infections: pneumonia (Klebsiella pneumoniae, Streptococcus pneumoniae, Staphylococcus aureus), meningoencephalitis (S. pneumoniae), and the thigh model (S. aureus, Escherichia coli, Bacteroides fragilis). Results The basal count of leukocytes was within the normal range for outbred mice. On day 4, there was an 84% reduction in total white blood cells, and by day 5 the leukopenia reached its nadir (370 ± 84 cells/mm3). Profound neutropenia (≤10 neutrophils/mm3) was demonstrated at day 4 and persisted through days 5 and 6. Lymphocytes and monocytes had a 92% and 96% decline between days 1 and 5, respectively. Leukocytes recovered completely by day 11. Mice immunosupressed under this protocol displayed clinical and microbiological patterns of progressive and lethal infectious diseases after inoculation in different organs with diverse human pathogens. Conclusion A CPM total dose of 250 mg/kg is sufficient to induce profound and sustained

  8. Experimental Explosive Characterization for Counterterrorist Investigation

    NASA Astrophysics Data System (ADS)

    Etayo, D.; Maestrojuan, I.; Teniente, J.; Ederra, I.; Gonzalo, R.

    2013-08-01

    A THz spectral characterization of different explosives of special interest for the Spanish National Security Forces "Guardia Civil" is presented in this paper. This forensic analysis has been done in the frequency range from 0.060 THz to 3.5 THz using the Teraview TPS Spectra 3000 system in laboratory conditions. With this equipment the refractive index, absorbance and complex permittivity of the explosive samples have been obtained. In this study, some of the most common used explosives (Bullet gunpowder, mine gunpowder, PETN, TNT, RDX) are analysed paying special attention to differences related to the manufacturing process used to elaborate some of them and to the purity of the samples. The different fabrication processes of the explosives lead to the same spectral behaviour and characteristics. At the same time, the inclusion of some additives in the explosive samples does not alter their main electromagnetic properties. The sensitivity limit of the measurement system has been found to be to 10 mg of explosives. These results will be used to design future THz imaging systems that allow to detect and identify them in security and defence applications and/or to complete laboratory studies after a terrorist action.

  9. Micromechanical finite element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone:hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering

    PubMed Central

    Eshraghi, Shaun; Das, Suman

    2012-01-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30% HA by volume. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30 respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 MPa to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical finite element analysis (FEA) model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any loading of HA to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. Results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient and site-specific composite tissue engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. PMID:22522129

  10. Using potassium catalytic gasification to improve the performance of solid oxide direct carbon fuel cells: Experimental characterization and elementary reaction modeling

    NASA Astrophysics Data System (ADS)

    Yu, Xiankai; Shi, Yixiang; Wang, Hongjian; Cai, Ningsheng; Li, Chen; Ghoniem, Ahmed F.

    2014-04-01

    The performance of a solid oxide electrolyte direct carbon fuel cell (SO-DCFC) is limited by the slow carbon gasification kinetics at the typical operating temperatures of cell: 650-850 °C. To overcome such limitation, potassium salt is used as a catalyst to speed up the dry carbon gasification reactions, increasing the power density by five-fold at 700-850 °C. The cell performance is shown to be sensitive to the bed temperature, emphasizing the role of gasification rates and that of CO production. Given the finite bed size, the cell performance is time-dependent as the amount of CO available changes. A reduced elementary reaction mechanism for potassium-catalyzed carbon gasification was proposed using kinetic data obtained from the experimental measurements. A comprehensive model including the catalytic gasification reactions and CO electrochemistry is used to examine the impact of the catalytic carbon gasification process on the device performance. The power density is maximum around 50% of the OCV, where carbon utilization is also near maximum. Results show that bed height and porosity impact the power density; a thicker bed maintains the power almost constant for longer times while lower porosity delivers higher power density in the early stages.

  11. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  12. Cathodoluminescence characterization of experimentally shocked alkali feldspar

    NASA Astrophysics Data System (ADS)

    Kayama, M.; Nishido, H.; Sekine, T.; Ninagawa, K.

    2009-12-01

    Cathodoluminescence (CL) spectroscopy and microscopy provide important information to know the existence and distribution of defects and trace elements in materials. CL features of materials depend on varieties of luminescence centers, host chemical compositions and crystal fields, all of which are closely related to the genetic processes. Advanced investigations on CL of shock-induced silica minerals have been attempted to estimate their shock pressures, although very few studies have been reported for feldspars. In this study, CL and Raman spectra of experimentally shocked alkali feldspar were measured to evaluate the shock metamorphic effect. A single crystal of sanidine (Or81Ab19) from Eifel, Germany was selected as a starting material for shock recovery experiments at peak pressures of about 10, 20, 32 and 40 GPa by a propellant gun. Polished thin sections of recovered samples were used for CL and Raman measurements. CL was collected in the range from 300 to 800 nm by a secondary electron microscopy-cathodoluminescence (SEM-CL) system. CL spectra of unshocked sample consist of two emission bands at around 420 nm in blue region and 720 nm in red-IR region assigned to Al-O--Al defect and Fe3+ impurity center, respectively. There are three features between unshocked and shocked sanidine. (1) The blue emission is absent in the shocked samples. (2) The peak wavelength of the red-IR emission shifts to a short wavelength side with an increase in shock pressure up to 20 GPa, suggesting the alteration of the crystal field related to Fe3+ activator by shock metamorphic effect. The Raman spectrum of the unshocked sample exhibits pronounced peaks at around 180, 205, 290, 490 and 520 cm-1. The intensities of these peaks decrease with an increase in shock pressure. The shocked samples above 32 GPa show only two weak peaks at around 490 and 580 cm-1 which were also observed in maskelynite in Martian meteorites. Shock pressure causes partly breaking of the framework structure

  13. Crystallized Silicon Nanostructures - Experimental Characterization and Atomistic Simulations

    SciTech Connect

    Agbo, Solomon; Sutta, Pavol; Calta, Pavel; Biswas, Rana; Pan, Bicai

    2014-07-01

    We have synthesized silicon nanocrystalline structures from thermal annealing of thin film amorphous silicon-based multilayers. The annealing procedure that was carried out in vacuum at temperatures up to 1100 °C is integrated in a X-ray diffraction (XRD) setup for real-time monitoring of the formation phases of the nanostructures. The microstructure of the crystallized films is investigated through experimental measurements combined with atomistic simulations of realistic nanocrystalline silicon (nc-Si) models. The multilayers consisting of uniformly alternating thicknesses of hydrogenated amorphous silicon and silicon oxide (SiO2) were deposited by plasma enhanced chemical vapor deposition on crystalline silicon and Corning glass substrates. The crystallized structure consisting of nc-Si structures embedded in an amorphous matrix were further characterized through XRD, Raman spectroscopy, and Fourier transform infrared measurements. We are able to show the different stages of nanostructure formation and how the sizes and the crystallized mass fraction can be controlled in our experimental synthesis. The crystallized silicon structures with large crystalline filling fractions exceeding 50% have been simulated with a robust classical molecular dynamics technique. The crystalline filling fractions and structural order of nc-Si obtained from this simulation are compared with our Raman and XRD measurements.

  14. Experimental characterization of a nonlinear vibration absorber using free vibration

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Brennan, M. J.; Gatti, G.; Ferguson, N. S.

    2016-04-01

    Knowledge of the nonlinear characteristics of a vibration absorber is important if its performance is to be predicted accurately when connected to a host structure. This can be achieved theoretically, but experimental validation is necessary to verify the modelling procedure and assumptions. This paper describes the characterization of such an absorber using a novel experimental procedure. The estimation method is based on a free vibration test, which is appropriate for a lightly damped device. The nonlinear absorber is attached to a shaker which is operated such that the shaker works in its mass-controlled regime, which means that the shaker dynamics, which are also included in the measurement, are considerably simplified, which facilitates a simple estimation of the absorber properties. From the free vibration time history, the instantaneous amplitude and instantaneous damped natural frequency are estimated using the Hilbert transform. The stiffness and damping of the nonlinear vibration absorber are then estimated from these quantities. The results are compared with an analytical solution for the free vibration of the nonlinear system with cubic stiffness and viscous damping, which is also derived in the paper using an alternative approach to the conventional perturbation methods. To further verify the approach, the results are compared with a method in which the internal forces are balanced at each measured instant in time.

  15. Characterization and Modeling of Inductors.

    NASA Astrophysics Data System (ADS)

    Yeh, Long-Ching

    This dissertation presents the modeling and characterization of inductors wound on a ferrite core, an amorphous alloy (Metglas('(REGTM))) core, a permalloy 4 mil tape wound core and three permalloy 1 mil tape wound cores with different kinds of heat treatment, and an MPP core. Many kinds of measurements have been made including normal inductance measurements, incremental inductance measurements, inductance quality factor measurements, effective series resistance measurements, hysteresis loop observations and measurements of waveform distortion. All the materials studied were found to have certain common features: the normal inductance increases as signal amplitude increases but eventually passes through a maximum value. Incremental inductance, on the other hand, is independent of direct current below a critical value and then decreases for larger values of current. The critical d-c field for incremental inductance was found to have the same value as the peak a-c field at which there is a change of the rate of increase of normal inductance. Both critical fields may be attributed to the same physical process, the onset of irreversible motion of domain walls. This new finding, for the first time, relates normal inductance and incremental inductance measurements. A new mathematical model for inductors is worked out using a computer curve-fitting program to describe the inductance and equivalent series resistance measured with a-c signal levels ranging from low to high amplitude. The model, which may be used to calculate the quality factor and the power loss of inductors, also explains Legg's equation in an extended form. The voltage waveform of an inductor was found to be somewhat distorted even when the applied current is a pure sinusoid. The measured distortion was less than is predicted by a new "instantaneous" model of permeability but was in reasonable agreement with a domain-state interpretation of the Rayleigh model. Other findings include a critique and

  16. Experimental Oral Candidiasis in Animal Models

    PubMed Central

    Samaranayake, Yuthika H.; Samaranayake, Lakshman P.

    2001-01-01

    Oral candidiasis is as much the final outcome of the vulnerability of the host as of the virulence of the invading organism. We review here the extensive literature on animal experiments mainly appertaining to the host predisposing factors that initiate and perpetuate these infections. The monkey, rat, and mouse are the choice models for investigating oral candidiasis, but comparisons between the same or different models appear difficult, because of variables such as the study design, the number of animals used, their diet, the differences in Candida strains, and the duration of the studies. These variables notwithstanding, the following could be concluded. (i) The primate model is ideal for investigating Candida-associated denture stomatitis since both erythematous and pseudomembranous lesions have been produced in monkeys with prosthetic plates; they are, however, expensive and difficult to obtain and maintain. (ii) The rat model (both Sprague-Dawley and Wistar) is well proven for observing chronic oral candidal colonization and infection, due to the ease of breeding and handling and their ready availability. (iii) Mice are similar, but in addition there are well characterized variants simulating immunologic and genetic abnormalities (e.g., athymic, euthymic, murine-acquired immune deficiency syndrome, and severe combined immunodeficient models) and hence are used for short-term studies relating the host immune response and oral candidiasis. Nonetheless, an ideal, relatively inexpensive model representative of the human oral environment in ecological and microbiological terms is yet to be described. Until such a model is developed, researchers should pay attention to standardization of the experimental protocols described here to obtain broadly comparable and meaningful data. PMID:11292645

  17. Experimental characterization of Gaussian quantum-communication channels

    SciTech Connect

    Di Guglielmo, James; Hage, Boris; Franzen, Alexander; Schnabel, Roman; Fiurasek, Jaromir

    2007-07-15

    We present a full experimental characterization of continuous-variable quantum-communication channels established by shared entanglement together with local operations and classical communication. The resulting teleportation channel was fully characterized by measuring all elements of the covariance matrix of the shared two-mode squeezed Gaussian state. From the experimental data we determined the lower bound to the quantum channel capacity, the teleportation fidelity of coherent states, and the logarithmic negativity and purity of the shared state. Additionally, a positive secret key rate was obtained for two of the established channels.

  18. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  19. Experimental mammary carcinogenesis - Rat models.

    PubMed

    Alvarado, Antonieta; Faustino-Rocha, Ana I; Colaço, Bruno; Oliveira, Paula A

    2017-03-15

    Mammary cancer is one of the most common cancers, victimizing more than half a million of women worldwide every year. Despite all the studies in this field, the current therapeutic approaches are not effective and have several devastating effects for patients. In this way, the need to better understand the mammary cancer biopathology and find effective therapies led to the development of several rodent models over years. With this review, the authors intended to provide the readers with an overview of the rat models used to study mammary carcinogenesis, with a special emphasis on chemically-induced models.

  20. Experimental models of anxiety. Problems and perspectives.

    PubMed

    Griez, E

    1984-01-01

    In a brief review of the field of experimental psychopathology, the author observes that few adequate laboratory models of anxiety have been produced. Criteria to set up valid anxiety models are discussed. The carbon dioxide inhalation technique, an anxiomimetic intervention, is then proposed as a new human panic attack model and compared to the existing lactate infusion method. Both appear as promising agents in the experimental study of panic anxiety.

  1. [An experimental model of suppurative osteomyelitis].

    PubMed

    Privalov, V A; Svetlakov, A L; Kushakovskiĭ, O S; Ebert, L Ia; Giniatullin, R U; Svetlakova, I A; Iarovoĭ, N N

    2000-01-01

    A new experimental rabbit model of acute purulent osteomyelitis is proposed. The model is reproduced by percutaneous introduction of 4 million St. aureus microorganisms into the medullary channel of the femoral bone after aseptic destruction of the bone marrow by ethyl alcohol and hot saline. The model satisfies the demands of good reproduction, reduces probability of contamination of periosteal tissues during intraosteal inoculation and provides reproduction of local inflammation without its generalization which results in reduced number of fatal outcomes among experimental animals.

  2. ESA Intermediate Experimental Vehicle. Independent Aerothermodynamic Characterization And Aerodatabase Development

    NASA Astrophysics Data System (ADS)

    Rufolo, Giuseppe C.; Di Benedetto, Sara; Walpot, Louis; Roncioni, Pietro; Marini, Marco

    2011-05-01

    In the frame of the Intermediate eXperimental Vehicle (IXV) project, the European Space Agency (ESA) is coordinating a series of technical assistance activities aimed at verifying and supporting the IXV industrial design and development process. The technical assistance is operated with the support of the Italian Space Agency (ASI), by means of the Italian Aerospace Research Center (CIRA), and the European Space Research and Technology Centre (ESTEC) under the super visioning and coordination of ESA IXV team. One of the purposes of the activity is to develop an independent capability for the assessment and verification of the industrial results with respect to the aerothermodynamic characterization of the IXV vehicle. To this aim CIRA is developing and independent AeroThermodynamics DataBase (ATDB), intended as a tool generating in output the time histories of local quantities (heat flux, pressure, skin friction) for each point of the IXV vehicle and for each trajectory (in a pre-defined envelope), together with an uncertainties model. The reference Computational Fluid Dynamics (CFD) solutions needed for the development of the tool have been provided by ESA-ESTEC (with the CFD code LORE) and CIRA (with the CFD code H3NS).

  3. Enhancement of soil retention for phenanthrene in binary cationic gemini and nonionic surfactant mixtures: characterizing two-step adsorption and partition processes through experimental and modeling approaches.

    PubMed

    Zhao, Shan; Huang, Gordon; An, Chunjiang; Wei, Jia; Yao, Yao

    2015-04-09

    The enhancement of soil retention for phenanthrene (PHE) through the addition of a binary mixture of cationic gemini (12-2-12) and nonionic surfactants (C12E10) was investigated. The maximum apparent sorption coefficient Kd(*) reached 4247.8 mL/g through the addition of mixed 12-2-12 gemini and C12E10 surfactants, which was markedly higher than the summed individual results in the presence of individual 12-2-12 gemini (1148.6 mL/g) or C12E10 (210.0 mL/g) surfactant. However, the sorption of 12-2-12 gemini was inhibited by the increasing C12E10 dose; and a higher initial 12-2-12 gemini dose showed a higher "desorption" rate. The present study also addressed the sorption behavior of the single 12-2-12 gemini surfactant at the soil/aqueous interface. The sorption isotherm was divided into two steps to elucidate the sorption process; and the sorption schematics were proposed to elaborate the growth of surfactant aggregates corresponding to the various steps of the sorption isotherm. Finally, a two-step adsorption and partition model (TAPM) was developed to simulate the sorption process. Analysis of the equilibrium data indicated that the sorption isotherms of 12-2-12 gemini fitted the TAPM model better. Thermodynamic calculations confirmed that the 12-2-12 gemini sorption at the soil/aqueous interface was spontaneous and exothermic from 288 to 308K.

  4. A new model of experimental prosthetic joint infection due to methicillin-resistant Staphylococcus aureus: a microbiologic, histopathologic, and magnetic resonance imaging characterization.

    PubMed

    Belmatoug, N; Crémieux, A C; Bleton, R; Volk, A; Saleh-Mghir, A; Grossin, M; Garry, L; Carbon, C

    1996-08-01

    Partial knee arthroplasty was done in rabbits with a silicone-elastomer implant. Immediately after closing the surgical wound, 5 x 10(6) cfu of methicillin-resistant Staphylococcus aureus was injected into the joint. Disease evolution was studied at different stages of infection up to 8 weeks. Prosthetic infection developed in all animals. Gross pathology and histopathologic changes were characteristic of joint and bone infection. Quantitative bacterial counts from infected bone confirmed disease chronicity. The mean number of colony-forming units per gram of bone +/- SD 1 week after infection was 4.84 +/- 0.24 log10 cfu/g and remained stable from week 1 to week 8. Magnetic resonance imaging showed evidence of prosthetic infection as of week 1, while only mild radiologic changes of bone were seen 2 weeks after infection. This model produces a prosthetic infection that is reproducible and close to that of human prosthetic infection.

  5. Improving the physiological realism of experimental models.

    PubMed

    Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L

    2016-04-06

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.

  6. In vivo experimental models of epilepsy.

    PubMed

    Rubio, Carmen; Rubio-Osornio, Moises; Retana-Márquez, Socorro; Verónica Custodio, Marisol López; Paz, Carlos

    2010-12-01

    This study reviews the different in vivo experimental models that have been used for the study of epileptogenesis. In this review we will focus on how to replicate the different models that have led to the study of partial seizures, as well as generalized seizures and the status epilepticus. The main characteristics that participate in the processes that generate and modulate the manifestations of different models of epileptogenesis are described. The development of several models of experimental epilepsy in animals has clearly helped the study of specific brain areas capable of causing convulsions. The experimental models of epilepsy also have helped in the study the mechanisms and actions of epilepsy drugs. In order to develop experimental animal models of epilepsy, animals are generally chosen according to the kind of epilepsy that can be developed and studied. It is currently known that animal species can have epileptic seizures similar to those in humans. However, it is important to keep in mind that it has not been possible to entirely evaluate all manifestations of human epilepsy. Notwithstanding, these experimental models of epilepsy have allowed a partial understanding of most of the underlying mechanisms of this disease.

  7. Experimental falsification of Leggett's nonlocal variable model.

    PubMed

    Branciard, Cyril; Ling, Alexander; Gisin, Nicolas; Kurtsiefer, Christian; Lamas-Linares, Antia; Scarani, Valerio

    2007-11-23

    Bell's theorem guarantees that no model based on local variables can reproduce quantum correlations. Also, some models based on nonlocal variables, if subject to apparently "reasonable" constraints, may fail to reproduce quantum physics. In this Letter, we introduce a family of inequalities, which use a finite number of measurement settings, and which therefore allow testing Leggett's nonlocal model versus quantum physics. Our experimental data falsify Leggett's model and are in agreement with quantum predictions.

  8. Comparing fluid mechanics models with experimental data.

    PubMed

    Spedding, G R

    2003-09-29

    The art of modelling the physical world lies in the appropriate simplification and abstraction of the complete problem. In fluid mechanics, the Navier-Stokes equations provide a model that is valid under most circumstances germane to animal locomotion, but the complexity of solutions provides strong incentive for the development of further, more simplified practical models. When the flow organizes itself so that all shearing motions are collected into localized patches, then various mathematical vortex models have been very successful in predicting and furthering the physical understanding of many flows, particularly in aerodynamics. Experimental models have the significant added convenience that the fluid mechanics can be generated by a real fluid, not a model, provided the appropriate dimensionless groups have similar values. Then, analogous problems can be encountered in making intelligible but independent descriptions of the experimental results. Finally, model predictions and experimental results may be compared if, and only if, numerical estimates of the likely variations in the tested quantities are provided. Examples from recent experimental measurements of wakes behind a fixed wing and behind a bird in free flight are used to illustrate these principles.

  9. Comparing fluid mechanics models with experimental data.

    PubMed Central

    Spedding, G R

    2003-01-01

    The art of modelling the physical world lies in the appropriate simplification and abstraction of the complete problem. In fluid mechanics, the Navier-Stokes equations provide a model that is valid under most circumstances germane to animal locomotion, but the complexity of solutions provides strong incentive for the development of further, more simplified practical models. When the flow organizes itself so that all shearing motions are collected into localized patches, then various mathematical vortex models have been very successful in predicting and furthering the physical understanding of many flows, particularly in aerodynamics. Experimental models have the significant added convenience that the fluid mechanics can be generated by a real fluid, not a model, provided the appropriate dimensionless groups have similar values. Then, analogous problems can be encountered in making intelligible but independent descriptions of the experimental results. Finally, model predictions and experimental results may be compared if, and only if, numerical estimates of the likely variations in the tested quantities are provided. Examples from recent experimental measurements of wakes behind a fixed wing and behind a bird in free flight are used to illustrate these principles. PMID:14561348

  10. Experimental and analytical characterization of triaxially braided textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Fedro, Mark J.; Ifju, Peter G.

    1993-01-01

    There were two components, experimental and analytical, to this investigation of triaxially braided textile composite materials. The experimental portion of the study centered on measuring the materials' longitudinal and transverse tensile moduli, Poisson's ratio, and strengths. The identification of the damage mechanisms exhibited by these materials was also a prime objective of the experimental investigation. The analytical portion of the investigation utilized the Textile Composites Analysis (TECA) model to predict modulus and strength. The analytical and experimental results were compared to assess the effectiveness of the analysis. The figures contained in this paper reflect the presentation made at the conference. They may be divided into four sections: a definition of the material system tested; followed by a series of figures summarizing the experimental results (these figures contain results of a Moire interferometry study of the strain distribution in the material, examples and descriptions of the types of damage encountered in these materials, and a summary of the measured properties); a description of the TECA model follows the experimental results (this includes a series of predicted results and a comparison with measured values); and finally, a brief summary completes the paper.

  11. Experimental and Modeling Studies of Massif Anorthosites

    NASA Technical Reports Server (NTRS)

    Longhi, John

    1999-01-01

    This termination report covers the latter part of a single research effort spanning several grant cycles. During this time there was a single title, "Experimental and Modeling Studies of Massif Anorthosites", but there were several contract numbers as the mode and location of NASA contract administration changed. Initially, the project was funded as an increment to the PI's other grant, "Early Differentiation of the Moon: Experimental and Modeling Studies", but subsequently it became an independent grant. Table 1 contains a brief summary of the dates and contract numbers.

  12. Experimental Concepts for Testing Seismic Hazard Models

    NASA Astrophysics Data System (ADS)

    Marzocchi, W.; Jordan, T. H.

    2015-12-01

    Seismic hazard analysis is the primary interface through which useful information about earthquake rupture and wave propagation is delivered to society. To account for the randomness (aleatory variability) and limited knowledge (epistemic uncertainty) of these natural processes, seismologists must formulate and test hazard models using the concepts of probability. In this presentation, we will address the scientific objections that have been raised over the years against probabilistic seismic hazard analysis (PSHA). Owing to the paucity of observations, we must rely on expert opinion to quantify the epistemic uncertainties of PSHA models (e.g., in the weighting of individual models from logic-tree ensembles of plausible models). The main theoretical issue is a frequentist critique: subjectivity is immeasurable; ergo, PSHA models cannot be objectively tested against data; ergo, they are fundamentally unscientific. We have argued (PNAS, 111, 11973-11978) that the Bayesian subjectivity required for casting epistemic uncertainties can be bridged with the frequentist objectivity needed for pure significance testing through "experimental concepts." An experimental concept specifies collections of data, observed and not yet observed, that are judged to be exchangeable (i.e., with a joint distribution independent of the data ordering) when conditioned on a set of explanatory variables. We illustrate, through concrete examples, experimental concepts useful in the testing of PSHA models for ontological errors in the presence of aleatory variability and epistemic uncertainty. In particular, we describe experimental concepts that lead to exchangeable binary sequences that are statistically independent but not identically distributed, showing how the Bayesian concept of exchangeability generalizes the frequentist concept of experimental repeatability. We also address the issue of testing PSHA models using spatially correlated data.

  13. Theoretical and experimental characterization of the first hyperpolarizability

    NASA Astrophysics Data System (ADS)

    Perez-Moreno, Javier

    We present a theoretical and experimental study of the molecular susceptibilities. The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear response of organic chromophores in terms of fundamental parameters. The nonlinear optical performance of real molecules is evaluated from the calculation of the quantum limits and Hyper-Rayleigh scattering measurements. Different strategies for the enhancement of nonlinear behavior at the molecular and supramolecular level are evaluated and new paradigms for de design of more efficient nonlinear molecules are proposed.

  14. [Experimental models of human skin aging].

    PubMed

    Nikolakis, G; Zoschke, C; Makrantonaki, E; Hausmann, C; Schäfer-Korting, M; Zouboulis, C C

    2016-02-01

    The skin is a representative model for the study of human aging. Despite the high regenerative capacity of the skin, skin physiology changes over the course of life. Medical and cosmetic research is trying to prevent aging, to slow, to stop, or to reverse it. Effects of age-related DNA damage and of changing skin structure on pharmacological parameters are largely unknown. This review article summarizes the state of scientific knowledge in the field of experimental models of human skin aging and shows approaches to improve organotypic skin models, to develop predictive models of aging, and improve aging research.

  15. Optimal Experimental Design for Model Discrimination

    PubMed Central

    Myung, Jay I.; Pitt, Mark A.

    2009-01-01

    Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it possible to determine these values, and thereby identify an optimal experimental design. After describing the method, it is demonstrated in two content areas in cognitive psychology in which models are highly competitive: retention (i.e., forgetting) and categorization. The optimal design is compared with the quality of designs used in the literature. The findings demonstrate that design optimization has the potential to increase the informativeness of the experimental method. PMID:19618983

  16. Optimal Experimental Design for Model Discrimination

    ERIC Educational Resources Information Center

    Myung, Jay I.; Pitt, Mark A.

    2009-01-01

    Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it…

  17. Cholestasis: human disease and experimental animal models.

    PubMed

    Rodríguez-Garay, Emilio Alberto

    2003-01-01

    Cholestasis may result from a failure in bile secretion in hepatocytes or ductular cells, or from a blockade to the free bile flow. Human cholestasis may be induced by many drugs, being antibiotics the more common. Other types of cholestasis seen in humans are a group of familial cholestatic disorders, obstructive cholestasis, primary biliary cirrhosis, extrahepatic biliary atresia, primary sclerosing cholangitis, cholestasis of pregnancy, oral contraceptive-induced cholestasis, and sepsis-induced cholestasis. Experimental animal models allow the understanding of pathophysiological mechanisms involved and their clinical correlates. The most common experimental models of intrahepatic cholestasis are estrogen-induced, endotoxin-induced and drug-induced cholestasis. A well known model of extrahepatic biliary obstruction is common bile duct ligation. Drug-induced cholestasis were described using different drugs. On this regard, alpha naphthylisothiocyanate treatment has been extensively used, permitting to describe not only cholestatic alterations but also compensatory mechanisms. Congenital defficiency of transport proteins also were studied in natural rat models of cholestasis. The experimental animal models allow to define down-regulated alterations of hepatocyte transport proteins, and up-regulated ones acting as compensatory mechanisms. In conclusion, animal model and transport protein studies are necessary for the progressive understanding of congenital and acquired human cholestasis, and regulatory mechanisms that operate on liver cells.

  18. Modeling, Robust Control, and Experimental Validation of a Supercavitating Vehicle

    NASA Astrophysics Data System (ADS)

    Escobar Sanabria, David

    This dissertation considers the mathematical modeling, control under uncertainty, and experimental validation of an underwater supercavitating vehicle. By traveling inside a gas cavity, a supercavitating vehicle reduces hydrodynamic drag, increases speed, and minimizes power consumption. The attainable speed and power efficiency make these vehicles attractive for undersea exploration, high-speed transportation, and defense. However, the benefits of traveling inside a cavity come with difficulties in controlling the vehicle dynamics. The main challenge is the nonlinear force that arises when the back-end of the vehicle pierces the cavity. This force, referred to as planing, leads to oscillatory motion and instability. Control technologies that are robust to planing and suited for practical implementation need to be developed. To enable these technologies, a low-order vehicle model that accounts for inaccuracy in the characterization of planing is required. Additionally, an experimental method to evaluate possible pitfalls in the models and controllers is necessary before undersea testing. The major contribution of this dissertation is a unified framework for mathematical modeling, robust control synthesis, and experimental validation of a supercavitating vehicle. First, we introduce affordable experimental methods for mathematical modeling and controller testing under planing and realistic flow conditions. Then, using experimental observations and physical principles, we create a low-order nonlinear model of the longitudinal vehicle motion. This model quantifies the planing uncertainty and is suitable for robust controller synthesis. Next, based on the vehicle model, we develop automated tools for synthesizing controllers that deliver a certificate of performance in the face of nonlinear and uncertain planing forces. We demonstrate theoretically and experimentally that the proposed controllers ensure higher performance when the uncertain planing dynamics are

  19. Characterizing nanoparticle interactions: Linking models to experiments

    SciTech Connect

    Ramakrishnan, S.; Zukoski, C. F.

    2000-07-15

    Self-assembly of nanoparticles involves manipulating particle interactions such that attractions are on the order of the average thermal energy in the system. If the self-assembly is to result in an ordered packing, an understanding of their phase behavior is necessary. Here we test the ability of simple pair potentials to characterize the interactions and phase behavior of silico tungstic acid (STA), a 1.2 nm particle. The strength of interaction is controlled by dispersing STA in different background salt concentrations. The experimental variables used in characterizing the interactions are the osmotic compressibility (d{pi}/d{rho}), the second virial coefficient (B{sub 2}), relative solution viscosity ({eta}/{eta}{sub c}), and the solubility ({rho}{sigma}{sup 3}){sub sat}. Various techniques are then developed to extract the parameters of square well, the adhesive hard sphere (AHS), and the Yukawa pair potentials that best describe the experimental data. The AHS model describes the solution thermodynamic behavior only where the system is weakly attractive but, as would be expected, fails when long range repulsions or nonmonotonic pair potentials become important. Model free representations are presented which offer the opportunity to extract pair potential parameters. (c) 2000 American Institute of Physics.

  20. Integrated pollutant removal: modeling and experimentation

    SciTech Connect

    Ochs, Thomas L.; Oryshchyn, Danylo B.; Summers, Cathy A.

    2005-01-01

    Experimental and computational work at the Albany Research Center, USDOE is investigating an integrated pollutant removal (IPR) process which removes all pollutants from flue gas, including SOX, NOX, particulates, CO2, and Hg. In combination with flue gas recirculation, heat recovery, and oxy-fuel combustion, the process produces solid, gas, and liquid waste streams. The gas exhaust stream comprises O2 and N2. Liquid streams contain H2O, SOX, NOX, and CO2. Computer modeling and low to moderate pressure experimentation are defining system chemistry with respect to SOX and H2O as well as heat and mass transfer for the IPR process.

  1. Macrophages and Uveitis in Experimental Animal Models

    PubMed Central

    Mérida, Salvador; Palacios, Elena; Bosch-Morell, Francisco

    2015-01-01

    Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution. PMID:26078494

  2. Characterizing and modeling citation dynamics.

    PubMed

    Eom, Young-Ho; Fortunato, Santo

    2011-01-01

    Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well.

  3. Characterizing and Modeling Citation Dynamics

    PubMed Central

    Eom, Young-Ho; Fortunato, Santo

    2011-01-01

    Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well. PMID:21966387

  4. Irradiation Design for an Experimental Murine Model

    SciTech Connect

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Celis, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Rubio-Osornio, M. C.; Custodio-Ramirez, V.; Paz, C.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  5. Irradiation Design for an Experimental Murine Model

    NASA Astrophysics Data System (ADS)

    Ballesteros-Zebadúa, P.; Lárraga-Gutierrez, J. M.; García-Garduño, O. A.; Rubio-Osornio, M. C.; Custodio-Ramírez, V.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Paz, C.; Celis, M. A.

    2010-12-01

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  6. Experimental models of melatonin-deficient hypertension.

    PubMed

    Simko, Fedor; Reiter, Russel J; Pechanova, Olga; Paulis, Ludovit

    2013-01-01

    Melatonin secreted by the pineal gland plays an important role in the regulation of blood pressure (BP) and its administration reduces hypertension both in animals and humans. There are two experimental models of melatonin-deficient hypertension: one induced by pinealectomy and another by continuous 24 hour exposure to light. Both models cause melatonin deficiency and prevent darkness-mediated nocturnal melatonin secretion and are associated with increased BP and myocardial, vascular and renal dysfunction. These models also lead to neurohumoral activation of the renin-angiotensin system, sympathetic nervous system, adrenocorticotrophin-glucocorticoid axis and cause insulin resistance. Together, these alterations contribute to rise in blood pressure by vasoconstrictive or circulatory fluid volume overload. The light induced hypertension model mimics the melatonin deficiency in patients with insufficient nocturnal BP decline, in those who have night shift or who are exposed to environmental light pollution. For this reason, this model is useful in development of anti-hypertensive drugs.

  7. Characterization of Neutron Field in the Experimental Fast Reactor Joyo

    NASA Astrophysics Data System (ADS)

    Sekine, Takashi; Maeda, Shigetaka; Aoyama, Takafumi

    2003-06-01

    In order to assure the reliability and accuracy of neutron flux and related characteristics such as dpa, helium production and fuel power in the irradiation test of JOYO, reactor dosimetry and neutronic calculation have been developed. The detailed calculation was conducted using transport and Monte Carlo codes with the core subassembly composition obtained by three dimensional diffusion theory. Helium Accumulation Fluence Monitor (HAFM) were also used to measure the neutron fluence. The calculation method was verified by the comparison of measured fuel power based on the PIE data and adjusted neutron flux using measured reaction rates. As a result, it was confirmed that the calculation with experimental correction can characterize the JOYO neutron field precisely and meet the specified accuracy set for each irradiation test.

  8. Experimental Facilities and Modelling for Rarefied Aerodynamics

    DTIC Science & Technology

    2011-01-01

    aerodynamic forces and moments that act on an object moving in the gas . The aerodynamics of rarefied gases also investigates the flow of gases in...Originally, theoretical models for rarefied gas flows were developed in the frame of the molecular kinetic theory. Thus the first self-consistent descriptions...method [7-11]. 3.0 EXPERIMENTAL FACILITIES FOR RAREFIED FLOWS 3.1 Overview Rarefied - gas (vacuum) wind tunnel is a wind tunnel operating at low pressures

  9. Extracting model equations from experimental data

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Siegert, S.; Peinke, J.; Lück, St.; Siefert, M.; Lindemann, M.; Raethjen, J.; Deuschl, G.; Pfister, G.

    2000-06-01

    This letter wants to present a general data-driven method for formulating suitable model equations for nonlinear complex systems. The method is validated in a quantitative way by its application to experimentally found data of a chaotic electric circuit. Furthermore, the results of an analysis of tremor data from patients suffering from Parkinson's disease, from essential tremor, and from normal subjects with physiological tremor are presented, discussed and compared. They allow a distinction between the different forms of tremor.

  10. Understanding the limits to generalizability of experimental evolutionary models.

    PubMed

    Forde, Samantha E; Beardmore, Robert E; Gudelj, Ivana; Arkin, Sinan S; Thompson, John N; Hurst, Laurence D

    2008-09-11

    Given the difficulty of testing evolutionary and ecological theory in situ, in vitro model systems are attractive alternatives; however, can we appraise whether an experimental result is particular to the in vitro model, and, if so, characterize the systems likely to behave differently and understand why? Here we examine these issues using the relationship between phenotypic diversity and resource input in the T7-Escherichia coli co-evolving system as a case history. We establish a mathematical model of this interaction, framed as one instance of a super-class of host-parasite co-evolutionary models, and show that it captures experimental results. By tuning this model, we then ask how diversity as a function of resource input could behave for alternative co-evolving partners (for example, E. coli with lambda bacteriophages). In contrast to populations lacking bacteriophages, variation in diversity with differences in resources is always found for co-evolving populations, supporting the geographic mosaic theory of co-evolution. The form of this variation is not, however, universal. Details of infectivity are pivotal: in T7-E. coli with a modified gene-for-gene interaction, diversity is low at high resource input, whereas, for matching-allele interactions, maximal diversity is found at high resource input. A combination of in vitro systems and appropriately configured mathematical models is an effective means to isolate results particular to the in vitro system, to characterize systems likely to behave differently and to understand the biology underpinning those alternatives.

  11. Experimental support for KrF laser modeling. Final report

    SciTech Connect

    Not Available

    1989-07-19

    This paper is the final report for a project to do characterization studies on the KrF laser system. The project did experimental work on KrF lasers in support of modeling studies, with the objective being to see if this technology could be competitive for use in the ICF program. This program has provided LANL with data critical for their model development. Section 2 describes the laser extraction experiments together with the calibration of the diagnostics and the re-examination of the analysis procedure. Section 3 discusses the gain and transient absorption measurements, and Section 4 gives the conclusion for this program.

  12. Experimental characterization of Raman overlaps between mode-groups

    PubMed Central

    Christensen, Erik N.; Koefoed, Jacob G.; Friis, Søren M. M.; Castaneda, Mario A. Usuga; Rottwitt, Karsten

    2016-01-01

    Mode-division multiplexing has the potential to further increase data transmission capacity through optical fibers. In addition, distributed Raman amplification is a promising candidate for multi-mode signal amplification due to its desirable noise properties and the possibility of mode-equalized gain. In this paper, we present an experimental characterization of the intermodal Raman intensity overlaps of a few-mode fiber using backward-pumped Raman amplification. By varying the input pump power and the degree of higher order mode-excitation for the pump and the signal in a 10 km long two-mode fiber, we are able to characterize all intermodal Raman intensity overlaps. Using these results, we perform a Raman amplification measurement and demonstrate a mode-differential gain of only 0.25 dB per 10 dB overall gain. This is, to the best of our knowledge, the lowest mode differential gain achieved for amplification of mode division multiplexed signals in a single fiber. PMID:27703272

  13. Experimental characterization of vertical-axis wind turbine noise.

    PubMed

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.

  14. A mechanical diode: Comparing numerical and experimental characterizations

    SciTech Connect

    Simmermacher, T.; Segalman, D.; Sagartz, M.

    1997-12-01

    The predictive modeling of vibration of many structural systems is crippled by an inability to predictively model the mechanics of joints. The lack of understanding of joint dynamics is evidenced by the substantial uncertainty of joint compliances in the numerical models and by the complete inability to predict joint damping. The lore is that at low amplitudes, joint mechanics are associated with Coulomb friction and stick-slip phenomena and that at high amplitudes, impact processes result in dissipation as well as shift of energy to other frequencies. Inadequate understanding of the physics precludes reliable predictions. In this introductory work, joint compliance is studied in both a numerical and experimental setting. A simple bolted interface is used as the test article and compliance is measured for the joint in both compression and in tension. This simple interface is shown to exhibit a strong non-linearity near the transition from compression to tension (or vice-versa). Modeling issues pertaining to numerically solving for the compliance are addressed. It is shown that the model predicts the experimental strains and compliance fairly well. It will be seen that the joint behavior is a mechanical analogy to a diode. In compression, the joint is very stiff, acting almost as a rigid link, while in tension the joint is soft, acting as a soft spring. Although there have been many other studies performed on bolted joints, the variety of joint geometries has demonstrated large variations in behavior. This study is an attempt to quantify the behavior of typical joints found in today`s weapon systems.

  15. Testing Numerical Dynamo Models Against Experimental Results

    NASA Astrophysics Data System (ADS)

    Gissinger, C. J.; Fauve, S.; Dormy, E.

    2007-12-01

    Significant progress has been achieved over the past few years in describing the geomagnetic field using computer models for dynamo action. Such models are so far limited to parameter regimes which are very remote from actual values relevant to the Earth core or any liquid metal (the magnetic Prandtl number is always over estimated by a factor at least 104). While existing models successfully reproduce many of the magnetic observations, it is difficult to assert their validity. The recent success of an experimental homogeneous unconstrained dynamo (VKS) provides a new way to investigate dynamo action in turbulent conducting flows, but it also offers a chance to test the validity of exisiting numerical models. We use a code originaly written for the Geodynamo (Parody) and apply it to the experimental configuration. The direct comparison of simulations and experiments is of great interest to test the predictive value of numerical simulations for dynamo action. These turbulent simulations allow us to approach issues which are very relevant for geophysical dynamos, especially the competition between different magnetic modes and the dynamics of reversals.

  16. Modelling an experimental methane fuel processor

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Tin; Chen, Yih-Hang; Yu, Cheng-Ching; Liu, Yen-Chun; Lee, Chiou-Hwang

    Steady-state models are developed to describe an experimental methane fuel processor that is intended to provide hydrogen for a fuel cell system for power generation (2-3 kW). First-principle reactor models are constructed to describe a series of reactions, i.e., steam and autothermal reforming (SR/ATR), high- and low-temperature water-gas shift (HTS/LTS) reactions and preferential oxidation (PROX) reactions, at different sectors of the reactor system for methane reforming as well as gas cleaning. The pre-exponential factors of the rate constants are adjusted to fit the experimental data and the resultant reactor model provides a reasonably good description of steady-state behaviour. Next, sensitivity analyses are performed to locate the optimum operating point of the fuel processor. The objective function of the optimization is fuel processor efficiency. The dominating optimization variables include: the ratios of water and oxygen to the hydrocarbon feed to the autothermal reforming reactor and the inlet temperature of the reactor. The results indicate that further improvement in fuel processor efficiency can be made with a reliable process model.

  17. Modelling Experimental Procedures for Manipulator Calibration

    DTIC Science & Technology

    1991-12-01

    AD-A245 603 NAVAL POSTGRADUATE SCHOOL Monterey, California RA D TIC THESIS F-a 1 . MODELLING EXPERIMENTAL PROCEDURES FOR MANIPULATOR CALIBRATION by...William E. Swayze December 1991 Thesis Advisor: Morris R. Driels Approved for public release; distribution is unlimited 92-03143 Uncl ass if ied...2 PERSONAL AUTHORS WILLI.TM E. SWAYZE 13a TYPE OF REPORT 13o TIME COVERED 14. DATE OF REPORT (Year, Mon.th Day) 15 PAGE COUNT Master’s Thesis FROM

  18. Graphical Models for Quasi-Experimental Designs

    ERIC Educational Resources Information Center

    Kim, Yongnam; Steiner, Peter M.; Hall, Courtney E.; Su, Dan

    2016-01-01

    Experimental and quasi-experimental designs play a central role in estimating cause-effect relationships in education, psychology, and many other fields of the social and behavioral sciences. This paper presents and discusses the causal graphs of experimental and quasi-experimental designs. For quasi-experimental designs the authors demonstrate…

  19. Fundamental Mistuning Model for Probabilistic Analysis Studied Experimentally

    NASA Technical Reports Server (NTRS)

    Griffin, Jerry H.

    2005-01-01

    The Fundamental Mistuning Model (FMM) is a reduced-order model for efficiently calculating the forced response of a mistuned bladed disk. FMM ID is a companion program that determines the mistuning in a particular rotor. Together, these methods provide a way to acquire mistuning data in a population of bladed disks and then simulate the forced response of the fleet. This process was tested experimentally at the NASA Glenn Research Center, and the simulated results were compared with laboratory measurements of a "fleet" of test rotors. The method was shown to work quite well. It was found that the accuracy of the results depends on two factors: (1) the quality of the statistical model used to characterize mistuning and (2) how sensitive the system is to errors in the statistical modeling.

  20. Modeling and experimentation of bone drilling forces.

    PubMed

    Lee, JuEun; Gozen, B Arda; Ozdoganlar, O Burak

    2012-04-05

    Prediction and control of bone drilling forces are critical to the success of many orthopaedic operations. Uncontrolled and large forces can cause drill-bit breakage, drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a mechanistic model for prediction of thrust forces and torques experienced during bone drilling. The model incorporates the radially varying drill-bit geometry and cutting conditions analytically, while capturing the material and friction properties empirically through a specific energy formulation. The forces from the chisel edge are modeled by considering the indentation process that occurs in the vicinity of the drill-bit axis. A procedure is outlined to calibrate the specific energies, where only a small number of calibration experiments are required for a wide range of drilling conditions and drill-bit geometry. The calibration parameters for the cortical portions of bovine tibia are identified through drilling tests. Subsequently, a series of validation tests are conducted under different feed rates and spindle speeds. The thrust forces and torques were observed to vary considerably between bones from different animals. The forces from the model were seen to match well with those from the experimentation within the inherent variations from the bone characteristics. The model can be used to select favorable drilling conditions, to assist in robotic surgeries, and to design optimal orthopaedic drill bits.

  1. Experimental Vortex Identification and Characterization in Reacting Jets in Crossflow

    NASA Astrophysics Data System (ADS)

    Nair, Vedanth; Emerson, Ben; Lieuwen, Timothy

    2016-11-01

    Reacting jets in crossflow (JICF) is an important canonical flow field in combustion problems where there is strong coupling between heat release and the evolution of vortical structures. We use vortex identification studies to experimentally characterize the spatial evolution of vortex dynamics in a reacting JICF. A vortex identification algorithm was designed to operate on particle image velocimetry (PIV) data and its raw Mie scattering images. The algorithm uses the velocity fields to obtain comparisons between the strain rate and the rotation rate. Additionally, the algorithm uses the raw Mie scattering data to identify regions where the high acceleration at vortex cores has centrifuged seeding particles out of the vortex cores. Together, these methods are used to estimate the vortex location and circulation. Analysis was done on 10 kHz PIV data from a reacting JICF experiment, and the resulting vortex trajectory, and growth rate statistics are presented. Results are compared between non-reacting JICF and reacting studies performed with different jet density ratios and different levels of acoustic forcing. We observed how the density ratio, the frequency and amplitude of the acoustic forcing affected the vortex characteristics and growth rate.

  2. Experimental characterization of nonlinear processes of whistler branch waves

    NASA Astrophysics Data System (ADS)

    Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.

    2016-05-01

    Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.

  3. Experimental High Temperature Characterization of a Magnetic Bearing for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Montague, Gerald; Jansen, Mark; Provenza, Andrew; Palazzolo, Alan; Jansen, Ralph; Ebihara, Ben

    2003-01-01

    Open loop, experimental force and power measurements of a radial, redundant-axis, magnetic bearing at temperatures to 1000 F (538 C) and rotor speeds to 15,000 RPM along with theoretical temperature and force models are presented in this paper. The experimentally measured force produced by a single C-core using 22A was 600 lb. (2.67 kN) at room temperature and 380 lb. (1.69 kN) at 1000 F (538 C). These values were compared with force predictions based on a 1D magnetic circuit analysis and a thermal analysis of gap growth as a function of temperature. Tests under rotating conditions showed that rotor speed has a negligible effect on the bearing s load capacity. One C-core required approximately 340 W of power to generate 190 lb. (8.45 kN) of magnetic force at 1000 F (538 C); however the magnetic air gap was much larger than at room temperature. The data presented is after the bearing had already operated six thermal cycles and eleven total (not consecutive) hours at 1000 F (538 C).

  4. Experimental Flow Characterization of a Flow Diverting Device

    NASA Astrophysics Data System (ADS)

    Sparrow, Eph; Chow, Ricky; Campbell, Gary; Divani, Afshin; Sheng, Jian

    2012-11-01

    Flow diverters, such as the Pipeline Embolization Device, are a new class of endovascular devices for the treatment of intracranial aneurysms. While clinical studies have demonstrated safety and efficacy, their impact on intra-aneurysmal flow is not confirmed experimentally. As such, optimization of the flow diversion behavior is not currently possible. A quasi-3D PIV technique was developed and applied in various glass models at Re = 275 and 550 to determine the changes to flow characteristics due to the deployment of a flow diverter across the aneurysm neck. Outcomes such as mean velocity, wall shear stress, and others metrics will be presented. Glass models with varying radii of curvature and aneurysm locations will be examined. Experiments were performed in a fully index-matched flow facility using ~10 μm diameter polystyrene particles doped with Rhodium 6G dye. The particles were illuminated with a 532nm laser sheet and observed with a CCD camera and a 592nm +/-43 nm bandpass filter. A quasi 3D flow field was reconstructed from multiple orthogonal planes (spaced 0.4mm apart) encompassing the entire glass model. Wall stresses were evaluated from the near-wall flow viscous stresses.

  5. Experimental characterization of extra-focal radiation in CT scanners

    NASA Astrophysics Data System (ADS)

    Whiting, Bruce R.; Porras-Chaverri, Mariela A.; Evans, Joshua D.; Williamson, Jeffrey F.

    2016-03-01

    Quantitative computed tomography (CT) applications based on statistical iterative reconstruction algorithms require accurate models of the CT acquisition process, with a key component being the x-ray fan beam intensity. We present a method to experimentally determine the extra-focal radiation profile incident on individual CT detectors. Using a tungsten cylinder as a knife edge, a super-sampled signal was created from sinogram data, which traced the "occlusion" of the x-ray source as seen by a detector. By differentiating this signal and correcting for finite detector size and motion blur, the effective source profile can be recovered. Extra-focal scatter was found to be on the order of 1-3 percent of the focal beam intensity, with lower relative magnitude at the isocenter and increasing towards the edge of the fan beam, with its profile becoming asymmetric at large angles. The implications for reconstruction algorithms and QCT applications will be discussed.

  6. An experimental study of human birth models

    NASA Astrophysics Data System (ADS)

    Baumer, Alexa; Gossmann, Roseanna; Fauci, Lisa J.; Leftwich, Megan C.

    2016-11-01

    The laboring uterus is a complex and dynamic fluid system. Relatively little is known about the fluid properties in this system. However, the two primary fluids of interest, amniotic fluid and vernix caseosa, likely play integral roles in the force transferred to the fetus during the final stages of parturition. This investigation probes the role of fluid in the force transfer during delivery by considering physical models that determine the role of various components of the full system. The first experimental model represents the fetus passing through the birth canal as concentric cylinders with a fluid filled gap. The rigid, inner cylinder moves through the highly flexible outer cylinder at a prescribed velocity. The geometry of the inner cylinder is varied by aspect ratio and length. A total of five different inner geometries are used to fully investigate the parameter space. As the inner cylinder moves through the outer cylinder, strain measurements are taken. These measurements are converted to force measurements as a function of time and position in the outer cylinder. The results of these experiments are compared with numerical results to form a more complete picture of force transfer. This model can be used as the foundation for predicting the force needed to deliver a fetus in the final stages of parturition. Additionally, more complex models, that incorporate uterine contraction forces, are being developed.

  7. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Canan; Shi, Yan; Joe, Pauline; Ghaffari, Roozbeh; Balooch, Guive; Usgaonkar, Karan; Gur, Onur; Tran, Phat L.; Crosby, Jessi R.; Meyer, Marcin; Su, Yewang; Chad Webb, R.; Tedesco, Andrew S.; Slepian, Marvin J.; Huang, Yonggang; Rogers, John A.

    2015-07-01

    Mechanical assessment of soft biological tissues and organs has broad relevance in clinical diagnosis and treatment of disease. Existing characterization methods are invasive, lack microscale spatial resolution, and are tailored only for specific regions of the body under quasi-static conditions. Here, we develop conformal and piezoelectric devices that enable in vivo measurements of soft tissue viscoelasticity in the near-surface regions of the epidermis. These systems achieve conformal contact with the underlying complex topography and texture of the targeted skin, as well as other organ surfaces, under both quasi-static and dynamic conditions. Experimental and theoretical characterization of the responses of piezoelectric actuator-sensor pairs laminated on a variety of soft biological tissues and organ systems in animal models provide information on the operation of the devices. Studies on human subjects establish the clinical significance of these devices for rapid and non-invasive characterization of skin mechanical properties.

  8. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics.

    PubMed

    Dagdeviren, Canan; Shi, Yan; Joe, Pauline; Ghaffari, Roozbeh; Balooch, Guive; Usgaonkar, Karan; Gur, Onur; Tran, Phat L; Crosby, Jessi R; Meyer, Marcin; Su, Yewang; Chad Webb, R; Tedesco, Andrew S; Slepian, Marvin J; Huang, Yonggang; Rogers, John A

    2015-07-01

    Mechanical assessment of soft biological tissues and organs has broad relevance in clinical diagnosis and treatment of disease. Existing characterization methods are invasive, lack microscale spatial resolution, and are tailored only for specific regions of the body under quasi-static conditions. Here, we develop conformal and piezoelectric devices that enable in vivo measurements of soft tissue viscoelasticity in the near-surface regions of the epidermis. These systems achieve conformal contact with the underlying complex topography and texture of the targeted skin, as well as other organ surfaces, under both quasi-static and dynamic conditions. Experimental and theoretical characterization of the responses of piezoelectric actuator-sensor pairs laminated on a variety of soft biological tissues and organ systems in animal models provide information on the operation of the devices. Studies on human subjects establish the clinical significance of these devices for rapid and non-invasive characterization of skin mechanical properties.

  9. Experimental realization of the topological Haldane model with ultracold fermions.

    PubMed

    Jotzu, Gregor; Messer, Michael; Desbuquois, Rémi; Lebrat, Martin; Uehlinger, Thomas; Greif, Daniel; Esslinger, Tilman

    2014-11-13

    The Haldane model on a honeycomb lattice is a paradigmatic example of a Hamiltonian featuring topologically distinct phases of matter. It describes a mechanism through which a quantum Hall effect can appear as an intrinsic property of a band structure, rather than being caused by an external magnetic field. Although physical implementation has been considered unlikely, the Haldane model has provided the conceptual basis for theoretical and experimental research exploring topological insulators and superconductors. Here we report the experimental realization of the Haldane model and the characterization of its topological band structure, using ultracold fermionic atoms in a periodically modulated optical honeycomb lattice. The Haldane model is based on breaking both time-reversal symmetry and inversion symmetry. To break time-reversal symmetry, we introduce complex next-nearest-neighbour tunnelling terms, which we induce through circular modulation of the lattice position. To break inversion symmetry, we create an energy offset between neighbouring sites. Breaking either of these symmetries opens a gap in the band structure, which we probe using momentum-resolved interband transitions. We explore the resulting Berry curvatures, which characterize the topology of the lowest band, by applying a constant force to the atoms and find orthogonal drifts analogous to a Hall current. The competition between the two broken symmetries gives rise to a transition between topologically distinct regimes. By identifying the vanishing gap at a single Dirac point, we map out this transition line experimentally and quantitatively compare it to calculations using Floquet theory without free parameters. We verify that our approach, which allows us to tune the topological properties dynamically, is suitable even for interacting fermionic systems. Furthermore, we propose a direct extension to realize spin-dependent topological Hamiltonians.

  10. Experimental realization of the topological Haldane model with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Jotzu, Gregor; Messer, Michael; Desbuquois, Rémi; Lebrat, Martin; Uehlinger, Thomas; Greif, Daniel; Esslinger, Tilman

    2014-11-01

    The Haldane model on a honeycomb lattice is a paradigmatic example of a Hamiltonian featuring topologically distinct phases of matter. It describes a mechanism through which a quantum Hall effect can appear as an intrinsic property of a band structure, rather than being caused by an external magnetic field. Although physical implementation has been considered unlikely, the Haldane model has provided the conceptual basis for theoretical and experimental research exploring topological insulators and superconductors. Here we report the experimental realization of the Haldane model and the characterization of its topological band structure, using ultracold fermionic atoms in a periodically modulated optical honeycomb lattice. The Haldane model is based on breaking both time-reversal symmetry and inversion symmetry. To break time-reversal symmetry, we introduce complex next-nearest-neighbour tunnelling terms, which we induce through circular modulation of the lattice position. To break inversion symmetry, we create an energy offset between neighbouring sites. Breaking either of these symmetries opens a gap in the band structure, which we probe using momentum-resolved interband transitions. We explore the resulting Berry curvatures, which characterize the topology of the lowest band, by applying a constant force to the atoms and find orthogonal drifts analogous to a Hall current. The competition between the two broken symmetries gives rise to a transition between topologically distinct regimes. By identifying the vanishing gap at a single Dirac point, we map out this transition line experimentally and quantitatively compare it to calculations using Floquet theory without free parameters. We verify that our approach, which allows us to tune the topological properties dynamically, is suitable even for interacting fermionic systems. Furthermore, we propose a direct extension to realize spin-dependent topological Hamiltonians.

  11. Experimental characterization of jet static forces impacting waste tank components

    SciTech Connect

    Bamberger, J.A.; Bates, J.M. ); Waters, E.D. )

    1990-06-01

    Westinghouse Hanford Company plans to install mixer pumps in doubleshell waste tanks to mobilize and suspend settled sludge to allow eventual retrieval for treatment and permanent storage. The mixer pumps produce high momentum, horizontally directed jets that impact and mobilize the sludge and mix it into slurry for removal. There is concern that the force of the jet may damage tank internal components in its path. Scaled experiments were conducted to characterize the velocity profiles of the floor jet and to quantify the drag coefficients and impact forces for three tank components: radiation dry well, air lift circulator, and steam coil. Jet impact forces were measured on the scaled models at a 4 to 1 range of hydraulically scaled flow rates and a scaled range of distances between discharge nozzle and test component. The test were designed to provide hydraulic similarity between test conditions and expected actual waste tank conditions by using equal Reynolds number the jet maximum velocity impacted the test component. Forces measured on the models were used to calculate expected forces on the full scale components. Correlations of force on the test article versus distance from the nozzle were derived for the radiation dry well and air lift circulator based on the velocity correlation and drag parameter. The force data were also used to derive equivalent drag parameters which accounted for component shape factors including variation of jet impact area on the test article with distance from the nozzle. 8 refs., 44 figs., 42 tabs.

  12. Experimentation and numerical modeling of forging induced bending (FIB) process

    NASA Astrophysics Data System (ADS)

    Naseem, S.; van den Boogaard, A. H.

    2016-10-01

    Accurate prediction of the final shape using numerical modeling has been a top priority in the field of sheet and bulk forming. Better shape prediction is the result of a better estimation of the physical stress and strain state. For experimental and numerical investigations of such estimations, simple benchmark processes are used. In this paper a benchmark process involving forging (flattening) of sheet metal between punch and die with negative clearance is proposed. The introduced material flow results in bending. Easy measurability of the angle of this bend makes this process suitable for validation purpose. Physical experiments are performed to characterize this bending angle due to flattening. Furthermore a numerical model is developed to capture this phenomenon. The main focus of this paper is the validation of the numerical model in terms of accurate prediction of the physical results.

  13. Colonic perianastomotic carcinogenesis in an experimental model

    PubMed Central

    Pérez-Holanda, Sergio; Rodrigo, Luis; Pinyol-Felis, Carme; Vinyas-Salas, Joan

    2008-01-01

    Background To examine the effect of anastomosis on experimental carcinogenesis in the colon of rats. Methods Forty-three 10-week-old male and female Sprague-Dawley rats were operated on by performing an end-to-side ileorectostomy. Group A:16 rats received no treatment. Group B: 27 rats received 18 subcutaneous injections weekly at a dose of 21 mg/kg wt of 1–2 dimethylhydrazine (DMH), from the eighth day after the intervention. Animals were sacrificed between 25–27 weeks. The number of tumours, their localization, size and microscopic characteristics were recorded. A paired chi-squared analysis was performed comparing tumoral induction in the perianastomotic zone with the rest of colon with faeces. Results No tumours appeared in the dimethylhydrazine-free group. The percentage tumoral area was greater in the perianastomotic zone compared to tumours which had developed in the rest of colon with faeces (p = 0.014). Conclusion We found a cocarcinogenic effect due to the creation of an anastomosis, when using an experimental model of colonic carcinogenesis induced by DMH in rats. PMID:18667092

  14. Prediction of catastrophes: an experimental model.

    PubMed

    Peters, Randall D; Le Berre, Martine; Pomeau, Yves

    2012-08-01

    Catastrophes of all kinds can be roughly defined as short-duration, large-amplitude events following and followed by long periods of "ripening." Major earthquakes surely belong to the class of "catastrophic" events. Because of the space-time scales involved, an experimental approach is often difficult, not to say impossible, however desirable it could be. Described in this article is a "laboratory" setup that yields data of a type that is amenable to theoretical methods of prediction. Observations are made of a critical slowing down in the noisy signal of a solder wire creeping under constant stress. This effect is shown to be a fair signal of the forthcoming catastrophe in two separate dynamical models. The first is an "abstract" model in which a time-dependent quantity drifts slowly but makes quick jumps from time to time. The second is a realistic physical model for the collective motion of dislocations (the Ananthakrishna set of equations for unstable creep). Hope thus exists that similar changes in the response to noise could forewarn catastrophes in other situations, where such precursor effects should manifest early enough.

  15. Numerical and experimental characterizations of low frequency MEMS AE sensors

    NASA Astrophysics Data System (ADS)

    Saboonchi, Hossain; Ozevin, Didem

    2013-04-01

    In this paper, new MEMS Acoustic Emission (AE) sensors are introduced. The transduction principle of the sensors is capacitance due to gap change. The sensors are numerically modeled using COMSOL Multiphysics software in order to estimate the resonant frequencies and capacitance values, and manufactured using MetalMUMPS process. The process includes thick metal layer (20 μm) made of nickel for freely vibration layer and polysilicon layer as the stationary layer. The metal layer provides a relatively heavy mass so that the spring constant can be designed high for low frequency sensor designs in order to increase the collapse voltage level (proportional to the stiffness), which increases the sensor sensitivity. An insulator layer is deposited between stationary layer and freely vibration layer, which significantly reduces the potential of stiction as a failure mode. As conventional AE sensors made of piezoelectric materials cannot be designed for low frequencies (<300 kHz) with miniature size, the MEMS sensor frequencies are tuned to 50 kHz and 200 kHz. The each sensor contained several parallel-connected cells with an overall size of approximately 250μm × 500 μm. The electromechanical characterizations are performed using high precision impedance analyzer and compared with the numerical results, which indicate a good fit. The initial mechanical characterization tests in atmospheric pressure are conducted using pencil lead break simulations. The proper sensor design reduces the squeeze film damping so that it does not require any vacuum packaging. The MEMS sensor responses are compared with similar frequency piezoelectric AE sensors.

  16. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity

    PubMed Central

    Thyparambil, Aby A.; Wei, Yang; Latour, Robert A.

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure–function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  17. Effects of anethole in nociception experimental models.

    PubMed

    Ritter, Alessandra Mileni Versuti; Ames, Franciele Queiroz; Otani, Fernando; de Oliveira, Rubia Maria Weffort; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2014-01-01

    This study investigated the antinociceptive activity of anethole (anethole 1-methoxy-4-benzene (1-propenyl)), major compound of the essential oil of star anise (Illicium verum), in different experimental models of nociception. The animals were pretreated with anethole (62.5, 125, 250, and 500 mg/kg) one hour before the experiments. To eliminate a possible sedative effect of anethole, the open field test was conducted. Anethole (62.5, 125, 250, and 500 mg/kg) showed an antinociceptive effect in the writhing model induced by acetic acid, in the second phase of the formalin test (125 and 250 mg/kg) in the test of glutamate (62.5, 125, and 250 mg/kg), and expresses pain induced by ACF (250 mg/kg). In contrast, anethole was not able to increase the latency time on the hot plate and decrease the number of flinches during the initial phase of the formalin test in any of the doses tested. It was also demonstrated that anethole has no association with sedative effects. Therefore, these data showed that anethole, at all used doses, has no sedative effect and has an antinociceptive effect. This effect may be due to a decrease in the production/release of inflammatory mediators.

  18. Effects of Anethole in Nociception Experimental Models

    PubMed Central

    Ritter, Alessandra Mileni Versuti; Ames, Franciele Queiroz; Otani, Fernando; de Oliveira, Rubia Maria Weffort; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2014-01-01

    This study investigated the antinociceptive activity of anethole (anethole 1-methoxy-4-benzene (1-propenyl)), major compound of the essential oil of star anise (Illicium verum), in different experimental models of nociception. The animals were pretreated with anethole (62.5, 125, 250, and 500 mg/kg) one hour before the experiments. To eliminate a possible sedative effect of anethole, the open field test was conducted. Anethole (62.5, 125, 250, and 500 mg/kg) showed an antinociceptive effect in the writhing model induced by acetic acid, in the second phase of the formalin test (125 and 250 mg/kg) in the test of glutamate (62.5, 125, and 250 mg/kg), and expresses pain induced by ACF (250 mg/kg). In contrast, anethole was not able to increase the latency time on the hot plate and decrease the number of flinches during the initial phase of the formalin test in any of the doses tested. It was also demonstrated that anethole has no association with sedative effects. Therefore, these data showed that anethole, at all used doses, has no sedative effect and has an antinociceptive effect. This effect may be due to a decrease in the production/release of inflammatory mediators. PMID:25506382

  19. ARCJET plasma modeling with experimental validation

    NASA Astrophysics Data System (ADS)

    Krier, Herman; Burton, Rodney L.; Megli, Thomas W.; Bufton, Scott A.; Tiliakos, Nicholas T.

    1994-09-01

    We report for the first time thermal non-equilibrium (separate electron and gas temperatures) numerical results for a hydrazine arcjet. All viscous flow properties are considered, assuming laminar axisymmetric flow. The model includes anode temperature distribution, and the electrical conductivity is coupled to the flow properties, allowing for a self-consistent current distribution. The numerical solution algorithm employs the compressible form of the PISO algorithm to solve the continuity and momentum equations. Run time is a few hours on a Convex C240 Mainframe with a 44 x 24 grid. Numerical results are presented for low power hydrogen and hydrazine thrusters. Preliminary results of quadruple electrostatic probe measurements at the exit plane of a 1 kW hydrazine arcjet, including ne and Te profiles, are presented. The quadruple probe model includes the effects of Te and Ne gradients across the probe volume to extract Te and Ne radial profiles from the asymmetric raw probe data. A time-of-flight electrostatic probe technique for measuring heavy particle velocities is described which, when coupled with the quadruple probe data can yield radial profiles of Ne(r), Te(r), Ti(r) and Ui(r). Experimental investigations of the energy deposition processes in the nozzle and constrictor regions of a 1-2 kill hydrazine arcjet are being performed. Electron number density and electron temperature measurements, using an array of flush-mounted Langmuir probes, will be made in the boundary layer.

  20. Experimental rabbit models of Chlamydia pneumoniae infection.

    PubMed Central

    Moazed, T. C.; Kuo, C.; Patton, D. L.; Grayston, J. T.; Campbell, L. A.

    1996-01-01

    Chlamydia pneumoniae (TWAR), a common cause of acute respiratory disease in humans, has recently been associated with coronary and aortic atherosclerosis. In this study, we evaluated rabbit models of chlamydial infection to investigate the pathogenesis of C. pneumoniae infection. New Zealand White rabbits were inoculated intranasally and intratracheally with C. pneumoniae, strain AR-39, and primary and repeated infection were assessed. After a single inoculation, lung pathology was characterized by a moderate self-resolving interstitial pneumonia with bronchiolitis of 21 days in duration. Chlamydial DNA was detected by polymerase chain reaction (PCR) intermittently in the upper respiratory tract and lung tissue through day 21 postinoculation, spleen tissue at day 14, and peripheral blood mononuclear cells at days 3 and 21. After repeated inoculations, chlamydial DNA was detected by PCR in the upper respiratory tract and lung tissue through day 42. Lung lesions consisted of multifocal interstitial mononuclear cell aggregates that persisted up to day 42. Watanabe heritable hyperlipidemic rabbits were less susceptible to C. pneumoniae infection. After multiple inoculations of Watanabe rabbits, C. pneumoniae was detected by PCR and/or immunocytochemistry until day 21. In conclusion, C. pneumoniae induced a moderate respiratory infection in these rabbit models. Images Figure 1 Figure 2 Figure 3 PMID:8579129

  1. Experimental characterization of collision avoidance in pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Parisi, Daniel R.; Negri, Pablo A.; Bruno, Luciana

    2016-08-01

    In the present paper, the avoidance behavior of pedestrians was characterized by controlled experiments. Several conflict situations were studied considering different flow rates and group sizes in crossing and head-on configurations. Pedestrians were recorded from above, and individual two-dimensional trajectories of their displacement were recovered after image processing. Lateral swaying amplitude and step lengths were measured for free pedestrians, obtaining similar values to the ones reported in the literature. Minimum avoidance distances were computed in two-pedestrian experiments. In the case of one pedestrian dodging an arrested one, the avoidance distance did not depend on the relative orientation of the still pedestrian with respect to the direction of motion of the first. When both pedestrians were moving, the avoidance distance in a perpendicular encounter was longer than the one obtained during a head-on approach. It was found that the mean curvature of the trajectories was linearly anticorrelated with the mean speed. Furthermore, two common avoidance maneuvers, stopping and steering, were defined from the analysis of the acceleration and curvature in single trajectories. Interestingly, it was more probable to observe steering events than stopping ones, also the probability of simultaneous steering and stopping occurrences was negligible. The results obtained in this paper can be used to validate and calibrate pedestrian dynamics models.

  2. Experimental characterization of collision avoidance in pedestrian dynamics.

    PubMed

    Parisi, Daniel R; Negri, Pablo A; Bruno, Luciana

    2016-08-01

    In the present paper, the avoidance behavior of pedestrians was characterized by controlled experiments. Several conflict situations were studied considering different flow rates and group sizes in crossing and head-on configurations. Pedestrians were recorded from above, and individual two-dimensional trajectories of their displacement were recovered after image processing. Lateral swaying amplitude and step lengths were measured for free pedestrians, obtaining similar values to the ones reported in the literature. Minimum avoidance distances were computed in two-pedestrian experiments. In the case of one pedestrian dodging an arrested one, the avoidance distance did not depend on the relative orientation of the still pedestrian with respect to the direction of motion of the first. When both pedestrians were moving, the avoidance distance in a perpendicular encounter was longer than the one obtained during a head-on approach. It was found that the mean curvature of the trajectories was linearly anticorrelated with the mean speed. Furthermore, two common avoidance maneuvers, stopping and steering, were defined from the analysis of the acceleration and curvature in single trajectories. Interestingly, it was more probable to observe steering events than stopping ones, also the probability of simultaneous steering and stopping occurrences was negligible. The results obtained in this paper can be used to validate and calibrate pedestrian dynamics models.

  3. Experimental models for Murray’s law

    NASA Astrophysics Data System (ADS)

    Akita, Dai; Kunita, Itsuki; Fricker, Mark D.; Kuroda, Shigeru; Sato, Katsuhiko; Nakagaki, Toshiyuki

    2017-01-01

    Transport networks are ubiquitous in multicellular organisms and include leaf veins, fungal mycelia and blood vessels. While transport of materials and signals through the network plays a crucial role in maintaining the living system, the transport capacity of the network can best be understood in terms of hydrodynamics. We report here that plasmodium from the large, single-celled amoeboid Physarum was able to construct a hydrodynamically optimized vein-network when evacuating biomass from confined arenas of various shapes through a narrow exit. Increasingly thick veins developed towards the exit, and the network spanned the arena via repetitive bifurcations to give a branching tree. The Hausdorff distance from all parts of the plasmodium to the vein network was kept low, whilst the hydrodynamic conductivity from distal parts of the network to the exit was equivalent, irrespective of the arena shape. This combination of spatial patterning and differential vein thickening served to evacuate biomass at an equivalent rate across the entire arena. The scaling relationship at the vein branches was determined experimentally to be 2.53-3.29, consistent with predictions from Murray’s law. Furthermore, we show that mathematical models for self-organised, adaptive transport in Physarum simulate the experimental network organisation well if the scaling coefficient of the current-reinforcement rule is set to 3. In simulations, this resulted in rapid development of an optimal network that minimised the combined volume and frictional energy in comparison with other scaling coefficients. This would predict that the boundary shear forces within each vein are constant throughout the network, and would be consistent with a feedback mechanism based on a sensing a threshold shear at the vein wall.

  4. Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Lee, Gilbert; Santiago, Jaime

    2015-06-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.

  5. Experimental, Numerical and Analytical Characterization of Slosh Dynamics Applied to In-Space Propellant Storage, Management and Transfer

    NASA Technical Reports Server (NTRS)

    Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.

    2015-01-01

    Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.

  6. Experimental, Numerical and Observational Models in Geodynamics

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, Carolina

    2015-04-01

    Geodynamics, the study of the forces that drives all Earth's processes is a rich field that deeply connects all aspects of geological and geophysical studies, from surface observations of the sedimentary record to knowledge of deep Earth structure from mineral physics and seismology. In the context of the solid Earth geodynamics primarily focuses on lithosphere and mantle dynamics, while core dynamics is the purview of geomagnetism. I will focus this talk on the former, its historical context and future developments. We have known the equations of motion and mechanics for ~200 years, but only relatively recently can they be solved with enough accuracy and resolution to do geology. We have made great strides since Arthur Holmes conceptual models of mantle flow, thanks to computational and experimental advances. We can know model plate boundaries globally with resolutions in the order of a few kms and image temperature and velocity simultaneously in the laboratory in 3D and non-intrusively. We have also learned a great deal about the physics of the Earth, from composition to rheology. New theories on plate boundary rheology are paving the way for self-consistent generation of plates from mantle flow. New computational methods allow for adaptive meshing, fabric development and history, so we can study deformation and compare directly to geological observations in mountain ranges and continental rifts. We can use ever more sophisticated images of mantle structure from seismic and other geophysical data to probe the relationship between melting, flow and dynamical processes. We can reconstruct landscapes and relief, plate motions and sedimentation and ask how much the mantle has contributed to drainage reversal, sedimentation and climate change. The future of the field is ever brighter.

  7. Experimental model to study sedimentary kidney stones.

    PubMed

    Grases, F; Llobera, A

    1998-01-01

    An experimental model to reproduce, to some extent, the conditions prevailing during the formation of the so-called sedimentary urinary stones, was developed. The results obtained demonstrated that in the absence of organic matter no calcium phosphate crystals were deposited in cavities with scarce liquid renovation. Nevertheless, in such case a regular hydroxyapatite layer was developed on the walls around the cavity. The presence of crystallization inhibitors cannot stop indefinitely the crystal development. Therefore, phytate manifested important inhibitory effects in concentrations normally found in urine (0.77-1.54 x 10(-6) mol/l), whereas citrate only manifested important inhibitory effects when found at high urinary concentrations (2.64 x 10(-3) mol/l). When mucin (a glycoprotein) was present in the urine, a clear deposit of calcified organic material was formed. The organic matter appeared mixed with the spherulites of hydroxyapatite, this demonstrating the capacity of the glycoprotein agglomerates to act as heterogeneous nucleants of calcium salts and their important role in the formation of sedimentary stones. The structural features of the obtained in vitro deposits were compared with the fine structure of human sedimentary phosphate calculi. Scanning electron microscopy images demonstrated a good correspondence between in vitro experiments and in vivo observations.

  8. Modeling and experimental vibration analysis of nanomechanical cantilever active probes

    NASA Astrophysics Data System (ADS)

    Salehi-Khojin, Amin; Bashash, Saeid; Jalili, Nader

    2008-08-01

    Nanomechanical cantilever (NMC) active probes have recently received increased attention in a variety of nanoscale sensing and measurement applications. Current modeling practices call for a uniform cantilever beam without considering the intentional jump discontinuities associated with the piezoelectric layer attachment and the NMC cross-sectional step. This paper presents a comprehensive modeling framework for modal characterization and dynamic response analysis of NMC active probes with geometrical discontinuities. The entire length of the NMC is divided into three segments of uniform beams followed by applying appropriate continuity conditions. The characteristics matrix equation is then used to solve for system natural frequencies and mode shapes. Using an equivalent electromechanical moment of a piezoelectric layer, forced motion analysis of the system is carried out. An experimental setup consisting of a commercial NMC active probe from Veeco and a state-of-the-art microsystem analyzer, the MSA-400 from Polytec, is developed to verify the theoretical developments proposed here. Using a parameter estimation technique based on minimizing the modeling error, optimal values of system parameters are identified. Mode shapes and the modal frequency response of the system for the first three modes determined from the proposed model are compared with those obtained from the experiment and commonly used theory for uniform beams. Results indicate that the uniform beam model fails to accurately predict the actual system response, especially in multiple-mode operation, while the proposed discontinuous beam model demonstrates good agreement with the experimental data. Such detailed and accurate modeling framework can lead to significant enhancement in the sensitivity of piezoelectric-based NMC sensors for use in variety of sensing and imaging applications.

  9. Thermomechanical characterization and modeling for TSV structures

    SciTech Connect

    Jiang, Tengfei; Zhao, Qiu; Im, Jay; Ho, Paul S.; Ryu, Suk-Kyu; Huang, Rui

    2014-06-19

    Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.

  10. The Las Cruces Trench Site: Characterization, Experimental Results, and One-Dimensional Flow Predictions

    NASA Astrophysics Data System (ADS)

    Wierenga, P. J.; Hills, R. G.; Hudson, D. B.

    1991-10-01

    A comprehensive field trench study was conducted in a semiarid area of southern New Mexico to provide data to test deterministic and stochastic models of vadose zone flow and transport. A 4 m by 9 m area was irrigated with water containing a tracer using a carefully controlled drip irrigation system. The area was heavily instrumented with tensiometers and neutron probe access tubes to monitor water movement and with suction tubes to monitor solute transport. Approximately 600 disturbed and 600 core samples of soil were taken to support deterministic and stochastic characterization of the soil water hydraulic parameters. The core sample-based saturated hydraulic conductivities ranged from 1.4 to 6731 cm/d with a mean of 533 cm/d and a standard deviation of 647 cm/d, indicating significant spatial variability. However, visual observation of the wetting front on the trench wall shows no indication of preferential flow or water flow through visible root channels and cracks. The tensiometer readings and the neutron probe measurements also suggest that the wetting front moves in a fairly homogeneous fashion despite the significant spatial variability of the saturated hydraulic conductivity. In addition to the description of the experiment and the presentation of the experimental results, predictions of simple one-dimensional uniform and layered soil deterministic models for infiltration are presented and compared to field observations. These models are presented here to provide a base case against which more sophisticated deterministic and stochastic models can be compared in the future. The results indicate that the simple models give adequate predictions of the overall movement of the wetting front through the soil during infiltration. However, the models give poor predictions of point values for water content due to the spatial variability of the soil. Comparisons between the one-dimensional infiltration model predictions and field observations show that the use of

  11. Peripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization.

    PubMed

    Girard, Michaël J A; Downs, J Crawford; Bottlang, Michael; Burgoyne, Claude F; Suh, J-K Francis

    2009-05-01

    The posterior sclera likely plays an important role in the development of glaucoma, and accurate characterization of its mechanical properties is needed to understand its impact on the more delicate optic nerve head--the primary site of damage in the disease. The posterior scleral shells from both eyes of one rhesus monkey were individually mounted on a custom-built pressurization apparatus. Intraocular pressure was incrementally increased from 5 mm Hg to 45 mm Hg, and the 3D displacements were measured using electronic speckle pattern interferometry. Finite element meshes of each posterior scleral shell were reconstructed from data generated by a 3D digitizer arm (shape) and a 20 MHz ultrasound transducer (thickness). An anisotropic hyperelastic constitutive model described in a companion paper (Girard, Downs, Burgoyne, and Suh, 2009, "Peripapillary and Posterior Scleral Mechanics--Part I: Development of an Anisotropic Hyperelastic Constitutive Model," ASME J. Biomech. Eng., 131, p. 051011), which includes stretch-induced stiffening and multidirectional alignment of the collagen fibers, was applied to each reconstructed mesh. Surface node displacements of each model were fitted to the experimental displacements using an inverse finite element method, which estimated a unique set of 13 model parameters. The predictions of the proposed constitutive model matched the 3D experimental displacements well. In both eyes, the tangent modulus increased dramatically with IOP, which indicates that the sclera is mechanically nonlinear. The sclera adjacent to the optic nerve head, known as the peripapillary sclera, was thickest and exhibited the lowest tangent modulus, which might have contributed to the uniform distribution of the structural stiffness for each entire scleral shell. Posterior scleral deformation following acute IOP elevations appears to be nonlinear and governed by the underlying scleral collagen microstructure as predicted by finite element modeling. The

  12. Experimental & Numerical Modeling of Non-combusting Model Firebrands' Transport

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel

    2016-11-01

    Fire spotting is one of the major mechanisms of wildfire spread. Three phases of this phenomenon are firebrand formation and break-off from burning vegetation, lofting and downwind transport of firebrands through the velocity field of the wildfire, and spot fire ignition upon landing. The lofting and downwind transport phase is modeled by conducting large-scale wind tunnel experiments. Non-combusting rod-like model firebrands with different aspect ratios are released within the velocity field of a jet in a boundary layer cross-flow that approximates the wildfire velocity field. Characteristics of the firebrand dispersion are quantified by capturing the full trajectory of the model firebrands using the developed image processing algorithm. The results show that the lofting height has a direct impact on the maximum travel distance of the model firebrands. Also, the experimental results are utilized for validation of a highly scalable coupled stochastic & parametric firebrand flight model that, couples the LES-resolved velocity field of a jet-in-nonuniform-cross-flow (JINCF) with a 3D fully deterministic 6-degrees-of-freedom debris transport model. The validation results show that the developed numerical model is capable of estimating average statistics of the firebrands' flight. Authors would like to thank support of the National Science Foundation under Grant No. 1200560. Also, the presenter (Ali Tohid) would like to thank Dr. Michael Gollner from the University of Maryland College Park for the conference participation support.

  13. Dynamic characterization and modeling of potting materials for electronics assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant S.; Lee, Gilbert F.; Santiago, Jaime R.

    2017-01-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling, which in turn needs both static and dynamic characterization of individual electronic components and encapsulation material to generate reliable material parameters for a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, difficulty arises in capturing one of the critical features characteristic of the loading environment in a high velocity impact: multiple loading events coupled with multi-axial stress states. Hence, potting materials need to be characterized well to understand its damping capacity at different frequencies and strain rates. An encapsulation scheme to protect electronic boards consists of multiple layers of filled as well as unfilled polymeric materials like Sylgard 184 and Trigger bond Epoxy # 20-3001. A combination of experiments conducted for characterization of materials used Split Hopkinson Pressure Bar (SHPB), and dynamic material analyzer (DMA). For material which behaves in an ideal manner, a master curve can be fitted to Williams-Landel-Ferry (WLF) model. To verify the applicability of WLF model, a new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor with experimental incremental shift factor. Deviations can be readily observed by comparison of experimental data with the model fit to determine if model parameters reflect the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests can readily indicate deviations from experimental high strain rate data. Experimental results for different materials used for mitigating impact, and ways to combine data from DMA and Hopkinson bar together with modeling refinements are presented.

  14. Biomass thermochemical gasification: Experimental studies and modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  15. Characterization of animal models for primary sclerosing cholangitis (PSC).

    PubMed

    Fickert, Peter; Pollheimer, Marion J; Beuers, Ulrich; Lackner, Carolin; Hirschfield, Gideon; Housset, Chantal; Keitel, Verena; Schramm, Christoph; Marschall, Hanns-Ulrich; Karlsen, Tom H; Melum, Espen; Kaser, Arthur; Eksteen, Bertus; Strazzabosco, Mario; Manns, Michael; Trauner, Michael

    2014-06-01

    Primary sclerosing cholangitis (PSC) is a chronic cholangiopathy characterized by biliary fibrosis, development of cholestasis and end stage liver disease, high risk of malignancy, and frequent need for liver transplantation. The poor understanding of its pathogenesis is also reflected in the lack of effective medical treatment. Well-characterized animal models are utterly needed to develop novel pathogenetic concepts and study new treatment strategies. Currently there is no consensus on how to evaluate and characterize potential PSC models, which makes direct comparison of experimental results and effective exchange of study material between research groups difficult. The International Primary Sclerosing Cholangitis Study Group (IPSCSG) has therefore summarized these key issues in a position paper proposing standard requirements for the study of animal models of PSC.

  16. Experimental characterization of edge force on the Crookes radiometer

    SciTech Connect

    Ventura, Austin L.; Ketsdever, Andrew D.; Gimelshein, Natalia E.; Gimelshein, Sergey F.

    2014-12-09

    The contribution of edge force on the Crookes radiometer is experimentally investigated with three vane geometries. This work examines increasing the force per unit weight of a radiometer vane for applications such as near-space propulsion by increasing the vane’s perimeter while decreasing the total surface area of the vane by means of machined holes in the vanes. Experimental results are given for three vane geometries. These results indicate that although force to vane weight ratios can be improved, the maximum force is achieved by a vane geometry that contains no hole features.

  17. Experimental characterization of West African Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four West African strains and one South African strain of virulent Newcastle disease virus (NDV) were characterized through a two-phase experiment. Strains investigated were Burkina Faso/2415-580/2008, Nigeria/228-7/2006, Niger/1377/2006, and Goose/South Africa/08100426/2008. Phylogenetic analysis s...

  18. Tupaia Belangeri as an Experimental Animal Model for Viral Infection

    PubMed Central

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2014-01-01

    Tupaias, or tree shrews, are small mammals that are similar in appearance to squirrels. The morphological and behavioral characteristics of the group have been extensively characterized, and despite previously being classified as primates, recent studies have placed the group in its own family, the Tupaiidae. Genomic analysis has revealed that the genus Tupaia is closer to humans than it is to rodents. In addition, tupaias are susceptible to hepatitis B virus and hepatitis C virus. The only other experimental animal that has been demonstrated to be sensitive to both of these viruses is the chimpanzee, but restrictions on animal testing have meant that experiments using chimpanzees have become almost impossible. Consequently, the development of the tupaia for use as an animal infection model could become a powerful tool for hepatitis virus research and in preclinical studies on drug development. PMID:25048261

  19. Experimental investigation of an aeroacoustic feedback mechanism on a two-dimensional side mirror model

    NASA Astrophysics Data System (ADS)

    Werner, M. J.; Würz, W.; Krämer, E.

    2017-01-01

    The tonal self-noise emission of a two-dimensional blunt-body side mirror model is investigated experimentally in order to characterize the underlying source mechanism. The two-dimensional side mirror design is closely related to an automotive side mirror model1

  20. Experimentally Induced Mammalian Models of Glaucoma

    PubMed Central

    Yoshitomi, Takeshi; Zorumski, Charles F.; Izumi, Yukitoshi

    2015-01-01

    A wide variety of animal models have been used to study glaucoma. Although these models provide valuable information about the disease, there is still no ideal model for studying glaucoma due to its complex pathogenesis. Animal models for glaucoma are pivotal for clarifying glaucoma etiology and for developing novel therapeutic strategies to halt disease progression. In this review paper, we summarize some of the major findings obtained in various glaucoma models and examine the strengths and limitations of these models. PMID:26064891

  1. Topological Characterization of Extended Quantum Ising Models.

    PubMed

    Zhang, G; Song, Z

    2015-10-23

    We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model and anisotropic XY model, can be characterized as the loops in a two-dimensional auxiliary space. The transverse-field Ising model corresponds to a circle and the XY model corresponds to an ellipse, while other models yield cardioid, limacon, hypocycloid, and Lissajous curves etc. It is shown that the variation of the ground state energy density, which is a function of the loop, experiences a nonanalytical point when the winding number of the corresponding loop changes. The winding number can serve as a topological quantum number of the quantum phases in the extended quantum Ising model, which sheds some light upon the relation between quantum phase transition and the geometrical order parameter characterizing the phase diagram.

  2. Experimental Method of Generating Electromagnetic Gaussian Schell-model Beams

    DTIC Science & Technology

    2015-03-26

    EXPERIMENTAL METHOD OF GENERATING ELECTROMAGNETIC GAUSSIAN SCHELL-MODEL BEAMS THESIS Matthew J. Gridley, Captain, USAF AFIT-ENG-MS-15-M-058...not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-058 EXPERIMENTAL METHOD OF GENERATING ELECTROMAGNETIC GAUSSIAN SCHELL-MODEL...UNLIMITED AFIT-ENG-MS-15-M-058 EXPERIMENTAL METHOD OF GENERATING ELECTROMAGNETIC GAUSSIAN SCHELL-MODEL BEAMS Matthew J. Gridley, B.S.E.E. Captain, USAF

  3. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    PubMed

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-09-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  4. Toxin-Induced Experimental Models of Learning and Memory Impairment

    PubMed Central

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-01-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson’s disease dementia and Alzheimer’s disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders. PMID:27598124

  5. Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers

    DTIC Science & Technology

    2006-07-27

    in the first 20 /z, it may play a role for longer times. In order to estimate this, a modified form of the Johnson - Cook model was used instead of Eq...spray process induces fine-scale porosity that underlies the compressibility and inelasticity. The Tait model is not suitable for such porous materials ...and hence a fit of this model was not attempted. In terms of the shear response, there is qualitatively very little difference between the two materials

  6. A new cubic phantom for PET/CT dosimetry: Experimental and Monte Carlo characterization

    SciTech Connect

    Belinato, Walmir; Silva, Rogerio M.V.; Souza, Divanizia N.; Santos, William S.; Caldas, Linda V.E.

    2015-07-01

    In recent years, positron emission tomography (PET) associated with multidetector computed tomography (MDCT) has become a diagnostic technique widely disseminated to evaluate various malignant tumors and other diseases. However, during PET/CT examinations, the doses of ionizing radiation experienced by the internal organs of patients may be substantial. To study the doses involved in PET/CT procedures, a new cubic phantom of overlapping acrylic plates was developed and characterized. This phantom has a deposit for the placement of the fluorine-18 fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) solution. There are also small holes near the faces for the insertion of optically stimulated luminescence dosimeters (OSLD). The holes for OSLD are positioned at different distances from the {sup 18}F-FDG deposit. The experimental results were obtained in two PET/CT devices operating with different parameters. Differences in the absorbed doses were observed in OSLD measurements due to the non-orthogonal positioning of the detectors inside the phantom. This phantom was also evaluated using Monte Carlo simulations, with the MCNPX code. The phantom and the geometrical characteristics of the equipment were carefully modeled in the MCNPX code, in order to develop a new methodology form comparison of experimental and simulated results, as well as to allow the characterization of PET/CT equipments in Monte Carlo simulations. All results showed good agreement, proving that this new phantom may be applied for these experiments. (authors)

  7. Analytical and experimental studies of leak location and environment characterization for the international space station

    NASA Astrophysics Data System (ADS)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; de Garcia, Kristina Montt; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-12-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbm//yr. to about 1 lbm/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  8. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb-mass/yr. to about 1 lb-mass/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  9. Analytical and experimental studies of leak location and environment characterization for the international space station

    SciTech Connect

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin; Abel, Joshua; Hawk, Doug; Autrey, David; Glenn, Jodie; Bond, Tim; Buffington, Jesse; Cheng, Edward; Ma, Jonathan; Rossetti, Dino; DeLatte, Danielle; Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Tull, Kimathi; Warren, Eric

    2014-12-09

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH{sub 3} coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb{sub m/}/yr. to about 1 lb{sub m}/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  10. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.; Abel, Joshua C.; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; de Garcia, Kristina Montt; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system.An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (directionality).The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbmyr. to about 1 lbmday. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ramwake flows and structural shadowing within low Earth orbit.

  11. Experimental characterization of variable output refractive beamshapers using freeform elements

    NASA Astrophysics Data System (ADS)

    Shultz, Jason A.; Smilie, Paul J.; Dutterer, Brian S.; Davies, Matthew A.; Suleski, Thomas J.

    2014-09-01

    We present experimental results from variable output refractive beam shapers based on freeform optical surfaces. Two freeform elements in close proximity comprise a beam shaper that maps a circular Gaussian input to a circular `flat-top' output. Different lateral relative shifts between the elements result in a varying output diameter while maintaining the uniform irradiance distribution. We fabricated the beam shaping elements in PMMA using multi-axis milling on a Moore Nanotech 350FG diamond machining center and tested with a 632.8 nm Gaussian input. Initial optical testing confirmed both the predicted beam shaping and variable functionality, but with poor output uniformity. The effects of surface finish on optical performance were investigated using LightTrans VirtualLabTM to perform physical optics simulations of the milled freeform surfaces. These simulations provided an optimization path for determining machining parameters to improve the output uniformity of the beam shaping elements. A second variable beam shaper based on a super-Gaussian output was designed and fabricated using the newly determined machining parameters. Experimental test results from the second beam shaper showed outputs with significantly higher quality, but also suggest additional areas of study for further improvements in uniformity.

  12. Experimental modeling of cavitation occurring at vibration

    NASA Astrophysics Data System (ADS)

    Gaynutdinova, D. F.; Modorskii, V. Ya.; Shevelev, N. A.

    2016-10-01

    The article investigates the problem of effects in two-stage centrifugal pumps due to hydro-gas-dynamic processes resulting from vibrations of design elements which are difficult to forecast. Numerical and experimental simulation of this problem was conducted. The experiment discovered cavitation effects brought about by the vibrations. The area of cavitations was plotted. Dependence of cavitation bubble concentration on amplitude and frequency of the vibrations was found.

  13. Magnetic dynamics of ferrofluids: mathematical models and experimental investigations

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Tu, Liang; Su, Diqing; Wang, Jian-Ping

    2017-03-01

    Magnetite ferrofluids with unique magnetic behaviors are attractive for biomedical applications such as magnetic fluid hyperthermia and magnetic particle imaging. A precise nanoparticle-specific characterization by theoretical models and experiments to predict dynamics of ferrofluids and optimize their behaviors for emerging biomedical applications is necessary. In this paper, combining experiments and modeling, we have uncovered interesting magnetic dynamics of nanoparticles that are dependent on magnetic field strength, polymer coating of nanoparticles, viscosity of ferrofluid, and dipolar interactions. It is concluded that either by changing the magnitude of magnetic field or the concentrations of nanoparticles, we are able to convert the dominating relaxation process of magnetic nanoparticles from Néel to Brownian, and vice versa. Polymer coatings on nanoparticles and viscosity of ferrofluids are demonstrated to have varying degrees of influence on effective relaxation times of nanoparticles with different sizes and under different field strengths. Our theoretical models are used to predict the magnetic response of ferrofluid consisting of 35 nm magnetite nanoparticles under alternating magnetic fields, and it turns out that our theoretical data fits well with the experimental data.

  14. Experimental characterization of yield induced by surface flaws.

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Davidson, D. L.

    1972-01-01

    Recent experimental findings related to the surface deformation and plastic zones associated with a deep surface flaw in Mode I tension loading are surveyed. Results of front and back surface dimpling, as determined by replica profiling and interferometry, are presented. The stresses required to initiate back surface dimpling are inversely related both to the crack depth and to the crack length. The plastic zone at the crack tip is described using results obtained from Fe-3Si specimens which have been studied with the electrolytic etching technique. It is shown that the plastic zone may be identified with a state of plane strain around the entire crack perimeter, except for the very thin layer near the crack tips on the front surface, where the deformation state approximates plane stress.

  15. Experimental Dynamic Characterization of a Reconfigurable Adaptive Precision Truss

    NASA Technical Reports Server (NTRS)

    Hinkle, J. D.; Peterson, L. D.

    1994-01-01

    The dynamic behavior of a reconfigurable adaptive truss structure with non-linear joints is investigated. The objective is to experimentally examine the effects of the local non-linearities on the global dynamics of the structure. Amplitude changes in the frequency response functions are measured at micron levels of motion. The amplitude and frequency variations of a number of modes indicate a non-linear Coulomb friction response. Hysteretic bifurcation behavior is also measured at an amplitude approximately equal to the specified free-play in the joint. Under the 1 g pre-load, however, the non-linearity was dominantly characteristic of Coulomb friction with little evidence of free-play stiffening.

  16. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    SciTech Connect

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.

    2014-02-18

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  17. Experimental characterization of materials subjected to combined loading conditions

    NASA Astrophysics Data System (ADS)

    Andrusca, L.; Goanta, V.; Barsanescu, P. D.; Savin, A.

    2016-08-01

    In real life experience, machine and structure elements are subjected to complex loading history. Combined loading testes facilitate the understanding of materials behavior subjected to multiaxial stress state. In this paper are presented experimental investigations used to evaluate the influence of an initial type of loading on material properties which will be subsequently tested through another load type. Initial tests are tension tests, by different elongations, and subsequent tests are torsion tests, until break. Circular cross section specimens will be used in these tests. Tension tests have been performed on a universal testing machine. Subsequently torsion tests have been conducted through an attachable device. It was found that the energy associated with plastic deformation obtained by subsequent torsional tests has the dominant influence on the material total plastic energy, although initial test was tension.

  18. Experimental characterization of a binary actuated parallel manipulator

    NASA Astrophysics Data System (ADS)

    Giuseppe, Carbone

    2016-05-01

    This paper describes the BAPAMAN (Binary Actuated Parallel MANipulator) series of parallel manipulators that has been conceived at Laboratory of Robotics and Mechatronics (LARM). Basic common characteristics of BAPAMAN series are described. In particular, it is outlined the use of a reduced number of active degrees of freedom, the use of design solutions with flexural joints and Shape Memory Alloy (SMA) actuators for achieving miniaturization, cost reduction and easy operation features. Given the peculiarities of BAPAMAN architecture, specific experimental tests have been proposed and carried out with the aim to validate the proposed design and to evaluate the practical operation performance and the characteristics of a built prototype, in particular, in terms of operation and workspace characteristics.

  19. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    NASA Astrophysics Data System (ADS)

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.

    2014-02-01

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  20. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  1. Computational Fluid Dynamics and Experimental Characterization of the Pediatric Pump-Lung.

    PubMed

    Wu, Zhongjun J; Gellman, Barry; Zhang, Tao; Taskin, M Ertan; Dasse, Kurt A; Griffith, Bartley P

    2011-12-01

    The pediatric pump-lung (PediPL) is a miniaturized integrated pediatric pump-oxygenator specifically designed for cardiac or cardiopulmonary support for patients weighing 5-20 kg to allow mobility and extended use for 30 days. The PediPL incorporates a magnetically levitated impeller with uniquely configured hollow fiber membranes into a single unit capable of performing both pumping and gas exchange. A combined computational and experimental study was conducted to characterize the functional and hemocompatibility performances of this newly developed device. The three-dimensional flow features of the PediPL and its hemolytic characteristics were analyzed using computational fluid dynamics based modeling. The oxygen exchange was modeled based on a convection-diffusion-reaction process. The hollow fiber membranes were modeled as a porous medium which incorporates the flow resistance in the bundle by an added momentum sink term. The pumping function was evaluated for the required range of operating conditions (0.5-2.5 L/min and 1000-3000 rpm). The blood damage potentials were further analyzed in terms of flow and shear stress fields, and the calculations of hemolysis index. In parallel, the hydraulic pump performance, oxygen transfer and hemolysis level were quantified experimentally. Based on the computational and experimental results, the PediPL device is found to be functional to provide necessary oxygen transfer and blood pumping requirements for the pediatric patients. Smooth blood flow characteristics and low blood damage potential were observed in the entire device. The in-vitro tests further confirmed that the PediPL can provide adequate blood pumping and oxygen transfer over the range of intended operating conditions with acceptable hemolytic performance. The rated flow rate for oxygenation is 2.5 L/min. The normalized index of hemolysis is 0.065 g/100L at 1.0 L/min and 3000 rpm.

  2. Experimental characterization of wingtip vortices in the near field using smoke flow visualizations

    NASA Astrophysics Data System (ADS)

    Serrano-Aguilera, J. J.; García-Ortiz, J. Hermenegildo; Gallardo-Claros, A.; Parras, L.; del Pino, C.

    2016-08-01

    In order to predict the axial development of the wingtip vortices strength, an accurate theoretical model is required. Several experimental techniques have been used to that end, e.g. PIV or hot-wire anemometry, but they imply a significant cost and effort. For this reason, we have performed experiments using the smoke-wire technique to visualize smoke streaks in six planes perpendicular to the main stream flow direction. Using this visualization technique, we obtained quantitative information regarding the vortex velocity field by means of Batchelor's model for two chord-based Reynolds numbers, Re_c=3.33× 10^4 and 10^5. Therefore, this theoretical vortex model has been introduced in the integration of ordinary differential equations which describe the temporal evolution of streak lines as function of two parameters: the swirl number, S, and the virtual axial origin, overline{z_0}. We have applied two different procedures to minimize the distance between experimental and theoretical flow patterns: individual curve fitting at six different control planes in the streamwise direction and the global curve fitting which corresponds to all the control planes simultaneously. Both sets of results have been compared with those provided by del Pino et al. (Phys Fluids 23(013):602, 2011b. doi: 10.1063/1.3537791), finding good agreement. Finally, we have observed a weak influence of the Reynolds number on the values S and overline{z_0} at low-to-moderate Re_c. This experimental technique is proposed as a low cost alternative to characterize wingtip vortices based on flow visualizations.

  3. A CWT-based methodology for piston slap experimental characterization

    NASA Astrophysics Data System (ADS)

    Buzzoni, M.; Mucchi, E.; Dalpiaz, G.

    2017-03-01

    Noise and vibration control in mechanical systems has become ever more significant for automotive industry where the comfort of the passenger compartment represents a challenging issue for car manufacturers. The reduction of piston slap noise is pivotal for a good design of IC engines. In this scenario, a methodology has been developed for the vibro-acoustic assessment of IC diesel engines by means of design changes in piston to cylinder bore clearance. Vibration signals have been analysed by means of advanced signal processing techniques taking advantage of cyclostationarity theory. The procedure departs from the analysis of the Continuous Wavelet Transform (CWT) in order to identify a representative frequency band of piston slap phenomenon. Such a frequency band has been exploited as the input data in the further signal processing analysis that involves the envelope analysis of the second order cyclostationary component of the signal. The second order harmonic component has been used as the benchmark parameter of piston slap noise. An experimental procedure of vibrational benchmarking is proposed and verified at different operational conditions in real IC engines actually equipped on cars. This study clearly underlines the crucial role of the transducer positioning when differences among real piston-to-cylinder clearances are considered. In particular, the proposed methodology is effective for the sensors placed on the outer cylinder wall in all the tested conditions.

  4. High temperature experimental characterization of microscale thermoelectric effects

    NASA Astrophysics Data System (ADS)

    Favaloro, Tela

    Thermoelectric devices have been employed for many years as a reliable energy conversion technology for applications ranging from the cooling of sensors or charge coupled devices to the direct conversion of heat into electricity for remote power generation. However, its relatively low conversion efficiency has limited the implementation of thermoelectric materials for large scale cooling and waste heat recovery applications. Recent advances in semiconductor growth technology have enabled the precise and selective engineering of material properties to improve the thermoelectric figure of merit and thus the efficiency of thermoelectric devices. Accurate characterization at the intended operational temperature of novel thermoelectric materials is a crucial component of the optimization process in order to fundamentally understand material behavior and evaluate performance. The objective of this work is to provide the tools necessary to characterize high efficiency bulk and thin-film materials for thermoelectric energy conversion. The techniques developed here are not bound to specific material or devices, but can be generalized to any material system. Thermoreflectance imaging microscopy has proven to be invaluable for device thermometry owing to its high spatial and temporal resolutions. It has been utilized in this work to create two-dimensional temperature profiles of thermoelectric devices during operation used for performance analysis of novel materials, identification of defects, and visualization of high speed transients in a high-temperature imaging thermostat. We report the development of a high temperature imaging thermostat capable of high speed transient thermoelectric characterization. In addition, we present a noninvasive method for thermoreflectance coefficient calibration ideally suited for vacuum and thus high temperature employment. This is the first analysis of the thermoreflectance coefficient of commonly used metals at high-temperatures. High

  5. Experimental characterization of PZT fibers using IDE electrodes

    NASA Astrophysics Data System (ADS)

    Wyckoff, Nicholas; Ben Atitallah, Hassene; Ounaies, Zoubeida

    2016-04-01

    Lead zirconate titanate (PZT) fibers are mainly used in active fiber composites (AFC) where they are embedded in a polymer matrix. Interdigitated electrodes (IDE) along the direction of the fibers are used to achieve planar actuation, hereby exploiting the d33 coefficient of PZT. When embedded in the AFC, the PZT fibers are subjected to mechanical loading as well as non-uniform electric field as a result of the IDEs. Therefore, it is important to characterize the electrical and electromechanical behavior of these fibers ex-situ using the IDE electrodes to assess the impact of nonuniform electric field on the properties of the fibers. For that reason, this work aims at quantifying the impact of IDE electrodes on the electrical and electromechanical behavior of PZT fibers, which is necessary for their successful implementation in devices like AFC. The tested fibers were purchased from Advanced Cerametrics and they have an average diameter of 250 micrometers. The IDE electrodes were screen printed on an acrylic substrate. The PZT fibers were subjected to frequency sweeps at low voltages to determine permittivity for parallel and interdigitated electrodes. The piezoelectric e33 constant is determined from electromechanical testing of PZT fibers in parallel electrodes to compare the electromechanical behavior for PZT in bulk and fiber form. The dielectric constant and e33 were found to be lower for the IDE and parallel electrodes compared to bulk but comparable to results published in literature.

  6. Multimode model based defect characterization in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.; Gregory, E.

    2016-02-01

    A newly-initiated research program for model-based defect characterization in CFRP composites is summarized. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing delamination and porosity. Forward predictions of measurement response are presented, as well as examples of model-based inversion of measured data for the estimation of defect parameters.

  7. NEW EXPERIMENTAL MODELS FOR AROMATASE INHIBITOR RESISTANCE

    PubMed Central

    Chen, Shiuan; Masri, Selma; Hong, Yanyan; Wang, Xin; Phung, Sheryl; Yuan, Yate-Ching; Wu, Xiwei

    2009-01-01

    Clinical trials have demonstrated the importance of aromatase inhibitor (AI) therapy in the effective treatment of hormone-dependent breast cancers. In contrast to tamoxifen, an antagonist of the estrogen receptor (ER), AIs have shown to be better tolerated along with decreased recurrence rates of the disease. Currently, three third-generation AIs are being used: exemestane, letrozole and anastrozole. Our laboratory is attempting to understand several aspects of aromatase inhibitor functionality. In this paper, we first review recent findings from our structure-function studies of aromatase as well as the molecular characterization of the interaction between AIs and aromatase. Based on these studies, we propose new evidence for the interaction of letrozole and exemestane with aromatase. In addition, we will discuss recent results generated from our AI-resistant cell lines. Our laboratory has generated MCF-7aro cells that are resistant to letrozole, anastrozole, exemestane and tamoxifen. Basic functional characterization of aromatase and ERα in these resistant cell lines has been done and microarray analysis has been employed in order to better understand the mechanism responsible for AI resistance on a genome-wide scale. The results generated so far suggest the presence of at least four types of resistant cell lines. Overall, the information presented in this paper supplements our understanding of AI function, and such information can be valuable for the development of treatment strategies against AI resistant breast cancers. PMID:17611102

  8. Preform Characterization in VARTM Process Model Development

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal; Loos, Alfred C.; Kellen, Charles B.; Jensen, Brian J.

    2004-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) is a Liquid Composite Molding (LCM) process where both resin injection and fiber compaction are achieved under pressures of 101.3 kPa or less. Originally developed over a decade ago for marine composite fabrication, VARTM is now considered a viable process for the fabrication of aerospace composites (1,2). In order to optimize and further improve the process, a finite element analysis (FEA) process model is being developed to include the coupled phenomenon of resin flow, preform compaction and resin cure. The model input parameters are obtained from resin and fiber-preform characterization tests. In this study, the compaction behavior and the Darcy permeability of a commercially available carbon fabric are characterized. The resulting empirical model equations are input to the 3- Dimensional Infiltration, version 5 (3DINFILv.5) process model to simulate infiltration of a composite panel.

  9. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    SciTech Connect

    Smith, N. A. S. E-mail: maciej.rokosz@npl.co.uk Correia, T. M. E-mail: maciej.rokosz@npl.co.uk; Rokosz, M. K. E-mail: maciej.rokosz@npl.co.uk

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  10. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    NASA Astrophysics Data System (ADS)

    Smith, N. A. S.; Rokosz, M. K.; Correia, T. M.

    2014-07-01

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  11. Experimental and analytical efforts to characterize cutting fluid mist formation and behavior in machining.

    PubMed

    Michalek, Donna J; Hii, Wilson W-S; Sun, Jichao; Gunter, Kenneth L; Sutherland, John W

    2003-11-01

    The use of cutting fluids in machining operations is being carefully scrutinized by industry for several reasons, including its overall cost in the manufacturing process and its impact on worker health. Given the concerns associated with the use of cutting fluids, a number of experimental and analytical research efforts are being conducted to gain an understanding of the role of these fluids in various machining processes. The knowledge gained by this research will aid in the development and implementation of strategies to reduce or eliminate the negative effects of cutting fluids, while maintaining their beneficial role. This article presents the results of designed experiments focused on determining the significant variables that influence air quality during turning operations, as well as characterize the aerosol emissions associated with wet and dry turning. Air quality is characterized by measuring the mass concentration and particle size distribution of the dust and mist created during a set of machining experiments. The relative importance of vaporization/condensation and atomization as mist-generating mechanisms is also explored. The experiments revealed that spindle speed has a dominating effect on both mist mass concentration and aerodynamic particle size. Analytical models are presented that predict the average droplet size of the mist generated by atomization and are used to investigate droplet size trends for various cutting fluids and machining parameters. The results predicted by the models are consistent with the expected trends.

  12. Cooking Potatoes: Experimentation and Mathematical Modeling.

    ERIC Educational Resources Information Center

    Chen, Xiao Dong

    2002-01-01

    Describes a laboratory activity involving a mathematical model of cooking potatoes that can be solved analytically. Highlights the microstructure aspects of the experiment. Provides the key aspects of the results, detailed background readings, laboratory procedures and data analyses. (MM)

  13. New experimental correlations to characterize compressible flow losses at 90-degree T-junctions

    SciTech Connect

    Perez-Garcia, J.; Viedma, A.

    2009-01-15

    New experimental correlations to characterize energy losses in adiabatic compressible flow at 90-degree T-junctions and their expanded uncertainties are presented. These new correlations are based on a new linking between branches coefficient definition, K, and show a logarithmic relationship with mass flow rate ratio between branches, q, and the extrapolated Mach number in the common branch, M{sub 3}{sup *}, for all the different flow types studied. The extrapolated properties up to the junction are calculated, from measurement sections, subtracting the frictional losses using the Fanno fluid flow model. These two parameters or global correlations, K = K(M{sub 3}{sup *},q), can be easily implemented as boundary conditions into 1-D global simulation codes. (author)

  14. Experimental Septic Shock: Models and Mechanisms

    DTIC Science & Technology

    1976-06-14

    E . coli endotoxin or live E . coli organisms were evaluated during a 24-hour period or until death. Results suggest significant differences between the two shock models: large dosages of endotoxin on contrast to those used in the canine species were required to elicit lethality characteristics. Hypoglycemia and hypoinsulinemia were regularly observed in live E . coli organism induced shock; however, hyperglycemia was a consistent hallmark in the endotoxin infused model. Renal fibrin thrombi were presented only after E .

  15. Material characterization and modeling with shear ography

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Callahan, Virginia

    1993-01-01

    Shearography has emerged as a useful technique for nondestructible evaluation and materials characterization of aerospace materials. A suitable candidate for the technique is to determine the response of debonds on foam-metal interfaces such as the TPS system on the External Tank. The main thrust is to develop a model which allows valid interpretation of shearographic information on TPS type systems. Confirmation of the model with shearographic data will be performed.

  16. Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection

    NASA Astrophysics Data System (ADS)

    Schöniger, Anneli; Illman, Walter A.; Wöhling, Thomas; Nowak, Wolfgang

    2015-12-01

    Groundwater modelers face the challenge of how to assign representative parameter values to the studied aquifer. Several approaches are available to parameterize spatial heterogeneity in aquifer parameters. They differ in their conceptualization and complexity, ranging from homogeneous models to heterogeneous random fields. While it is common practice to invest more effort into data collection for models with a finer resolution of heterogeneities, there is a lack of advice which amount of data is required to justify a certain level of model complexity. In this study, we propose to use concepts related to Bayesian model selection to identify this balance. We demonstrate our approach on the characterization of a heterogeneous aquifer via hydraulic tomography in a sandbox experiment (Illman et al., 2010). We consider four increasingly complex parameterizations of hydraulic conductivity: (1) Effective homogeneous medium, (2) geology-based zonation, (3) interpolation by pilot points, and (4) geostatistical random fields. First, we investigate the shift in justified complexity with increasing amount of available data by constructing a model confusion matrix. This matrix indicates the maximum level of complexity that can be justified given a specific experimental setup. Second, we determine which parameterization is most adequate given the observed drawdown data. Third, we test how the different parameterizations perform in a validation setup. The results of our test case indicate that aquifer characterization via hydraulic tomography does not necessarily require (or justify) a geostatistical description. Instead, a zonation-based model might be a more robust choice, but only if the zonation is geologically adequate.

  17. Determining the representative volume element size for three-dimensional microstructural material characterization. Part 2: Application to experimental data

    NASA Astrophysics Data System (ADS)

    Harris, William M.; Chiu, Wilson K. S.

    2015-05-01

    Improved microstructural imaging and characterization methods have recently opened the door for quantitative evaluation of microstructures of such functional materials as solid oxide fuel cell and battery electrodes and composite gas separation membranes. Accurate quantitative characterization of these structures relies on the concept of a representative volume element (RVE) to provide a sufficiently large sample to be statistically representative of the material. In Part 1 of this work, several models were described to determine the RVE size for several common microstructural properties: volume fraction, particle size, and network contiguity. In this work, extensive synchrotron X-ray nanotomography imaging of a multiphase composite gas separation membrane is used to provide an experimental comparison to the model predictions. Results suggest that the models provide a reasonable estimate of RVE size, and can serve as a starting point for researchers planning imaging and characterization experiments.

  18. Gear Windage Modeling Progress - Experimental Validation Status

    NASA Technical Reports Server (NTRS)

    Kunz, Rob; Handschuh, Robert F.

    2008-01-01

    In the Subsonics Rotary Wing (SRW) Project being funded for propulsion work at NASA Glenn Research Center, performance of the propulsion system is of high importance. In current rotorcraft drive systems many gearing components operate at high rotational speed (pitch line velocity > 24000 ft/ min). In our testing of high speed helical gear trains at NASA Glenn we have found that the work done on the air - oil mist within the gearbox can become a significant part of the power loss of the system. This loss mechanism is referred to as windage. The effort described in this presentation is to try to understand the variables that affect windage, develop a good experimental data base to validate, the analytical project being conducted at Penn State University by Dr. Rob Kunz under a NASA SRW NRA. The presentation provides an update to the status of these efforts.

  19. Experimental model of arthritis induced by Paracoccidioides brasiliensis in rats.

    PubMed

    Loth, Eduardo Alexandre; Biazin, Samia Khalil; Paula, Claudete Rodrigues; Simão, Rita de Cássia Garcia; de Franco, Marcello Fabiano; Puccia, Rosana; Gandra, Rinaldo Ferreira

    2012-09-01

    Paracoccidioidomycosis (PCM), a disease caused by the fungus Paracoccidioides brasiliensis (Pb), is highly prevalent in Brazil, where it is the principal cause of death by systemic mycoses. The disease primarily affects men aged 30-50 year old and usually starts as a pulmonary focus and then may spread to other organs and systems, including the joints. The present study aimed to develop an experimental model of paracoccidioidomycotic arthritis. Two-month-old male Wistar rats (n = 48) were used, divided in 6 groups: test groups EG/15 and EG/45 (received one dose of 100 μl of saline containing 10(5) Pb viable yeasts in the knee); heat killed Pb-group HK/15 and HK/45 (received a suspension of 10(5) Pb nonviable yeasts in the knee) and control groups CG/15 and CG/45 (received only sterile saline in the knee). The rats were killed 15 and 45 days postinoculation. In contrast with the control rats, the histopathology of the joints of rats of the test groups (EG/15 and EG/45) revealed a picture of well-established PCM arthritis characterized by extensive sclerosing granulomatous inflammation with numerous multiple budding fungal cells. The X-ray examination revealed joint alterations in these groups. Only metabolic active fungi evoked inflammation. The experimental model was able to induce fungal arthritis in the knees of the rats infected with metabolic active P. brasiliensis. The disease tended to be regressive and restrained by the immune system. No evidence of fungal dissemination to the lungs was observed.

  20. Experimental Design and Multiplexed Modeling Using Titrimetry and Spreadsheets

    NASA Astrophysics Data System (ADS)

    Harrington, Peter De B.; Kolbrich, Erin; Cline, Jennifer

    2002-07-01

    The topics of experimental design and modeling are important for inclusion in the undergraduate curriculum. Many general chemistry and quantitative analysis courses introduce students to spreadsheet programs, such as MS Excel. Students in the laboratory sections of these courses use titrimetry as a quantitative measurement method. Unfortunately, the only model that students may be exposed to in introductory chemistry courses is the working curve that uses the linear model. A novel experiment based on a multiplex model has been devised for titrating several vinegar samples at a time. The multiplex titration can be applied to many other routine determinations. An experimental design model is fit to titrimetric measurements using the MS Excel LINEST function to estimate concentration from each sample. This experiment provides valuable lessons in error analysis, Class A glassware tolerances, experimental simulation, statistics, modeling, and experimental design.

  1. Experimental evaluations of the microchannel flow model

    NASA Astrophysics Data System (ADS)

    Parker, K. J.

    2015-06-01

    Recent advances have enabled a new wave of biomechanics measurements, and have renewed interest in selecting appropriate rheological models for soft tissues such as the liver, thyroid, and prostate. The microchannel flow model was recently introduced to describe the linear response of tissue to stimuli such as stress relaxation or shear wave propagation. This model postulates a power law relaxation spectrum that results from a branching distribution of vessels and channels in normal soft tissue such as liver. In this work, the derivation is extended to determine the explicit link between the distribution of vessels and the relaxation spectrum. In addition, liver tissue is modified by temperature or salinity, and the resulting changes in tissue responses (by factors of 1.5 or greater) are reasonably predicted from the microchannel flow model, simply by considering the changes in fluid flow through the modified samples. The 2 and 4 parameter versions of the model are considered, and it is shown that in some cases the maximum time constant (corresponding to the minimum vessel diameters), could be altered in a way that has major impact on the observed tissue response. This could explain why an inflamed region is palpated as a harder bump compared to surrounding normal tissue.

  2. Ideal Experimental Rat Models for Liver Diseases.

    PubMed

    Lee, Sang Woo; Kim, Sung Hoon; Min, Seon Ok; Kim, Kyung Sik

    2011-05-01

    There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and diverse clinical symptoms, adverse reactions, and complications due to the pathological physiology. Also, it is not easy to reproduce identically various clinical situations in animal models. Recently, the Guide for the Care and Use of Laboratory Animals has tightened up the regulations, and therefore it is advisable to select the appropriate animals and decide upon the appropriate quantities through scientific and systemic considerations before conducting animal testing. Therefore, in this review article the authors examined various white rat animal testing models and determined the appropriate usable rat model, and the pros and cons of its application in liver disease research. The authors believe that this review will be beneficial in selecting proper laboratory animals for research purposes.

  3. Experimental evaluations of the microchannel flow model.

    PubMed

    Parker, K J

    2015-06-07

    Recent advances have enabled a new wave of biomechanics measurements, and have renewed interest in selecting appropriate rheological models for soft tissues such as the liver, thyroid, and prostate. The microchannel flow model was recently introduced to describe the linear response of tissue to stimuli such as stress relaxation or shear wave propagation. This model postulates a power law relaxation spectrum that results from a branching distribution of vessels and channels in normal soft tissue such as liver. In this work, the derivation is extended to determine the explicit link between the distribution of vessels and the relaxation spectrum. In addition, liver tissue is modified by temperature or salinity, and the resulting changes in tissue responses (by factors of 1.5 or greater) are reasonably predicted from the microchannel flow model, simply by considering the changes in fluid flow through the modified samples. The 2 and 4 parameter versions of the model are considered, and it is shown that in some cases the maximum time constant (corresponding to the minimum vessel diameters), could be altered in a way that has major impact on the observed tissue response. This could explain why an inflamed region is palpated as a harder bump compared to surrounding normal tissue.

  4. Ideal Experimental Rat Models for Liver Diseases

    PubMed Central

    Lee, Sang Woo; Kim, Sung Hoon; Min, Seon Ok

    2011-01-01

    There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and diverse clinical symptoms, adverse reactions, and complications due to the pathological physiology. Also, it is not easy to reproduce identically various clinical situations in animal models. Recently, the Guide for the Care and Use of Laboratory Animals has tightened up the regulations, and therefore it is advisable to select the appropriate animals and decide upon the appropriate quantities through scientific and systemic considerations before conducting animal testing. Therefore, in this review article the authors examined various white rat animal testing models and determined the appropriate usable rat model, and the pros and cons of its application in liver disease research. The authors believe that this review will be beneficial in selecting proper laboratory animals for research purposes. PMID:26421020

  5. Experimental characterization of energetic material dynamics for multiphase blast simulation.

    SciTech Connect

    Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew

    2011-09-01

    experiments. The development of the Multiphase Shock Tube and associated diagnostic capabilities offers experimental capability to a previously inaccessible regime, which can provide unprecedented data concerning particle dynamics of dense gas-solid flows.

  6. Experimental Characterization of Plasma Detachment from Magnetic Nozzles

    NASA Astrophysics Data System (ADS)

    Olsen, Christopher Scott

    Magnetic nozzles, like Laval nozzles, are observed in several natural systems and have application in areas such as electric propulsion and plasma processing. Plasma flowing through these nozzles is inherently tied to the field lines and must separate for momentum redirection or particle transport to occur. Plasma detachment and associated mechanisms from a magnetic nozzle are investigated. Experimental results are presented from the plume of the VASIMRRTM VX-200 device flowing along an axisymmetric magnetic nozzle and operated at two ion energies to explore momentum dependent detachment. The argon plume expanded into a 150m3 vacuum chamber where the background pressure was low enough that charge-exchange mean-free-paths were longer than experiment scale lengths. This magnetic nozzle system is demonstrated to hydrodynamically scale up to astrophysical plasmas, particularly the solar chromosphere, implying general relevance to many systems. Plasma parameters were mapped over a large spatial range using measurements from multiple plasma diagnostics. The data show that the plume does not follow the magnetic field lines. A mapped integration of the ion flux shows the plume may be divided into three regions where 1) the plume briefly follows the magnetic flux, 2) diverges quadratically before 3) expanding with linear trajectories. Transitioning from region 1→2, the ion flux departs from the magnetic flux suggesting ion detachment. An instability forms in region 2 driving an oscillating electric field that causes ions to expand before enhancing electron cross-field transport through anomalous resistivity. Transitioning from region 2→3 the electric field dissipates, the trajectories linearize, and the plume effectively detaches. A delineation of sub-to-super Alfvenic flow aligns well with the inflection points of the linearization without a change in magnetic topology. The detachment process is best described as a two part process: First, ions detach by a breakdown of

  7. Scaled Experimental Modeling of VHTR Plenum Flows

    SciTech Connect

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  8. Process Model Construction and Optimization Using Statistical Experimental Design,

    DTIC Science & Technology

    1988-04-01

    Memo No. 88-442 ~LECTE March 1988 31988 %,.. MvAY 1 98 0) PROCESS MODEL CONSTRUCTION AND OPTIMIZATION USING STATISTICAL EXPERIMENTAL DESIGN Emmanuel...Sachs and George Prueger Abstract A methodology is presented for the construction of process models by the combination of physically based mechanistic...253-8138. .% I " Process Model Construction and Optimization Using Statistical Experimental Design" by Emanuel Sachs Assistant Professor and George

  9. Experimental Control of Simple Pendulum Model

    ERIC Educational Resources Information Center

    Medina, C.

    2004-01-01

    This paper conveys information about a Physics laboratory experiment for students with some theoretical knowledge about oscillatory motion. Students construct a simple pendulum that behaves as an ideal one, and analyze model assumption incidence on its period. The following aspects are quantitatively analyzed: vanishing friction, small amplitude,…

  10. Source characterization refinements for routine modeling applications

    NASA Astrophysics Data System (ADS)

    Paine, Robert; Warren, Laura L.; Moore, Gary E.

    2016-03-01

    Steady-state dispersion models recommended by various environmental agencies worldwide have generally been evaluated with traditional stack release databases, including tracer studies. The sources associated with these field data are generally those with isolated stacks or release points under relatively ideal conditions. Many modeling applications, however, involve sources that act to modify the local dispersion environment as well as the conditions associated with plume buoyancy and final plume rise. The source characterizations affecting plume rise that are introduced and discussed in this paper include: 1) sources with large fugitive heat releases that result in a local urbanized effect, 2) stacks on or near individual buildings with large fugitive heat releases that tend to result in buoyant "liftoff" effects counteracting aerodynamic downwash effects, 3) stacks with considerable moisture content, which leads to additional heat of condensation during plume rise - an effect that is not considered by most dispersion models, and 4) stacks in a line that result in at least partial plume merging and buoyancy enhancement under certain conditions. One or more of these effects are appropriate for a given modeling application. We present examples of specific applications for one or more of these procedures in the paper. This paper describes methods to introduce the four source characterization approaches to more accurately simulate plume rise to a variety of dispersion models. The authors have focused upon applying these methods to the AERMOD modeling system, which is the United States Environmental Protection Agency's preferred model in addition to being used internationally, but the techniques are applicable to dispersion models worldwide. While the methods could be installed directly into specific models such as AERMOD, the advantage of implementing them outside the model is to allow them to be applicable to numerous models immediately and also to allow them to

  11. Experimental Autoimmune Myasthenia Gravis (EAMG): from immunochemical characterization to therapeutic approaches.

    PubMed

    Fuchs, Sara; Aricha, Revital; Reuveni, Debby; Souroujon, Miriam C

    2014-11-01

    Myasthenia Gravis (MG) is an organ-specific autoimmune disease. In high percentage of patients there are autoantibodies to the nicotinic acetylcholine receptor (AChR) that attack AChR on muscle cells at the neuromuscular junction, resulting in muscle weakness. Experimental Autoimmune Myasthenia Gravis (EAMG) is an experimental model disease for MG. EAMG is induced in several animal species by immunization with acetylcholine receptor (AChR), usually isolated from the electric organ of electric fish, which is a rich source for this antigen. Our lab has been involved for several decades in research of AChR and of EAMG. The availability of an experimental autoimmune disease that mimics in many aspects the human disease, provides an excellent model system for elucidating the immunological nature and origin of MG, for studying various existing treatment modalities and for attempting the development of novel treatment approaches. In this review in honor of Michael Sela and Ruth Arnon, we report first on our early pioneering contributions to research on EAMG. These include the induction of EAMG in several animal species, early attempts for antigen-specific treatment for EAMG, elicitation and characterization of monoclonal antibodies and anti-idiotypic antibodies, measuring humoral and cellular AChR-specific immune responses in MG patient and more. In the second part of the review we discuss more recent studies from our lab towards developing and testing novel treatment approaches for myasthenia. These include antigen-dependent treatments aimed at specifically abrogating the humoral and cellular anti-AChR responses, as well as immunomodulatory approaches that could be used either alone, or in conjunction with antigen-specific treatments, or alternatively, serve as steroid-sparing agents.

  12. Model based defect characterization in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.

    2017-02-01

    Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, with application in this paper focusing on ultrasound. A companion paper in these proceedings summarizes corresponding activity in thermography. Inversion of ultrasound data is demonstrated showing the quantitative extraction of damage properties.

  13. Model selection in systems biology depends on experimental design.

    PubMed

    Silk, Daniel; Kirk, Paul D W; Barnes, Chris P; Toni, Tina; Stumpf, Michael P H

    2014-06-01

    Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis.

  14. Model Selection in Systems Biology Depends on Experimental Design

    PubMed Central

    Silk, Daniel; Kirk, Paul D. W.; Barnes, Chris P.; Toni, Tina; Stumpf, Michael P. H.

    2014-01-01

    Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis. PMID:24922483

  15. Performance Modeling of Experimental Laser Lightcrafts

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)

    2001-01-01

    A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  16. Modeling the dynamical systems on experimental data

    NASA Astrophysics Data System (ADS)

    Janson, Natalie B.; Anishchenko, Vadim S.

    1996-06-01

    An attempt is made in the work to create qualitative models of some real biological systems, i.e., isolated frog's heart, a human's heart and a blood circulation system of a white rat. Sampled one-dimensional realizations of these systems were taken as the initial data. Correlation dimensions were calculated to evaluate the embedding dimensions of the systems' attractors. The result of the work are the systems of ordinary differential equations which approximately describe the dynamics of the systems under investigation.

  17. Different experimental approaches in modelling cataractogenesis

    PubMed Central

    Kyselova, Zuzana

    2010-01-01

    Cataract, the opacification of eye lens, is the leading cause of blindness worldwide. At present, the only remedy is surgical removal of the cataractous lens and substitution with a lens made of synthetic polymers. However, besides significant costs of operation and possible complications, an artificial lens just does not have the overall optical qualities of a normal one. Hence it remains a significant public health problem, and biochemical solutions or pharmacological interventions that will maintain the transparency of the lens are highly required. Naturally, there is a persistent demand for suitable biological models. The ocular lens would appear to be an ideal organ for maintaining culture conditions because of lacking blood vessels and nerves. The lens in vivo obtains its nutrients and eliminates waste products via diffusion with the surrounding fluids. Lens opacification observed in vivo can be mimicked in vitro by addition of the cataractogenic agent sodium selenite (Na2SeO3) to the culture medium. Moreover, since an overdose of sodium selenite induces also cataract in young rats, it became an extremely rapid and convenient model of nuclear cataract in vivo. The main focus of this review will be on selenium (Se) and its salt sodium selenite, their toxicological characteristics and safety data in relevance of modelling cataractogenesis, either under in vivo or in vitro conditions. The studies revealing the mechanisms of lens opacification induced by selenite are highlighted, the representatives from screening for potential anti-cataract agents are listed. PMID:21217865

  18. Experimental Forelimb Allotransplantation in Canine Model

    PubMed Central

    2016-01-01

    As reconstructive transplantation is gaining popularity as a viable alternative for upper limb amputees, it is becoming increasingly important for plastic surgeons to renew surgical skills and knowledge of this area. Forelimb allotransplantation research has been performed previously in rodent and swine models. However, preclinical canine forelimb allotransplantation studies are lacking in the literature. The purpose of this paper is to provide an overview of the surgical skills necessary to successfully perform forelimb transplantation in canines as a means to prepare for clinical application. A total of 18 transplantation operations on canines were performed. The recipient limb was shortened at the one-third proximal forearm level. The operation was performed in the following order: bones (two reconstructive plates), muscles and tendons (separately sutured), nerves (median, ulnar, and radial nerve), arteries (two), and veins (two). The total mean time of transplantation was 5 hours ± 30 minutes. All of the animals that received transplantation were treated with FK-506 (tacrolimus, 2 mg/kg) for 7 days after surgery. Most allografts survived with perfect viability without vascular problems during the early postoperative period. The canine forelimb allotransplantation model is well qualified to be a suitable training model for standard transplantation and future research work. PMID:27597952

  19. Numerical characterization and modeling of adiabatic slot film cooling

    NASA Astrophysics Data System (ADS)

    Voegele, Andrew

    Film cooling is a technique used to protect critical surfaces in combustors, thrust chambers, turbines and nozzles from hot, chemically reacting gases. Accurately predicting the film's performance is especially challenging in the vicinity of the wall and the film injection plane due to the complex interactions of two highly turbulent, shearing, boundary layer flows. Properly characterizing the streams at the inlet of a numerical simulation and the choice of turbulence model are crucial to accurately predicting the decay of the film. To address these issues, this study employs a RANS solver that is used to model a film cooled wall. Menter's baseline model, and shear-stress transport model and the Spalart-Allmaras model are employed to determine the effect on film cooling predictions. Several methods for prescribing the inlet planes are explored. These numerical studies are compared with experimental data obtained in a UMD film cooling wind tunnel.

  20. Experimentally testing the standard cosmological model

    SciTech Connect

    Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.

  1. Modelling and characterization of primary settlers in view of whole plant and resource recovery modelling.

    PubMed

    Bachis, Giulia; Maruéjouls, Thibaud; Tik, Sovanna; Amerlinck, Youri; Melcer, Henryk; Nopens, Ingmar; Lessard, Paul; Vanrolleghem, Peter A

    2015-01-01

    Characterization and modelling of primary settlers have been neglected pretty much to date. However, whole plant and resource recovery modelling requires primary settler model development, as current models lack detail in describing the dynamics and the diversity of the removal process for different particulate fractions. This paper focuses on the improved modelling and experimental characterization of primary settlers. First, a new modelling concept based on particle settling velocity distribution is proposed which is then applied for the development of an improved primary settler model as well as for its characterization under addition of chemicals (chemically enhanced primary treatment, CEPT). This model is compared to two existing simple primary settler models (Otterpohl and Freund; Lessard and Beck), showing to be better than the first one and statistically comparable to the second one, but with easier calibration thanks to the ease with which wastewater characteristics can be translated into model parameters. Second, the changes in the activated sludge model (ASM)-based chemical oxygen demand fractionation between inlet and outlet induced by primary settling is investigated, showing that typical wastewater fractions are modified by primary treatment. As they clearly impact the downstream processes, both model improvements demonstrate the need for more detailed primary settler models in view of whole plant modelling.

  2. Modeling the dynamical systems on experimental data

    SciTech Connect

    Janson, N.B.; Anishchenko, V.S.

    1996-06-01

    An attempt is made in the work to create qualitative models of some real biological systems, i.e., isolated frog{close_quote}s heart, a human{close_quote}s heart and a blood circulation system of a white rat. Sampled one-dimensional realizations of these systems were taken as the initial data. Correlation dimensions were calculated to evaluate the embedding dimensions of the systems{close_quote} attractors. The result of the work are the systems of ordinary differential equations which approximately describe the dynamics of the systems under investigation. {copyright} {ital 1996 American Institute of Physics.}

  3. [Deafness and aging: studies in experimental models].

    PubMed

    Gil Loyzaga, Pablo E

    2002-01-01

    Since 1970 a progressive aging of the world population, mainly in the most developed countries, has been observed. Spain could have, around 2050, the most aged human population of the world. Therefore, scientist show an increasing interest on the study of the aging-related pathologies (i.e. deafness linked to aging process: presbycusis). The deep analysis of the presbycusis physiopathology will be based on the study of patients, but also on animal models. This report summarizes our results obtained on the analysis of the deafness linked to aging on the C57/BL/6 mice.

  4. Experimental photoallergic contact dermatitis: a mouse model

    SciTech Connect

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-09-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model.

  5. Segmented Polynomial Models in Quasi-Experimental Research.

    ERIC Educational Resources Information Center

    Wasik, John L.

    1981-01-01

    The use of segmented polynomial models is explained. Examples of design matrices of dummy variables are given for the least squares analyses of time series and discontinuity quasi-experimental research designs. Linear combinations of dummy variable vectors appear to provide tests of effects in the two quasi-experimental designs. (Author/BW)

  6. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    PubMed Central

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  7. Mathematical Models and the Experimental Analysis of Behavior

    ERIC Educational Resources Information Center

    Mazur, James E.

    2006-01-01

    The use of mathematical models in the experimental analysis of behavior has increased over the years, and they offer several advantages. Mathematical models require theorists to be precise and unambiguous, often allowing comparisons of competing theories that sound similar when stated in words. Sometimes different mathematical models may make…

  8. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    2009-05-01

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  9. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  10. Methods of experimentation with models and utilization of results

    NASA Technical Reports Server (NTRS)

    Robert,

    1924-01-01

    The present report treats the subject of testing small models in a wind tunnel and of the methods employed for rendering the results constant, accurate and comparable with one another. Detailed experimental results are given.

  11. Experimental validation of a Monte Carlo model for determining the temporal response of the underwater optical communications channel

    NASA Astrophysics Data System (ADS)

    Cochenour, Brandon M.; Laux, Alan E.

    2015-05-01

    Recent interest in high speed laser communications underwater has restimulated theoretical studies in laser propagation in turbid media. In particular, the characterization of temporal dispersion is of paramount importance in order to predict the bandwidth and capacity of underwater optical channels. While the temporal aspects of underwater laser propagation have received attention from the modeling community in the past, few if any of these models have been validated with experimental data. However recent advances in hardware technology now enable experimental characterization at high speeds (~GHz). Such measurements have been made by the authors.1 In this work, we develop a Monte Carlo model, and present initial results validated against the aforementioned experimental data.

  12. In-Body Network Biomedical Applications: From Modeling to Experimentation.

    PubMed

    Loscri, Valeria; Matekovits, Ladislau; Peter, Ildiko; Vegni, Anna Maria

    2016-01-01

    Innovative diagnostic approaches and therapies are more and more based on the use of injections or oral delivery of nanoparticle sized substances. For a better understanding of the overall phenomena, aiming to facilitate a safe application at large scale, the development of accurate models and analysis techniques are required. These techniques take into consideration different aspects of the overall process: accurate numerical modeling of the different phases of the nanoparticles in the body, and knowledge of the local environment, that can be varying very fast within a short-range in the body itself. Such aspects should be taken into account to correctly predict the amount of drug and its timely release for the specific disease. Deep and accurate analysis of the interaction between the nanoparticles and the biological fluid where the nanoparticles are immersed is mandatory for an efficient correlation of all these aspects. Because of their biocompatibility, in this paper, we focus our attention on systems of Titanium (Ti), and its oxide (e.g., TiO2), given their specific features in terms of density, lack of cytotoxic effects, etc. Specifically, we present the study and design of an in-body system by characterizing each of the emission, diffusion, and reception processes with a proper realistic model. The theoretical investigation is further supported by experimental study of the morphology and other important characteristics (e.g., the pH of the particles, and thermal stability) of TiO2 systems when immersed in a Ringer solution, in order to derive important information related to their potential toxicity inside the human body.

  13. A study on the performance of ductile failure models under different range of stress triaxiality states with experimental validation

    NASA Astrophysics Data System (ADS)

    Amaral, Rui; Teixeira, Pedro; Azinpour, Erfan; Santos, Abel D.; César de Sá, J.

    2016-08-01

    In this work, experimental tests were carried out, under different loading conditions, in order to assess different ductile failure criteria, namely based on GTN, Johnson-Cook or Lemaitre models and to establish new proposals for improvement. Corresponding characterization for damage parameters is performed by an inverse analysis procedure, using reference experimental tests. Numerical simulations of a cross-shaped component are considered for the damage models, and results show a similar trend related with the experimental fracture evidence.

  14. Experimental tests of the standard model.

    SciTech Connect

    Nodulman, L.

    1998-11-11

    The title implies an impossibly broad field, as the Standard Model includes the fermion matter states, as well as the forces and fields of SU(3) x SU(2) x U(1). For practical purposes, I will confine myself to electroweak unification, as discussed in the lectures of M. Herrero. Quarks and mixing were discussed in the lectures of R. Aleksan, and leptons and mixing were discussed in the lectures of K. Nakamura. I will essentially assume universality, that is flavor independence, rather than discussing tests of it. I will not pursue tests of QED beyond noting the consistency and precision of measurements of {alpha}{sub EM} in various processes including the Lamb shift, the anomalous magnetic moment (g-2) of the electron, and the quantum Hall effect. The fantastic precision and agreement of these predictions and measurements is something that convinces people that there may be something to this science enterprise. Also impressive is the success of the ''Universal Fermi Interaction'' description of beta decay processes, or in more modern parlance, weak charged current interactions. With one coupling constant G{sub F}, most precisely determined in muon decay, a huge number of nuclear instabilities are described. The slightly slow rate for neutron beta decay was one of the initial pieces of evidence for Cabbibo mixing, now generalized so that all charged current decays of any flavor are covered.

  15. Experimental method for characterizing CVOC removal from fractured clays during boiling.

    PubMed

    Liu, Xiaoling; Tan, Tianwu; Falta, Ronald W; Murdoch, Lawrence C

    2013-09-01

    Conventional remediation methods that rely on contact with contaminants can be ineffective in fractured media, but thermal methods of remediation involving CVOC stripping at boiling temperature show promise. However, limited experimental data are available to characterize thermal remediation because of challenges associated with high temperature. This research reports an experimental method using uniformly contaminated clay packed into two types of experimental cells, a rigid-wall stainless steel tube and a flexible-wall Teflon tube in a pressurized chamber. Both tubes are 5 cm in diameter and approximately 25 cm long. This laboratory apparatus was developed as a 1D physical model for contaminant transport in a cylindrical matrix towards a fracture, which is represented by one end of the cylinder and serves as the outlet of vapor and contaminant. The clay was contaminated with dissolved 1,2-dichloroethane (DCA) and bromide, and the columns were heated to more than 100 °C and then the top end was depressurized to atmospheric pressure to induce boiling. The outflow was condensed and analyzed for contaminant mass. The flexible-wall cell was confined to 100 kPa (gage), allowing equilibrium boiling temperatures of approximately 120 °C to be maintained. The clay was sampled before and after heating and extracted to determine the DCA distribution along the length of the column. During a typical test in the rigid-wall cell, internal temperatures and pressures along the column during heating reached the saturated vapor pressure curve. DCA concentrations in the recovered condensate were up to 12 times of the initial pore concentration in the clay. Less than 5% of non-volatile bromide was recovered. Significant removal of DCA and water occurred along the entire length of the clay column. This suggests that boiling was occurring in the clay matrix.

  16. Current Experimental Basis for Modeling Ice Accretions on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2005-01-01

    This work presents a review of the experimental basis for modeling ice accretions on swept wings. Experimental work related to ice accretion physics on swept wings conducted between 1954 and 2004 is reviewed. Proposed models or explanations of scallop formations are singled out and discussed. Special emphasis is placed on reviewing the work done to determine the basic macroscopic mechanisms of scallop formation. The role of feather growth and its connection to scallop growth is discussed. Conceptual steps in modeling scallop formations are presented. Research elements needed for modeling are discussed.

  17. The Standard Solar Model versus Experimental Observations

    NASA Astrophysics Data System (ADS)

    Manuel, O.

    2000-12-01

    The standard solar model (ssm) assumes the that Sun formed as a homogeneous body, its interior consists mostly of hydrogen, and its radiant energy comes from H-fusion in its core. Two sets of measurements indicate the ssm is wrong: 1. Analyses of material in the planetary system show that - (a) Fe, O, Ni, Si, Mg, S and Ca have high nuclear stability and comprise 98+% of ordinary meteorites that formed at the birth of the solar system; (b) the cores of inner planets formed in a central region consisting mostly of heavy elements like Fe, Ni and S; (c) the outer planets formed mostly from elements like H, He and C; and (d) isotopic heterogeneities accompanied these chemical gradients in debris of the supernova that exploded here 5 billion years ago to produce the solar system (See Origin of the Elements at http://www.umr.edu/õm/). 2. Analyses of material coming from the Sun show that - (a) there are not enough neutrinos for H-fusion to be its main source of energy; (b) light-weight isotopes (mass =L) of He, Ne, Ar, Kr and Xe in the solar wind are enriched relative to heavy isotopes (mass = H) by a factor, f, where log f = 4.56 log [H/L] -- - Eq. (1); (c) solar flares by-pass 3.4 of these 9-stages of diffusion and deplete the light-weight isotopes of He, Ne, Mg and Ar by a factor, f*, where log f* = -1.7 log [H/L] --- Eq. (2); (d) proton-capture on N-14 increased N-15 in the solar wind over geologic time; and (e) solar flares dredge up nitrogen with less N-15 from this H-fusion reaction. Each observation above is unexplained by ssm. After correcting photospheric abundances for diffusion [Observation 2(b)], the most abundant elements in the bulk sun are Fe, Ni, O, Si, S, Mg and Ca, the same elements that comprise ordinary meteorites [Observation 1(a)]. The probability that Eq. (1) would randomly select these elements from the photosphere, i.e., the likelihood for a meaningless agreement between observations 2(b) and 1(a), is < 2.0E(-33). Thus, ssm does not describe the

  18. Morphofunctional analysis of experimental model of esophageal achalasia in rats.

    PubMed

    Sabirov, A G; Raginov, I S; Burmistrov, M V; Chelyshev, Y A; Khasanov, R Sh; Moroshek, A A; Grigoriev, P N; Zefirov, A L; Mukhamedyarov, M A

    2010-10-01

    We carried out a detailed analysis of rat model of esophageal achalasia previously developed by us. Manifest morphological and functional disorders were observed in experimental achalasia: hyperplasia of the squamous epithelium, reduced number of nerve fibers, excessive growth of fibrous connective tissue in the esophageal wall, high contractile activity of the lower esophageal sphincter, and reduced motility of the longitudinal muscle layer. Changes in rat esophagus observed in experimental achalasia largely correlate with those in esophageal achalasia in humans. Hence, our experimental model can be used for the development of new methods of disease treatment.

  19. Tissue Characterization on Common Carotid Artery using AR Model

    NASA Astrophysics Data System (ADS)

    Koya, Yoshiharu; Mizoshiri, Isao

    This study uses one image with a echocardiography and detects arteriosclerosis on the common carotid artery by tissue characterization. The conventional methods are measurement of thickness on the vessel wall or stiffness on the common carotid artery. However, they need frames of several beats and great calculation times. But, we detect the arteriosclerosis with only one image. Our method estimate the grade of arteriosclerosis by AR model parameters fitted to the texture on the lumen-intima wall. Experimental results show the validity of the proposed method.

  20. Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces

    SciTech Connect

    James A. Smith; Jeffrey M. Lacy; Barry H. Rabin

    2014-07-01

    12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser

  1. Combustion modeling for experimentation in a space environment

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.

    1974-01-01

    The merits of combustion experimentation in a space environment are assessed, and the impact of such experimentation on current theoretical models is considered. It is noted that combustion theory and experimentation for less than normal gravitational conditions are incomplete, inadequate, or nonexistent. Extensive and systematic experimentation in a space environment is viewed as essential for more adequate and complete theoretical models of such processes as premixed flame propagation and extinction limits, premixed flame propagation in droplet and particle clouds, ignition and autoignition in premixed combustible media, and gas jet combustion of unpremixed reactants. Current theories and models in these areas are described, and some combustion studies that can be undertaken in the Space Shuttle Program are proposed, including crossed molecular beam, turbulence, and upper pressure limit (of gases) studies.

  2. Combined experimental/analytical modeling of shell/payload structures

    SciTech Connect

    Martinez, D.R.; Miller, A.K.; Carne, T.G.

    1985-12-01

    This study evaluates the accuracy of computed modal frequencies obtained from a combined experimental/analytical model of a shell/payload structure. A component mode synthesis technique was used which incorporated free modes and residual effects. The total structure is physically divided into the two subsystems which are connected through stiff joints. The payload was tested to obtain its free-free modes, while a finite element model of the shell was analyzed to obtain its modal description. Both the translational and rotational components of the experimental mode shapes at the payload interface were used in the coupling. Sensitivity studies were also performed to determine the effect of neglecting the residual terms of the payload. Results from a previous study of a combined experimental/analytical model for a beam structure are also given. The beam structure was used to examine the basic procedures and difficulties in experimentally measuring, and analytically accounting for the rotational and residual quantities.

  3. Experimental and Numerical Characterization of a Hybrid Fabry-Pérot Cavity for Temperature Sensing

    PubMed Central

    Lopez-Aldaba, Aitor; Pinto, Ana Margarida Rodrigues; Lopez-Amo, Manuel; Frazão, Orlando; Santos, José Luís; Baptista, José Manuel; Baierl, Hardy; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe

    2015-01-01

    A hybrid Fabry-Pérot cavity sensing head based on a four-bridge microstructured fiber is characterized for temperature sensing. The characterization of this cavity is performed numerically and experimentally in the L-band. The sensing head output signal presents a linear variation with temperature changes, showing a sensitivity of 12.5 pm/°C. Moreover, this Fabry-Pérot cavity exhibits good sensitivity to polarization changes and high stability over time. PMID:25853404

  4. Experimental characterization of turbulent inflow noise on a full-scale wind turbine

    NASA Astrophysics Data System (ADS)

    Buck, Steven; Oerlemans, Stefan; Palo, Scott

    2016-12-01

    An extensive experimental campaign was conducted on a 108-m diameter 2.3-MW wind turbine in order to assess the effect of inflow turbulence conditions on wind turbine acoustics. Over 50 h of continuous acoustic data was acquired at power-generating wind speeds. Twelve precision microphones were used, arranged in a one rotor radius ring about the turbine tower in order to assess the directivity of the noise emission. Turbine operational and atmospheric conditions were gathered simultaneously with acoustics measurements. The testing and analysis constitute perhaps the most thorough experimental characterization of turbulent inflow noise from a wind turbine to date. Turbulence intensities typically varied between 10 percent and 35 percent, and wind speeds covered most of the operational range of the wind turbine, from cut-on to well above its rated power. A method was developed for using blade-mounted accelerometers for determining the turbulence conditions in the immediate vicinity of the blades, which are the primary turbulence noise generating bodies. The method uses the blades' vibrational energy within a specified frequency range to estimate the overall turbulence conditions by assuming a von Kármán turbulence spectrum. Using this method, a clear positive correlation is shown between turbulence intensity and noise levels. The turbulence noise is dominant at low frequencies and is primarily observed in the upwind and downwind directions. Low frequency noise increases by as much as 6 dB for the range of turbulence conditions measured. Comparisons are made between the measured turbine noise directivity and theory using a simple acoustic model of the turbine as three point-sources. Strong agreement is found between the theoretical leading edge noise directivity model and the measured low frequency noise directivity.

  5. Analytical and Experimental Characterization of a Linear-Array Thermopile Scanning Radiometer for Geo-Synchronous Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Sorensen, Ira J.

    1998-01-01

    The Thermal Radiation Group, a laboratory in the department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently working towards the development of a new technology for cavity-based radiometers. The radiometer consists of a 256-element linear-array thermopile detector mounted on the wall of a mirrored wedgeshaped cavity. The objective of this research is to provide analytical and experimental characterization of the proposed radiometer. A dynamic end-to-end opto-electrothermal model is developed to simulate the performance of the radiometer. Experimental results for prototype thermopile detectors are included. Also presented is the concept of the discrete Green's function to characterize the optical scattering of radiant energy in the cavity, along with a data-processing algorithm to correct for the scattering. Finally, a parametric study of the sensitivity of the discrete Green's function to uncertainties in the surface properties of the cavity is presented.

  6. Coupled multiphysics finite element model and experimental testing of a thermo-magnetically triggered piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Rendon-Hernandez, Adrian; Basrour, Skandar

    2016-11-01

    This paper deals with the coupled multiphysics finite element modeling and the experimental testing of a thermo-magnetically triggered piezoelectric generator. The model presented here, which has been developed in ANSYS software and experimentally validated, promotes a better understanding of the dynamic behavior of proposed generator. Special attention was put into the coupled multiphysics interactions, for instance, the thermal-dependent demagnetization of soft magnetic material, the piezoelectric transduction and the output power. In order to characterize the power generator, many finite element simulations were conducted, included modal and transient analysis. To verify the effectiveness of the model, a prototype was built and tested. The findings thus obtained were compared with simulation results. Obtained results describe for the first time a fully coupled model of an innovative approach for thermomagnetic energy harvesting. Moreover, the total volume of our harvester (length × width × height: 20 × 4 × 2 mm) is 85 times lower than that of previous experimental harvester.

  7. Recent developments in experimental animal models of Henipavirus infection.

    PubMed

    Rockx, Barry

    2014-07-01

    Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus (HNV; family Paramyxoviridae) are emerging zoonotic agents that can cause severe respiratory distress and acute encephalitis in humans. Given the lack of effective therapeutics and vaccines for human use, these viruses are considered as public health concerns. Several experimental animal models of HNV infection have been developed in recent years. Here, we review the current status of four of the most promising experimental animal models (mice, hamsters, ferrets, and African green monkeys) and their suitability for modeling the clinical disease, transmission, pathogenesis, prevention, and treatment for HNV infection in humans.

  8. Mathematical model for characterizing noise transmission into finite cylindrical structures

    NASA Astrophysics Data System (ADS)

    Li, Deyu; Vipperman, Jeffrey S.

    2005-02-01

    This work presents a theoretical study of the sound transmission into a finite cylinder under coupled structural and acoustic vibration. Particular attention of this study is focused on evaluating a dimensionless quantity, ``noise reduction,'' for characterizing noise transmission into a small cylindrical enclosure. An analytical expression of the exterior sound pressure resulting from an oblique plane wave impinging upon the cylindrical shell is first presented, which is approximated from the exterior sound pressure for an infinite cylindrical structure. Next, the analytical solution of the interior sound pressure is computed using modal-interaction theory for the coupled structural acoustic system. These results are then used to derive the analytical formula for the noise reduction. Finally, the model is used to predict and characterize the sound transmission into a ChamberCore cylindrical structure, and the results are compared with experimental data. The effects of incidence angle and internal acoustic damping on the sound transmission into the cylinder are also parametrically studied. .

  9. Computational modeling of epilepsy for an experimental neurologist

    PubMed Central

    Holt, Abbey B.; Netoff, Theoden I.

    2013-01-01

    Computational modeling can be a powerful tool for an experimentalist, providing a rigorous mathematical model of the system you are studying. This can be valuable in testing your hypotheses and developing experimental protocols prior to experimenting. This paper reviews models of seizures and epilepsy at different scales, including cellular, network, cortical region, and brain scales by looking at how they have been used in conjunction with experimental data. At each scale, models with different levels of abstraction, the extraction of physiological detail, are presented. Varying levels of detail are necessary in different situations. Physiologically realistic models are valuable surrogates for experimental systems because, unlike in an experiment, every parameter can be changed and every variable can be observed. Abstract models are useful in determining essential parameters of a system, allowing the experimentalist to extract principles that explain the relationship between mechanisms and the behavior of the system. Modeling is becoming easier with the emergence of platforms dedicated to neuronal modeling and databases of models that can be downloaded. Modeling will never be a replacement for animal and clinical experiments, but it should be a starting point in designing experiments and understanding their results. PMID:22617489

  10. Characterizing Variability in Smestad and Gratzel's Nanocrystalline Solar Cells: A Collaborative Learning Experience in Experimental Design

    ERIC Educational Resources Information Center

    Lawson, John; Aggarwal, Pankaj; Leininger, Thomas; Fairchild, Kenneth

    2011-01-01

    This article describes a collaborative learning experience in experimental design that closely approximates what practicing statisticians and researchers in applied science experience during consulting. Statistics majors worked with a teaching assistant from the chemistry department to conduct a series of experiments characterizing the variation…

  11. An experimentally determined evolutionary model dramatically improves phylogenetic fit.

    PubMed

    Bloom, Jesse D

    2014-08-01

    All modern approaches to molecular phylogenetics require a quantitative model for how genes evolve. Unfortunately, existing evolutionary models do not realistically represent the site-heterogeneous selection that governs actual sequence change. Attempts to remedy this problem have involved augmenting these models with a burgeoning number of free parameters. Here, I demonstrate an alternative: Experimental determination of a parameter-free evolutionary model via mutagenesis, functional selection, and deep sequencing. Using this strategy, I create an evolutionary model for influenza nucleoprotein that describes the gene phylogeny far better than existing models with dozens or even hundreds of free parameters. Emerging high-throughput experimental strategies such as the one employed here provide fundamentally new information that has the potential to transform the sensitivity of phylogenetic and genetic analyses.

  12. Experimental Models of Transfusion-Related Acute Lung Injury (TRALI)

    PubMed Central

    Gilliss, Brian M.; Looney, Mark R.

    2010-01-01

    Transfusion-related acute lung injury (TRALI) is defined clinically as acute lung injury occurring within six hours of the transfusion of any blood product. It is the leading cause of transfusion-related death in the United States, but under-recognition and diagnostic uncertainty have limited clinical research to smaller case control studies. In this review we will discuss the contribution of experimental models to the understanding of TRALI pathophysiology and potential therapeutic approaches. Experimental models suggest that TRALI occurs when a host, with a primed immune system, is exposed to an activating agent such as anti-leukocyte antibody or a biologic response modifier such as lysophosphatidylcholines. Recent work has suggested a critical role for platelets in antibody-based experimental models and identified potential therapeutic strategies for TRALI. PMID:21134622

  13. Characterization and modeling of compliant active materials

    NASA Astrophysics Data System (ADS)

    Marra, S. P.; Ramesh, K. T.; Douglas, A. S.

    2003-09-01

    Active materials respond mechanically to changes in environmental conditions. One example of a compliant active material is a polymer gel. Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as actuators and "artificial muscles". While much work has been done to study the behavior and properties of these gels, little information is available regarding the full constitutive description of the mechanical and actuation properties. This work focuses on developing a means of characterizing the mechanical properties of compliant active materials. A thermodynamically consistent finite-elastic constitutive model was developed to describe the mechanical and actuation behaviors of these kinds of materials. The mechanical properties of compliant active materials are characterized by a free-energy function, and the model utilizes an evolving internal variable to describe the actuation state. A biaxial testing system has been developed which can measure stresses and deformations of polymer gel films in a variety of liquid environments. This testing system is used to determine the form and parameters of the free-energy function for a specific active polymer gel, poly(vinyl alcohol)-poly(acrylic acid) gel.

  14. Experimental models of hepatotoxicity related to acute liver failure

    PubMed Central

    Maes, Michaël; Vinken, Mathieu; Jaeschke, Hartmut

    2015-01-01

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposure or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. PMID:26631581

  15. Experimental validation of flexible robot arm modeling and control

    NASA Technical Reports Server (NTRS)

    Ulsoy, A. Galip

    1989-01-01

    Flexibility is important for high speed, high precision operation of lightweight manipulators. Accurate dynamic modeling of flexible robot arms is needed. Previous work has mostly been based on linear elasticity with prescribed rigid body motions (i.e., no effect of flexible motion on rigid body motion). Little or no experimental validation of dynamic models for flexible arms is available. Experimental results are also limited for flexible arm control. Researchers include the effects of prismatic as well as revolute joints. They investigate the effect of full coupling between the rigid and flexible motions, and of axial shortening, and consider the control of flexible arms using only additional sensors.

  16. Experimental Evaluation and Workload Characterization for High-Performance Computer Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.

    1995-01-01

    This research is conducted in the context of the Joint NSF/NASA Initiative on Evaluation (JNNIE). JNNIE is an inter-agency research program that goes beyond typical.bencbking to provide and in-depth evaluations and understanding of the factors that limit the scalability of high-performance computing systems. Many NSF and NASA centers have participated in the effort. Our research effort was an integral part of implementing JNNIE in the NASA ESS grand challenge applications context. Our research work under this program was composed of three distinct, but related activities. They include the evaluation of NASA ESS high- performance computing testbeds using the wavelet decomposition application; evaluation of NASA ESS testbeds using astrophysical simulation applications; and developing an experimental model for workload characterization for understanding workload requirements. In this report, we provide a summary of findings that covers all three parts, a list of the publications that resulted from this effort, and three appendices with the details of each of the studies using a key publication developed under the respective work.

  17. Synthesis and characterization of three novel Schiff base compounds: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Taslı, P. T.; Bayrakdar, A.; Karakus, O. O.; Kart, H. H.; Koc, Y.

    2015-09-01

    In this study, three novel Schiff base compounds such as N-(4-nitrobenzyl)-4-methyl bromo aniline ( 1a), N-(2,4-dimethoxybenzyl)-4-methyl bromoaniline ( 2a), SN-((1H-indol-3-yl) methylene)-4- methyl bromoaniline ( 3a) are synthesized and characterized by using the spectroscopic methods of UV, IR and 1H-NMR. Molecular geometry and spectroscopic properties of synthesized compounds are also analyzed by using ab initio calculation methods based on the density functional theory (DFT) in the ground state. The extensive theoretical and experimental FT-IR and UV-vis spectrometry studies of synthesized compounds are performed. The optimized molecular structure and harmonic vibrational frequencies are studied by using B3LYP/6-311++G(d,p) method. Moreover, electronic structures are investigated by using the time dependent density functional theory (TD-DFT) while the energy changes of the parent compounds are examined in a solvent medium by using the polarizable continuum model (PCM). Additionally, the frontier molecular orbital analysis is performed for the Schiff base compounds. The electronic properties of each compound such as; chemical hardness, chemical softness, ionization potential, electron affinity, electronegativity and chemical potential are investigated by utilizing the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies.

  18. Characterization of the Aerothermal Environment of the IXV Experimental Vehicle by Means of WTT and CFD

    NASA Astrophysics Data System (ADS)

    Cosson, E.; Soler, J.; Pierre, V.; Binetti, P.; Walloschek, T.

    2009-01-01

    This paper deals with all the aerothermodynamic (ATD) activities carried out so far in the framework of the IXV project, in order to characterize the aerothermal environment experienced by the Intermediate eXperimental Vehicle (IXV) during its atmospheric re- entry. The ATD synthesis activity is led by EADS Astrium, with support from DLR (tests in HEG and H2K facilities, CFD), VKI (tests in the Long-Shot facility, survey on IXV Thermal Protection System (TPS) materials properties), CIRA (CFD), University of Roma (CFD) and CFS Engineering (CFD). During the Phases A and B1 of the project (before SRR), only Computational Fluid Dynamics (CFD) was used to build the IXV aerothermodynamic database and specify the sizing heat fluxes over the vehicle; in Phase B2/C1, both wind tunnel tests (WTT) - HEG, H2K and Long- Shot - and CFD have been used in order to reach Preliminary Design Review maturity. This paper presents: how wind tunnel test results have allowed improving the criterion of natural laminar-to-turbulent transition in the body-flap flow separation (flap heating being one critical aspect on IXV); a methodology for the ground-to-flight transposition based on dedicated WTT rebuilding CFD; the improvement of ATD margin policy thanks to wind tunnel data; the investigation of the sensitivities to chemical and physical models with some flight-condition CFD.

  19. Computer model for characterizing, screening, and optimizing electrolyte systems

    SciTech Connect

    Gering, Kevin L.

    2015-06-15

    Electrolyte systems in contemporary batteries are tasked with operating under increasing performance requirements. All battery operation is in some way tied to the electrolyte and how it interacts with various regions within the cell environment. Seeing the electrolyte plays a crucial role in battery performance and longevity, it is imperative that accurate, physics-based models be developed that will characterize key electrolyte properties while keeping pace with the increasing complexity of these liquid systems. Advanced models are needed since laboratory measurements require significant resources to carry out for even a modest experimental matrix. The Advanced Electrolyte Model (AEM) developed at the INL is a proven capability designed to explore molecular-to-macroscale level aspects of electrolyte behavior, and can be used to drastically reduce the time required to characterize and optimize electrolytes. Although it is applied most frequently to lithium-ion battery systems, it is general in its theory and can be used toward numerous other targets and intended applications. This capability is unique, powerful, relevant to present and future electrolyte development, and without peer. It redefines electrolyte modeling for highly-complex contemporary systems, wherein significant steps have been taken to capture the reality of electrolyte behavior in the electrochemical cell environment. This capability can have a very positive impact on accelerating domestic battery development to support aggressive vehicle and energy goals in the 21st century.

  20. Experimental porcine model of complex fistula-in-ano

    PubMed Central

    A Ba-Bai-Ke-Re, Ma-Mu-Ti-Jiang; Chen, Hui; Liu, Xue; Wang, Yun-Hai

    2017-01-01

    AIM To establish and evaluate an experimental porcine model of fistula-in-ano. METHODS Twelve healthy pigs were randomly divided into two groups. Under general anesthesia, the experimental group underwent rubber band ligation surgery, and the control group underwent an artificial damage technique. Clinical magnetic resonance imaging (MRI) and histopathological evaluation were performed on the 38th d and 48th d after surgery in both groups, respectively. RESULTS There were no significant differences between the experimental group and the control group in general characteristics such as body weight, gender, and the number of fistula (P > 0.05). In the experimental group, 15 fistulas were confirmed clinically, 13 complex fistulas were confirmed by MRI, and 11 complex fistulas were confirmed by histopathology. The success rate in the porcine complex fistula model establishment was 83.33%. Among the 18 fistulas in the control group, 5 fistulas were confirmed clinically, 4 complex fistulas were confirmed by MRI, and 3 fistulas were confirmed by histopathology. The success rate in the porcine fistula model establishment was 27.78%. Thus, the success rate of the rubber band ligation group was significantly higher than the control group (P < 0.05). CONCLUSION Rubber band ligation is a stable and reliable method to establish complex fistula-in-ano models. Large animal models of complex anal fistulas can be used for the diagnosis and treatment of anal fistulas. PMID:28348488

  1. Model-based target and background characterization

    NASA Astrophysics Data System (ADS)

    Mueller, Markus; Krueger, Wolfgang; Heinze, Norbert

    2000-07-01

    Up to now most approaches of target and background characterization (and exploitation) concentrate solely on the information given by pixels. In many cases this is a complex and unprofitable task. During the development of automatic exploitation algorithms the main goal is the optimization of certain performance parameters. These parameters are measured during test runs while applying one algorithm with one parameter set to images that constitute of image domains with very different domain characteristics (targets and various types of background clutter). Model based geocoding and registration approaches provide means for utilizing the information stored in GIS (Geographical Information Systems). The geographical information stored in the various GIS layers can define ROE (Regions of Expectations) and may allow for dedicated algorithm parametrization and development. ROI (Region of Interest) detection algorithms (in most cases MMO (Man- Made Object) detection) use implicit target and/or background models. The detection algorithms of ROIs utilize gradient direction models that have to be matched with transformed image domain data. In most cases simple threshold calculations on the match results discriminate target object signatures from the background. The geocoding approaches extract line-like structures (street signatures) from the image domain and match the graph constellation against a vector model extracted from a GIS (Geographical Information System) data base. Apart from geo-coding the algorithms can be also used for image-to-image registration (multi sensor and data fusion) and may be used for creation and validation of geographical maps.

  2. Modeling and characterization of recompressed damaged materials

    SciTech Connect

    Becker, R; Cazamias, J U; Kalantar, D H; LeBlanc, M M; Springer, H K

    2004-02-11

    Experiments have been performed to explore conditions under which spall damage is recompressed with the ultimate goal of developing a predictive model. Spall is introduced through traditional gas gun techniques or with laser ablation. Recompression techniques producing a uniaxial stress state, such as a Hopkinson bar, do not create sufficient confinement to close the porosity. Higher stress triaxialities achieved through a gas gun or laser recompression can close the spall. Characterization of the recompressed samples by optical metallography and electron microscopy reveal a narrow, highly deformed process zone. At the higher pressures achieved in the gas gun, little evidence of spall remains other than differentially etched features in the optical micrographs. With the very high strain rates achieved with laser techniques there is jetting from voids and other signs of turbulent metal flow. Simulations of spall and recompression on micromechanical models containing a single void suggest that it might be possible to represent the recompression using models similar to those employed for void growth. Calculations using multiple, randomly distributed voids are needed to determine if such models will yield the proper behavior for more realistic microstructures.

  3. Resolving Nuclear Reactor Lifetime Extension Questions: A Combined Multiscale Modeling and Positron Characterization approach

    SciTech Connect

    Wirth, B; Asoka-Kumar, P; Denison, A; Glade, S; Howell, R; Marian, J; Odette, G; Sterne, P

    2004-04-06

    The objective of this work is to determine the chemical composition of nanometer precipitates responsible for irradiation hardening and embrittlement of reactor pressure vessel steels, which threaten to limit the operating lifetime of nuclear power plants worldwide. The scientific approach incorporates computational multiscale modeling of radiation damage and microstructural evolution in Fe-Cu-Ni-Mn alloys, and experimental characterization by positron annihilation spectroscopy and small angle neutron scattering. The modeling and experimental results are

  4. Experimental and numerical characterization of scalable cellulose nano-fiber composite

    NASA Astrophysics Data System (ADS)

    Barari, Bamdad

    Fiber-reinforced polymer composites have been used in recent years as an alternative to the conventional materials because of their low weight, high mechanical properties and low processing temperatures. Most polymer composites are traditionally made using reinforcing fibers such as carbon or glass fibers. However, there has been recent interest in making these reinforcing fibers from natural resources. The plant-derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties at the nano-scale that are much superior to the mechanical properties of the traditional natural fibers (such as jute, hemp, kenaf, etc) used in the natural-fiber based polymer composites. Because CNF is bio-based and biodegradable, it is an attractive 'green' alternative for use in automotive, aerospace, and other engineering applications. However, efforts to produce CNF based nano-composites, with successful scaling-up of the remarkable nanoscale properties of CNF, have not met with much success and form an active area of research. The main goals of this research are to characterize the scalable CNF based nano composites using experimental methods and to develop effective models for flow of polymeric resin in the CNF-based porous media used during the proposed manufacture of CNF nano-composites. In the CNF composite characterization section, scalable isotropic and anisotropic CNF composites were made from a porous CNF preforms created using a freeze drying process. Formation of the fibers during freeze-drying process can change the micro skeleton of the final preform structure as non-aligned or isotropic and aligned or anisotropic CNF. Liquid Composite Molding (LCM) processes form a set of liquid molding technologies that are used quite commonly for making the conventional polymer composites. An improvised vacuum-driven LCM process was used to make the CNF-based nanocomposites from CNF preforms using a 'green' epoxy resin with high bio-content. Under the topic of

  5. Modeling and characterization of multiple coupled lines

    NASA Astrophysics Data System (ADS)

    Tripathi, Alok

    1999-10-01

    A configuration-oriented circuit model for multiple coupled lines in an inhomogeneous medium is developed and presented in this thesis. This circuit model consists of a network of uncoupled transmission lines and is readily modeled with simulation tools like LIBRA© and SPICE ©. It provides an equivalent circuit representation which is simple and topologically meaningful as compared to the model based on modal decomposition. The configuration-oriented model is derived by decomposing the immittance matrices associated with an n coupled line 2n-port system. Time- and frequency- domain simulations of typical coupled line multiports are included to exemplify the utility of the model. The model is useful for the simulation and design of general single and multilayer coupled line components, such as filters and couplers, and for the investigation of signal integrity issues including crosstalk in interconnects associated with high speed digital and mixed signal electronic modules and packages. It is shown that multiconductor lossless structures in an inhomogeneous medium can be characterized by multiport time-domain reflection (MR) measurements. A synthesis technique of an equivalent lossless (non-dispersive) uniform multiconductor n coupled lines (UMCL) 2n-port system from the measured discrete time-domain reflection response is presented. This procedure is based on the decomposition of the characteristic immittance matrices of the UMCL in terms of partial mode immittance matrices. The decomposition scheme leads to the discrete transition matrix function of a UMCL 2n-port system. This in turn establishes a relationship between the normal-mode parameters of the UMCL and the measured impulse reflection and transmission response. Equivalence between the synthesis procedure presented in this thesis and the solution of a special form of an algebraic Riccati matrix equation whose solution can lead to the normal-mode parameters and a real termination network is illustrated. In

  6. Team Modelling: Review of Experimental Scenarios and Computational Models

    DTIC Science & Technology

    2006-09-01

    designed to be) Yes Yes No Yes (Model individuals, or sub-teams - groups of individuals.) 19 C3TRACE* (Command, Control, and Communicatio ...radar sensors, satellites, c2 structures, jammers, communicatio ns networks and devices, and fire support) Depends (EADSIM normally models at...researchers and corporations around the world. Soar has been under development for over 20 years and has been used in major military

  7. A numerical cloud model for the support of laboratory experimentation

    NASA Technical Reports Server (NTRS)

    Hagen, D. E.

    1979-01-01

    A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.

  8. Experimental models of renal disease and the cardiovascular system.

    PubMed

    Grossman, Rebecca C

    2010-11-26

    Cardiovascular disease is a leading cause of death among patients with end stage renal failure. Animal models have played a crucial role in teasing apart the complex pathological processes involved. This review discusses the principles of using animal models, the history of their use in the study of renal hypertension, the controversies arising from experimental models of non-hypertensive uraemic cardiomyopathy and the lessons learned from these models, and highlights important areas of future research in this field, including de novo cardiomyopathy secondary to renal transplantation.

  9. Experimental bounds on collapse models from gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Carlesso, Matteo; Bassi, Angelo; Falferi, Paolo; Vinante, Andrea

    2016-12-01

    Wave function collapse models postulate a fundamental breakdown of the quantum superposition principle at the macroscale. Therefore, experimental tests of collapse models are also fundamental tests of quantum mechanics. Here, we compute the upper bounds on the collapse parameters, which can be inferred by the gravitational wave detectors LIGO, LISA Pathfinder, and AURIGA. We consider the most widely used collapse model, the continuous spontaneous localization (CSL) model. We show that these experiments exclude a huge portion of the CSL parameter space, the strongest bound being set by the recently launched space mission LISA Pathfinder. We also rule out a proposal for quantum-gravity-induced decoherence.

  10. Seismo-acoustic ray model benchmarking against experimental tank data.

    PubMed

    Camargo Rodríguez, Orlando; Collis, Jon M; Simpson, Harry J; Ey, Emanuel; Schneiderwind, Joseph; Felisberto, Paulo

    2012-08-01

    Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications.

  11. Microbiome and Asthma: What Have Experimental Models Already Taught Us?

    PubMed Central

    Bonamichi-Santos, R.; Aun, M. V.; Agondi, R. C.; Kalil, J.; Giavina-Bianchi, P.

    2015-01-01

    Asthma is a chronic inflammatory disease that imposes a substantial burden on patients, their families, and the community. Although many aspects of the pathogenesis of classical allergic asthma are well known by the scientific community, other points are not yet understood. Experimental asthma models, particularly murine models, have been used for over 100 years in order to better understand the immunopathology of asthma. It has been shown that human microbiome is an important component in the development of the immune system. Furthermore, the occurrence of many inflammatory diseases is influenced by the presence of microbes. Again, experimental models of asthma have helped researchers to understand the relationship between the microbiome and respiratory inflammation. In this review, we discuss the evolution of murine models of asthma and approach the major studies involving the microbiome and asthma. PMID:26266269

  12. Numerical and experimental verification of physical blast thermodynamic model

    NASA Astrophysics Data System (ADS)

    Chorowski, Maciej; Iluk, Artur; Grabowski, Maciej; Jędrusyna, Artur

    2015-12-01

    Helium inventory in big cryogenic systems may be of the order of hundred tons. During the warm up of the machine the helium has to be stored in warm pressurized tanks. A potential rupture of the tank may create a danger to adjacent objects. In order to formulate recommendations concerning storage of compressed gases in close vicinity of nuclear installations, a thermodynamic model of physical blast has been formulated. The model has been experimentally verified in a laboratory scale test rig. To simulate rupture of compressed gas storage tanks, plastic tanks have been used. Scaling of the results to real cases like ITER compressed gas inventory requires good understanding of potential rupture of high volume gas storage tanks. Numerical model of tanks rupture have been elaborated and verified against experimental results. The model allows scaling of thermodynamic simplified description to real gas storage installations.

  13. Experimental and Measurement Uncertainty Associated with Characterizing Slurry Mixing Performance of Pulsating Jets at Multiple Scales

    SciTech Connect

    Bamberger, Judith A.; Piepel, Gregory F.; Enderlin, Carl W.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2015-09-10

    Understanding how uncertainty manifests itself in complex experiments is important for developing the testing protocol and interpreting the experimental results. This paper describes experimental and measurement uncertainties, and how they can depend on the order of performing experimental tests. Experiments with pulse-jet mixers in tanks at three scales were conducted to characterize the performance of transient-developing periodic flows in Newtonian slurries. Other test parameters included the simulant, solids concentration, and nozzle exit velocity. Critical suspension velocity and cloud height were the metrics used to characterize Newtonian slurry flow associated with mobilization and mixing. During testing, near-replicate and near-repeat tests were conducted. The experimental results were used to quantify the combined experimental and measurement uncertainties using standard deviations and percent relative standard deviations (%RSD) The uncertainties in critical suspension velocity and cloud height tend to increase with the values of these responses. Hence, the %RSD values are the more appropriate summary measure of near-replicate testing and measurement uncertainty.

  14. Experimental validation of a solar-chimney power plant model

    NASA Astrophysics Data System (ADS)

    Fathi, Nima; Wayne, Patrick; Trueba Monje, Ignacio; Vorobieff, Peter

    2016-11-01

    In a solar chimney power plant system (SCPPS), the energy of buoyant hot air is converted to electrical energy. SCPPS includes a collector at ground level covered with a transparent roof. Solar radiation heats the air inside and the ground underneath. There is a tall chimney at the center of the collector, and a turbine located at the base of the chimney. Lack of detailed experimental data for validation is one of the important issues in modeling this type of power plants. We present a small-scale experimental prototype developed to perform validation analysis for modeling and simulation of SCCPS. Detailed velocity measurements are acquired using particle image velocimetry (PIV) at a prescribed Reynolds number. Convection is driven by a temperature-controlled hot plate at the bottom of the prototype. Velocity field data are used to perform validation analysis and measure any mismatch of the experimental results and the CFD data. CFD Code verification is also performed, to assess the uncertainly of the numerical model with respect to our grid and the applied mathematical model. The dimensionless output power of the prototype is calculated and compared with a recent analytical solution and the experimental results.

  15. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  16. Experimental characterization and modeling for the growth rate of oxide coatings from liquid solutions of metalorganic precursors by ultrasonic pulsed injection in a cold-wall low-pressure reactor

    NASA Astrophysics Data System (ADS)

    Krumdieck, Susan Pran

    Several years ago, a method for depositing ceramic coatings called the Pulsed-MOCVD system was developed by the Raj group at Cornell University in association with Dr. Harvey Berger and Sono-Tek Corporation. The process was used to produce epitaxial thin films of TiO2 on sapphire substrates under conditions of low pressure, relatively high temperature, and very low growth rate. The system came to CU-Boulder when Professor Raj moved here in 1997. It is quite a simple technique and has several advantages over typical CVD systems. The purpose of this dissertation is two-fold; (1) understand the chemical processes, thermodynamics, and kinetics of the Pulsed-MOCVD technique, and (2) determine the possible applications by studying the film structure and morphology over the entire range of deposition conditions. Polycrystalline coatings of ceramic materials were deposited on nickel in the low-pressure, cold-wall reactor from metalorganic precursors, titanium isopropoxide, and a mixture of zirconium isopropoxide and yttria isopropoxide. The process utilized pulsed liquid injection of a dilute precursor solution with atomization by ultrasonic nozzle. Thin films (less than 1mum) with fine-grained microstructure and thick coatings (up to 1mum) with columnar-microstructure were deposited on heated metal substrates by thermal decomposition of a single liquid precursor. The influence of each of the primary deposition parameters, substrate temperature, total flow rate, and precursor concentration on growth rate, conversion efficiency and morphology were investigated. The operating conditions were determined for kinetic, mass transfer, and evaporation process control regimes. Kinetic controlled deposition was found to produce equiaxed morphology while mass transfer controlled deposition produced columnar morphology. A kinetic model of the deposition process was developed and compared to data for deposition of TiO2 from Ti(OC3H7) 4 precursor. The results demonstrate that growth

  17. Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2014-09-01

    In this paper, an experimental characterization of the dynamical properties of five autonomous chaotic oscillators, based on bipolar-junction transistors and obtained de-novo through a genetic algorithm in a previous study, is presented. In these circuits, a variable resistor connected in series to the DC voltage source acts as control parameter, for a range of which the largest Lyapunov exponent, correlation dimension, approximate entropy, and amplitude variance asymmetry are calculated, alongside bifurcation diagrams and spectrograms. Numerical simulations are compared to experimental measurements. The oscillators can generate a considerable variety of regular and chaotic sine-like and spike-like signals.

  18. Experimental Models of Ocular Infection with Toxoplasma Gondii

    PubMed Central

    Dukaczewska, Agata; Tedesco, Roberto; Liesenfeld, Oliver

    2015-01-01

    Ocular toxoplasmosis is a vision-threatening disease and the major cause of posterior uveitis worldwide. In spite of the continuing global burden of ocular toxoplasmosis, many critical aspects of disease including the therapeutic approach to ocular toxoplasmosis are still under debate. To assist in addressing many aspects of the disease, numerous experimental models of ocular toxoplasmosis have been established. In this article, we present an overview on in vitro, ex vivo, and in vivo models of ocular toxoplasmosis available to date. Experimental studies on ocular toxoplasmosis have recently focused on mice. However, the majority of murine models established so far are based on intraperitoneal and intraocular infection with Toxoplasma gondii. We therefore also present results obtained in an in vivo model using peroral infection of C57BL/6 and NMRI mice that reflects the natural route of infection and mimics the disease course in humans. While advances have been made in ex vivo model systems or larger animals to investigate specific aspects of ocular toxoplasmosis, laboratory mice continue to be the experimental model of choice for the investigation of ocular toxoplasmosis. PMID:26716018

  19. Experimental Models of Ocular Infection with Toxoplasma Gondii.

    PubMed

    Dukaczewska, Agata; Tedesco, Roberto; Liesenfeld, Oliver

    2015-12-01

    Ocular toxoplasmosis is a vision-threatening disease and the major cause of posterior uveitis worldwide. In spite of the continuing global burden of ocular toxoplasmosis, many critical aspects of disease including the therapeutic approach to ocular toxoplasmosis are still under debate. To assist in addressing many aspects of the disease, numerous experimental models of ocular toxoplasmosis have been established. In this article, we present an overview on in vitro, ex vivo, and in vivo models of ocular toxoplasmosis available to date. Experimental studies on ocular toxoplasmosis have recently focused on mice. However, the majority of murine models established so far are based on intraperitoneal and intraocular infection with Toxoplasma gondii. We therefore also present results obtained in an in vivo model using peroral infection of C57BL/6 and NMRI mice that reflects the natural route of infection and mimics the disease course in humans. While advances have been made in ex vivo model systems or larger animals to investigate specific aspects of ocular toxoplasmosis, laboratory mice continue to be the experimental model of choice for the investigation of ocular toxoplasmosis.

  20. Impact of model defect and experimental uncertainties on evaluated output

    NASA Astrophysics Data System (ADS)

    Neudecker, D.; Capote, R.; Leeb, H.

    2013-09-01

    One of the current major problems in nuclear data evaluation is the unreasonably small evaluated uncertainties often obtained. These small uncertainties are partly attributed to missing correlations of experimental uncertainties as well as to deficiencies of the model employed for the prior information. In this article, both uncertainty sources are included in an evaluation of 55Mn cross-sections for incident neutrons. Their impact on the evaluated output is studied using a prior obtained by the Full Bayesian Evaluation Technique and a prior obtained by the nuclear model program EMPIRE. It is shown analytically and by means of an evaluation that unreasonably small evaluated uncertainties can be obtained not only if correlated systematic uncertainties of the experiment are neglected but also if prior uncertainties are smaller or about the same magnitude as the experimental ones. Furthermore, it is shown that including model defect uncertainties in the evaluation of 55Mn leads to larger evaluated uncertainties for channels where the model is deficient. It is concluded that including correlated experimental uncertainties is equally important as model defect uncertainties, if the model calculations deviate significantly from the measurements.

  1. Experimental verification of a pendant ice formation model

    SciTech Connect

    Szilder, K.; Forest, T.; Lozowski, E.P.

    1995-12-31

    A random walk model has been developed to predict the growth of pendant ice formations and icicles. The model allows an efficient representation of water flow along the surface, dripping from lower extremities, and freezing of water. Using a simple analysis, the microscopic model parameters are expressed as functions of the macroscopic physical conditions. To verify the random walk model, a series of laboratory experiments was conducted in an icing wind tunnel. A horizontal thin wire was exposed to vertically falling supercooled spray and the formation of icicles underneath the wire was examined. Model verification based on a comparison with the experimental results demonstrates quantitatively and qualitatively the credibility and value of this model approach. Future model development will involve the quantitative simulation of ice accretion on objects of complex geometry, such as offshore structures, ships, and transmission lines.

  2. Systematic integration of experimental data and models in systems biology

    PubMed Central

    2010-01-01

    Background The behaviour of biological systems can be deduced from their mathematical models. However, multiple sources of data in diverse forms are required in the construction of a model in order to define its components and their biochemical reactions, and corresponding parameters. Automating the assembly and use of systems biology models is dependent upon data integration processes involving the interoperation of data and analytical resources. Results Taverna workflows have been developed for the automated assembly of quantitative parameterised metabolic networks in the Systems Biology Markup Language (SBML). A SBML model is built in a systematic fashion by the workflows which starts with the construction of a qualitative network using data from a MIRIAM-compliant genome-scale model of yeast metabolism. This is followed by parameterisation of the SBML model with experimental data from two repositories, the SABIO-RK enzyme kinetics database and a database of quantitative experimental results. The models are then calibrated and simulated in workflows that call out to COPASIWS, the web service interface to the COPASI software application for analysing biochemical networks. These systems biology workflows were evaluated for their ability to construct a parameterised model of yeast glycolysis. Conclusions Distributed information about metabolic reactions that have been described to MIRIAM standards enables the automated assembly of quantitative systems biology models of metabolic networks based on user-defined criteria. Such data integration processes can be implemented as Taverna workflows to provide a rapid overview of the components and their relationships within a biochemical system. PMID:21114840

  3. Behavioral Characterization of Mouse Models of Neuroferritinopathy

    PubMed Central

    Buffoli, Barbara; Rodella, Luigi F.; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca

    2015-01-01

    Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing

  4. The periodic focusing ion funnel: theory, design, and experimental characterization by high-resolution ion mobility-mass spectrometry.

    PubMed

    Fort, Kyle L; Silveira, Joshua A; Russell, David H

    2013-10-15

    Simulation-based development and experimental characterization of a DC-only ion funnel is described herein. Radial ion confinement is achieved via periodic focusing whereby a collisionally dampened effective potential is generated in the inertial frame of an ion traversing the device with appreciable velocity. The new device, termed a periodic focusing ion funnel (PF IF), provides an efficient alternative to the rf ion funnel providing high ion transmission with fewer electrodes, simplified electrical circuitry, and reduced power supply requirements. The utility of the PF IF for structural ion mobility-mass spectrometry (IM-MS) studies is demonstrated using model peptide ions (bradykinin, gramicidin S, and trpzip 1).

  5. Theories linguistiques, modeles informatiques, experimentation psycholinguistique (Linguistic Theories, Information-Processing Models, Psycholinguistic Experimentation)

    ERIC Educational Resources Information Center

    Dubois, Daniele

    1975-01-01

    Delineates and elaborates upon the underlying psychological postulates in linguistic and information-processing models, and shows the interdependence of psycholinguistics and linguistic analysis. (Text is in French.) (DB)

  6. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    SciTech Connect

    Uhlig, W. Casey; Heine, Andreas

    2015-11-14

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signal to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.

  7. Experimental characterization of the lower hybrid wave field on the first pass using a magnetic probe array

    NASA Astrophysics Data System (ADS)

    Shinya, T.; Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Takase, Y.

    2016-10-01

    Experimental characterization of the lower hybrid (LH) wave propagation from the launcher to the core plasma is important to validate an antenna spectrum model and to identify parasitic wave-edge plasma interactions occurring in front of the launcher. On Alcator C-Mod, the wave frequency spectrum and dominant parallel wavenumber are characterized with two probe arrays installed near the edge plasma. The first one is mounted on a radially movable structure that is about 108 deg toroidally away from the launcher. A phasing scan experiment at moderate density suggests a resonance-cone propagation of the launched slow LH wave with a finite spectral width. As plasma density is raised, the measured power decreases, correlated with the observed loss of efficiency. Recently, the second probe array with an increased number of probes has been installed on a limiter that is 54 deg. toroidally away from the launcher, which is expected to be dominantly sensitive to the wave-field directly leaving the launcher. An initial measurement shows that the probe array detects a coherent wave field. A full-wave model to evaluate the wave electric-field pattern in front of the probe array is under development. If available, further experimental and modeling results will be presented. Supported by USDoE Award(s) DE-FC02-99ER54512 and Japan/U.S. Cooperation in Fusion Research and Development.

  8. Regression Model Optimization for the Analysis of Experimental Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2009-01-01

    A candidate math model search algorithm was developed at Ames Research Center that determines a recommended math model for the multivariate regression analysis of experimental data. The search algorithm is applicable to classical regression analysis problems as well as wind tunnel strain gage balance calibration analysis applications. The algorithm compares the predictive capability of different regression models using the standard deviation of the PRESS residuals of the responses as a search metric. This search metric is minimized during the search. Singular value decomposition is used during the search to reject math models that lead to a singular solution of the regression analysis problem. Two threshold dependent constraints are also applied. The first constraint rejects math models with insignificant terms. The second constraint rejects math models with near-linear dependencies between terms. The math term hierarchy rule may also be applied as an optional constraint during or after the candidate math model search. The final term selection of the recommended math model depends on the regressor and response values of the data set, the user s function class combination choice, the user s constraint selections, and the result of the search metric minimization. A frequently used regression analysis example from the literature is used to illustrate the application of the search algorithm to experimental data.

  9. Drilling forces model for lunar regolith exploration and experimental validation

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Ding, Xilun

    2017-02-01

    China's Chang'e lunar exploration project aims to sample and return lunar regolith samples at a minimum penetration depth of 2 m in 2017. Unlike such tasks on the Earth, automated drilling and sampling missions on the Moon are more complicated. Therefore, a delicately designed drill tool is required to minimize operational cost and enhance reliability. Penetration force and rotational torque are two critical parameters in designing the drill tool. In this paper, a novel numerical model for predicting penetration force and rotational torque in the drilling of lunar regolith is proposed. The model is based on quasi-static Mohr-Coulomb soil mechanics and explicitly describes the interaction between drill tool and lunar regolith. Geometric features of drill tool, mechanical properties of lunar regolith, and drilling parameters are taken into consideration in the model. Consequently, a drilling test bed was developed, and experimental penetration force and rotational torque were obtained in penetrating a lunar regolith simulant with different drilling parameters. Finally, theoretical and experimental results were compared to validate the proposed model. Experimental results indicated that the numerical model had good accuracy and was effective in predicting the penetration force and rotational torque in drilling the lunar regolith simulant.

  10. Optimization of Regression Models of Experimental Data Using Confirmation Points

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2010-01-01

    A new search metric is discussed that may be used to better assess the predictive capability of different math term combinations during the optimization of a regression model of experimental data. The new search metric can be determined for each tested math term combination if the given experimental data set is split into two subsets. The first subset consists of data points that are only used to determine the coefficients of the regression model. The second subset consists of confirmation points that are exclusively used to test the regression model. The new search metric value is assigned after comparing two values that describe the quality of the fit of each subset. The first value is the standard deviation of the PRESS residuals of the data points. The second value is the standard deviation of the response residuals of the confirmation points. The greater of the two values is used as the new search metric value. This choice guarantees that both standard deviations are always less or equal to the value that is used during the optimization. Experimental data from the calibration of a wind tunnel strain-gage balance is used to illustrate the application of the new search metric. The new search metric ultimately generates an optimized regression model that was already tested at regression model independent confirmation points before it is ever used to predict an unknown response from a set of regressors.

  11. Experimental, statistical, and biological models of radon carcinogenesis

    SciTech Connect

    Cross, F.T.

    1991-09-01

    Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig.

  12. Experimental Validation of a Pulse Tube Cfd Model

    NASA Astrophysics Data System (ADS)

    Taylor, R. P.; Nellis, G. F.; Klein, S. A.; Radebaugh, R.; Lewis, M.; Bradley, P.

    2010-04-01

    Computational fluid dynamic (CFD) analysis has been applied by various authors to study the processes occurring in the pulse tube cryocooler and carry out parametric design and optimization. However, a thorough and quantitative validation of the CFD model predications against experimental data has not been accomplished. This is in part due to the difficulty associated with measuring the specific quantities of interest (e.g., internal enthalpy flows and acoustic power) rather than generic system performance (e.g., cooling power). This paper presents the experimental validation of a previously published two-dimensional, axisymmetric CFD model of the pulse tube and its associated flow transitions. The test facility designed for this purpose is unique in that it allows the precise measurement of the cold end acoustic power, regenerator loss, and cooling power. Therefore, it allows the separate and precise measurement of both the pulse tube loss and the regenerator loss. The experimental results are presented for various pulse tube and flow transition configurations operating at a cold end temperature of 80 K over a range of pressure ratios. The comparison of the model prediction to the experimental data is presented with discussion.

  13. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

  14. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  15. Hosting infection: experimental models to assay Candida virulence.

    PubMed

    Maccallum, Donna M

    2012-01-01

    Although normally commensals in humans, Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata, and Candida krusei are capable of causing opportunistic infections in individuals with altered physiological and/or immunological responses. These fungal species are linked with a variety of infections, including oral, vaginal, gastrointestinal, and systemic infections, with C. albicans the major cause of infection. To assess the ability of different Candida species and strains to cause infection and disease requires the use of experimental infection models. This paper discusses the mucosal and systemic models of infection available to assay Candida virulence and gives examples of some of the knowledge that has been gained to date from these models.

  16. Fabrication, characterization, and modeling of microvascular composites

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas J.

    Composite laminates of glass fiber and epoxy pre-preg were fabricated with microvascular channels. The channels were created using polylactic acid (PLA) filament that evaporates at a temperature of 392 °F (200 °C) above the resin cure temperature of 250 °F (121 °C). After the composite is cured, the panel was removed from the oven and allowed to cool to room temperature. The panel is then reheated to 392 °F to vaporize the filament, leaving a cylindrical channel. A microvascular channel can be used for withdrawing heat, damage detection and self-healing. However, increasing the temperatures of the laminate above the cure temperature of the resin causes excess cross linking, potentially decreasing the mechanical properties. Tensile and flexural mechanical tests were performed on composite specimens and tensile tests were performed on neat resin specimens. A three-dimensional finite element model (FEM) was developed to study the progressive deformation and damage mechanics under tensile loading. The load carrying capacity of the microvascular composite was shown to decrease by 40% from a standard composite material. This paper will present the details of the fabrication, characterization and modeling techniques that were used in this study.

  17. Characterization of study focus of the Brazilian academic-scientific production about experimentation in Physics Teaching

    NASA Astrophysics Data System (ADS)

    Wesendonk, F. S.; Terrazzan, E. A.

    2016-12-01

    In this article, we presented a characterization of the recent academic and scientific literature on experiments in Physics Education in terms of focus and research intentions and results built through these investigations. For this, we used as a source of information 10 national Academic and Scientific Journals available on websites. By consulting these journals, we identified that 147 papers published from 2009 to 2013 had as their main focus the experimental research. We classified the Works in categories established a priori and subcategories established a posteriori. At the end, we found out that few articles deal with this issue (9%). Moreover, in most productions there is a superficial discussion of theoretical studies on the use of experimentation in teaching. This makes the contribution of these productions for the development of conceptual discussions about the potential and limited use of experimentation in Physics Education to be relatively small.

  18. Experimental characterization of veering crossing and lock-in in simple mechanical systems

    NASA Astrophysics Data System (ADS)

    Giannini, O.; Sestieri, A.

    2016-05-01

    In this paper, mode veering, crossing and lock-in phenomena are experimentally analyzed and characterized. Their occurrence is generally found, under different conditions, when there is a parameter variation in the system that produces a change in its behaviour. It often happens that, when the natural frequencies of two modes approach each other, they can cross, veer and eventually present a lock-in state. The problem is analytically investigated for general weakly-coupled two-degrees of freedom systems and experiments, appropriately designed to highlight these phenomena, are presented. In particular, experimental evidence of the damping-dependent transition from veering to crossing is investigated for a two beam system, and experimental lock-in is recalled to show how the gyroscopic systems become unstable when two coupled mechanical parts have the same eigenvalue.

  19. Characterizing Molecular Structure by Combining Experimental Measurements with Density Functional Theory Computations

    NASA Astrophysics Data System (ADS)

    Lopez-Encarnacion, Juan M.

    2016-06-01

    In this talk, the power and synergy of combining experimental measurements with density functional theory computations as a single tool to unambiguously characterize the molecular structure of complex atomic systems is shown. Here, we bring three beautiful cases where the interaction between the experiment and theory is in very good agreement for both finite and extended systems: 1) Characterizing Metal Coordination Environments in Porous Organic Polymers: A Joint Density Functional Theory and Experimental Infrared Spectroscopy Study 2) Characterization of Rhenium Compounds Obtained by Electrochemical Synthesis After Aging Process and 3) Infrared Study of H(D)2 + Co4+ Chemical Reaction: Characterizing Molecular Structures. J.M. López-Encarnación, K.K. Tanabe, M.J.A. Johnson, J. Jellinek, Chemistry-A European Journal 19 (41), 13646-13651 A. Vargas-Uscategui, E. Mosquera, J.M. López-Encarnación, B. Chornik, R. S. Katiyar, L. Cifuentes, Journal of Solid State Chemistry 220, 17-21

  20. Colloids and Radionuclide Transport: A Field, Experimental and Modeling Effort

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Zavarin, M.; Sylwester, E. E.; Allen, P. G.; Williams, R. W.; Kersting, A. B.

    2002-05-01

    Natural inorganic colloids (< 1 micron particles) found in groundwater can sorb low-solubility actinides and may provide a pathway for transport through geological aquifers. The importance of colloid-facilitated transport to the transport of low-solubility actinides, such as Pu, is still not well understood. In an effort to better understand the dominant geochemical mechanisms that control Pu transport, we have performed a series of sorption/desorption experiments using mineral colloids. We focused on natural colloidal minerals present in water samples collected from both saturated and vadose zone waters at the Nevada Test Site. These minerals include zeolites, clays, silica, Mn-oxides, Fe-oxides, and calcite. X-ray absorption fine-structure spectroscopy ( both XANES and EXAFS) was performed in order to characterize the speciation of sorbed plutonium. The XANES spectra show that only Pu(IV) was detected (within experimental error) on these mineral surfaces when the starting Pu oxidation state was +5, indicating that Pu(V) was reduced to Pu(IV) during sorption. The EXAFS detected Pu-M and Pu-C interactions (where M=Fe, Mn, or Si) indicating Pu(IV) surface complexation along with carbonate ternary complex formation on most of the minerals tested. Although the plutonium sorption as Pu(IV) species is mineral independent, the actual sorption paths are different for different minerals. The sorption rates were compared to the rates of plutonium disproportionation under similar conditions. The batch sorption/desorption experiments of Pu(IV) and Pu(V) onto colloidal zeolite (clinoptilolite, colloids particle size 171 ñ 25 nm) were conducted in synthetic groundwater (similar to J-13, Yucca Mountain standard) with a pH range from 4 to 10 and initial plutonium concentration of 10-9 M. The results show that Pu(IV) sorption takes place within an hour, while the rates of Pu(V) sorption onto the colloids is much slower and mineral dependent. The kinetic results from the batch

  1. Combined experimental-theoretical characterization of the hydrido-cobaloxime [HCo(dmgH)2(PnBu3)].

    PubMed

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Andreiadis, Eugen S; Fontecave, Marc; Field, Martin J; Artero, Vincent

    2012-07-02

    A combined theoretical and experimental approach has been employed to characterize the hydrido-cobaloxime [HCo(dmgH)(2)(PnBu(3))] compound. This complex was originally investigated by Schrauzer et al. [Schrauzer et al., J. Am. Chem. Soc. 1971, 93,1505] and has since been referred to as a key, stable analogue of the hydride intermediate involved in hydrogen evolution catalyzed by cobaloxime compounds [Artero, V. et al. Angew. Chem., Int. Ed. 2011, 50, 7238-7266]. We employed quantum chemical calculations, using density functional theory and correlated RI-SCS-MP2 methods, to characterize the structural and electronic properties of the compound and observed important differences between the calculated (1)H NMR spectrum and that reported in the original study by Schrauzer and Holland. To calibrate the theoretical model, the stable hydrido tetraamine cobalt(III) complex [HCo(tmen)(2)(OH(2))](2+) (tmen = 2,3-dimethyl-butane-2,3-diamine) [Rahman, A. F. M. M. et al. Chem. Commun. 2003, 2748-2749] was subjected to a similar analysis, and, in this case, the calculated results agreed well with those obtained experimentally. As a follow-up to the computational work, the title hydrido-cobaloxime compound was synthesized and recharacterized experimentally, together with the Co(I) derivative, giving results that were in agreement with the theoretical predictions.

  2. Transvaginal ultrasound ovarian diathermy: sheep as an experimental model

    PubMed Central

    2012-01-01

    Background Some techniques of transvaginal ovarian drilling have been previously described. Nevertheless a monopolar transvaginal ovarian cauterization, that use the expertise and safety of transvaginal puncture for oocyte captation seems to be an easier and feasible approach. The aim of this study was to develop a minimally invasive ovarian cauterization technique under transvaginal ultrasound control, and to evaluate the safety of the transvaginal ovarian monopolar cauterization, female sheep at reproductive age were used as an experimental model. Findings An experimental study was performed in a university research center. Seventeen female sheep (15 Corriedale e 2 Suffolk) in reproductive age were submitted to transvaginal ovarian cauterization with a monopolar Valleylab Force 2 electrocautery. Macroscopic and microscopic lesions were assessed. Ovarian size were 1.31 cm2 ± 0,43 (Corriedale) and 3.41 cm2 ± 0,64 (Suffolk). From 30 ovaries from Corriedale sheep punctured, only 3 were cauterized, presenting macroscopic and typical microscopic lesion. In the Suffolk sheep group, only one ovary was cauterized. No lesion could be found in the needle path. Conclusions This is the first experimental animal model described for ovarian cauterization needle guided by transvaginal ultrasound. The sheep does not seem to be the ideal animal model to study this technique. Another animal model, whose ovaries are better identified by transvaginal ultrasound should be sought for this technique, theoretically less invasive, before it could be offered safely to women with polycystic ovary syndrome. PMID:22243998

  3. Ionospheric topside models compared with experimental electron density profiles

    NASA Astrophysics Data System (ADS)

    Coisson, P.; Radicella, S. M.

    2003-04-01

    In the last couple of years an increasing number of topside electron density profiles has been made available through the Internet to the scientific community. This kind of data is particularly important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work analyses the behavior of the NeQuick and IRI models, adopted by the ITU-R recommendation P.531-5, with respect to the topside electron density profiles available in the databases of ISIS2, IK19 and Cosmos-1809 satellites. Experimental total electron content (TEC) from the F2 peak up to satellite height and electron densities at fixed heights above that peak have been compared with values computed with the models. A wide range of different conditions (solar activity, local time, geographical and geomagnetic position has been considered). The analysis done allows to point out the behavior of the models and the improvement needed to allow a better reproduction of the experimental results.

  4. SHEEP AS AN EXPERIMENTAL MODEL FOR BIOMATERIAL IMPLANT EVALUATION

    PubMed Central

    SARTORETTO, SUELEN CRISTINA; UZEDA, MARCELO JOSÉ; MIGUEL, FÚLVIO BORGES; NASCIMENTO, JHONATHAN RAPHAELL; ASCOLI, FABIO; CALASANS-MAIA, MÔNICA DIUANA

    2016-01-01

    ABSTRACT Objective: Based on a literature review and on our own experience, this study proposes sheep as an experimental model to evaluate the bioactive capacity of bone substitute biomaterials, dental implant systems and orthopedics devices. The literature review covered relevant databases available on the Internet from 1990 until to date, and was supplemented by our own experience. Methods: For its resemblance in size and weight to humans, sheep are quite suitable for use as an experimental model. However, information about their utility as an experimental model is limited. The different stages involving sheep experiments were discussed, including the care during breeding and maintenance of the animals obtaining specimens for laboratory processing, and highlighting the unnecessary euthanasia of animals at the end of study, in accordance to the guidelines of the 3Rs Program. Results: All experiments have been completed without any complications regarding the animals and allowed us to evaluate hypotheses and explain their mechanisms. Conclusion: The sheep is an excellent animal model for evaluation of biomaterial for bone regeneration and dental implant osseointegration. From an ethical point of view, one sheep allows for up to 12 implants per animal, permitting to keep them alive at the end of the experiments. Level of Evidence II, Retrospective Study. PMID:28149193

  5. The hamster (Mesocricetus auratus) as an experimental model of toxocariasis: histopathological, immunohistochemical, and immunoelectron microscopic findings.

    PubMed

    da Silva, Ana Maria Gonçalves; Chieffi, Pedro Paulo; da Silva, Wellington Luiz Ferreira; Kanashiro, Edite Hatsumi Yamashiro; Rubinsky-Elefant, Guita; Cunha-Neto, Edécio; Mairena, Eliane Conti; De Brito, Thales

    2015-03-01

    Toxocariasis is a globally distributed parasitic infection caused by the larval stage of Toxocara spp. The typical natural hosts of the parasite are dogs and cats, but humans can be infected by the larval stage of the parasite after ingesting embryonated eggs in soil or from contaminated hands or fomites. The migrating larvae are not adapted to complete their life cycle within accidental or paratenic hosts like humans and laboratory animals, respectively, but they are capable of invading viscera or other tissues where they may survive and induce disease. In order to characterize hamsters (Mesocricetus auratus) as a model for Toxocara canis infection, histopathological and immunohistochemistry procedures were used to detect pathological lesions and the distribution of toxocaral antigens in the liver, lungs, and kidneys of experimentally infected animals. We also attempted to characterize the immunological parameters of the inflammatory response and correlate them with the histopathological findings. In the kidney, a correlation between glomerular changes and antigen deposits was evaluated using immunoelectron microscopy. The hamster is an adequate model of experimental toxocariasis for short-term investigations and has a good immunological and pathological response to the infection. Lung and liver manifestations of toxocariasis in hamsters approximated those in humans and other experimental animal models. A mixed Th2 immunological response to T. canis infection was predominant. The hamster model displayed a progressive rise of anti-toxocaral antibodies with the formation of immune complexes. Circulating antigens, immunoglobulin, and complement deposits were detected in the kidney without the development of a definite immune complex nephropathy.

  6. Experimental characterization of cement-bentonite interaction using core infiltration techniques and 4D computed tomography

    NASA Astrophysics Data System (ADS)

    Dolder, F.; Mäder, U.; Jenni, A.; Schwendener, N.

    Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel drums, and as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predict significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this project is to characterize and quantify the cement/bentonite skin effects spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used, which allows performing X-ray computed tomography (CT) periodically without interrupting a running experiment. A pre-saturated cylindrical MX-80 bentonite sample (1920 kg/m3 average wet density) is subjected to a confining pressure as a constant total pressure boundary condition. The infiltration of a hyperalkaline (pH 13.4), artificial OPC (ordinary Portland cement) pore water into the bentonite plug alters the mineral assemblage over time as an advancing reaction front. The related changes in X-ray attenuation values are related to changes in phase densities, porosity and local bulk density and are tracked over time periodically by non-destructive CT scans. Mineral precipitation is observed in the inflow filter. Mineral alteration in the first millimeters of the bentonite sample is clearly detected and the reaction front is presently progressing with an average linear velocity that is 8 times slower than that for anions. The reaction zone is characterized by a higher X-ray attenuation compared to the signal of the pre-existing mineralogy. Chemical analysis of the outflow fluid showed initially elevated anion and cation concentrations compared to the infiltration fluid due to anion exclusion effects related to compaction of

  7. Experimental characterization of damage at countersunk bolted joints tested under quasi-static bearing loads

    NASA Astrophysics Data System (ADS)

    Popescu, Alexandru Paul

    The use of composite materials in aerospace vehicles has allowed for creation of lighter structures that provide excellent stiffness. Although they allow for easy disassembly and inspection of critical assemblies, bolted joints are common damage initiation sites in composite structures. In order for aging aircraft to be considered for life extension programs, the damage at these locations must be characterized and well-understood. Failure studies require that data be provided through experimental tests. The drawback of the present test standard for bolted composite joints is that it was initially designed for testing polymers. This thesis discusses deficiencies in the measurement of bearing strength as a result of this shortcoming, although the battery of bearing tests is modeled after this established test standard. The goal of the present work is to characterize the bearing load induced damage in laminates with pin bearing and countersunk fasteners through a series of bearing tests on laminated composites using a new modified ASTM D5961 fixture designed for testing countersunk bolted joints. This thesis examines variations in measurement of bearing strength that comes with using different test fixtures. The reliability of each test fixture to represent real conditions is evaluated using test fixtures that represent real joint configurations. Results for damage conditions and joint responses are compared. This thesis presents a study of the damage initiation and accumulation in composite specimens loaded in bearing using three different test fixtures: Procedure A, Procedure C, and Procedure A Modified. Procedure A, which is used to load the test specimen in double-shear via a straight pin, is a well known test fixture that comes from ASTM D5961. Procedure C has a countersunk fastener that loads the test specimen in single-shear. These types of fasteners are preferred in the aerospace industry over traditional bolts in order to maintain a smooth aerodynamic profile

  8. Predictions of Cockpit Simulator Experimental Outcome Using System Models

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1984-01-01

    This study involved predicting the outcome of a cockpit simulator experiment where pilots used cockpit displays of traffic information (CDTI) to establish and maintain in-trail spacing behind a lead aircraft during approach. The experiments were run on the NASA Ames Research Center multicab cockpit simulator facility. Prior to the experiments, a mathematical model of the pilot/aircraft/CDTI flight system was developed which included relative in-trail and vertical dynamics between aircraft in the approach string. This model was used to construct a digital simulation of the string dynamics including response to initial position errors. The model was then used to predict the outcome of the in-trail following cockpit simulator experiments. Outcome included performance and sensitivity to different separation criteria. The experimental results were then used to evaluate the model and its prediction accuracy. Lessons learned in this modeling and prediction study are noted.

  9. Experimental support for a model of birdsong production.

    PubMed

    Mindlin, G B; Gardner, T J; Goller, F; Suthers, R

    2003-10-01

    In this work we present an experimental validation of a recently proposed model for the production of birdsongs. We have previously observed that driving the model with simple functions of time, which represent tensions in vocal muscles, produces a wide variety of sounds resembling birdsongs. In this work we drive the model with functions whose time dependence comes from recordings of muscle activities and air sac pressure. We simultaneously recorded the birds' songs and compared them with the synthetic songs. The model produces recognizable songs. Beyond finding a qualitative agreement, we also test some predictions of the model concerning the relative levels of activity in the gating muscles at the beginning and end of a syllable.

  10. Experimental support for a model of birdsong production

    NASA Astrophysics Data System (ADS)

    Mindlin, G. B.; Gardner, T. J.; Goller, F.; Suthers, R.

    2003-10-01

    In this work we present an experimental validation of a recently proposed model for the production of birdsongs. We have previously observed that driving the model with simple functions of time, which represent tensions in vocal muscles, produces a wide variety of sounds resembling birdsongs. In this work we drive the model with functions whose time dependence comes from recordings of muscle activities and air sac pressure. We simultaneously recorded the birds’ songs and compared them with the synthetic songs. The model produces recognizable songs. Beyond finding a qualitative agreement, we also test some predictions of the model concerning the relative levels of activity in the gating muscles at the beginning and end of a syllable.

  11. Experimental animal data and modeling of late somatic effects

    SciTech Connect

    Fry, R.J.M.

    1988-01-01

    This section is restricted to radiation-induced life shortening and cancer and mainly to studies with external radiation. The emphasis will be on the experimental data that are available and the experimental systems that could provide the type of data with which to either formulate or test models. Genetic effects which are of concern are not discussed in this section. Experimental animal radiation studies fall into those that establish general principles and those that demonstrate mechanisms. General principles include the influence of dose, radiation quality, dose rate, fractionation, protraction and such biological factors as age and gender. The influence of these factors are considered as general principles because they are independent, at least qualitatively, of the species studied. For example, if an increase in the LET of the radiation causes an increased effectiveness in cancer induction in a mouse a comparable increase in effectiveness can be expected in humans. Thus, models, whether empirical or mechanistic, formulated from experimental animal data should be generally applicable.

  12. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    SciTech Connect

    Lacy, Jeffrey M. Smith, James A. Rabin, Barry H.

    2015-03-31

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  13. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    NASA Astrophysics Data System (ADS)

    Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.

    2015-03-01

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  14. Modeling and Characterization of Damage Processes in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.

    2011-01-01

    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.

  15. Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling.

    SciTech Connect

    Broome, Scott Thomas; Flint, Gregory Mark; Dewers, Thomas; Newell, Pania

    2015-11-01

    This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failure and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.

  16. Hybrid hierarchical bio-based materials: Development and characterization through experimentation and computational simulations

    NASA Astrophysics Data System (ADS)

    Haq, Mahmoodul

    Environmentally friendly bio-based composites with improved properties can be obtained by harnessing the synergy offered by hybrid constituents such as multiscale (nano- and micro-scale) reinforcement in bio-based resins composed of blends of synthetic and natural resins. Bio-based composites have recently gained much attention due to their low cost, environmental appeal and their potential to compete with synthetic composites. The advantage of multiscale reinforcement is that it offers synergy at various length scales, and when combined with bio-based resins provide stiffness-toughness balance, improved thermal and barrier properties, and increased environmental appeal to the resulting composites. Moreover, these hybrid materials are tailorable in performance and in environmental impact. While the use of different concepts of multiscale reinforcement has been studied for synthetic composites, the study of mukiphase/multiscale reinforcements for developing new types of sustainable materials is limited. The research summarized in this dissertation focused on development of multiscale reinforced bio-based composites and the effort to understand and exploit the synergy of its constituents through experimental characterization and computational simulations. Bio-based composites consisting of petroleum-based resin (unsaturated polyester), natural or bio-resin (epoxidized soybean and linseed oils), natural fibers (industrial hemp), and nanosilicate (nanoclay) inclusions were developed. The work followed the "materials by Mahmoodul Haq design" philosophy by incorporating an integrated experimental and computational approach to strategically explore the design possibilities and limits. Experiments demonstrated that the drawbacks of bio-resin addition, which lowers stiffness, strength and increases permeability, can be counter-balanced through nanoclay reinforcement. Bio-resin addition yields benefits in impact strength and ductility. Conversely, nanoclay enhances stiffness

  17. Experimental characterisation and modelling of deformation- induced microstructure in an A6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kreyca, J. F.; Falahati, A.; Kozeschnik, E.

    2016-03-01

    For industry, the mechanical properties of a material in form of flow curves are essential input data for finite element simulations. Current practice is to obtain flow curves experimentally and to apply fitting procedures to obtain constitutive equations that describe the material response to external loading as a function of temperature and strain rate. Unfortunately, the experimental procedure for characterizing flow curves is complex and expensive, which is why the prediction of flow-curves by computer modelling becomes increasingly important. In the present work, we introduce a state parameter based model that is capable of predicting the flow curves of an A6061 aluminium alloy in different heat-treatment conditions. The model is implemented in the thermo-kinetic software package MatCalc and takes into account precipitation kinetics, subgrain formation, dynamic recovery by spontaneous annihilation and dislocation climb. To validate the simulation results, a series of compression tests is performed on the thermo-mechanical simulator Gleeble 1500.

  18. Spectral Analysis and Experimental Modeling of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.

    1996-01-01

    A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.

  19. Neutrophils: critical components in experimental animal models of cancer

    PubMed Central

    Hagerling, Catharina; Werb, Zena

    2016-01-01

    Neutrophils have a crucial role in tumor development and metastatic progression. The contribution of neutrophils in tumor development is multifaceted and contradictory. On the one hand, neutrophils prompt tumor inception, promote tumor development by mediating the initial angiogenic switch and facilitate colonization of circulating tumor cells, and on the other hand, have cytotoxic and anti-metastatic capabilities. Our understanding of the role of neutrophils in tumor development has greatly depended on different experimental animal models of cancer. In this review we cover important findings that have been made about neutrophils in experimental animal models of cancer, point to their advantages and limitations, and discuss novel techniques that can be used to expand our knowledge of how neutrophils influence tumor progression. PMID:26976824

  20. Experimental model of heterotopic ossification in Wistar rats

    PubMed Central

    Zotz, T.G.G.; de Paula, J.B.; Moser, A.D.L.

    2012-01-01

    Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues adjacent to large joints, resulting in joint mobility deficit. In order to determine which treatment techniques are more appropriate for such condition, experimental models of induced heterotopic bone formation have been proposed using heterologous demineralized bone matrix implants and bone morphogenetic protein and other tissues. The objective of the present experimental study was to identify a reliable protocol to induce HO in Wistar rats, based on autologous bone marrow (BM) implantation, comparing 3 different BM volumes and based on literature evidence of this HO induction model in larger laboratory animals. Twelve male Wistar albino rats weighing 350/390 g were used. The animals were anesthetized for blood sampling before HO induction in order to quantify serum alkaline phosphatase (ALP). HO was induced by BM implantation in both quadriceps muscles of these animals, experimental group (EG). Thirty-five days after the induction, another blood sample was collected for ALP determination. The results showed a weight gain in the EG and no significant difference in ALP levels when comparing the periods before and after induction. Qualitative histological analysis confirmed the occurrence of heterotopic ossification in all 12 EG rats. In conclusion, the HO induction model was effective when 0.35 mL autologous BM was applied to the quadriceps of Wistar rats. PMID:22473322

  1. Effects of exercise in experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis)

    PubMed Central

    Klaren, Rachel E.; Motl, Robert W.; Woods, Jeffrey A.; Miller, Stephen D.

    2015-01-01

    Exercise training has improved many outcomes in “clinical” research involving persons with multiple sclerosis (MS), but there is limited understanding of the underlying “basic” pathophysiological mechanisms. The animal model of MS, experimental autoimmune encephalomyelitis (EAE), seems ideal for examining the effects of exercise training on MS-disease pathophysiology. EAE is an autoimmune T-helper cell-mediated disease characterized by T-cell and monocyte infiltration and inflammation in the CNS. To that end, this paper briefly describes common models of EAE, reviews existing research on exercise and EAE, and then identifies future research directions for understanding the consequences of exercise training using EAE. PMID:24999244

  2. Tests characterizing bioprocessor hardware for analytical modeling

    NASA Technical Reports Server (NTRS)

    Gustavino, S.; Mccormack, A.

    1992-01-01

    The tests outlined in this paper were used to characterize the hardware components of the Salad Machine, a small NASA-developed bioprocessor. The data from these tests are presented, and the methods by which this data can be integrated into system mathematical models are briefly discussed. The subsystems and physical processes discussed include the lighting system, the air loop (condensing heat exchanger and the blower), heat transfer to the surroundings, and leakage. Through this effort it was learned that in the development of a test protocol, care should be taken to order the tests such that environmental parameters, particularly humidity, require as few large adjustments as possible. Sensor calibration and installation take a substantial amount of time, which should be built into the test schedule. Two properties were particularly hard to quantify: the air flow rate and the energy from the lighting system entering into the growth volume. Flow rate can be measured using the appropriate device for the system configuration and airflow. Lighting system radiation level was measured using three methods. The results of these methods varied substantially, putting off conclusive quantification of this value.

  3. New Experimental Models of Diabetic Nephropathy in Mice Models of Type 2 Diabetes: Efforts to Replicate Human Nephropathy

    PubMed Central

    Soler, María José; Riera, Marta; Batlle, Daniel

    2012-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. The use of experimental models of DN has provided valuable information regarding many aspects of DN, including pathophysiology, progression, implicated genes, and new therapeutic strategies. A large number of mouse models of diabetes have been identified and their kidney disease was characterized to various degrees. Most experimental models of type 2 DN are helpful in studying early stages of DN, but these models have not been able to reproduce the characteristic features of more advanced DN in humans such as nodules in the glomerular tuft or glomerulosclerosis. The generation of new experimental models of DN created by crossing, knockdown, or knockin of genes continues to provide improved tools for studying DN. These models provide an opportunity to search for new mechanisms involving the development of DN, but their shortcomings should be recognized as well. Moreover, it is important to recognize that the genetic background has a substantial effect on the susceptibility to diabetes and kidney disease development in the various models of diabetes. PMID:22461787

  4. CFD modeling of pharmaceutical isolators with experimental verification of airflow.

    PubMed

    Nayan, N; Akay, H U; Walsh, M R; Bell, W V; Troyer, G L; Dukes, R E; Mohan, P

    2007-01-01

    Computational fluid dynamics (CFD) models have been developed to predict the airflow in a transfer isolator using a commercial CFD code. In order to assess the ability of the CFD approach in predicting the flow inside an isolator, hot wire anemometry measurements and a novel experimental flow visualization technique consisting of helium-filled glycerin bubbles were used. The results obtained have been shown to agree well with the experiments and show that CFD can be used to model barrier systems and isolators with practical fidelity. This indicates that CFD can and should be used to support the design, testing, and operation of barrier systems and isolators.

  5. Finite element modeling and experimentation of bone drilling forces

    NASA Astrophysics Data System (ADS)

    Lughmani, W. A.; Bouazza-Marouf, K.; Ashcroft, I.

    2013-07-01

    Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling. The model incorporates the dynamic characteristics involved in the process along with the accurate geometrical considerations. The average critical thrust forces and torques obtained using FE analysis, for set of machining parameters are found to be in good agreement with the experimental results.

  6. Finite element analysis and experimental verification of multilayered tissue characterization using the thermal technique.

    PubMed

    Kharalkar, Nachiket M; Valvano, Jonathan W

    2006-01-01

    The objective of this research is to develop noninvasive techniques to determine thermal properties of layered biologic structures based on measurements from the surface. The self-heated thermistor technique is evaluated both numerically and experimentally. The finite element analyses, which confirm the experimental results, are used to study the temperature profiles occurring in the thermistor-tissue system. An in vitro tissue model was constructed by placing Teflon of varying thickness between the biologic tissue and the self-heated thermistor. The experiments were performed using two different-sized thermistors on six tissue samples. A self-heated thermistor was used to determine the thermal conductivity of tissue covered by a thin layer Teflon. The results from experimental data clearly indicate that this technique can penetrate below the thin layers of Teflon and thus is sensitive to the thermal properties of the underlying tissue. The factors which may introduce error in the experimental data are (i) poor thermal/physical contact between the thermistor probe and tissue sample, and (ii) water loss from tissue during the course of experimentation. The finite element analysis was used to simulate the experimental conditions and to calculate transient temperature profile generated by the thermistor bead. The results of finite element analysis are in accordance with the experimental data.

  7. Experimental design schemes for learning Boolean network models

    PubMed Central

    Atias, Nir; Gershenzon, Michal; Labazin, Katia; Sharan, Roded

    2014-01-01

    Motivation: A holy grail of biological research is a working model of the cell. Current modeling frameworks, especially in the protein–protein interaction domain, are mostly topological in nature, calling for stronger and more expressive network models. One promising alternative is logic-based or Boolean network modeling, which was successfully applied to model signaling regulatory circuits in human. Learning such models requires observing the system under a sufficient number of different conditions. To date, the amount of measured data is the main bottleneck in learning informative Boolean models, underscoring the need for efficient experimental design strategies. Results: We developed novel design approaches that greedily select an experiment to be performed so as to maximize the difference or the entropy in the results it induces with respect to current best-fit models. Unique to our maximum difference approach is the ability to account for all (possibly exponential number of) Boolean models displaying high fit to the available data. We applied both approaches to simulated and real data from the EFGR and IL1 signaling systems in human. We demonstrate the utility of the developed strategies in substantially improving on a random selection approach. Our design schemes highlight the redundancy in these datasets, leading up to 11-fold savings in the number of experiments to be performed. Availability and implementation: Source code will be made available upon acceptance of the manuscript. Contact: roded@post.tau.ac.il PMID:25161232

  8. Waste glass corrosion modeling: Comparison with experimental results

    SciTech Connect

    Bourcier, W.L.

    1993-11-01

    A chemical model of glass corrosion will be used to predict the rates of release of radionuclides from borosilicate glass waste forms in high-level waste repositories. The model will be used both to calculate the rate of degradation of the glass, and also to predict the effects of chemical interactions between the glass and repository materials such as spent fuel, canister and container materials, backfill, cements, grouts, and others. Coupling between the degradation processes affecting all these materials is expected. Models for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations.

  9. Non-shock initiation model for explosive families : experimental results.

    SciTech Connect

    Anderson, Mark U.; Jensen, Charles B.; Todd, Steven N.; Hugh, Chance G.; Caipen, Terry L.

    2010-03-01

    The 'DaMaGe-Initiated-Reaction' (DMGIR) computational model has been developed to predict the response of high explosives to non-shock mechanical insults. The distinguishing feature of this model is the introduction of a damage variable, which relates the evolution of damage to the initiation of a reaction in the explosive, and its growth to detonation. Specifically designed experiments were used to study the initiation process of each explosive family with embedded shock sensors and optical diagnostics. The experimental portion of this model development began with a study of PBXN-5 to develop DMGIR model coefficients for the rigid plastic bonded family, followed by studies of the cast, and bulk-moldable explosive families. The experimental results show an initiation mechanism that is related to input energy and material damage, with well defined initiation thresholds for each explosive family. These initiation details will extend the predictive capability of the DMGIR model from the rigid family into the cast and bulk-moldable families.

  10. Experimental investigation on single person's jumping load model

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Haoqi; Wang, Ling

    2015-12-01

    This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subjects. Threedimensional motion capture technology in conjunction with force plates was employed in the experiment to record jumping loads. The variation range and probability distribution of the controlling parameters for the load model such as the impact factor, jumping frequency and contact ratio, are discussed using the experimental data. Correlation relationships between the three parameters are investigated. The contact ratio and jumping frequency are identified as independent model parameters, and an empirical frequency-dependent function is derived for the impact factor. The feasibility of the proposed load model is established by comparing the simulated load curves with measured ones, and by comparing the acceleration responses of a single-degree-of-freedom system to the simulated and measured jumping loads. The results show that a realistic individual jumping load can be generated by the proposed method. This can then be used to assess the dynamic response of assembly structures.

  11. Experimental models in vaccine research: malaria and leishmaniasis.

    PubMed

    Teixeira, C; Gomes, R

    2013-02-01

    Animal models have a long history of being useful tools, not only to test and select vaccines, but also to help understand the elaborate details of the immune response that follows infection. Different models have been extensively used to investigate putative immunological correlates of protection against parasitic diseases that are important to reach a successful vaccine. The greatest challenge has been the improvement and adaptation of these models to reflect the reality of human disease and the screening of vaccine candidates capable of overcoming the challenge of natural transmission. This review will discuss the advantages and challenges of using experimental animal models for vaccine development and how the knowledge achieved can be extrapolated to human disease by looking into two important parasitic diseases: malaria and leishmaniasis.

  12. Diffusion models in experimental psychology: a practical introduction.

    PubMed

    Voss, Andreas; Nagler, Markus; Lerche, Veronika

    2013-01-01

    Stochastic diffusion models (Ratcliff, 1978) can be used to analyze response time data from binary decision tasks. They provide detailed information about cognitive processes underlying the performance in such tasks. Most importantly, different parameters are estimated from the response time distributions of correct responses and errors that map (1) the speed of information uptake, (2) the amount of information used to make a decision, (3) possible decision biases, and (4) the duration of nondecisional processes. Although this kind of model can be applied to many experimental paradigms and provides much more insight than the analysis of mean response times can, it is still rarely used in cognitive psychology. In the present paper, we provide comprehensive information on the theory of the diffusion model, as well as on practical issues that have to be considered for implementing the model.

  13. Simplest stick-slip experimental set up to model a seismic fault

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, Leticia; Vargas, Carlos; Ramirez-Rojas, Alejandro

    2014-05-01

    In order to model the seismicity produced by the tectonic plate's interaction, we present an experimental device to mimic these phenomena. The experimental device is characterized by the interface of two sandpapers, one of them is stick in a solid block and the other is fixed in a track. This track has a free friction suspension. The solid block is pulled with constant and slow velocity by a rope connected to a DC motor. As the friction between the two sandpapers is opposed to the displacement of the block, the potential energy is accumulated till the force driven by the motor is able to pull, producing a suddenly displacement, that is the stick-slip phenomenon. Some statistical analysis of the experimental data series has been already published, displaying some dynamical features analogous to the natural seismicity.

  14. Precisely parameterized experimental and computational models of tissue organization†

    PubMed Central

    Sekar, Rajesh B.; Blake, Robert; Park, JinSeok; Trayanova, Natalia A.; Tung, Leslie; Levchenko, Andre

    2016-01-01

    Patterns of cellular organization in diverse tissues frequently display a complex geometry and topology tightly related to the tissue function. Progressive disorganization of tissue morphology can lead to pathologic remodeling, necessitating the development of experimental and theoretical methods of analysis of the tolerance of normal tissue function to structural alterations. A systematic way to investigate the relationship of diverse cell organization to tissue function is to engineer two-dimensional cell monolayers replicating key aspects of the in vivo tissue architecture. However, it is still not clear how this can be accomplished on a tissue level scale in a parameterized fashion, allowing for a mathematically precise definition of the model tissue organization and properties down to a cellular scale with a parameter dependent gradual change in model tissue organization. Here, we describe and use a method of designing precisely parameterized, geometrically complex patterns that are then used to control cell alignment and communication of model tissues. We demonstrate direct application of this method to guiding the growth of cardiac cell cultures and developing mathematical models of cell function that correspond to the underlying experimental patterns. Several anisotropic patterned cultures spanning a broad range of multicellular organization, mimicking the cardiac tissue organization of different regions of the heart, were found to be similar to each other and to isotropic cell monolayers in terms of local cell–cell interactions, reflected in similar confluency, morphology and connexin-43 expression. However, in agreement with the model predictions, different anisotropic patterns of cell organization, paralleling in vivo alterations of cardiac tissue morphology, resulted in variable and novel functional responses with important implications for the initiation and maintenance of cardiac arrhythmias. We conclude that variations of tissue geometry and

  15. Results from computational and experimental modeling of runaway electron damage on plasma facing components

    SciTech Connect

    Niemer, K.A.; Gilligan, J.G.; Croessmann, C.D.

    1994-11-01

    The purpose of this research was to extend the theoretical and experimental knowledge of runaway electron damage-impact-bombardment on plasma facing components and materials in magnetic fusion devices. The emphasis of this work involved computational modeling and experimental studies to investigate runaway electron energy deposition and thermal response in plasma facing materials. The goals were: (1) to develop a computational model to study and analyze runaway electron damage; (2) to characterize runaway electron parameters; and (3) to perform experiments to analyze runaway electron damage. These goals were accomplished by first assembling the PTA code package. PTA is a unique application of PATRAN, the Integrated TIGER Series (ITS), and ABAQUS for modeling high energy electron impact on magnetic fusion materials and components. The PTA code package provides a three-dimensional, time dependent, computational code package which predicts material response from runaway bombardment under most runaway conditions (i.e., electron energy, incident angle, energy density, and deposition time). As part of this research, PTA was used to study energy deposition and material response in several design applications, to analyze damaged material, and to analyze several experiments. Runaway electron characterization was determined through parametric studies, analysis of damaged materials, and analysis of experimental results. Characterization provided information on electron energy, incident angle, current, deposition time, and volume of material impacted by runaway electrons. Finally an experiment was performed on the Advanced Toroidal Facility (ATF) at Oak Ridge National Laboratory to study runaway electron damage. The experiment provided information on the runaway electron energy and current in ATF, as well as supplemented the existing experimental knowledge of runaway electron damage.

  16. Experimental model for civilian ballistic brain injury biomechanics quantification.

    PubMed

    Zhang, Jiangyue; Yoganandan, Narayan; Pintar, Frank A; Guan, Yabo; Gennarelli, Thomas A

    2007-01-01

    Biomechanical quantification of projectile penetration using experimental head models can enhance the understanding of civilian ballistic brain injury and advance treatment. Two of the most commonly used handgun projectiles (25-cal, 275 m/s and 9 mm, 395 m/s) were discharged to spherical head models with gelatin and Sylgard simulants. Four ballistic pressure transducers recorded temporal pressure distributions at 308kHz, and temporal cavity dynamics were captured at 20,000 frames/second (fps) using high-speed digital video images. Pressures ranged from 644.6 to -92.8 kPa. Entry pressures in gelatin models were higher than exit pressures, whereas in Sylgard models entry pressures were lower or equivalent to exit pressures. Gelatin responded with brittle-type failure, while Sylgard demonstrated a ductile pattern through formation of micro-bubbles along projectile path. Temporary cavities in Sylgard models were 1.5-2x larger than gelatin models. Pressures in Sylgard models were more sensitive to projectile velocity and diameter increase, indicating Sylgard was more rate sensitive than gelatin. Based on failure patterns and brain tissue rate-sensitive characteristics, Sylgard was found to be an appropriate simulant. Compared with spherical projectile data, full-metal jacket (FMJ) projectiles produced different temporary cavity and pressures, demonstrating shape effects. Models using Sylgard gel and FMJ projectiles are appropriate to enhance understanding and mechanisms of ballistic brain injury.

  17. Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation

    NASA Astrophysics Data System (ADS)

    Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred

    2005-08-01

    In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.

  18. Non-linear spacecraft component parameters identification based on experimental results and finite element modelling

    NASA Astrophysics Data System (ADS)

    Vismara, S. O.; Ricci, S.; Bellini, M.; Trittoni, L.

    2016-06-01

    The objective of the present paper is to describe a procedure to identify and model the non-linear behaviour of structural elements. The procedure herein applied can be divided into two main steps: the system identification and the finite element model updating. The application of the restoring force surface method as a strategy to characterize and identify localized non-linearities has been investigated. This method, which works in the time domain, has been chosen because it has `built-in' characterization capabilities, it allows a direct non-parametric identification of non-linear single-degree-of-freedom systems and it can easily deal with sine-sweep excitations. Two different application examples are reported. At first, a numerical test case has been carried out to investigate the modelling techniques in the case of non-linear behaviour based on the presence of a free-play in the model. The second example concerns the flap of the Intermediate eXperimental Vehicle that successfully completed its 100-min mission on 11 February 2015. The flap was developed under the responsibility of Thales Alenia Space Italia, the prime contractor, which provided the experimental data needed to accomplish the investigation. The procedure here presented has been applied to the results of modal testing performed on the article. Once the non-linear parameters were identified, they were used to update the finite element model in order to prove its capability of predicting the flap behaviour for different load levels.

  19. Sheet Hydroforming Process Numerical Model Improvement Through Experimental Results Analysis

    NASA Astrophysics Data System (ADS)

    Gabriele, Papadia; Antonio, Del Prete; Alfredo, Anglani

    2010-06-01

    The increasing application of numerical simulation in metal forming field has helped engineers to solve problems one after another to manufacture a qualified formed product reducing the required time [1]. Accurate simulation results are fundamental for the tooling and the product designs. The wide application of numerical simulation is encouraging the development of highly accurate simulation procedures to meet industrial requirements. Many factors can influence the final simulation results and many studies have been carried out about materials [2], yield criteria [3] and plastic deformation [4,5], process parameters [6] and their optimization. In order to develop a reliable hydromechanical deep drawing (HDD) numerical model the authors have been worked out specific activities based on the evaluation of the effective stiffness of the blankholder structure [7]. In this paper after an appropriate tuning phase of the blankholder force distribution, the experimental activity has been taken into account to improve the accuracy of the numerical model. In the first phase, the effective capability of the blankholder structure to transfer the applied load given by hydraulic actuators to the blank has been explored. This phase ended with the definition of an appropriate subdivision of the blankholder active surface in order to take into account the effective pressure map obtained for the given loads configuration. In the second phase the numerical results obtained with the developed subdivision have been compared with the experimental data of the studied model. The numerical model has been then improved, finding the best solution for the blankholder force distribution.

  20. Of mice and men: modelling post-stroke depression experimentally

    PubMed Central

    Kronenberg, G; Gertz, K; Heinz, A; Endres, M

    2014-01-01

    At least one-third of stroke survivors suffer from depression. The development of comorbid depression after stroke is clinically highly significant because post-stroke depression is associated with increased mortality, slows recovery and leads to worse functional outcomes. Here, we review the evidence that post-stroke depression can be effectively modelled in experimental rodents via a variety of approaches. This opens an exciting new window onto the neurobiology of depression and permits probing potential underlying mechanisms such as disturbed cellular plasticity, neuroendocrine dysregulation, neuroinflammation, and neurodegeneration in a novel context. From the point of view of translational stroke research, extending the scope of experimental investigations beyond the study of short-term end points and, in particular, acute lesion size, may help improve the relevance of preclinical results to human disease. Furthermore, accumulating evidence from both clinical and experimental studies offers the tantalizing prospect of 5-hydroxytryptaminergic antidepressants as the first pharmacological therapy for stroke that would be available during the subacute and chronic phases of recovery. Interdisciplinary neuropsychiatric research will be called on to dissect the mechanisms underpinning the beneficial effects of antidepressants on stroke recovery. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24838087

  1. Identification of Computational and Experimental Reduced-Order Models

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Hong, Moeljo S.; Bartels, Robert E.; Piatak, David J.; Scott, Robert C.

    2003-01-01

    The identification of computational and experimental reduced-order models (ROMs) for the analysis of unsteady aerodynamic responses and for efficient aeroelastic analyses is presented. For the identification of a computational aeroelastic ROM, the CFL3Dv6.0 computational fluid dynamics (CFD) code is used. Flutter results for the AGARD 445.6 Wing and for a Rigid Semispan Model (RSM) computed using CFL3Dv6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are computed using the CFL3Dv6.0 code and transformed into state-space form. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is then used to rapidly compute aeroelastic transients, including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly. For the identification of experimental unsteady pressure ROMs, results are presented for two configurations: the RSM and a Benchmark Supercritical Wing (BSCW). Both models were used to acquire unsteady pressure data due to pitching oscillations on the Oscillating Turntable (OTT) system at the Transonic Dynamics Tunnel (TDT). A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the unsteady pressure impulse responses. The identified impulse responses are then used to predict the pressure responses due to pitching oscillations at several frequencies. Comparisons with the experimental data are then presented.

  2. Modeling an Excitable Biosynthetic Tissue with Inherent Variability for Paired Computational-Experimental Studies

    PubMed Central

    Kim, Jong M.; Kirkton, Robert D.; Bursac, Nenad; Henriquez, Craig S.

    2017-01-01

    To understand how excitable tissues give rise to arrhythmias, it is crucially necessary to understand the electrical dynamics of cells in the context of their environment. Multicellular monolayer cultures have proven useful for investigating arrhythmias and other conduction anomalies, and because of their relatively simple structure, these constructs lend themselves to paired computational studies that often help elucidate mechanisms of the observed behavior. However, tissue cultures of cardiomyocyte monolayers currently require the use of neonatal cells with ionic properties that change rapidly during development and have thus been poorly characterized and modeled to date. Recently, Kirkton and Bursac demonstrated the ability to create biosynthetic excitable tissues from genetically engineered and immortalized HEK293 cells with well-characterized electrical properties and the ability to propagate action potentials. In this study, we developed and validated a computational model of these excitable HEK293 cells (called “Ex293” cells) using existing electrophysiological data and a genetic search algorithm. In order to reproduce not only the mean but also the variability of experimental observations, we examined what sources of variation were required in the computational model. Random cell-to-cell and inter-monolayer variation in both ionic conductances and tissue conductivity was necessary to explain the experimentally observed variability in action potential shape and macroscopic conduction, and the spatial organization of cell-to-cell conductance variation was found to not impact macroscopic behavior; the resulting model accurately reproduces both normal and drug-modified conduction behavior. The development of a computational Ex293 cell and tissue model provides a novel framework to perform paired computational-experimental studies to study normal and abnormal conduction in multidimensional excitable tissue, and the methodology of modeling variation can be

  3. Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber.

    PubMed

    Beugnot, J C; Sylvestre, T; Alasia, D; Maillotte, H; Laude, V; Monteville, A; Provino, L; Traynor, N; Mafang, S Foaleng; Thévenaz, L

    2007-11-12

    We provide a complete experimental characterization of stimulated Brillouin scattering in a 160 m long solid-core photonic crystal fiber, including threshold and spectrum measurements as well as position-resolved mapping of the Brillouin frequency shift. In particular, a three-fold increase of the Brillouin threshold power is observed, in excellent agreement with the spectrally-broadened Brillouin gain spectrum. Distributed measurements additionally reveal that the rise of the Brillouin threshold results from the broadband nature of the gain spectrum all along the fiber and is strongly influenced by strain. Our experiments confirm that these unique fibers can be exploited for the passive control or the suppression of Brillouin scattering.

  4. Huntington's disease and mitochondrial alterations: emphasis on experimental models.

    PubMed

    Pérez-De la Cruz, Verónica; Carrillo-Mora, Paul; Santamaría, Abel

    2010-06-01

    Huntington's disease (HD) is an inheritable neurological disorder coursing with degeneration of basal ganglia and producing chorea and dementia. One common factor accounting for neurodegeneration in this disorder is mitochondrial deterioration at both morphologic and functional levels. The development of experimental models in animals or cell preparations to resemble pathologic and pathogenic conditions of this disorder has served for more than four decades to describe part of the mechanistic alterations that could be occurring in mitochondria of HD patients, and the subsequent design of therapeutic alternatives where mitochondrial alterations are the primary target. In this minireview we describe some of the most relevant studies at the experimental level, giving support to the hypothesis that mitochondria play a central role in HD pathogenesis.

  5. Experimental modelling of material interfaces with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Corcovilos, Theodore A.; Brooke, Robert W. A.; Gillis, Julie; Ruggiero, Anthony C.; Tiber, Gage D.; Zaccagnini, Christopher A.

    2014-05-01

    We present a design for a new experimental apparatus for studying the physics of junctions using ultracold potassium atoms (K-39 and K-40). Junctions will be modeled using holographically projected 2D optical potentials. These potentials can be engineered to contain arbitrary features such as junctions between dissimilar lattices or the intentional insertion of defects. Long-term investigation goals include edge states, scattering at defects, and quantum depletion at junctions. In this poster we show our overall apparatus design and our progress in building experimental subsystems including the vacuum system, extended cavity diode lasers, digital temperature and current control circuits for the lasers, and the saturated absorption spectroscopy system. Funding provided by the Bayer School of Natural and Environmental.

  6. Experimental modelling of eddy currents and deflection for tokamak limiters

    SciTech Connect

    Hua, T.Q.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-11-01

    During plasma disruptions in a tokamak fusion reactor, eddy currents are induced in the limiters and other conducting structures surrounding the plasma. Interactions between these currents with the toroidal field causes deflection and stress in the structural components. The structural motion in the strong magnetic field induces additional eddy current opposing the initial eddy current and modifying subsequent structural dynamics. Therefore, the motion and current are coupled and must be solved simultaneously. The coupling between current and deflection in cantilevered beams was investigated experimentally. The beams provide a simple model for the limiter blade of a tokamak fusion reactor. Several test pieces and various magnetic field conditions were employed to study the extend of the coupling effect from weak to strong coupling. Experimental results are compared with analytical predictions.

  7. [Efficacy of polyprenyl phosphates in the experimental genital herpes model].

    PubMed

    Narovlyansky, A N; Ivanova, A M; Shevlyagina, N V; Didenko, L V; Borovaya, T G; Izmest'eva, A V; Sanin, A V; Pronin, A V; Ershov, F I

    2015-01-01

    An experimental model of the primary genital herpes (herpes simplex type 2, HSV-2) in the female guinea pigs was suggested to study the infectious process activity of polyprenyl phosphates (PPP) and PPP+acyclovir (AC) complex treatment. The morphofunctional features of the guinea pig ovaries were studied in the control and experimental groups (the latter were inoculated with PPP and/or AC as a primary infection treatment) at the stage of the recurrent genital herpes aggravation. It was shown that in the case of combined PPP +AC use significant changes in the disease symptoms were observed, as well as a decrease in the infectious process activity and duration, and positive remote effect on the ovarian morphophysiology.

  8. Collection methods of trematode eggs using experimental animal models.

    PubMed

    Tsubokawa, Daigo; Sugiyama, Hiromu; Mikami, Fusako; Shibata, Katsumasa; Shibahara, Toshiyuki; Fukuda, Koichi; Takamiya, Shinzaburo; Yamasaki, Hiroshi; Nakamura, Takeshi; Tsuji, Naotoshi

    2016-10-01

    Although observing the eggs of human parasitic helminth is essential for medical education in parasitology, opportunities for collection of the eggs are limited. Collection of the eggs using experimental animal models is needed for a sustainable supply. The metacercariae of three trematode species, Paragonimus westermani, Clonorchis sinensis and Metagonimus yokogawai, were collected from the second intermediate hosts: freshwater crabs and fishes, which were obtained using online shopping in Japan, and inoculated to experimental animal rat and dog. Consequently, eggs of the three trematode species were obtained abundantly from the feces of the animals. The eggs are being used for student training in several Japanese universities. In this article, we introduce the collection procedures for trematode eggs.

  9. CO2 sequestration in deep coal seams: experimental characterization of the fundamental underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Pini, R.; Mazzotti, M.

    2012-04-01

    The process of injecting and storing carbon dioxide (CO2) into suitable deep geological formations, such as saline aquifers, (depleted) oil or gas reservoirs, and unmineable coal seams, is referred to as CO2 sequestration. In little more than a decade, this technology has emerged as one of the most important options for reducing CO2 emissions. Among the different options, unmineable coal seams are not as broadly distributed as saline aquifers or oil/gas reservoirs, but their peculiarity resides in the proven capacity of retaining significant amount of gas (mainly methane, CH4) for a very long time. Additionally, the injection of CO2 into the coal reservoir would enhance the recovery of this natural gas, a source of energy that will most likely play a key role in the power sector over the next 20 years from now. This process is called Enhanced Coal Bed Methane (ECBM) recovery and, as for enhanced oil recovery, it allows in principle offsetting the costs associated to the storage operation. A study was undertaken aimed at the experimental characterization of the fundamental mechanisms that take place during the process of injection and storage in coal reservoirs, namely adsorption and swelling (Pini et al 2010), and of their effects on the coal's permeability (Pini et al. 2009), the property that plays a dominant role in controlling fluid transport in a porous rock. An apparatus has been built that allows measuring the permeability of rock cores under typical reservoir conditions (high pressure and temperature) by the so-called transient step method. For this study, a coal core from the Sulcis coal mine in Sardinia (Italy) has been used. In the experiments, an inert gas (helium) was used to investigate the effects of the effective pressure on the permeability of the coal sample, whereas two adsorbing gases (CO2 and N2) to quantify those of adsorption and swelling. The experiments have been interpreted by a one-dimensional model that describes the fluid transport

  10. A two-Higgs-doublet model facing experimental hints

    NASA Astrophysics Data System (ADS)

    Crivellin, Andreas; Heeck, Julian; Stoffer, Peter

    2016-04-01

    Physics beyond the Standard Model has so far eluded our experimental probes. Nevertheless, a number of interesting anomalies have accumulated that can be taken as hints towards new physics: BaBar, Belle, and LHCb have found deviations of approximately 3:8σ in B → Dτν and B → D*τν; the anomalous magnetic moment of the muon differs by about 3σ from the theoretic prediction; the branching ratio for τ → μνν is about 2σ above the Standard Model expectation; and CMS and ATLAS found hints for a non-zero decay rate of h → μτ at 2.6σ. Here we consider these processes within a lepton-specific two-Higgs doublet model with additional non-standard Yukawa couplings and show how (and which of) these excesses can be accommodated.

  11. Tidal deformation of planets: experience in experimental modeling.

    NASA Astrophysics Data System (ADS)

    Bobryakov, A. P.; Revuzhenko, A. F.; Shemyakin, E. I.

    1992-06-01

    Two types of apparatus are described for laboratory modeling of tidal deformation. Plane deformation occurs in the first, and the model of the body has the shape of an elliptical cylinder; in the second three-dimensional deformation occurs, and the model is spheroidal in shape. In both cases displacements simulating motion of the tidal wave are assigned on the boundary. A global mechanism of directed mass transfer has been discovered. It is connected with transformation of vertical displacements to horizontal ones. The internal particles describe almost closed trajectories in one complete rotation of the tidal wave, but do not return to their original position. Residual displacements accumulate with increasing number of cycles and lead to differential rotation of internal masses. Questions surrounding experimental measurement of energy dissipation and the role of an internal rigid core are investigated. The effect of directed transfer on the physical fields of planets is discussed.

  12. Propagation effects for land mobile satellite systems: Overview of experimental and modeling results

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1992-01-01

    Models developed and experiments performed to characterize the propagation environment associated with land mobile communication using satellites are discussed. Experiments were carried out with transmitters on stratospheric balloons, remotely piloted aircraft, helicopters, and geostationary satellites. This text is comprised of compiled experimental results for the expressed use of communications engineers, designers of planned Land Mobile Satellite Systems (LMSS), and modelers of propagation effects. The results presented here are mostly derived from systematic studies of propagation effects for LMSS geometries in the United States associated with rural and suburban regions. Where applicable, the authors also draw liberally from the results of other related investigations in Canada, Europe, and Australia. Frequencies near 1500 MHz are emphasized to coincide with frequency bands allocated for LMSS by the International Telecommunication Union, although earlier experimental work at 870 MHz is also included.

  13. A finite element model for sandwich viscoelastic beams: Experimental and numerical assessment

    NASA Astrophysics Data System (ADS)

    Barbosa, F. S.; Farage, M. C. R.

    2008-10-01

    Among the passive control systems for attenuation of vibrations in structures, those that use viscoelastic materials as a damping core in laminated-plate-like components are focused herein. In the present work an assessment of a time-domain formulation for numerical modelling of viscoelastic materials is made. This formulation, which is called Golla-Hughes method (GHM), is based on a second-order time-domain realization of Laplace-domain motion equations. The GHM parameters used in the characterization of a viscoelastic material are experimentally determined and a sandwich GHM-based finite element model is presented and validated through numerical comparisons with classic formulation results. Finally, a time-domain simulation of an experimentally tested sandwich beam is carried out.

  14. Propagation effects for land mobile satellite systems: Overview of experimental and modeling results

    NASA Astrophysics Data System (ADS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1992-02-01

    Models developed and experiments performed to characterize the propagation environment associated with land mobile communication using satellites are discussed. Experiments were carried out with transmitters on stratospheric balloons, remotely piloted aircraft, helicopters, and geostationary satellites. This text is comprised of compiled experimental results for the expressed use of communications engineers, designers of planned Land Mobile Satellite Systems (LMSS), and modelers of propagation effects. The results presented here are mostly derived from systematic studies of propagation effects for LMSS geometries in the United States associated with rural and suburban regions. Where applicable, the authors also draw liberally from the results of other related investigations in Canada, Europe, and Australia. Frequencies near 1500 MHz are emphasized to coincide with frequency bands allocated for LMSS by the International Telecommunication Union, although earlier experimental work at 870 MHz is also included.

  15. Experimentally driven atomistic model of 1,2 polybutadiene

    SciTech Connect

    Gkourmpis, Thomas; Mitchell, Geoffrey R.

    2014-02-07

    We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles, and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120–400 K. Analysis of the experimental data yields bond lengths for Cî—¸C and C î—» C of 1.54 Å and 1.35 Å, respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently, the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results.

  16. Experimental Method for Characterizing Electrical Steel Sheets in the Normal Direction

    PubMed Central

    Hihat, Nabil; Lecointe, Jean Philippe; Duchesne, Stephane; Napieralska, Ewa; Belgrand, Thierry

    2010-01-01

    This paper proposes an experimental method to characterise magnetic laminations in the direction normal to the sheet plane. The principle, which is based on a static excitation to avoid planar eddy currents, is explained and specific test benches are proposed. Measurements of the flux density are made with a sensor moving in and out of an air-gap. A simple analytical model is derived in order to determine the permeability in the normal direction. The experimental results for grain oriented steel sheets are presented and a comparison is provided with values obtained from literature. PMID:22163394

  17. Stochastic Approach for Modeling of DNAPL Migration in Heterogeneous Aquifers: Model Development and Experimental Data Generation

    NASA Astrophysics Data System (ADS)

    Dean, D. W.; Illangasekare, T. H.; Turner, A.; Russell, T. F.

    2004-12-01

    , cannot represent barrier effects that occur at the interfaces of the soil layers with different characteristics. For example, in tracking a DNAPL plume, the behavior of the plume at an interface depends on the pressure-saturation relationships of the two soils forming the interface. In the model, the control of the flow of DNAPL particles across an interface is accomplished using a jump term, which derives from the Ito formula. The jump term is based on capillary diffusivity and the pressure-saturation curves of the two soils forming the interface. A series of laboratory spill experiments in two-dimensional test cells were conducted to create a comprehensive database to evaluate the model under development. These experiments utilized five well-characterized test sands that are used to create different heterogeneous packing configurations. The experiments that have been completed used horizontal and dipping capillarity barriers. The propagation of the spill was monitored using an automated X-ray photon attenuation system that accurately measures the DNAPL and water saturations. The computational aspects of the modeling approach, experimental results and preliminary analysis that were conducted to validate the new modeling method are presented.

  18. Dynamic modelling and experimental study of asymmetric optothermal microactuator

    NASA Astrophysics Data System (ADS)

    Wang, Shuying; Chun, Qin; You, Qingyang; Wang, Yingda; Zhang, Haijun

    2017-01-01

    This paper reports the dynamic modelling and experimental study of an asymmetric optothermal microactuator (OTMA). According to the principle of thermal flux, a theoretical model for instantaneous temperature distribution of an expansion arm is established and the expression of expansion increment is derived. Dynamic expansion properties of the arm under laser pulse irradiation are theoretically analyzed indicating that both of the maximum expansion and expansion amplitude decrease with the pulse frequency increasing. Experiments have been further carried out on an OTMA fabricated by using an excimer laser micromachining system. It is shown that the OTMA deflects periodically with the same frequency of laser pulse irradiation. Experimental results also prove that both OTMA's maximum deflection and deflection amplitude (related to maximum expansion and expansion amplitude of the arm) decrease as frequency increases, matching with the theoretical model quite well. Even though the OTMA's deflection decrease at higher frequency, it is still capable of generating 8.2 μm maximum deflection and 4.2 μm deflection amplitude under 17 Hz/2 mW laser pulse irradiation. This work improves the potential applications of optothermal microactuators in micro-opto-electro-mechanical system (MOEMS) and micro/nano-technology fields.

  19. Associative learning deficit in two experimental models of hepatic encephalopathy.

    PubMed

    Méndez, Marta; Méndez-López, Magdalena; López, Laudino; Aller, María Angeles; Arias, Jaime; Arias, Jorge L

    2009-03-17

    People with hepatic insufficiency can develop hepatic encephalopathy (HE), a complex neuropsychological syndrome covering a wide range of neurological and cognitive and motor alterations. The cognitive deficits include disturbances in intellectual functions such as memory and learning. In spite of its high prevalence in western societies, the causes of HE have not yet been clearly established. For this reason, experimental models of HE are used to study this condition. In this work, two experimental models were used, one Type B HE (portacaval shunt) and the other Type C HE (cirrhosis by intoxication with thioacetamide), to evaluate its effect on two tasks of associative learning: two-way active avoidance and step-through passive avoidance. The results show an impediment both in acquisition and retention of active avoidance in both models of HE. However, in passive avoidance, only the rats with portacaval shunt presented a memory deficit for the aversive event. In our opinion, these results can be explained by alterations in the neurotransmission system presented by animals with hepatic insufficiency, which are mainly caused by a rise in cerebral histamine and a dysfunction of the glutamatergic system.

  20. Tyre tread-block friction: modelling, simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Wallaschek, Jörg; Wies, Burkard

    2013-07-01

    Pneumatic tyres are used in vehicles since the beginning of the last century. They generate braking and steering forces for bicycles, motor cycles, cars, busses, trucks, agricultural vehicles and aircraft. These forces are generated in the usually very small contact area between tyre and road and their performance characteristics are of eminent importance for safety and comfort. Much research has been addressed to optimise tyre design with respect to footprint pressure and friction. In this context, the development of virtual tyre prototypes, that is, simulation models for the tyre, has grown to a science in its own. While the modelling of the structural dynamics of the tyre has reached a very advanced level, which allows to take into account effects like the rate-independent inelasticity of filled elastomers or the transient 3D deformations of the ply-reinforced tread, shoulder and sidewalls, little is known about the friction between tread-block elements and road. This is particularly obvious in the case when snow, ice, water or a third-body layer are present in the tyre-road contact. In the present paper, we give a survey on the present state of knowledge in the modelling, simulation and experimental validation of tyre tread-block friction processes. We concentrate on experimental techniques.

  1. Electromechanical properties of smart aggregate: theoretical modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Kong, Qingzhao; Shi, Zhifei; Song, Gangbing

    2016-09-01

    Smart aggregate (SA), as a piezoceramic-based multi-functional device, is formed by sandwiching two lead zirconate titanate (PZT) patches with copper shielding between a pair of solid-machined cylindrical marble blocks with epoxy. Previous researches have successfully demonstrated the capability and reliability of versatile SAs to monitor the structural health of concrete structures. However, the previous works concentrated mainly on the applications of SAs in structural health monitoring; no reasonable theoretical model of SAs was proposed. In this paper, electromechanical properties of SAs were investigated using a proposed theoretical model. Based on one dimensional linear theory of piezo-elasticity, the dynamic solutions of a SA subjected to an external harmonic voltage were solved. Further, the electric impedance of the SA was computed, and the resonance and anti-resonance frequencies were calculated based on derived equations. Numerical analysis was conducted to discuss the effects of the thickness of epoxy layer and the dimension of PZT patch on the fundamental resonance and anti-resonance frequencies as well as the corresponding electromechanical coupling factor. The dynamic solutions based on the proposed theoretical model were further experimentally verified with two SA samples. The fundamental resonance and anti-resonance frequencies of SAs show good agreements in both theoretical and experimental results. The presented analysis and results contribute to the overall understanding of SA properties and help to optimize the working frequencies of SAs in structural health monitoring of civil structures.

  2. Size exclusion deep bed filtration: Experimental and modelling uncertainties

    SciTech Connect

    Badalyan, Alexander You, Zhenjiang; Aji, Kaiser; Bedrikovetsky, Pavel; Carageorgos, Themis; Zeinijahromi, Abbas

    2014-01-15

    A detailed uncertainty analysis associated with carboxyl-modified latex particle capture in glass bead-formed porous media enabled verification of the two theoretical stochastic models for prediction of particle retention due to size exclusion. At the beginning of this analysis it is established that size exclusion is a dominant particle capture mechanism in the present study: calculated significant repulsive Derjaguin-Landau-Verwey-Overbeek potential between latex particles and glass beads is an indication of their mutual repulsion, thus, fulfilling the necessary condition for size exclusion. Applying linear uncertainty propagation method in the form of truncated Taylor's series expansion, combined standard uncertainties (CSUs) in normalised suspended particle concentrations are calculated using CSUs in experimentally determined parameters such as: an inlet volumetric flowrate of suspension, particle number in suspensions, particle concentrations in inlet and outlet streams, particle and pore throat size distributions. Weathering of glass beads in high alkaline solutions does not appreciably change particle size distribution, and, therefore, is not considered as an additional contributor to the weighted mean particle radius and corresponded weighted mean standard deviation. Weighted mean particle radius and LogNormal mean pore throat radius are characterised by the highest CSUs among all experimental parameters translating to high CSU in the jamming ratio factor (dimensionless particle size). Normalised suspended particle concentrations calculated via two theoretical models are characterised by higher CSUs than those for experimental data. The model accounting the fraction of inaccessible flow as a function of latex particle radius excellently predicts normalised suspended particle concentrations for the whole range of jamming ratios. The presented uncertainty analysis can be also used for comparison of intra- and inter-laboratory particle size exclusion data.

  3. Experimental characterization and multidisciplinary conceptual design optimization of a bendable load stiffened unmanned air vehicle wing

    NASA Astrophysics Data System (ADS)

    Jagdale, Vijay Narayan

    Demand for deployable MAVs and UAVs with wings designed to reduce aircraft storage volume led to the development of a bendable wing concept at the University of Florida (UF). The wing shows an ability to load stiffen in the flight load direction, still remaining compliant in the opposite direction, enabling UAV storage inside smaller packing volumes. From the design prospective, when the wing shape parameters are treated as design variables, the performance requirements : high aerodynamic efficiency, structural stability under aggressive flight loads and desired compliant nature to prevent breaking while stored, in general conflict with each other. Creep deformation induced by long term storage and its effect on the wing flight characteristics are additional considerations. Experimental characterization of candidate bendable UAV wings is performed in order to demonstrate and understand aerodynamic and structural behavior of the bendable load stiffened wing under flight loads and while the wings are stored inside a canister for long duration, in the process identifying some important wing shape parameters. A multidisciplinary, multiobjective design optimization approach is utilized for conceptual design of a 24 inch span and 7 inch root chord bendable wing. Aerodynamic performance of the wing is studied using an extended vortex lattice method based Athena Vortex Lattice (AVL) program. An arc length method based nonlinear FEA routine in ABAQUS is used to evaluate the structural performance of the wing and to determine maximum flying velocity that the wing can withstand without buckling or failing under aggressive flight loads. An analytical approach is used to study the stresses developed in the composite wing during storage and Tsai-Wu criterion is used to check failure of the composite wing due to the rolling stresses to determine minimum safe storage diameter. Multidisciplinary wing shape and layup optimization is performed using an elitist non-dominated sorting

  4. Barchan dunes in two dimensions: experimental tests for minimal models.

    PubMed

    Groh, Christopher; Wierschem, Andreas; Aksel, Nuri; Rehberg, Ingo; Kruelle, Christof A

    2008-08-01

    A well-defined two-dimensional single barchan dune under the force of a shearing water flow is investigated experimentally. From an initially prepared triangular heap a rapid relaxation to a steady-state solution is observed with constant mass, shape, and velocity. This attractor exhibits all characteristic features of barchan dunes found in nature, namely a gently inclined windward side, crest, brink, and steep lee face. The relaxation time towards the steady state increases with mass. For small dunes we find significant deviations from a fixed height-length aspect ratio. As predicted by recent theoretical models, the migration velocity scales reciprocal to the length of the dune.

  5. Hepatitis C Virus Experimental Model Systems and Antiviral drug Research*

    PubMed Central

    Uprichard, Susan L.

    2010-01-01

    An estimated 130 million people worldwide are chronically infected with hepatitis C virus (HCV) making it a leading cause of liver disease worldwide. Because the currently available therapy of pegylated interferon-alpha and ribavirin is only effective in a subset of patients, the development of new HCV antivirals is a healthcare imperative. This review discusses the experimental models available for HCV antiviral drug research, recent advances in HCV antiviral drug development, as well as active research being pursued to facilitate development of new HCV-specific therapeutics. PMID:20960298

  6. Modeling and experimental diagnostics in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Springer, T. E.; Wilson, M. S.; Gottesfeld, S.

    1993-12-01

    This paper presents a fit between model and experiments for well-humidified polymer electrolyte fuel cells operated to maximum current density with a range of cathode gas compositions. The model considers, in detail, losses caused by: (1) interfacial kinetics at the Pt/ionomer interface; (2) gas-transport and ionic-conductivity limitations in the catalyst layer; and (3) gas-transport limitations in the cathode backing. Our experimental data were collected with cells that utilized thin-film catalyst layers bonded directly to the membrane, and a separate catalyst-free hydrophobic backing layer. This structure allows a clearer resolution of the processes taking place in each of these distinguishable parts of the cathode. In our final comparison of model predictions with the experimental data, we stress the simultaneous fit of a family of complete polarization curves obtained for gas compositions ranging from 5 atoms O2 to a mixture of 5% O2 in N2, employing in each case the same model parameters for interracial kinetics, catalyst-layer transport, and backing-layer transport. This approach allowed us to evaluate losses in the cathode backing and in the cathode catalyst layer, and thus identify the improvements required to enhance the performance of air cathodes in polymer electrolyte fuel cells. Finally, we show that effects of graded depletion in oxygen along the gas flow channel can be accurately modeled using a uniform effective oxygen concentration in the flow channel, equal to the average of inlet and exit concentrations. This approach has enabled simplified and accurate consideration of oxygen utilization effects.

  7. Internally electrodynamic particle model: Its experimental basis and its predictions

    SciTech Connect

    Zheng-Johansson, J. X.

    2010-03-15

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.

  8. Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form.

    PubMed

    Daegling, D J; Hylander, W L

    2000-08-01

    Experimental studies and mathematical models are disparate approaches for inferring the stress and strain environment in mammalian jaws. Experimental designs offer accurate, although limited, characterization of biomechanical behavior, while mathematical approaches (finite element modeling in particular) offer unparalleled precision in depiction of strain magnitudes, directions, and gradients throughout the mandible. Because the empirical (experimental) and theoretical (mathematical) perspectives differ in their initial assumptions and their proximate goals, the two methods can yield divergent conclusions about how masticatory stresses are distributed in the dentary. These different sources of inference may, therefore, tangibly influence subsequent biological interpretation. In vitro observation of bone strain in primate mandibles under controlled loading conditions offers a test of finite element model predictions. Two issues which have been addressed by both finite element models and experimental approaches are: (1) the distribution of torsional shear strains in anthropoid jaws and (2) the dissipation of bite forces in the human alveolar process. Not surprisingly, the experimental data and mathematical models agree on some issues, but on others exhibit discordance. Achieving congruence between these methods is critical if the nature of the relationship of masticatory stress to mandibular form is to be intelligently assessed. A case study of functional/mechanical significance of gnathic morphology in the hominid genus Paranthropus offers insight into the potential benefit of combining theoretical and experimental approaches. Certain finite element analyses claim to have identified a biomechanical problem unrecognized in previous comparative work, which, in essence, is that the enlarged transverse dimensions of the postcanine corpus may have a less important role in resisting torsional stresses than previously thought. Experimental data have identified

  9. Evaluation of advanced materials through experimental mechanics and modelling

    NASA Technical Reports Server (NTRS)

    Yang, Yii-Ching

    1993-01-01

    Composite materials have been frequently used in aerospace vehicles. Very often defects are inherited during the manufacture and damages are inherited during the construction and services. It becomes critical to understand the mechanical behavior of such composite structure before it can be further used. One good example of these composite structures is the cylindrical bottle of solid rocket motor case with accidental impact damages. Since the replacement of this cylindrical bottle is expensive, it is valuable to know how the damages affects the material, and how it can be repaired. To reach this goal, the damage must be characterized and the stress/strain field must be carefully analyzed. First the damage area, due to impact, is surveyed and identified with a shearography technique which uses the principle of speckle shearing interferometry to measure displacement gradient. Within the damage area of a composite laminate, such as the bottle of solid rocket motor case, all layers are considered to be degraded. Once a lamina being degraded the stiffness as well as strength will be drastically decreased. It becomes a critical area of failure to the whole bottle. And hence the stress/strain field within and around a damage should be accurately evaluated for failure prediction. To investigate the stress/strain field around damages a Hybrid-Numerical method which combines experimental measurement and finite element analysis is used. It is known the stress or strain at the singular point can not be accurately measured by an experimental technique. Nevertheless, if the location is far away from the singular spot, the displacement can be found accurately. Since it reflects the true displacement field locally regardless of the boundary conditions, it is an excellent input data for a finite element analysis to replace the usually assumed boundary conditions. Therefore, the Hybrid-Numerical method is chosen to avoid the difficulty and to take advantage of both experimental

  10. Experimental validation of a kilovoltage x-ray source model for computing imaging dose

    SciTech Connect

    Poirier, Yannick; Kouznetsov, Alexei; Koger, Brandon; Tambasco, Mauro

    2014-04-15

    computed counterparts resulting in an agreement within 2.5%, 5%, and 8% within solid water, bone, and lung, respectively. Conclusions: The proposed virtual point source model and characterization method can be used to compute absorbed dose in both the homogeneous and heterogeneous block phantoms within of 2%–8% of measured values, depending on the phantom and the beam quality. The authors’ results also provide experimental validation for their kV dose computation software, kVDoseCalc.

  11. An experimental methodology for a fuzzy set preference model

    NASA Technical Reports Server (NTRS)

    Turksen, I. B.; Willson, Ian A.

    1992-01-01

    models and vague linguistic preferences has greatly limited the usefulness and predictive validity of existing preference models. A fuzzy set preference model that uses linguistic variables and a fully interactive implementation should be able to simultaneously address these issues and substantially improve the accuracy of demand estimates. The parallel implementation of crisp and fuzzy conjoint models using identical data not only validates the fuzzy set model but also provides an opportunity to assess the impact of fuzzy set definitions and individual attribute choices implemented in the interactive methodology developed in this research. The generalized experimental tools needed for conjoint models can also be applied to many other types of intelligent systems.

  12. Friction at seismic slip rates: testing thermal weakening models experimentally

    NASA Astrophysics Data System (ADS)

    Nielsen, S. B.; Spagnuolo, E.; Violay, M.; Di Toro, G.

    2013-12-01

    Recent experiments systematically explore rock friction under crustal earthquake conditions (fast slip rate 1experimental data to test various thermal weakening models (flash weakening, diffusion superplasticity, frictional melt lubrication) and to verify the direct or indirect role of temperature on friction. We show that in the absence of melting and/or pressurization, the weakening transient, the dynamic sliding friction and the restrengthening phase can be explained either by the flash weakening model (Archard, 1958; Rice, 2006; Noda et al., 2009) or by a simple model where the strength of the slip zone is directly controlled by an Arrhenious-like thermal dependance. In the presence of melting, which occurs quite easily in silicatic rocks under coseismic conditions, the data are well explained by the frictional melt model (Nielsen et al., 2008, 2010). Frictional heating is simple to compute but requires a rather costly and inefficient convolution (even with the use of FFT) for a dynamic, extended fault simulation. Hence we desing an efficient and accurate wavenumber approximation for a solution of the temperature evolution on the fault. Finally, we propose a compact and paractical model based on a small number of memory variables for the implementation of thermal weakening friction in seismic fault simulations.

  13. Elastase-induced pulmonary emphysema: insights from experimental models.

    PubMed

    Antunes, Mariana A; Rocco, Patricia R M

    2011-12-01

    Several distinct stimuli can be used to reproduce histological and functional features of human emphysema, a leading cause of disability and death. Since cigarette smoke is the main cause of emphysema in humans, experimental researches have attempted to reproduce this situation. However, this is an expensive and cumbersome method of emphysema induction, and simpler, more efficacious alternatives have been sought. Among these approaches, elastolytic enzymes have been widely used to reproduce some characteristics of human cigarette smoke-induced disease, such as: augmentation of airspaces, inflammatory cell influx into the lungs, and systemic inflammation. Nevertheless, the use of elastase-induced emphysema models is still controversial, since the disease pathways involved in elastase induction may differ from those occurring in smoke-induced emphysema. This indicates that the choice of an emphysema model may impact the results of new therapies or drugs being tested. The aim of this review is to compare the mechanisms of disease induction in smoke and elastase emphysema models, to describe the differences among various elastase models, and to establish the advantages and disadvantages of elastase-induced emphysema models. More studies are required to shed light on the mechanisms of elastase-induced emphysema.

  14. Experimental studies and modeling on concentration polarization in forward osmosis.

    PubMed

    Qin, Jian-Jun; Chen, Sijie; Oo, Maung Htun; Kekre, Kiran A; Cornelissen, Emile R; Ruiken, Chris J

    2010-01-01

    Concentration polarization (CP) is an important issue in forward osmosis (FO) processes and it is believed that the coupled effect of dilutive internal CP (DICP) and concentrative external CP (CECP) limits FO flux. The objective of this study was to distinguish individual contribution of different types of DICP and CECP via modeling and to validate it by pilot studies. The influence of DICP/CECP on FO flux has been investigated in this study. The CP model presented in this work was derived from a previous study and evaluated by bench-scale FO experiments. Experiments were conducted with drinking water as the feed and NaCl/MgSO(4) as draw solutions at different concentrations and velocities. Modeling results indicated that DICP contributed to a flux reduction by 99.9% for 0.5 M NaCl as a draw solution although the flow pattern of both feed and draw solutions was turbulent. DICP could be improved via selection of the draw solution. The modeling results were well fit with the experimental data. It was concluded that the model could be used for selection of the draw solution and prediction of water flux under similar situation. A draw solution with greater diffusion coefficient or a thinner substrate of an asymmetric FO membrane resulted in a higher flux.

  15. Immunology and Homeopathy. 3. Experimental Studies on Animal Models

    PubMed Central

    Bellavite, Paolo; Ortolani, Riccardo; Conforti, Anita

    2006-01-01

    A search of the literature and the experiments carried out by the authors of this review show that there are a number of animal models where the effect of homeopathic dilutions or the principles of homeopathic medicine have been tested. The results relate to the immunostimulation by ultralow doses of antigens, the immunological models of the ‘simile’, the regulation of acute or chronic inflammatory processes and the use of homeopathic medicines in farming. The models utilized by different research groups are extremely etherogeneous and differ as the test medicines, the dilutions and the outcomes are concerned. Some experimental lines, particularly those utilizing mice models of immunomodulation and anti-inflammatory effects of homeopathic complex formulations, give support to a real effect of homeopathic high dilutions in animals, but often these data are of preliminary nature and have not been independently replicated. The evidence emerging from animal models is supporting the traditional ‘simile’ rule, according to which ultralow doses of compounds, that in high doses are pathogenic, may have paradoxically a protective or curative effect. Despite a few encouraging observational studies, the effectiveness of the homeopathic prevention or therapy of infections in veterinary medicine is not sufficiently supported by randomized and controlled trials. PMID:16786046

  16. Wake redirection: comparison of analytical, numerical and experimental models

    NASA Astrophysics Data System (ADS)

    Wang, Jiangang; Bottasso, Carlo L.; Campagnolo, Filippo

    2016-09-01

    This paper focuses on wake redirection techniques for wind farm control. Two control strategies are investigated: yaw misalignment and cyclic pitch control. First, analytical formulas are derived for both techniques, with the goal of providing a simple physical interpretation of the behavior of the two methods. Next, more realistic results are obtained by numerical simulations performed with CFD and by experiments conducted with scaled wind turbine models operating in a boundary layer wind tunnel. Comparing the analytical, numerical and experimental models allows for a cross-validation of the results and a better understanding of the two wake redirection techniques. Results indicate that yaw misalignment is more effective than cyclic pitch control in displacing the wake laterally, although the latter may have positive effects on wake recovery.

  17. Experimental investigation and model development for a harmonic drive transmission.

    SciTech Connect

    Preissner, C.; Shu, D.; Royston, T. J.; Univ. of Illinois at Chicago

    2007-01-01

    Harmonic drive transmissions (HDTs) are compact, low-backlash, high-ratio, high-resolution rotary motion transmissions. One application to benefit from these attributes is the revolute joint robot. Engineers at the Advanced Photon Source (APS) are investigating the use of this type of robot for the positioning of an x-ray detector; understanding the properties of the robot components is crucial to modeling positioner behavior. The robot bearing elements had been investigated previously, leaving the transmission as the missing component. While the benefits of HDTs are well known, the disadvantages, including fluctuating dissipation characteristics and nonlinear stiffness, are not understood as well. These characteristics can contribute uncontrolled dynamics to the overall robot performance. A dynamometer has been constructed at the APS to experimentally measure the HDT's response. Empirical torque and position data were recorded for multiple transmission load cases and input conditions. In turn, a computer model of the dynamometer HDT system was constructed to approximate the observed response.

  18. Performance Modeling of an Experimental Laser Propelled Lightcraft

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.

    2000-01-01

    A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  19. EXPERIMENTAL MODEL OF ALCOHOL-RELATED PERIPHERAL NEUROPATHY

    PubMed Central

    MELLION, MICHELLE L.; NGUYEN, VANANH; TONG, MING; GILCHRIST, JAMES; DE LA MONTE, SUZANNE

    2015-01-01

    Introduction The aim of this work was to determine the effect of chronic alcohol exposure on peripheral nerves in a nutritionally balanced rat model of alcoholism. Methods Three different strains of adult male rats were pair-fed for 8 weeks with isocaloric liquid diets containing 0% or 37% ethanol. Nerve conduction studies (NCS) were performed. Peripheral nerve and muscle were examined histologically with morphometrics. Results Ethanol exposure significantly slowed velocity in tibial and fibular nerves, but not in the plantar nerve in all 3 strains. Studies of the sciatic nerve revealed decreased fiber diameters and increased regenerative sprouts in peripheral nerves. There was muscle denervation of ethanol-exposed rats in all 3 strains. Conclusions Chronic ethanol exposure caused a polyneuropathy characterized by axonal degeneration despite adequate nutrition. These results suggest that ethanol exposure has direct neurotoxic effects on peripheral nerves. This model may be useful in understanding the underlying mechanism(s) of alcohol-related peripheral neuropathy. PMID:23761140

  20. Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device.

    PubMed

    Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H; Griffith, Bartley P; Wu, Zhongjun J

    2013-04-01

    With the recent advances in computer technology, computational fluid dynamics (CFDs) has become an important tool to design and improve blood-contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST [Menter's Shear Stress Transport], and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, the CentriMag centrifugal blood pump. In parallel, a transparent replica of the CentriMag pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε renormalization group theory models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than the laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended.

  1. Comparison of fluid dynamic numerical models for a clinical ventricular assist device and experimental validation

    PubMed Central

    Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H.; Griffith, Bartley P.; Wu, Zhongjun J.

    2012-01-01

    With the recent advances in computer technology, computational fluid dynamics (CFD) has become an important tool to design and improve blood contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST (Menter’s Shear Stress Transport), and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, CentriMag® centrifugal blood pump (Thoratec, MA). In parallel, a transparent replica of the CentriMag® pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε RNG models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681

  2. Contaminant plume configuration and movement: an experimental model

    NASA Astrophysics Data System (ADS)

    Alencoao, A.; Reis, A.; Pereira, M. G.; Liberato, M. L. R.; Caramelo, L.; Amraoui, M.; Amorim, V.

    2009-04-01

    The relevance of Science and Technology in our daily routines makes it compulsory to educate citizens who have both scientific literacy and scientific knowledge. These will allow them to be intervening citizens in a constantly changing society. Thus, physical and natural sciences are included in school curricula, both in primary and secondary education, with the fundamental aim of developing in the students the skills, attitudes and knowledge needed for the understanding of the planet Earth and its real problems. On the other hand, teaching in Geosciences is more and more based on practical methodologies which use didactic material, sustaining teachers' pedagogical practices and facilitating students' learning tasks suggested on the syllabus defined for each school level. Themes related to exploring the different components of the Hydrological Cycle and themes related to natural environment protection and preservation, namely water resources and soil contamination by industrial and urban sewage are examples of subject matters included on the Portuguese syllabus. These topics motivated the conception and construction of experimental models for the study of the propagation of pollutants on a porous medium. The experimental models allow inducing a horizontal flux of water though different kinds of permeable substances (e.g. sand, silt), with contamination spots on its surface. These experimental activities facilitate the student to understand the flow path of contaminating substances on the saturated zone and to observe the contaminant plume configuration and movement. The activities are explored in a teaching and learning process perspective where the student builds its own knowledge through real question- problem based learning which relate Science, Technology and Society. These activities have been developed in the framework of project ‘Water in the Environment' (CV/PVI/0854) of the POCTI Program (Programa Operacional "Ciência, Tecnologia, Inovação") financed

  3. Characterization of an Experimental Referee Broadened Specification (ERBS) aviation turbine fuel and ERBS fuel blends

    NASA Technical Reports Server (NTRS)

    Seng, G. T.

    1982-01-01

    Characterization data and comparisons of these data are presented for three individual lots of a research test fuel designated as an Experimental Referee Broadened Specification (ERBS) aviation turbine fuel. This research fuel, which is a blend of kerosene and hydrotreated catalytic gas oil, is a representation of a kerojet fuel with broadened properties. To lower the hydrogen content of the ERBS fuel, a blending stock, composed of xylene bottoms and hydrotreated catalytic gas oil, was developed and employed to produce two different ERBS fuel blends. The ERBS fuel blends and the blending stock were also characterized and the results for the blends are compared to those of the original ERBS fuel. The characterization results indicate that with the exception of the freezing point for ERBS lot 2, which was slightly high, the three lots, produced over a 2 year period, met all general fuel requirements. However, although the properties of the fuels were found to be fairly consistent, there were differences in composition. Similarly, all major requirements for the ERBS fuel blends were met or closely approached, and the properties of the blended fuels were found to generally reflect those expected for the proportions of ERBS fuel and blending stock used in their production.

  4. Taenia solium: Development of an Experimental Model of Porcine Neurocysticercosis.

    PubMed

    Fleury, Agnès; Trejo, Armando; Cisneros, Humberto; García-Navarrete, Roberto; Villalobos, Nelly; Hernández, Marisela; Villeda Hernández, Juana; Hernández, Beatriz; Rosas, Gabriela; Bobes, Raul J; de Aluja, Aline S; Sciutto, Edda; Fragoso, Gladis

    2015-01-01

    Human neurocysticercosis (NC) is caused by the establishment of Taenia solium larvae in the central nervous system. NC is a severe disease still affecting the population in developing countries of Latin America, Asia, and Africa. While great improvements have been made on NC diagnosis, treatment, and prevention, the management of patients affected by extraparenchymal parasites remains a challenge. The development of a T. solium NC experimental model in pigs that will allow the evaluation of new therapeutic alternatives is herein presented. Activated oncospheres (either 500 or 1000) were surgically implanted in the cerebral subarachnoid space of piglets. The clinical status and the level of serum antibodies in the animals were evaluated for a 4-month period after implantation. The animals were sacrificed, cysticerci were counted during necropsy, and both the macroscopic and microscopic characteristics of cysts were described. Based on the number of established cysticerci, infection efficiency ranged from 3.6% (1000 oncospheres) to 5.4% (500 oncospheres). Most parasites were caseous or calcified (38/63, 60.3%) and were surrounded by an exacerbated inflammatory response with lymphocyte infiltration and increased inflammatory markers. The infection elicited specific antibodies but no neurological signs. This novel experimental model of NC provides a useful tool to evaluate new cysticidal and anti-inflammatory approaches and it should improve the management of severe NC patients, refractory to the current treatments.

  5. Taenia solium: Development of an Experimental Model of Porcine Neurocysticercosis

    PubMed Central

    Fleury, Agnès; Trejo, Armando; Cisneros, Humberto; García-Navarrete, Roberto; Villalobos, Nelly; Hernández, Marisela; Villeda Hernández, Juana; Hernández, Beatriz; Rosas, Gabriela; Bobes, Raul J.; S. de Aluja, Aline; Sciutto, Edda; Fragoso, Gladis

    2015-01-01

    Human neurocysticercosis (NC) is caused by the establishment of Taenia solium larvae in the central nervous system. NC is a severe disease still affecting the population in developing countries of Latin America, Asia, and Africa. While great improvements have been made on NC diagnosis, treatment, and prevention, the management of patients affected by extraparenchymal parasites remains a challenge. The development of a T. solium NC experimental model in pigs that will allow the evaluation of new therapeutic alternatives is herein presented. Activated oncospheres (either 500 or 1000) were surgically implanted in the cerebral subarachnoid space of piglets. The clinical status and the level of serum antibodies in the animals were evaluated for a 4-month period after implantation. The animals were sacrificed, cysticerci were counted during necropsy, and both the macroscopic and microscopic characteristics of cysts were described. Based on the number of established cysticerci, infection efficiency ranged from 3.6% (1000 oncospheres) to 5.4% (500 oncospheres). Most parasites were caseous or calcified (38/63, 60.3%) and were surrounded by an exacerbated inflammatory response with lymphocyte infiltration and increased inflammatory markers. The infection elicited specific antibodies but no neurological signs. This novel experimental model of NC provides a useful tool to evaluate new cysticidal and anti-inflammatory approaches and it should improve the management of severe NC patients, refractory to the current treatments. PMID:26252878

  6. Spatiotemporal properties of microsaccades: Model predictions and experimental tests

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao

    2016-10-01

    Microsaccades are involuntary and very small eye movements during fixation. Recently, the microsaccade-related neural dynamics have been extensively investigated both in experiments and by constructing neural network models. Experimentally, microsaccades also exhibit many behavioral properties. It’s well known that the behavior properties imply the underlying neural dynamical mechanisms, and so are determined by neural dynamics. The behavioral properties resulted from neural responses to microsaccades, however, are not yet understood and are rarely studied theoretically. Linking neural dynamics to behavior is one of the central goals of neuroscience. In this paper, we provide behavior predictions on spatiotemporal properties of microsaccades according to microsaccade-induced neural dynamics in a cascading network model, which includes both retinal adaptation and short-term depression (STD) at thalamocortical synapses. We also successfully give experimental tests in the statistical sense. Our results provide the first behavior description of microsaccades based on neural dynamics induced by behaving activity, and so firstly link neural dynamics to behavior of microsaccades. These results indicate strongly that the cascading adaptations play an important role in the study of microsaccades. Our work may be useful for further investigations of the microsaccadic behavioral properties and of the underlying neural dynamical mechanisms responsible for the behavioral properties.

  7. Collagen V nasal tolerance in experimental model of systemic sclerosis.

    PubMed

    Velosa, Ana Paula Pereira; Teodoro, Walcy Rosolia; de Oliveira, Cristiane Carla; Dos Santos Filho, Antonio; Moutinho, Rodnei Francisco; Santos, Angela Gomes; Vendramini, Margarete Borges Galhardo; Bueno, Cleonice; Parra, Edwin Roger; Capelozzi, Vera Luiza; Yoshinari, Natalino Hajime

    2007-07-01

    Our aim was to study skin remodeling and autoantibody production in an experimental model of scleroderma (SSc), following nasal tolerance with human type V collagen (Col V). Female New Zealand rabbits (n = 12) were immunized with two doses of 1 mg/ml of Col V in complete Freund's adjuvant and additional two boosters in incomplete Freund's adjuvant to induce SSc. After 150 days, half of these immunized rabbits were submitted to type V collagen-induced tolerance receiving a daily nasal administration of 25 mug of Col V. Control animals (n = 6) were only submitted to type V collagen-induced tolerance. Serial skin biopsies were performed on days 0, 150 and 210, and stained with H&E, Masson's trichrome and Picrosirius for morphological and morphometric analysis. Types I, III and V collagen were identified by immunofluorescence. The animals' serum samples were collected to determine anti types I, III, IV and V collagen and antinuclear antibodies (ANA). Skin biopsies from immunized animals confirmed SSc morphology as previously described, such as progressive decrease of papillary dermis, appendages atrophy, increased type I, III and V collagen deposition. Rabbits with Col V-induced nasal tolerance showed reduction of skin involvement, with significant decrease of collagen amount. Humoral immune response did not change with nasal tolerance. Collagen V nasal tolerance promotes regression of skin remodeling process in an experimental model of SSc. We suggest that nasal tolerance with type V collagen can be a promising therapeutic option to treat scleroderma patients.

  8. The KSR1: Experimentation and modeling of poststore

    SciTech Connect

    Rosti, E.; Smirni, E.; Wagner, T.D.; Apon, A.W.; Dowdy, L.W.

    1993-02-01

    Kendall Square Research introduced the KSR1 system in 1991. The architecture is based on a ring of rings of 64-bit microprocessors. It is a distributed, shared memory system and is scalable. The memory structure is unique and is the key to understanding the system. Different levels of caching eliminates physical memory addressing and leads to the ALLCACHE{trademark} scheme. Since requested data may be found in any of several caches, the initial access time is variable. Once pulled into the local (sub)cache, subsequent access times are fixed and minimal. Thus, the KSR1 is a Cache-Only Memory Architecture (COMA) system.This paper describes experimentation and an analytic model of the KSR1. The focus is on the poststore programmer option. With the poststore option, the programmer can elect to broadcast the updated value of a variable to all processors that might have a copy. This may save time for threads on other processors, but delays the broadcasting thread and places additional traffic on the ring. The specific issue addressed is to determine under what conditions poststore is beneficial. The analytic model and the experimental observations are in good agreement. They indicate that the decision to use poststore depends both on the application and the current system load.

  9. The KSR1: Experimentation and modeling of poststore

    SciTech Connect

    Rosti, E. . Dipt. di Scienze dell'Informazione); Smirni, E.; Wagner, T.D.; Apon, A.W.; Dowdy, L.W. . Dept. of Computer Science)

    1993-02-01

    Kendall Square Research introduced the KSR1 system in 1991. The architecture is based on a ring of rings of 64-bit microprocessors. It is a distributed, shared memory system and is scalable. The memory structure is unique and is the key to understanding the system. Different levels of caching eliminates physical memory addressing and leads to the ALLCACHE[trademark] scheme. Since requested data may be found in any of several caches, the initial access time is variable. Once pulled into the local (sub)cache, subsequent access times are fixed and minimal. Thus, the KSR1 is a Cache-Only Memory Architecture (COMA) system.This paper describes experimentation and an analytic model of the KSR1. The focus is on the poststore programmer option. With the poststore option, the programmer can elect to broadcast the updated value of a variable to all processors that might have a copy. This may save time for threads on other processors, but delays the broadcasting thread and places additional traffic on the ring. The specific issue addressed is to determine under what conditions poststore is beneficial. The analytic model and the experimental observations are in good agreement. They indicate that the decision to use poststore depends both on the application and the current system load.

  10. Experimental and model analysis on the temperature dynamics during diode laser welding of the cornea.

    PubMed

    Rossi, Francesca; Pini, Roberto; Menabuoni, Luca

    2007-01-01

    Corneal laser welding is a technique used clinically to induce the immediate sealing of corneal wounds. We present an experimental and model analysis of the temperature dynamics during diode laser-induced corneal welding, which is aimed at characterizing the mechanism of tissue fusion. Ex vivo tests were performed on porcine eyes in the typical irradiation conditions used for laser-induced suturing in cornea transplant. Three laser power densities (12.5 W/cm(2), 16.7 W/cm(2), 20.8 W/cm(2)) were tested. The superficial temperature of the cornea was measured by means of an infrared thermocamera. Experimental data were compared with the results of a three-dimensional (3D) model of a laser-welding process in the cornea, solved by the use of the Finite Element Method (FEM). The model solution and experimental results showed good agreement. The model was thus used to estimate the temperature enhancement inside the corneal wound and to calculate the thermal damage inside the tissue. The results indicated a selective, spatially confined heating effect that occurred at operative temperatures (59 to 66 degrees C) close to intermediate denaturation points of the stromal collagen, before its complete disorganization. No significant heat damage to the region of the laser-treated wound was evidenced in the operative irradiation conditions of corneal welding.

  11. Theoretical modelling and experimental results of electromechanical actuation of an elastomer

    NASA Astrophysics Data System (ADS)

    Díaz-Calleja, Ricardo; Llovera-Segovia, Pedro; Dominguez, José Jorge; Carsí Rosique, Marta; Quijano Lopez, Alfredo

    2013-06-01

    Electromechanical actuation is a growing field of research today both for applications or theoretical modelling. The interaction between electric and mechanical constraints has been used for electromechanic actuators or generators based on elastomers. From a theoretical point of view, many recent works have been focused on uniaxial or biaxial stretching of elastomer plates with compliant electrodes. Free stretching or pre-strained samples have been theoretically modelled, mainly by neo-Hookean equations. In this work, we present theoretical and experimental results of electromechanic actuation of an elastomer (the widely used 3M VHB4910, an acrylic foam) in a pre-strained case and a free case. Experimental characterization of the material shows that the Ogden model gives the best accurate fitting of mechanical properties. Thus, a theoretical development based on this model is carried out in order to obtain the curves describing the electromechanical behaviour of the material. The mechanical instability related to wrinkling of the material is theoretically calculated and experimentally verified.

  12. Experimental assessment of a schist hillslope in Luxembourg with a view to modelling

    NASA Astrophysics Data System (ADS)

    Scaini, Anna; Fenicia, Fabrizio; Beven, Keith

    2014-05-01

    Although modelling is often the logical complement of fieldwork, experimenting and modelling are regularly carried out separately, which often causes a mismatch between the data that are available and those that are necessary. Our research aims to generate insights into flowpaths and mixing processes through a combined experimental and modelling approach. Experiments are therefore targeted to estimate relevant model parameters and test model assumptions. The experiments take place on a hillslope in the Weierbach catchment in Luxembourg. The Weierbach is a forested catchment underlain by schist, and is characterized by marked threshold behaviour. The schist formation tends to be fractured towards the surface, forming a system of local reservoirs where water can be stored. Lateral flow can therefore be interpreted as a movement of water across multiple temporarily connected reservoirs. We carried out a sprinkling experiment with the use of deuterium-enriched water. We use ERT measurements and Thermal Infrared data are used to spatially characterize the heterogeneity of the subsurface at the experimental site. Observational data in the hillslope are used to estimate the response at the bottom of the hillslope. The signal distributed through time will help estimate the percentage of flow we expect. Flow and concentrations are measured at a fine enough time scale to capture the response of the hillslope at event scale. The objective of collecting the experimental data is to capture the downslope lateral component effect and estimate the residence times of water during wet conditions. Up to this phase, experimental results in wet conditions are analysed. The information presented will be used for testing the Multiple Interacting Pathways (MIPs) concept in the 2D version, in order to try to reproduce the movement of water through the soil. The main characteristic of MIPs model is that it tracks the movement of individual water particles. The movement of these particles is

  13. Active vibration absorber for the CSI evolutionary model - Design and experimental results. [Controls Structures Interaction

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstrations to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility has been developed to study practical implementation of new control technologies under realistic conditions. The paper discusses the design of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. Experimental results in the presence of these factors are presented and discussed. The robustness of this design under model uncertainty is demonstrated.

  14. Characterization and modeling of protein protein interaction networks

    NASA Astrophysics Data System (ADS)

    Colizza, Vittoria; Flammini, Alessandro; Maritan, Amos; Vespignani, Alessandro

    2005-07-01

    The recent availability of high-throughput gene expression and proteomics techniques has created an unprecedented opportunity for a comprehensive study of the structure and dynamics of many biological networks. Global proteomic interaction data, in particular, are synthetically represented as undirected networks exhibiting features far from the random paradigm which has dominated past effort in network theory. This evidence, along with the advances in the theory of complex networks, has triggered an intense research activity aimed at exploiting the evolutionary and biological significance of the resulting network's topology. Here we present a review of the results obtained in the characterization and modeling of the yeast Saccharomyces Cerevisiae protein interaction networks obtained with different experimental techniques. We provide a comparative assessment of the topological properties and discuss possible biases in interaction networks obtained with different techniques. We report on dynamical models based on duplication mechanisms that cast the protein interaction networks in the family of dynamically growing complex networks. Finally, we discuss various results and analysis correlating the networks’ topology with the biological function of proteins.

  15. A SIMPLE HYDROLOGICAL MODEL FOR WATERSHED CHARACTERIZATION

    EPA Science Inventory

    Catchment behavior is characterized with a variety of metrics - discharge, chemical export, biological activity, to name a few. Catchments have complex temporal behavior, e.g., summer and winter storm recessions and nutrient export may look nothing alike. Further, catchment res...

  16. Toxicity of Nanoparticles and an Overview of Current Experimental Models

    PubMed Central

    Bahadar, Haji; Maqbool, Faheem; Niaz, Kamal; Abdollahi, Mohammad

    2016-01-01

    Nanotechnology is a rapidly growing field having potential applications in many areas. Nanoparticles (NPs) have been studied for cell toxicity, immunotoxicity, and genotoxicity. Tetrazolium-based assays such as MTT, MTS, and WST-1 are used to determine cell viability. Cell inflammatory response induced by NPs is checked by measuring inflammatory biomarkers, such as IL-8, IL-6, and tumor necrosis factor, using ELISA. Lactate dehydrogenase (LDH) assay is used for cell membrane integrity. Different types of cell cultures, including cancer cell lines have been employed as in vitro toxicity models. It has been generally agreed that NPs interfere with either assay materials or with detection systems. So far, toxicity data generated by employing such models are conflicting and inconsistent. Therefore, on the basis of available experimental models, it may be difficult to judge and list some of the more valuable NPs as more toxic to biological systems and vice versa. Considering the potential applications of NPs in many fields and the growing apprehensions of FDA about the toxic potential of nanoproducts, it is the need of the hour to look for new internationally agreed free of bias toxicological models by focusing more on in vivo studies. PMID:26286636

  17. Desorption isotherms for fresh beef: an experimental and modeling approach.

    PubMed

    Ahmat, Tom; Bruneau, Denis; Kuitche, Alexis; Waste Aregba, Aworou

    2014-04-01

    Desorption isotherms for fresh beef were determined at 30, 40 and 50°C by the static gravimetric method. The resulting isotherms exhibited a type II sigmoid shape. The BET, GAB and Halsey models were used to fit these experimental data. The GAB model was most accurate for all temperatures and all levels of water activity, followed by the BET and Halsey models. The temperature dependence of GAB constants was estimated. The isosteric heat of desorption and its evolution in relation to moisture content were calculated using Clausius-Clapeyron equations. The monolayer moisture content was determined using the GAB model: it decreased as the temperature increased. The density of bound water, the number of adsorption sites, the sorption surface area and the percentage of bound water were calculated using the Caurie equation: all these quantities decreased as the temperature increased. The Kelvin and Halsey equations were used for calculation of pore size, which increases with an increase in moisture levels and sorption temperature.

  18. The Non-Human Primate Experimental Glaucoma Model

    PubMed Central

    Burgoyne, Claude F.

    2015-01-01

    The purpose of this report is to summarize the current strengths and weaknesses of the non-human primate (NHP) experimental glaucoma (EG) model through sections devoted to its history, methods, important findings, alternative optic neuropathy models and future directions. NHP EG has become well established for studying human glaucoma in part because the NHP optic nerve head (ONH) shares a close anatomic association with the human ONH and because it provides the only means of systematically studying the very earliest visual system responses to chronic IOP elevation, i.e. the conversion from ocular hypertension to glaucomatous damage. However, NHPs are impractical for studies that require large animal numbers, demonstrate spontaneous glaucoma only rarely, do not currently provide a model of the neuropathy at normal levels of IOP, and cannot easily be genetically manipulated, except through tissue-specific, viral vectors. The goal of this summary is to direct NHP EG and non-NHP EG investigators to the previous, current and future accomplishment of clinically relevant knowledge in this model. PMID:26070984

  19. Esophageal aerodynamics in an idealized experimental model of tracheoesophageal speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Hemsing, Frank S.

    2016-03-01

    Flow behavior is investigated in the esophageal tract in an idealized experimental model of tracheoesophageal speech. The tracheoesophageal prosthesis is idealized as a first-order approximation using a straight, constant diameter tube. The flow is scaled according to Reynolds, Strouhal, and Euler numbers to ensure dynamic similarity. Flow pulsatility is produced by a driven orifice that approximates the kinematics of the pharyngoesophageal segment during tracheoesophageal speech. Particle image velocimetry data are acquired in three orthogonal planes as the flow exits the model prosthesis and enters the esophageal tract. Contrary to prior investigations performed in steady flow with the prosthesis oriented in-line with the flow direction, the fluid dynamics are shown to be highly unsteady, suggesting that the esophageal pressure field will be similarly complex. A large vortex ring is formed at the inception of each phonatory cycle, followed by the formation of a persistent jet. This vortex ring appears to remain throughout the entire cycle due to the continued production of vorticity resulting from entrainment between the prosthesis jet and the curved esophageal walls. Mean flow in the axial direction of the esophagus produces significant stretching of the vortex throughout the phonatory cycle. The stagnation point created by the jet impinging on the esophageal wall varies throughout the cycle due to fluctuations in the jet trajectory, which most likely arises due to flow separation within the model prosthesis. Applications to tracheoesophageal speech, including shortcomings of the model and proposed future plans, are discussed.

  20. Integral Reactor Containment Condensation Model and Experimental Validation

    SciTech Connect

    Wu, Qiao; Corradini, Michael

    2016-05-02

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure

  1. An experimental characterization of damping properties of thermal barrier coatings at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Easterday, Oliver T.

    Modern gas turbine engines have routinely utilized thermal barrier coatings for the past three decades to coax greater thermodynamic efficiency out of jet engines. In service, it has been noted that these ceramic materials are also effective at suppressing high cycle fatigue in the engine components, increasing their respective fatigue life. Recent efforts have been made to mechanically characterize these materials; this has been a challenge as they are thin coatings, prone to history effects, and are materially nonlinear. Refinement of the apparatus have occurred and it is now desired to characterize them across a range of likely service temperatures. A free-free beam apparatus has been adapted to accomplish this. Important to achieving viable results is the design, analysis, and experimental validation of the chamber in regards to the free-free specimen being heat-able, modally detuned and free-hanging, and the preservation of a non-contacting excitation method. Critical to success is ensuring a near-isothermal heated beam specimen. After successful validation and calibration of the chamber, a common thermal barrier coating, 8-YSZ, was tested, primarily using the free-decay, logarithmic decrement method, using the chamber from 70-900degF. Materially non-linear behavior was observed and findings of material storage modulus and loss coefficient that are consistent with previous studies were obtained. The chamber was also used to characterize the bare metal beam blanks and bond-coat only specimens. The apparatus was found to be sensitive when determining the storage modulus and damping, more so than the baseline configuration. This was due to changes in design to proof it against high temperature. Resulting, it clearly characterized the anisotropic modulus of titanium and determined that bond coating had a negligible contribution to the beam system. Design life criteria with the properties of the coating could now be adopted across a range of temperatures.

  2. An innovative multi-gap clutch based on magneto-rheological fluids and electrodynamic effects: magnetic design and experimental characterization

    NASA Astrophysics Data System (ADS)

    Rizzo, R.

    2017-01-01

    In this paper an innovative multi-gap magnetorheological clutch is described. It is inspired by a device previously developed by the author’s research group and contains a novel solution based on electrodynamic effects, capable to considerably improve the transmissible torque during the engagement phase. Since this (transient) phase is characterized by a non-zero angular speed between the two clutch shafts, the rotation of a permanent magnets system, used to excite the fluid, induces eddy currents on some conductive material strategically positioned in the device. As a consequence, an electromagnetic torque is produced which is added to the torque transmitted by the magnetorheological fluid only. Once the clutch is completely engaged and the relative speed between the two shafts is zero, the electrodynamic effects vanish and the device operates like a conventional magnetorheological clutch. The system is investigated and designed by means a 3D FEM model and the performance of the device is experimentally validated on a prototype.

  3. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    NASA Technical Reports Server (NTRS)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles of 0deg, 30deg, 45deg, 60deg and 90deg relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  4. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    NASA Technical Reports Server (NTRS)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles [0deg, 30deg, 45deg, 60deg and 90deg] relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  5. Autonomous learning derived from experimental modeling of physical laws.

    PubMed

    Grabec, Igor

    2013-05-01

    This article deals with experimental description of physical laws by probability density function of measured data. The Gaussian mixture model specified by representative data and related probabilities is utilized for this purpose. The information cost function of the model is described in terms of information entropy by the sum of the estimation error and redundancy. A new method is proposed for searching the minimum of the cost function. The number of the resulting prototype data depends on the accuracy of measurement. Their adaptation resembles a self-organized, highly non-linear cooperation between neurons in an artificial NN. A prototype datum corresponds to the memorized content, while the related probability corresponds to the excitability of the neuron. The method does not include any free parameters except objectively determined accuracy of the measurement system and is therefore convenient for autonomous execution. Since representative data are generally less numerous than the measured ones, the method is applicable for a rather general and objective compression of overwhelming experimental data in automatic data-acquisition systems. Such compression is demonstrated on analytically determined random noise and measured traffic flow data. The flow over a day is described by a vector of 24 components. The set of 365 vectors measured over one year is compressed by autonomous learning to just 4 representative vectors and related probabilities. These vectors represent the flow in normal working days and weekends or holidays, while the related probabilities correspond to relative frequencies of these days. This example reveals that autonomous learning yields a new basis for interpretation of representative data and the optimal model structure.

  6. Experimental validation of a method characterizing bow tie filters in CT scanners using a real-time dose probe

    SciTech Connect

    McKenney, Sarah E.; Nosratieh, Anita; Gelskey, Dale; Yang Kai; Huang Shinying; Chen Lin; Boone, John M.

    2011-03-15

    Purpose: Beam-shaping or ''bow tie'' (BT) filters are used to spatially modulate the x-ray beam in a CT scanner, but the conventional method of step-and-shoot measurement to characterize a beam's profile is tedious and time-consuming. The theory for characterization of bow tie relative attenuation (COBRA) method, which relies on a real-time dosimeter to address the issues of conventional measurement techniques, was previously demonstrated using computer simulations. In this study, the feasibility of the COBRA theory is further validated experimentally through the employment of a prototype real-time radiation meter and a known BT filter. Methods: The COBRA method consisted of four basic steps: (1) The probe was placed at the edge of a scanner's field of view; (2) a real-time signal train was collected as the scanner's gantry rotated with the x-ray beam on; (3) the signal train, without a BT filter, was modeled using peak values measured in the signal train of step 2; and (4) the relative attenuation of the BT filter was estimated from filtered and unfiltered data sets. The prototype probe was first verified to have an isotropic and linear response to incident x-rays. The COBRA method was then tested on a dedicated breast CT scanner with a custom-designed BT filter and compared to the conventional step-and-shoot characterization of the BT filter. Using basis decomposition of dual energy signal data, the thickness of the filter was estimated and compared to the BT filter's manufacturing specifications. The COBRA method was also demonstrated with a clinical whole body CT scanner using the body BT filter. The relative attenuation was calculated at four discrete x-ray tube potentials and used to estimate the thickness of the BT filter. Results: The prototype probe was found to have a linear and isotropic response to x-rays. The relative attenuation produced from the COBRA method fell within the error of the relative attenuation measured with the step-and-shoot method

  7. Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization.

    PubMed

    Tong, Mingming; Cole, Katie; Brito-Parada, Pablo R; Neethling, Stephen; Cilliers, Jan J

    2017-04-05

    Pseudo-two-dimensional (2D) foams are commonly used in foam studies as it is experimentally easier to measure the bubble size distribution and other geometric and topological properties of these foams than it is for a 3D foam. Despite the widespread use of 2D foams in both simulation and experimental studies, many important geometric and topological relationships are still not well understood. Film size, for example, is a key parameter in the stability of bubbles and the overall structure of foams. The relationship between the size distribution of the films in a foam and that of the bubbles themselves is thus a key relationship in the modeling and simulation of unstable foams. This work uses structural simulation from Surface Evolver to statistically analyze this relationship and to ultimately formulate a relationship for the film size in 2D foams that is shown to be valid across a wide range of different bubble polydispersities. These results and other topological features are then validated using digital image analysis of experimental pseudo-2D foams produced in a vertical Hele-Shaw cell, which contains a monolayer of bubbles between two plates. From both the experimental and computational results, it is shown that there is a distribution of sizes that a film can adopt and that this distribution is very strongly dependent on the sizes of the two bubbles to which the film is attached, especially the smaller one, but that it is virtually independent of the underlying polydispersity of the foam.

  8. Electrical characterization and an equivalent circuit model of a microhollow cathode discharge reactor

    SciTech Connect

    Taylan, O.; Berberoglu, H.

    2014-07-28

    This paper reports the electrical characterization and an equivalent circuit of a microhollow cathode discharge (MHCD) reactor in the self-pulsing regime. A MHCD reactor was prototyped for air plasma generation, and its current-voltage characteristics were measured experimentally in the self-pulsing regime for applied voltages from 2000 to 3000 V. The reactor was modeled as a capacitor in parallel with a variable resistor. A stray capacitance was also introduced to the circuit model to represent the capacitance of the circuit elements in the experimental setup. The values of the resistor and capacitors were recovered from experimental data, and the proposed circuit model was validated with independent experiments. Experimental data showed that increasing the applied voltage increased the current, self-pulsing frequency and average power consumption of the reactor, while it decreased the peak voltage. The maximum and the minimum voltages obtained using the model were in agreement with the experimental data within 2.5%, whereas the differences between peak current values were less than 1%. At all applied voltages, the equivalent circuit model was able to accurately represent the peak and average power consumption as well as the self-pulsing frequency within the experimental uncertainty. Although the results shown in this paper was for atmospheric air pressures, the proposed equivalent circuit model of the MHCD reactor could be generalized for other gases at different pressures.

  9. Effects of tenoxicam in experimental corrosive esophagitis model.

    PubMed

    Erbaş, M; Kiraz, H A; Küçük, A; Topaloğlu, N; Erdem, H; Şahin, H; Toman, H; Ozkan, M Turgut Alper

    2015-04-01

    Esophageal stricture, one of the important complications of corrosive esophagus, develops following edema and granulation tissue that forms during and after the inflammatory reactions. Tenoxicam, a non-steroid anti-inflammatory drug with a long half-life, prevents various leukocyte functions including phagocyte and histamine secretion by inhibiting prostaglandin synthesis and removes various oxygen radicals in the region of inflammation. We designed this as a histopathological study using tenoxicam in rats for which we created a corrosive esophagus model. After necessary authorizations were obtained, the study was performed in Çanakkale 18 Mart University experimental animal laboratory. Twenty-four Wistar albino rats, weighing 220-240 g, were used for the experiment. Experimental animals were randomized into three groups: tenoxicam group (group T, n:8), control group (group C, n:8), and sham group (group S, n:8). Tenoxicam 0.5 mg/kg/day was administered to animals in group T, where esophageal burn was developed experimentally, 5 mg/kg 0.9% NaCL was administered i.p. to rats in group C for 15 days, once in 24 hours. No procedure was applied to rats in group S. After 15 days, all animals were sacrificed under general anesthesia and their esophagi were extracted. As a result of histopathological evaluation, inflammation and fibroblast proliferation was not observed in rats in the sham group (group S). Intense inflammation was observed in six rats (6+/2-) in the control group, and fibroblast proliferation was observed as 5+/3-. And in treatment groups, inflammation was evaluated as 3+/5-, and fibroblast proliferation as 3+/5-. In our study, histopathologic damage score was higher in the control group (P < 0.005). We deduce that tenoxicam can be useful in the treatment of caustic esophageal injuries in the acute phase, but think that these drugs require further researches and clinical studies before routine clinical use.

  10. Detection and characterization of fatigue cracks in thin metal plates by low frequency resonant model analysis

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Birt, E. A.

    1992-01-01

    Low-frequency resonant model analysis, a technique for the detection and characterization of fatigue cracks in thin metal plates, which could be adapted to rapid scan or large area testing, is considered. Experimental data displaying a direct correlation between fatigue crack geometry and resonance frequency for the second vibrational plate mode are presented. FEM is used to calculate the mechanical behavior of the plates, and provides a comparison basis for the experimentally determined resonance frequency values. The waveform of the acoustic emission generated at the resonant frequency is examined; it provides the basis for a model of the interaction of fatigue crack faces during plate vibration.

  11. Fractional Derivative Models for Ultrasonic Characterization of Polymer and Breast Tissue Viscoelasticity

    PubMed Central

    Coussot, Cecile; Kalyanam, Sureshkumar; Yapp, Rebecca; Insana, Michael F.

    2009-01-01

    The viscoelastic response of hydropolymers, which include glandular breast tissues, may be accurately characterized for some applications with as few as 3 rheological parameters by applying the Kelvin-Voigt fractional derivative (KVFD) modeling approach. We describe a technique for ultrasonic imaging of KVFD parameters in media undergoing unconfined, quasi-static, uniaxial compression. We analyze the KVFD parameter values in simulated and experimental echo data acquired from phantoms and show that the KVFD parameters may concisely characterize the viscoelastic properties of hydropolymers. We then interpret the KVFD parameter values for normal and cancerous breast tissues and hypothesize that this modeling approach may ultimately be applied to tumor differentiation. PMID:19406700

  12. Structural Characterization of Phase Separation in Fe-Cr: A Current Comparison of Experimental Methods

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Odqvist, Joakim; Colliander, Magnus Hörnqvist; Thuvander, Mattias; Steuwer, Axel; Westraadt, Johan E.; King, Stephen; Hedström, Peter

    2016-12-01

    Self-assembly due to phase separation within a miscibility gap is important in numerous material systems and applications. A system of particular interest is the binary alloy system Fe-Cr, since it is both a suitable model material and the base system for the stainless steel alloy category, suffering from low-temperature embrittlement due to phase separation. Structural characterization of the minute nano-scale concentration fluctuations during early phase separation has for a long time been considered a major challenge within material characterization. However, recent developments present new opportunities in this field. Here, we present an overview of the current capabilities and limitations of different techniques. A set of Fe-Cr alloys were investigated using small-angle neutron scattering (SANS), atom probe tomography, and analytical transmission electron microscopy. The complementarity of the characterization techniques is clear, and combinatorial studies can provide complete quantitative structure information during phase separation in Fe-Cr alloys. Furthermore, we argue that SANS provides a unique in-situ access to the nanostructure, and that direct comparisons between SANS and phase-field modeling, solving the non-linear Cahn Hilliard equation with proper physical input, should be pursued.

  13. Millimeterwave propagation within boundary layers over sea comparison of modelling and experimental data

    NASA Astrophysics Data System (ADS)

    Essen, Helmut; Fuchs, Hans-Hellmuth

    2003-03-01

    The performance of sensors operating within the marine boundary layer is severely influenced by the actual atmospheric conditions and the sea surface. Propagation models are in existence, which cope with the varying environment and allow a performance prediction for sensors in different bands of the electromagnetic spectrum. Model calculations give evidence for a complementary performance of sensors operating in the IR region and at millimeterwaves (35/94 GHz). To validate existing radar propagation models like TERPEM and to compare IR and mm-wave propagation over sea under various atmospherical conditions, joint experiments were conducted over transmission ranges well beyond the horizon, assisted by a careful characterization of the environment. This paper describes the experimental approach and gives representative results for measurement and simulation. The implications on performance especially for a multispectral (IR/mmW) approach are discussed.

  14. Experimental Validation of a Tibiofemoral Model for Analyzing Joint Force Distribution

    PubMed Central

    Miller, Emily J.; Riemer, Rose F.; Haut Donahue, Tammy L.; Kaufman, Kenton R.

    2009-01-01

    A computational model of the tibiofemoral joint utilizing the discrete element analysis method has been developed and validated with human cadaveric knees. The computational method can predict load distributions to within a Root Mean Square Error (RMSE) of 3.6%. The model incorporates subject-specific joint geometry and the health of the subjects’ articular cartilage to determine the cartilage stiffness. It also includes the collateral and cruciate ligaments and utilizes stiffness values derived from literature for these elements. Comparisons of the total load, peak load, and peak load location for axial, varus, and valgus loading conditions confirmed that there was less than 4% RMSE between the analytical and experimental results. The model presented in this paper can generate results with minimal computational time and it can be used as a non-invasive method for characterizing and monitoring subject-specific knee loading patterns. PMID:19389677

  15. Experimental characterization of a new multicasting node architecture based on space splitters and wavelength converters

    NASA Astrophysics Data System (ADS)

    He, Hao; Su, Yikai; Hu, Peigang; Hu, Weisheng

    2005-11-01

    IPTV-based broadband services such as interactive multimedia and video conferencing are considered as promising revenue-adding services, and multicast is proven to be a good supplier to support these applications for its reduced consumption of network bandwidth. Generally there are two approaches to implement optical layer multicast. One is space-domain multicast using space-splitter which is low cost but has wavelength continuity constraint, the other is frequency-domain multicast using wavelength converter which resolves the wavelength continuity but with high costs. A new multicasting node which adopts both space-domain multicast and frequency-domain multicast is recently discussed. In this paper we present an experimental demonstration of the new multicasting node architecture based on space splitters and wavelength converters, measurements to characterize such a node are provided.

  16. Signal charge sharing in multilinear drift detectors: Design and experimental characterization

    SciTech Connect

    Castoldi, A.; Rehak, P.; Holl, P.

    1997-04-01

    Multilinear silicon drift detectors (MLSDD`s) are radiation detectors which combine excellent energy and position resolution with high count-rate capabilities. This is achieved by controlling the diffusion of the signal charges and limiting their lateral spread during the drift. This paper will present a study of the signal electrons` transport in MLSDD`s in comparison with the experimental measurements. Three-dimensional simulations were carried out, taking into account diffusion effects and mutual electrostatic interaction between the signal electrons. A representative sample of these simulations will be presented. Signal sharing in a multilinear drift detector and in a classical multi-anode drift detector are characterized and discussed. The results are useful to tailor the design of MLSDD`s for the detection of different kinds of radiation (e.g., optical photon, X-ray, ionizing particle) and to optimize signal charge sharing and detector performance according to a particular application purpose.

  17. Experimental Characterization of the Time-Averaged and Oscillatory Behavior of a Hall Plasma Discharge

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Lucca Fabris, Andrea; Gascon, Nicolas; Cappelli, Mark

    2014-10-01

    An extensive experimental campaign characterizes a 70 mm diameter stationary plasma thruster operating on xenon in the 200--500 W power range. This study resolves both time-averaged properties and oscillatory phenomena in the plasma discharge. Specifically, we explore the time variation of the plume ion velocity field referenced to periodic discharge current oscillations using time-synchronized laser induced fluorescence (LIF) measurements. This LIF scheme relies on a triggered signal acquisition gate locked at a given phase of the current oscillation period. The laser is modulated at a characteristic frequency and homodyne detection through a lock-in amplifier extracts the induced fluorescence signal out of the bright background emission. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. Mitat Birkan as program manager. CVY acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under Contract DE-FC52-08NA28752.

  18. Experimental investigation of solid by-product as sensible heat storage material: Characterization and corrosion study

    NASA Astrophysics Data System (ADS)

    Ortega-Fernández, Iñigo; Faik, Abdessamad; Mani, Karthik; Rodriguez-Aseguinolaza, Javier; D'Aguanno, Bruno

    2016-05-01

    The experimental investigation of water cooled electrical arc furnace (EAF) slag used as filler material in the storage tank for sensible heat storage application was demonstrated in this study. The physicochemical and thermal properties of the tested slags were characterized by using X-ray diffraction, scanning electron microcopy, Fourier transform infrared spectroscopy, Raman spectroscopy and laser flash analysis, respectively. In addition, the chemical compatibility between slags and molten nitrate salt (60 wt. % NaNO3 and 40 wt. % KNO3) was investigated at 565 °C for 500 hrs. The obtained results were clearly demonstrated that the slags showed a good corrosion resistance in direct contact with molten salt at elevated temperature. The present study was clearly indicated that a low-cost filler material used in the storage tank can significantly reduce the overall required quantities of the relatively higher cost molten salt and consequently reduce the overall cost of the electricity production.

  19. Evaluation of two experimental models of hepatic encephalopathy in rats.

    PubMed

    García-Moreno, L M; Conejo, N M; González-Pardo, H; Aller, M A; Nava, M P; Arias, J; Arias, J L

    2005-01-01

    The serious neuropsychological repercussions of hepatic encephalopathy have led to the creation of several experimental models in order to better understand the pathogenesis of the disease. In the present investigation, two possible causes of hepatic encephalopathy, cholestasis and portal hypertension, were chosen to study the behavioral impairments caused by the disease using an object recognition task. This working memory test is based on a paradigm of spontaneous delayed non-matching to sample and was performed 60 days after surgery. Male Wistar rats (225-250 g) were divided into three groups: two experimental groups, microsurgical cholestasis (N = 20) and extrahepatic portal hypertension (N = 20), and a control group (N = 20). A mild alteration of the recognition memory occurred in rats with cholestasis compared to control rats and portal hypertensive rats. The latter group showed the poorest performance on the basis of the behavioral indexes tested. In particular, only the control group spent significantly more time exploring novel objects compared to familiar ones (P < 0.001). In addition, the portal hypertension group spent the shortest time exploring both the novel and familiar objects (P < 0.001). These results suggest that the existence of portosystemic collateral circulation per se may be responsible for subclinical encephalopathy.

  20. Comparisons Between Experimental Transport Analysis and Theoretical Modeling on LHD

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kozo; LHD Group

    2000-10-01

    Helical plasma confinement system has a great advantage in producing steady-state high performance plasmas with built-in divertor. For the experimental analysis and predictive simulation of helical and tokamak plasmas, a simulation code TOTAL (TOroidal Transport Analysis Linkage) has been developed and is applied to the Large Helical Device (LHD, R=3.6 ~3.9m, B<3.0T ) experiments. In the LHD experiment, the global plasma confinement is ~1.5-2 times better than the well-known confinement scaling laws, and effective transport diffusivity is same order of magnitude of neoclassical ion transport with the assumption of Ti=Te. The radial electric field has been measured and roughly agrees with theoretical neoclassical values. The simple drift wave transport models are also compared with experimental values. The impurity dynamics are calculated using predictive part of the TOTAL code, and compared with the "breathing plasma" dynamics, and the role of high-Z impurity are clarified. For the analysis of high beta plasmas, local ballooning mode analysis will be added in this TOTAL code, and optimized configurations for the future MHR reactor will be searched.

  1. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    PubMed

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  2. Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode: Experimental tests and modelling

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun

    2016-03-01

    This paper presents an experimental investigation on the behavior of magnetorheological (MR) fluids in high-frequency oscillatory squeeze mode and proposes a mathematical model to reveal the MR mechanism. A specific MR squeeze structure avoiding the cavitation effect is designed for the experimental tests. The magnetic field- and gap distance-dependent damping force of the MR squeeze structure is presented and compared with the dramatically large damping force under quasi-static excitations, a moderate damping force is observed at high frequencies. Subsequently, in order to interpret the behavior of MR fluids at high frequencies, employing the continuum media theory, a mathematical model is established with consideration of the fluid inertia and hysteresis property. The damping force comparison between the model and experimental tests indicates that in high-frequency oscillatory squeeze mode, the squeeze-strengthen effect does not work and the shear yield stress can be applied well to characterize the flow property of MR fluids. In addition, the hysteresis property has a significant influence on the damping performance.

  3. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    NASA Astrophysics Data System (ADS)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  4. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling.

    PubMed

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-28

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10(3) to 10(4) s(-1) using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  5. Experimental models of perinatal hypoxic-ischemic brain damage.

    PubMed

    Vannucci, R C

    1993-01-01

    Animal research has provided important information on the pathogenesis of and neuropathologic responses to perinatal cerebral hypoxia-ischemia. In experimental animals, structural brain damage from hypoxia-ischemia has been produced in immature rats, rabbits, guinea pigs, sheep and monkeys (18, 20, 24, 25, 38). Of the several available animal models, the fetal and newborn rhesus monkey and immature rat have been studied most extensively because of their similarities to humans in respect to the physiology of reproduction and their neuroanatomy at or shortly following birth. Given the frequency of occurrence of human perinatal hypoxic-ischemic brain damage and the multiple, often severe neurologic handicaps which ensue in infants and children, it is not surprising that the above described animal models have been developed. These models have provided the basis for investigations to clarify not only physiologic and biochemical mechanisms of tissue injury but also the efficacy of specific management strategies. Hopefully, such animal research will continue to provide important information regarding how best to prevent or minimize the devastating consequences of perinatal cerebral hypoxia-ischemia.

  6. Experimental autoimmune orchitis as a model of immunological male infertility.

    PubMed

    Naito, Munekazu; Terayama, Hayato; Hirai, Shuichi; Qu, Ning; Lustig, Livia; Itoh, Masahiro

    2012-12-01

    Clinically, 60-75% of male infertility cases are categorized as idiopathic spermatogenic disturbance. In previous studies of this condition, lymphocytic infiltration and immune deposits were present in several testis biopsy specimens, indicating that inflammatory or immunological factors contribute to the occurrence of the lesions. However, there is currently little evidence regarding immunological infertility in men. Previously, we established an immunological infertility model, experimental autoimmune orchitis (EAO), that can be induced in mice by two subcutaneous injections of viable syngeneic testicular germ cells without the use of any adjuvant. In this EAO model, lymphocytes surround the tubuli recti and then induce spermatogenic disturbance. In addition, after the active inflammation stage of this model, the seminiferous epithelium is damaged irreversibly, resembling the histopathology of human male idiopathic spermatogenic disturbance. In the majority of patients with testicular autoimmunity, there is a chronic and asymptomatic development of the inflammatory reaction. Therefore, this disease is very difficult to diagnose at the ongoing stage, and it is possible that the histopathology of idiopathic spermatogenic disturbance in the clinic is reported at the post-active inflammation stage of autoimmune orchitis. In this review, the histopathology of EAO before and after inflammation is discussed, comparing it with human orchitis.

  7. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  8. Experimental models of inherited cardiomyopathy and its therapeutics

    PubMed Central

    Nonaka, Miki; Morimoto, Sachio

    2014-01-01

    Cardiomyopathy is a disease of myocardium categorized into three major forms, hypertrophic (HCM), dilated (DCM) and restrictive cardiomyopathy (RCM), which has recently been demonstrated to be a monogenic disease due to mutations in various proteins expressed in cardiomyocytes. Mutations in HCM and RCM typically increase the myofilament sensitivity to cytoplasmic Ca2+, leading to systolic hyperfunction and diastolic dysfunction. In contrast, mutations in DCM typically decrease the myofilament sensitivity to cytoplasmic Ca2+ and/or force generation/transmission, leading to systolic dysfunction. Creation of genetically-manipulated transgenic and knock-in animals expressing mutant proteins exogenously and endogenously, respectively, in their hearts provides valuable animal models to discover the molecular and cellular mechanisms for pathogenesis and promising therapeutic strategy in vivo. Recently, cardiomyocytes have been differentiated from patient’s induced pluripotent stem cells as a model of inherited cardiomyopathies in vitro. In this review, we provide overview of experimental models of cardiomyopathies with a focus on revealed molecular and cellular pathogenic mechanisms and potential therapeutics. PMID:25548614

  9. Experimental modeling of jet-ring turbine disk cooling

    NASA Technical Reports Server (NTRS)

    Metzger, D. E.; Kim, Y. W.

    1991-01-01

    The experimental facility and some early results are described from a current research program modeling turbine disk cooling with multiple impinging jets, such as employed on the Space Shuttle Main Engine oxygen turbopump. The study is designed to obtain detailed local convection heat transfer rates on specially constructed turbine disk models that employ either multiple cooling jet impingement near the disk outer radius from a jet ring, or alternatively, single entrance coolant supply into the center of the disk cavity. Jet impingement is an effective scheme for cooling of turbine disks at or near the blade attachment region, but the heat transfer mechanisms and merits relative to other schemes are not well understood. The present study employs two specially constructed full scale plastic model disks, contoured and plane, together with the corresponding stators. Local heat transfer rates are determined by a computer vision system from the response of thin liquid crystal coatings applied to the disk test faces. The present results indicate that multiple jet impingement directed at the blade attachment region results in higher cooling rates in that region than does the same flow supplied to the disk center, but this conclusion must be regarded as tentative.

  10. Computational and experimental modeling of runaway electron damage

    SciTech Connect

    Niemer, K.A.; Gilligan, J.G. . Dept. of Nuclear Engineering); Croessmann, C.D. ); Bolt, H.H. . NET Design Team)

    1990-06-01

    Cracking, craters, spotty damage (discoloration), and missing chunks of material have been observed on limiters and along the midplane of tokamak inner walls. This damage is assumed to be due to runaway electron discharges. These runaway electrons have been predicted to range in energy from a few MeV to several hundred MeV. The energy density from the runaway electron discharges ranges from 10 to 500 MJ/m{sup 2} over pulse lengths of 5 to 50 msec. The PTA code package is a unique application of PATRAN, the Integrated TIGER Series, and ABAQUS for modeling high energy electron impact on tokamak first wall and limiter materials. The PTA code package provides a three-dimensional, time dependent, computational code package which predicts energy deposition, temperature rise, and damage on relevant fusion materials from runaway electrons. In this benchmark study, three experiments were modeled to validate the PTA code package. The first and third experiment simulated runaway electrons scattering through a plasma facing surface (graphite) into an internal structure (copper), and the second experiment tested the thermal and structural response from high energy electron impact on different fusion relevant materials. The PTA calculations compared favorably with the experimental results. In particular, the PTA models identified gap conductance, thermal contact, x-ray generation in materials, and the placement of high stopping power materials as key factors in the design of plasma facing components that are resistant to runaway electron damage. 13 refs., 40 figs., 3 tabs.

  11. An ameliorated skin flap model in rats for experimental research.

    PubMed

    Hosnuter, Mübin; Kargi, Eksal; Peksoy, Irfan; Babucçu, Orhan; Payasli, Cem

    2006-01-01

    There is a disagreement in the experimental design of random skin flaps owing to their vascular inconsistency. The definition of a reliable axial-pattern skin flap model is needed. The purpose of this study was to describe a new skin flap model to deal with entire drawbacks of existing random and axial pattern skin flap designs. This was accomplished by creating paired skin flaps including both skin and vascular pedicle on the dorsum of the same rat. This design was suitably termed as rando-axial flap. The present study offers a simple and reliable skin flap model with following advantages: (1) it has a predictable necrosis area, (2) it reveals a larger survival area (75 +/- 5%) when compared to other flaps in this study (Mann-Whitney U-test, p<0.001), (3) the vascular pedicle is consistent, (4) control and study flaps are placed on the same animal (5) it can be converted to a random, an axial or a free flap.

  12. Experimental validation of a numerical model for subway induced vibrations

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Degrande, G.; Lombaert, G.

    2009-04-01

    This paper presents the experimental validation of a coupled periodic finite element-boundary element model for the prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transformation, which allows for an efficient formulation in the frequency-wavenumber domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The numerical model is validated by means of several experiments that have been performed at a site in Regent's Park on the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train, on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Prior to these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element-boundary element approach and free field vibrations due to the passage of a train at different speeds have been predicted and compared to the measurements. The correspondence between the predicted and measured response in the tunnel is reasonably good, although some differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties involved in the problem. The variation in the response with train speed is similar for the measurements as well as the predictions. This study demonstrates the applicability of the coupled periodic finite element-boundary element model to make realistic predictions of the vibrations from underground railways.

  13. Experimental characterization of the ITER TF structure cooling in HELIOS test facility

    NASA Astrophysics Data System (ADS)

    Hoa, C.; Rousset, B.; Lacroix, B.; Nicollet, S.; Vallcorba, R.; Bessette, D.; Vostner, A.; Gauthier, F.

    2015-12-01

    During ITER plasma operation, large thermal loads are generated in the stainless steel Toroidal Field (TF) coil casing. To minimize the impact on the temperature of the TF Cable in Conduit Conductor (CICC), these heat loads are intercepted by case cooling channels which are implemented at the interface to the winding pack. One of the design options for the case cooling channels consists of a stainless steel pipe inserted in a rectangular groove which is machined in the casing and filled by a charged resin of high thermal conductivity. A higher number of cooling pipes is arranged at the plasma facing wall of the case, thus providing a better shielding to the TF conductor at high field. To assess the efficiency of the cooling pipes and their thermal coupling with the charged resin, experimental characterizations have been performed. First of all, the thermal resistance vs temperature of some of the individual components of a TF coil has been measured on representative samples in a cryogenic bench. Further characterizations have been performed on an integrated mock-up of the TF cooling scheme at cryogenic temperature in HELIOS test facility at CEA Grenoble. The mock-up consists of a piece of TF casing that can be heated uniformly on its surface, one cooling channel implemented in the groove which is filled with the charged resin, the filler, the ground insulation, the radial plate and one insulated CICC. The cooling pipe and the CICC are cooled by supercritical helium at 4.4 K and 5 bar; the instrumentation consists of temperature, pressure and mass flow sensors. Both stationary and transient operating modes have been investigated to assess the thermal efficiency of the case cooling design. The experimental tests are presented and the first results are discussed and analyzed in this document.

  14. Some advances in experimentation supporting development of viscoplastic constitutive models

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.; Robinson, D. N.

    1985-01-01

    The development of a biaxial extensometer capable of measuring axial, torsion, and diametral strains to near-microstrain resolution at elevated temperatures is discussed. An instrument with this capability was needed to provide experimental support to the development of viscoplastic constitutive models. The advantages gained when torsional loading is used to investigate inelastic material response at elevated temperatures are highlighted. The development of the biaxial extensometer was conducted in two stages. The first involved a series of bench calibration experiments performed at room temperature. The second stage involved a series of in-place calibration experiments performed at room temperature. A review of the calibration data indicated that all performance requirements regarding resolution, range, stability, and crosstalk had been met by the subject instrument over the temperature range of interest, 21 C to 651 C. The scope of the in-placed calibration experiments was expanded to investigate the feasibility of generating stress relaxation data under torsional loading.

  15. Some advances in experimentation supporting development of viscoplastic constitutive models

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.; Robinson, D. N.

    1985-01-01

    The development of a biaxial extensometer capable of measuring axial, torsion, and diametral strains to near-microstrain resolution at elevated temperatures is discussed. An instrument with this capability was needed to provide experimental support to the development of viscoplastic constitutive models. The advantages gained when torsional loading is used to investigate inelastic material response at elevated temperatures are highlighted. The development of the biaxial extensometer was conducted in two stages. The first involved a series of bench calibration experiments performed at room temperature. The second stage involved a series of in-place calibration experiments conducted at room and elevated temperature. A review of the calibration data indicated that all performance requirements regarding resolution, range, stability, and crosstalk had been met by the subject instrument over the temperature range of interest, 21 C to 651 C. The scope of the in-place calibration experiments was expanded to investigate the feasibility of generating stress relaxation data under torsional loading.

  16. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    SciTech Connect

    Ferretti, D.

    2015-01-15

    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM.

  17. Practical application of stereological methods in experimental kidney animal models.

    PubMed

    Fernández García, María Teresa; Núñez Martínez, Paula; García de la Fuente, Vanessa; Sánchez Pitiot, Marta; Muñiz Salgueiro, María Del Carmen; Perillán Méndez, Carmen; Argüelles Luis, Juan; Astudillo González, Aurora

    The kidneys are vital organs responsible for excretion, fluid and electrolyte balance and hormone production. The nephrons are the kidney's functional and structural units. The number, size and distribution of the nephron components contain relevant information on renal function. Stereology is a branch of morphometry that applies mathematical principles to obtain three-dimensional information from serial, parallel and equidistant two-dimensional microscopic sections. Because of the complexity of stereological studies and the lack of scientific literature on the subject, the aim of this paper is to clearly explain, through animal models, the basic concepts of stereology and how to calculate the main kidney stereological parameters that can be applied in future experimental studies.

  18. Experimental verification of theoretical model for speckle intensity excursion areas

    SciTech Connect

    Alexander, T.L.; Harvey, J.E.; Hefele, D.

    1994-12-31

    Speckle is inherently an interference phenomenon produced when a rough object or turbulent medium introduces some degree of randomness to a reflected or transmitted electromagnetic field. Speckle characteristics are therefore a major concern in many laser imaging or wave propagation applications. For many applications, a detailed description of speckle size as a function of intensity threshold level is desirable. Extensive experimental measurements of average speckle size as a function of intensity threshold level were therefore made for several different targets and illumination conditions. The authors then compare these measurements with a theoretical model for excursion areas of speckle intensity. Excellent agreement is obtained for intensity threshold levels greater than approximately twice the mean intensity level.

  19. Inhibitors of sex hormones: development of experimental models.

    PubMed

    Frost, P; Gomez, E C

    1972-01-01

    Inhibitors of sex hormones and the development of experimental models are discussed. Compounds that inhibit the action of androgens and estrogens are defined, and the possible mechanisms of action presented are: 1) inhibition of hormone synthesis; 2) inhibition of uptake of hormone into target tissues; 3) inhibition of the retention of hormone in target tissues; 4) inhibition of the binding of hormone to nonenzyme macromolecules; and 5) inhibition of the metabolism of a hormone to a more active form. Effects of antiandrogen on skin such as hirsutism, sebum production, and acne are briefly covered. Methods of study included inhibition of in vitro metabolism of testosterone by human foreskin and the use of the hamster flank organ for the bioassay of antiandrogens.

  20. Characterization of the pseudocapsule of soft-tissue sarcomas. An experimental study in rats

    SciTech Connect

    Gitelis, S.; Thomas, R.; Templeton, A.; Schajowicz, F. )

    1989-09-01

    The effect of preoperative radiation therapy on the pseudocapsule of experimental rat soft-tissue sarcomas has not been histologically evaluated in a controlled study. The irradiated animal showed marked thickening of the capsular structure surrounding the sarcoma. Everywhere morphologically distinct from the tumor, there was no evidence of tumor invasion into or through this capsular structure. The membrane was consistently thicker and more hyalinized than in the control animals. The nonirradiated animals showed a minimal pseudocapsular structure with a characteristic tumor penetration. Irradiation produced distinct histologic changes in the pseudocapsule. Although assumed on the basis of clinical observations alone, irradiation-induced pseudocapsule has not previously been demonstrated in an experimental model of soft-tissue sarcoma.

  1. Potential markers of the nutritional status in an experimental model.

    PubMed

    Feliu, M S; Slobodianik, N H

    2000-01-01

    The activity of adenine deaminase (ADA) and purine nucleoside phosphorylase (PNP) as potential nutritional markers was analyzed in an experimental model. Weanling Wistar rats were fed a protein-free diet ad libitum to obtain a severe degree of wasting. An age-matched control group received a stock diet. At the end of the experiment, body weight (BW) and thymus weight (TW) were determined. Activity of ADA and PNP was determined on thymocytes of protein-deprived and control rats; the results, expressed as micromoles of uric acid x 10(-1)/W (W = TW/BW(0.75)), were 17.0 +/- 2.6 versus 9.1 +/- 3.0 for ADA and 11.5 +/- 4.2 versus 3.9 +/- 1.0 for PNP (P < 0.01). These results suggest that the nutritional stress provoked by the administration of a protein-free diet from weaning onward affects the development of thymocytes. Moreover, the increase in the activity of ADA and PNP would be an alternative mechanism to avoid the accumulation of high levels of deoxynucleotides, which would be toxic for T lymphocytes. However, some investigators have observed an increase of ADA activity in human serum under some adverse conditions; for this reason and taking into account the present findings, it would be interesting to determine the relation between the activity of ADA and PNP in thymocytes and serum in experimental models to analyze and propose these biochemical parameters as potential and useful markers of nutritional status; it also would be interesting to test this relation in human studies.

  2. Bayesian experimental design for identification of model propositions and conceptual model uncertainty reduction

    NASA Astrophysics Data System (ADS)

    Pham, Hai V.; Tsai, Frank T.-C.

    2015-09-01

    The lack of hydrogeological data and knowledge often results in different propositions (or alternatives) to represent uncertain model components and creates many candidate groundwater models using the same data. Uncertainty of groundwater head prediction may become unnecessarily high. This study introduces an experimental design to identify propositions in each uncertain model component and decrease the prediction uncertainty by reducing conceptual model uncertainty. A discrimination criterion is developed based on posterior model probability that directly uses data to evaluate model importance. Bayesian model averaging (BMA) is used to predict future observation data. The experimental design aims to find the optimal number and location of future observations and the number of sampling rounds such that the desired discrimination criterion is met. Hierarchical Bayesian model averaging (HBMA) is adopted to assess if highly probable propositions can be identified and the conceptual model uncertainty can be reduced by the experimental design. The experimental design is implemented to a groundwater study in the Baton Rouge area, Louisiana. We design a new groundwater head observation network based on existing USGS observation wells. The sources of uncertainty that create multiple groundwater models are geological architecture, boundary condition, and fault permeability architecture. All possible design solutions are enumerated using a multi-core supercomputer. Several design solutions are found to achieve an 80%-identifiable groundwater model in 5 years by using six or more existing USGS wells. The HBMA result shows that each highly probable proposition can be identified for each uncertain model component once the discrimination criterion is achieved. The variances of groundwater head predictions are significantly decreased by reducing posterior model probabilities of unimportant propositions.

  3. Sonophotolytic degradation of synthetic pharmaceutical wastewater: statistical experimental design and modeling.

    PubMed

    Ghafoori, Samira; Mowla, Amir; Jahani, Ramtin; Mehrvar, Mehrab; Chan, Philip K

    2015-03-01

    The merits of the sonophotolysis as a combination of sonolysis (US) and photolysis (UV/H2O2) are investigated in a pilot-scale external loop airlift sonophotoreactor for the treatment of a synthetic pharmaceutical wastewater (SPWW). In the first part of this study, the multivariate experimental design is carried out using Box-Behnken design (BBD). The effluent is characterized by the total organic carbon (TOC) percent removal as a surrogate parameter. The results indicate that the response of the TOC percent removal is significantly affected by the synergistic effects of the linear term of H2O2 dosage and ultrasound power with the antagonistic effect of quadratic term of H2O2 dosage. The statistical analysis of the results indicates a satisfactory prediction of the system behavior by the developed model. In the second part of this study, a novel rigorous mathematical model for the sonophotolytic process is developed to predict the TOC percent removal as a function of time. The mathematical model is based on extensively accepted sonophotochemical reactions and the rate constants in advanced oxidation processes. A good agreement between the model predictions and experimental data indicates that the proposed model could successfully describe the sonophotolysis of the pharmaceutical wastewater.

  4. Characterization and comparison of perezone with some analogues. Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Escobedo-González, Rene Gerardo; Bahena, Luis; Arias Tellez, José Luis; Hinojosa Torres, Jaime; Ruvalcaba, Rene Miranda; Aceves-Hernández, Juan Manuel

    2015-10-01

    Perezone had been used for centuries in the traditional Mexican medicine, it is useful and a handful of illness. Perezone and other derivatives also present activity against certain lines of cancer, such as the myeloblastoid leukemia cell line K-562 and carcinoma cell lines (PC-3 and SKLU-1) with IC50 <10 μM. Perezone and isoperezone have shown the major cytotoxic potency. Characterization of perezone was carried out by UV-Visible, IR, DSC, TGA and powder X-ray diffraction, as well as docking studies using caspase-3 structures as receptors. Theoretical studies for optimizing the geometry of perezone were carried out and the results compared with values of single crystal X-ray diffraction. The experimental values of atomic distances, angles and dihedral angles are in good agreement with the theoretical values. Interaction of perezone with the cysteine catalytic site with the caspase-3 was found in the docking studies. A docking study of perezone, with horminone, thymoquinone and isoperezone as ligands and the protein apoptein, caspase-3 as receptor, was carried to demonstrate that the hindrance steric factor, chemical structure and the functional groups are important in the biological activity of these natural products. The docking score energetic values are in good agreement with the experimental cytotoxic results obtained from the experiments when perezone and analogues were studied in different types of cancer.

  5. Density and magnetic fluctuations at JET: experimental observation and numerical characterization

    NASA Astrophysics Data System (ADS)

    de Masi, Gianluca; Predebon, Italo; Spagnolo, Silvia; Lupelli, Ivan; Hillesheim, Jon; Meneses, Luis; Maggi, Costanza; Delabie, Ephrem; JET Contributors Team

    2016-10-01

    Density and magnetic fluctuations have been experimentally observed on JET in the inter ELM phases in low beta discharges.They have been characterized in terms of typical frequency range (60-80 kHz), wavenumber (0.01 <=ky ρi <=0.1), radial localization (pedestal top) and correlation with the relevant kinetic quantities. A linear simulation with gyrokinetic code GENE, matching the experimental edge condition has been performed to gain insight on their possible physical interpretation. ITG modes turn out to be the most unstable modes for 0 <=ky ρi <=1, while microtearing modes (MTMs) are the dominant instabilities for ky ρi <= 0.1.A typical oscillation frequency of about 50-100 kHz is associated to both unstable modes, with opposite propagation direction.Different considerations suggest an interpretation in terms of MTMs for the observed magnetic fluctuations, while density fluctuations appear to be dominated by ITG instabilities. EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK.

  6. Endogenous Opioid Antagonism in Physiological Experimental Pain Models: A Systematic Review

    PubMed Central

    Werner, Mads U.; Pereira, Manuel P.; Andersen, Lars Peter H.; Dahl, Jørgen B.

    2015-01-01

    Opioid antagonists are pharmacological tools applied as an indirect measure to detect activation of the endogenous opioid system (EOS) in experimental pain models. The objective of this systematic review was to examine the effect of mu-opioid-receptor (MOR) antagonists in placebo-controlled, double-blind studies using ʻinhibitoryʼ or ʻsensitizingʼ, physiological test paradigms in healthy human subjects. The databases PubMed and Embase were searched according to predefined criteria. Out of a total of 2,142 records, 63 studies (1,477 subjects [male/female ratio = 1.5]) were considered relevant. Twenty-five studies utilized ʻinhibitoryʼ test paradigms (ITP) and 38 studies utilized ʻsensitizingʼ test paradigms (STP). The ITP-studies were characterized as conditioning modulation models (22 studies) and repetitive transcranial magnetic stimulation models (rTMS; 3 studies), and, the STP-studies as secondary hyperalgesia models (6 studies), ʻpainʼ models (25 studies), summation models (2 studies), nociceptive reflex models (3 studies) and miscellaneous models (2 studies). A consistent reversal of analgesia by a MOR-antagonist was demonstrated in 10 of the 25 ITP-studies, including stress-induced analgesia and rTMS. In the remaining 14 conditioning modulation studies either absence of effects or ambiguous effects by MOR-antagonists, were observed. In the STP-studies, no effect of the opioid-blockade could be demonstrated in 5 out of 6 secondary hyperalgesia studies. The direction of MOR-antagonist dependent effects upon pain ratings, threshold assessments and somatosensory evoked potentials (SSEP), did not appear consistent in 28 out of 32 ʻpainʼ model studies. In conclusion, only in 2 experimental human pain models, i.e., stress-induced analgesia and rTMS, administration of MOR-antagonist demonstrated a consistent effect, presumably mediated by an EOS-dependent mechanisms of analgesia and hyperalgesia. PMID:26029906

  7. 3D finite element model of the chinchilla ear for characterizing middle ear functions.

    PubMed

    Wang, Xuelin; Gan, Rong Z

    2016-10-01

    Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa-a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis.

  8. Structural and spectroscopic characterization of ettringite mineral -combined DFT and experimental study

    NASA Astrophysics Data System (ADS)

    Scholtzová, Eva; Kucková, Lenka; Kožíšek, Jozef; Tunega, Daniel

    2015-11-01

    The structure of the ettringite mineral was studied by means of FTIR spectroscopy and single crystal X-ray diffraction method. The experimental study was combined with the first principle calculations based on density functional theory (DFT) method. Predicted structural parameters (unit cell vectors and positions of heavy atoms) are in a very good agreement with the experimental data. Moreover, calculations also enabled to refine the positions of the hydrogen atoms not determined precisely by the single crystal X-ray measurement. The detailed analysis of the hydrogen bonds in the ettringite structure was performed and several groups of the hydrogen bonds were classified. It was found that the water molecules from the coordination sphere of Ca2+ cations act as proton donors in moderate O-H···O hydrogen bonds with SO 32- anions. Further, multiple O-H···O hydrogen bonds were identified among water molecules themselves. In addition, also hydroxyl groups from the [Al(OH)6]3- octahedral units are involved in the weak O-H···O hydrogen bonding with the water molecules. The calculated vibrational spectrum showed all typical features observed in the experimental FTIR spectrum. Moreover, performing the analysis of the calculated spectrum, all vibrational modes were distinguished and assigned. Such a complete analysis of the measured IR and/or Raman spectra is not fully possible, specifically for the region below 1500 cm-1, which is characterized by a complex curve with many overlapped bands. A comparison of the vibrational spectra of ettringite and thaumasite (mineral structurally similar to ettringite) revealed the origin of the most important differences between them.

  9. Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Hermann, M.; Curtius, J.; Voigt, C.; Walter, S.; Böttger, T.; Lepukhov, B.; Belyaev, G.; Borrmann, S.

    2009-06-01

    A characterization of the ultra-fine aerosol particle counter COPAS (COndensation PArticle counting System) for operation on board the Russian high altitude research aircraft M-55 Geophysika is presented. The COPAS instrument consists of an aerosol inlet and two dual-channel continuous flow Condensation Particle Counters (CPCs) operated with the chlorofluorocarbon FC-43. It operates at pressures between 400 and 50 hPa for aerosol detection in the particle diameter (dp) range from 6 nm up to 1 μm. The aerosol inlet, designed for the M-55, is characterized with respect to aspiration, transmission, and transport losses. The experimental characterization of counting efficiencies of three CPCs yields dp50 (50% detection particle diameter) of 6 nm, 11 nm, and 15 nm at temperature differences (ΔT) between saturator and condenser of 17°C, 30°C, and 33°C, respectively. Non-volatile particles are quantified with a fourth CPC, with dp50=11 nm. It includes an aerosol heating line (250°C) to evaporate H2SO4-H2O particles of 11 nm

  10. Aspirin Intolerance: Experimental Models for Bed-to-Bench

    PubMed Central

    Yamashita, Masamichi

    2016-01-01

    Aspirin is the oldest non-steroidal anti-inflammatory drug (NSAID), and it sometimes causes asthma-like symptoms known as aspirin-exacerbated respiratory disease (AERD), which can be serious. Unwanted effects of aspirin (aspirin intolerance) are also observed in patients with food-dependent exercise-induced anaphylaxis, a type I allergy disease, and aspirin-induced urticaria (AIU). However the target and the mechanism of the aspirin intolerance are still unknown. There is no animal or cellular model of AERD, because its pathophysiological mechanism is still unknown, but it is thought that inhibition of cyclooxygenase by causative agents leads to an increase of free arachidonic acid, which is metabolized into cysteinyl leukotrienes (cysLTs) that provoke airway smooth muscle constriction and asthma symptoms. As the bed-to-bench approach, to confirm the clinical discussion in experimental cellular models, we have tried to develop a cellular model of AERD using activated RBL-2H3 cells, a rat mast cell like cell line. Indomethacin (another NSAID and also causes AERD), enhances in vitro cysLTs production by RBL-2H3 cells, while there is no induction of cysLTs production in the absence of inflammatory activation. Since this suggests that all inflammatory cells with activation of prostaglandin and cysLT metabolism should respond to NSAIDs, and then I have concluded that aspirin intolerance should be separated from subsequent bronchoconstriction. Evidence about the cellular mechanisms of NSAIDs may be employed for development of in vitro AERD models as the approach from bench-to-bed. PMID:27719658

  11. Model Compound Interactions Characterizing Aquatic Humic Substances

    DTIC Science & Technology

    1990-01-01

    Isolation...............48 3.3.2 Titration Apparatus..............49 3.3.3 Potentiometric Titrations ..........52 3.3.4 Complexometric Titrations ...Potentiometric Titrations ..........57 4.2.2 Complexometric Titrations ..........61 4.3 Natural Sources and Model Compound Mixtures . .. 69 4.3.1...groundwater ........ .................... 50 3.4 Milli-Q complexometric titrations ... ......... .54 4.1a Potentiometric titration of model compounds

  12. Development of Experimental Tissue Models for Blast Injury

    NASA Astrophysics Data System (ADS)

    Butler, Benjamin; Bo, Chiara; Williams, Alun; Jardine, Andy; Brown, Katherine

    2013-06-01

    There is a pressing need to better understand the relationship between the intensity of a blast wave and the clinical consequences for victims of an explosion. In order to quantitatively study how these factors correlate with one another, blast injury tissue models are being developed. Sections of larynx, trachea and pulmonary tissue were excised from a recently sacrificed pig and maintained on ice prior to testing. The samples were subjected to strain rates of between 0.001 s-1 and 1000 s-1 in the laboratory by using a Split Hopkinson Pressure Bar and quasi-static testing apparatus. During high strain rate testing, samples were housed in a polycarbonate chamber which permitted experimentation on tissue held in fluid. Data were analysed using 1, 2 and 3 wave analysis software in Matlab to yield information about the material properties of both undamaged and damaged tissues. In addition, macroscopic changes in tissue organization were also visualized using histopathological techniques. This work is being extended to cellular and animal models to derive more detailed information about the underlying molecular changes relating to blast-induced damage and repair. The Royal British Legion Centre for Blast Injury Studies.

  13. Polarisers in the focal domain: Theoretical model and experimental validation.

    PubMed

    Martínez-Herrero, Rosario; Maluenda, David; Juvells, Ignasi; Carnicer, Artur

    2017-02-13

    Polarisers are one of the most widely used devices in optical set-ups. They are commonly used with paraxial beams that propagate in the normal direction of the polariser plane. Nevertheless, the conventional projection character of these devices may change when the beam impinges a polariser with a certain angle of incidence. This effect is more noticeable if polarisers are used in optical systems with a high numerical aperture, because multiple angles of incidence have to be taken into account. Moreover, the non-transverse character of highly focused beams makes the problem more complex and strictly speaking, the Malus' law does not apply. In this paper we develop a theoretical framework to explain how ideal polarisers affect the behavior of highly focused fields. In this model, the polarisers are considered as birefringent plates, and the vector behaviour of focused fields is described using the plane-wave angular spectrum approach. Experiments involving focused fields were conducted to verify the theoretical model and a satisfactory agreement between theoretical and experimental results was found.

  14. Experimental osteonecrosis: development of a model in rodents administered alendronate.

    PubMed

    Conte, Nicolau; Spolidorio, Luis Carlos; Andrade, Cleverton Roberto de; Esteves, Jônatas Caldeira; Marcantonio, Elcio

    2016-08-22

    The main objective of this study was to cause bisphosphonate-related osteonecrosis of the jaws to develop in a rodent model. Adult male Holtzman rats were assigned to one of two experimental groups to receive alendronate (AL; 1 mg/kg/week; n = 6) or saline solution (CTL; n = 6). After 60 days of drug therapy, all animals were subjected to first lower molar extraction, and 28 days later, animals were euthanized. All rats treated with alendronate developed osteonecrosis, presenting as ulcers and necrotic bone, associated with a significant infection process, especially at the inter-alveolar septum area and crestal regions. The degree of vascularization, the levels of C-telopeptide cross-linked collagen type I and bone-specific alkaline phosphatase, as well as the bone volume were significantly reduced in these animals. Furthermore, on radiographic analysis, animals treated with alendronate presented evident sclerosis of the lamina dura of the lower first molar alveolar socket associated with decreased radiographic density in this area. These findings indicate that the protocol developed in the present study opens new perspectives and could be a good starting model for future property design.

  15. Establishment of a novel tick-Babesia experimental infection model

    PubMed Central

    Maeda, Hiroki; Hatta, Takeshi; Alim, M Abdul; Tsubokawa, Daigo; Mikami, Fusako; Matsubayashi, Makoto; Miyoshi, Takeharu; Umemiya-Shirafuji, Rika; Kawazu, Shin-ichiro; Igarashi, Ikuo; Mochizuki, Masami; Tsuji, Naotoshi; Tanaka, Tetsuya

    2016-01-01

    Ticks are potent vectors of many deadly human and animal pathogens. Tick-borne babesiosis is a well-recognized malaria-like disease that occurs worldwide and recently has attracted increased attention as an emerging zoonosis. Although the proliferation of Babesia organisms is essential in the vectors, their detailed lifecycle with time information for migration in ticks remains unknown. A novel study model for the elucidation of the migration speed of Babesia parasites in their vector tick, Haemaphysalis longicornis, has been developed using an artificial feeding system with quantitative PCR method. The detectable DNA of Babesia parasites gradually disappeared in the tick midgut at 1 day post engorgement (DPE), and in contrary increased in other organs. The results indicated that the Babesia parasite passed the H. longicornis midgut within 24 hours post engorgement, migrated to the hemolymph, and then proliferated in the organs except the midgut. This time point may be an important curfew for Babesia parasites to migrate in the tick lumen. We also visualized the Babesia parasites in the experimentally infected ticks and in their eggs using IFAT for detecting their cytoskeletal structure, which suggested the successful tick infection and transovarial transmission of the parasite. This model will shed light on the further understanding of tick-Babesia interactions. PMID:27841321

  16. Effectiveness and safety of iodopovidone in an experimental pleurodesis model

    PubMed Central

    Teixeira, Lisete R.; Vargas, Francisco S.; Puka, Juliana; Acencio, Milena M. P.; Antonangelo, Leila; Terra, Ricardo M.; Damico, Francisco M.; Pitta, Fabio G.; Marchi, Evaldo

    2013-01-01

    OBJECTIVES: Chemical pleurodesis is an important therapeutic tool to control recurrent malignant pleural effusion. Among the various sclerosing agents, iodopovidone is considered effective and safe. However, in a recent study, ocular changes were described after iodopovidone was used in recurrent pneumothorax. The aim of the study was to evaluate the efficacy and morbidity of iodopovidone pleurodesis in an experimental model. METHODS: New Zealand rabbits were submitted to intrapleural injection of iodopovidone at concentrations of 2%, 4% and 10%. Biochemical (lactic dehydrogenase, proteins, triiodothyronine, free thyroxine, urea and creatinine) and immunological (Interleukin-8 [IL-8], VEGF and TGFβ) parameters were measured in the pleural fluid and blood. After 1, 3, 7, 14 and 28 days, groups of animals were euthanized, and macro- (pleura) and microscopic (pleura and retina) analyses were performed. RESULTS: An early pleural inflammatory response with low systemic repercussion was observed without corresponding changes in thyroid or renal function. The higher concentrations (4% and 10%) correlated with greater initial exudation, and maximum pleural thickening was observed after 28 days. No changes were observed in the retinal pigment epithelium of the rabbits. CONCLUSION: Iodopovidone is considered to be an effective and safe sclerosing agent in this animal model. However, its efficacy, tolerance and safety in humans should be further evaluated. PMID:23778345

  17. Polarisers in the focal domain: Theoretical model and experimental validation

    NASA Astrophysics Data System (ADS)

    Martínez-Herrero, Rosario; Maluenda, David; Juvells, Ignasi; Carnicer, Artur

    2017-02-01

    Polarisers are one of the most widely used devices in optical set-ups. They are commonly used with paraxial beams that propagate in the normal direction of the polariser plane. Nevertheless, the conventional projection character of these devices may change when the beam impinges a polariser with a certain angle of incidence. This effect is more noticeable if polarisers are used in optical systems with a high numerical aperture, because multiple angles of incidence have to be taken into account. Moreover, the non-transverse character of highly focused beams makes the problem more complex and strictly speaking, the Malus’ law does not apply. In this paper we develop a theoretical framework to explain how ideal polarisers affect the behavior of highly focused fields. In this model, the polarisers are considered as birefringent plates, and the vector behaviour of focused fields is described using the plane-wave angular spectrum approach. Experiments involving focused fields were conducted to verify the theoretical model and a satisfactory agreement between theoretical and experimental results was found.

  18. Experimental Verification of Computational Models for Laminated Composites

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Coats, Timothy W.; Glaessgen, Edward H.

    1999-01-01

    The objective of the research reported herein is to develop a progressive damage methodology capable of predicting the residual strength of continuous fiber-reinforced, laminated, polymer matrix composites with through-penetration damage. The fracture behavior of center-notch tension panels with thin crack-like slits was studied. Since fibers are the major load-carrying constituent in polymer matrix composites, predicting the residual strength of a laminate requires a criterion for fiber fracture. The effects on fiber strain due to other damage mechanisms such as matrix cracking and delaminations must also be modeled. Therefore, the research herein examines the damage mechanisms involved in translaminate fracture and identifies the toughening mechanisms responsible for damage growth resistance in brittle epoxy matrix systems. The mechanics of matrix cracking and fiber fracture are discussed as is the mathematical framework for the progressive damage model developed by the authors. The progressive damage analysis algorithms have been implemented into a general purpose finite element code developed by NASA, the Computational Structural Mechanics Testbed (COMET). Damage growth is numerically simulated and the analytical residual strength predictions are compared to experimental results for a variety of notched panel configurations and materials systems.

  19. An experimental model of ischemia in rabbit hindlimb.

    PubMed Central

    Hong, J. H.; Bahk, Y. W.; Suh, J. S.; Kwak, B. K.; Shim, H. J.; Kim, J. S.; Kim, H. S.; Moon, Y. H.; Kim, S. J.; Chung, J. W.; Park, J. H.

    2001-01-01

    This study was performed to establish an experimental model of ischemia for the investigation of new treatment modality of limb-threatening ischemia. We produced ischemia in the hindlimbs of 8 New Zealand white rabbits. Under general anesthesia, the left femoral artery was exposed, freed, and excised from distal external iliac artery to proximal popliteal and saphenous arteries. And then both hindlimbs were serially examined to assess the ischemia according to the time table until postoperative 6 weeks. We assessed clinical observation, blood pressure, radioisotopic perfusion scan, and angiography. Clinical ischemic changes of the operated feet were observed in 63%. The blood pressure of left calves was measurable on postoperative day 3 (p<0.05, vs preoperative day 2) and then gradually increased to reach a plateau in postoperative week 6. Radioisotopic arterial perfusion showed similar profiles as in blood pressure. Angiography of ischemic hindlimbs demonstrated a few collateral vessels arising from the internal iliac artery with the reconstitution of the posterior tibial artery in postoperative week 2. In postoperative week 6, collaterals remained the same in number. However, these became dilated and tortuous and showed reconstitution in distal hindleg. In conclusion, this is a reproducible, measurable, and economical animal model of hind limb ischemia. PMID:11641535

  20. Polarisers in the focal domain: Theoretical model and experimental validation

    PubMed Central

    Martínez-Herrero, Rosario; Maluenda, David; Juvells, Ignasi; Carnicer, Artur

    2017-01-01

    Polarisers are one of the most widely used devices in optical set-ups. They are commonly used with paraxial beams that propagate in the normal direction of the polariser plane. Nevertheless, the conventional projection character of these devices may change when the beam impinges a polariser with a certain angle of incidence. This effect is more noticeable if polarisers are used in optical systems with a high numerical aperture, because multiple angles of incidence have to be taken into account. Moreover, the non-transverse character of highly focused beams makes the problem more complex and strictly speaking, the Malus’ law does not apply. In this paper we develop a theoretical framework to explain how ideal polarisers affect the behavior of highly focused fields. In this model, the polarisers are considered as birefringent plates, and the vector behaviour of focused fields is described using the plane-wave angular spectrum approach. Experiments involving focused fields were conducted to verify the theoretical model and a satisfactory agreement between theoretical and experimental results was found. PMID:28191817

  1. Experimental Investigation and Modeling of Copper Smelting Slags

    NASA Astrophysics Data System (ADS)

    Starodub, Konstantin; Kuminova, Yaroslava; Dinsdale, Alan; Cheverikin, Vladimir; Filichkina, Vera; Saynazarov, Abdukahhar; Khvan, Alexandra; Kondratiev, Alex

    2016-10-01

    Effective extraction of copper from sulfide ores requires careful operation of a copper smelter, which in turn depends very much on chemistry of the feed and resulted slag and matte. For example, chemical composition of copper smelting slags has to be in a certain range to ensure that their properties are within specific limits. Disobeying these rules may lead to complications in smelting operation, poor quality of the copper products, and premature shutdown of the copper smelter. In the present paper the microstructure and phase composition of slags from the Almalyk copper flash smelter were investigated experimentally and then modeled thermodynamically to evaluate potential ways of improvement and optimization of the copper smelting process and its products. The slag samples were taken at different stages of the copper smelting process: on slag tapping, after slag transportation to a deposition site, and at the site. Experimental investigation included the XRD, XRF, and SEM techniques, which were also confirmed by the traditional wet chemistry analysis. Thermodynamic modeling was carried out using thermochemical software package MTDATA, which enables thermodynamic and physical properties of the matte, slag, and gas phases to be calculated in a wide range of temperatures, pressures, and chemical compositions. In addition, slag viscosities and corresponding matte settling rates were estimated using the modified Urbain and Utigard-Warczok models, and the Hadamard-Rybczynski equation, respectively. It was found that the copper content in the slags may vary significantly depending on the location of slag sampling. Cu was found to be present as sulfide particles, almost no Cu was found to be dissolved in the slag. Analysis of microstructure and phase composition showed that major phase found in the samples is fayalite, while other phases are complex spinels (based on magnetite), different sulfides, and a glass-like phase. Thermodynamic calculations demonstrated the

  2. Characterization of renal parenchymal perfusion during experimental infrarenal aortic clamping and declamping with enhanced thermodiffusion electrodes.

    PubMed

    Kraus, T; Mehrabi, A; Angelescu, M; Golling, M; Allenberg, J R; Klar, E

    2001-07-01

    Despite multiple previous experimental and clinical investigations, it has not been fully clarified until now whether infrarenal aortic cross-clamping (IRAC) induces a significant disturbance of renal parenchymal perfusion. Most renal cortical flow data collected thus far have been heterogenous because of inherent limitations of available measurement technology. The enhanced thermal diffusion (TD) electrode is a newly developed and previously validated prototype device that allows continuous quantification of parenchymal kidney perfusion after local probe implantation. We monitored renal perfusion during experimental IRAC with TD for the first time, thereby also evaluating the potential applicability of the method in clinical aortic surgery. IRAC (20 min) followed by sudden declamping was performed in pigs under general anesthesia (n = 14). Renal cortical blood flow (RCBF) was continuously quantified by TD, total aortic flow (TABF) and renal artery flow (RABF) were measured by ultrasonic flow probes, and parameters of systemic circulation were determined by Swan-Ganz catheter. Our results showed that kidney perfusion can be continuously quantified using TD electrodes during experimental aortic surgery in a porcine model. IRAC does not lead to a significant impairment of RCBF in young pigs as measured by TD. Renal perfusion appears to be predominantly pressure driven. Consequently, abrubt aortic declamping can bring about prolonged renal ischemia. Transfer of the TD method to RCBF monitoring during clinical aortic surgery appears to be feasible and should be investigated in selected cases.

  3. Characterizing the Preturbulence Environment for Sensor Development, New Hazard Algorithms and NASA Experimental Flight Planning

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Lin, Yuh-Lang

    2004-01-01

    During the grant period, several tasks were performed in support of the NASA Turbulence Prediction and Warning Systems (TPAWS) program. The primary focus of the research was on characterizing the preturbulence environment by developing predictive tools and simulating atmospheric conditions that preceded severe turbulence. The goal of the research being to provide both dynamical understanding of conditions that preceded turbulence as well as providing predictive tools in support of operational NASA B-757 turbulence research flights. The advancements in characterizing the preturbulence environment will be applied by NASA to sensor development for predicting turbulence onboard commercial aircraft. Numerical simulations with atmospheric models as well as multi-scale observational analyses provided insights into the environment organizing turbulence in a total of forty-eight specific case studies of severe accident producing turbulence on commercial aircraft. These accidents exclusively affected commercial aircraft. A paradigm was developed which diagnosed specific atmospheric circulation systems from the synoptic scale down to the meso-y scale that preceded turbulence in both clear air and in proximity to convection. The emphasis was primarily on convective turbulence as that is what the TPAWS program is most focused on in terms of developing improved sensors for turbulence warning and avoidance. However, the dynamical paradigm also has applicability to clear air and mountain turbulence. This dynamical sequence of events was then employed to formulate and test new hazard prediction indices that were first tested in research simulation studies and then ultimately were further tested in support of the NASA B-757 turbulence research flights. The new hazard characterization algorithms were utilized in a Real Time Turbulence Model (RTTM) that was operationally employed to support the NASA B-757 turbulence research flights. Improvements in the RTTM were implemented in an

  4. Experimental characterization of pressure drops and channel instabilities in helical coil SG tubes

    SciTech Connect

    Colombo, M.; Cammi, A.; De Amicis, J.; Ricotti, M. E.

    2012-07-01

    Helical tube heat exchangers provide better heat transfer characteristics, an improved capability to accommodate stresses due to thermal expansions and a more compact design with respect to straight tube heat exchangers. For these advantages they are considered as an option for the Steam Generator (SG) of many new reactor projects of Generation III+ and Generation IV. In particular, their compactness fits well with the requirements of Small-medium Modular Reactors (SMRs) of integral design, where all the primary system components are located inside the reactor vessel. In this framework, thermal hydraulics of helical pipes has been studied in recent years by Politecnico di Milano in different experimental campaigns. Experiments have been carried out in a full-scale open loop test facility installed at SIET labs in Piacenza (Italy)), to simulate the SG of a typical SMR. The facility includes two helical pipes (1 m coil diameter, 32 m length, 8 m height), connected via lower and upper headers. Following recently completed experimental campaigns dedicated to pressure drops and density wave instabilities, this paper deals with a new experimental campaign focused on both pressure drops (single-phase flow and two-phase flow, laminar and turbulent regimes) and flow instabilities. The availability of a large number of experimental data, in particular on two-phase flow, is of fundamental interest for correlation development, model validation and code assessment. Two-phase pressure drops have been measured in adiabatic conditions, ranging from 200 to 600 kg/m{sup 2}s for the mass flux, from 30 to 60 bar for the pressure and from 0.1 to 1.0 for the flow quality. The channel characteristics mass flow rate - pressure drop has been determined experimentally in the range 10-40 bar, varying the mass flow rate at a fixed value of the thermal flux. In addition, single-phase pressure drops have been measured in both laminar and turbulent conditions. Density wave instabilities have

  5. Experimental and modelling studies for the validation of the mechanistic basis of the Local Effect Model

    NASA Astrophysics Data System (ADS)

    Tommasino, F.

    2016-03-01

    This review will summarize results obtained in the recent years applying the Local Effect Model (LEM) approach to the study of basic radiobiological aspects, as for instance DNA damage induction and repair, and charged particle track structure. The promising results obtained using different experimental techniques and looking at different biological end points, support the relevance of the LEM approach for the description of radiation effects induced by both low- and high-LET radiation. Furthermore, they suggest that nowadays the appropriate combination of experimental and modelling tools can lead to advances in the understanding of several open issues in the field of radiation biology.

  6. [Laboratory animal anaesthesia: influence of anaesthetic protocols on experimental models].

    PubMed

    Bazin, J-E; Constantin, J-M; Gindre, G

    2004-08-01

    different animal species and human and animals about the effects of anaesthetic agents are very hazardous. Great differences exist between the effects observed in vitro and in whole animals. The effects of the anaesthetics could be totally different if they are used alone or in association. The same anaesthetic could have opposite effects from an organ to another. For results validation, the anaesthesia side effects (hypoventilation, hypotension, cooling em leader ) have to be minimized. All new experimental models should require discussing the possible interferences between anaesthesia and results and to compare results obtained with different anaesthetic protocols.

  7. Experimental Investigation of the NASA Common Research Model

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Dittberner, Ashley

    2010-01-01

    An experimental aerodynamic investigation of the NASA Common Research Model has been conducted in the NASA NTF (National Transonic Facility). Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the WB and WBT0 configurations. Data have also been obtained at a chord Reynolds number of 5 million for the WBNP, WBT+2 and WBT-2 configurations. Force and moment, surface pressure and surface flow visualization data were obtained but only the force and moment data are presented herein. Model deformation measurements, aeroelastic, nacelle/pylon Reynolds number and tail effects have been assessed. The model deformation measurements showed more twist as you go out the wing span, with a break in the high q(sub infinity) data close to CL = 0.6 which is consistent with separation near the tip. Increases in dynamic pressure give an increase in pitching moment and drag and a decrease in lift for the WB and WBT0 configuration at Mach = 0.7, 0.85 and 0.87. The addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5. Increases in chord Reynolds number have been found to follow the normal Reynolds number trends except at the 19.8 million low q(sub infinity) cases. The abnormality of the 19.8 million low q(sub infinity) cases is being investigated. The tail effects also follow the expected trends. All of the data shown fall within the 2-sigma limits for repeatability.

  8. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  9. Early differentiation of the Moon: Experimental and modeling studies and experimental and modeling studies of massif anorthosites

    NASA Technical Reports Server (NTRS)

    Longhi, John

    1994-01-01

    NASA grant NAG9-329 was in effect from 3/1/89 to 8/31/94, the last 18 months being a no-cost extension. While the grant was in effect, the P.I., coworkers, and students gave 22 talks and poster sessions at professional meetings, published 12 articles in referred journals (one more is in press, and another is in review), and edited 2 workshop reports relevant to this project. Copies of all the publications are appended to this report. The major accomplishments during the grant period have derived from three quarters: 1) the application of quantitative models of fractional crystallization and partial melting to various problems in planetary science, such as the petrogenesis of picritic glasses and mare basalts and the implications of the SNC meteorites for martian evolution; 2) an experimental study of silicate liquid immiscibility relevant to early lunar differentiation and the petrogenesis of evolved highlands rocks; and 3) experimental studies of massif anorthosites and related rocks that provide terrestrial analogs for the proposed origin of lunar anorthosites by multistage processes. The low-pressure aspects of the quantitative models were developed by the P.I. in the 1980s with NASA support and culminated with a paper comparing the crystallization of terrestrial and lunar lavas. The basis for the high-pressure modifications to the quantitative models is a data set gleaned from high pressure melting experiments done at Lamont and is supplemented by published data from other labs that constrain the baric and compositional dependences of various liquidus phase boundaries such as olivine/orthopyroxene, relevant to the melting of the mantles of the terrestrial planets. With these models it is possible to predict not only the thermal and compositional evolution of magmatic liquids ranging in composition from lumar mare basalt to terrestrial calc-alkaline basalts, but also the small increments of fractional melting that are produced when mantle rises adiabatically

  10. Experimental vs. modeled water use in mature Norway spruce (Picea abies) exposed to elevated CO(2).

    PubMed

    Leuzinger, Sebastian; Bader, Martin K-F

    2012-01-01

    Rising levels of atmospheric CO(2) have often been reported to reduce plant water use. Such behavior is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO(2) concentration, which form the core of dynamic global vegetation models (DGVMs). Here, we provide first results from a free air CO(2) enrichment (FACE) experiment with naturally growing, mature (35 m) Picea abies (L.) (Norway spruce) and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential, and soil moisture in five 35-40 m tall CO(2)-treated (550 ppm) trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9% and 18% (at concentrations of 550-700 ppm atmospheric CO(2)), the combined evidence from various methods characterizing water use in our experimental trees suggest no changes in response to future CO(2) concentrations. The discrepancy between the modeled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could offset the first-order stomatal response.

  11. Experimental colitis models: Insights into the pathogenesis of inflammatory bowel disease and translational issues.

    PubMed

    Valatas, Vassilis; Bamias, Giorgos; Kolios, George

    2015-07-15

    Inflammatory bowel diseases, ulcerative colitis and Crohn׳s disease are characterized by chronic relapsing inflammation of the gastrointestinal tract of unknown etiology that seems to be the consequence of a genetically driven dysregulated immune response against various local and environmental triggers through a defective epithelial barrier. During the last decades, a large number of animal experimental models of intestinal inflammation have been generated and provided valuable insights into the mechanisms that either maintain mucosal homeostasis or drive intestinal inflammation. Their study enabled the identification of various treatment targets and the development a large pipeline of new drugs, mostly biologics. Safety and therapeutic efficacy of these agents have been evaluated in a large number of clinical trials but only a minority has reached the clinic so far. Translational successes but mostly translational failures have prompted to re-evaluate results of efficacy and safety generated by pre-clinical testing and to re-examine the way to interpret experimental in vivo data. This review examines the contribution of the most popular experimental colitis models to our understanding of the pathogenesis of human inflammatory bowel diseases and their translational input in drug development and discusses ways to improve translational outcome.

  12. Nanoparticles inhibit DNA replication by binding to DNA: modeling and experimental validation.

    PubMed

    Li, Kungang; Zhao, Xiaonan; K Hammer, Brian; Du, Songyan; Chen, Yongsheng

    2013-11-26

    Predictive models are beneficial tools for researchers to use in prioritizing nanoparticles (NPs) for toxicological tests, but experimental evaluation can be time-consuming and expensive, and thus, priority should be given to tests that identify the NPs most likely to be harmful. For characterization of NPs, the physical binding of NPs to DNA molecules is important to measure, as interference with DNA function may be one cause of toxicity. Here, we determined the interaction energy between 12 types of NPs and DNA based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) model and then predicted the affinity of the NPs for DNA. Using the single-molecule imaging technique known as atomic force microscopy (AFM), we experimentally determined the binding affinity of those NPs for DNA. Theoretical predictions and experimental observations of the binding affinity agreed well. Furthermore, the effect of NPs on DNA replication in vitro was investigated with the polymerase chain reaction (PCR) technique. The results showed that NPs with a high affinity for DNA strongly inhibited DNA replication, whereas NPs with low affinity had no or minimal effects on DNA replication. The methodology here is expected to benefit the genotoxicological testing of NPs as well as the design of safe NPs.

  13. Experimental determination and thermodynamic modeling of the Ni-Re binary system

    SciTech Connect

    Yaqoob, Khurram; Joubert, Jean-Marc

    2012-12-15

    The phase diagram of the Ni-Re binary system has been partially reinvestigated by chemical, structural and thermal characterization of the arc melted alloys. The experimental results obtained during the present investigation were combined with the literature data and a new phase diagram of the Ni-Re binary system is proposed. In comparison with the Ni-Re phase diagram proposed by Nash et al. in 1985 [1], significant differences in the homogeneity domains, freezing ranges and peritectic reaction temperature were evidenced. On the other hand, thermodynamic modeling of the studied system by using the new experimental information has also been carried out with the help of the CALPHAD method. The calculated Ni-Re phase diagram showed a good agreement with the selected experimental information. - Graphical abstract: Ni-Re phase diagram according to the present study. Highlights: Black-Right-Pointing-Pointer Re-investigation of the Ni-Re phase diagram. Black-Right-Pointing-Pointer Extended phase field of the hcp phase. Black-Right-Pointing-Pointer Different freezing ranges and peritectic reaction temperature. Black-Right-Pointing-Pointer Thermodynamic modeling of the studied system by using the CALPHAD method.

  14. Hierarchical spatiotemporal matrix models for characterizing invasions

    USGS Publications Warehouse

    Hooten, M.B.; Wikle, C.K.; Dorazio, R.M.; Royle, J. Andrew

    2007-01-01

    The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing. ?? 2006, The International Biometric Society.

  15. Hierarchical spatiotemporal matrix models for characterizing invasions

    USGS Publications Warehouse

    Hooten, Mevin B.; Wikle, Christopher K.; Dorazio, Robert M.; Royle, J. Andrew

    2007-01-01

    The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing.

  16. Nanolaminates and Microlaminates: Modeling and Characterization

    DTIC Science & Technology

    2006-05-31

    Microlaminate and microparticle reinforced composites modeling using non-classical theories, such as micropolar or strain gradient theories...papers are in press: I. Jasiuk and M. Ostoja-Starzewski (2003) "From Lattices and Composites to Micropolar Con- tinua," in Trends in Nanoscale

  17. Experimental Characterization and Simulation of Slip Transfer at Grain Boundaries and Microstructurally-Sensitive Crack Propagation

    NASA Technical Reports Server (NTRS)

    Gupta, Vipul; Hochhalter, Jacob; Yamakov, Vesselin; Scott, Willard; Spear, Ashley; Smith, Stephen; Glaessgen, Edward

    2013-01-01

    A systematic study of crack tip interaction with grain boundaries is critical for improvement of multiscale modeling of microstructurally-sensitive fatigue crack propagation and for the computationally-assisted design of more durable materials. In this study, single, bi- and large-grain multi-crystal specimens of an aluminum-copper alloy are fabricated, characterized using electron backscattered diffraction (EBSD), and deformed under tensile loading and nano-indentation. 2D image correlation (IC) in an environmental scanning electron microscope (ESEM) is used to measure displacements near crack tips, grain boundaries and within grain interiors. The role of grain boundaries on slip transfer is examined using nano-indentation in combination with high-resolution EBSD. The use of detailed IC and EBSD-based experiments are discussed as they relate to crystal-plasticity finite element (CPFE) model calibration and validation.

  18. Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies

    PubMed Central

    2013-01-01

    Background Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza). Results We have considered all basal angiosperm families for general characteristics important for experimental systems, including availability to the scientific community, growth habit, and membership in a large basal angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number. We demonstrated self-compatibility for Aristolochia elegans and A. fimbriata, and transformation with a GFP reporter construct for Saruma henryi and A. fimbriata. Furthermore, A. fimbriata was easily cultivated with a life cycle of just three months, could be regenerated in a tissue culture system, and had one of the smallest genomes among basal angiosperms. An extensive multi-tissue EST dataset was produced for A. fimbriata that includes over 3.8 million 454 sequence reads. Conclusions Aristolochia fimbriata has numerous features that facilitate genetic studies and is suggested as a potential